Open Source Tomb Raider Engine
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /* -*- Mode: C++; tab-width: 3; indent-tabs-mode: t; c-basic-offset: 3 -*- */
  2. /*================================================================
  3. *
  4. * Project : Hel
  5. * Author : Terry 'Mongoose' Hendrix II
  6. * Website : http://www.westga.edu/~stu7440/
  7. * Email : stu7440@westga.edu
  8. * Object : Quaternion
  9. * License : No use w/o permission (C) 2002 Mongoose
  10. * Comments: Quaternion now in C++ class form fresh from the grove
  11. *
  12. *
  13. * This file was generated using Mongoose's C++
  14. * template generator script. <stu7440@westga.edu>
  15. *
  16. *-- History -------------------------------------------------
  17. *
  18. * 2002.12.16:
  19. * Mongoose - Created, based on mtk3d ( freyja )
  20. =================================================================*/
  21. #include <math.h>
  22. #include <Quaternion.h>
  23. ////////////////////////////////////////////////////////////
  24. // Constructors
  25. ////////////////////////////////////////////////////////////
  26. Quaternion::Quaternion()
  27. {
  28. mW = 0;
  29. mX = 0;
  30. mY = 0;
  31. mZ = 0;
  32. }
  33. Quaternion::Quaternion(vec_t w, vec_t x, vec_t y, vec_t z)
  34. {
  35. mW = w;
  36. mX = x;
  37. mY = y;
  38. mZ = z;
  39. }
  40. Quaternion::Quaternion(vec4_t v)
  41. {
  42. mW = v[0];
  43. mX = v[1];
  44. mY = v[2];
  45. mZ = v[3];
  46. }
  47. Quaternion::~Quaternion()
  48. {
  49. }
  50. ////////////////////////////////////////////////////////////
  51. // Public Accessors
  52. ////////////////////////////////////////////////////////////
  53. void Quaternion::getMatrix(matrix_t m)
  54. {
  55. m[ 0] = 1.0f - 2.0f * (mY*mY + mZ*mZ);
  56. m[ 1] = 2.0f * (mX*mY - mW*mZ);
  57. m[ 2] = 2.0f * (mX*mZ + mW*mY);
  58. m[ 3] = 0.0f;
  59. m[ 4] = 2.0f * (mX*mY + mW*mZ);
  60. m[ 5] = 1.0f - 2.0f * (mX*mX + mZ*mZ);
  61. m[ 6] = 2.0f * (mY*mZ - mW*mX);
  62. m[ 7] = 0.0f;
  63. m[ 8] = 2.0f * (mX*mZ - mW*mY);
  64. m[ 9] = 2.0f * (mY*mZ + mW*mX);
  65. m[10] = 1.0 - 2.0f * (mX*mX + mY*mY);
  66. m[11] = 0.0f;
  67. m[12] = 0.0f;
  68. m[13] = 0.0f;
  69. m[14] = 0.0f;
  70. m[15] = 1.0f;
  71. }
  72. Quaternion Quaternion::operator =(const Quaternion &q)
  73. {
  74. mW = q.mW;
  75. mX = q.mX;
  76. mY = q.mY;
  77. mZ = q.mZ;
  78. return (*this);
  79. }
  80. Quaternion Quaternion::operator *(const Quaternion &q)
  81. {
  82. return multiply(*this, q);
  83. }
  84. Quaternion Quaternion::operator /(const Quaternion &q)
  85. {
  86. return divide(*this, q);
  87. }
  88. Quaternion Quaternion::operator +(const Quaternion &q)
  89. {
  90. return add(*this, q);
  91. }
  92. Quaternion Quaternion::operator -(const Quaternion &q)
  93. {
  94. return subtract(*this, q);
  95. }
  96. bool Quaternion::operator ==(const Quaternion &q)
  97. {
  98. return (mX == q.mX && mY == q.mY && mZ == q.mZ && mW == q.mW);
  99. }
  100. Quaternion Quaternion::conjugate()
  101. {
  102. return Quaternion(mW, -mX, -mY, -mZ);
  103. }
  104. Quaternion Quaternion::scale(vec_t s)
  105. {
  106. return Quaternion(mW * s, mX * s, mY * s, mZ * s);
  107. }
  108. Quaternion Quaternion::inverse()
  109. {
  110. return conjugate().scale(1/magnitude());
  111. }
  112. vec_t Quaternion::dot(Quaternion a, Quaternion b)
  113. {
  114. return ((a.mW * b.mW) + (a.mX * b.mX) + (a.mY * b.mY) + (a.mZ * b.mZ));
  115. }
  116. vec_t Quaternion::magnitude()
  117. {
  118. return sqrt(dot(*this, *this));
  119. }
  120. ////////////////////////////////////////////////////////////
  121. // Public Mutators
  122. ////////////////////////////////////////////////////////////
  123. void Quaternion::setIdentity()
  124. {
  125. mW = 1.0;
  126. mX = 0.0;
  127. mY = 0.0;
  128. mZ = 0.0;
  129. }
  130. void Quaternion::set(vec_t angle, vec_t x, vec_t y, vec_t z)
  131. {
  132. vec_t temp, dist;
  133. // Normalize
  134. temp = x*x + y*y + z*z;
  135. dist = (float)(1.0 / sqrt(temp));
  136. x *= dist;
  137. y *= dist;
  138. z *= dist;
  139. mX = x;
  140. mY = y;
  141. mZ = z;
  142. mW = (float)cos(angle / 2.0f);
  143. }
  144. void Quaternion::normalize()
  145. {
  146. vec_t dist, square;
  147. square = mX * mX + mY * mY + mZ * mZ + mW * mW;
  148. if (square > 0.0)
  149. {
  150. dist = (float)(1.0 / sqrt(square));
  151. }
  152. else
  153. {
  154. dist = 1;
  155. }
  156. mX *= dist;
  157. mY *= dist;
  158. mZ *= dist;
  159. mW *= dist;
  160. }
  161. void Quaternion::copy(Quaternion q)
  162. {
  163. mW = q.mW;
  164. mX = q.mX;
  165. mY = q.mY;
  166. mZ = q.mZ;
  167. }
  168. Quaternion Quaternion::slerp(Quaternion a, Quaternion b, vec_t time)
  169. {
  170. /*******************************************************************
  171. * Spherical Linear Interpolation algorthim
  172. *-----------------------------------------------------------------
  173. *
  174. * Interpolate between A and B rotations ( Find qI )
  175. *
  176. * qI = (((qB . qA)^ -1)^ Time) qA
  177. *
  178. * http://www.magic-software.com/Documentation/quat.pdf
  179. *
  180. * Thanks to digiben for algorithms and basis of the notes in
  181. * this func
  182. *
  183. *******************************************************************/
  184. vec_t result, scaleA, scaleB, theta, sinTheta;
  185. Quaternion i;
  186. // Don't bother if it's the same rotation, it's the same as the result
  187. if (a == b)
  188. {
  189. return a;
  190. }
  191. // A . B
  192. result = dot(a, b);
  193. // If the dot product is less than 0, the angle is greater than 90 degrees
  194. if (result < 0.0f)
  195. {
  196. // Negate quaternion B and the result of the dot product
  197. b = Quaternion(-b.mW, -b.mX, -b.mY, -b.mZ);
  198. result = -result;
  199. }
  200. // Set the first and second scale for the interpolation
  201. scaleA = 1 - time;
  202. scaleB = time;
  203. // Next, we want to actually calculate the spherical interpolation. Since this
  204. // calculation is quite computationally expensive, we want to only perform it
  205. // if the angle between the 2 quaternions is large enough to warrant it. If the
  206. // angle is fairly small, we can actually just do a simpler linear interpolation
  207. // of the 2 quaternions, and skip all the complex math. We create a "delta" value
  208. // of 0.1 to say that if the cosine of the angle (result of the dot product) between
  209. // the 2 quaternions is smaller than 0.1, then we do NOT want to perform the full on
  210. // interpolation using. This is because you won't really notice the difference.
  211. // Check if the angle between the 2 quaternions was big enough
  212. // to warrant such calculations
  213. if (1 - result > 0.1f)
  214. {
  215. // Get the angle between the 2 quaternions, and then
  216. // store the sin() of that angle
  217. theta = (float)acos(result);
  218. sinTheta = (float)sin(theta);
  219. // Calculate the scale for qA and qB, according to
  220. // the angle and it's sine value
  221. scaleA = (float)sin((1 - time) * theta) / sinTheta;
  222. scaleB = (float)sin((time * theta)) / sinTheta;
  223. }
  224. // Calculate the x, y, z and w values for the quaternion by using a special
  225. // form of linear interpolation for quaternions.
  226. return (a.scale(scaleA) + b.scale(scaleB));
  227. }
  228. void Quaternion::setByMatrix(matrix_t matrix)
  229. {
  230. float diagonal = matrix[0] + matrix[5] + matrix[10] + 1.0f;
  231. float scale = 0.0f;
  232. float w = 0.0f, x = 0.0f, y = 0.0f, z = 0.0f;
  233. if (diagonal > 0.00000001)
  234. {
  235. // Calculate the scale of the diagonal
  236. scale = (float)(sqrt(diagonal) * 2);
  237. w = 0.25f * scale;
  238. x = (matrix[9] - matrix[6]) / scale;
  239. y = (matrix[2] - matrix[8]) / scale;
  240. z = (matrix[4] - matrix[1]) / scale;
  241. }
  242. else
  243. {
  244. // If the first element of the diagonal is the greatest value
  245. if (matrix[0] > matrix[5] && matrix[0] > matrix[10])
  246. {
  247. // Find the scale according to the first element, and double it
  248. scale = (float)sqrt(1.0f + matrix[0] - matrix[5] - matrix[10])*2.0f;
  249. // Calculate the quaternion
  250. w = (matrix[9] - matrix[6]) / scale;
  251. x = 0.25f * scale;
  252. y = (matrix[4] + matrix[1]) / scale;
  253. z = (matrix[2] + matrix[8]) / scale;
  254. }
  255. // The second element of the diagonal is the greatest value
  256. else if (matrix[5] > matrix[10])
  257. {
  258. // Find the scale according to the second element, and double it
  259. scale = (float)sqrt(1.0f + matrix[5] - matrix[0] - matrix[10])*2.0f;
  260. // Calculate the quaternion
  261. w = (matrix[2] - matrix[8]) / scale;
  262. x = (matrix[4] + matrix[1]) / scale;
  263. y = 0.25f * scale;
  264. z = (matrix[9] + matrix[6]) / scale;
  265. }
  266. // The third element of the diagonal is the greatest value
  267. else
  268. {
  269. // Find the scale according to the third element, and double it
  270. scale = (float)sqrt(1.0f + matrix[10] - matrix[0] - matrix[5])*2.0f;
  271. // Calculate the quaternion
  272. w = (matrix[4] - matrix[1]) / scale;
  273. x = (matrix[2] + matrix[8]) / scale;
  274. y = (matrix[9] + matrix[6]) / scale;
  275. z = 0.25f * scale;
  276. }
  277. }
  278. mW = w;
  279. mX = x;
  280. mY = y;
  281. mZ = z;
  282. }
  283. ////////////////////////////////////////////////////////////
  284. // Private Accessors
  285. ////////////////////////////////////////////////////////////
  286. Quaternion Quaternion::multiply(Quaternion a, Quaternion b)
  287. {
  288. return Quaternion(a.mW * b.mW - a.mX * b.mX - a.mY * b.mY - a.mZ * b.mZ,
  289. a.mW * b.mX + a.mX * b.mW + a.mY * b.mZ - a.mZ * b.mY,
  290. a.mW * b.mY + a.mY * b.mW + a.mZ * b.mX - a.mX * b.mZ,
  291. a.mW * b.mZ + a.mZ * b.mW + a.mX * b.mY - a.mY * b.mX);
  292. }
  293. Quaternion Quaternion::divide(Quaternion a, Quaternion b)
  294. {
  295. return (a * (b.inverse()));
  296. }
  297. Quaternion Quaternion::add(Quaternion a, Quaternion b)
  298. {
  299. return Quaternion(a.mW + b.mW,
  300. a.mX + b.mX,
  301. a.mY + b.mY,
  302. a.mZ + b.mZ);
  303. }
  304. Quaternion Quaternion::subtract(Quaternion a, Quaternion b)
  305. {
  306. return Quaternion(a.mW - b.mW,
  307. a.mX - b.mX,
  308. a.mY - b.mY,
  309. a.mZ - b.mZ);
  310. }
  311. ////////////////////////////////////////////////////////////
  312. // Private Mutators
  313. ////////////////////////////////////////////////////////////