|
@@ -443,48 +443,24 @@ void Stepper::isr() {
|
443
|
443
|
// Take multiple steps per interrupt (For high speed moves)
|
444
|
444
|
bool all_steps_done = false;
|
445
|
445
|
for (uint8_t i = step_loops; i--;) {
|
446
|
|
- #if ENABLED(LIN_ADVANCE)
|
447
|
|
-
|
448
|
|
- counter_E += current_block->steps[E_AXIS];
|
449
|
|
- if (counter_E > 0) {
|
450
|
|
- counter_E -= current_block->step_event_count;
|
451
|
|
- #if DISABLED(MIXING_EXTRUDER)
|
452
|
|
- // Don't step E here for mixing extruder
|
453
|
|
- count_position[E_AXIS] += count_direction[E_AXIS];
|
454
|
|
- motor_direction(E_AXIS) ? --e_steps : ++e_steps;
|
455
|
|
- #endif
|
456
|
|
- }
|
457
|
|
-
|
458
|
|
- #if ENABLED(MIXING_EXTRUDER)
|
459
|
|
- // Step mixing steppers proportionally
|
460
|
|
- const bool dir = motor_direction(E_AXIS);
|
461
|
|
- MIXING_STEPPERS_LOOP(j) {
|
462
|
|
- counter_m[j] += current_block->steps[E_AXIS];
|
463
|
|
- if (counter_m[j] > 0) {
|
464
|
|
- counter_m[j] -= current_block->mix_event_count[j];
|
465
|
|
- dir ? --e_steps[j] : ++e_steps[j];
|
466
|
|
- }
|
467
|
|
- }
|
468
|
|
- #endif
|
469
|
|
-
|
470
|
|
- #endif // LIN_ADVANCE
|
471
|
446
|
|
472
|
447
|
#define _COUNTER(AXIS) counter_## AXIS
|
473
|
448
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
474
|
449
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
475
|
450
|
|
476
|
451
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
477
|
|
- #define PULSE_START(AXIS) \
|
|
452
|
+ #define PULSE_START(AXIS) do{ \
|
478
|
453
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
479
|
|
- if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
454
|
+ if (_COUNTER(AXIS) > 0) _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); }while(0)
|
480
|
455
|
|
481
|
|
- // Stop an active pulse, reset the Bresenham counter, update the position
|
482
|
|
- #define PULSE_STOP(AXIS) \
|
|
456
|
+ // Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
457
|
+ #define STEP_TICK(AXIS) \
|
483
|
458
|
if (_COUNTER(AXIS) > 0) { \
|
484
|
459
|
_COUNTER(AXIS) -= current_block->step_event_count; \
|
485
|
|
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
486
|
|
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
487
|
|
- }
|
|
460
|
+ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; }
|
|
461
|
+
|
|
462
|
+ // Stop an active pulse, if any
|
|
463
|
+ #define PULSE_STOP(AXIS) _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0)
|
488
|
464
|
|
489
|
465
|
/**
|
490
|
466
|
* Estimate the number of cycles that the stepper logic already takes
|
|
@@ -563,8 +539,30 @@ void Stepper::isr() {
|
563
|
539
|
PULSE_START(Z);
|
564
|
540
|
#endif
|
565
|
541
|
|
566
|
|
- // For non-advance use linear interpolation for E also
|
567
|
|
- #if DISABLED(LIN_ADVANCE)
|
|
542
|
+ #if ENABLED(LIN_ADVANCE)
|
|
543
|
+
|
|
544
|
+ counter_E += current_block->steps[E_AXIS];
|
|
545
|
+ if (counter_E > 0) {
|
|
546
|
+ #if DISABLED(MIXING_EXTRUDER)
|
|
547
|
+ // Don't step E here for mixing extruder
|
|
548
|
+ motor_direction(E_AXIS) ? --e_steps : ++e_steps;
|
|
549
|
+ #endif
|
|
550
|
+ }
|
|
551
|
+
|
|
552
|
+ #if ENABLED(MIXING_EXTRUDER)
|
|
553
|
+ // Step mixing steppers proportionally
|
|
554
|
+ const bool dir = motor_direction(E_AXIS);
|
|
555
|
+ MIXING_STEPPERS_LOOP(j) {
|
|
556
|
+ counter_m[j] += current_block->steps[E_AXIS];
|
|
557
|
+ if (counter_m[j] > 0) {
|
|
558
|
+ counter_m[j] -= current_block->mix_event_count[j];
|
|
559
|
+ dir ? --e_steps[j] : ++e_steps[j];
|
|
560
|
+ }
|
|
561
|
+ }
|
|
562
|
+ #endif
|
|
563
|
+
|
|
564
|
+ #else // !LIN_ADVANCE - use linear interpolation for E also
|
|
565
|
+
|
568
|
566
|
#if ENABLED(MIXING_EXTRUDER)
|
569
|
567
|
// Keep updating the single E axis
|
570
|
568
|
counter_E += current_block->steps[E_AXIS];
|
|
@@ -580,6 +578,18 @@ void Stepper::isr() {
|
580
|
578
|
#endif
|
581
|
579
|
#endif // !LIN_ADVANCE
|
582
|
580
|
|
|
581
|
+ #if HAS_X_STEP
|
|
582
|
+ STEP_TICK(X);
|
|
583
|
+ #endif
|
|
584
|
+ #if HAS_Y_STEP
|
|
585
|
+ STEP_TICK(Y);
|
|
586
|
+ #endif
|
|
587
|
+ #if HAS_Z_STEP
|
|
588
|
+ STEP_TICK(Z);
|
|
589
|
+ #endif
|
|
590
|
+
|
|
591
|
+ STEP_TICK(E); // Always tick the single E axis
|
|
592
|
+
|
583
|
593
|
// For minimum pulse time wait before stopping pulses
|
584
|
594
|
#if EXTRA_CYCLES_XYZE > 20
|
585
|
595
|
while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
|
@@ -600,11 +610,6 @@ void Stepper::isr() {
|
600
|
610
|
|
601
|
611
|
#if DISABLED(LIN_ADVANCE)
|
602
|
612
|
#if ENABLED(MIXING_EXTRUDER)
|
603
|
|
- // Always step the single E axis
|
604
|
|
- if (counter_E > 0) {
|
605
|
|
- counter_E -= current_block->step_event_count;
|
606
|
|
- count_position[E_AXIS] += count_direction[E_AXIS];
|
607
|
|
- }
|
608
|
613
|
MIXING_STEPPERS_LOOP(j) {
|
609
|
614
|
if (counter_m[j] > 0) {
|
610
|
615
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
@@ -686,6 +691,7 @@ void Stepper::isr() {
|
686
|
691
|
|
687
|
692
|
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
688
|
693
|
_NEXT_ISR(ocr_val);
|
|
694
|
+
|
689
|
695
|
deceleration_time += interval;
|
690
|
696
|
|
691
|
697
|
#if ENABLED(LIN_ADVANCE)
|
|
@@ -714,6 +720,7 @@ void Stepper::isr() {
|
714
|
720
|
|
715
|
721
|
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
716
|
722
|
_NEXT_ISR(ocr_val);
|
|
723
|
+
|
717
|
724
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
718
|
725
|
step_loops = step_loops_nominal;
|
719
|
726
|
}
|