Parcourir la source

Formatted multi-line comments

jbrazio il y a 8 ans
Parent
révision
443e6d26fe
1 fichiers modifiés avec 235 ajouts et 140 suppressions
  1. 235
    140
      Marlin/Marlin_main.cpp

+ 235
- 140
Marlin/Marlin_main.cpp Voir le fichier

@@ -456,9 +456,11 @@ static bool send_ok[BUFSIZE];
456 456
   #define KEEPALIVE_STATE(n) ;
457 457
 #endif // HOST_KEEPALIVE_FEATURE
458 458
 
459
-//===========================================================================
460
-//================================ Functions ================================
461
-//===========================================================================
459
+/**
460
+ * ***************************************************************************
461
+ * ******************************** FUNCTIONS ********************************
462
+ * ***************************************************************************
463
+ */
462 464
 
463 465
 void process_next_command();
464 466
 
@@ -877,16 +879,16 @@ void get_command() {
877 879
     }
878 880
   #endif
879 881
 
880
-  //
881
-  // Loop while serial characters are incoming and the queue is not full
882
-  //
882
+  /**
883
+   * Loop while serial characters are incoming and the queue is not full
884
+   */
883 885
   while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
884 886
 
885 887
     char serial_char = MYSERIAL.read();
886 888
 
887
-    //
888
-    // If the character ends the line
889
-    //
889
+    /**
890
+     * If the character ends the line
891
+     */
890 892
     if (serial_char == '\n' || serial_char == '\r') {
891 893
 
892 894
       serial_comment_mode = false; // end of line == end of comment
@@ -994,9 +996,12 @@ void get_command() {
994 996
 
995 997
     if (!card.sdprinting) return;
996 998
 
997
-    // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
998
-    // if it occurs, stop_buffering is triggered and the buffer is run dry.
999
-    // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
999
+    /**
1000
+     * '#' stops reading from SD to the buffer prematurely, so procedural
1001
+     * macro calls are possible. If it occurs, stop_buffering is triggered
1002
+     * and the buffer is run dry; this character _can_ occur in serial com
1003
+     * due to checksums, however, no checksums are used in SD printing.
1004
+     */
1000 1005
 
1001 1006
     if (commands_in_queue == 0) stop_buffering = false;
1002 1007
 
@@ -1035,8 +1040,10 @@ void get_command() {
1035 1040
         _commit_command(false);
1036 1041
       }
1037 1042
       else if (sd_count >= MAX_CMD_SIZE - 1) {
1038
-        // Keep fetching, but ignore normal characters beyond the max length
1039
-        // The command will be injected when EOL is reached
1043
+        /**
1044
+         * Keep fetching, but ignore normal characters beyond the max length
1045
+         * The command will be injected when EOL is reached
1046
+         */
1040 1047
       }
1041 1048
       else {
1042 1049
         if (sd_char == ';') sd_comment_mode = true;
@@ -1110,10 +1117,12 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
1110 1117
     if (extruder == 0)
1111 1118
       return base_home_pos(X_AXIS) + home_offset[X_AXIS];
1112 1119
     else
1113
-      // In dual carriage mode the extruder offset provides an override of the
1114
-      // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
1115
-      // This allow soft recalibration of the second extruder offset position without firmware reflash
1116
-      // (through the M218 command).
1120
+      /**
1121
+       * In dual carriage mode the extruder offset provides an override of the
1122
+       * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
1123
+       * This allow soft recalibration of the second extruder offset position
1124
+       * without firmware reflash (through the M218 command).
1125
+       */
1117 1126
       return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
1118 1127
   }
1119 1128
 
@@ -1173,8 +1182,11 @@ static void set_axis_is_at_home(AxisEnum axis) {
1173 1182
 
1174 1183
       // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
1175 1184
       // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
1176
-      // Works out real Homeposition angles using inverse kinematics,
1177
-      // and calculates homing offset using forward kinematics
1185
+
1186
+      /**
1187
+       * Works out real Homeposition angles using inverse kinematics,
1188
+       * and calculates homing offset using forward kinematics
1189
+       */
1178 1190
       calculate_delta(homeposition);
1179 1191
 
1180 1192
       // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
@@ -1194,8 +1206,10 @@ static void set_axis_is_at_home(AxisEnum axis) {
1194 1206
 
1195 1207
       current_position[axis] = delta[axis];
1196 1208
 
1197
-      // SCARA home positions are based on configuration since the actual limits are determined by the
1198
-      // inverse kinematic transform.
1209
+      /**
1210
+       * SCARA home positions are based on configuration since the actual
1211
+       * limits are determined by the inverse kinematic transform.
1212
+       */
1199 1213
       min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
1200 1214
       max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
1201 1215
     }
@@ -1357,7 +1371,11 @@ static void setup_for_endstop_move() {
1357 1371
 
1358 1372
   static void run_z_probe() {
1359 1373
 
1360
-    refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
1374
+    /**
1375
+     * To prevent stepper_inactive_time from running out and
1376
+     * EXTRUDER_RUNOUT_PREVENT from extruding
1377
+     */
1378
+    refresh_cmd_timeout();
1361 1379
 
1362 1380
     #if ENABLED(DELTA)
1363 1381
 
@@ -1377,7 +1395,10 @@ static void setup_for_endstop_move() {
1377 1395
       st_synchronize();
1378 1396
       endstops_hit_on_purpose(); // clear endstop hit flags
1379 1397
 
1380
-      // we have to let the planner know where we are right now as it is not where we said to go.
1398
+      /**
1399
+       * We have to let the planner know where we are right now as it
1400
+       * is not where we said to go.
1401
+       */
1381 1402
       long stop_steps = st_get_position(Z_AXIS);
1382 1403
       float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
1383 1404
       current_position[Z_AXIS] = mm;
@@ -1402,7 +1423,10 @@ static void setup_for_endstop_move() {
1402 1423
 
1403 1424
       // Tell the planner where we ended up - Get this from the stepper handler
1404 1425
       zPosition = st_get_axis_position_mm(Z_AXIS);
1405
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
1426
+      plan_set_position(
1427
+        current_position[X_AXIS], current_position[Y_AXIS], zPosition,
1428
+        current_position[E_AXIS]
1429
+      );
1406 1430
 
1407 1431
       // move up the retract distance
1408 1432
       zPosition += home_bump_mm(Z_AXIS);
@@ -1474,10 +1498,21 @@ static void setup_for_endstop_move() {
1474 1498
     feedrate = oldFeedRate;
1475 1499
   }
1476 1500
 
1477
-  inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
1478
-  inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
1479
-  inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
1480
-  inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
1501
+  inline void do_blocking_move_to_xy(float x, float y) {
1502
+    do_blocking_move_to(x, y, current_position[Z_AXIS]);
1503
+  }
1504
+
1505
+  inline void do_blocking_move_to_x(float x) {
1506
+    do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
1507
+  }
1508
+
1509
+  inline void do_blocking_move_to_z(float z) {
1510
+    do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
1511
+  }
1512
+
1513
+  inline void raise_z_after_probing() {
1514
+    do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
1515
+  }
1481 1516
 
1482 1517
   static void clean_up_after_endstop_move() {
1483 1518
     #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -1729,7 +1764,8 @@ static void setup_for_endstop_move() {
1729 1764
       }
1730 1765
     #endif
1731 1766
 
1732
-    do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
1767
+    // this also updates current_position
1768
+    do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
1733 1769
 
1734 1770
     #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
1735 1771
       if (probe_action & ProbeDeploy) {
@@ -1780,7 +1816,6 @@ static void setup_for_endstop_move() {
1780 1816
     /**
1781 1817
      * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
1782 1818
      */
1783
-
1784 1819
     static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
1785 1820
       if (bed_level[x][y] != 0.0) {
1786 1821
         return;  // Don't overwrite good values.
@@ -1800,8 +1835,10 @@ static void setup_for_endstop_move() {
1800 1835
       bed_level[x][y] = median;
1801 1836
     }
1802 1837
 
1803
-    // Fill in the unprobed points (corners of circular print surface)
1804
-    // using linear extrapolation, away from the center.
1838
+    /**
1839
+     * Fill in the unprobed points (corners of circular print surface)
1840
+     * using linear extrapolation, away from the center.
1841
+     */
1805 1842
     static void extrapolate_unprobed_bed_level() {
1806 1843
       int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
1807 1844
       for (int y = 0; y <= half; y++) {
@@ -1815,7 +1852,9 @@ static void setup_for_endstop_move() {
1815 1852
       }
1816 1853
     }
1817 1854
 
1818
-    // Print calibration results for plotting or manual frame adjustment.
1855
+    /**
1856
+     * Print calibration results for plotting or manual frame adjustment.
1857
+     */
1819 1858
     static void print_bed_level() {
1820 1859
       for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
1821 1860
         for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
@@ -1826,7 +1865,9 @@ static void setup_for_endstop_move() {
1826 1865
       }
1827 1866
     }
1828 1867
 
1829
-    // Reset calibration results to zero.
1868
+    /**
1869
+     * Reset calibration results to zero.
1870
+     */
1830 1871
     void reset_bed_level() {
1831 1872
       #if ENABLED(DEBUG_LEVELING_FEATURE)
1832 1873
         if (marlin_debug_flags & DEBUG_LEVELING) {
@@ -1846,8 +1887,10 @@ static void setup_for_endstop_move() {
1846 1887
 
1847 1888
     void raise_z_for_servo() {
1848 1889
       float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
1849
-      // The zprobe_zoffset is negative any switch below the nozzle, so
1850
-      // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
1890
+      /**
1891
+       * The zprobe_zoffset is negative any switch below the nozzle, so
1892
+       * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
1893
+       */
1851 1894
       z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
1852 1895
       if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
1853 1896
     }
@@ -1894,7 +1937,8 @@ static void axis_unhomed_error() {
1894 1937
       #if Z_RAISE_AFTER_PROBING > 0
1895 1938
         raise_z_after_probing(); // raise Z
1896 1939
       #endif
1897
-      do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);  // Dock sled a bit closer to ensure proper capturing
1940
+      // Dock sled a bit closer to ensure proper capturing
1941
+      do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
1898 1942
       digitalWrite(SLED_PIN, LOW); // turn off magnet
1899 1943
     }
1900 1944
     else {
@@ -2190,9 +2234,9 @@ static void homeaxis(AxisEnum axis) {
2190 2234
 #endif // FWRETRACT
2191 2235
 
2192 2236
 /**
2193
- *
2194
- * G-Code Handler functions
2195
- *
2237
+ * ***************************************************************************
2238
+ * ***************************** G-CODE HANDLING *****************************
2239
+ * ***************************************************************************
2196 2240
  */
2197 2241
 
2198 2242
 /**
@@ -2383,7 +2427,10 @@ inline void gcode_G28() {
2383 2427
     #endif
2384 2428
   #endif
2385 2429
 
2386
-  // For mesh bed leveling deactivate the mesh calculations, will be turned on again when homing all axis
2430
+  /**
2431
+   * For mesh bed leveling deactivate the mesh calculations, will be turned
2432
+   * on again when homing all axis
2433
+   */
2387 2434
   #if ENABLED(MESH_BED_LEVELING)
2388 2435
     uint8_t mbl_was_active = mbl.active;
2389 2436
     mbl.active = 0;
@@ -2391,13 +2438,19 @@ inline void gcode_G28() {
2391 2438
 
2392 2439
   setup_for_endstop_move();
2393 2440
 
2394
-  set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
2441
+  /**
2442
+   * Directly after a reset this is all 0. Later we get a hint if we have
2443
+   * to raise z or not.
2444
+   */
2445
+  set_destination_to_current();
2395 2446
 
2396 2447
   feedrate = 0.0;
2397 2448
 
2398 2449
   #if ENABLED(DELTA)
2399
-    // A delta can only safely home all axis at the same time
2400
-    // all axis have to home at the same time
2450
+    /**
2451
+     * A delta can only safely home all axis at the same time
2452
+     * all axis have to home at the same time
2453
+     */
2401 2454
 
2402 2455
     // Pretend the current position is 0,0,0
2403 2456
     for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
@@ -2462,9 +2515,11 @@ inline void gcode_G28() {
2462 2515
         line_to_destination();
2463 2516
         st_synchronize();
2464 2517
 
2465
-        // Update the current Z position even if it currently not real from Z-home
2466
-        // otherwise each call to line_to_destination() will want to move Z-axis
2467
-        // by MIN_Z_HEIGHT_FOR_HOMING.
2518
+        /**
2519
+         * Update the current Z position even if it currently not real from
2520
+         * Z-home otherwise each call to line_to_destination() will want to
2521
+         * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
2522
+         */
2468 2523
         current_position[Z_AXIS] = destination[Z_AXIS];
2469 2524
       }
2470 2525
     #endif
@@ -2581,15 +2636,18 @@ inline void gcode_G28() {
2581 2636
 
2582 2637
           if (home_all_axis) {
2583 2638
 
2584
-            // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
2585
-            // No need to move Z any more as this height should already be safe
2586
-            // enough to reach Z_SAFE_HOMING XY positions.
2587
-            // Just make sure the planner is in sync.
2639
+            /**
2640
+             * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
2641
+             * No need to move Z any more as this height should already be safe
2642
+             * enough to reach Z_SAFE_HOMING XY positions.
2643
+             * Just make sure the planner is in sync.
2644
+             */
2588 2645
             sync_plan_position();
2589 2646
 
2590
-            //
2591
-            // Set the Z probe (or just the nozzle) destination to the safe homing point
2592
-            //
2647
+            /**
2648
+             * Set the Z probe (or just the nozzle) destination to the safe
2649
+             *  homing point
2650
+             */
2593 2651
             destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
2594 2652
             destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
2595 2653
             destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
@@ -2606,8 +2664,10 @@ inline void gcode_G28() {
2606 2664
             line_to_destination();
2607 2665
             st_synchronize();
2608 2666
 
2609
-            // Update the current positions for XY, Z is still at least at
2610
-            // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
2667
+            /**
2668
+             * Update the current positions for XY, Z is still at least at
2669
+             * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
2670
+             */
2611 2671
             current_position[X_AXIS] = destination[X_AXIS];
2612 2672
             current_position[Y_AXIS] = destination[Y_AXIS];
2613 2673
 
@@ -2620,8 +2680,11 @@ inline void gcode_G28() {
2620 2680
             // Let's see if X and Y are homed
2621 2681
             if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
2622 2682
 
2623
-              // Make sure the Z probe is within the physical limits
2624
-              // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
2683
+              /**
2684
+               * Make sure the Z probe is within the physical limits
2685
+               * NOTE: This doesn't necessarily ensure the Z probe is also
2686
+               * within the bed!
2687
+               */
2625 2688
               float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
2626 2689
               if (   cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
2627 2690
                   && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
@@ -2858,7 +2921,7 @@ inline void gcode_G28() {
2858 2921
       case MeshSetZOffset:
2859 2922
         if (code_seen('Z')) {
2860 2923
           z = code_value();
2861
-        } 
2924
+        }
2862 2925
         else {
2863 2926
           SERIAL_PROTOCOLPGM("Z not entered.\n");
2864 2927
           return;
@@ -3038,11 +3101,14 @@ inline void gcode_G28() {
3038 3101
         float z_offset = zprobe_zoffset;
3039 3102
         if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
3040 3103
       #else // !DELTA
3041
-        // solve the plane equation ax + by + d = z
3042
-        // A is the matrix with rows [x y 1] for all the probed points
3043
-        // B is the vector of the Z positions
3044
-        // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
3045
-        // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
3104
+        /**
3105
+         * solve the plane equation ax + by + d = z
3106
+         * A is the matrix with rows [x y 1] for all the probed points
3107
+         * B is the vector of the Z positions
3108
+         * the normal vector to the plane is formed by the coefficients of the
3109
+         * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
3110
+         * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
3111
+         */
3046 3112
 
3047 3113
         int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
3048 3114
 
@@ -3273,9 +3339,11 @@ inline void gcode_G28() {
3273 3339
         plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
3274 3340
 
3275 3341
       if (!dryrun) {
3276
-        // Correct the Z height difference from Z probe position and nozzle tip position.
3277
-        // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
3278
-        // When the bed is uneven, this height must be corrected.
3342
+        /**
3343
+         * Correct the Z height difference from Z probe position and nozzle tip position.
3344
+         * The Z height on homing is measured by Z probe, but the Z probe is quite far
3345
+         * from the nozzle. When the bed is uneven, this height must be corrected.
3346
+         */
3279 3347
         float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
3280 3348
               y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
3281 3349
               z_tmp = current_position[Z_AXIS],
@@ -3290,24 +3358,31 @@ inline void gcode_G28() {
3290 3358
           }
3291 3359
         #endif
3292 3360
 
3293
-        apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
3294
-
3295
-        // Get the current Z position and send it to the planner.
3296
-        //
3297
-        // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
3298
-        //
3299
-        // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
3300
-        //
3301
-        // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
3302
-        //
3303
-        // >> Should home_offset[Z_AXIS] be included?
3304
-        //
3305
-        //      Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
3306
-        //      If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
3307
-        //      then perhaps it should not be included here. The purpose of home_offset[] is to
3308
-        //      adjust for inaccurate endstops, not for reasonably accurate probes. If it were
3309
-        //      added here, it could be seen as a compensating factor for the Z probe.
3310
-        //
3361
+        // Apply the correction sending the Z probe offset
3362
+        apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
3363
+
3364
+        /*
3365
+         * Get the current Z position and send it to the planner.
3366
+         *
3367
+         * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
3368
+         * (most recent plan_set_position/sync_plan_position)
3369
+         *
3370
+         * >> zprobe_zoffset : Z distance from nozzle to Z probe
3371
+         * (set by default, M851, EEPROM, or Menu)
3372
+         *
3373
+         * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
3374
+         * after the last probe
3375
+         *
3376
+         * >> Should home_offset[Z_AXIS] be included?
3377
+         *
3378
+         *
3379
+         *   Discussion: home_offset[Z_AXIS] was applied in G28 to set the
3380
+         *   starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
3381
+         *   not actually "homing" Z... then perhaps it should not be included
3382
+         *   here. The purpose of home_offset[] is to adjust for inaccurate
3383
+         *   endstops, not for reasonably accurate probes. If it were added
3384
+         *   here, it could be seen as a compensating factor for the Z probe.
3385
+         */
3311 3386
         #if ENABLED(DEBUG_LEVELING_FEATURE)
3312 3387
           if (marlin_debug_flags & DEBUG_LEVELING) {
3313 3388
             SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp  = ", z_tmp);
@@ -3697,7 +3772,10 @@ inline void gcode_M42() {
3697 3772
 
3698 3773
 #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
3699 3774
 
3700
-  // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
3775
+  /**
3776
+   * This is redundant since the SanityCheck.h already checks for a valid
3777
+   *  Z_MIN_PROBE_PIN, but here for clarity.
3778
+   */
3701 3779
   #if ENABLED(Z_MIN_PROBE_ENDSTOP)
3702 3780
     #if !HAS_Z_PROBE
3703 3781
       #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
@@ -3804,17 +3882,20 @@ inline void gcode_M42() {
3804 3882
       if (!seen_L) n_legs = 7;
3805 3883
     }
3806 3884
 
3807
-    // Now get everything to the specified probe point So we can safely do a probe to
3808
-    // get us close to the bed.  If the Z-Axis is far from the bed, we don't want to
3809
-    // use that as a starting point for each probe.
3810
-    //
3885
+    /**
3886
+     * Now get everything to the specified probe point So we can safely do a
3887
+     * probe to get us close to the bed.  If the Z-Axis is far from the bed,
3888
+     * we don't want to use that as a starting point for each probe.
3889
+     */
3811 3890
     if (verbose_level > 2)
3812 3891
       SERIAL_PROTOCOLPGM("Positioning the probe...\n");
3813 3892
 
3814 3893
     #if ENABLED(DELTA)
3815
-      reset_bed_level();    // we don't do bed level correction in M48 because we want the raw data when we probe
3894
+      // we don't do bed level correction in M48 because we want the raw data when we probe
3895
+      reset_bed_level();
3816 3896
     #else
3817
-      plan_bed_level_matrix.set_to_identity();  // we don't do bed level correction in M48 because we wantthe raw data when we probe
3897
+      // we don't do bed level correction in M48 because we want the raw data when we probe
3898
+      plan_bed_level_matrix.set_to_identity();
3818 3899
     #endif
3819 3900
 
3820 3901
     if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
@@ -3822,10 +3903,10 @@ inline void gcode_M42() {
3822 3903
 
3823 3904
     do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
3824 3905
 
3825
-    //
3826
-    // OK, do the initial probe to get us close to the bed.
3827
-    // Then retrace the right amount and use that in subsequent probes
3828
-    //
3906
+    /**
3907
+     * OK, do the initial probe to get us close to the bed.
3908
+     * Then retrace the right amount and use that in subsequent probes
3909
+     */
3829 3910
     setup_for_endstop_move();
3830 3911
 
3831 3912
     probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
@@ -3862,19 +3943,27 @@ inline void gcode_M42() {
3862 3943
 
3863 3944
         for (uint8_t l = 0; l < n_legs - 1; l++) {
3864 3945
           double delta_angle;
3946
+
3865 3947
           if (schizoid_flag)
3866
-            delta_angle = dir * 2.0 * 72.0;   // The points of a 5 point star are 72 degrees apart.  We need to
3867
-          // skip a point and go to the next one on the star.
3948
+            // The points of a 5 point star are 72 degrees apart.  We need to
3949
+            // skip a point and go to the next one on the star.
3950
+            delta_angle = dir * 2.0 * 72.0;
3951
+
3868 3952
           else
3869
-            delta_angle = dir * (float) random(25, 45);   // If we do this line, we are just trying to move further
3870
-          // around the circle.
3953
+            // If we do this line, we are just trying to move further
3954
+            // around the circle.
3955
+            delta_angle = dir * (float) random(25, 45);
3956
+
3871 3957
           angle += delta_angle;
3958
+
3872 3959
           while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
3873 3960
             angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
3874 3961
           while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
3875 3962
             angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
3963
+
3876 3964
           X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
3877 3965
           Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
3966
+
3878 3967
           #if DISABLED(DELTA)
3879 3968
             X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
3880 3969
             Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
@@ -3904,10 +3993,13 @@ inline void gcode_M42() {
3904 3993
         } // n_legs loop
3905 3994
       } // n_legs
3906 3995
 
3907
-      // We don't really have to do this move, but if we don't we can see a funny shift in the Z Height
3908
-      // Because the user might not have the Z_RAISE_BEFORE_PROBING height identical to the
3909
-      // Z_RAISE_BETWEEN_PROBING height.  This gets us back to the probe location at the same height that
3910
-      // we have been running around the circle at.
3996
+      /**
3997
+       * We don't really have to do this move, but if we don't we can see a
3998
+       * funny shift in the Z Height because the user might not have the
3999
+       * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
4000
+       * height. This gets us back to the probe location at the same height that
4001
+       * we have been running around the circle at.
4002
+       */
3911 4003
       do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
3912 4004
       if (deploy_probe_for_each_reading)
3913 4005
         sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
@@ -3917,17 +4009,17 @@ inline void gcode_M42() {
3917 4009
           sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
3918 4010
       }
3919 4011
 
3920
-      //
3921
-      // Get the current mean for the data points we have so far
3922
-      //
4012
+      /**
4013
+       * Get the current mean for the data points we have so far
4014
+       */
3923 4015
       sum = 0.0;
3924 4016
       for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
3925 4017
       mean = sum / (n + 1);
3926 4018
 
3927
-      //
3928
-      // Now, use that mean to calculate the standard deviation for the
3929
-      // data points we have so far
3930
-      //
4019
+      /**
4020
+       * Now, use that mean to calculate the standard deviation for the
4021
+       * data points we have so far
4022
+       */
3931 4023
       sum = 0.0;
3932 4024
       for (uint8_t j = 0; j <= n; j++) {
3933 4025
         float ss = sample_set[j] - mean;
@@ -4367,9 +4459,11 @@ inline void gcode_M140() {
4367 4459
   inline void gcode_M80() {
4368 4460
     OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
4369 4461
 
4370
-    // If you have a switch on suicide pin, this is useful
4371
-    // if you want to start another print with suicide feature after
4372
-    // a print without suicide...
4462
+    /**
4463
+     * If you have a switch on suicide pin, this is useful
4464
+     * if you want to start another print with suicide feature after
4465
+     * a print without suicide...
4466
+     */
4373 4467
     #if HAS_SUICIDE
4374 4468
       OUT_WRITE(SUICIDE_PIN, HIGH);
4375 4469
     #endif
@@ -6973,31 +7067,32 @@ void plan_arc(
6973 7067
   float linear_per_segment = linear_travel / segments;
6974 7068
   float extruder_per_segment = extruder_travel / segments;
6975 7069
 
6976
-  /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
6977
-     and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
6978
-         r_T = [cos(phi) -sin(phi);
6979
-                sin(phi)  cos(phi] * r ;
6980
-
6981
-     For arc generation, the center of the circle is the axis of rotation and the radius vector is
6982
-     defined from the circle center to the initial position. Each line segment is formed by successive
6983
-     vector rotations. This requires only two cos() and sin() computations to form the rotation
6984
-     matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
6985
-     all double numbers are single precision on the Arduino. (True double precision will not have
6986
-     round off issues for CNC applications.) Single precision error can accumulate to be greater than
6987
-     tool precision in some cases. Therefore, arc path correction is implemented.
6988
-
6989
-     Small angle approximation may be used to reduce computation overhead further. This approximation
6990
-     holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
6991
-     theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
6992
-     to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
6993
-     numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
6994
-     issue for CNC machines with the single precision Arduino calculations.
6995
-
6996
-     This approximation also allows plan_arc to immediately insert a line segment into the planner
6997
-     without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
6998
-     a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
6999
-     This is important when there are successive arc motions.
7000
-  */
7070
+  /**
7071
+   * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
7072
+   * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
7073
+   *     r_T = [cos(phi) -sin(phi);
7074
+   *            sin(phi)  cos(phi] * r ;
7075
+   *
7076
+   * For arc generation, the center of the circle is the axis of rotation and the radius vector is
7077
+   * defined from the circle center to the initial position. Each line segment is formed by successive
7078
+   * vector rotations. This requires only two cos() and sin() computations to form the rotation
7079
+   * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
7080
+   * all double numbers are single precision on the Arduino. (True double precision will not have
7081
+   * round off issues for CNC applications.) Single precision error can accumulate to be greater than
7082
+   * tool precision in some cases. Therefore, arc path correction is implemented.
7083
+   *
7084
+   * Small angle approximation may be used to reduce computation overhead further. This approximation
7085
+   * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
7086
+   * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
7087
+   * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
7088
+   * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
7089
+   * issue for CNC machines with the single precision Arduino calculations.
7090
+   *
7091
+   * This approximation also allows plan_arc to immediately insert a line segment into the planner
7092
+   * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
7093
+   * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
7094
+   * This is important when there are successive arc motions.
7095
+   */
7001 7096
   // Vector rotation matrix values
7002 7097
   float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
7003 7098
   float sin_T = theta_per_segment;

Chargement…
Annuler
Enregistrer