Ver código fonte

Merge pull request #9004 from Bob-the-Kuhn/PWM-for-any-pin-(LPC1768)

[2.0.x] LPC1768 - PWM for any pin (replaces PR #8991)
Bob-the-Kuhn 7 anos atrás
pai
commit
448b0a0014
Nenhuma conta vinculada ao e-mail do autor do commit

+ 5
- 0
Marlin/src/HAL/HAL_LPC1768/HAL_timers.h Ver arquivo

@@ -66,6 +66,11 @@ typedef uint32_t hal_timer_t;
66 66
 #define HAL_STEP_TIMER_ISR  extern "C" void TIMER0_IRQHandler(void)
67 67
 #define HAL_TEMP_TIMER_ISR  extern "C" void TIMER1_IRQHandler(void)
68 68
 
69
+// PWM timer 
70
+#define HAL_PWM_TIMER      LPC_TIM3
71
+#define HAL_PWM_TIMER_ISR  extern "C" void TIMER3_IRQHandler(void)
72
+#define HAL_PWM_TIMER_IRQn TIMER3_IRQn
73
+
69 74
 // --------------------------------------------------------------------------
70 75
 // Types
71 76
 // --------------------------------------------------------------------------

+ 298
- 312
Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp Ver arquivo

@@ -32,7 +32,7 @@
32 32
  * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins.  This keeps
33 33
  * the pulse width jitter to under a microsecond.
34 34
  *
35
- * For all other pins the PWM1 module is used to generate interrupts.  The ISR
35
+ * For all other pins a timer is used to generate interrupts.  The ISR
36 36
  * routine does the actual setting/clearing of pins.  The upside is that any pin can
37 37
  * have a PWM channel assigned to it.  The downside is that there is more pulse width
38 38
  * jitter. The jitter depends on what else is happening in the system and what ISRs
@@ -41,25 +41,11 @@
41 41
 
42 42
 /**
43 43
  * The data structures are set up to minimize the computation done by the ISR which
44
- * minimizes ISR execution time.  Execution times are 2-4µs except when updating to
45
- * a new value when they are 19µs.
44
+ * minimizes ISR execution time.  Execution times are 5-14µs depending on how full the
45
+ * ISR table is.  14uS is for a 20 element ISR table.
46 46
  *
47 47
  * Two tables are used.  One table contains the data used by the ISR to update/control
48
- * the PWM pins.  The other is used as an aid when rebuilding the ISR table.
49
- *
50
- * The LPC1768_PWM_attach_pin routine disables the ISR and then adds the new info to
51
- * ISR table.  It can update the table directly because none of its changes affect
52
- * what the ISR does.
53
- *
54
- * LPC1768_PWM_detach_pin routine disables the ISR, disables the pin immediately if
55
- * it's a directly controlled pin and updates the helper table.  It then flags the
56
- * ISR that the ISR table needs to be rebuilt.
57
- *
58
- * LPC1768_PWM_write routine disables the ISR and updates the helper table.  It then
59
- * flags the ISR that the ISR table needs to be rebuilt.
60
- *
61
- * The ISR's priority is set to less than the stepper ISR otherwise it could cause jitter
62
- * in the step pulses.
48
+ * the PWM pins.  The other is used as an aid when updating the ISR table.
63 49
  *
64 50
  * See the end of this file for details on the hardware/firmware interaction
65 51
  */
@@ -86,46 +72,36 @@
86 72
 #ifdef TARGET_LPC1768
87 73
 
88 74
 #include "../../inc/MarlinConfig.h"
89
-
90 75
 #include <lpc17xx_pinsel.h>
91 76
 #include "LPC1768_PWM.h"
92 77
 #include "arduino.h"
93 78
 
94
-#define NUM_PWMS 6
79
+#define NUM_ISR_PWMS 20
80
+
81
+
82
+#define LPC_PORT_OFFSET         (0x0020)
83
+#define LPC_PIN(pin)            (1UL << pin)
84
+#define LPC_GPIO(port)          ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port))
85
+
95 86
 
96 87
 typedef struct {            // holds all data needed to control/init one of the PWM channels
97
-  uint8_t             sequence;       // 0: available slot, 1 - 6: PWM channel assigned to that slot
88
+  bool                active_flag;    // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
98 89
   pin_t               pin;
99
-  uint16_t            PWM_mask;       // MASK TO CHECK/WRITE THE IR REGISTER
100 90
   volatile uint32_t*  set_register;
101 91
   volatile uint32_t*  clr_register;
102 92
   uint32_t            write_mask;     // USED BY SET/CLEAR COMMANDS
103 93
   uint32_t            microseconds;   // value written to MR register
104 94
   uint32_t            min;            // lower value limit checked by WRITE routine before writing to the MR register
105 95
   uint32_t            max;            // upper value limit checked by WRITE routine before writing to the MR register
106
-  bool                PWM_flag;       // 0 - USED BY hardware PWM, 1 - USED BY ANALOGWRITE
107 96
   uint8_t             servo_index;    // 0 - MAX_SERVO -1 : servo index,  0xFF : PWM channel
108
-  bool                active_flag;    // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
109
-  uint32_t            PCR_bit;        // PCR register bit to enable PWM1 control of this pin
110
-  volatile uint32_t*  PINSEL_reg;     // PINSEL register
111
-  uint32_t            PINSEL_bits;    // PINSEL register bits to set pin mode to PWM1 control
112
-
113 97
 } PWM_map;
114 98
 
99
+PWM_map PWM1_map_A[NUM_ISR_PWMS];  // compiler will initialize to all zeros
100
+PWM_map PWM1_map_B[NUM_ISR_PWMS];  // compiler will initialize to all zeros
115 101
 
116
-#define MICRO_MAX 0xFFFFFFFF
117
-
118
-#define PWM_MAP_INIT_ROW { 0, 0x7FFF, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0 }
119
-#define PWM_MAP_INIT { PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
120
-                       PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
121
-                     };
122
-
123
-PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
124
-
125
-#define IR_BIT(p) ((p) >= 0 && (p) <= 3 ? (p) : p + 4 )
126
-#define PIN_IS_INVERTED(p) 0  // placeholder in case inverting PWM output is offered
127
-
128
-
102
+PWM_map *active_table = PWM1_map_A;
103
+PWM_map *work_table = PWM1_map_B;
104
+PWM_map *temp_table;
129 105
 
130 106
 #define P1_18_PWM_channel  1  // servo 3
131 107
 #define P1_20_PWM_channel  2  // servo 0
@@ -134,35 +110,13 @@ PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
134 110
 #define P2_04_PWM_channel  5  // D9
135 111
 #define P2_05_PWM_channel  6  // D10
136 112
 
137
-// used to keep track of which Match Registers have been used and if they will be used by the
138
-// PWM1 module to directly control the pin or will be used to generate an interrupt
139
-typedef struct {                    // status of PWM1 channel
140
-  uint8_t             map_used;     // 0 - this MR register not used/assigned
141
-  uint8_t             map_PWM_INT;  // 0 - available for interrupts, 1 - in use by PWM
142
-  pin_t               map_PWM_PIN;  // pin for this PwM1 controlled pin / port
143
-  volatile uint32_t*  MR_register;  // address of the MR register for this PWM1 channel
144
-  uint32_t            PCR_bit;      // PCR register bit to enable PWM1 control of this pin
145
-                                    // 0 - don't switch to PWM1 direct control
146
-  volatile uint32_t*  PINSEL_reg;   // PINSEL register
147
-  uint32_t            PINSEL_bits;  // PINSEL register bits to set pin mode to PWM1 control
148
-} MR_map;
149
-
150
-MR_map map_MR[NUM_PWMS];
151
-
152
-void LPC1768_PWM_update_map_MR(void) {
153
-  map_MR[0] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_18_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0, 0 };
154
-  map_MR[1] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_20_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0, 0 };
155
-  map_MR[2] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_21_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0, 0 };
156
-  map_MR[3] = {
157
-    #if MB(MKS_SBASE)
158
-      0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_23_PWM_channel) ? 1 : 0), P1_23, &LPC_PWM1->MR4, 0, 0, 0
159
-    #else
160
-      0, 0, P_NC, &LPC_PWM1->MR4, 0, 0, 0
161
-    #endif
162
-  };
163
-  map_MR[4] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_04_PWM_channel) ? 1 : 0), P2_04, &LPC_PWM1->MR5, 0, 0, 0 };
164
-  map_MR[5] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_05_PWM_channel) ? 1 : 0), P2_05, &LPC_PWM1->MR6, 0, 0, 0 };
165
-}
113
+typedef struct {
114
+  uint32_t min;
115
+  uint32_t max;
116
+  bool     assigned;
117
+} table_direct;
118
+
119
+table_direct direct_table[6];  // compiler will initialize to all zeros
166 120
 
167 121
 /**
168 122
  *  Prescale register and MR0 register values
@@ -181,8 +135,8 @@ void LPC1768_PWM_update_map_MR(void) {
181 135
  *   0.25       399        4,999    199        4,999      99       4,999   49          4,999    0.720
182 136
  *  0.125       799        2,499    399        2,499     199       2,499   99          2,499    1.440
183 137
  *
184
- *  The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the
185
- *  desire to just shift the input left or right as needed.
138
+ *  The desired prescale frequency column comes from an input in the range of 544 - 2400 microseconds
139
+ *  and the desire to just shift the input left or right as needed.
186 140
  *
187 141
  *  A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used.
188 142
  *  It also means we don't need to scale the input.
@@ -197,9 +151,10 @@ void LPC1768_PWM_update_map_MR(void) {
197 151
  *
198 152
  */
199 153
 
200
-bool ISR_table_update = false;  // flag to tell the ISR that the tables need to be updated & swapped
201
-
202 154
 void LPC1768_PWM_init(void) {
155
+
156
+  /////  directly controlled PWM pins (interrupts not used for these)
157
+
203 158
   #define SBIT_CNTEN      0  // PWM1 counter & pre-scaler enable/disable
204 159
   #define SBIT_CNTRST     1  // reset counters to known state
205 160
   #define SBIT_PWMEN      3  // 1 - PWM, 0 - timer
@@ -221,43 +176,116 @@ void LPC1768_PWM_init(void) {
221 176
   LPC_PWM1->LER  = 0x07F;                                                 // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
222 177
   LPC_PWM1->PCR  = 0;                                                     // Single edge mode for all channels, PWM1 control of outputs off
223 178
 
224
-  NVIC_EnableIRQ(PWM1_IRQn);                                              // Enable interrupt handler
225
-  NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0));             // Normal priority for PWM module
226
-  //NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0));            // Minimizes jitter due to higher priority ISRs
179
+  ////  interrupt controlled PWM setup
180
+
181
+  LPC_SC->PCONP |= 1 << 23;  // power on timer3
182
+  HAL_PWM_TIMER->PR = LPC_PWM1_PR;
183
+  HAL_PWM_TIMER->MCR = 0x0B;              // Interrupt on MR0 & MR1, reset on MR0
184
+  HAL_PWM_TIMER->MR0 = LPC_PWM1_MR0;
185
+  HAL_PWM_TIMER->MR1 = 0;
186
+  HAL_PWM_TIMER->TCR = _BV(0);       // enable
187
+  NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);
188
+  NVIC_SetPriority(HAL_PWM_TIMER_IRQn, NVIC_EncodePriority(0, 4, 0));
227 189
 }
228 190
 
229 191
 
230
-bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) {
192
+bool ISR_table_update = false;  // flag to tell the ISR that the tables need to be updated & swapped
193
+uint8_t ISR_index = 0;          // index used by ISR to skip already actioned entries
194
+#define COPY_ACTIVE_TABLE    for (uint8_t i = 0; i < NUM_ISR_PWMS ; i++) work_table[i] = active_table[i]
195
+uint32_t first_MR1_value = LPC_PWM1_MR0 + 1;
196
+
197
+void LPC1768_PWM_sort(void) {
198
+
199
+  for (uint8_t i = NUM_ISR_PWMS; --i;) {  // (bubble) sort table by microseconds
200
+    bool didSwap = false;
201
+    PWM_map temp;
202
+    for (uint16_t j = 0; j < i; ++j) {
203
+      if (work_table[j].microseconds > work_table[j + 1].microseconds) {
204
+        temp = work_table[j + 1];
205
+        work_table[j + 1] = work_table[j];
206
+        work_table[j] = temp;
207
+        didSwap = true;
208
+      }
209
+    }
210
+    if (!didSwap) break;
211
+  }
212
+}
213
+
214
+bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - 1) */, uint8_t servo_index /* = 0xff */) {
231 215
 
232 216
   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));  // Sometimes the upper byte is garbled
233 217
 
234
-  NVIC_DisableIRQ(PWM1_IRQn);    // make it safe to update the active table
218
+////  direct control PWM code
219
+  switch(pin) {
220
+    case P1_23:                                       // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4)
221
+      direct_table[P1_23_PWM_channel - 1].min = min;
222
+      direct_table[P1_23_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
223
+      direct_table[P1_23_PWM_channel - 1].assigned = true;
224
+      return true;
225
+    case P1_20:                                       // Servo 0, PWM1 channel 2  (Pin 11  P1.20 PWM1.2)
226
+      direct_table[P1_20_PWM_channel - 1].min = min;
227
+      direct_table[P1_20_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
228
+      direct_table[P1_20_PWM_channel - 1].assigned = true;
229
+      return true;
230
+    case P1_21:                                       // Servo 1, PWM1 channel 3  (Pin 6  P1.21 PWM1.3)
231
+      direct_table[P1_21_PWM_channel - 1].min = min;
232
+      direct_table[P1_21_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
233
+      direct_table[P1_21_PWM_channel - 1].assigned = true;
234
+      return true;
235
+    case P1_18:                                       // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1)
236
+      direct_table[P1_18_PWM_channel - 1].min = min;
237
+      direct_table[P1_18_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
238
+      direct_table[P1_18_PWM_channel - 1].assigned = true;
239
+      return true;
240
+    case P2_04:                                       // D9 FET, PWM1 channel 5  (Pin 9  P2_04 PWM1.5)
241
+      direct_table[P2_04_PWM_channel - 1].min = min;
242
+      direct_table[P2_04_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
243
+      direct_table[P2_04_PWM_channel - 1].assigned = true;
244
+      return true;
245
+    case P2_05:                                       // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6)
246
+      direct_table[P2_05_PWM_channel - 1].min = min;
247
+      direct_table[P2_05_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
248
+      direct_table[P2_05_PWM_channel - 1].assigned = true;
249
+      return true;
250
+  }
251
+
252
+////  interrupt controlled PWM code
253
+  NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);    // make it safe to update the active table
235 254
                                  // OK to update the active table because the
236 255
                                  // ISR doesn't use any of the changed items
256
+
257
+  if (ISR_table_update) //use work table if that's the newest
258
+    temp_table = work_table;
259
+  else
260
+    temp_table = active_table;
261
+
237 262
   uint8_t slot = 0;
238
-  for (uint8_t i = 0; i < NUM_PWMS ; i++)         // see if already in table
239
-    if (ISR_table[i].pin == pin) {
240
-      NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts
263
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if already in table
264
+    if (temp_table[i].pin == pin) {
265
+      NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
241 266
       return 1;
242 267
     }
243 268
 
244
-  for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++)         // find empty slot
245
-    if ( !(ISR_table[i - 1].set_register)) { slot = i; break; }  // any item that can't be zero when active or just attached is OK
246
-  if (!slot) return 0;
269
+  for (uint8_t i = 1; (i < NUM_ISR_PWMS + 1) && !slot; i++)         // find empty slot
270
+    if ( !(temp_table[i - 1].set_register)) { slot = i; break; }  // any item that can't be zero when active or just attached is OK
271
+
272
+  if (!slot) {
273
+    NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
274
+    return 0;
275
+  }
276
+
247 277
   slot--;  // turn it into array index
248 278
 
249
-  ISR_table[slot].pin          = pin;     // init slot
250
-  ISR_table[slot].PWM_mask     = 0;  // real value set by PWM_write
251
-  ISR_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
252
-  ISR_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
253
-  ISR_table[slot].write_mask   = LPC_PIN(LPC1768_PIN_PIN(pin));
254
-  ISR_table[slot].microseconds = MICRO_MAX;
255
-  ISR_table[slot].min          = min;
256
-  ISR_table[slot].max          = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
257
-  ISR_table[slot].servo_index  = servo_index;
258
-  ISR_table[slot].active_flag  = false;
279
+  temp_table[slot].pin          = pin;     // init slot
280
+  temp_table[slot].set_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
281
+  temp_table[slot].clr_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
282
+  temp_table[slot].write_mask   = LPC_PIN(LPC1768_PIN_PIN(pin));
283
+  temp_table[slot].min          = min;
284
+  temp_table[slot].max          = max;                // different max for ISR PWMs than for direct PWMs
285
+  temp_table[slot].servo_index  = servo_index;
286
+  temp_table[slot].active_flag  = false;
259 287
 
260
-  NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts
288
+  NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
261 289
 
262 290
   return 1;
263 291
 }
@@ -267,201 +295,154 @@ bool LPC1768_PWM_detach_pin(pin_t pin) {
267 295
 
268 296
   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
269 297
 
270
-  NVIC_DisableIRQ(PWM1_IRQn);
271
-
272
-  uint8_t slot = 0xFF;
273
-  for (uint8_t i = 0; i < NUM_PWMS; i++)         // find slot
274
-    if (ISR_table[i].pin == pin) { slot = i; break; }
275
-  if (slot == 0xFF) {   // return error if pin not found
276
-    NVIC_EnableIRQ(PWM1_IRQn);
277
-    return false;
278
-  }
279
-
280
-  LPC1768_PWM_update_map_MR();
281
-
282
-  // OK to make these changes before the MR0 interrupt
298
+////  direct control PWM code
283 299
   switch(pin) {
284 300
     case P1_23:                                       // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4)
301
+      if (!direct_table[P1_23_PWM_channel - 1].assigned) return false;
285 302
       CBI(LPC_PWM1->PCR, 8 + P1_23_PWM_channel);      // disable PWM1 module control of this pin
286
-      map_MR[P1_23_PWM_channel - 1].PCR_bit = 0;
287 303
       LPC_PINCON->PINSEL3 &= ~(0x3 <<  14);           // return pin to general purpose I/O
288
-      map_MR[P1_23_PWM_channel - 1].PINSEL_bits = 0;
289
-      map_MR[P1_23_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
290
-      break;
304
+      direct_table[P1_23_PWM_channel - 1].assigned = false;
305
+      return true;
291 306
     case P1_20:                                       // Servo 0, PWM1 channel 2  (Pin 11  P1.20 PWM1.2)
307
+      if (!direct_table[P1_20_PWM_channel - 1].assigned) return false;
292 308
       CBI(LPC_PWM1->PCR, 8 + P1_20_PWM_channel);      // disable PWM1 module control of this pin
293
-      map_MR[P1_20_PWM_channel - 1].PCR_bit = 0;
294 309
       LPC_PINCON->PINSEL3 &= ~(0x3 <<  8);            // return pin to general purpose I/O
295
-      map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0;
296
-      map_MR[P1_20_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
297
-      break;
310
+      direct_table[P1_20_PWM_channel - 1].assigned = false;
311
+      return true;
298 312
     case P1_21:                                       // Servo 1, PWM1 channel 3  (Pin 6  P1.21 PWM1.3)
313
+      if (!direct_table[P1_21_PWM_channel - 1].assigned) return false;
299 314
       CBI(LPC_PWM1->PCR, 8 + P1_21_PWM_channel);      // disable PWM1 module control of this pin
300
-      map_MR[P1_21_PWM_channel - 1].PCR_bit = 0;
301 315
       LPC_PINCON->PINSEL3 &= ~(0x3 << 10);            // return pin to general purpose I/O
302
-      map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0;
303
-      map_MR[P1_21_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
304
-      break;
316
+      direct_table[P1_21_PWM_channel - 1].assigned = false;
317
+      return true;
305 318
     case P1_18:                                       // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1)
319
+      if (!direct_table[P1_18_PWM_channel - 1].assigned) return false;
306 320
       CBI(LPC_PWM1->PCR, 8 + P1_18_PWM_channel);      // disable PWM1 module control of this pin
307
-      map_MR[P1_18_PWM_channel - 1].PCR_bit =  0;
308 321
       LPC_PINCON->PINSEL3 &= ~(0x3 <<  4);            // return pin to general purpose I/O
309
-      map_MR[P1_18_PWM_channel - 1].PINSEL_bits =  0;
310
-      map_MR[P1_18_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
311
-      break;
322
+      direct_table[P1_18_PWM_channel - 1].assigned = false;
323
+      return true;
312 324
     case P2_04:                                       // D9 FET, PWM1 channel 5  (Pin 9  P2_04 PWM1.5)
325
+      if (!direct_table[P2_04_PWM_channel - 1].assigned) return false;
313 326
       CBI(LPC_PWM1->PCR, 8 + P2_04_PWM_channel);      // disable PWM1 module control of this pin
314
-      map_MR[P2_04_PWM_channel - 1].PCR_bit = 0;
315 327
       LPC_PINCON->PINSEL4 &= ~(0x3 << 10);            // return pin to general purpose I/O
316
-      map_MR[P2_04_PWM_channel - 1].PINSEL_bits = 0;
317
-      map_MR[P2_04_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
318
-      break;
328
+      direct_table[P2_04_PWM_channel - 1].assigned = false;
329
+      return true;
319 330
     case P2_05:                                       // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6)
331
+      if (!direct_table[P2_05_PWM_channel - 1].assigned) return false;
320 332
       CBI(LPC_PWM1->PCR, 8 + P2_05_PWM_channel);      // disable PWM1 module control of this pin
321
-      map_MR[P2_05_PWM_channel - 1].PCR_bit =  0;
322 333
       LPC_PINCON->PINSEL4 &= ~(0x3 <<  4);            // return pin to general purpose I/O
323
-      map_MR[P2_05_PWM_channel - 1].PINSEL_bits =  0;
324
-      map_MR[P2_05_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM
325
-      break;
326
-    default:
334
+      direct_table[P2_05_PWM_channel - 1].assigned = false;
335
+      return true;
336
+  }
337
+
338
+////  interrupt controlled PWM code
339
+  NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
340
+
341
+  if (ISR_table_update) {
342
+    ISR_table_update = false;    // don't update yet - have another update to do
343
+    NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
344
+  }
345
+  else {
346
+    NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
347
+    COPY_ACTIVE_TABLE;  // copy active table into work table
348
+  }
349
+
350
+  uint8_t slot = 0xFF;
351
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) {        // find slot
352
+    if (work_table[i].pin == pin) {
353
+      slot = i;
327 354
       break;
355
+    }
328 356
   }
357
+  if (slot == 0xFF)    // return error if pin not found
358
+    return false;
329 359
 
330
-  ISR_table[slot] = PWM_MAP_INIT_ROW;
360
+  work_table[slot] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
331 361
 
362
+  LPC1768_PWM_sort();    // sort table by microseconds
332 363
   ISR_table_update = true;
333
-  NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts
334
-
335
-  return 1;
364
+  return true;
336 365
 }
337 366
 
338
-
367
+// value is 0-20,000 microseconds (0% to 100% duty cycle)
368
+// servo routine provides values in the 544 - 2400 range
339 369
 bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
340 370
 
341 371
   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
342 372
 
343
-  NVIC_DisableIRQ(PWM1_IRQn);
344
-
345
-  uint8_t slot = 0xFF;
346
-  for (uint8_t i = 0; i < NUM_PWMS; i++)         // find slot
347
-    if (ISR_table[i].pin == pin) { slot = i; break; }
348
-  if (slot == 0xFF) {   // return error if pin not found
349
-    NVIC_EnableIRQ(PWM1_IRQn);
350
-    return false;
351
-  }
352
-
353
-  LPC1768_PWM_update_map_MR();
354
-
373
+////  direct control PWM code
355 374
   switch(pin) {
356 375
     case P1_23:                                                           // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4)
357
-      map_MR[P1_23_PWM_channel - 1].PCR_bit = _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin
358
-      map_MR[P1_23_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
359
-      map_MR[P1_23_PWM_channel - 1].PINSEL_bits = 0x2 <<  14;             // ISR must do this AFTER setting PCR
360
-      break;
376
+      if (!direct_table[P1_23_PWM_channel - 1].assigned) return false;
377
+      LPC_PWM1->PCR |=  _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin
378
+      LPC_PINCON->PINSEL3 = 0x2 <<  14;             // must set pin function AFTER setting PCR
379
+      // load the new time value
380
+      LPC_PWM1->MR4 = MAX(MIN(value, direct_table[P1_23_PWM_channel - 1].max), direct_table[P1_23_PWM_channel - 1].min);
381
+      LPC_PWM1->LER = 0x1 << P1_23_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
382
+      return true;
361 383
     case P1_20:                                                           // Servo 0, PWM1 channel 2 (Pin 11  P1.20 PWM1.2)
362
-      map_MR[P1_20_PWM_channel - 1].PCR_bit = _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin
363
-      map_MR[P1_20_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
364
-      map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0x2 <<  8;              // ISR must do this AFTER setting PCR
365
-      break;
384
+      if (!direct_table[P1_20_PWM_channel - 1].assigned) return false;
385
+      LPC_PWM1->PCR |=  _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin
386
+      LPC_PINCON->PINSEL3 |= 0x2 <<  8;             // must set pin function AFTER setting PCR
387
+      // load the new time value
388
+      LPC_PWM1->MR2 = MAX(MIN(value, direct_table[P1_20_PWM_channel - 1].max), direct_table[P1_20_PWM_channel - 1].min);
389
+      LPC_PWM1->LER = 0x1 << P1_20_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
390
+      return true;
366 391
     case P1_21:                                                           // Servo 1, PWM1 channel 3 (Pin 6  P1.21 PWM1.3)
367
-      map_MR[P1_21_PWM_channel - 1].PCR_bit = _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin
368
-      map_MR[P1_21_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
369
-      map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0x2 << 10;              // ISR must do this AFTER setting PCR
370
-      break;
392
+      if (!direct_table[P1_21_PWM_channel - 1].assigned) return false;
393
+      LPC_PWM1->PCR |=  _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin
394
+      LPC_PINCON->PINSEL3 |= 0x2 << 10;              // must set pin function AFTER setting PCR
395
+      // load the new time value
396
+      LPC_PWM1->MR3 = MAX(MIN(value, direct_table[P1_21_PWM_channel - 1].max), direct_table[P1_21_PWM_channel - 1].min);
397
+      LPC_PWM1->LER = 0x1 << P1_21_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
398
+      return true;
371 399
     case P1_18:                                                           // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1)
372
-      map_MR[P1_18_PWM_channel - 1].PCR_bit = _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin
373
-      map_MR[P1_18_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
374
-      map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0x2 <<  4;              // ISR must do this AFTER setting PCR
375
-      break;
400
+      if (!direct_table[P1_18_PWM_channel - 1].assigned) return false;
401
+      LPC_PWM1->PCR |=  _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin
402
+      LPC_PINCON->PINSEL3 |= 0x2 <<  4;             // must set pin function AFTER setting PCR
403
+      // load the new time value
404
+      LPC_PWM1->MR1 = MAX(MIN(value, direct_table[P1_18_PWM_channel - 1].max), direct_table[P1_18_PWM_channel - 1].min);
405
+      LPC_PWM1->LER = 0x1 << P1_18_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
406
+      return true;
376 407
     case P2_04:                                                           // D9 FET, PWM1 channel 5 (Pin 9  P2_04 PWM1.5)
377
-      map_MR[P2_04_PWM_channel - 1].PCR_bit = _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin
378
-      map_MR[P2_04_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
379
-      map_MR[P2_04_PWM_channel - 1].PINSEL_bits = 0x1 <<  8;              // ISR must do this AFTER setting PCR
380
-      break;
408
+      if (!direct_table[P2_04_PWM_channel - 1].assigned) return false;
409
+      LPC_PWM1->PCR |=  _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin
410
+      LPC_PINCON->PINSEL4 |= 0x1 <<  8;             // must set pin function AFTER setting PCR
411
+      // load the new time value
412
+      LPC_PWM1->MR5 = MAX(MIN(value, direct_table[P2_04_PWM_channel - 1].max), direct_table[P2_04_PWM_channel - 1].min);
413
+      LPC_PWM1->LER = 0x1 << P2_04_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
414
+      return true;
381 415
     case P2_05:                                                           // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6)
382
-      map_MR[P2_05_PWM_channel - 1].PCR_bit = _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin
383
-      map_MR[P2_05_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
384
-      map_MR[P2_05_PWM_channel - 1].PINSEL_bits = 0x1 << 10;              // ISR must do this AFTER setting PCR
385
-      break;
386
-    default:  // ISR pins
387
-      pinMode(pin, OUTPUT);  // set pin to output
388
-      break;
416
+      if (!direct_table[P2_05_PWM_channel - 1].assigned) return false;
417
+      LPC_PWM1->PCR |=  _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin
418
+      LPC_PINCON->PINSEL4 |= 0x1 << 10;             // must set pin function AFTER setting PCR
419
+      // load the new time value
420
+      LPC_PWM1->MR6 = MAX(MIN(value, direct_table[P2_05_PWM_channel - 1].max), direct_table[P2_05_PWM_channel - 1].min);
421
+      LPC_PWM1->LER = 0x1 << P2_05_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
422
+      return true;
389 423
   }
390 424
 
391
-  ISR_table[slot].microseconds = MAX(MIN(value, ISR_table[slot].max), ISR_table[slot].min);
392
-  ISR_table[slot].active_flag = 1;
393
-
394
-  ISR_table_update = true;
395
-
396
-  NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts
397
-
398
-  return 1;
399
-}
425
+////  interrupt controlled PWM code
426
+  NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
427
+  if (!ISR_table_update)   // use the most up to date table
428
+    COPY_ACTIVE_TABLE;  // copy active table into work table
400 429
 
401
-
402
-uint32_t LPC1768_PWM_interrupt_mask = 1;
403
-
404
-
405
-void LPC1768_PWM_update(void) {     // only called by the ISR
406
-  LPC1768_PWM_interrupt_mask = 0;                          // set match registers to new values, build IRQ mask
407
-  // first setup directly controlled PWM pin slots
408
-
409
-  bool found;
410
-  for (uint8_t i = 0; i < NUM_PWMS; i++) {
411
-    ISR_table[i].PCR_bit = 0;     // clear entries
412
-    ISR_table[i].PINSEL_reg = 0;
413
-    ISR_table[i].PINSEL_bits = 0;
414
-    ISR_table[i].PWM_flag = 1;    // mark slot as interrupt mode until find differently
415
-
416
-    if (ISR_table[i].active_flag) {
417
-      ISR_table[i].sequence = i + 1;
418
-
419
-      // first see if there is a PWM1 controlled pin for this entry
420
-      found = false;
421
-      for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
422
-        if ( (map_MR[j].map_PWM_PIN == ISR_table[i].pin)) {
423
-          map_MR[j].map_PWM_INT = 1;                          // flag that it's already setup for direct control
424
-          ISR_table[i].PWM_mask = 0;
425
-          ISR_table[i].PCR_bit = map_MR[j].PCR_bit;           // PCR register bit to enable PWM1 control of this pin
426
-          ISR_table[i].PINSEL_reg = map_MR[j].PINSEL_reg;     // PINSEL register address to set pin mode to PWM1 control} MR_map;
427
-          ISR_table[i].PINSEL_bits = map_MR[j].PINSEL_bits;   // PINSEL register bits to set pin mode to PWM1 control} MR_map;
428
-          map_MR[j].map_used = 2;
429
-          ISR_table[i].PWM_flag = 0;
430
-          *map_MR[j].MR_register = ISR_table[i].microseconds;
431
-          found = true;
432
-        }
433
-      }
434
-    }
435
-    else
436
-    ISR_table[i].sequence = 0;
430
+  uint8_t slot = 0xFF;
431
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // find slot
432
+    if (work_table[i].pin == pin) { slot = i; break; }
433
+  if (slot == 0xFF) {   // return error if pin not found
434
+    NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);
435
+    return false;
437 436
   }
438 437
 
439
-  // next fill in interrupt slots
440
-  for (uint8_t i = 0; i < NUM_PWMS; i++) {
441
-
442
-    if (ISR_table[i].active_flag && ISR_table[i].PWM_flag) {
443
-
444
-      // setup interrupt slot
445
-      found = false;
446
-      for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
447
-        if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
448
-          *map_MR[k].MR_register = ISR_table[i].microseconds;  // found one for an interrupt pin
449
-          map_MR[k].map_used = 1;
450
-          LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1));  // set bit in the MCR to enable this MR to generate an interrupt
451
-          ISR_table[i].set_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET;
452
-          ISR_table[i].clr_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR;
453
-          ISR_table[i].write_mask = LPC_PIN(LPC1768_PIN_PIN(ISR_table[i].pin));
454
-          ISR_table[i].PWM_mask = _BV(IR_BIT(k + 1));  // bit in the IR that will go active when this MR generates an interrupt
455
-          ISR_table[i].PWM_flag = 1;
456
-          found = true;
457
-        }
458
-      }
459
-    }
460
-  }
438
+  work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);;
439
+  work_table[slot].active_flag  = true;
461 440
 
462
-  LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0);  // add in MR0 interrupt
441
+  LPC1768_PWM_sort();    // sort table by microseconds
442
+  ISR_table_update = true;
463 443
 
464
-  LPC_PWM1->LER = 0x07E;  // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
444
+  NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
445
+  return 1;
465 446
 }
466 447
 
467 448
 
@@ -469,97 +450,102 @@ bool useable_hardware_PWM(pin_t pin) {
469 450
 
470 451
   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
471 452
 
472
-  NVIC_DisableIRQ(PWM1_IRQn);
453
+  NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
473 454
 
474 455
   bool return_flag = false;
475
-  for (uint8_t i = 0; i < NUM_PWMS; i++)         // see if it's already setup
476
-    if (ISR_table[i].pin == pin && ISR_table[i].sequence) return_flag = true;
477
-  for (uint8_t i = 0; i < NUM_PWMS; i++)         // see if there is an empty slot
478
-    if (!ISR_table[i].sequence) return_flag = true;
479
-  NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts
456
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if it's already setup
457
+    if (active_table[i].pin == pin) return_flag = true;
458
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if there is an empty slot
459
+    if (!active_table[i].set_register) return_flag = true;
460
+  NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts
480 461
   return return_flag;
481 462
 }
482 463
 
464
+
483 465
 ////////////////////////////////////////////////////////////////////////////////
484 466
 
485
-#define HAL_PWM_LPC1768_ISR  extern "C" void PWM1_IRQHandler(void)
486 467
 
487
-// Both loops could be terminated when the last active channel is found but that would
488
-// result in variations ISR run time which results in variations in pulse width
468
+#define PWM_LPC1768_ISR_SAFETY_FACTOR 5  // amount of time needed to guarantee MR1 count will be above TC
469
+volatile bool in_PWM_isr = false;
489 470
 
490
-/**
491
- * Changes to PINSEL, PCR and MCR are only done during the MR0 interrupt otherwise
492
- * the wrong pin may be toggled or even have the system hang.
493
- */
471
+HAL_PWM_TIMER_ISR {
472
+  bool first_active_entry = true;
473
+  uint32_t next_MR1_val;
494 474
 
475
+  if (in_PWM_isr) goto exit_PWM_ISR;  // prevent re-entering this ISR
476
+  in_PWM_isr = true;
495 477
 
496
-HAL_PWM_LPC1768_ISR {
497
-
498
-  if (LPC_PWM1->IR & 0x1) {                       // MR0 interrupt
499
-    if (ISR_table_update) {                       // new values have been loaded so set everything
500
-      LPC1768_PWM_update();                       // update & swap table
501
-      LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
478
+  if (HAL_PWM_TIMER->IR & 0x01) {  // MR0 interrupt
479
+    next_MR1_val = first_MR1_value;               // only used if have a blank ISR table
480
+    if (ISR_table_update) {                       // new values have been loaded so swap tables
481
+      temp_table = active_table;
482
+      active_table = work_table;
483
+      work_table = temp_table;
484
+      ISR_table_update = false;
502 485
     }
503
-    for (uint8_t i = 0; i < NUM_PWMS; i++) {
504
-      if (ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) ||
505
-                                        (ISR_table[i].pin == P1_21) ||
506
-                                        (ISR_table[i].pin == P1_18) ||
507
-                                        (ISR_table[i].pin == P2_04) ||
508
-                                        (ISR_table[i].pin == P2_05))
509
-      ) {
510
-        *ISR_table[i].set_register = ISR_table[i].write_mask;       // set pins for all enabled interrupt channels active
486
+  }
487
+  HAL_PWM_TIMER->IR = 0x3F;  // clear all interrupts
488
+
489
+  for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) {
490
+    if (active_table[i].active_flag) {
491
+      if (first_active_entry) {
492
+        first_active_entry = false;
493
+        next_MR1_val = active_table[i].microseconds;
511 494
       }
512
-      if (ISR_table_update && ISR_table[i].PCR_bit) {
513
-        LPC_PWM1->PCR |= ISR_table[i].PCR_bit;                  // enable PWM1 module control of this pin
514
-        *ISR_table[i].PINSEL_reg |= ISR_table[i].PINSEL_bits;   // set pin mode to PWM1 control - must be done after PCR
495
+      if (HAL_PWM_TIMER->TC < active_table[i].microseconds) {
496
+        *active_table[i].set_register = active_table[i].write_mask;   // set pin high
515 497
       }
516
-    }
517
-    ISR_table_update = false;
518
-    LPC_PWM1->IR = 0x01;                                             // clear the MR0 interrupt flag bit
519
-  }
520
-  else {
521
-    for (uint8_t i = 0; i < NUM_PWMS; i++)
522
-      if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask)) {
523
-        LPC_PWM1->IR = ISR_table[i].PWM_mask;       // clear the interrupt flag bits for expected interrupts
524
-        *ISR_table[i].clr_register = ISR_table[i].write_mask;   // set channel to inactive
498
+      else {
499
+        *active_table[i].clr_register = active_table[i].write_mask;   // set pin low
500
+        next_MR1_val = (i == NUM_ISR_PWMS -1)
501
+          ? LPC_PWM1_MR0 + 1                  // done with table, wait for MR0
502
+          : active_table[i + 1].microseconds; // set next MR1 interrupt?
525 503
       }
504
+    }
526 505
   }
527
-
528
-  LPC_PWM1->IR = 0x70F;  // guarantees all interrupt flags are cleared which, if there is an unexpected
529
-                         // PWM interrupt, will keep the ISR from hanging which will crash the controller
506
+  if (first_active_entry) next_MR1_val = LPC_PWM1_MR0 + 1;  // empty table so disable MR1 interrupt
507
+  HAL_PWM_TIMER->MR1 = MAX(next_MR1_val, HAL_PWM_TIMER->TC + PWM_LPC1768_ISR_SAFETY_FACTOR); // set next
508
+  in_PWM_isr = false;
509
+  
510
+  exit_PWM_ISR:
511
+  return;
530 512
 }
531
-
532 513
 #endif
533 514
 
515
+
534 516
 /////////////////////////////////////////////////////////////////
535 517
 /////////////////  HARDWARE FIRMWARE INTERACTION ////////////////
536 518
 /////////////////////////////////////////////////////////////////
537 519
 
538 520
 /**
539
- *  Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0)
540
- *  interrupt.  The only exception is detaching pins.  It doesn't matter when they go
541
- *  tristate.
521
+ *  There are two distinct systems used for PWMs:
522
+ *    directly controlled pins
523
+ *    ISR controlled pins.
542 524
  *
543
- *  The LPC1768_PWM_init routine kicks off the MR0 interrupt.  This interrupt is never disabled.  It
544
- *  can be delayed by higher priority interrupts.  Actions on directly controlled pins are not delayed
545
- *  by other interrupts
525
+ *  The two systems are independent of each other.  The use the same counter frequency so there's no
526
+ *  translation needed when setting the time values.  The init, attach, detach and write routines all
527
+ *  start with the direct pin code which is followed by the ISR pin code.
546 528
  *
547
- *  The ISR_table_update flag is set when the ISR table needs to be rebuilt.  It is
548
- *  cleared by the ISR during the MR0 interrupt after it rebuilds the ISR table.
529
+ *  The PMW1 module handles the directly controlled pins.  Each directly controlled pin is associated
530
+ *  with a match register (MR1 - MR6).  When the associated MR equals the module's TIMER/COUNTER (TC)
531
+ *  then the pins is set to low.  The MR0 register controls the repetition rate.  When the TC equals
532
+ *  MR0 then the TC is reset and ALL directly controlled pins are set high.  The resulting pulse widths
533
+ *  are almost immune to system loading and ISRs.  No PWM1 interrupts are used.
549 534
  *
550
- *  The sequence of events during a write to a PWM channel is:
551
- *    1) Attach routine puts the pin number in the ISR table but doesn't mark it active.
552
- *    2) Write routine marks the pin as active, updates the helper table and flags the ISR that the
553
- *       ISR table needs to be rebuilt.
554
- *    3) On the MR0 interrupt the ISR:
555
- *         a. Rebuilds the ISR table if needed.
556
- *                 MR1-MR6 are updated at this time.  The updates aren't put into use until the first
557
- *                 MR0 after the LER register has been written.  The LER register is written during the
558
- *                 table rebuild process.  The result is new timing takes 20-40 mS to be implemented.
559
- *         b. Sets the interrupt controlled pin(s) to their active state
560
- *         c. Writes to the PCR register to enable the directly controlled pins
561
- *         d. Sets the PINSEL register to the function/mode for the directly controlled pins
535
+ *  The ISR controlled pins use the TIMER/COUNTER, MR0 and MR1 registers from one timer.  MR0 controls
536
+ *  period of the controls the repetition rate.  When the TC equals MR0 then the TC is reset and an
537
+ *  interrupt is generated. When the TC equals MR1 then an interrupt is generated.
562 538
  *
563
- *    4) For each interrupt controlled pin there is another ISR call.  During this call the pin is set
564
- *       to its inactive state.  The call is initiated when a MR1-MR6 reg times out.
539
+ *  Each interrupt does the following:
540
+ *    1) Swaps the tables if it's a MR0 interrupt and the swap flag is set.  It then clears the swap flag.
541
+ *    2) Scans the entire ISR table (it's been sorted low to high time)
542
+ *         a. If its the first active entry then it grabs the time as a tentative time for MR1
543
+ *         b. If active and TC is less than the time then it sets the pin high
544
+ *         c. If active and TC is more than the time it sets the pin high
545
+ *         d. On every entry that sets a pin low it grabs the NEXT entry's time for use as the next MR1.
546
+ *            This results in MR1 being set to the time in the first active entry that does NOT set a
547
+ *            pin low.
548
+ *         e. If it's setting the last entry's pin low then it sets MR1 to a value bigger than MR0
549
+ *         f. If no value has been grabbed for the next MR1 then it's an empty table and MR1 is set to a
550
+ *            value greater than MR0
565 551
  */

+ 2
- 2
Marlin/src/HAL/HAL_LPC1768/arduino.cpp Ver arquivo

@@ -136,8 +136,8 @@ void analogWrite(pin_t pin, int pwm_value) {  // 1 - 254: pwm_value, 0: LOW, 255
136 136
     digitalWrite(pin, value);
137 137
   }
138 138
   else {
139
-    if (LPC1768_PWM_attach_pin(pin, 1, (LPC_PWM1->MR0 - MR0_MARGIN),  0xff))   // locks up if get too close to MR0 value
140
-      LPC1768_PWM_write(pin, map(value, 1, 254, 1, (LPC_PWM1->MR0 - MR0_MARGIN)));  // map 1-254 onto PWM range
139
+    if (LPC1768_PWM_attach_pin(pin, 1, LPC_PWM1->MR0,  0xff))   
140
+      LPC1768_PWM_write(pin, map(value, 0, 255, 1, LPC_PWM1->MR0));  // map 1-254 onto PWM range
141 141
     else {                                                                 // out of PWM channels
142 142
       if (!out_of_PWM_slots) MYSERIAL.printf(".\nWARNING - OUT OF PWM CHANNELS\n.\n");  //only warn once
143 143
       out_of_PWM_slots = true;

Carregando…
Cancelar
Salvar