|
@@ -37,6 +37,21 @@
|
37
|
37
|
#include "../../module/endstops.h"
|
38
|
38
|
#include "../../feature/bedlevel/bedlevel.h"
|
39
|
39
|
|
|
40
|
+#if !AXIS_CAN_CALIBRATE(X)
|
|
41
|
+ #undef CALIBRATION_MEASURE_LEFT
|
|
42
|
+ #undef CALIBRATION_MEASURE_RIGHT
|
|
43
|
+#endif
|
|
44
|
+
|
|
45
|
+#if !AXIS_CAN_CALIBRATE(Y)
|
|
46
|
+ #undef CALIBRATION_MEASURE_FRONT
|
|
47
|
+ #undef CALIBRATION_MEASURE_BACK
|
|
48
|
+#endif
|
|
49
|
+
|
|
50
|
+#if !AXIS_CAN_CALIBRATE(Z)
|
|
51
|
+ #undef CALIBRATION_MEASURE_AT_TOP_EDGES
|
|
52
|
+#endif
|
|
53
|
+
|
|
54
|
+
|
40
|
55
|
/**
|
41
|
56
|
* G425 backs away from the calibration object by various distances
|
42
|
57
|
* depending on the confidence level:
|
|
@@ -207,42 +222,52 @@ inline float measure(const AxisEnum axis, const int dir, const bool stop_state,
|
207
|
222
|
inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) {
|
208
|
223
|
const xyz_float_t dimensions = CALIBRATION_OBJECT_DIMENSIONS;
|
209
|
224
|
AxisEnum axis;
|
210
|
|
- float dir;
|
|
225
|
+ float dir = 1;
|
211
|
226
|
|
212
|
227
|
park_above_object(m, uncertainty);
|
213
|
228
|
|
214
|
229
|
switch (side) {
|
215
|
|
- case TOP: {
|
216
|
|
- const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
217
|
|
- m.obj_center.z = measurement - dimensions.z / 2;
|
218
|
|
- m.obj_side[TOP] = measurement;
|
219
|
|
- return;
|
220
|
|
- }
|
221
|
|
- case RIGHT: axis = X_AXIS; dir = -1; break;
|
222
|
|
- case FRONT: axis = Y_AXIS; dir = 1; break;
|
223
|
|
- case LEFT: axis = X_AXIS; dir = 1; break;
|
224
|
|
- case BACK: axis = Y_AXIS; dir = -1; break;
|
|
230
|
+ #if AXIS_CAN_CALIBRATE(Z)
|
|
231
|
+ case TOP: {
|
|
232
|
+ const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
|
233
|
+ m.obj_center.z = measurement - dimensions.z / 2;
|
|
234
|
+ m.obj_side[TOP] = measurement;
|
|
235
|
+ return;
|
|
236
|
+ }
|
|
237
|
+ #endif
|
|
238
|
+ #if AXIS_CAN_CALIBRATE(X)
|
|
239
|
+ case LEFT: axis = X_AXIS; break;
|
|
240
|
+ case RIGHT: axis = X_AXIS; dir = -1; break;
|
|
241
|
+ #endif
|
|
242
|
+ #if AXIS_CAN_CALIBRATE(Y)
|
|
243
|
+ case FRONT: axis = Y_AXIS; break;
|
|
244
|
+ case BACK: axis = Y_AXIS; dir = -1; break;
|
|
245
|
+ #endif
|
225
|
246
|
default: return;
|
226
|
247
|
}
|
227
|
248
|
|
228
|
249
|
if (probe_top_at_edge) {
|
229
|
|
- // Probe top nearest the side we are probing
|
230
|
|
- current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]);
|
231
|
|
- calibration_move();
|
232
|
|
- m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
233
|
|
- m.obj_center.z = m.obj_side[TOP] - dimensions.z / 2;
|
|
250
|
+ #if AXIS_CAN_CALIBRATE(Z)
|
|
251
|
+ // Probe top nearest the side we are probing
|
|
252
|
+ current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]);
|
|
253
|
+ calibration_move();
|
|
254
|
+ m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
|
255
|
+ m.obj_center.z = m.obj_side[TOP] - dimensions.z / 2;
|
|
256
|
+ #endif
|
234
|
257
|
}
|
235
|
258
|
|
236
|
|
- // Move to safe distance to the side of the calibration object
|
237
|
|
- current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty);
|
238
|
|
- calibration_move();
|
|
259
|
+ if (AXIS_CAN_CALIBRATE(X) && axis == X_AXIS || AXIS_CAN_CALIBRATE(Y) && axis == Y_AXIS) {
|
|
260
|
+ // Move to safe distance to the side of the calibration object
|
|
261
|
+ current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty);
|
|
262
|
+ calibration_move();
|
239
|
263
|
|
240
|
|
- // Plunge below the side of the calibration object and measure
|
241
|
|
- current_position.z = m.obj_side[TOP] - CALIBRATION_NOZZLE_TIP_HEIGHT * 0.7;
|
242
|
|
- calibration_move();
|
243
|
|
- const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
|
244
|
|
- m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
|
245
|
|
- m.obj_side[side] = measurement;
|
|
264
|
+ // Plunge below the side of the calibration object and measure
|
|
265
|
+ current_position.z = m.obj_side[TOP] - (CALIBRATION_NOZZLE_TIP_HEIGHT) * 0.7f;
|
|
266
|
+ calibration_move();
|
|
267
|
+ const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
|
|
268
|
+ m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
|
|
269
|
+ m.obj_side[side] = measurement;
|
|
270
|
+ }
|
246
|
271
|
}
|
247
|
272
|
|
248
|
273
|
/**
|
|
@@ -252,7 +277,7 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
|
252
|
277
|
* uncertainty in - How far away from the calibration object to begin probing
|
253
|
278
|
*/
|
254
|
279
|
inline void probe_sides(measurements_t &m, const float uncertainty) {
|
255
|
|
- #ifdef CALIBRATION_MEASURE_AT_TOP_EDGES
|
|
280
|
+ #if ENABLED(CALIBRATION_MEASURE_AT_TOP_EDGES)
|
256
|
281
|
constexpr bool probe_top_at_edge = true;
|
257
|
282
|
#else
|
258
|
283
|
// Probing at the exact center only works if the center is flat. Probing on a washer
|
|
@@ -261,18 +286,18 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
261
|
286
|
probe_side(m, uncertainty, TOP);
|
262
|
287
|
#endif
|
263
|
288
|
|
264
|
|
- #ifdef CALIBRATION_MEASURE_RIGHT
|
|
289
|
+ #if ENABLED(CALIBRATION_MEASURE_RIGHT)
|
265
|
290
|
probe_side(m, uncertainty, RIGHT, probe_top_at_edge);
|
266
|
291
|
#endif
|
267
|
292
|
|
268
|
|
- #ifdef CALIBRATION_MEASURE_FRONT
|
|
293
|
+ #if ENABLED(CALIBRATION_MEASURE_FRONT)
|
269
|
294
|
probe_side(m, uncertainty, FRONT, probe_top_at_edge);
|
270
|
295
|
#endif
|
271
|
296
|
|
272
|
|
- #ifdef CALIBRATION_MEASURE_LEFT
|
|
297
|
+ #if ENABLED(CALIBRATION_MEASURE_LEFT)
|
273
|
298
|
probe_side(m, uncertainty, LEFT, probe_top_at_edge);
|
274
|
299
|
#endif
|
275
|
|
- #ifdef CALIBRATION_MEASURE_BACK
|
|
300
|
+ #if ENABLED(CALIBRATION_MEASURE_BACK)
|
276
|
301
|
probe_side(m, uncertainty, BACK, probe_top_at_edge);
|
277
|
302
|
#endif
|
278
|
303
|
|
|
@@ -313,7 +338,9 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
313
|
338
|
#if ENABLED(CALIBRATION_REPORTING)
|
314
|
339
|
inline void report_measured_faces(const measurements_t &m) {
|
315
|
340
|
SERIAL_ECHOLNPGM("Sides:");
|
316
|
|
- SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
|
|
341
|
+ #if AXIS_CAN_CALIBRATE(Z)
|
|
342
|
+ SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
|
|
343
|
+ #endif
|
317
|
344
|
#if ENABLED(CALIBRATION_MEASURE_LEFT)
|
318
|
345
|
SERIAL_ECHOLNPAIR(" Left: ", m.obj_side[LEFT]);
|
319
|
346
|
#endif
|
|
@@ -343,19 +370,25 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
343
|
370
|
|
344
|
371
|
inline void report_measured_backlash(const measurements_t &m) {
|
345
|
372
|
SERIAL_ECHOLNPGM("Backlash:");
|
346
|
|
- #if ENABLED(CALIBRATION_MEASURE_LEFT)
|
347
|
|
- SERIAL_ECHOLNPAIR(" Left: ", m.backlash[LEFT]);
|
348
|
|
- #endif
|
349
|
|
- #if ENABLED(CALIBRATION_MEASURE_RIGHT)
|
350
|
|
- SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
|
|
373
|
+ #if AXIS_CAN_CALIBRATE(X)
|
|
374
|
+ #if ENABLED(CALIBRATION_MEASURE_LEFT)
|
|
375
|
+ SERIAL_ECHOLNPAIR(" Left: ", m.backlash[LEFT]);
|
|
376
|
+ #endif
|
|
377
|
+ #if ENABLED(CALIBRATION_MEASURE_RIGHT)
|
|
378
|
+ SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
|
|
379
|
+ #endif
|
351
|
380
|
#endif
|
352
|
|
- #if ENABLED(CALIBRATION_MEASURE_FRONT)
|
353
|
|
- SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
|
|
381
|
+ #if AXIS_CAN_CALIBRATE(Y)
|
|
382
|
+ #if ENABLED(CALIBRATION_MEASURE_FRONT)
|
|
383
|
+ SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
|
|
384
|
+ #endif
|
|
385
|
+ #if ENABLED(CALIBRATION_MEASURE_BACK)
|
|
386
|
+ SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
|
|
387
|
+ #endif
|
354
|
388
|
#endif
|
355
|
|
- #if ENABLED(CALIBRATION_MEASURE_BACK)
|
356
|
|
- SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
|
|
389
|
+ #if AXIS_CAN_CALIBRATE(Z)
|
|
390
|
+ SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
|
357
|
391
|
#endif
|
358
|
|
- SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
|
359
|
392
|
SERIAL_EOL();
|
360
|
393
|
}
|
361
|
394
|
|
|
@@ -369,7 +402,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
369
|
402
|
#if HAS_Y_CENTER
|
370
|
403
|
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
|
371
|
404
|
#endif
|
372
|
|
- SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
|
405
|
+ if (AXIS_CAN_CALIBRATE(Z)) SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
373
|
406
|
SERIAL_EOL();
|
374
|
407
|
}
|
375
|
408
|
|
|
@@ -417,6 +450,7 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
417
|
450
|
probe_sides(m, uncertainty);
|
418
|
451
|
|
419
|
452
|
#if ENABLED(BACKLASH_GCODE)
|
|
453
|
+
|
420
|
454
|
#if HAS_X_CENTER
|
421
|
455
|
backlash.distance_mm.x = (m.backlash[LEFT] + m.backlash[RIGHT]) / 2;
|
422
|
456
|
#elif ENABLED(CALIBRATION_MEASURE_LEFT)
|
|
@@ -433,18 +467,18 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
433
|
467
|
backlash.distance_mm.y = m.backlash[BACK];
|
434
|
468
|
#endif
|
435
|
469
|
|
436
|
|
- backlash.distance_mm.z = m.backlash[TOP];
|
|
470
|
+ if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP];
|
437
|
471
|
#endif
|
438
|
472
|
}
|
439
|
473
|
|
440
|
474
|
#if ENABLED(BACKLASH_GCODE)
|
441
|
475
|
// Turn on backlash compensation and move in all
|
442
|
|
- // directions to take up any backlash
|
|
476
|
+ // allowed directions to take up any backlash
|
443
|
477
|
{
|
444
|
478
|
// New scope for TEMPORARY_BACKLASH_CORRECTION
|
445
|
479
|
TEMPORARY_BACKLASH_CORRECTION(all_on);
|
446
|
480
|
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
|
447
|
|
- const xyz_float_t move = { 3, 3, 3 };
|
|
481
|
+ const xyz_float_t move = { AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3 };
|
448
|
482
|
current_position += move; calibration_move();
|
449
|
483
|
current_position -= move; calibration_move();
|
450
|
484
|
}
|
|
@@ -482,26 +516,18 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
|
482
|
516
|
|
483
|
517
|
// Adjust the hotend offset
|
484
|
518
|
#if HAS_HOTEND_OFFSET
|
485
|
|
- #if HAS_X_CENTER
|
486
|
|
- hotend_offset[extruder].x += m.pos_error.x;
|
487
|
|
- #endif
|
488
|
|
- #if HAS_Y_CENTER
|
489
|
|
- hotend_offset[extruder].y += m.pos_error.y;
|
490
|
|
- #endif
|
491
|
|
- hotend_offset[extruder].z += m.pos_error.z;
|
|
519
|
+ if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) hotend_offset[extruder].x += m.pos_error.x;
|
|
520
|
+ if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) hotend_offset[extruder].y += m.pos_error.y;
|
|
521
|
+ if (AXIS_CAN_CALIBRATE(Z)) hotend_offset[extruder].z += m.pos_error.z;
|
492
|
522
|
normalize_hotend_offsets();
|
493
|
523
|
#endif
|
494
|
524
|
|
495
|
525
|
// Correct for positional error, so the object
|
496
|
526
|
// is at the known actual spot
|
497
|
527
|
planner.synchronize();
|
498
|
|
- #if HAS_X_CENTER
|
499
|
|
- update_measurements(m, X_AXIS);
|
500
|
|
- #endif
|
501
|
|
- #if HAS_Y_CENTER
|
502
|
|
- update_measurements(m, Y_AXIS);
|
503
|
|
- #endif
|
504
|
|
- update_measurements(m, Z_AXIS);
|
|
528
|
+ if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) update_measurements(m, X_AXIS);
|
|
529
|
+ if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
|
|
530
|
+ if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
|
505
|
531
|
|
506
|
532
|
sync_plan_position();
|
507
|
533
|
}
|