Pārlūkot izejas kodu

Stepper and Endstops as singleton objects

Scott Lahteine 9 gadus atpakaļ
vecāks
revīzija
5e4e535ce8

+ 1
- 1
Marlin/Marlin.h Parādīt failu

@@ -216,7 +216,7 @@ void manage_inactivity(bool ignore_stepper_queue = false);
216 216
  */
217 217
 enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5};
218 218
 
219
-enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
219
+#define _AXIS(AXIS) AXIS ##_AXIS
220 220
 
221 221
 void enable_all_steppers();
222 222
 void disable_all_steppers();

+ 96
- 127
Marlin/Marlin_main.cpp Parādīt failu

@@ -48,6 +48,7 @@
48 48
 #include "ultralcd.h"
49 49
 #include "planner.h"
50 50
 #include "stepper.h"
51
+#include "endstops.h"
51 52
 #include "temperature.h"
52 53
 #include "cardreader.h"
53 54
 #include "configuration_store.h"
@@ -547,10 +548,6 @@ static void report_current_position();
547 548
   float extrude_min_temp = EXTRUDE_MINTEMP;
548 549
 #endif
549 550
 
550
-#if ENABLED(HAS_Z_MIN_PROBE)
551
-  extern volatile bool z_probe_is_active;
552
-#endif
553
-
554 551
 #if ENABLED(SDSUPPORT)
555 552
   #include "SdFatUtil.h"
556 553
   int freeMemory() { return SdFatUtil::FreeRam(); }
@@ -711,7 +708,7 @@ void servo_init() {
711 708
 
712 709
    #if HAS_SERVO_ENDSTOPS
713 710
 
714
-    z_probe_is_active = false;
711
+    endstops.enable_z_probe(false);
715 712
 
716 713
     /**
717 714
      * Set position of all defined Servo Endstops
@@ -831,7 +828,7 @@ void setup() {
831 828
     watchdog_init();
832 829
   #endif
833 830
 
834
-  st_init();    // Initialize stepper, this enables interrupts!
831
+  stepper.init();    // Initialize stepper, this enables interrupts!
835 832
   setup_photpin();
836 833
   servo_init();
837 834
 
@@ -915,7 +912,7 @@ void loop() {
915 912
     commands_in_queue--;
916 913
     cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
917 914
   }
918
-  checkHitEndstops();
915
+  endstops.report_state();
919 916
   idle();
920 917
 }
921 918
 
@@ -1445,9 +1442,9 @@ static void setup_for_endstop_move() {
1445 1442
   feedrate_multiplier = 100;
1446 1443
   refresh_cmd_timeout();
1447 1444
   #if ENABLED(DEBUG_LEVELING_FEATURE)
1448
-    if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
1445
+    if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
1449 1446
   #endif
1450
-  enable_endstops(true);
1447
+  endstops.enable();
1451 1448
 }
1452 1449
 
1453 1450
 #if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -1553,7 +1550,7 @@ static void setup_for_endstop_move() {
1553 1550
     #if ENABLED(DELTA)
1554 1551
 
1555 1552
       float start_z = current_position[Z_AXIS];
1556
-      long start_steps = st_get_position(Z_AXIS);
1553
+      long start_steps = stepper.position(Z_AXIS);
1557 1554
 
1558 1555
       #if ENABLED(DEBUG_LEVELING_FEATURE)
1559 1556
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
@@ -1563,14 +1560,14 @@ static void setup_for_endstop_move() {
1563 1560
       feedrate = homing_feedrate[Z_AXIS] / 4;
1564 1561
       destination[Z_AXIS] = -10;
1565 1562
       prepare_move_raw(); // this will also set_current_to_destination
1566
-      st_synchronize();
1567
-      endstops_hit_on_purpose(); // clear endstop hit flags
1563
+      stepper.synchronize();
1564
+      endstops.hit_on_purpose(); // clear endstop hit flags
1568 1565
 
1569 1566
       /**
1570 1567
        * We have to let the planner know where we are right now as it
1571 1568
        * is not where we said to go.
1572 1569
        */
1573
-      long stop_steps = st_get_position(Z_AXIS);
1570
+      long stop_steps = stepper.position(Z_AXIS);
1574 1571
       float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
1575 1572
       current_position[Z_AXIS] = mm;
1576 1573
 
@@ -1588,10 +1585,10 @@ static void setup_for_endstop_move() {
1588 1585
       // Move down until the Z probe (or endstop?) is triggered
1589 1586
       float zPosition = -(Z_MAX_LENGTH + 10);
1590 1587
       line_to_z(zPosition);
1591
-      st_synchronize();
1588
+      stepper.synchronize();
1592 1589
 
1593 1590
       // Tell the planner where we ended up - Get this from the stepper handler
1594
-      zPosition = st_get_axis_position_mm(Z_AXIS);
1591
+      zPosition = stepper.get_axis_position_mm(Z_AXIS);
1595 1592
       plan_set_position(
1596 1593
         current_position[X_AXIS], current_position[Y_AXIS], zPosition,
1597 1594
         current_position[E_AXIS]
@@ -1600,19 +1597,19 @@ static void setup_for_endstop_move() {
1600 1597
       // move up the retract distance
1601 1598
       zPosition += home_bump_mm(Z_AXIS);
1602 1599
       line_to_z(zPosition);
1603
-      st_synchronize();
1604
-      endstops_hit_on_purpose(); // clear endstop hit flags
1600
+      stepper.synchronize();
1601
+      endstops.hit_on_purpose(); // clear endstop hit flags
1605 1602
 
1606 1603
       // move back down slowly to find bed
1607 1604
       set_homing_bump_feedrate(Z_AXIS);
1608 1605
 
1609 1606
       zPosition -= home_bump_mm(Z_AXIS) * 2;
1610 1607
       line_to_z(zPosition);
1611
-      st_synchronize();
1612
-      endstops_hit_on_purpose(); // clear endstop hit flags
1608
+      stepper.synchronize();
1609
+      endstops.hit_on_purpose(); // clear endstop hit flags
1613 1610
 
1614 1611
       // Get the current stepper position after bumping an endstop
1615
-      current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
1612
+      current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
1616 1613
       sync_plan_position();
1617 1614
 
1618 1615
       #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -1641,7 +1638,7 @@ static void setup_for_endstop_move() {
1641 1638
       destination[Y_AXIS] = y;
1642 1639
       destination[Z_AXIS] = z;
1643 1640
       prepare_move_raw(); // this will also set_current_to_destination
1644
-      st_synchronize();
1641
+      stepper.synchronize();
1645 1642
 
1646 1643
     #else
1647 1644
 
@@ -1649,14 +1646,14 @@ static void setup_for_endstop_move() {
1649 1646
 
1650 1647
       current_position[Z_AXIS] = z;
1651 1648
       line_to_current_position();
1652
-      st_synchronize();
1649
+      stepper.synchronize();
1653 1650
 
1654 1651
       feedrate = xy_travel_speed;
1655 1652
 
1656 1653
       current_position[X_AXIS] = x;
1657 1654
       current_position[Y_AXIS] = y;
1658 1655
       line_to_current_position();
1659
-      st_synchronize();
1656
+      stepper.synchronize();
1660 1657
 
1661 1658
     #endif
1662 1659
 
@@ -1681,9 +1678,9 @@ static void setup_for_endstop_move() {
1681 1678
 
1682 1679
   static void clean_up_after_endstop_move() {
1683 1680
     #if ENABLED(DEBUG_LEVELING_FEATURE)
1684
-      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
1681
+      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
1685 1682
     #endif
1686
-    endstops_not_homing();
1683
+    endstops.not_homing();
1687 1684
     feedrate = saved_feedrate;
1688 1685
     feedrate_multiplier = saved_feedrate_multiplier;
1689 1686
     refresh_cmd_timeout();
@@ -1697,7 +1694,7 @@ static void setup_for_endstop_move() {
1697 1694
       if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
1698 1695
     #endif
1699 1696
 
1700
-    if (z_probe_is_active) return;
1697
+    if (endstops.z_probe_enabled) return;
1701 1698
 
1702 1699
     #if HAS_SERVO_ENDSTOPS
1703 1700
 
@@ -1757,7 +1754,7 @@ static void setup_for_endstop_move() {
1757 1754
       destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
1758 1755
       prepare_move_raw(); // this will also set_current_to_destination
1759 1756
 
1760
-      st_synchronize();
1757
+      stepper.synchronize();
1761 1758
 
1762 1759
       #if ENABLED(Z_MIN_PROBE_ENDSTOP)
1763 1760
         z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
@@ -1778,10 +1775,10 @@ static void setup_for_endstop_move() {
1778 1775
     #endif // Z_PROBE_ALLEN_KEY
1779 1776
 
1780 1777
     #if ENABLED(FIX_MOUNTED_PROBE)
1781
-      // Noting to be done. Just set z_probe_is_active
1778
+      // Noting to be done. Just set endstops.z_probe_enabled
1782 1779
     #endif
1783 1780
 
1784
-    z_probe_is_active = true;
1781
+    endstops.enable_z_probe();
1785 1782
 
1786 1783
   }
1787 1784
 
@@ -1793,7 +1790,7 @@ static void setup_for_endstop_move() {
1793 1790
       if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
1794 1791
     #endif
1795 1792
 
1796
-    if (!z_probe_is_active) return;
1793
+    if (!endstops.z_probe_enabled) return;
1797 1794
 
1798 1795
     #if HAS_SERVO_ENDSTOPS
1799 1796
 
@@ -1811,7 +1808,7 @@ static void setup_for_endstop_move() {
1811 1808
               }
1812 1809
             #endif
1813 1810
             raise_z_after_probing(); // this also updates current_position
1814
-            st_synchronize();
1811
+            stepper.synchronize();
1815 1812
           }
1816 1813
         #endif
1817 1814
 
@@ -1861,7 +1858,7 @@ static void setup_for_endstop_move() {
1861 1858
       destination[Y_AXIS] = 0;
1862 1859
       prepare_move_raw(); // this will also set_current_to_destination
1863 1860
 
1864
-      st_synchronize();
1861
+      stepper.synchronize();
1865 1862
 
1866 1863
       #if ENABLED(Z_MIN_PROBE_ENDSTOP)
1867 1864
         bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
@@ -1881,10 +1878,10 @@ static void setup_for_endstop_move() {
1881 1878
     #endif // Z_PROBE_ALLEN_KEY
1882 1879
 
1883 1880
     #if ENABLED(FIX_MOUNTED_PROBE)
1884
-      // Nothing to do here. Just clear z_probe_is_active
1881
+      // Nothing to do here. Just clear endstops.z_probe_enabled
1885 1882
     #endif
1886 1883
 
1887
-    z_probe_is_active = false;
1884
+    endstops.enable_z_probe(false);
1888 1885
   }
1889 1886
   #endif // HAS_Z_MIN_PROBE
1890 1887
 
@@ -2081,13 +2078,13 @@ static void setup_for_endstop_move() {
2081 2078
       }
2082 2079
     #endif
2083 2080
 
2084
-    if (z_probe_is_active == dock) return;
2085
-
2086 2081
     if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
2087 2082
       axis_unhomed_error();
2088 2083
       return;
2089 2084
     }
2090 2085
 
2086
+    if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
2087
+
2091 2088
     float oldXpos = current_position[X_AXIS]; // save x position
2092 2089
     if (dock) {
2093 2090
       #if Z_RAISE_AFTER_PROBING > 0
@@ -2105,7 +2102,7 @@ static void setup_for_endstop_move() {
2105 2102
     }
2106 2103
     do_blocking_move_to_x(oldXpos); // return to position before docking
2107 2104
 
2108
-    z_probe_is_active = dock;
2105
+    endstops.enable_z_probe(!dock); // logically disable docked probe
2109 2106
   }
2110 2107
 
2111 2108
 #endif // Z_PROBE_SLED
@@ -2167,39 +2164,39 @@ static void homeaxis(AxisEnum axis) {
2167 2164
       // Engage an X or Y Servo endstop if enabled
2168 2165
       if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
2169 2166
         servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
2170
-        if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
2167
+        if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
2171 2168
       }
2172 2169
     #endif
2173 2170
 
2174 2171
     // Set a flag for Z motor locking
2175 2172
     #if ENABLED(Z_DUAL_ENDSTOPS)
2176
-      if (axis == Z_AXIS) In_Homing_Process(true);
2173
+      if (axis == Z_AXIS) stepper.set_homing_flag(true);
2177 2174
     #endif
2178 2175
 
2179 2176
     // Move towards the endstop until an endstop is triggered
2180 2177
     destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
2181 2178
     feedrate = homing_feedrate[axis];
2182 2179
     line_to_destination();
2183
-    st_synchronize();
2180
+    stepper.synchronize();
2184 2181
 
2185 2182
     // Set the axis position as setup for the move
2186 2183
     current_position[axis] = 0;
2187 2184
     sync_plan_position();
2188 2185
 
2189 2186
     #if ENABLED(DEBUG_LEVELING_FEATURE)
2190
-      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
2187
+      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
2191 2188
     #endif
2192
-    enable_endstops(false); // Disable endstops while moving away
2189
+    endstops.enable(false); // Disable endstops while moving away
2193 2190
 
2194 2191
     // Move away from the endstop by the axis HOME_BUMP_MM
2195 2192
     destination[axis] = -home_bump_mm(axis) * axis_home_dir;
2196 2193
     line_to_destination();
2197
-    st_synchronize();
2194
+    stepper.synchronize();
2198 2195
 
2199 2196
     #if ENABLED(DEBUG_LEVELING_FEATURE)
2200
-      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
2197
+      if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
2201 2198
     #endif
2202
-    enable_endstops(true); // Enable endstops for next homing move
2199
+    endstops.enable(true); // Enable endstops for next homing move
2203 2200
 
2204 2201
     // Slow down the feedrate for the next move
2205 2202
     set_homing_bump_feedrate(axis);
@@ -2207,7 +2204,7 @@ static void homeaxis(AxisEnum axis) {
2207 2204
     // Move slowly towards the endstop until triggered
2208 2205
     destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
2209 2206
     line_to_destination();
2210
-    st_synchronize();
2207
+    stepper.synchronize();
2211 2208
 
2212 2209
     #if ENABLED(DEBUG_LEVELING_FEATURE)
2213 2210
       if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
@@ -2224,17 +2221,17 @@ static void homeaxis(AxisEnum axis) {
2224 2221
         else
2225 2222
           lockZ1 = (z_endstop_adj < 0);
2226 2223
 
2227
-        if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
2224
+        if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
2228 2225
         sync_plan_position();
2229 2226
 
2230 2227
         // Move to the adjusted endstop height
2231 2228
         feedrate = homing_feedrate[axis];
2232 2229
         destination[Z_AXIS] = adj;
2233 2230
         line_to_destination();
2234
-        st_synchronize();
2231
+        stepper.synchronize();
2235 2232
 
2236
-        if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
2237
-        In_Homing_Process(false);
2233
+        if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
2234
+        stepper.set_homing_flag(false);
2238 2235
       } // Z_AXIS
2239 2236
     #endif
2240 2237
 
@@ -2242,9 +2239,9 @@ static void homeaxis(AxisEnum axis) {
2242 2239
       // retrace by the amount specified in endstop_adj
2243 2240
       if (endstop_adj[axis] * axis_home_dir < 0) {
2244 2241
         #if ENABLED(DEBUG_LEVELING_FEATURE)
2245
-          if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
2242
+          if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
2246 2243
         #endif
2247
-        enable_endstops(false); // Disable endstops while moving away
2244
+        endstops.enable(false); // Disable endstops while moving away
2248 2245
         sync_plan_position();
2249 2246
         destination[axis] = endstop_adj[axis];
2250 2247
         #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -2254,11 +2251,11 @@ static void homeaxis(AxisEnum axis) {
2254 2251
           }
2255 2252
         #endif
2256 2253
         line_to_destination();
2257
-        st_synchronize();
2254
+        stepper.synchronize();
2258 2255
         #if ENABLED(DEBUG_LEVELING_FEATURE)
2259
-          if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
2256
+          if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
2260 2257
         #endif
2261
-        enable_endstops(true); // Enable endstops for next homing move
2258
+        endstops.enable(true); // Enable endstops for next homing move
2262 2259
       }
2263 2260
       #if ENABLED(DEBUG_LEVELING_FEATURE)
2264 2261
         else {
@@ -2280,7 +2277,7 @@ static void homeaxis(AxisEnum axis) {
2280 2277
 
2281 2278
     destination[axis] = current_position[axis];
2282 2279
     feedrate = 0.0;
2283
-    endstops_hit_on_purpose(); // clear endstop hit flags
2280
+    endstops.hit_on_purpose(); // clear endstop hit flags
2284 2281
     axis_known_position[axis] = true;
2285 2282
     axis_homed[axis] = true;
2286 2283
 
@@ -2301,7 +2298,7 @@ static void homeaxis(AxisEnum axis) {
2301 2298
           if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
2302 2299
         #endif
2303 2300
         servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
2304
-        if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
2301
+        if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
2305 2302
       }
2306 2303
     #endif
2307 2304
 
@@ -2499,7 +2496,7 @@ inline void gcode_G4() {
2499 2496
   if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
2500 2497
   if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
2501 2498
 
2502
-  st_synchronize();
2499
+  stepper.synchronize();
2503 2500
   refresh_cmd_timeout();
2504 2501
   codenum += previous_cmd_ms;  // keep track of when we started waiting
2505 2502
 
@@ -2551,7 +2548,7 @@ inline void gcode_G28() {
2551 2548
   #endif
2552 2549
 
2553 2550
   // Wait for planner moves to finish!
2554
-  st_synchronize();
2551
+  stepper.synchronize();
2555 2552
 
2556 2553
   // For auto bed leveling, clear the level matrix
2557 2554
   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -2594,8 +2591,8 @@ inline void gcode_G28() {
2594 2591
     for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
2595 2592
     feedrate = 1.732 * homing_feedrate[X_AXIS];
2596 2593
     line_to_destination();
2597
-    st_synchronize();
2598
-    endstops_hit_on_purpose(); // clear endstop hit flags
2594
+    stepper.synchronize();
2595
+    endstops.hit_on_purpose(); // clear endstop hit flags
2599 2596
 
2600 2597
     // Destination reached
2601 2598
     for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
@@ -2643,7 +2640,7 @@ inline void gcode_G28() {
2643 2640
           }
2644 2641
         #endif
2645 2642
         line_to_destination();
2646
-        st_synchronize();
2643
+        stepper.synchronize();
2647 2644
 
2648 2645
         /**
2649 2646
          * Update the current Z position even if it currently not real from
@@ -2676,7 +2673,7 @@ inline void gcode_G28() {
2676 2673
         destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
2677 2674
         feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
2678 2675
         line_to_destination();
2679
-        st_synchronize();
2676
+        stepper.synchronize();
2680 2677
 
2681 2678
         set_axis_is_at_home(X_AXIS);
2682 2679
         set_axis_is_at_home(Y_AXIS);
@@ -2690,8 +2687,8 @@ inline void gcode_G28() {
2690 2687
         destination[Y_AXIS] = current_position[Y_AXIS];
2691 2688
         line_to_destination();
2692 2689
         feedrate = 0.0;
2693
-        st_synchronize();
2694
-        endstops_hit_on_purpose(); // clear endstop hit flags
2690
+        stepper.synchronize();
2691
+        endstops.hit_on_purpose(); // clear endstop hit flags
2695 2692
 
2696 2693
         current_position[X_AXIS] = destination[X_AXIS];
2697 2694
         current_position[Y_AXIS] = destination[Y_AXIS];
@@ -2784,7 +2781,7 @@ inline void gcode_G28() {
2784 2781
 
2785 2782
             // Move in the XY plane
2786 2783
             line_to_destination();
2787
-            st_synchronize();
2784
+            stepper.synchronize();
2788 2785
 
2789 2786
             /**
2790 2787
              * Update the current positions for XY, Z is still at least at
@@ -2857,10 +2854,10 @@ inline void gcode_G28() {
2857 2854
   #endif
2858 2855
 
2859 2856
   #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
2860
-    enable_endstops(false);
2857
+    endstops.enable(false);
2861 2858
     #if ENABLED(DEBUG_LEVELING_FEATURE)
2862 2859
       if (DEBUGGING(LEVELING)) {
2863
-        SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
2860
+        SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
2864 2861
       }
2865 2862
     #endif
2866 2863
   #endif
@@ -2875,7 +2872,7 @@ inline void gcode_G28() {
2875 2872
       set_destination_to_current();
2876 2873
       feedrate = homing_feedrate[Z_AXIS];
2877 2874
       line_to_destination();
2878
-      st_synchronize();
2875
+      stepper.synchronize();
2879 2876
       #if ENABLED(DEBUG_LEVELING_FEATURE)
2880 2877
         if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
2881 2878
       #endif
@@ -2885,7 +2882,7 @@ inline void gcode_G28() {
2885 2882
   feedrate = saved_feedrate;
2886 2883
   feedrate_multiplier = saved_feedrate_multiplier;
2887 2884
   refresh_cmd_timeout();
2888
-  endstops_hit_on_purpose(); // clear endstop hit flags
2885
+  endstops.hit_on_purpose(); // clear endstop hit flags
2889 2886
 
2890 2887
   #if ENABLED(DEBUG_LEVELING_FEATURE)
2891 2888
     if (DEBUGGING(LEVELING)) {
@@ -2921,7 +2918,7 @@ inline void gcode_G28() {
2921 2918
     #endif
2922 2919
 
2923 2920
     feedrate = saved_feedrate;
2924
-    st_synchronize();
2921
+    stepper.synchronize();
2925 2922
   }
2926 2923
 
2927 2924
   /**
@@ -3015,7 +3012,7 @@ inline void gcode_G28() {
3015 3012
             #endif
3016 3013
           ;
3017 3014
           line_to_current_position();
3018
-          st_synchronize();
3015
+          stepper.synchronize();
3019 3016
 
3020 3017
           // After recording the last point, activate the mbl and home
3021 3018
           SERIAL_PROTOCOLLNPGM("Mesh probing done.");
@@ -3240,7 +3237,7 @@ inline void gcode_G28() {
3240 3237
       deploy_z_probe();
3241 3238
     #endif
3242 3239
 
3243
-    st_synchronize();
3240
+    stepper.synchronize();
3244 3241
 
3245 3242
     setup_for_endstop_move();
3246 3243
 
@@ -3511,7 +3508,7 @@ inline void gcode_G28() {
3511 3508
         float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
3512 3509
               y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
3513 3510
               z_tmp = current_position[Z_AXIS],
3514
-              real_z = st_get_axis_position_mm(Z_AXIS);  //get the real Z (since plan_get_position is now correcting the plane)
3511
+              real_z = stepper.get_axis_position_mm(Z_AXIS);  //get the real Z (since plan_get_position is now correcting the plane)
3515 3512
 
3516 3513
         #if ENABLED(DEBUG_LEVELING_FEATURE)
3517 3514
           if (DEBUGGING(LEVELING)) {
@@ -3588,9 +3585,9 @@ inline void gcode_G28() {
3588 3585
       #endif
3589 3586
       enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
3590 3587
       #if ENABLED(HAS_Z_MIN_PROBE)
3591
-        z_probe_is_active = false;
3588
+        endstops.enable_z_probe(false);
3592 3589
       #endif
3593
-      st_synchronize();
3590
+      stepper.synchronize();
3594 3591
     #endif
3595 3592
 
3596 3593
     KEEPALIVE_STATE(IN_HANDLER);
@@ -3615,7 +3612,7 @@ inline void gcode_G28() {
3615 3612
       #endif
3616 3613
       deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
3617 3614
 
3618
-      st_synchronize();
3615
+      stepper.synchronize();
3619 3616
       // TODO: clear the leveling matrix or the planner will be set incorrectly
3620 3617
       setup_for_endstop_move(); // Too late. Must be done before deploying.
3621 3618
 
@@ -3650,7 +3647,7 @@ inline void gcode_G28() {
3650 3647
 inline void gcode_G92() {
3651 3648
   bool didE = code_seen(axis_codes[E_AXIS]);
3652 3649
 
3653
-  if (!didE) st_synchronize();
3650
+  if (!didE) stepper.synchronize();
3654 3651
 
3655 3652
   bool didXYZ = false;
3656 3653
   for (int i = 0; i < NUM_AXIS; i++) {
@@ -3712,7 +3709,7 @@ inline void gcode_G92() {
3712 3709
     }
3713 3710
 
3714 3711
     lcd_ignore_click();
3715
-    st_synchronize();
3712
+    stepper.synchronize();
3716 3713
     refresh_cmd_timeout();
3717 3714
     if (codenum > 0) {
3718 3715
       codenum += previous_cmd_ms;  // wait until this time for a click
@@ -3853,7 +3850,7 @@ inline void gcode_M31() {
3853 3850
    */
3854 3851
   inline void gcode_M32() {
3855 3852
     if (card.sdprinting)
3856
-      st_synchronize();
3853
+      stepper.synchronize();
3857 3854
 
3858 3855
     char* namestartpos = strchr(current_command_args, '!');  // Find ! to indicate filename string start.
3859 3856
     if (!namestartpos)
@@ -4819,7 +4816,7 @@ inline void gcode_M140() {
4819 4816
  */
4820 4817
 inline void gcode_M81() {
4821 4818
   disable_all_heaters();
4822
-  finishAndDisableSteppers();
4819
+  stepper.finish_and_disable();
4823 4820
   #if FAN_COUNT > 0
4824 4821
     #if FAN_COUNT > 1
4825 4822
       for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
@@ -4829,7 +4826,7 @@ inline void gcode_M81() {
4829 4826
   #endif
4830 4827
   delay(1000); // Wait 1 second before switching off
4831 4828
   #if HAS_SUICIDE
4832
-    st_synchronize();
4829
+    stepper.synchronize();
4833 4830
     suicide();
4834 4831
   #elif HAS_POWER_SWITCH
4835 4832
     OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
@@ -4864,10 +4861,10 @@ inline void gcode_M18_M84() {
4864 4861
   else {
4865 4862
     bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
4866 4863
     if (all_axis) {
4867
-      finishAndDisableSteppers();
4864
+      stepper.finish_and_disable();
4868 4865
     }
4869 4866
     else {
4870
-      st_synchronize();
4867
+      stepper.synchronize();
4871 4868
       if (code_seen('X')) disable_x();
4872 4869
       if (code_seen('Y')) disable_y();
4873 4870
       if (code_seen('Z')) disable_z();
@@ -4927,35 +4924,7 @@ static void report_current_position() {
4927 4924
   SERIAL_PROTOCOLPGM(" E:");
4928 4925
   SERIAL_PROTOCOL(current_position[E_AXIS]);
4929 4926
 
4930
-  CRITICAL_SECTION_START;
4931
-  extern volatile long count_position[NUM_AXIS];
4932
-  long xpos = count_position[X_AXIS],
4933
-       ypos = count_position[Y_AXIS],
4934
-       zpos = count_position[Z_AXIS];
4935
-  CRITICAL_SECTION_END;
4936
-
4937
-  #if ENABLED(COREXY) || ENABLED(COREXZ)
4938
-    SERIAL_PROTOCOLPGM(MSG_COUNT_A);
4939
-  #else
4940
-    SERIAL_PROTOCOLPGM(MSG_COUNT_X);
4941
-  #endif
4942
-  SERIAL_PROTOCOL(xpos);
4943
-
4944
-  #if ENABLED(COREXY)
4945
-    SERIAL_PROTOCOLPGM(" B:");
4946
-  #else
4947
-    SERIAL_PROTOCOLPGM(" Y:");
4948
-  #endif
4949
-  SERIAL_PROTOCOL(ypos);
4950
-
4951
-  #if ENABLED(COREXZ)
4952
-    SERIAL_PROTOCOLPGM(" C:");
4953
-  #else
4954
-    SERIAL_PROTOCOLPGM(" Z:");
4955
-  #endif
4956
-  SERIAL_PROTOCOL(zpos);
4957
-
4958
-  SERIAL_EOL;
4927
+  stepper.report_positions();
4959 4928
 
4960 4929
   #if ENABLED(SCARA)
4961 4930
     SERIAL_PROTOCOLPGM("SCARA Theta:");
@@ -5039,12 +5008,12 @@ inline void gcode_M119() {
5039 5008
 /**
5040 5009
  * M120: Enable endstops and set non-homing endstop state to "enabled"
5041 5010
  */
5042
-inline void gcode_M120() { enable_endstops_globally(true); }
5011
+inline void gcode_M120() { endstops.enable_globally(true); }
5043 5012
 
5044 5013
 /**
5045 5014
  * M121: Disable endstops and set non-homing endstop state to "disabled"
5046 5015
  */
5047
-inline void gcode_M121() { enable_endstops_globally(false); }
5016
+inline void gcode_M121() { endstops.enable_globally(false); }
5048 5017
 
5049 5018
 #if ENABLED(BLINKM)
5050 5019
 
@@ -5439,7 +5408,7 @@ inline void gcode_M226() {
5439 5408
       if (pin_number > -1) {
5440 5409
         int target = LOW;
5441 5410
 
5442
-        st_synchronize();
5411
+        stepper.synchronize();
5443 5412
 
5444 5413
         pinMode(pin_number, INPUT);
5445 5414
 
@@ -5801,7 +5770,7 @@ inline void gcode_M303() {
5801 5770
 /**
5802 5771
  * M400: Finish all moves
5803 5772
  */
5804
-inline void gcode_M400() { st_synchronize(); }
5773
+inline void gcode_M400() { stepper.synchronize(); }
5805 5774
 
5806 5775
 #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
5807 5776
 
@@ -5887,7 +5856,7 @@ inline void gcode_M400() { st_synchronize(); }
5887 5856
  * This will stop the carriages mid-move, so most likely they
5888 5857
  * will be out of sync with the stepper position after this.
5889 5858
  */
5890
-inline void gcode_M410() { quickStop(); }
5859
+inline void gcode_M410() { stepper.quick_stop(); }
5891 5860
 
5892 5861
 
5893 5862
 #if ENABLED(MESH_BED_LEVELING)
@@ -6111,7 +6080,7 @@ inline void gcode_M503() {
6111 6080
     RUNPLAN;
6112 6081
 
6113 6082
     //finish moves
6114
-    st_synchronize();
6083
+    stepper.synchronize();
6115 6084
     //disable extruder steppers so filament can be removed
6116 6085
     disable_e0();
6117 6086
     disable_e1();
@@ -6135,7 +6104,7 @@ inline void gcode_M503() {
6135 6104
         current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
6136 6105
         destination[E_AXIS] = current_position[E_AXIS];
6137 6106
         line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
6138
-        st_synchronize();
6107
+        stepper.synchronize();
6139 6108
       #endif
6140 6109
     } // while(!lcd_clicked)
6141 6110
     KEEPALIVE_STATE(IN_HANDLER);
@@ -6143,7 +6112,7 @@ inline void gcode_M503() {
6143 6112
 
6144 6113
     #if ENABLED(AUTO_FILAMENT_CHANGE)
6145 6114
       current_position[E_AXIS] = 0;
6146
-      st_synchronize();
6115
+      stepper.synchronize();
6147 6116
     #endif
6148 6117
 
6149 6118
     //return to normal
@@ -6198,7 +6167,7 @@ inline void gcode_M503() {
6198 6167
    *    Note: the X axis should be homed after changing dual x-carriage mode.
6199 6168
    */
6200 6169
   inline void gcode_M605() {
6201
-    st_synchronize();
6170
+    stepper.synchronize();
6202 6171
     if (code_seen('S')) dual_x_carriage_mode = code_value();
6203 6172
     switch (dual_x_carriage_mode) {
6204 6173
       case DXC_DUPLICATION_MODE:
@@ -6375,7 +6344,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6375 6344
                            current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
6376 6345
           plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
6377 6346
                            current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
6378
-          st_synchronize();
6347
+          stepper.synchronize();
6379 6348
         }
6380 6349
 
6381 6350
         // apply Y & Z extruder offset (x offset is already used in determining home pos)
@@ -6460,7 +6429,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6460 6429
     } // (tmp_extruder != active_extruder)
6461 6430
 
6462 6431
     #if ENABLED(EXT_SOLENOID)
6463
-      st_synchronize();
6432
+      stepper.synchronize();
6464 6433
       disable_all_solenoids();
6465 6434
       enable_solenoid_on_active_extruder();
6466 6435
     #endif // EXT_SOLENOID
@@ -7400,7 +7369,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
7400 7369
         plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
7401 7370
                          current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
7402 7371
         sync_plan_position();
7403
-        st_synchronize();
7372
+        stepper.synchronize();
7404 7373
         extruder_duplication_enabled = true;
7405 7374
         active_extruder_parked = false;
7406 7375
       }
@@ -7927,7 +7896,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
7927 7896
       destination[E_AXIS] = oldedes;
7928 7897
       plan_set_e_position(oldepos);
7929 7898
       previous_cmd_ms = ms; // refresh_cmd_timeout()
7930
-      st_synchronize();
7899
+      stepper.synchronize();
7931 7900
       switch (active_extruder) {
7932 7901
         case 0:
7933 7902
           E0_ENABLE_WRITE(oldstatus);
@@ -8004,7 +7973,7 @@ void kill(const char* lcd_msg) {
8004 7973
     if (!filament_ran_out) {
8005 7974
       filament_ran_out = true;
8006 7975
       enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
8007
-      st_synchronize();
7976
+      stepper.synchronize();
8008 7977
     }
8009 7978
   }
8010 7979
 

+ 1
- 1
Marlin/cardreader.cpp Parādīt failu

@@ -596,7 +596,7 @@ void CardReader::updir() {
596 596
 }
597 597
 
598 598
 void CardReader::printingHasFinished() {
599
-  st_synchronize();
599
+  stepper.synchronize();
600 600
   if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
601 601
     file.close();
602 602
     file_subcall_ctr--;

+ 317
- 0
Marlin/endstops.cpp Parādīt failu

@@ -0,0 +1,317 @@
1
+/**
2
+ * Marlin 3D Printer Firmware
3
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
4
+ *
5
+ * Based on Sprinter and grbl.
6
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
7
+ *
8
+ * This program is free software: you can redistribute it and/or modify
9
+ * it under the terms of the GNU General Public License as published by
10
+ * the Free Software Foundation, either version 3 of the License, or
11
+ * (at your option) any later version.
12
+ *
13
+ * This program is distributed in the hope that it will be useful,
14
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
+ * GNU General Public License for more details.
17
+ *
18
+ * You should have received a copy of the GNU General Public License
19
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20
+ *
21
+ */
22
+
23
+/**
24
+ * endstops.cpp - A singleton object to manage endstops
25
+ */
26
+
27
+#include "Marlin.h"
28
+#include "endstops.h"
29
+#include "stepper.h"
30
+#include "ultralcd.h"
31
+
32
+// TEST_ENDSTOP: test the old and the current status of an endstop
33
+#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
34
+
35
+Endstops endstops;
36
+
37
+Endstops::Endstops() {
38
+  enable_globally(ENABLED(ENDSTOPS_ONLY_FOR_HOMING));
39
+  enable(true);
40
+  #if ENABLED(HAS_Z_MIN_PROBE)
41
+    enable_z_probe(false);
42
+  #endif
43
+} // Endstops::Endstops
44
+
45
+void Endstops::init() {
46
+
47
+  #if HAS_X_MIN
48
+    SET_INPUT(X_MIN_PIN);
49
+    #if ENABLED(ENDSTOPPULLUP_XMIN)
50
+      WRITE(X_MIN_PIN,HIGH);
51
+    #endif
52
+  #endif
53
+
54
+  #if HAS_Y_MIN
55
+    SET_INPUT(Y_MIN_PIN);
56
+    #if ENABLED(ENDSTOPPULLUP_YMIN)
57
+      WRITE(Y_MIN_PIN,HIGH);
58
+    #endif
59
+  #endif
60
+
61
+  #if HAS_Z_MIN
62
+    SET_INPUT(Z_MIN_PIN);
63
+    #if ENABLED(ENDSTOPPULLUP_ZMIN)
64
+      WRITE(Z_MIN_PIN,HIGH);
65
+    #endif
66
+  #endif
67
+
68
+  #if HAS_Z2_MIN
69
+    SET_INPUT(Z2_MIN_PIN);
70
+    #if ENABLED(ENDSTOPPULLUP_ZMIN)
71
+      WRITE(Z2_MIN_PIN,HIGH);
72
+    #endif
73
+  #endif
74
+
75
+  #if HAS_X_MAX
76
+    SET_INPUT(X_MAX_PIN);
77
+    #if ENABLED(ENDSTOPPULLUP_XMAX)
78
+      WRITE(X_MAX_PIN,HIGH);
79
+    #endif
80
+  #endif
81
+
82
+  #if HAS_Y_MAX
83
+    SET_INPUT(Y_MAX_PIN);
84
+    #if ENABLED(ENDSTOPPULLUP_YMAX)
85
+      WRITE(Y_MAX_PIN,HIGH);
86
+    #endif
87
+  #endif
88
+
89
+  #if HAS_Z_MAX
90
+    SET_INPUT(Z_MAX_PIN);
91
+    #if ENABLED(ENDSTOPPULLUP_ZMAX)
92
+      WRITE(Z_MAX_PIN,HIGH);
93
+    #endif
94
+  #endif
95
+
96
+  #if HAS_Z2_MAX
97
+    SET_INPUT(Z2_MAX_PIN);
98
+    #if ENABLED(ENDSTOPPULLUP_ZMAX)
99
+      WRITE(Z2_MAX_PIN,HIGH);
100
+    #endif
101
+  #endif
102
+
103
+  #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
104
+    SET_INPUT(Z_MIN_PROBE_PIN);
105
+    #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
106
+      WRITE(Z_MIN_PROBE_PIN,HIGH);
107
+    #endif
108
+  #endif
109
+
110
+} // Endstops::init
111
+
112
+void Endstops::report_state() {
113
+  if (endstop_hit_bits) {
114
+    #if ENABLED(ULTRA_LCD)
115
+      char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
116
+      #define _SET_STOP_CHAR(A,C) (chr## A = C)
117
+    #else
118
+      #define _SET_STOP_CHAR(A,C) ;
119
+    #endif
120
+
121
+    #define _ENDSTOP_HIT_ECHO(A,C) do{ \
122
+      SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
123
+      _SET_STOP_CHAR(A,C); }while(0)
124
+
125
+    #define _ENDSTOP_HIT_TEST(A,C) \
126
+      if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
127
+        _ENDSTOP_HIT_ECHO(A,C)
128
+
129
+    SERIAL_ECHO_START;
130
+    SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
131
+    _ENDSTOP_HIT_TEST(X, 'X');
132
+    _ENDSTOP_HIT_TEST(Y, 'Y');
133
+    _ENDSTOP_HIT_TEST(Z, 'Z');
134
+
135
+    #if ENABLED(Z_MIN_PROBE_ENDSTOP)
136
+      #define P_AXIS Z_AXIS
137
+      if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
138
+    #endif
139
+    SERIAL_EOL;
140
+
141
+    #if ENABLED(ULTRA_LCD)
142
+      char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
143
+      sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
144
+      lcd_setstatus(msg);
145
+    #endif
146
+
147
+    hit_on_purpose();
148
+
149
+    #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
150
+      if (abort_on_endstop_hit) {
151
+        card.sdprinting = false;
152
+        card.closefile();
153
+        stepper.quick_stop();
154
+        disable_all_heaters(); // switch off all heaters.
155
+      }
156
+    #endif
157
+  }
158
+} // Endstops::report_state
159
+
160
+// Check endstops - Called from ISR!
161
+void Endstops::update() {
162
+
163
+  #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
164
+  #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
165
+  #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
166
+  #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
167
+
168
+  // UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
169
+  #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
170
+  // COPY_BIT: copy the value of COPY_BIT to BIT in bits
171
+  #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
172
+
173
+  #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
174
+      UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
175
+      if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
176
+        _ENDSTOP_HIT(AXIS); \
177
+        stepper.endstop_triggered(_AXIS(AXIS)); \
178
+      } \
179
+    } while(0)
180
+
181
+  #if ENABLED(COREXY) || ENABLED(COREXZ)
182
+    // Head direction in -X axis for CoreXY and CoreXZ bots.
183
+    // If Delta1 == -Delta2, the movement is only in Y or Z axis
184
+    if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) {
185
+      if (stepper.motor_direction(X_HEAD))
186
+  #else
187
+    if (stepper.motor_direction(X_AXIS))   // stepping along -X axis (regular Cartesian bot)
188
+  #endif
189
+      { // -direction
190
+        #if ENABLED(DUAL_X_CARRIAGE)
191
+          // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
192
+          if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1))
193
+        #endif
194
+          {
195
+            #if HAS_X_MIN
196
+              UPDATE_ENDSTOP(X, MIN);
197
+            #endif
198
+          }
199
+      }
200
+      else { // +direction
201
+        #if ENABLED(DUAL_X_CARRIAGE)
202
+          // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
203
+          if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1))
204
+        #endif
205
+          {
206
+            #if HAS_X_MAX
207
+              UPDATE_ENDSTOP(X, MAX);
208
+            #endif
209
+          }
210
+      }
211
+  #if ENABLED(COREXY) || ENABLED(COREXZ)
212
+    }
213
+  #endif
214
+
215
+  #if ENABLED(COREXY)
216
+    // Head direction in -Y axis for CoreXY bots.
217
+    // If DeltaX == DeltaY, the movement is only in X axis
218
+    if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) {
219
+      if (stepper.motor_direction(Y_HEAD))
220
+  #else
221
+      if (stepper.motor_direction(Y_AXIS))   // -direction
222
+  #endif
223
+      { // -direction
224
+        #if HAS_Y_MIN
225
+          UPDATE_ENDSTOP(Y, MIN);
226
+        #endif
227
+      }
228
+      else { // +direction
229
+        #if HAS_Y_MAX
230
+          UPDATE_ENDSTOP(Y, MAX);
231
+        #endif
232
+      }
233
+  #if ENABLED(COREXY)
234
+    }
235
+  #endif
236
+
237
+  #if ENABLED(COREXZ)
238
+    // Head direction in -Z axis for CoreXZ bots.
239
+    // If DeltaX == DeltaZ, the movement is only in X axis
240
+    if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) {
241
+      if (stepper.motor_direction(Z_HEAD))
242
+  #else
243
+      if (stepper.motor_direction(Z_AXIS))
244
+  #endif
245
+      { // z -direction
246
+        #if HAS_Z_MIN
247
+
248
+          #if ENABLED(Z_DUAL_ENDSTOPS)
249
+
250
+            UPDATE_ENDSTOP_BIT(Z, MIN);
251
+            #if HAS_Z2_MIN
252
+              UPDATE_ENDSTOP_BIT(Z2, MIN);
253
+            #else
254
+              COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
255
+            #endif
256
+
257
+            byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
258
+
259
+            if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
260
+              stepper.endstop_triggered(Z_AXIS);
261
+              SBI(endstop_hit_bits, Z_MIN);
262
+              if (!performing_homing || (z_test == 0x3))  //if not performing home or if both endstops were trigged during homing...
263
+                stepper.kill_current_block();
264
+            }
265
+
266
+          #else // !Z_DUAL_ENDSTOPS
267
+
268
+            #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
269
+              if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
270
+            #else
271
+              UPDATE_ENDSTOP(Z, MIN);
272
+            #endif
273
+
274
+          #endif // !Z_DUAL_ENDSTOPS
275
+
276
+        #endif // HAS_Z_MIN
277
+
278
+        #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
279
+          if (z_probe_enabled) {
280
+            UPDATE_ENDSTOP(Z, MIN_PROBE);
281
+            if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
282
+          }
283
+        #endif
284
+      }
285
+      else { // z +direction
286
+        #if HAS_Z_MAX
287
+
288
+          #if ENABLED(Z_DUAL_ENDSTOPS)
289
+
290
+            UPDATE_ENDSTOP_BIT(Z, MAX);
291
+            #if HAS_Z2_MAX
292
+              UPDATE_ENDSTOP_BIT(Z2, MAX);
293
+            #else
294
+              COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
295
+            #endif
296
+
297
+            byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
298
+
299
+            if (z_test && stepper.current_block->steps[Z_AXIS] > 0) {  // t_test = Z_MAX || Z2_MAX
300
+              stepper.endstop_triggered(Z_AXIS);
301
+              SBI(endstop_hit_bits, Z_MIN);
302
+              if (!performing_homing || (z_test == 0x3))  //if not performing home or if both endstops were trigged during homing...
303
+                stepper.kill_current_block();
304
+            }
305
+
306
+          #else // !Z_DUAL_ENDSTOPS
307
+
308
+            UPDATE_ENDSTOP(Z, MAX);
309
+
310
+          #endif // !Z_DUAL_ENDSTOPS
311
+        #endif // Z_MAX_PIN
312
+      }
313
+  #if ENABLED(COREXZ)
314
+    }
315
+  #endif
316
+  old_endstop_bits = current_endstop_bits;
317
+} // Endstops::update()

+ 94
- 0
Marlin/endstops.h Parādīt failu

@@ -0,0 +1,94 @@
1
+/**
2
+ * Marlin 3D Printer Firmware
3
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
4
+ *
5
+ * Based on Sprinter and grbl.
6
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
7
+ *
8
+ * This program is free software: you can redistribute it and/or modify
9
+ * it under the terms of the GNU General Public License as published by
10
+ * the Free Software Foundation, either version 3 of the License, or
11
+ * (at your option) any later version.
12
+ *
13
+ * This program is distributed in the hope that it will be useful,
14
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
+ * GNU General Public License for more details.
17
+ *
18
+ * You should have received a copy of the GNU General Public License
19
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20
+ *
21
+ */
22
+
23
+/**
24
+ *  endstops.h - manages endstops
25
+ */
26
+
27
+#ifndef ENDSTOPS_H
28
+#define ENDSTOPS_H
29
+
30
+enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
31
+
32
+class Endstops {
33
+
34
+  public:
35
+
36
+    volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
37
+
38
+    #if ENABLED(Z_DUAL_ENDSTOPS)
39
+      uint16_t current_endstop_bits = 0,
40
+                   old_endstop_bits = 0;
41
+    #else
42
+      byte current_endstop_bits = 0,
43
+               old_endstop_bits = 0;
44
+    #endif
45
+        
46
+
47
+    bool enabled = true;
48
+    bool enabled_globally =
49
+      #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
50
+        false
51
+      #else
52
+        true
53
+      #endif
54
+    ;
55
+
56
+    Endstops();
57
+
58
+    /**
59
+     * Initialize the endstop pins
60
+     */
61
+    void init();
62
+
63
+    /**
64
+     * Update the endstops bits from the pins
65
+     */
66
+    void update();
67
+
68
+    /**
69
+     * Print an error message reporting the position when the endstops were last hit.
70
+     */
71
+    void report_state(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
72
+
73
+    // Enable / disable endstop checking globally
74
+    FORCE_INLINE void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; }
75
+
76
+    // Enable / disable endstop checking
77
+    FORCE_INLINE void enable(bool onoff=true) { enabled = onoff; }
78
+
79
+    // Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
80
+    FORCE_INLINE void not_homing() { enabled = enabled_globally; }
81
+
82
+    // Clear endstops (i.e., they were hit intentionally) to suppress the report
83
+    FORCE_INLINE void hit_on_purpose() { endstop_hit_bits = 0; }
84
+
85
+    // Enable / disable endstop z-probe checking
86
+    #if ENABLED(HAS_Z_MIN_PROBE)
87
+      volatile bool z_probe_enabled = false;
88
+      FORCE_INLINE void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; }
89
+    #endif
90
+};
91
+
92
+extern Endstops endstops;
93
+
94
+#endif // ENDSTOPS_H

+ 4
- 4
Marlin/planner.cpp Parādīt failu

@@ -1085,7 +1085,7 @@ float junction_deviation = 0.1;
1085 1085
 
1086 1086
   planner_recalculate();
1087 1087
 
1088
-  st_wake_up();
1088
+  stepper.wake_up();
1089 1089
 
1090 1090
 } // plan_buffer_line()
1091 1091
 
@@ -1097,7 +1097,7 @@ float junction_deviation = 0.1;
1097 1097
    * On CORE machines XYZ is derived from ABC.
1098 1098
    */
1099 1099
   vector_3 plan_get_position() {
1100
-    vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
1100
+    vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
1101 1101
 
1102 1102
     //position.debug("in plan_get position");
1103 1103
     //plan_bed_level_matrix.debug("in plan_get_position");
@@ -1132,7 +1132,7 @@ float junction_deviation = 0.1;
1132 1132
          ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
1133 1133
          nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
1134 1134
          ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
1135
-    st_set_position(nx, ny, nz, ne);
1135
+    stepper.set_position(nx, ny, nz, ne);
1136 1136
     previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
1137 1137
 
1138 1138
     for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
@@ -1140,7 +1140,7 @@ float junction_deviation = 0.1;
1140 1140
 
1141 1141
 void plan_set_e_position(const float& e) {
1142 1142
   position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
1143
-  st_set_e_position(position[E_AXIS]);
1143
+  stepper.set_e_position(position[E_AXIS]);
1144 1144
 }
1145 1145
 
1146 1146
 // Calculate the steps/s^2 acceleration rates, based on the mm/s^s

+ 146
- 561
Marlin/stepper.cpp Parādīt failu

@@ -21,7 +21,7 @@
21 21
  */
22 22
 
23 23
 /**
24
- * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
24
+ * stepper.cpp - A singleton object to execute motion plans using stepper motors
25 25
  * Marlin Firmware
26 26
  *
27 27
  * Derived from Grbl
@@ -46,6 +46,7 @@
46 46
 
47 47
 #include "Marlin.h"
48 48
 #include "stepper.h"
49
+#include "endstops.h"
49 50
 #include "planner.h"
50 51
 #include "temperature.h"
51 52
 #include "ultralcd.h"
@@ -57,85 +58,7 @@
57 58
   #include <SPI.h>
58 59
 #endif
59 60
 
60
-//===========================================================================
61
-//============================= public variables ============================
62
-//===========================================================================
63
-block_t* current_block;  // A pointer to the block currently being traced
64
-
65
-#if ENABLED(HAS_Z_MIN_PROBE)
66
-  volatile bool z_probe_is_active = false;
67
-#endif
68
-
69
-//===========================================================================
70
-//============================= private variables ===========================
71
-//===========================================================================
72
-//static makes it impossible to be called from outside of this file by extern.!
73
-
74
-// Variables used by The Stepper Driver Interrupt
75
-static unsigned char out_bits = 0;        // The next stepping-bits to be output
76
-static unsigned int cleaning_buffer_counter;
77
-
78
-#if ENABLED(Z_DUAL_ENDSTOPS)
79
-  static bool performing_homing = false,
80
-              locked_z_motor = false,
81
-              locked_z2_motor = false;
82
-#endif
83
-
84
-// Counter variables for the Bresenham line tracer
85
-static long counter_x, counter_y, counter_z, counter_e;
86
-volatile static unsigned long step_events_completed; // The number of step events executed in the current block
87
-
88
-#if ENABLED(ADVANCE)
89
-  static long advance_rate, advance, final_advance = 0;
90
-  static long old_advance = 0;
91
-  static long e_steps[4];
92
-#endif
93
-
94
-static long acceleration_time, deceleration_time;
95
-//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
96
-static unsigned short acc_step_rate; // needed for deceleration start point
97
-static uint8_t step_loops;
98
-static uint8_t step_loops_nominal;
99
-static unsigned short OCR1A_nominal;
100
-
101
-volatile long endstops_trigsteps[3] = { 0 };
102
-volatile long endstops_stepsTotal, endstops_stepsDone;
103
-static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
104
-
105
-#if DISABLED(Z_DUAL_ENDSTOPS)
106
-  static byte
107
-#else
108
-  static uint16_t
109
-#endif
110
-    old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
111
-
112
-#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
113
-  bool abort_on_endstop_hit = false;
114
-#endif
115
-
116
-#if HAS_MOTOR_CURRENT_PWM
117
-  #ifndef PWM_MOTOR_CURRENT
118
-    #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
119
-  #endif
120
-  const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
121
-#endif
122
-
123
-static bool check_endstops = true;
124
-static bool check_endstops_global =
125
-  #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
126
-    false
127
-  #else
128
-    true
129
-  #endif
130
-;
131
-
132
-volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
133
-volatile signed char count_direction[NUM_AXIS] = { 1 };
134
-
135
-
136
-//===========================================================================
137
-//================================ functions ================================
138
-//===========================================================================
61
+Stepper stepper; // Singleton
139 62
 
140 63
 #if ENABLED(DUAL_X_CARRIAGE)
141 64
   #define X_APPLY_DIR(v,ALWAYS) \
@@ -173,12 +96,12 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
173 96
     #define Z_APPLY_STEP(v,Q) \
174 97
     if (performing_homing) { \
175 98
       if (Z_HOME_DIR > 0) {\
176
-        if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
177
-        if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
99
+        if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
100
+        if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
178 101
       } \
179 102
       else { \
180
-        if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
181
-        if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
103
+        if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
104
+        if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
182 105
       } \
183 106
     } \
184 107
     else { \
@@ -195,31 +118,6 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
195 118
 
196 119
 #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
197 120
 
198
-// intRes = intIn1 * intIn2 >> 16
199
-// uses:
200
-// r26 to store 0
201
-// r27 to store the byte 1 of the 24 bit result
202
-#define MultiU16X8toH16(intRes, charIn1, intIn2) \
203
-  asm volatile ( \
204
-                 "clr r26 \n\t" \
205
-                 "mul %A1, %B2 \n\t" \
206
-                 "movw %A0, r0 \n\t" \
207
-                 "mul %A1, %A2 \n\t" \
208
-                 "add %A0, r1 \n\t" \
209
-                 "adc %B0, r26 \n\t" \
210
-                 "lsr r0 \n\t" \
211
-                 "adc %A0, r26 \n\t" \
212
-                 "adc %B0, r26 \n\t" \
213
-                 "clr r1 \n\t" \
214
-                 : \
215
-                 "=&r" (intRes) \
216
-                 : \
217
-                 "d" (charIn1), \
218
-                 "d" (intIn2) \
219
-                 : \
220
-                 "r26" \
221
-               )
222
-
223 121
 // intRes = longIn1 * longIn2 >> 24
224 122
 // uses:
225 123
 // r26 to store 0
@@ -281,312 +179,38 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
281 179
 #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
282 180
 #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
283 181
 
284
-void enable_endstops(bool check) { check_endstops = check; }
285
-
286
-void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
287
-
288
-void endstops_not_homing() { check_endstops = check_endstops_global; }
289
-
290
-void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
291
-
292
-void checkHitEndstops() {
293
-  if (endstop_hit_bits) {
294
-    #if ENABLED(ULTRA_LCD)
295
-      char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
296
-      #define _SET_STOP_CHAR(A,C) (chr## A = C)
297
-    #else
298
-      #define _SET_STOP_CHAR(A,C) ;
299
-    #endif
300
-
301
-    #define _ENDSTOP_HIT_ECHO(A,C) do{ \
302
-      SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \
303
-      _SET_STOP_CHAR(A,C); }while(0)
304
-
305
-    #define _ENDSTOP_HIT_TEST(A,C) \
306
-      if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
307
-        _ENDSTOP_HIT_ECHO(A,C)
308
-
309
-    SERIAL_ECHO_START;
310
-    SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
311
-    _ENDSTOP_HIT_TEST(X, 'X');
312
-    _ENDSTOP_HIT_TEST(Y, 'Y');
313
-    _ENDSTOP_HIT_TEST(Z, 'Z');
314
-
315
-    #if ENABLED(Z_MIN_PROBE_ENDSTOP)
316
-      #define P_AXIS Z_AXIS
317
-      if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
318
-    #endif
319
-    SERIAL_EOL;
320
-
321
-    #if ENABLED(ULTRA_LCD)
322
-      char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
323
-      sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
324
-      lcd_setstatus(msg);
325
-    #endif
326
-
327
-    endstops_hit_on_purpose();
328
-
329
-    #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
330
-      if (abort_on_endstop_hit) {
331
-        card.sdprinting = false;
332
-        card.closefile();
333
-        quickStop();
334
-        disable_all_heaters(); // switch off all heaters.
335
-      }
336
-    #endif
337
-  }
338
-}
339
-
340
-// Check endstops - Called from ISR!
341
-inline void update_endstops() {
342
-
343
-  #if ENABLED(Z_DUAL_ENDSTOPS)
344
-    uint16_t
345
-  #else
346
-    byte
347
-  #endif
348
-      current_endstop_bits = 0;
349
-
350
-  #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
351
-  #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
352
-  #define _AXIS(AXIS) AXIS ##_AXIS
353
-  #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
354
-  #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
355
-
356
-  // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
357
-  #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
358
-  // COPY_BIT: copy the value of COPY_BIT to BIT in bits
359
-  #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
360
-  // TEST_ENDSTOP: test the old and the current status of an endstop
361
-  #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
362
-
363
-  #if ENABLED(COREXY) || ENABLED(COREXZ)
364
-
365
-    #define _SET_TRIGSTEPS(AXIS) do { \
366
-        float axis_pos = count_position[_AXIS(AXIS)]; \
367
-        if (_AXIS(AXIS) == A_AXIS) \
368
-          axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
369
-        else if (_AXIS(AXIS) == CORE_AXIS_2) \
370
-          axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
371
-        endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
372
-      } while(0)
373
-
374
-  #else
375
-
376
-    #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
377
-
378
-  #endif // COREXY || COREXZ
379
-
380
-  #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
381
-      SET_ENDSTOP_BIT(AXIS, MINMAX); \
382
-      if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
383
-        _SET_TRIGSTEPS(AXIS); \
384
-        _ENDSTOP_HIT(AXIS); \
385
-        step_events_completed = current_block->step_event_count; \
386
-      } \
387
-    } while(0)
388
-
389
-  #if ENABLED(COREXY) || ENABLED(COREXZ)
390
-    // Head direction in -X axis for CoreXY and CoreXZ bots.
391
-    // If Delta1 == -Delta2, the movement is only in Y or Z axis
392
-    if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
393
-      if (TEST(out_bits, X_HEAD))
394
-  #else
395
-    if (TEST(out_bits, X_AXIS))   // stepping along -X axis (regular Cartesian bot)
396
-  #endif
397
-      { // -direction
398
-        #if ENABLED(DUAL_X_CARRIAGE)
399
-          // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
400
-          if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
401
-        #endif
402
-          {
403
-            #if HAS_X_MIN
404
-              UPDATE_ENDSTOP(X, MIN);
405
-            #endif
406
-          }
407
-      }
408
-      else { // +direction
409
-        #if ENABLED(DUAL_X_CARRIAGE)
410
-          // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
411
-          if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
412
-        #endif
413
-          {
414
-            #if HAS_X_MAX
415
-              UPDATE_ENDSTOP(X, MAX);
416
-            #endif
417
-          }
418
-      }
419
-  #if ENABLED(COREXY) || ENABLED(COREXZ)
420
-    }
421
-  #endif
422
-
423
-  #if ENABLED(COREXY)
424
-    // Head direction in -Y axis for CoreXY bots.
425
-    // If DeltaX == DeltaY, the movement is only in X axis
426
-    if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
427
-      if (TEST(out_bits, Y_HEAD))
428
-  #else
429
-      if (TEST(out_bits, Y_AXIS))   // -direction
430
-  #endif
431
-      { // -direction
432
-        #if HAS_Y_MIN
433
-          UPDATE_ENDSTOP(Y, MIN);
434
-        #endif
435
-      }
436
-      else { // +direction
437
-        #if HAS_Y_MAX
438
-          UPDATE_ENDSTOP(Y, MAX);
439
-        #endif
440
-      }
441
-  #if ENABLED(COREXY)
442
-    }
443
-  #endif
444
-
445
-  #if ENABLED(COREXZ)
446
-    // Head direction in -Z axis for CoreXZ bots.
447
-    // If DeltaX == DeltaZ, the movement is only in X axis
448
-    if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
449
-      if (TEST(out_bits, Z_HEAD))
450
-  #else
451
-      if (TEST(out_bits, Z_AXIS))
452
-  #endif
453
-      { // z -direction
454
-        #if HAS_Z_MIN
455
-
456
-          #if ENABLED(Z_DUAL_ENDSTOPS)
457
-            SET_ENDSTOP_BIT(Z, MIN);
458
-            #if HAS_Z2_MIN
459
-              SET_ENDSTOP_BIT(Z2, MIN);
460
-            #else
461
-              COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
462
-            #endif
463
-
464
-            byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
465
-
466
-            if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
467
-              endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
468
-              SBI(endstop_hit_bits, Z_MIN);
469
-              if (!performing_homing || (z_test == 0x3))  //if not performing home or if both endstops were trigged during homing...
470
-                step_events_completed = current_block->step_event_count;
471
-            }
472
-          #else // !Z_DUAL_ENDSTOPS
473
-
474
-            #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
475
-              if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
476
-            #else
477
-              UPDATE_ENDSTOP(Z, MIN);
478
-            #endif
479
-          #endif // !Z_DUAL_ENDSTOPS
480
-        #endif
481
-
482
-        #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
483
-          if (z_probe_is_active) {
484
-            UPDATE_ENDSTOP(Z, MIN_PROBE);
485
-            if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
486
-          }
487
-        #endif
488
-      }
489
-      else { // z +direction
490
-        #if HAS_Z_MAX
491
-
492
-          #if ENABLED(Z_DUAL_ENDSTOPS)
493
-
494
-            SET_ENDSTOP_BIT(Z, MAX);
495
-            #if HAS_Z2_MAX
496
-              SET_ENDSTOP_BIT(Z2, MAX);
497
-            #else
498
-              COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
499
-            #endif
500
-
501
-            byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
502
-
503
-            if (z_test && current_block->steps[Z_AXIS] > 0) {  // t_test = Z_MAX || Z2_MAX
504
-              endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
505
-              SBI(endstop_hit_bits, Z_MIN);
506
-              if (!performing_homing || (z_test == 0x3))  //if not performing home or if both endstops were trigged during homing...
507
-                step_events_completed = current_block->step_event_count;
508
-            }
509
-
510
-          #else // !Z_DUAL_ENDSTOPS
511
-
512
-            UPDATE_ENDSTOP(Z, MAX);
513
-
514
-          #endif // !Z_DUAL_ENDSTOPS
515
-        #endif // Z_MAX_PIN
516
-      }
517
-  #if ENABLED(COREXZ)
518
-    }
519
-  #endif
520
-  old_endstop_bits = current_endstop_bits;
521
-}
522
-
523
-//         __________________________
524
-//        /|                        |\     _________________         ^
525
-//       / |                        | \   /|               |\        |
526
-//      /  |                        |  \ / |               | \       s
527
-//     /   |                        |   |  |               |  \      p
528
-//    /    |                        |   |  |               |   \     e
529
-//   +-----+------------------------+---+--+---------------+----+    e
530
-//   |               BLOCK 1            |      BLOCK 2          |    d
531
-//
532
-//                           time ----->
533
-//
534
-//  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
535
-//  first block->accelerate_until step_events_completed, then keeps going at constant speed until
536
-//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
537
-//  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
538
-
539
-void st_wake_up() {
182
+/**
183
+ *         __________________________
184
+ *        /|                        |\     _________________         ^
185
+ *       / |                        | \   /|               |\        |
186
+ *      /  |                        |  \ / |               | \       s
187
+ *     /   |                        |   |  |               |  \      p
188
+ *    /    |                        |   |  |               |   \     e
189
+ *   +-----+------------------------+---+--+---------------+----+    e
190
+ *   |               BLOCK 1            |      BLOCK 2          |    d
191
+ *
192
+ *                           time ----->
193
+ *
194
+ *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
195
+ *  first block->accelerate_until step_events_completed, then keeps going at constant speed until
196
+ *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
197
+ *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
198
+ */
199
+void Stepper::wake_up() {
540 200
   //  TCNT1 = 0;
541 201
   ENABLE_STEPPER_DRIVER_INTERRUPT();
542 202
 }
543 203
 
544
-FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
545
-  unsigned short timer;
546
-
547
-  NOMORE(step_rate, MAX_STEP_FREQUENCY);
548
-
549
-  if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
550
-    step_rate = (step_rate >> 2) & 0x3fff;
551
-    step_loops = 4;
552
-  }
553
-  else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
554
-    step_rate = (step_rate >> 1) & 0x7fff;
555
-    step_loops = 2;
556
-  }
557
-  else {
558
-    step_loops = 1;
559
-  }
560
-
561
-  NOLESS(step_rate, F_CPU / 500000);
562
-  step_rate -= F_CPU / 500000; // Correct for minimal speed
563
-  if (step_rate >= (8 * 256)) { // higher step rate
564
-    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
565
-    unsigned char tmp_step_rate = (step_rate & 0x00ff);
566
-    unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
567
-    MultiU16X8toH16(timer, tmp_step_rate, gain);
568
-    timer = (unsigned short)pgm_read_word_near(table_address) - timer;
569
-  }
570
-  else { // lower step rates
571
-    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
572
-    table_address += ((step_rate) >> 1) & 0xfffc;
573
-    timer = (unsigned short)pgm_read_word_near(table_address);
574
-    timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
575
-  }
576
-  if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
577
-  return timer;
578
-}
579
-
580 204
 /**
581 205
  * Set the stepper direction of each axis
582 206
  *
583 207
  *   X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
584 208
  *   X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
585 209
  */
586
-void set_stepper_direction() {
210
+void Stepper::set_directions() {
587 211
 
588 212
   #define SET_STEP_DIR(AXIS) \
589
-    if (TEST(out_bits, AXIS ##_AXIS)) { \
213
+    if (motor_direction(AXIS ##_AXIS)) { \
590 214
       AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
591 215
       count_direction[AXIS ##_AXIS] = -1; \
592 216
     } \
@@ -600,7 +224,7 @@ void set_stepper_direction() {
600 224
   SET_STEP_DIR(Z); // C
601 225
 
602 226
   #if DISABLED(ADVANCE)
603
-    if (TEST(out_bits, E_AXIS)) {
227
+    if (motor_direction(E_AXIS)) {
604 228
       REV_E_DIR();
605 229
       count_direction[E_AXIS] = -1;
606 230
     }
@@ -611,49 +235,11 @@ void set_stepper_direction() {
611 235
   #endif //!ADVANCE
612 236
 }
613 237
 
614
-// Initializes the trapezoid generator from the current block. Called whenever a new
615
-// block begins.
616
-FORCE_INLINE void trapezoid_generator_reset() {
617
-
618
-  static int8_t last_extruder = -1;
619
-
620
-  if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
621
-    out_bits = current_block->direction_bits;
622
-    last_extruder = current_block->active_extruder;
623
-    set_stepper_direction();
624
-  }
625
-
626
-  #if ENABLED(ADVANCE)
627
-    advance = current_block->initial_advance;
628
-    final_advance = current_block->final_advance;
629
-    // Do E steps + advance steps
630
-    e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
631
-    old_advance = advance >>8;
632
-  #endif
633
-  deceleration_time = 0;
634
-  // step_rate to timer interval
635
-  OCR1A_nominal = calc_timer(current_block->nominal_rate);
636
-  // make a note of the number of step loops required at nominal speed
637
-  step_loops_nominal = step_loops;
638
-  acc_step_rate = current_block->initial_rate;
639
-  acceleration_time = calc_timer(acc_step_rate);
640
-  OCR1A = acceleration_time;
641
-
642
-  // SERIAL_ECHO_START;
643
-  // SERIAL_ECHOPGM("advance :");
644
-  // SERIAL_ECHO(current_block->advance/256.0);
645
-  // SERIAL_ECHOPGM("advance rate :");
646
-  // SERIAL_ECHO(current_block->advance_rate/256.0);
647
-  // SERIAL_ECHOPGM("initial advance :");
648
-  // SERIAL_ECHO(current_block->initial_advance/256.0);
649
-  // SERIAL_ECHOPGM("final advance :");
650
-  // SERIAL_ECHOLN(current_block->final_advance/256.0);
651
-}
652
-
653 238
 // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
654 239
 // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
655
-ISR(TIMER1_COMPA_vect) {
240
+ISR(TIMER1_COMPA_vect) { stepper.isr(); }
656 241
 
242
+void Stepper::isr() {
657 243
   if (cleaning_buffer_counter) {
658 244
     current_block = NULL;
659 245
     plan_discard_current_block();
@@ -672,8 +258,8 @@ ISR(TIMER1_COMPA_vect) {
672 258
     if (current_block) {
673 259
       current_block->busy = true;
674 260
       trapezoid_generator_reset();
675
-      counter_x = -(current_block->step_event_count >> 1);
676
-      counter_y = counter_z = counter_e = counter_x;
261
+      counter_X = -(current_block->step_event_count >> 1);
262
+      counter_Y = counter_Z = counter_E = counter_X;
677 263
       step_events_completed = 0;
678 264
 
679 265
       #if ENABLED(Z_LATE_ENABLE)
@@ -697,9 +283,9 @@ ISR(TIMER1_COMPA_vect) {
697 283
 
698 284
     // Update endstops state, if enabled
699 285
     #if ENABLED(HAS_Z_MIN_PROBE)
700
-      if (check_endstops || z_probe_is_active) update_endstops();
286
+      if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
701 287
     #else
702
-      if (check_endstops) update_endstops();
288
+      if (endstops.enabled) endstops.update();
703 289
     #endif
704 290
 
705 291
     // Take multiple steps per interrupt (For high speed moves)
@@ -709,48 +295,47 @@ ISR(TIMER1_COMPA_vect) {
709 295
       #endif
710 296
 
711 297
       #if ENABLED(ADVANCE)
712
-        counter_e += current_block->steps[E_AXIS];
713
-        if (counter_e > 0) {
714
-          counter_e -= current_block->step_event_count;
715
-          e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
298
+        counter_E += current_block->steps[E_AXIS];
299
+        if (counter_E > 0) {
300
+          counter_E -= current_block->step_event_count;
301
+          e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
716 302
         }
717 303
       #endif //ADVANCE
718 304
 
719
-      #define _COUNTER(axis) counter_## axis
305
+      #define _COUNTER(AXIS) counter_## AXIS
720 306
       #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
721 307
       #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
722 308
 
723
-      #define STEP_ADD(axis, AXIS) \
724
-        _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
725
-        if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
309
+      #define STEP_ADD(AXIS) \
310
+        _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
311
+        if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
726 312
 
727
-      STEP_ADD(x,X);
728
-      STEP_ADD(y,Y);
729
-      STEP_ADD(z,Z);
313
+      STEP_ADD(X);
314
+      STEP_ADD(Y);
315
+      STEP_ADD(Z);
730 316
       #if DISABLED(ADVANCE)
731
-        STEP_ADD(e,E);
317
+        STEP_ADD(E);
732 318
       #endif
733 319
 
734
-      #define STEP_IF_COUNTER(axis, AXIS) \
735
-        if (_COUNTER(axis) > 0) { \
736
-          _COUNTER(axis) -= current_block->step_event_count; \
320
+      #define STEP_IF_COUNTER(AXIS) \
321
+        if (_COUNTER(AXIS) > 0) { \
322
+          _COUNTER(AXIS) -= current_block->step_event_count; \
737 323
           count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
738 324
           _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
739 325
         }
740 326
 
741
-      STEP_IF_COUNTER(x, X);
742
-      STEP_IF_COUNTER(y, Y);
743
-      STEP_IF_COUNTER(z, Z);
327
+      STEP_IF_COUNTER(X);
328
+      STEP_IF_COUNTER(Y);
329
+      STEP_IF_COUNTER(Z);
744 330
       #if DISABLED(ADVANCE)
745
-        STEP_IF_COUNTER(e, E);
331
+        STEP_IF_COUNTER(E);
746 332
       #endif
747 333
 
748 334
       step_events_completed++;
749 335
       if (step_events_completed >= current_block->step_event_count) break;
750 336
     }
751 337
     // Calculate new timer value
752
-    unsigned short timer;
753
-    unsigned short step_rate;
338
+    unsigned short timer, step_rate;
754 339
     if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
755 340
 
756 341
       MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
@@ -817,10 +402,11 @@ ISR(TIMER1_COMPA_vect) {
817 402
 }
818 403
 
819 404
 #if ENABLED(ADVANCE)
820
-  unsigned char old_OCR0A;
821 405
   // Timer interrupt for E. e_steps is set in the main routine;
822 406
   // Timer 0 is shared with millies
823
-  ISR(TIMER0_COMPA_vect) {
407
+  ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
408
+
409
+  void Stepper::advance_isr() {
824 410
     old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
825 411
     OCR0A = old_OCR0A;
826 412
 
@@ -852,9 +438,10 @@ ISR(TIMER1_COMPA_vect) {
852 438
       #endif
853 439
     }
854 440
   }
441
+
855 442
 #endif // ADVANCE
856 443
 
857
-void st_init() {
444
+void Stepper::init() {
858 445
   digipot_init(); //Initialize Digipot Motor Current
859 446
   microstep_init(); //Initialize Microstepping Pins
860 447
 
@@ -944,70 +531,10 @@ void st_init() {
944 531
     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
945 532
   #endif
946 533
 
947
-  //endstops and pullups
948
-
949
-  #if HAS_X_MIN
950
-    SET_INPUT(X_MIN_PIN);
951
-    #if ENABLED(ENDSTOPPULLUP_XMIN)
952
-      WRITE(X_MIN_PIN,HIGH);
953
-    #endif
954
-  #endif
955
-
956
-  #if HAS_Y_MIN
957
-    SET_INPUT(Y_MIN_PIN);
958
-    #if ENABLED(ENDSTOPPULLUP_YMIN)
959
-      WRITE(Y_MIN_PIN,HIGH);
960
-    #endif
961
-  #endif
962
-
963
-  #if HAS_Z_MIN
964
-    SET_INPUT(Z_MIN_PIN);
965
-    #if ENABLED(ENDSTOPPULLUP_ZMIN)
966
-      WRITE(Z_MIN_PIN,HIGH);
967
-    #endif
968
-  #endif
969
-
970
-  #if HAS_Z2_MIN
971
-    SET_INPUT(Z2_MIN_PIN);
972
-    #if ENABLED(ENDSTOPPULLUP_ZMIN)
973
-      WRITE(Z2_MIN_PIN,HIGH);
974
-    #endif
975
-  #endif
976
-
977
-  #if HAS_X_MAX
978
-    SET_INPUT(X_MAX_PIN);
979
-    #if ENABLED(ENDSTOPPULLUP_XMAX)
980
-      WRITE(X_MAX_PIN,HIGH);
981
-    #endif
982
-  #endif
983
-
984
-  #if HAS_Y_MAX
985
-    SET_INPUT(Y_MAX_PIN);
986
-    #if ENABLED(ENDSTOPPULLUP_YMAX)
987
-      WRITE(Y_MAX_PIN,HIGH);
988
-    #endif
989
-  #endif
990
-
991
-  #if HAS_Z_MAX
992
-    SET_INPUT(Z_MAX_PIN);
993
-    #if ENABLED(ENDSTOPPULLUP_ZMAX)
994
-      WRITE(Z_MAX_PIN,HIGH);
995
-    #endif
996
-  #endif
997
-
998
-  #if HAS_Z2_MAX
999
-    SET_INPUT(Z2_MAX_PIN);
1000
-    #if ENABLED(ENDSTOPPULLUP_ZMAX)
1001
-      WRITE(Z2_MAX_PIN,HIGH);
1002
-    #endif
1003
-  #endif
1004
-
1005
-  #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
1006
-    SET_INPUT(Z_MIN_PROBE_PIN);
1007
-    #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
1008
-      WRITE(Z_MIN_PROBE_PIN,HIGH);
1009
-    #endif
1010
-  #endif
534
+  //
535
+  // Init endstops and pullups here
536
+  //
537
+  endstops.init();
1011 538
 
1012 539
   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
1013 540
   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
@@ -1083,17 +610,17 @@ void st_init() {
1083 610
     SBI(TIMSK0, OCIE0A);
1084 611
   #endif //ADVANCE
1085 612
 
1086
-  enable_endstops(true); // Start with endstops active. After homing they can be disabled
613
+  endstops.enable(true); // Start with endstops active. After homing they can be disabled
1087 614
   sei();
1088 615
 
1089
-  set_stepper_direction(); // Init directions to out_bits = 0
616
+  set_directions(); // Init directions to last_direction_bits = 0
1090 617
 }
1091 618
 
1092 619
 
1093 620
 /**
1094 621
  * Block until all buffered steps are executed
1095 622
  */
1096
-void st_synchronize() { while (blocks_queued()) idle(); }
623
+void Stepper::synchronize() { while (blocks_queued()) idle(); }
1097 624
 
1098 625
 /**
1099 626
  * Set the stepper positions directly in steps
@@ -1101,10 +628,10 @@ void st_synchronize() { while (blocks_queued()) idle(); }
1101 628
  * The input is based on the typical per-axis XYZ steps.
1102 629
  * For CORE machines XYZ needs to be translated to ABC.
1103 630
  *
1104
- * This allows st_get_axis_position_mm to correctly
631
+ * This allows get_axis_position_mm to correctly
1105 632
  * derive the current XYZ position later on.
1106 633
  */
1107
-void st_set_position(const long& x, const long& y, const long& z, const long& e) {
634
+void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
1108 635
   CRITICAL_SECTION_START;
1109 636
 
1110 637
   #if ENABLED(COREXY)
@@ -1129,7 +656,7 @@ void st_set_position(const long& x, const long& y, const long& z, const long& e)
1129 656
   CRITICAL_SECTION_END;
1130 657
 }
1131 658
 
1132
-void st_set_e_position(const long& e) {
659
+void Stepper::set_e_position(const long& e) {
1133 660
   CRITICAL_SECTION_START;
1134 661
   count_position[E_AXIS] = e;
1135 662
   CRITICAL_SECTION_END;
@@ -1138,7 +665,7 @@ void st_set_e_position(const long& e) {
1138 665
 /**
1139 666
  * Get a stepper's position in steps.
1140 667
  */
1141
-long st_get_position(AxisEnum axis) {
668
+long Stepper::position(AxisEnum axis) {
1142 669
   CRITICAL_SECTION_START;
1143 670
   long count_pos = count_position[axis];
1144 671
   CRITICAL_SECTION_END;
@@ -1149,7 +676,7 @@ long st_get_position(AxisEnum axis) {
1149 676
  * Get an axis position according to stepper position(s)
1150 677
  * For CORE machines apply translation from ABC to XYZ.
1151 678
  */
1152
-float st_get_axis_position_mm(AxisEnum axis) {
679
+float Stepper::get_axis_position_mm(AxisEnum axis) {
1153 680
   float axis_steps;
1154 681
   #if ENABLED(COREXY) | ENABLED(COREXZ)
1155 682
     if (axis == X_AXIS || axis == CORE_AXIS_2) {
@@ -1162,19 +689,19 @@ float st_get_axis_position_mm(AxisEnum axis) {
1162 689
       axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
1163 690
     }
1164 691
     else
1165
-      axis_steps = st_get_position(axis);
692
+      axis_steps = position(axis);
1166 693
   #else
1167
-    axis_steps = st_get_position(axis);
694
+    axis_steps = position(axis);
1168 695
   #endif
1169 696
   return axis_steps / axis_steps_per_unit[axis];
1170 697
 }
1171 698
 
1172
-void finishAndDisableSteppers() {
1173
-  st_synchronize();
699
+void Stepper::finish_and_disable() {
700
+  synchronize();
1174 701
   disable_all_steppers();
1175 702
 }
1176 703
 
1177
-void quickStop() {
704
+void Stepper::quick_stop() {
1178 705
   cleaning_buffer_counter = 5000;
1179 706
   DISABLE_STEPPER_DRIVER_INTERRUPT();
1180 707
   while (blocks_queued()) plan_discard_current_block();
@@ -1182,11 +709,62 @@ void quickStop() {
1182 709
   ENABLE_STEPPER_DRIVER_INTERRUPT();
1183 710
 }
1184 711
 
712
+void Stepper::endstop_triggered(AxisEnum axis) {
713
+
714
+  #if ENABLED(COREXY) || ENABLED(COREXZ)
715
+
716
+    float axis_pos = count_position[axis];
717
+    if (axis == A_AXIS)
718
+      axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
719
+    else if (axis == CORE_AXIS_2)
720
+      axis_pos = (count_position[A_AXIS] - axis_pos) / 2;
721
+    endstops_trigsteps[axis] = axis_pos;
722
+
723
+  #else // !COREXY && !COREXZ
724
+
725
+    endstops_trigsteps[axis] = count_position[axis];
726
+
727
+  #endif // !COREXY && !COREXZ
728
+
729
+  kill_current_block();
730
+}
731
+
732
+void Stepper::report_positions() {
733
+  CRITICAL_SECTION_START;
734
+  long xpos = count_position[X_AXIS],
735
+       ypos = count_position[Y_AXIS],
736
+       zpos = count_position[Z_AXIS];
737
+  CRITICAL_SECTION_END;
738
+
739
+  #if ENABLED(COREXY) || ENABLED(COREXZ)
740
+    SERIAL_PROTOCOLPGM(MSG_COUNT_A);
741
+  #else
742
+    SERIAL_PROTOCOLPGM(MSG_COUNT_X);
743
+  #endif
744
+  SERIAL_PROTOCOL(xpos);
745
+
746
+  #if ENABLED(COREXY) || ENABLED(COREXZ)
747
+    SERIAL_PROTOCOLPGM(" B:");
748
+  #else
749
+    SERIAL_PROTOCOLPGM(" Y:");
750
+  #endif
751
+  SERIAL_PROTOCOL(ypos);
752
+
753
+  #if ENABLED(COREXZ) || ENABLED(COREXZ)
754
+    SERIAL_PROTOCOLPGM(" C:");
755
+  #else
756
+    SERIAL_PROTOCOLPGM(" Z:");
757
+  #endif
758
+  SERIAL_PROTOCOL(zpos);
759
+
760
+  SERIAL_EOL;
761
+}
762
+
1185 763
 #if ENABLED(BABYSTEPPING)
1186 764
 
1187 765
   // MUST ONLY BE CALLED BY AN ISR,
1188 766
   // No other ISR should ever interrupt this!
1189
-  void babystep(const uint8_t axis, const bool direction) {
767
+  void Stepper::babystep(const uint8_t axis, const bool direction) {
1190 768
 
1191 769
     #define _ENABLE(axis) enable_## axis()
1192 770
     #define _READ_DIR(AXIS) AXIS ##_DIR_READ
@@ -1256,10 +834,14 @@ void quickStop() {
1256 834
 
1257 835
 #endif //BABYSTEPPING
1258 836
 
837
+/**
838
+ * Software-controlled Stepper Motor Current
839
+ */
840
+
1259 841
 #if HAS_DIGIPOTSS
1260 842
 
1261 843
   // From Arduino DigitalPotControl example
1262
-  void digitalPotWrite(int address, int value) {
844
+  void Stepper::digitalPotWrite(int address, int value) {
1263 845
     digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
1264 846
     SPI.transfer(address); //  send in the address and value via SPI:
1265 847
     SPI.transfer(value);
@@ -1269,8 +851,7 @@ void quickStop() {
1269 851
 
1270 852
 #endif //HAS_DIGIPOTSS
1271 853
 
1272
-// Initialize Digipot Motor Current
1273
-void digipot_init() {
854
+void Stepper::digipot_init() {
1274 855
   #if HAS_DIGIPOTSS
1275 856
     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
1276 857
 
@@ -1299,7 +880,7 @@ void digipot_init() {
1299 880
   #endif
1300 881
 }
1301 882
 
1302
-void digipot_current(uint8_t driver, int current) {
883
+void Stepper::digipot_current(uint8_t driver, int current) {
1303 884
   #if HAS_DIGIPOTSS
1304 885
     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
1305 886
     digitalPotWrite(digipot_ch[driver], current);
@@ -1322,7 +903,7 @@ void digipot_current(uint8_t driver, int current) {
1322 903
   #endif
1323 904
 }
1324 905
 
1325
-void microstep_init() {
906
+void Stepper::microstep_init() {
1326 907
   #if HAS_MICROSTEPS_E1
1327 908
     pinMode(E1_MS1_PIN, OUTPUT);
1328 909
     pinMode(E1_MS2_PIN, OUTPUT);
@@ -1343,7 +924,11 @@ void microstep_init() {
1343 924
   #endif
1344 925
 }
1345 926
 
1346
-void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
927
+/**
928
+ * Software-controlled Microstepping
929
+ */
930
+
931
+void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
1347 932
   if (ms1 >= 0) switch (driver) {
1348 933
     case 0: digitalWrite(X_MS1_PIN, ms1); break;
1349 934
     case 1: digitalWrite(Y_MS1_PIN, ms1); break;
@@ -1364,7 +949,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
1364 949
   }
1365 950
 }
1366 951
 
1367
-void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
952
+void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
1368 953
   switch (stepping_mode) {
1369 954
     case 1: microstep_ms(driver, MICROSTEP1); break;
1370 955
     case 2: microstep_ms(driver, MICROSTEP2); break;
@@ -1374,7 +959,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
1374 959
   }
1375 960
 }
1376 961
 
1377
-void microstep_readings() {
962
+void Stepper::microstep_readings() {
1378 963
   SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
1379 964
   SERIAL_PROTOCOLPGM("X: ");
1380 965
   SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
@@ -1396,7 +981,7 @@ void microstep_readings() {
1396 981
 }
1397 982
 
1398 983
 #if ENABLED(Z_DUAL_ENDSTOPS)
1399
-  void In_Homing_Process(bool state) { performing_homing = state; }
1400
-  void Lock_z_motor(bool state) { locked_z_motor = state; }
1401
-  void Lock_z2_motor(bool state) { locked_z2_motor = state; }
984
+  void Stepper::set_homing_flag(bool state) { performing_homing = state; }
985
+  void Stepper::set_z_lock(bool state) { locked_z_motor = state; }
986
+  void Stepper::set_z2_lock(bool state) { locked_z2_motor = state; }
1402 987
 #endif

+ 285
- 62
Marlin/stepper.h Parādīt failu

@@ -21,90 +21,313 @@
21 21
  */
22 22
 
23 23
 /**
24
-  stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
25
-  Part of Grbl
24
+ * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
25
+ * Part of Grbl
26
+ *
27
+ * Copyright (c) 2009-2011 Simen Svale Skogsrud
28
+ *
29
+ * Grbl is free software: you can redistribute it and/or modify
30
+ * it under the terms of the GNU General Public License as published by
31
+ * the Free Software Foundation, either version 3 of the License, or
32
+ * (at your option) any later version.
33
+ *
34
+ * Grbl is distributed in the hope that it will be useful,
35
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
36
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37
+ * GNU General Public License for more details.
38
+ *
39
+ * You should have received a copy of the GNU General Public License
40
+ * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
41
+ */
26 42
 
27
-  Copyright (c) 2009-2011 Simen Svale Skogsrud
43
+#ifndef STEPPER_H
44
+#define STEPPER_H
28 45
 
29
-  Grbl is free software: you can redistribute it and/or modify
30
-  it under the terms of the GNU General Public License as published by
31
-  the Free Software Foundation, either version 3 of the License, or
32
-  (at your option) any later version.
46
+#include "planner.h"
47
+#include "speed_lookuptable.h"
48
+#include "stepper_indirection.h"
49
+#include "language.h"
33 50
 
34
-  Grbl is distributed in the hope that it will be useful,
35
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
36
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37
-  GNU General Public License for more details.
51
+class Stepper;
52
+extern Stepper stepper;
38 53
 
39
-  You should have received a copy of the GNU General Public License
40
-  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
41
-*/
54
+// intRes = intIn1 * intIn2 >> 16
55
+// uses:
56
+// r26 to store 0
57
+// r27 to store the byte 1 of the 24 bit result
58
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
59
+  asm volatile ( \
60
+                 "clr r26 \n\t" \
61
+                 "mul %A1, %B2 \n\t" \
62
+                 "movw %A0, r0 \n\t" \
63
+                 "mul %A1, %A2 \n\t" \
64
+                 "add %A0, r1 \n\t" \
65
+                 "adc %B0, r26 \n\t" \
66
+                 "lsr r0 \n\t" \
67
+                 "adc %A0, r26 \n\t" \
68
+                 "adc %B0, r26 \n\t" \
69
+                 "clr r1 \n\t" \
70
+                 : \
71
+                 "=&r" (intRes) \
72
+                 : \
73
+                 "d" (charIn1), \
74
+                 "d" (intIn2) \
75
+                 : \
76
+                 "r26" \
77
+               )
42 78
 
43
-#ifndef stepper_h
44
-#define stepper_h
79
+class Stepper {
45 80
 
46
-#include "planner.h"
47
-#include "stepper_indirection.h"
81
+  public:
82
+
83
+    block_t* current_block = NULL;  // A pointer to the block currently being traced
84
+
85
+    #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
86
+      bool abort_on_endstop_hit = false;
87
+    #endif
88
+
89
+    #if ENABLED(Z_DUAL_ENDSTOPS)
90
+      bool performing_homing = false;
91
+    #endif
92
+
93
+    #if ENABLED(ADVANCE)
94
+      long e_steps[4];
95
+    #endif
96
+
97
+  private:
98
+
99
+    unsigned char last_direction_bits = 0;        // The next stepping-bits to be output
100
+    unsigned int cleaning_buffer_counter = 0;
101
+
102
+    #if ENABLED(Z_DUAL_ENDSTOPS)
103
+      bool locked_z_motor = false,
104
+           locked_z2_motor = false;
105
+    #endif
106
+
107
+    // Counter variables for the Bresenham line tracer
108
+    long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0;
109
+    volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block
110
+
111
+    #if ENABLED(ADVANCE)
112
+      unsigned char old_OCR0A;
113
+      long advance_rate, advance, final_advance = 0;
114
+      long old_advance = 0;
115
+    #endif
116
+
117
+    long acceleration_time, deceleration_time;
118
+    //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
119
+    unsigned short acc_step_rate; // needed for deceleration start point
120
+    uint8_t step_loops;
121
+    uint8_t step_loops_nominal;
122
+    unsigned short OCR1A_nominal;
123
+
124
+    volatile long endstops_trigsteps[3];
125
+    volatile long endstops_stepsTotal, endstops_stepsDone;
126
+
127
+    #if HAS_MOTOR_CURRENT_PWM
128
+      #ifndef PWM_MOTOR_CURRENT
129
+        #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
130
+      #endif
131
+      const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
132
+    #endif
133
+
134
+    //
135
+    // Positions of stepper motors, in step units
136
+    //
137
+    volatile long count_position[NUM_AXIS] = { 0 };
138
+
139
+    //
140
+    // Current direction of stepper motors (+1 or -1)
141
+    //
142
+    volatile signed char count_direction[NUM_AXIS] = { 1 };
143
+
144
+  public:
145
+
146
+    //
147
+    // Constructor / initializer
148
+    //
149
+    Stepper() {};
150
+
151
+    //
152
+    // Initialize stepper hardware
153
+    //
154
+    void init();
155
+
156
+    //
157
+    // Interrupt Service Routines
158
+    //
159
+
160
+    void isr();
161
+
162
+    #if ENABLED(ADVANCE)
163
+      void advance_isr();
164
+    #endif
165
+
166
+    //
167
+    // Block until all buffered steps are executed
168
+    //
169
+    void synchronize();
170
+
171
+    //
172
+    // Set the current position in steps
173
+    //
174
+    void set_position(const long& x, const long& y, const long& z, const long& e);
175
+    void set_e_position(const long& e);
176
+
177
+    //
178
+    // Set direction bits for all steppers
179
+    //
180
+    void set_directions();
181
+
182
+    //
183
+    // Get the position of a stepper, in steps
184
+    //
185
+    long position(AxisEnum axis);
186
+
187
+    //
188
+    // Report the positions of the steppers, in steps
189
+    //
190
+    void report_positions();
191
+
192
+    //
193
+    // Get the position (mm) of an axis based on stepper position(s)
194
+    //
195
+    float get_axis_position_mm(AxisEnum axis);
196
+
197
+    //
198
+    // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
199
+    // to notify the subsystem that it is time to go to work.
200
+    //
201
+    void wake_up();
202
+
203
+    //
204
+    // Wait for moves to finish and disable all steppers
205
+    //
206
+    void finish_and_disable();
207
+
208
+    //
209
+    // Quickly stop all steppers and clear the blocks queue
210
+    //
211
+    void quick_stop();
48 212
 
49
-#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
50
-  extern bool abort_on_endstop_hit;
51
-#endif
213
+    //
214
+    // The direction of a single motor
215
+    //
216
+    FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
52 217
 
53
-// Initialize and start the stepper motor subsystem
54
-void st_init();
218
+    #if HAS_DIGIPOTSS
219
+      void digitalPotWrite(int address, int value);
220
+    #endif
221
+    void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
222
+    void digipot_current(uint8_t driver, int current);
223
+    void microstep_readings();
55 224
 
56
-// Block until all buffered steps are executed
57
-void st_synchronize();
225
+    #if ENABLED(Z_DUAL_ENDSTOPS)
226
+      void set_homing_flag(bool state);
227
+      void set_z_lock(bool state);
228
+      void set_z2_lock(bool state);
229
+    #endif
58 230
 
59
-// Set current position in steps
60
-void st_set_position(const long& x, const long& y, const long& z, const long& e);
61
-void st_set_e_position(const long& e);
231
+    #if ENABLED(BABYSTEPPING)
232
+      void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
233
+    #endif
62 234
 
63
-// Get current position in steps
64
-long st_get_position(AxisEnum axis);
235
+    inline void kill_current_block() {
236
+      step_events_completed = current_block->step_event_count;
237
+    }
65 238
 
66
-// Get current axis position in mm
67
-float st_get_axis_position_mm(AxisEnum axis);
239
+    //
240
+    // Handle a triggered endstop
241
+    //
242
+    void endstop_triggered(AxisEnum axis);
68 243
 
69
-// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
70
-// to notify the subsystem that it is time to go to work.
71
-void st_wake_up();
244
+    //
245
+    // Triggered position of an axis in mm (not core-savvy)
246
+    //
247
+    FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
248
+      return endstops_trigsteps[axis] / axis_steps_per_unit[axis];
249
+    }
72 250
 
251
+    FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
252
+      unsigned short timer;
73 253
 
74
-void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
75
-void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
254
+      NOMORE(step_rate, MAX_STEP_FREQUENCY);
76 255
 
77
-void enable_endstops(bool check); // Enable/disable endstop checking
256
+      if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
257
+        step_rate = (step_rate >> 2) & 0x3fff;
258
+        step_loops = 4;
259
+      }
260
+      else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
261
+        step_rate = (step_rate >> 1) & 0x7fff;
262
+        step_loops = 2;
263
+      }
264
+      else {
265
+        step_loops = 1;
266
+      }
78 267
 
79
-void enable_endstops_globally(bool check);
80
-void endstops_not_homing();
268
+      NOLESS(step_rate, F_CPU / 500000);
269
+      step_rate -= F_CPU / 500000; // Correct for minimal speed
270
+      if (step_rate >= (8 * 256)) { // higher step rate
271
+        unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
272
+        unsigned char tmp_step_rate = (step_rate & 0x00ff);
273
+        unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
274
+        MultiU16X8toH16(timer, tmp_step_rate, gain);
275
+        timer = (unsigned short)pgm_read_word_near(table_address) - timer;
276
+      }
277
+      else { // lower step rates
278
+        unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
279
+        table_address += ((step_rate) >> 1) & 0xfffc;
280
+        timer = (unsigned short)pgm_read_word_near(table_address);
281
+        timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
282
+      }
283
+      if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
284
+      return timer;
285
+    }
81 286
 
82
-void checkStepperErrors(); //Print errors detected by the stepper
287
+    // Initializes the trapezoid generator from the current block. Called whenever a new
288
+    // block begins.
289
+    FORCE_INLINE void trapezoid_generator_reset() {
83 290
 
84
-void finishAndDisableSteppers();
291
+      static int8_t last_extruder = -1;
85 292
 
86
-extern block_t* current_block;  // A pointer to the block currently being traced
293
+      if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
294
+        last_direction_bits = current_block->direction_bits;
295
+        last_extruder = current_block->active_extruder;
296
+        set_directions();
297
+      }
87 298
 
88
-void quickStop();
299
+      #if ENABLED(ADVANCE)
300
+        advance = current_block->initial_advance;
301
+        final_advance = current_block->final_advance;
302
+        // Do E steps + advance steps
303
+        e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
304
+        old_advance = advance >>8;
305
+      #endif
306
+      deceleration_time = 0;
307
+      // step_rate to timer interval
308
+      OCR1A_nominal = calc_timer(current_block->nominal_rate);
309
+      // make a note of the number of step loops required at nominal speed
310
+      step_loops_nominal = step_loops;
311
+      acc_step_rate = current_block->initial_rate;
312
+      acceleration_time = calc_timer(acc_step_rate);
313
+      OCR1A = acceleration_time;
89 314
 
90
-#if HAS_DIGIPOTSS
91
-  void digitalPotWrite(int address, int value);
92
-#endif
93
-void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
94
-void microstep_mode(uint8_t driver, uint8_t stepping);
95
-void digipot_init();
96
-void digipot_current(uint8_t driver, int current);
97
-void microstep_init();
98
-void microstep_readings();
315
+      // SERIAL_ECHO_START;
316
+      // SERIAL_ECHOPGM("advance :");
317
+      // SERIAL_ECHO(current_block->advance/256.0);
318
+      // SERIAL_ECHOPGM("advance rate :");
319
+      // SERIAL_ECHO(current_block->advance_rate/256.0);
320
+      // SERIAL_ECHOPGM("initial advance :");
321
+      // SERIAL_ECHO(current_block->initial_advance/256.0);
322
+      // SERIAL_ECHOPGM("final advance :");
323
+      // SERIAL_ECHOLN(current_block->final_advance/256.0);
324
+    }
99 325
 
100
-#if ENABLED(Z_DUAL_ENDSTOPS)
101
-  void In_Homing_Process(bool state);
102
-  void Lock_z_motor(bool state);
103
-  void Lock_z2_motor(bool state);
104
-#endif
326
+  private:
327
+    void microstep_mode(uint8_t driver, uint8_t stepping);
328
+    void digipot_init();
329
+    void microstep_init();
105 330
 
106
-#if ENABLED(BABYSTEPPING)
107
-  void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
108
-#endif
331
+};
109 332
 
110
-#endif
333
+#endif // STEPPER_H

+ 1
- 1
Marlin/temperature.cpp Parādīt failu

@@ -604,7 +604,7 @@ float get_pid_output(int e) {
604 604
         #if ENABLED(PID_ADD_EXTRUSION_RATE)
605 605
           cTerm[e] = 0;
606 606
           if (e == active_extruder) {
607
-            long e_position = st_get_position(E_AXIS);
607
+            long e_position = stepper.position(E_AXIS);
608 608
             if (e_position > last_position[e]) {
609 609
               lpq[lpq_ptr++] = e_position - last_position[e];
610 610
               last_position[e] = e_position;

+ 3
- 3
Marlin/ultralcd.cpp Parādīt failu

@@ -476,7 +476,7 @@ inline void line_to_current(AxisEnum axis) {
476 476
   static void lcd_sdcard_resume() { card.startFileprint(); }
477 477
 
478 478
   static void lcd_sdcard_stop() {
479
-    quickStop();
479
+    stepper.quick_stop();
480 480
     card.sdprinting = false;
481 481
     card.closefile();
482 482
     autotempShutdown();
@@ -911,7 +911,7 @@ void lcd_cooldown() {
911 911
       current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
912 912
       line_to_current(Z_AXIS);
913 913
     #endif
914
-    st_synchronize();
914
+    stepper.synchronize();
915 915
   }
916 916
 
917 917
   static void _lcd_level_goto_next_point();
@@ -964,7 +964,7 @@ void lcd_cooldown() {
964 964
             #endif
965 965
           ;
966 966
           line_to_current(Z_AXIS);
967
-          st_synchronize();
967
+          stepper.synchronize();
968 968
 
969 969
           mbl.active = true;
970 970
           enqueue_and_echo_commands_P(PSTR("G28"));

Notiek ielāde…
Atcelt
Saglabāt