|
@@ -37,6 +37,26 @@
|
37
|
37
|
#include "../../feature/bedlevel/bedlevel.h"
|
38
|
38
|
#endif
|
39
|
39
|
|
|
40
|
+constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
|
|
41
|
+ _4P_STEP = _7P_STEP * 2, // 4-point step
|
|
42
|
+ NPP = _7P_STEP * 6; // number of calibration points on the radius
|
|
43
|
+enum CalEnum { // the 7 main calibration points - add definitions if needed
|
|
44
|
+ CEN = 0,
|
|
45
|
+ __A = 1,
|
|
46
|
+ _AB = __A + _7P_STEP,
|
|
47
|
+ __B = _AB + _7P_STEP,
|
|
48
|
+ _BC = __B + _7P_STEP,
|
|
49
|
+ __C = _BC + _7P_STEP,
|
|
50
|
+ _CA = __C + _7P_STEP,
|
|
51
|
+};
|
|
52
|
+
|
|
53
|
+#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
|
|
54
|
+#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
|
|
55
|
+#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
|
|
56
|
+#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
|
|
57
|
+#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
|
|
58
|
+#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
|
|
59
|
+
|
40
|
60
|
static void print_signed_float(const char * const prefix, const float &f) {
|
41
|
61
|
SERIAL_PROTOCOLPGM(" ");
|
42
|
62
|
serialprintPGM(prefix);
|
|
@@ -69,13 +89,13 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) {
|
69
|
89
|
SERIAL_EOL();
|
70
|
90
|
}
|
71
|
91
|
|
72
|
|
-static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) {
|
|
92
|
+static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
|
73
|
93
|
SERIAL_PROTOCOLPGM(". ");
|
74
|
|
- print_signed_float(PSTR("c"), z_at_pt[0]);
|
|
94
|
+ print_signed_float(PSTR("c"), z_at_pt[CEN]);
|
75
|
95
|
if (tower_points) {
|
76
|
|
- print_signed_float(PSTR(" x"), z_at_pt[1]);
|
77
|
|
- print_signed_float(PSTR(" y"), z_at_pt[5]);
|
78
|
|
- print_signed_float(PSTR(" z"), z_at_pt[9]);
|
|
96
|
+ print_signed_float(PSTR(" x"), z_at_pt[__A]);
|
|
97
|
+ print_signed_float(PSTR(" y"), z_at_pt[__B]);
|
|
98
|
+ print_signed_float(PSTR(" z"), z_at_pt[__C]);
|
79
|
99
|
}
|
80
|
100
|
if (tower_points && opposite_points) {
|
81
|
101
|
SERIAL_EOL();
|
|
@@ -83,9 +103,9 @@ static void print_G33_results(const float z_at_pt[13], const bool tower_points,
|
83
|
103
|
SERIAL_PROTOCOL_SP(13);
|
84
|
104
|
}
|
85
|
105
|
if (opposite_points) {
|
86
|
|
- print_signed_float(PSTR("yz"), z_at_pt[7]);
|
87
|
|
- print_signed_float(PSTR("zx"), z_at_pt[11]);
|
88
|
|
- print_signed_float(PSTR("xy"), z_at_pt[3]);
|
|
106
|
+ print_signed_float(PSTR("yz"), z_at_pt[_BC]);
|
|
107
|
+ print_signed_float(PSTR("zx"), z_at_pt[_CA]);
|
|
108
|
+ print_signed_float(PSTR("xy"), z_at_pt[_AB]);
|
89
|
109
|
}
|
90
|
110
|
SERIAL_EOL();
|
91
|
111
|
}
|
|
@@ -112,85 +132,111 @@ static void G33_cleanup(
|
112
|
132
|
#endif
|
113
|
133
|
}
|
114
|
134
|
|
115
|
|
-static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
|
|
135
|
+static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
|
116
|
136
|
const bool _0p_calibration = probe_points == 0,
|
117
|
137
|
_1p_calibration = probe_points == 1,
|
118
|
138
|
_4p_calibration = probe_points == 2,
|
119
|
139
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
120
|
140
|
_7p_calibration = probe_points >= 3 || probe_points == 0,
|
121
|
|
- _7p_half_circle = probe_points == 3,
|
122
|
|
- _7p_double_circle = probe_points == 5,
|
123
|
|
- _7p_triple_circle = probe_points == 6,
|
124
|
|
- _7p_quadruple_circle = probe_points == 7,
|
|
141
|
+ _7p_no_intermediates = probe_points == 3,
|
|
142
|
+ _7p_1_intermediates = probe_points == 4,
|
|
143
|
+ _7p_2_intermediates = probe_points == 5,
|
|
144
|
+ _7p_4_intermediates = probe_points == 6,
|
|
145
|
+ _7p_6_intermediates = probe_points == 7,
|
|
146
|
+ _7p_8_intermediates = probe_points == 8,
|
|
147
|
+ _7p_11_intermediates = probe_points == 9,
|
|
148
|
+ _7p_14_intermediates = probe_points == 10,
|
125
|
149
|
_7p_intermed_points = probe_points >= 4,
|
126
|
|
- _7p_multi_circle = probe_points >= 5;
|
|
150
|
+ _7p_6_centre = probe_points >= 5 && probe_points <= 7,
|
|
151
|
+ _7p_9_centre = probe_points >= 8;
|
127
|
152
|
|
128
|
153
|
#if DISABLED(PROBE_MANUALLY)
|
129
|
154
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
130
|
155
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
131
|
156
|
#endif
|
132
|
157
|
|
133
|
|
- for (uint8_t i = 0; i <= 12; i++) z_at_pt[i] = 0.0;
|
|
158
|
+ LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
|
134
|
159
|
|
135
|
160
|
if (!_0p_calibration) {
|
136
|
161
|
|
137
|
|
- if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
162
|
+ if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
|
138
|
163
|
#if ENABLED(PROBE_MANUALLY)
|
139
|
|
- z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
164
|
+ z_at_pt[CEN] += lcd_probe_pt(0, 0);
|
140
|
165
|
#else
|
141
|
|
- z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
166
|
+ z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false);
|
142
|
167
|
#endif
|
143
|
168
|
}
|
144
|
169
|
|
145
|
170
|
if (_7p_calibration) { // probe extra center points
|
146
|
|
- for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
147
|
|
- const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
171
|
+ const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
|
|
172
|
+ steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
|
|
173
|
+ I_LOOP_CAL_PT(axis, start, steps) {
|
|
174
|
+ const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
175
|
+ r = delta_calibration_radius * 0.1;
|
148
|
176
|
#if ENABLED(PROBE_MANUALLY)
|
149
|
|
- z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
177
|
+ z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
150
|
178
|
#else
|
151
|
|
- z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
179
|
+ z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
152
|
180
|
#endif
|
153
|
181
|
}
|
154
|
|
- z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
182
|
+ z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
|
155
|
183
|
}
|
156
|
184
|
|
157
|
185
|
if (!_1p_calibration) { // probe the radius
|
|
186
|
+ const CalEnum start = _4p_opposite_points ? _AB : __A;
|
|
187
|
+ const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
|
|
188
|
+ _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
|
|
189
|
+ _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
|
|
190
|
+ _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
|
|
191
|
+ _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
|
|
192
|
+ _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
|
|
193
|
+ _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
|
|
194
|
+ _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
|
|
195
|
+ _4P_STEP; // .5r * 6 + 1c = 4
|
158
|
196
|
bool zig_zag = true;
|
159
|
|
- const uint8_t start = _4p_opposite_points ? 3 : 1,
|
160
|
|
- step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
161
|
|
- for (uint8_t axis = start; axis <= 12; axis += step) {
|
162
|
|
- const float zigadd = (zig_zag ? 0.5 : 0.0),
|
163
|
|
- offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
164
|
|
- _7p_triple_circle ? zigadd + 0.5 :
|
165
|
|
- _7p_double_circle ? zigadd : 0;
|
166
|
|
- for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
167
|
|
- const float a = RADIANS(180 + 30 * axis),
|
168
|
|
- r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
197
|
+ F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
|
|
198
|
+ const int8_t offset = _7p_9_centre ? 1 : 0;
|
|
199
|
+ for (int8_t circle = -offset; circle <= offset; circle++) {
|
|
200
|
+ const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
201
|
+ r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
|
|
202
|
+ interpol = fmod(axis, 1);
|
169
|
203
|
#if ENABLED(PROBE_MANUALLY)
|
170
|
|
- z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
204
|
+ float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r);
|
171
|
205
|
#else
|
172
|
|
- z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
206
|
+ float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
173
|
207
|
#endif
|
|
208
|
+ // split probe point to neighbouring calibration points
|
|
209
|
+ z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
|
|
210
|
+ z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
|
174
|
211
|
}
|
175
|
212
|
zig_zag = !zig_zag;
|
176
|
|
- z_at_pt[axis] /= (2 * offset_circles + 1);
|
177
|
213
|
}
|
|
214
|
+ if (_7p_intermed_points)
|
|
215
|
+ LOOP_CAL_RAD(axis) {
|
|
216
|
+/*
|
|
217
|
+ // average intermediate points to towers and opposites - only required with _7P_STEP >= 2
|
|
218
|
+ for (int8_t i = 1; i < _7P_STEP; i++) {
|
|
219
|
+ const float interpol = i * (1.0 / _7P_STEP);
|
|
220
|
+ z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
|
|
221
|
+ + z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
|
|
222
|
+ }
|
|
223
|
+*/
|
|
224
|
+ z_at_pt[axis] /= _7P_STEP / steps;
|
|
225
|
+ }
|
178
|
226
|
}
|
179
|
227
|
|
180
|
|
- if (_7p_intermed_points) // average intermediates to tower and opposites
|
181
|
|
- for (uint8_t axis = 1; axis <= 12; axis += 2)
|
182
|
|
- z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
183
|
228
|
|
184
|
|
- float S1 = z_at_pt[0],
|
185
|
|
- S2 = sq(z_at_pt[0]);
|
|
229
|
+ float S1 = z_at_pt[CEN],
|
|
230
|
+ S2 = sq(z_at_pt[CEN]);
|
186
|
231
|
int16_t N = 1;
|
187
|
|
- if (!_1p_calibration) // std dev from zero plane
|
188
|
|
- for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis <= 12; axis += (_4p_calibration ? 4 : 2)) {
|
|
232
|
+ if (!_1p_calibration) { // std dev from zero plane
|
|
233
|
+ LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
|
189
|
234
|
S1 += z_at_pt[axis];
|
190
|
235
|
S2 += sq(z_at_pt[axis]);
|
191
|
236
|
N++;
|
192
|
237
|
}
|
193
|
|
- return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
238
|
+ return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
239
|
+ }
|
194
|
240
|
}
|
195
|
241
|
|
196
|
242
|
return 0.00001;
|
|
@@ -199,8 +245,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
199
|
245
|
#if DISABLED(PROBE_MANUALLY)
|
200
|
246
|
|
201
|
247
|
static void G33_auto_tune() {
|
202
|
|
- float z_at_pt[13] = { 0.0 },
|
203
|
|
- z_at_pt_base[13] = { 0.0 },
|
|
248
|
+ float z_at_pt[NPP + 1] = { 0.0 },
|
|
249
|
+ z_at_pt_base[NPP + 1] = { 0.0 },
|
204
|
250
|
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
|
205
|
251
|
|
206
|
252
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
@@ -227,18 +273,18 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
227
|
273
|
SERIAL_EOL();
|
228
|
274
|
|
229
|
275
|
probe_G33_points(z_at_pt, 3, true, false);
|
230
|
|
- for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
276
|
+ LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
231
|
277
|
print_G33_results(z_at_pt, true, true);
|
232
|
278
|
delta_endstop_adj[axis] += 1.0;
|
233
|
279
|
switch (axis) {
|
234
|
280
|
case A_AXIS :
|
235
|
|
- h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop
|
|
281
|
+ h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
|
236
|
282
|
break;
|
237
|
283
|
case B_AXIS :
|
238
|
|
- h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop
|
|
284
|
+ h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
|
239
|
285
|
break;
|
240
|
286
|
case C_AXIS :
|
241
|
|
- h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop
|
|
287
|
+ h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
|
242
|
288
|
break;
|
243
|
289
|
}
|
244
|
290
|
}
|
|
@@ -257,11 +303,11 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
257
|
303
|
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
|
258
|
304
|
SERIAL_EOL();
|
259
|
305
|
probe_G33_points(z_at_pt, 3, true, false);
|
260
|
|
- for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
306
|
+ LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
261
|
307
|
print_G33_results(z_at_pt, true, true);
|
262
|
308
|
delta_radius -= 1.0 * zig_zag;
|
263
|
309
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
264
|
|
- r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
|
|
310
|
+ r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
|
265
|
311
|
}
|
266
|
312
|
r_fac /= 2.0;
|
267
|
313
|
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
|
|
@@ -284,7 +330,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
284
|
330
|
SERIAL_EOL();
|
285
|
331
|
|
286
|
332
|
probe_G33_points(z_at_pt, 3, true, false);
|
287
|
|
- for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
333
|
+ LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
288
|
334
|
print_G33_results(z_at_pt, true, true);
|
289
|
335
|
|
290
|
336
|
delta_tower_angle_trim[axis] -= 1.0;
|
|
@@ -296,13 +342,13 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
296
|
342
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
297
|
343
|
switch (axis) {
|
298
|
344
|
case A_AXIS :
|
299
|
|
- a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle
|
|
345
|
+ a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
|
300
|
346
|
break;
|
301
|
347
|
case B_AXIS :
|
302
|
|
- a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle
|
|
348
|
+ a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
|
303
|
349
|
break;
|
304
|
350
|
case C_AXIS :
|
305
|
|
- a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle
|
|
351
|
+ a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
|
306
|
352
|
break;
|
307
|
353
|
}
|
308
|
354
|
}
|
|
@@ -333,7 +379,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
333
|
379
|
* P1 Probe center and set height only.
|
334
|
380
|
* P2 Probe center and towers. Set height, endstops and delta radius.
|
335
|
381
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
336
|
|
- * P4-P7 Probe all positions at different locations and average them.
|
|
382
|
+ * P4-P10 Probe all positions + at different itermediate locations and average them.
|
337
|
383
|
*
|
338
|
384
|
* T Don't calibrate tower angle corrections
|
339
|
385
|
*
|
|
@@ -353,8 +399,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
|
353
|
399
|
void GcodeSuite::G33() {
|
354
|
400
|
|
355
|
401
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
356
|
|
- if (!WITHIN(probe_points, 0, 7)) {
|
357
|
|
- SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
|
|
402
|
+ if (!WITHIN(probe_points, 0, 10)) {
|
|
403
|
+ SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
|
358
|
404
|
return;
|
359
|
405
|
}
|
360
|
406
|
|
|
@@ -382,15 +428,13 @@ void GcodeSuite::G33() {
|
382
|
428
|
_0p_calibration = probe_points == 0,
|
383
|
429
|
_1p_calibration = probe_points == 1,
|
384
|
430
|
_4p_calibration = probe_points == 2,
|
|
431
|
+ _7p_9_centre = probe_points >= 8,
|
385
|
432
|
_tower_results = (_4p_calibration && towers_set)
|
386
|
433
|
|| probe_points >= 3 || probe_points == 0,
|
387
|
434
|
_opposite_results = (_4p_calibration && !towers_set)
|
388
|
435
|
|| probe_points >= 3 || probe_points == 0,
|
389
|
436
|
_endstop_results = probe_points != 1,
|
390
|
|
- _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set,
|
391
|
|
- _7p_double_circle = probe_points == 5,
|
392
|
|
- _7p_triple_circle = probe_points == 6,
|
393
|
|
- _7p_quadruple_circle = probe_points == 7;
|
|
437
|
+ _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
|
394
|
438
|
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
395
|
439
|
int8_t iterations = 0;
|
396
|
440
|
float test_precision,
|
|
@@ -412,12 +456,9 @@ void GcodeSuite::G33() {
|
412
|
456
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
413
|
457
|
|
414
|
458
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
415
|
|
- const float circles = (_7p_quadruple_circle ? 1.5 :
|
416
|
|
- _7p_triple_circle ? 1.0 :
|
417
|
|
- _7p_double_circle ? 0.5 : 0),
|
418
|
|
- r = (1 + circles * 0.1) * delta_calibration_radius;
|
419
|
|
- for (uint8_t axis = 1; axis <= 12; ++axis) {
|
420
|
|
- const float a = RADIANS(180 + 30 * axis);
|
|
459
|
+ LOOP_CAL_RAD(axis) {
|
|
460
|
+ const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
461
|
+ r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
|
421
|
462
|
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
|
422
|
463
|
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
423
|
464
|
return;
|
|
@@ -468,7 +509,7 @@ void GcodeSuite::G33() {
|
468
|
509
|
|
469
|
510
|
do {
|
470
|
511
|
|
471
|
|
- float z_at_pt[13] = { 0.0 };
|
|
512
|
+ float z_at_pt[NPP + 1] = { 0.0 };
|
472
|
513
|
|
473
|
514
|
test_precision = zero_std_dev;
|
474
|
515
|
|
|
@@ -526,34 +567,34 @@ void GcodeSuite::G33() {
|
526
|
567
|
|
527
|
568
|
case 1:
|
528
|
569
|
test_precision = 0.00; // forced end
|
529
|
|
- LOOP_XYZ(axis) e_delta[axis] = Z1(0);
|
|
570
|
+ LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
|
530
|
571
|
break;
|
531
|
572
|
|
532
|
573
|
case 2:
|
533
|
574
|
if (towers_set) {
|
534
|
|
- e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
|
535
|
|
- e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
|
536
|
|
- e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
|
537
|
|
- r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
|
|
575
|
+ e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
|
|
576
|
+ e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
|
|
577
|
+ e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
|
|
578
|
+ r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
|
538
|
579
|
}
|
539
|
580
|
else {
|
540
|
|
- e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
|
541
|
|
- e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
|
542
|
|
- e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
|
543
|
|
- r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
|
|
581
|
+ e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
|
|
582
|
+ e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
|
|
583
|
+ e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
|
|
584
|
+ r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
|
544
|
585
|
}
|
545
|
586
|
break;
|
546
|
587
|
|
547
|
588
|
default:
|
548
|
|
- e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
|
549
|
|
- e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
|
550
|
|
- e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
|
551
|
|
- r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
|
|
589
|
+ e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
|
|
590
|
+ e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
|
|
591
|
+ e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
|
|
592
|
+ r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
|
552
|
593
|
|
553
|
594
|
if (towers_set) {
|
554
|
|
- t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor;
|
555
|
|
- t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor;
|
556
|
|
- t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor;
|
|
595
|
+ t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
|
|
596
|
+ t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
|
|
597
|
+ t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
|
557
|
598
|
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
|
558
|
599
|
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
|
559
|
600
|
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
|