|
@@ -7848,46 +7848,33 @@ void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, c
|
7848
|
7848
|
cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
|
7849
|
7849
|
NOMORE(pcx, MESH_NUM_X_POINTS - 2);
|
7850
|
7850
|
NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
|
7851
|
|
- NOMORE(cx, MESH_NUM_X_POINTS - 2);
|
7852
|
|
- NOMORE(cy, MESH_NUM_Y_POINTS - 2);
|
|
7851
|
+ NOMORE(cx, MESH_NUM_X_POINTS - 2);
|
|
7852
|
+ NOMORE(cy, MESH_NUM_Y_POINTS - 2);
|
|
7853
|
+
|
7853
|
7854
|
if (pcx == cx && pcy == cy) {
|
7854
|
7855
|
// Start and end on same mesh square
|
7855
|
7856
|
planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
|
7856
|
7857
|
set_current_to_destination();
|
7857
|
7858
|
return;
|
7858
|
7859
|
}
|
|
7860
|
+
|
7859
|
7861
|
float nx, ny, nz, ne, normalized_dist;
|
7860
|
|
- if (cx > pcx && TEST(x_splits, cx)) {
|
7861
|
|
- nx = mbl.get_probe_x(cx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
7862
|
|
- normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
7863
|
|
- ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
7864
|
|
- nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
7865
|
|
- ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
7866
|
|
- CBI(x_splits, cx);
|
7867
|
|
- }
|
7868
|
|
- else if (cx < pcx && TEST(x_splits, pcx)) {
|
7869
|
|
- nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
|
7862
|
+ int8_t gcx = max(pcx, cx), gcy = max(pcy, cy);
|
|
7863
|
+ if (cx != pcx && TEST(x_splits, gcx)) {
|
|
7864
|
+ nx = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
7870
|
7865
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
7871
|
7866
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
7872
|
7867
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
7873
|
7868
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
7874
|
|
- CBI(x_splits, pcx);
|
7875
|
|
- }
|
7876
|
|
- else if (cy > pcy && TEST(y_splits, cy)) {
|
7877
|
|
- ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
7878
|
|
- normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
7879
|
|
- nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
7880
|
|
- nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
7881
|
|
- ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
7882
|
|
- CBI(y_splits, cy);
|
|
7869
|
+ CBI(x_splits, gcx);
|
7883
|
7870
|
}
|
7884
|
|
- else if (cy < pcy && TEST(y_splits, pcy)) {
|
7885
|
|
- ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
|
7871
|
+ else if (cy != pcy && TEST(y_splits, gcy)) {
|
|
7872
|
+ ny = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
7886
|
7873
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
7887
|
7874
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
7888
|
7875
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
7889
|
7876
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
7890
|
|
- CBI(y_splits, pcy);
|
|
7877
|
+ CBI(y_splits, gcy);
|
7891
|
7878
|
}
|
7892
|
7879
|
else {
|
7893
|
7880
|
// Already split on a border
|