Selaa lähdekoodia

matrix names update (#7697)

* matrix names update

* symplified names

* new angle normalization

* ABC

* axis

* least squares

* recalc_delta_settings

* endstop_adj

* 0p

* bug
Luc Van Daele 7 vuotta sitten
vanhempi
commit
74d430cb97
5 muutettua tiedostoa jossa 134 lisäystä ja 131 poistoa
  1. 2
    2
      Marlin/Marlin.h
  2. 119
    115
      Marlin/Marlin_main.cpp
  3. 11
    12
      Marlin/configuration_store.cpp
  4. 1
    1
      Marlin/ubl_motion.cpp
  5. 1
    1
      Marlin/ultralcd.cpp

+ 2
- 2
Marlin/Marlin.h Näytä tiedosto

@@ -302,9 +302,9 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
302 302
                delta_diagonal_rod,
303 303
                delta_calibration_radius,
304 304
                delta_segments_per_second,
305
-               delta_tower_angle_trim[2],
305
+               delta_tower_angle_trim[ABC],
306 306
                delta_clip_start_height;
307
-  void recalc_delta_settings(float radius, float diagonal_rod);
307
+  void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]);
308 308
 #elif IS_SCARA
309 309
   void forward_kinematics_SCARA(const float &a, const float &b);
310 310
 #endif

+ 119
- 115
Marlin/Marlin_main.cpp Näytä tiedosto

@@ -596,7 +596,7 @@ static uint8_t target_extruder;
596 596
 
597 597
   // Initialized by settings.load()
598 598
   float delta_radius,
599
-        delta_tower_angle_trim[2],
599
+        delta_tower_angle_trim[ABC],
600 600
         delta_tower[ABC][2],
601 601
         delta_diagonal_rod,
602 602
         delta_calibration_radius,
@@ -3093,7 +3093,7 @@ static void homeaxis(const AxisEnum axis) {
3093 3093
       #if ENABLED(DEBUG_LEVELING_FEATURE)
3094 3094
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
3095 3095
       #endif
3096
-      do_homing_move(axis, endstop_adj[axis] - 0.1);
3096
+      do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
3097 3097
     }
3098 3098
 
3099 3099
   #else
@@ -5333,6 +5333,7 @@ void home_all_axes() { gcode_G28(true); }
5333 5333
      *
5334 5334
      *   Pn  Number of probe points:
5335 5335
      *
5336
+     *      P0     No probe. Normalize only.
5336 5337
      *      P1     Probe center and set height only.
5337 5338
      *      P2     Probe center and towers. Set height, endstops, and delta radius.
5338 5339
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
@@ -5361,7 +5362,7 @@ void home_all_axes() { gcode_G28(true); }
5361 5362
       SERIAL_PROTOCOL_F(f, 2);
5362 5363
     }
5363 5364
 
5364
-    inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
5365
+    inline void print_G33_settings(const bool end_stops, const bool tower_angles){
5365 5366
       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
5366 5367
       if (end_stops) {
5367 5368
         print_signed_float(PSTR("  Ex"), endstop_adj[A_AXIS]);
@@ -5374,7 +5375,8 @@ void home_all_axes() { gcode_G28(true); }
5374 5375
         SERIAL_PROTOCOLPGM(".Tower angle :  ");
5375 5376
         print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
5376 5377
         print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
5377
-        SERIAL_PROTOCOLLNPGM("  Tz:+0.00");
5378
+        print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
5379
+        SERIAL_EOL();
5378 5380
       }
5379 5381
     }
5380 5382
 
@@ -5396,8 +5398,8 @@ void home_all_axes() { gcode_G28(true); }
5396 5398
     inline void gcode_G33() {
5397 5399
 
5398 5400
       const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
5399
-      if (!WITHIN(probe_points, 1, 7)) {
5400
-        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
5401
+      if (!WITHIN(probe_points, 0, 7)) {
5402
+        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
5401 5403
         return;
5402 5404
       }
5403 5405
 
@@ -5421,11 +5423,12 @@ void home_all_axes() { gcode_G28(true); }
5421 5423
 
5422 5424
       const bool towers_set           = parser.boolval('T', true),
5423 5425
                  stow_after_each      = parser.boolval('E'),
5426
+                 _0p_calibration      = probe_points == 0,
5424 5427
                  _1p_calibration      = probe_points == 1,
5425 5428
                  _4p_calibration      = probe_points == 2,
5426 5429
                  _4p_towers_points    = _4p_calibration && towers_set,
5427 5430
                  _4p_opposite_points  = _4p_calibration && !towers_set,
5428
-                 _7p_calibration      = probe_points >= 3,
5431
+                 _7p_calibration      = probe_points >= 3 || _0p_calibration,
5429 5432
                  _7p_half_circle      = probe_points == 3,
5430 5433
                  _7p_double_circle    = probe_points == 5,
5431 5434
                  _7p_triple_circle    = probe_points == 6,
@@ -5440,17 +5443,20 @@ void home_all_axes() { gcode_G28(true); }
5440 5443
             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
5441 5444
             zero_std_dev_old = zero_std_dev,
5442 5445
             zero_std_dev_min = zero_std_dev,
5443
-            e_old[XYZ] = {
5446
+            e_old[ABC] = {
5444 5447
               endstop_adj[A_AXIS],
5445 5448
               endstop_adj[B_AXIS],
5446 5449
               endstop_adj[C_AXIS]
5447 5450
             },
5448 5451
             dr_old = delta_radius,
5449 5452
             zh_old = home_offset[Z_AXIS],
5450
-            alpha_old = delta_tower_angle_trim[A_AXIS],
5451
-            beta_old = delta_tower_angle_trim[B_AXIS];
5453
+            ta_old[ABC] = {
5454
+              delta_tower_angle_trim[A_AXIS],
5455
+              delta_tower_angle_trim[B_AXIS],
5456
+              delta_tower_angle_trim[C_AXIS]
5457
+            };
5452 5458
 
5453
-      if (!_1p_calibration) {  // test if the outer radius is reachable
5459
+      if (!_1p_calibration && !_0p_calibration) {  // test if the outer radius is reachable
5454 5460
         const float circles = (_7p_quadruple_circle ? 1.5 :
5455 5461
                                _7p_triple_circle    ? 1.0 :
5456 5462
                                _7p_double_circle    ? 0.5 : 0),
@@ -5480,9 +5486,11 @@ void home_all_axes() { gcode_G28(true); }
5480 5486
 
5481 5487
       setup_for_endstop_or_probe_move();
5482 5488
       endstops.enable(true);
5483
-      if (!home_delta())
5484
-        return;
5485
-      endstops.not_homing();
5489
+      if (!_0p_calibration) {
5490
+        if (!home_delta())
5491
+          return;
5492
+        endstops.not_homing();
5493
+      }
5486 5494
 
5487 5495
       // print settings
5488 5496
 
@@ -5495,9 +5503,11 @@ void home_all_axes() { gcode_G28(true); }
5495 5503
       print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
5496 5504
 
5497 5505
       #if DISABLED(PROBE_MANUALLY)
5498
-        const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
5499
-        if (isnan(measured_z)) return G33_CLEANUP();
5500
-        home_offset[Z_AXIS] -= measured_z;
5506
+        if (!_0p_calibration) {
5507
+          const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
5508
+          if (isnan(measured_z)) return G33_CLEANUP();
5509
+          home_offset[Z_AXIS] -= measured_z;
5510
+        }
5501 5511
       #endif
5502 5512
 
5503 5513
       do {
@@ -5505,58 +5515,60 @@ void home_all_axes() { gcode_G28(true); }
5505 5515
         float z_at_pt[13] = { 0.0 };
5506 5516
 
5507 5517
         test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
5508
-
5518
+        if (_0p_calibration) test_precision = 0.00;
5509 5519
         iterations++;
5510 5520
 
5511 5521
         // Probe the points
5512 5522
 
5513
-        if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
5514
-          #if ENABLED(PROBE_MANUALLY)
5515
-            z_at_pt[0] += lcd_probe_pt(0, 0);
5516
-          #else
5517
-            z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
5518
-            if (isnan(z_at_pt[0])) return G33_CLEANUP();
5519
-          #endif
5520
-        }
5521
-        if (_7p_calibration) { // probe extra center points
5522
-          for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
5523
-            const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
5523
+        if (!_0p_calibration){
5524
+          if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
5524 5525
             #if ENABLED(PROBE_MANUALLY)
5525
-              z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5526
+              z_at_pt[0] += lcd_probe_pt(0, 0);
5526 5527
             #else
5527
-              z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5528
+              z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
5528 5529
               if (isnan(z_at_pt[0])) return G33_CLEANUP();
5529 5530
             #endif
5530 5531
           }
5531
-          z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
5532
-        }
5533
-        if (!_1p_calibration) {  // probe the radius
5534
-          bool zig_zag = true;
5535
-          const uint8_t start = _4p_opposite_points ? 3 : 1,
5536
-                         step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
5537
-          for (uint8_t axis = start; axis < 13; axis += step) {
5538
-            const float zigadd = (zig_zag ? 0.5 : 0.0),
5539
-                        offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
5540
-                                         _7p_triple_circle    ? zigadd + 0.5 :
5541
-                                         _7p_double_circle    ? zigadd : 0;
5542
-            for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
5543
-              const float a = RADIANS(180 + 30 * axis),
5544
-                          r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
5532
+          if (_7p_calibration) { // probe extra center points
5533
+            for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
5534
+              const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
5545 5535
               #if ENABLED(PROBE_MANUALLY)
5546
-                z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5536
+                z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5547 5537
               #else
5548
-                z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5549
-                if (isnan(z_at_pt[axis])) return G33_CLEANUP();
5538
+                z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5539
+                if (isnan(z_at_pt[0])) return G33_CLEANUP();
5550 5540
               #endif
5551 5541
             }
5552
-            zig_zag = !zig_zag;
5553
-            z_at_pt[axis] /= (2 * offset_circles + 1);
5542
+            z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
5554 5543
           }
5555
-        }
5556
-        if (_7p_intermed_points) // average intermediates to tower and opposites
5557
-          for (uint8_t axis = 1; axis < 13; axis += 2)
5558
-            z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
5544
+          if (!_1p_calibration) {  // probe the radius
5545
+            bool zig_zag = true;
5546
+            const uint8_t start = _4p_opposite_points ? 3 : 1,
5547
+                           step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
5548
+            for (uint8_t axis = start; axis < 13; axis += step) {
5549
+              const float zigadd = (zig_zag ? 0.5 : 0.0),
5550
+                          offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
5551
+                                           _7p_triple_circle    ? zigadd + 0.5 :
5552
+                                           _7p_double_circle    ? zigadd : 0;
5553
+              for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
5554
+                const float a = RADIANS(180 + 30 * axis),
5555
+                            r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
5556
+                #if ENABLED(PROBE_MANUALLY)
5557
+                  z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5558
+                #else
5559
+                  z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5560
+                  if (isnan(z_at_pt[axis])) return G33_CLEANUP();
5561
+                #endif
5562
+              }
5563
+              zig_zag = !zig_zag;
5564
+              z_at_pt[axis] /= (2 * offset_circles + 1);
5565
+            }
5566
+          }
5567
+          if (_7p_intermed_points) // average intermediates to tower and opposites
5568
+            for (uint8_t axis = 1; axis < 13; axis += 2)
5569
+              z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
5559 5570
 
5571
+        }
5560 5572
         float S1 = z_at_pt[0],
5561 5573
               S2 = sq(z_at_pt[0]);
5562 5574
         int16_t N = 1;
@@ -5576,27 +5588,22 @@ void home_all_axes() { gcode_G28(true); }
5576 5588
             COPY(e_old, endstop_adj);
5577 5589
             dr_old = delta_radius;
5578 5590
             zh_old = home_offset[Z_AXIS];
5579
-            alpha_old = delta_tower_angle_trim[A_AXIS];
5580
-            beta_old = delta_tower_angle_trim[B_AXIS];
5591
+            COPY(ta_old, delta_tower_angle_trim);
5581 5592
           }
5582 5593
 
5583
-          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
5584
-          const float r_diff = delta_radius - delta_calibration_radius,
5585
-                      h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
5586
-                      r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
5587
-                      a_factor = 100.0 / delta_calibration_radius;               //1.25 for cal_rd = 80mm
5594
+          float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
5595
+          float r_diff = delta_radius - delta_calibration_radius,
5596
+                h_factor = 1.00 + r_diff * 0.001,                            //1.02 for r_diff = 20mm
5597
+                r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),    //2.25 for r_diff = 20mm
5598
+                a_factor = 66.66 / delta_calibration_radius;                 //0.83 for cal_rd = 80mm
5588 5599
 
5589 5600
           #define ZP(N,I) ((N) * z_at_pt[I])
5590
-          #define Z1000(I) ZP(1.00, I)
5591
-          #define Z1050(I) ZP(h_factor, I)
5592
-          #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
5593
-          #define Z0350(I) ZP(h_factor / 3.00, I)
5594
-          #define Z0175(I) ZP(h_factor / 6.00, I)
5595
-          #define Z2250(I) ZP(r_factor, I)
5596
-          #define Z0750(I) ZP(r_factor / 3.00, I)
5597
-          #define Z0375(I) ZP(r_factor / 6.00, I)
5598
-          #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
5599
-          #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
5601
+          #define Z6(I) ZP(6, I)
5602
+          #define Z4(I) ZP(4, I)
5603
+          #define Z2(I) ZP(2, I)
5604
+          #define Z1(I) ZP(1, I)
5605
+          h_factor /= 6.00;
5606
+          r_factor /= 6.00;
5600 5607
 
5601 5608
           #if ENABLED(PROBE_MANUALLY)
5602 5609
             test_precision = 0.00; // forced end
@@ -5605,58 +5612,61 @@ void home_all_axes() { gcode_G28(true); }
5605 5612
           switch (probe_points) {
5606 5613
             case 1:
5607 5614
               test_precision = 0.00; // forced end
5608
-              LOOP_XYZ(i) e_delta[i] = Z1000(0);
5615
+              LOOP_XYZ(axis) e_delta[axis] = Z1(0);
5609 5616
               break;
5610 5617
 
5611 5618
             case 2:
5612 5619
               if (towers_set) {
5613
-                e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
5614
-                e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
5615
-                e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
5616
-                r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
5620
+                e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
5621
+                e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
5622
+                e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
5623
+                r_delta         = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
5617 5624
               }
5618 5625
               else {
5619
-                e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
5620
-                e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
5621
-                e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
5622
-                r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
5626
+                e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
5627
+                e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
5628
+                e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
5629
+                r_delta         = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
5623 5630
               }
5624 5631
               break;
5625 5632
 
5626 5633
             default:
5627
-              e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
5628
-              e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
5629
-              e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
5630
-              r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
5634
+              e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
5635
+              e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
5636
+              e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
5637
+              r_delta         = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
5631 5638
 
5632 5639
               if (towers_set) {
5633
-                t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
5634
-                t_beta  = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
5640
+                t_delta[A_AXIS] = (       - Z2(5) + Z1(9)         - Z2(11) + Z1(3)) * a_factor;
5641
+                t_delta[B_AXIS] = ( Z2(1)         - Z1(9) + Z2(7)          - Z1(3)) * a_factor;
5642
+                t_delta[C_AXIS] = (-Z2(1) + Z1(5)         - Z2(7) + Z1(11)        ) * a_factor;
5635 5643
               }
5636 5644
               break;
5637 5645
           }
5638 5646
 
5639 5647
           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
5640 5648
           delta_radius += r_delta;
5641
-          delta_tower_angle_trim[A_AXIS] += t_alpha;
5642
-          delta_tower_angle_trim[B_AXIS] += t_beta;
5643
-
5644
-          // adjust delta_height and endstops by the max amount
5645
-          const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
5646
-          home_offset[Z_AXIS] -= z_temp;
5647
-          LOOP_XYZ(i) endstop_adj[i] -= z_temp;
5648
-
5649
-          recalc_delta_settings(delta_radius, delta_diagonal_rod);
5649
+          LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
5650 5650
         }
5651 5651
         else if (zero_std_dev >= test_precision) {   // step one back
5652 5652
           COPY(endstop_adj, e_old);
5653 5653
           delta_radius = dr_old;
5654 5654
           home_offset[Z_AXIS] = zh_old;
5655
-          delta_tower_angle_trim[A_AXIS] = alpha_old;
5656
-          delta_tower_angle_trim[B_AXIS] = beta_old;
5655
+          COPY(delta_tower_angle_trim, ta_old);
5656
+        }
5657 5657
 
5658
-          recalc_delta_settings(delta_radius, delta_diagonal_rod);
5658
+        if (verbose_level != 0) {                                    // !dry run
5659
+          // normalise angles to least squares
5660
+          float a_sum = 0.0;
5661
+          LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
5662
+          LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
5663
+          
5664
+          // adjust delta_height and endstops by the max amount
5665
+          const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
5666
+          home_offset[Z_AXIS] -= z_temp;
5667
+          LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
5659 5668
         }
5669
+        recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
5660 5670
         NOMORE(zero_std_dev_min, zero_std_dev);
5661 5671
 
5662 5672
         // print report
@@ -8538,11 +8548,8 @@ inline void gcode_M205() {
8538 8548
     if (parser.seen('B')) delta_calibration_radius       = parser.value_float();
8539 8549
     if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
8540 8550
     if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
8541
-    if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
8542
-      delta_tower_angle_trim[A_AXIS] -= parser.value_float();
8543
-      delta_tower_angle_trim[B_AXIS] -= parser.value_float();
8544
-    }
8545
-    recalc_delta_settings(delta_radius, delta_diagonal_rod);
8551
+    if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
8552
+    recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
8546 8553
   }
8547 8554
   /**
8548 8555
    * M666: Set delta endstop adjustment
@@ -8555,7 +8562,8 @@ inline void gcode_M205() {
8555 8562
     #endif
8556 8563
     LOOP_XYZ(i) {
8557 8564
       if (parser.seen(axis_codes[i])) {
8558
-        endstop_adj[i] = parser.value_linear_units();
8565
+        if (parser.value_linear_units() * Z_HOME_DIR <= 0)         
8566
+          endstop_adj[i] = parser.value_linear_units();
8559 8567
         #if ENABLED(DEBUG_LEVELING_FEATURE)
8560 8568
           if (DEBUGGING(LEVELING)) {
8561 8569
             SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
@@ -8569,10 +8577,6 @@ inline void gcode_M205() {
8569 8577
         SERIAL_ECHOLNPGM("<<< gcode_M666");
8570 8578
       }
8571 8579
     #endif
8572
-    // normalize endstops so all are <=0; set the residue to delta height
8573
-    const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
8574
-    home_offset[Z_AXIS] -= z_temp;
8575
-    LOOP_XYZ(i) endstop_adj[i] -= z_temp;
8576 8580
   }
8577 8581
 
8578 8582
 #elif IS_SCARA
@@ -11830,15 +11834,15 @@ void ok_to_send() {
11830 11834
    * Recalculate factors used for delta kinematics whenever
11831 11835
    * settings have been changed (e.g., by M665).
11832 11836
    */
11833
-  void recalc_delta_settings(float radius, float diagonal_rod) {
11837
+  void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
11834 11838
     const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
11835 11839
                 drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
11836
-    delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
11837
-    delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
11838
-    delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
11839
-    delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
11840
-    delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
11841
-    delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
11840
+    delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
11841
+    delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
11842
+    delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
11843
+    delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
11844
+    delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
11845
+    delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
11842 11846
     delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
11843 11847
     delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
11844 11848
     delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);

+ 11
- 12
Marlin/configuration_store.cpp Näytä tiedosto

@@ -36,13 +36,13 @@
36 36
  *
37 37
  */
38 38
 
39
-#define EEPROM_VERSION "V40"
39
+#define EEPROM_VERSION "V41"
40 40
 
41 41
 // Change EEPROM version if these are changed:
42 42
 #define EEPROM_OFFSET 100
43 43
 
44 44
 /**
45
- * V39 EEPROM Layout:
45
+ * V41 EEPROM Layout:
46 46
  *
47 47
  *  100  Version                                    (char x4)
48 48
  *  104  EEPROM CRC16                               (uint16_t)
@@ -100,7 +100,7 @@
100 100
  *  372  M665 B    delta_calibration_radius         (float)
101 101
  *  376  M665 X    delta_tower_angle_trim[A]        (float)
102 102
  *  380  M665 Y    delta_tower_angle_trim[B]        (float)
103
- *  ---  M665 Z    delta_tower_angle_trim[C]        (float) is always 0.0
103
+ *  384  M665 Z    delta_tower_angle_trim[C]        (float)
104 104
  *
105 105
  * Z_DUAL_ENDSTOPS:                                 48 bytes
106 106
  *  348  M666 Z    z_endstop_adj                    (float)
@@ -215,7 +215,7 @@ void MarlinSettings::postprocess() {
215 215
   // Make sure delta kinematics are updated before refreshing the
216 216
   // planner position so the stepper counts will be set correctly.
217 217
   #if ENABLED(DELTA)
218
-    recalc_delta_settings(delta_radius, delta_diagonal_rod);
218
+    recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
219 219
   #endif
220 220
 
221 221
   // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
@@ -448,16 +448,16 @@ void MarlinSettings::postprocess() {
448 448
       EEPROM_WRITE(storage_slot);
449 449
     #endif // AUTO_BED_LEVELING_UBL
450 450
 
451
-    // 9 floats for DELTA / Z_DUAL_ENDSTOPS
451
+    // 10 floats for DELTA / Z_DUAL_ENDSTOPS
452 452
     #if ENABLED(DELTA)
453 453
       EEPROM_WRITE(endstop_adj);               // 3 floats
454 454
       EEPROM_WRITE(delta_radius);              // 1 float
455 455
       EEPROM_WRITE(delta_diagonal_rod);        // 1 float
456 456
       EEPROM_WRITE(delta_segments_per_second); // 1 float
457 457
       EEPROM_WRITE(delta_calibration_radius);  // 1 float
458
-      EEPROM_WRITE(delta_tower_angle_trim);    // 2 floats
458
+      EEPROM_WRITE(delta_tower_angle_trim);    // 3 floats
459 459
       dummy = 0.0f;
460
-      for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
460
+      for (uint8_t q = 2; q--;) EEPROM_WRITE(dummy);
461 461
     #elif ENABLED(Z_DUAL_ENDSTOPS)
462 462
       EEPROM_WRITE(z_endstop_adj);             // 1 float
463 463
       dummy = 0.0f;
@@ -844,9 +844,9 @@ void MarlinSettings::postprocess() {
844 844
         EEPROM_READ(delta_diagonal_rod);        // 1 float
845 845
         EEPROM_READ(delta_segments_per_second); // 1 float
846 846
         EEPROM_READ(delta_calibration_radius);  // 1 float
847
-        EEPROM_READ(delta_tower_angle_trim);    // 2 floats
847
+        EEPROM_READ(delta_tower_angle_trim);    // 3 floats
848 848
         dummy = 0.0f;
849
-        for (uint8_t q=3; q--;) EEPROM_READ(dummy);
849
+        for (uint8_t q=2; q--;) EEPROM_READ(dummy);
850 850
       #elif ENABLED(Z_DUAL_ENDSTOPS)
851 851
         EEPROM_READ(z_endstop_adj);
852 852
         dummy = 0.0f;
@@ -1233,8 +1233,7 @@ void MarlinSettings::reset() {
1233 1233
     delta_diagonal_rod = DELTA_DIAGONAL_ROD;
1234 1234
     delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
1235 1235
     delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
1236
-    delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
1237
-    delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
1236
+    COPY(delta_tower_angle_trim, dta);
1238 1237
     home_offset[Z_AXIS] = 0;
1239 1238
 
1240 1239
   #elif ENABLED(Z_DUAL_ENDSTOPS)
@@ -1657,7 +1656,7 @@ void MarlinSettings::reset() {
1657 1656
       SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
1658 1657
       SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
1659 1658
       SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
1660
-      SERIAL_ECHOPAIR(" Z", 0.00);
1659
+      SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
1661 1660
       SERIAL_EOL();
1662 1661
     #elif ENABLED(Z_DUAL_ENDSTOPS)
1663 1662
       if (!forReplay) {

+ 1
- 1
Marlin/ubl_motion.cpp Näytä tiedosto

@@ -44,7 +44,7 @@
44 44
                endstop_adj[ABC];
45 45
 
46 46
   extern float delta_radius,
47
-               delta_tower_angle_trim[2],
47
+               delta_tower_angle_trim[ABC],
48 48
                delta_tower[ABC][2],
49 49
                delta_diagonal_rod,
50 50
                delta_calibration_radius,

+ 1
- 1
Marlin/ultralcd.cpp Näytä tiedosto

@@ -2703,7 +2703,7 @@ void kill_screen(const char* lcd_msg) {
2703 2703
       MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0);
2704 2704
       MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0);
2705 2705
       MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0);
2706
-      MENU_ITEM_EDIT(float43, "Tz", &Tz, -5.0, 5.0);
2706
+      MENU_ITEM_EDIT(float43, "Tz", &delta_tower_angle_trim[C_AXIS], -5.0, 5.0);
2707 2707
       END_MENU();
2708 2708
     }
2709 2709
 

Loading…
Peruuta
Tallenna