|
@@ -169,6 +169,7 @@ int fanSpeed=0;
|
169
|
169
|
//===========================================================================
|
170
|
170
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
171
|
171
|
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
|
172
|
+static float delta[3] = {0.0, 0.0, 0.0};
|
172
|
173
|
static float offset[3] = {0.0, 0.0, 0.0};
|
173
|
174
|
static bool home_all_axis = true;
|
174
|
175
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
@@ -731,34 +732,25 @@ void process_commands()
|
731
|
732
|
feedrate = 0.0;
|
732
|
733
|
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
733
|
734
|
|
734
|
|
- #if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
735
|
|
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
736
|
|
- HOMEAXIS(Z);
|
737
|
|
- }
|
738
|
|
- #endif
|
739
|
|
-
|
740
|
735
|
#ifdef QUICK_HOME
|
741
|
|
- if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
|
|
736
|
+ if (home_all_axis) // Move all carriages up together until the first endstop is hit.
|
742
|
737
|
{
|
743
|
|
- current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
744
|
|
-
|
|
738
|
+ current_position[X_AXIS] = 0;
|
|
739
|
+ current_position[Y_AXIS] = 0;
|
|
740
|
+ current_position[Z_AXIS] = 0;
|
745
|
741
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
746
|
|
- destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
747
|
|
- feedrate = homing_feedrate[X_AXIS];
|
748
|
|
- if(homing_feedrate[Y_AXIS]<feedrate)
|
749
|
|
- feedrate =homing_feedrate[Y_AXIS];
|
750
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
751
|
|
- st_synchronize();
|
752
|
|
-
|
753
|
|
- axis_is_at_home(X_AXIS);
|
754
|
|
- axis_is_at_home(Y_AXIS);
|
755
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
756
|
|
- destination[X_AXIS] = current_position[X_AXIS];
|
757
|
|
- destination[Y_AXIS] = current_position[Y_AXIS];
|
|
742
|
+
|
|
743
|
+ destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
|
744
|
+ destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
|
745
|
+ destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
|
746
|
+ feedrate = 1.732 * homing_feedrate[X_AXIS];
|
758
|
747
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
759
|
|
- feedrate = 0.0;
|
760
|
748
|
st_synchronize();
|
761
|
749
|
endstops_hit_on_purpose();
|
|
750
|
+
|
|
751
|
+ current_position[X_AXIS] = destination[X_AXIS];
|
|
752
|
+ current_position[Y_AXIS] = destination[Y_AXIS];
|
|
753
|
+ current_position[Z_AXIS] = destination[Z_AXIS];
|
762
|
754
|
}
|
763
|
755
|
#endif
|
764
|
756
|
|
|
@@ -771,11 +763,9 @@ void process_commands()
|
771
|
763
|
HOMEAXIS(Y);
|
772
|
764
|
}
|
773
|
765
|
|
774
|
|
- #if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
775
|
766
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
776
|
767
|
HOMEAXIS(Z);
|
777
|
768
|
}
|
778
|
|
- #endif
|
779
|
769
|
|
780
|
770
|
if(code_seen(axis_codes[X_AXIS]))
|
781
|
771
|
{
|
|
@@ -795,7 +785,8 @@ void process_commands()
|
795
|
785
|
current_position[Z_AXIS]=code_value()+add_homeing[2];
|
796
|
786
|
}
|
797
|
787
|
}
|
798
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
788
|
+ calculate_delta(current_position);
|
|
789
|
+ plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
799
|
790
|
|
800
|
791
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
801
|
792
|
enable_endstops(false);
|
|
@@ -1688,18 +1679,62 @@ void clamp_to_software_endstops(float target[3])
|
1688
|
1679
|
}
|
1689
|
1680
|
}
|
1690
|
1681
|
|
|
1682
|
+void calculate_delta(float cartesian[3])
|
|
1683
|
+{
|
|
1684
|
+ delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
|
1685
|
+ - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
|
|
1686
|
+ - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
|
|
1687
|
+ ) + cartesian[Z_AXIS];
|
|
1688
|
+ delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
|
1689
|
+ - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
|
|
1690
|
+ - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
|
|
1691
|
+ ) + cartesian[Z_AXIS];
|
|
1692
|
+ delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
|
1693
|
+ - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
|
|
1694
|
+ - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
|
|
1695
|
+ ) + cartesian[Z_AXIS];
|
|
1696
|
+ /*
|
|
1697
|
+ SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
1698
|
+ SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
1699
|
+ SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
1700
|
+
|
|
1701
|
+ SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
1702
|
+ SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
1703
|
+ SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
1704
|
+ */
|
|
1705
|
+}
|
|
1706
|
+
|
1691
|
1707
|
void prepare_move()
|
1692
|
1708
|
{
|
1693
|
1709
|
clamp_to_software_endstops(destination);
|
1694
|
1710
|
|
1695
|
1711
|
previous_millis_cmd = millis();
|
1696
|
|
- // Do not use feedmultiply for E or Z only moves
|
1697
|
|
- if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
1698
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
1712
|
+
|
|
1713
|
+ float difference[NUM_AXIS];
|
|
1714
|
+ for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
1715
|
+ difference[i] = destination[i] - current_position[i];
|
1699
|
1716
|
}
|
1700
|
|
- else {
|
1701
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
|
1717
|
+ float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
|
1718
|
+ sq(difference[Y_AXIS]) +
|
|
1719
|
+ sq(difference[Z_AXIS]));
|
|
1720
|
+ if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
1721
|
+ if (cartesian_mm < 0.000001) { return; }
|
|
1722
|
+ float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
1723
|
+ int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
|
|
1724
|
+ // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
1725
|
+ // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
1726
|
+ // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
1727
|
+ for (int s = 1; s <= steps; s++) {
|
|
1728
|
+ float fraction = float(s) / float(steps);
|
|
1729
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
1730
|
+ destination[i] = current_position[i] + difference[i] * fraction;
|
|
1731
|
+ }
|
|
1732
|
+ calculate_delta(destination);
|
|
1733
|
+ plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
1734
|
+ destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
1735
|
+ active_extruder);
|
1702
|
1736
|
}
|
|
1737
|
+
|
1703
|
1738
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
1704
|
1739
|
current_position[i] = destination[i];
|
1705
|
1740
|
}
|