|
@@ -32,26 +32,29 @@
|
32
|
32
|
#include "motion.h"
|
33
|
33
|
#include "planner.h"
|
34
|
34
|
|
35
|
|
-float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
|
|
35
|
+#if ENABLED(AXEL_TPARA)
|
|
36
|
+ // For homing, as in delta
|
|
37
|
+ #include "planner.h"
|
|
38
|
+ #include "endstops.h"
|
|
39
|
+ #include "../lcd/marlinui.h"
|
|
40
|
+ #include "../MarlinCore.h"
|
|
41
|
+#endif
|
|
42
|
+
|
|
43
|
+float delta_segments_per_second = TERN(AXEL_TPARA, TPARA_SEGMENTS_PER_SECOND, SCARA_SEGMENTS_PER_SECOND);
|
36
|
44
|
|
37
|
45
|
void scara_set_axis_is_at_home(const AxisEnum axis) {
|
38
|
46
|
if (axis == Z_AXIS)
|
39
|
47
|
current_position.z = Z_HOME_POS;
|
40
|
48
|
else {
|
41
|
|
-
|
42
|
|
- /**
|
43
|
|
- * SCARA homes XY at the same time
|
44
|
|
- */
|
45
|
49
|
xyz_pos_t homeposition;
|
46
|
50
|
LOOP_XYZ(i) homeposition[i] = base_home_pos((AxisEnum)i);
|
47
|
|
-
|
48
|
51
|
#if ENABLED(MORGAN_SCARA)
|
49
|
52
|
// MORGAN_SCARA uses arm angles for AB home position
|
50
|
53
|
//DEBUG_ECHOLNPAIR("homeposition A:", homeposition.a, " B:", homeposition.b);
|
51
|
54
|
inverse_kinematics(homeposition);
|
52
|
55
|
forward_kinematics_SCARA(delta.a, delta.b);
|
53
|
56
|
current_position[axis] = cartes[axis];
|
54
|
|
- #else
|
|
57
|
+ #elif ENABLED(MP_SCARA)
|
55
|
58
|
// MP_SCARA uses a Cartesian XY home position
|
56
|
59
|
//DEBUG_ECHOPGM("homeposition");
|
57
|
60
|
//DEBUG_ECHOLNPAIR_P(SP_X_LBL, homeposition.x, SP_Y_LBL, homeposition.y);
|
|
@@ -59,6 +62,12 @@ void scara_set_axis_is_at_home(const AxisEnum axis) {
|
59
|
62
|
delta.b = SCARA_OFFSET_THETA2;
|
60
|
63
|
forward_kinematics_SCARA(delta.a, delta.b);
|
61
|
64
|
current_position[axis] = cartes[axis];
|
|
65
|
+ #elif ENABLED(AXEL_TPARA)
|
|
66
|
+ //DEBUG_ECHOPGM("homeposition");
|
|
67
|
+ //DEBUG_ECHOLNPAIR_P(SP_X_LBL, homeposition.x, SP_Y_LBL, homeposition.y, SP_Z_LBL, homeposition.z);
|
|
68
|
+ inverse_kinematics(homeposition);
|
|
69
|
+ forward_kinematics_TPARA(delta.a, delta.b, delta.c);
|
|
70
|
+ current_position[axis] = cartes[axis];
|
62
|
71
|
#endif
|
63
|
72
|
|
64
|
73
|
//DEBUG_ECHOPGM("Cartesian");
|
|
@@ -67,85 +76,210 @@ void scara_set_axis_is_at_home(const AxisEnum axis) {
|
67
|
76
|
}
|
68
|
77
|
}
|
69
|
78
|
|
70
|
|
-static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y };
|
|
79
|
+#if EITHER(MORGAN_SCARA, MP_SCARA)
|
71
|
80
|
|
72
|
|
-/**
|
73
|
|
- * Morgan SCARA Forward Kinematics. Results in 'cartes'.
|
74
|
|
- * Maths and first version by QHARLEY.
|
75
|
|
- * Integrated into Marlin and slightly restructured by Joachim Cerny.
|
76
|
|
- */
|
77
|
|
-void forward_kinematics_SCARA(const float &a, const float &b) {
|
78
|
|
-
|
79
|
|
- const float a_sin = sin(RADIANS(a)) * L1,
|
80
|
|
- a_cos = cos(RADIANS(a)) * L1,
|
81
|
|
- b_sin = sin(RADIANS(b + TERN0(MP_SCARA, a))) * L2,
|
82
|
|
- b_cos = cos(RADIANS(b + TERN0(MP_SCARA, a))) * L2;
|
83
|
|
-
|
84
|
|
- cartes.set(a_cos + b_cos + scara_offset.x, // theta
|
85
|
|
- a_sin + b_sin + scara_offset.y); // phi
|
86
|
|
-
|
87
|
|
- /*
|
88
|
|
- DEBUG_ECHOLNPAIR(
|
89
|
|
- "SCARA FK Angle a=", a,
|
90
|
|
- " b=", b,
|
91
|
|
- " a_sin=", a_sin,
|
92
|
|
- " a_cos=", a_cos,
|
93
|
|
- " b_sin=", b_sin,
|
94
|
|
- " b_cos=", b_cos
|
95
|
|
- );
|
96
|
|
- DEBUG_ECHOLNPAIR(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")");
|
97
|
|
- //*/
|
98
|
|
-}
|
|
81
|
+ static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y };
|
99
|
82
|
|
100
|
|
-/**
|
101
|
|
- * SCARA Inverse Kinematics. Results in 'delta'.
|
102
|
|
- *
|
103
|
|
- * See https://reprap.org/forum/read.php?185,283327
|
104
|
|
- *
|
105
|
|
- * Maths and first version by QHARLEY.
|
106
|
|
- * Integrated into Marlin and slightly restructured by Joachim Cerny.
|
107
|
|
- */
|
108
|
|
-void inverse_kinematics(const xyz_pos_t &raw) {
|
109
|
|
- float C2, S2, SK1, SK2, THETA, PSI;
|
|
83
|
+ /**
|
|
84
|
+ * Morgan SCARA Forward Kinematics. Results in 'cartes'.
|
|
85
|
+ * Maths and first version by QHARLEY.
|
|
86
|
+ * Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
87
|
+ */
|
|
88
|
+ void forward_kinematics_SCARA(const float &a, const float &b) {
|
|
89
|
+ const float a_sin = sin(RADIANS(a)) * L1,
|
|
90
|
+ a_cos = cos(RADIANS(a)) * L1,
|
|
91
|
+ b_sin = sin(RADIANS(b + TERN0(MP_SCARA, a))) * L2,
|
|
92
|
+ b_cos = cos(RADIANS(b + TERN0(MP_SCARA, a))) * L2;
|
110
|
93
|
|
111
|
|
- // Translate SCARA to standard XY with scaling factor
|
112
|
|
- const xy_pos_t spos = raw - scara_offset;
|
|
94
|
+ cartes.x = a_cos + b_cos + scara_offset.x; // theta
|
|
95
|
+ cartes.y = a_sin + b_sin + scara_offset.y; // phi
|
113
|
96
|
|
114
|
|
- const float H2 = HYPOT2(spos.x, spos.y);
|
115
|
|
- if (L1 == L2)
|
116
|
|
- C2 = H2 / L1_2_2 - 1;
|
117
|
|
- else
|
118
|
|
- C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2);
|
|
97
|
+ /*
|
|
98
|
+ DEBUG_ECHOLNPAIR(
|
|
99
|
+ "SCARA FK Angle a=", a,
|
|
100
|
+ " b=", b,
|
|
101
|
+ " a_sin=", a_sin,
|
|
102
|
+ " a_cos=", a_cos,
|
|
103
|
+ " b_sin=", b_sin,
|
|
104
|
+ " b_cos=", b_cos
|
|
105
|
+ );
|
|
106
|
+ DEBUG_ECHOLNPAIR(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")");
|
|
107
|
+ //*/
|
|
108
|
+ }
|
119
|
109
|
|
120
|
|
- LIMIT(C2, -1, 1);
|
|
110
|
+ /**
|
|
111
|
+ * Morgan SCARA Inverse Kinematics. Results are stored in 'delta'.
|
|
112
|
+ *
|
|
113
|
+ * See https://reprap.org/forum/read.php?185,283327
|
|
114
|
+ *
|
|
115
|
+ * Maths and first version by QHARLEY.
|
|
116
|
+ * Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
117
|
+ */
|
|
118
|
+ void inverse_kinematics(const xyz_pos_t &raw) {
|
|
119
|
+ float C2, S2, SK1, SK2, THETA, PSI;
|
121
|
120
|
|
122
|
|
- S2 = SQRT(1.0f - sq(C2));
|
|
121
|
+ // Translate SCARA to standard XY with scaling factor
|
|
122
|
+ const xy_pos_t spos = raw - scara_offset;
|
123
|
123
|
|
124
|
|
- // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
125
|
|
- SK1 = L1 + L2 * C2;
|
|
124
|
+ const float H2 = HYPOT2(spos.x, spos.y);
|
|
125
|
+ if (L1 == L2)
|
|
126
|
+ C2 = H2 / L1_2_2 - 1;
|
|
127
|
+ else
|
|
128
|
+ C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2);
|
126
|
129
|
|
127
|
|
- // Rotated Arm2 gives the distance from Arm1 to Arm2
|
128
|
|
- SK2 = L2 * S2;
|
|
130
|
+ LIMIT(C2, -1, 1);
|
129
|
131
|
|
130
|
|
- // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
131
|
|
- THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y);
|
|
132
|
+ S2 = SQRT(1.0f - sq(C2));
|
132
|
133
|
|
133
|
|
- // Angle of Arm2
|
134
|
|
- PSI = ATAN2(S2, C2);
|
|
134
|
+ // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
|
135
|
+ SK1 = L1 + L2 * C2;
|
135
|
136
|
|
136
|
|
- delta.set(DEGREES(THETA), DEGREES(PSI + TERN0(MORGAN_SCARA, THETA)), raw.z);
|
|
137
|
+ // Rotated Arm2 gives the distance from Arm1 to Arm2
|
|
138
|
+ SK2 = L2 * S2;
|
137
|
139
|
|
138
|
|
- /*
|
139
|
|
- DEBUG_POS("SCARA IK", raw);
|
140
|
|
- DEBUG_POS("SCARA IK", delta);
|
141
|
|
- DEBUG_ECHOLNPAIR(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI);
|
142
|
|
- //*/
|
143
|
|
-}
|
|
140
|
+ // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
|
141
|
+ THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y);
|
|
142
|
+
|
|
143
|
+ // Angle of Arm2
|
|
144
|
+ PSI = ATAN2(S2, C2);
|
|
145
|
+
|
|
146
|
+ delta.set(DEGREES(THETA), DEGREES(PSI + TERN0(MORGAN_SCARA, THETA)), raw.z);
|
|
147
|
+
|
|
148
|
+ /*
|
|
149
|
+ DEBUG_POS("SCARA IK", raw);
|
|
150
|
+ DEBUG_POS("SCARA IK", delta);
|
|
151
|
+ DEBUG_ECHOLNPAIR(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI);
|
|
152
|
+ //*/
|
|
153
|
+ }
|
|
154
|
+
|
|
155
|
+#elif ENABLED(MP_SCARA)
|
|
156
|
+
|
|
157
|
+ void inverse_kinematics(const xyz_pos_t &raw) {
|
|
158
|
+ const float x = raw.x, y = raw.y, c = HYPOT(x, y),
|
|
159
|
+ THETA3 = ATAN2(y, x),
|
|
160
|
+ THETA1 = THETA3 + ACOS((sq(c) + sq(L1) - sq(L2)) / (2.0f * c * L1)),
|
|
161
|
+ THETA2 = THETA3 - ACOS((sq(c) + sq(L2) - sq(L1)) / (2.0f * c * L2));
|
|
162
|
+
|
|
163
|
+ delta.set(DEGREES(THETA1), DEGREES(THETA2), raw.z);
|
|
164
|
+
|
|
165
|
+ /*
|
|
166
|
+ DEBUG_POS("SCARA IK", raw);
|
|
167
|
+ DEBUG_POS("SCARA IK", delta);
|
|
168
|
+ SERIAL_ECHOLNPAIR(" SCARA (x,y) ", x, ",", y," Theta1=", THETA1, " Theta2=", THETA2);
|
|
169
|
+ //*/
|
|
170
|
+ }
|
|
171
|
+
|
|
172
|
+#elif ENABLED(AXEL_TPARA)
|
|
173
|
+
|
|
174
|
+ static constexpr xyz_pos_t robot_offset = { TPARA_OFFSET_X, TPARA_OFFSET_Y, TPARA_OFFSET_Z };
|
|
175
|
+
|
|
176
|
+ // Convert ABC inputs in degrees to XYZ outputs in mm
|
|
177
|
+ void forward_kinematics_TPARA(const float &a, const float &b, const float &c) {
|
|
178
|
+ const float w = c - b,
|
|
179
|
+ r = L1 * cos(RADIANS(b)) + L2 * sin(RADIANS(w - (90 - b))),
|
|
180
|
+ x = r * cos(RADIANS(a)),
|
|
181
|
+ y = r * sin(RADIANS(a)),
|
|
182
|
+ rho2 = L1_2 + L2_2 - 2.0f * L1 * L2 * cos(RADIANS(w));
|
|
183
|
+
|
|
184
|
+ cartes = robot_offset + xyz_pos_t({ x, y, SQRT(rho2 - x * x - y * y) });
|
|
185
|
+ }
|
|
186
|
+
|
|
187
|
+ // Home YZ together, then X (or all at once). Based on quick_home_xy & home_delta
|
|
188
|
+ void home_TPARA() {
|
|
189
|
+ // Init the current position of all carriages to 0,0,0
|
|
190
|
+ current_position.reset();
|
|
191
|
+ destination.reset();
|
|
192
|
+ sync_plan_position();
|
|
193
|
+
|
|
194
|
+ // Disable stealthChop if used. Enable diag1 pin on driver.
|
|
195
|
+ #if ENABLED(SENSORLESS_HOMING)
|
|
196
|
+ TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS));
|
|
197
|
+ TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS));
|
|
198
|
+ TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS));
|
|
199
|
+ #endif
|
|
200
|
+
|
|
201
|
+ // const int x_axis_home_dir = x_home_dir(active_extruder);
|
|
202
|
+
|
|
203
|
+ // const xy_pos_t pos { max_length(X_AXIS) , max_length(Y_AXIS) };
|
|
204
|
+ // const float mlz = max_length(X_AXIS),
|
|
205
|
+
|
|
206
|
+ // Move all carriages together linearly until an endstop is hit.
|
|
207
|
+ //do_blocking_move_to_xy_z(pos, mlz, homing_feedrate(Z_AXIS));
|
|
208
|
+
|
|
209
|
+ current_position.x = 0 ;
|
|
210
|
+ current_position.y = 0 ;
|
|
211
|
+ current_position.z = max_length(Z_AXIS) ;
|
|
212
|
+ line_to_current_position(homing_feedrate(Z_AXIS));
|
|
213
|
+ planner.synchronize();
|
|
214
|
+
|
|
215
|
+ // Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
216
|
+ #if ENABLED(SENSORLESS_HOMING)
|
|
217
|
+ TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x));
|
|
218
|
+ TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y));
|
|
219
|
+ TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z));
|
|
220
|
+ #endif
|
|
221
|
+
|
|
222
|
+ endstops.validate_homing_move();
|
|
223
|
+
|
|
224
|
+ // At least one motor has reached its endstop.
|
|
225
|
+ // Now re-home each motor separately.
|
|
226
|
+ homeaxis(A_AXIS);
|
|
227
|
+ homeaxis(C_AXIS);
|
|
228
|
+ homeaxis(B_AXIS);
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+ // Set all carriages to their home positions
|
|
232
|
+ // Do this here all at once for Delta, because
|
|
233
|
+ // XYZ isn't ABC. Applying this per-tower would
|
|
234
|
+ // give the impression that they are the same.
|
|
235
|
+ LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
|
236
|
+
|
|
237
|
+ sync_plan_position();
|
|
238
|
+ }
|
|
239
|
+
|
|
240
|
+ void inverse_kinematics(const xyz_pos_t &raw) {
|
|
241
|
+ const xyz_pos_t spos = raw - robot_offset;
|
|
242
|
+
|
|
243
|
+ const float RXY = SQRT(HYPOT2(spos.x, spos.y)),
|
|
244
|
+ RHO2 = NORMSQ(spos.x, spos.y, spos.z),
|
|
245
|
+ //RHO = SQRT(RHO2),
|
|
246
|
+ LSS = L1_2 + L2_2,
|
|
247
|
+ LM = 2.0f * L1 * L2,
|
|
248
|
+
|
|
249
|
+ CG = (LSS - RHO2) / LM,
|
|
250
|
+ SG = SQRT(1 - POW(CG, 2)), // Method 2
|
|
251
|
+ K1 = L1 - L2 * CG,
|
|
252
|
+ K2 = L2 * SG,
|
|
253
|
+
|
|
254
|
+ // Angle of Body Joint
|
|
255
|
+ THETA = ATAN2(spos.y, spos.x),
|
|
256
|
+
|
|
257
|
+ // Angle of Elbow Joint
|
|
258
|
+ //GAMMA = ACOS(CG),
|
|
259
|
+ GAMMA = ATAN2(SG, CG), // Method 2
|
|
260
|
+
|
|
261
|
+ // Angle of Shoulder Joint, elevation angle measured from horizontal (r+)
|
|
262
|
+ //PHI = asin(spos.z/RHO) + asin(L2 * sin(GAMMA) / RHO),
|
|
263
|
+ PHI = ATAN2(spos.z, RXY) + ATAN2(K2, K1), // Method 2
|
|
264
|
+
|
|
265
|
+ // Elbow motor angle measured from horizontal, same frame as shoulder (r+)
|
|
266
|
+ PSI = PHI + GAMMA;
|
|
267
|
+
|
|
268
|
+ delta.set(DEGREES(THETA), DEGREES(PHI), DEGREES(PSI));
|
|
269
|
+
|
|
270
|
+ //SERIAL_ECHOLNPAIR(" SCARA (x,y,z) ", spos.x , ",", spos.y, ",", spos.z, " Rho=", RHO, " Rho2=", RHO2, " Theta=", THETA, " Phi=", PHI, " Psi=", PSI, " Gamma=", GAMMA);
|
|
271
|
+ }
|
|
272
|
+
|
|
273
|
+#endif
|
144
|
274
|
|
145
|
275
|
void scara_report_positions() {
|
146
|
|
- SERIAL_ECHOLNPAIR(
|
147
|
|
- "SCARA Theta:", planner.get_axis_position_degrees(A_AXIS),
|
148
|
|
- " Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS)
|
|
276
|
+ SERIAL_ECHOLNPAIR("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS)
|
|
277
|
+ #if ENABLED(AXEL_TPARA)
|
|
278
|
+ , " Phi:", planner.get_axis_position_degrees(B_AXIS)
|
|
279
|
+ , " Psi:", planner.get_axis_position_degrees(C_AXIS)
|
|
280
|
+ #else
|
|
281
|
+ , " Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS)
|
|
282
|
+ #endif
|
149
|
283
|
);
|
150
|
284
|
SERIAL_EOL();
|
151
|
285
|
}
|