|
@@ -153,8 +153,7 @@ float Planner::previous_speed[NUM_AXIS],
|
153
|
153
|
|
154
|
154
|
#if ENABLED(LIN_ADVANCE)
|
155
|
155
|
float Planner::extruder_advance_k, // Initialized by settings.load()
|
156
|
|
- Planner::advance_ed_ratio, // Initialized by settings.load()
|
157
|
|
- Planner::position_float[NUM_AXIS] = { 0 };
|
|
156
|
+ Planner::advance_ed_ratio; // Initialized by settings.load()
|
158
|
157
|
#endif
|
159
|
158
|
|
160
|
159
|
#if ENABLED(ULTRA_LCD)
|
|
@@ -170,9 +169,6 @@ Planner::Planner() { init(); }
|
170
|
169
|
void Planner::init() {
|
171
|
170
|
block_buffer_head = block_buffer_tail = 0;
|
172
|
171
|
ZERO(position);
|
173
|
|
- #if ENABLED(LIN_ADVANCE)
|
174
|
|
- ZERO(position_float);
|
175
|
|
- #endif
|
176
|
172
|
ZERO(previous_speed);
|
177
|
173
|
previous_nominal_speed = 0.0;
|
178
|
174
|
#if ABL_PLANAR
|
|
@@ -554,34 +550,13 @@ void Planner::calculate_volumetric_multipliers() {
|
554
|
550
|
|
555
|
551
|
#if PLANNER_LEVELING
|
556
|
552
|
/**
|
557
|
|
- * rx, ry, rz - cartesian position in mm
|
|
553
|
+ * rx, ry, rz - Cartesian positions in mm
|
558
|
554
|
*/
|
559
|
555
|
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
560
|
556
|
|
561
|
557
|
if (!leveling_active) return;
|
562
|
558
|
|
563
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
564
|
|
- const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
565
|
|
- if (!fade_scaling_factor) return;
|
566
|
|
- #else
|
567
|
|
- constexpr float fade_scaling_factor = 1.0;
|
568
|
|
- #endif
|
569
|
|
-
|
570
|
|
- #if ENABLED(AUTO_BED_LEVELING_UBL)
|
571
|
|
-
|
572
|
|
- rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
|
573
|
|
-
|
574
|
|
- #elif ENABLED(MESH_BED_LEVELING)
|
575
|
|
-
|
576
|
|
- rz += mbl.get_z(rx, ry
|
577
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
578
|
|
- , fade_scaling_factor
|
579
|
|
- #endif
|
580
|
|
- );
|
581
|
|
-
|
582
|
|
- #elif ABL_PLANAR
|
583
|
|
-
|
584
|
|
- UNUSED(fade_scaling_factor);
|
|
559
|
+ #if ABL_PLANAR
|
585
|
560
|
|
586
|
561
|
float dx = rx - (X_TILT_FULCRUM),
|
587
|
562
|
dy = ry - (Y_TILT_FULCRUM);
|
|
@@ -591,68 +566,43 @@ void Planner::calculate_volumetric_multipliers() {
|
591
|
566
|
rx = dx + X_TILT_FULCRUM;
|
592
|
567
|
ry = dy + Y_TILT_FULCRUM;
|
593
|
568
|
|
594
|
|
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
595
|
|
-
|
596
|
|
- float tmp[XYZ] = { rx, ry, 0 };
|
597
|
|
- rz += bilinear_z_offset(tmp) * fade_scaling_factor;
|
598
|
|
-
|
599
|
|
- #endif
|
600
|
|
- }
|
601
|
|
-
|
602
|
|
- void Planner::unapply_leveling(float raw[XYZ]) {
|
603
|
|
-
|
604
|
|
- #if HAS_LEVELING
|
605
|
|
- if (!leveling_active) return;
|
606
|
|
- #endif
|
607
|
|
-
|
608
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
609
|
|
- if (!leveling_active_at_z(raw[Z_AXIS])) return;
|
610
|
|
- #endif
|
611
|
|
-
|
612
|
|
- #if ENABLED(AUTO_BED_LEVELING_UBL)
|
613
|
|
-
|
614
|
|
- const float z_physical = raw[Z_AXIS],
|
615
|
|
- z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]),
|
616
|
|
- z_virtual = z_physical - z_correct;
|
617
|
|
- float z_raw = z_virtual;
|
|
569
|
+ #else
|
618
|
570
|
|
619
|
571
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
572
|
+ const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
|
573
|
+ if (!fade_scaling_factor) return;
|
|
574
|
+ #elif HAS_MESH
|
|
575
|
+ constexpr float fade_scaling_factor = 1.0;
|
|
576
|
+ #endif
|
620
|
577
|
|
621
|
|
- // for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
|
622
|
|
- // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
|
623
|
|
- // then L=P-M(1-L/H)
|
624
|
|
- // so L=P-M+ML/H
|
625
|
|
- // so L-ML/H=P-M
|
626
|
|
- // so L(1-M/H)=P-M
|
627
|
|
- // so L=(P-M)/(1-M/H) for L<H
|
628
|
|
-
|
629
|
|
- if (planner.z_fade_height) {
|
630
|
|
- if (z_raw >= planner.z_fade_height)
|
631
|
|
- z_raw = z_physical;
|
632
|
|
- else
|
633
|
|
- z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
|
634
|
|
- }
|
635
|
|
-
|
636
|
|
- #endif // ENABLE_LEVELING_FADE_HEIGHT
|
637
|
|
-
|
638
|
|
- raw[Z_AXIS] = z_raw;
|
|
578
|
+ #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
579
|
+ const float raw[XYZ] = { rx, ry, 0 };
|
|
580
|
+ #endif
|
639
|
581
|
|
640
|
|
- return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic
|
|
582
|
+ rz += (
|
|
583
|
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
584
|
+ ubl.get_z_correction(rx, ry) * fade_scaling_factor
|
|
585
|
+ #elif ENABLED(MESH_BED_LEVELING)
|
|
586
|
+ mbl.get_z(rx, ry
|
|
587
|
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
588
|
+ , fade_scaling_factor
|
|
589
|
+ #endif
|
|
590
|
+ )
|
|
591
|
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
592
|
+ bilinear_z_offset(raw) * fade_scaling_factor
|
|
593
|
+ #else
|
|
594
|
+ 0
|
|
595
|
+ #endif
|
|
596
|
+ );
|
641
|
597
|
|
642
|
598
|
#endif
|
|
599
|
+ }
|
643
|
600
|
|
644
|
|
- #if ENABLED(MESH_BED_LEVELING)
|
|
601
|
+ void Planner::unapply_leveling(float raw[XYZ]) {
|
645
|
602
|
|
646
|
|
- if (leveling_active) {
|
647
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
648
|
|
- const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
|
649
|
|
- raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
|
650
|
|
- #else
|
651
|
|
- raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
|
652
|
|
- #endif
|
653
|
|
- }
|
|
603
|
+ if (!leveling_active) return;
|
654
|
604
|
|
655
|
|
- #elif ABL_PLANAR
|
|
605
|
+ #if ABL_PLANAR
|
656
|
606
|
|
657
|
607
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
658
|
608
|
|
|
@@ -664,15 +614,31 @@ void Planner::calculate_volumetric_multipliers() {
|
664
|
614
|
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
665
|
615
|
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
666
|
616
|
|
667
|
|
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
617
|
+ #else
|
668
|
618
|
|
669
|
619
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
670
|
|
- const float c = bilinear_z_offset(raw);
|
671
|
|
- raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
|
672
|
|
- #else
|
673
|
|
- raw[Z_AXIS] -= bilinear_z_offset(raw);
|
|
620
|
+ const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
|
|
621
|
+ if (!fade_scaling_factor) return;
|
|
622
|
+ #elif HAS_MESH
|
|
623
|
+ constexpr float fade_scaling_factor = 1.0;
|
674
|
624
|
#endif
|
675
|
625
|
|
|
626
|
+ raw[Z_AXIS] -= (
|
|
627
|
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
628
|
+ ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
|
|
629
|
+ #elif ENABLED(MESH_BED_LEVELING)
|
|
630
|
+ mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
|
|
631
|
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
632
|
+ , fade_scaling_factor
|
|
633
|
+ #endif
|
|
634
|
+ )
|
|
635
|
+ #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
636
|
+ bilinear_z_offset(raw) * fade_scaling_factor
|
|
637
|
+ #else
|
|
638
|
+ 0
|
|
639
|
+ #endif
|
|
640
|
+ );
|
|
641
|
+
|
676
|
642
|
#endif
|
677
|
643
|
}
|
678
|
644
|
|
|
@@ -709,10 +675,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
709
|
675
|
}
|
710
|
676
|
#endif
|
711
|
677
|
|
712
|
|
- #if ENABLED(LIN_ADVANCE)
|
713
|
|
- const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
|
714
|
|
- #endif
|
715
|
|
-
|
716
|
678
|
const long da = target[X_AXIS] - position[X_AXIS],
|
717
|
679
|
db = target[Y_AXIS] - position[Y_AXIS],
|
718
|
680
|
dc = target[Z_AXIS] - position[Z_AXIS];
|
|
@@ -741,29 +703,17 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
741
|
703
|
//*/
|
742
|
704
|
|
743
|
705
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
744
|
|
- if (DEBUGGING(DRYRUN)) {
|
|
706
|
+ if (DEBUGGING(DRYRUN))
|
745
|
707
|
position[E_AXIS] = target[E_AXIS];
|
746
|
|
- #if ENABLED(LIN_ADVANCE)
|
747
|
|
- position_float[E_AXIS] = e;
|
748
|
|
- #endif
|
749
|
|
- }
|
750
|
708
|
|
751
|
709
|
long de = target[E_AXIS] - position[E_AXIS];
|
752
|
710
|
|
753
|
|
- #if ENABLED(LIN_ADVANCE)
|
754
|
|
- float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
|
755
|
|
- #endif
|
756
|
|
-
|
757
|
711
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
758
|
712
|
if (de) {
|
759
|
713
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
760
|
714
|
if (thermalManager.tooColdToExtrude(extruder)) {
|
761
|
715
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
762
|
716
|
de = 0; // no difference
|
763
|
|
- #if ENABLED(LIN_ADVANCE)
|
764
|
|
- position_float[E_AXIS] = e;
|
765
|
|
- de_float = 0;
|
766
|
|
- #endif
|
767
|
717
|
SERIAL_ECHO_START();
|
768
|
718
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
769
|
719
|
}
|
|
@@ -772,10 +722,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
772
|
722
|
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
773
|
723
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
774
|
724
|
de = 0; // no difference
|
775
|
|
- #if ENABLED(LIN_ADVANCE)
|
776
|
|
- position_float[E_AXIS] = e;
|
777
|
|
- de_float = 0;
|
778
|
|
- #endif
|
779
|
725
|
SERIAL_ECHO_START();
|
780
|
726
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
781
|
727
|
}
|
|
@@ -783,6 +729,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
783
|
729
|
}
|
784
|
730
|
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
|
785
|
731
|
|
|
732
|
+ #if ENABLED(LIN_ADVANCE)
|
|
733
|
+ float de_float = de * steps_to_mm[E_AXIS_N];
|
|
734
|
+ #endif
|
|
735
|
+
|
786
|
736
|
// Compute direction bit-mask for this block
|
787
|
737
|
uint8_t dm = 0;
|
788
|
738
|
#if CORE_IS_XY
|
|
@@ -1380,30 +1330,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
1380
|
1330
|
|
1381
|
1331
|
#if ENABLED(LIN_ADVANCE)
|
1382
|
1332
|
|
1383
|
|
- //
|
1384
|
|
- // Use LIN_ADVANCE for blocks if all these are true:
|
1385
|
|
- //
|
1386
|
|
- // esteps : We have E steps todo (a printing move)
|
1387
|
|
- //
|
1388
|
|
- // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
|
1389
|
|
- //
|
1390
|
|
- // extruder_advance_k : There is an advance factor set.
|
1391
|
|
- //
|
1392
|
|
- // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
|
1393
|
|
- // In that case, the retract and move will be executed together.
|
1394
|
|
- // This leads to too many advance steps due to a huge e_acceleration.
|
1395
|
|
- // The math is good, but we must avoid retract moves with advance!
|
1396
|
|
- // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
1397
|
|
- //
|
1398
|
|
- block->use_advance_lead = esteps
|
1399
|
|
- && (block->steps[X_AXIS] || block->steps[Y_AXIS])
|
|
1333
|
+ /**
|
|
1334
|
+ *
|
|
1335
|
+ * Use LIN_ADVANCE for blocks if all these are true:
|
|
1336
|
+ *
|
|
1337
|
+ * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
|
|
1338
|
+ *
|
|
1339
|
+ * extruder_advance_k : There is an advance factor set.
|
|
1340
|
+ *
|
|
1341
|
+ * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
|
|
1342
|
+ * In that case, the retract and move will be executed together.
|
|
1343
|
+ * This leads to too many advance steps due to a huge e_acceleration.
|
|
1344
|
+ * The math is good, but we must avoid retract moves with advance!
|
|
1345
|
+ * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
|
1346
|
+ */
|
|
1347
|
+ block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
|
1400
|
1348
|
&& extruder_advance_k
|
1401
|
1349
|
&& (uint32_t)esteps != block->step_event_count
|
1402
|
|
- && de_float > 0.0;
|
|
1350
|
+ && de > 0;
|
1403
|
1351
|
if (block->use_advance_lead)
|
1404
|
1352
|
block->abs_adv_steps_multiplier8 = LROUND(
|
1405
|
1353
|
extruder_advance_k
|
1406
|
|
- * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
|
|
1354
|
+ * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
|
1407
|
1355
|
* (block->nominal_speed / (float)block->nominal_rate)
|
1408
|
1356
|
* axis_steps_per_mm[E_AXIS_N] * 256.0
|
1409
|
1357
|
);
|
|
@@ -1417,12 +1365,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
1417
|
1365
|
|
1418
|
1366
|
// Update the position (only when a move was queued)
|
1419
|
1367
|
COPY(position, target);
|
1420
|
|
- #if ENABLED(LIN_ADVANCE)
|
1421
|
|
- position_float[X_AXIS] = a;
|
1422
|
|
- position_float[Y_AXIS] = b;
|
1423
|
|
- position_float[Z_AXIS] = c;
|
1424
|
|
- position_float[E_AXIS] = e;
|
1425
|
|
- #endif
|
1426
|
1368
|
|
1427
|
1369
|
recalculate();
|
1428
|
1370
|
|
|
@@ -1448,12 +1390,6 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
|
1448
|
1390
|
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
|
1449
|
1391
|
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
|
1450
|
1392
|
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
|
1451
|
|
- #if ENABLED(LIN_ADVANCE)
|
1452
|
|
- position_float[X_AXIS] = a;
|
1453
|
|
- position_float[Y_AXIS] = b;
|
1454
|
|
- position_float[Z_AXIS] = c;
|
1455
|
|
- position_float[E_AXIS] = e;
|
1456
|
|
- #endif
|
1457
|
1393
|
stepper.set_position(na, nb, nc, ne);
|
1458
|
1394
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
1459
|
1395
|
ZERO(previous_speed);
|
|
@@ -1478,16 +1414,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
1478
|
1414
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
1479
|
1415
|
*/
|
1480
|
1416
|
void Planner::sync_from_steppers() {
|
1481
|
|
- LOOP_XYZE(i) {
|
|
1417
|
+ LOOP_XYZE(i)
|
1482
|
1418
|
position[i] = stepper.position((AxisEnum)i);
|
1483
|
|
- #if ENABLED(LIN_ADVANCE)
|
1484
|
|
- position_float[i] = position[i] * steps_to_mm[i
|
1485
|
|
- #if ENABLED(DISTINCT_E_FACTORS)
|
1486
|
|
- + (i == E_AXIS ? active_extruder : 0)
|
1487
|
|
- #endif
|
1488
|
|
- ];
|
1489
|
|
- #endif
|
1490
|
|
- }
|
1491
|
1419
|
}
|
1492
|
1420
|
|
1493
|
1421
|
/**
|
|
@@ -1501,9 +1429,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
|
1501
|
1429
|
const uint8_t axis_index = axis;
|
1502
|
1430
|
#endif
|
1503
|
1431
|
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
|
1504
|
|
- #if ENABLED(LIN_ADVANCE)
|
1505
|
|
- position_float[axis] = v;
|
1506
|
|
- #endif
|
1507
|
1432
|
stepper.set_position(axis, v);
|
1508
|
1433
|
previous_speed[axis] = 0.0;
|
1509
|
1434
|
}
|