|
@@ -330,6 +330,7 @@ float position_shift[3] = { 0 };
|
330
|
330
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
331
|
331
|
float home_offset[3] = { 0 };
|
332
|
332
|
|
|
333
|
+#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
|
333
|
334
|
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
|
334
|
335
|
#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
|
335
|
336
|
|
|
@@ -1402,7 +1403,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
1402
|
1403
|
|
1403
|
1404
|
static float x_home_pos(int extruder) {
|
1404
|
1405
|
if (extruder == 0)
|
1405
|
|
- return base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
1406
|
+ return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
|
1406
|
1407
|
else
|
1407
|
1408
|
/**
|
1408
|
1409
|
* In dual carriage mode the extruder offset provides an override of the
|
|
@@ -1437,7 +1438,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
1437
|
1438
|
* at the same positions relative to the machine.
|
1438
|
1439
|
*/
|
1439
|
1440
|
static void update_software_endstops(AxisEnum axis) {
|
1440
|
|
- float offs = home_offset[axis] + position_shift[axis];
|
|
1441
|
+ float offs = LOGICAL_POSITION(0, axis);
|
1441
|
1442
|
|
1442
|
1443
|
#if ENABLED(DUAL_X_CARRIAGE)
|
1443
|
1444
|
if (axis == X_AXIS) {
|
|
@@ -1508,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1508
|
1509
|
if (active_extruder != 0)
|
1509
|
1510
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
1510
|
1511
|
else
|
1511
|
|
- current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
1512
|
+ current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
|
1512
|
1513
|
update_software_endstops(X_AXIS);
|
1513
|
1514
|
return;
|
1514
|
1515
|
}
|
|
@@ -1519,7 +1520,8 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1519
|
1520
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
1520
|
1521
|
|
1521
|
1522
|
float homeposition[3];
|
1522
|
|
- for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
|
|
1523
|
+ for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
|
|
1524
|
+ homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
1523
|
1525
|
|
1524
|
1526
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
1525
|
1527
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
@@ -1529,23 +1531,12 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1529
|
1531
|
* and calculates homing offset using forward kinematics
|
1530
|
1532
|
*/
|
1531
|
1533
|
inverse_kinematics(homeposition);
|
1532
|
|
-
|
1533
|
|
- // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
1534
|
|
- // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
1535
|
|
-
|
1536
|
|
- for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
|
1537
|
|
-
|
1538
|
|
- // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
|
1539
|
|
- // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
|
1540
|
|
- // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
1541
|
|
- // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
1542
|
|
-
|
1543
|
1534
|
forward_kinematics_SCARA(delta);
|
1544
|
1535
|
|
1545
|
|
- // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
1536
|
+ // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
|
1546
|
1537
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
1547
|
1538
|
|
1548
|
|
- current_position[axis] = delta[axis];
|
|
1539
|
+ current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
|
1549
|
1540
|
|
1550
|
1541
|
/**
|
1551
|
1542
|
* SCARA home positions are based on configuration since the actual
|
|
@@ -1557,7 +1548,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1557
|
1548
|
else
|
1558
|
1549
|
#endif
|
1559
|
1550
|
{
|
1560
|
|
- current_position[axis] = base_home_pos(axis) + home_offset[axis];
|
|
1551
|
+ current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
|
1561
|
1552
|
update_software_endstops(axis);
|
1562
|
1553
|
|
1563
|
1554
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
|
|
@@ -1786,7 +1777,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
1786
|
1777
|
SERIAL_ECHOLNPGM(")");
|
1787
|
1778
|
}
|
1788
|
1779
|
#endif
|
1789
|
|
- float z_dest = home_offset[Z_AXIS] + z_raise;
|
|
1780
|
+ float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS);
|
1790
|
1781
|
|
1791
|
1782
|
if (zprobe_zoffset < 0)
|
1792
|
1783
|
z_dest -= zprobe_zoffset;
|
|
@@ -2089,7 +2080,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
2089
|
2080
|
#if ENABLED(DELTA)
|
2090
|
2081
|
#define SET_Z_FROM_STEPPERS() set_current_from_steppers()
|
2091
|
2082
|
#else
|
2092
|
|
- #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS)
|
|
2083
|
+ #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS)
|
2093
|
2084
|
#endif
|
2094
|
2085
|
|
2095
|
2086
|
// Do a single Z probe and return with current_position[Z_AXIS]
|
|
@@ -2958,7 +2949,7 @@ inline void gcode_G28() {
|
2958
|
2949
|
|
2959
|
2950
|
if (home_all_axis || homeX || homeY) {
|
2960
|
2951
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
2961
|
|
- destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
|
|
2952
|
+ destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS);
|
2962
|
2953
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
2963
|
2954
|
|
2964
|
2955
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
@@ -3213,12 +3204,12 @@ inline void gcode_G28() {
|
3213
|
3204
|
;
|
3214
|
3205
|
line_to_current_position();
|
3215
|
3206
|
|
3216
|
|
- current_position[X_AXIS] = x + home_offset[X_AXIS];
|
3217
|
|
- current_position[Y_AXIS] = y + home_offset[Y_AXIS];
|
|
3207
|
+ current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS);
|
|
3208
|
+ current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS);
|
3218
|
3209
|
line_to_current_position();
|
3219
|
3210
|
|
3220
|
3211
|
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
|
3221
|
|
- current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
3212
|
+ current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS);
|
3222
|
3213
|
line_to_current_position();
|
3223
|
3214
|
#endif
|
3224
|
3215
|
|
|
@@ -3636,14 +3627,14 @@ inline void gcode_G28() {
|
3636
|
3627
|
#endif
|
3637
|
3628
|
|
3638
|
3629
|
// Probe at 3 arbitrary points
|
3639
|
|
- float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
|
3640
|
|
- ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
|
|
3630
|
+ float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
|
|
3631
|
+ LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
|
3641
|
3632
|
stow_probe_after_each, verbose_level),
|
3642
|
|
- z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
|
3643
|
|
- ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
|
|
3633
|
+ z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
|
|
3634
|
+ LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
|
3644
|
3635
|
stow_probe_after_each, verbose_level),
|
3645
|
|
- z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
|
3646
|
|
- ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
|
|
3636
|
+ z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
|
|
3637
|
+ LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
|
3647
|
3638
|
stow_probe_after_each, verbose_level);
|
3648
|
3639
|
|
3649
|
3640
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
@@ -5174,9 +5165,9 @@ static void report_current_position() {
|
5174
|
5165
|
SERIAL_EOL;
|
5175
|
5166
|
|
5176
|
5167
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
5177
|
|
- SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
|
|
5168
|
+ SERIAL_PROTOCOL(delta[X_AXIS]);
|
5178
|
5169
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
5179
|
|
- SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
|
|
5170
|
+ SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
|
5180
|
5171
|
SERIAL_EOL;
|
5181
|
5172
|
|
5182
|
5173
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
|
@@ -6143,7 +6134,7 @@ inline void gcode_M428() {
|
6143
|
6134
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
6144
|
6135
|
if (axis_homed[i]) {
|
6145
|
6136
|
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
|
6146
|
|
- diff = current_position[i] - base;
|
|
6137
|
+ diff = current_position[i] - LOGICAL_POSITION(base, i);
|
6147
|
6138
|
if (diff > -20 && diff < 20) {
|
6148
|
6139
|
set_home_offset((AxisEnum)i, home_offset[i] - diff);
|
6149
|
6140
|
}
|
|
@@ -7739,6 +7730,12 @@ void clamp_to_software_endstops(float target[3]) {
|
7739
|
7730
|
|
7740
|
7731
|
void inverse_kinematics(const float in_cartesian[3]) {
|
7741
|
7732
|
|
|
7733
|
+ const float cartesian[3] = {
|
|
7734
|
+ RAW_POSITION(in_cartesian[X_AXIS], X_AXIS),
|
|
7735
|
+ RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS),
|
|
7736
|
+ RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS)
|
|
7737
|
+ };
|
|
7738
|
+
|
7742
|
7739
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
|
7743
|
7740
|
- sq(delta_tower1_x - cartesian[X_AXIS])
|
7744
|
7741
|
- sq(delta_tower1_y - cartesian[Y_AXIS])
|
|
@@ -7763,10 +7760,14 @@ void clamp_to_software_endstops(float target[3]) {
|
7763
|
7760
|
}
|
7764
|
7761
|
|
7765
|
7762
|
float delta_safe_distance_from_top() {
|
7766
|
|
- float cartesian[3] = { 0 };
|
|
7763
|
+ float cartesian[3] = {
|
|
7764
|
+ LOGICAL_POSITION(0, X_AXIS),
|
|
7765
|
+ LOGICAL_POSITION(0, Y_AXIS),
|
|
7766
|
+ LOGICAL_POSITION(0, Z_AXIS)
|
|
7767
|
+ };
|
7767
|
7768
|
inverse_kinematics(cartesian);
|
7768
|
7769
|
float distance = delta[TOWER_3];
|
7769
|
|
- cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
|
|
7770
|
+ cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS);
|
7770
|
7771
|
inverse_kinematics(cartesian);
|
7771
|
7772
|
return abs(distance - delta[TOWER_3]);
|
7772
|
7773
|
}
|
|
@@ -7846,8 +7847,8 @@ void clamp_to_software_endstops(float target[3]) {
|
7846
|
7847
|
|
7847
|
7848
|
void set_cartesian_from_steppers() {
|
7848
|
7849
|
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
|
7849
|
|
- stepper.get_axis_position_mm(Y_AXIS),
|
7850
|
|
- stepper.get_axis_position_mm(Z_AXIS));
|
|
7850
|
+ stepper.get_axis_position_mm(Y_AXIS),
|
|
7851
|
+ stepper.get_axis_position_mm(Z_AXIS));
|
7851
|
7852
|
}
|
7852
|
7853
|
|
7853
|
7854
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
@@ -7858,8 +7859,8 @@ void clamp_to_software_endstops(float target[3]) {
|
7858
|
7859
|
|
7859
|
7860
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
7860
|
7861
|
float h1 = 0.001 - half, h2 = half - 0.001,
|
7861
|
|
- grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
|
7862
|
|
- grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
|
7862
|
+ grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])),
|
|
7863
|
+ grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1]));
|
7863
|
7864
|
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
7864
|
7865
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
7865
|
7866
|
z1 = bed_level[floor_x + half][floor_y + half],
|
|
@@ -7910,6 +7911,9 @@ void set_current_from_steppers() {
|
7910
|
7911
|
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
|
7911
|
7912
|
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
7912
|
7913
|
#endif
|
|
7914
|
+
|
|
7915
|
+ for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
|
|
7916
|
+ current_position[i] += LOGICAL_POSITION(0, i);
|
7913
|
7917
|
}
|
7914
|
7918
|
|
7915
|
7919
|
#if ENABLED(MESH_BED_LEVELING)
|
|
@@ -7940,14 +7944,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
7940
|
7944
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
|
7941
|
7945
|
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
7942
|
7946
|
memcpy(end, destination, sizeof(end));
|
7943
|
|
- destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
|
|
7947
|
+ destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS);
|
7944
|
7948
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
7945
|
7949
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
|
7946
|
7950
|
CBI(x_splits, gcx);
|
7947
|
7951
|
}
|
7948
|
7952
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
7949
|
7953
|
memcpy(end, destination, sizeof(end));
|
7950
|
|
- destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
|
|
7954
|
+ destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS);
|
7951
|
7955
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
7952
|
7956
|
destination[X_AXIS] = MBL_SEGMENT_END(X);
|
7953
|
7957
|
CBI(y_splits, gcy);
|
|
@@ -8362,8 +8366,8 @@ void prepare_move_to_destination() {
|
8362
|
8366
|
float SCARA_pos[2];
|
8363
|
8367
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
8364
|
8368
|
|
8365
|
|
- SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
8366
|
|
- SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
8369
|
+ SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
8370
|
+ SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
8367
|
8371
|
|
8368
|
8372
|
#if (Linkage_1 == Linkage_2)
|
8369
|
8373
|
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
|
|
@@ -8381,7 +8385,7 @@ void prepare_move_to_destination() {
|
8381
|
8385
|
|
8382
|
8386
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
8383
|
8387
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
8384
|
|
- delta[Z_AXIS] = cartesian[Z_AXIS];
|
|
8388
|
+ delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS);
|
8385
|
8389
|
|
8386
|
8390
|
/**
|
8387
|
8391
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|