|
@@ -1,56 +1,56 @@
|
1
|
1
|
/*
|
2
|
2
|
planner.c - buffers movement commands and manages the acceleration profile plan
|
3
|
|
- Part of Grbl
|
4
|
|
-
|
5
|
|
- Copyright (c) 2009-2011 Simen Svale Skogsrud
|
6
|
|
-
|
7
|
|
- Grbl is free software: you can redistribute it and/or modify
|
8
|
|
- it under the terms of the GNU General Public License as published by
|
9
|
|
- the Free Software Foundation, either version 3 of the License, or
|
10
|
|
- (at your option) any later version.
|
11
|
|
-
|
12
|
|
- Grbl is distributed in the hope that it will be useful,
|
13
|
|
- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14
|
|
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15
|
|
- GNU General Public License for more details.
|
16
|
|
-
|
17
|
|
- You should have received a copy of the GNU General Public License
|
18
|
|
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
19
|
|
-*/
|
|
3
|
+ Part of Grbl
|
|
4
|
+
|
|
5
|
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
6
|
+
|
|
7
|
+ Grbl is free software: you can redistribute it and/or modify
|
|
8
|
+ it under the terms of the GNU General Public License as published by
|
|
9
|
+ the Free Software Foundation, either version 3 of the License, or
|
|
10
|
+ (at your option) any later version.
|
|
11
|
+
|
|
12
|
+ Grbl is distributed in the hope that it will be useful,
|
|
13
|
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14
|
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
15
|
+ GNU General Public License for more details.
|
|
16
|
+
|
|
17
|
+ You should have received a copy of the GNU General Public License
|
|
18
|
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
19
|
+ */
|
20
|
20
|
|
21
|
21
|
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
22
|
22
|
|
23
|
23
|
/*
|
24
|
|
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
25
|
|
-
|
26
|
|
- s == speed, a == acceleration, t == time, d == distance
|
27
|
|
-
|
28
|
|
- Basic definitions:
|
29
|
|
-
|
30
|
|
- Speed[s_, a_, t_] := s + (a*t)
|
31
|
|
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
32
|
|
-
|
33
|
|
- Distance to reach a specific speed with a constant acceleration:
|
34
|
|
-
|
35
|
|
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
36
|
|
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
37
|
|
-
|
38
|
|
- Speed after a given distance of travel with constant acceleration:
|
39
|
|
-
|
40
|
|
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
41
|
|
- m -> Sqrt[2 a d + s^2]
|
42
|
|
-
|
43
|
|
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
44
|
|
-
|
45
|
|
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
46
|
|
- from initial speed s1 without ever stopping at a plateau:
|
47
|
|
-
|
48
|
|
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
49
|
|
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
24
|
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
25
|
+
|
|
26
|
+ s == speed, a == acceleration, t == time, d == distance
|
|
27
|
+
|
|
28
|
+ Basic definitions:
|
|
29
|
+
|
|
30
|
+ Speed[s_, a_, t_] := s + (a*t)
|
|
31
|
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
32
|
+
|
|
33
|
+ Distance to reach a specific speed with a constant acceleration:
|
|
34
|
+
|
|
35
|
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
36
|
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
37
|
+
|
|
38
|
+ Speed after a given distance of travel with constant acceleration:
|
|
39
|
+
|
|
40
|
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
41
|
+ m -> Sqrt[2 a d + s^2]
|
|
42
|
+
|
|
43
|
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
44
|
+
|
|
45
|
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
|
46
|
+ from initial speed s1 without ever stopping at a plateau:
|
|
47
|
+
|
|
48
|
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
49
|
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
50
|
+
|
|
51
|
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
52
|
+ */
|
50
|
53
|
|
51
|
|
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
52
|
|
-*/
|
53
|
|
-
|
54
|
54
|
#include "Marlin.h"
|
55
|
55
|
#include "planner.h"
|
56
|
56
|
#include "stepper.h"
|
|
@@ -83,10 +83,10 @@ static float previous_nominal_speed; // Nominal speed of previous path line segm
|
83
|
83
|
extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
|
84
|
84
|
|
85
|
85
|
#ifdef AUTOTEMP
|
86
|
|
- float autotemp_max=250;
|
87
|
|
- float autotemp_min=210;
|
88
|
|
- float autotemp_factor=0.1;
|
89
|
|
- bool autotemp_enabled=false;
|
|
86
|
+float autotemp_max=250;
|
|
87
|
+float autotemp_min=210;
|
|
88
|
+float autotemp_factor=0.1;
|
|
89
|
+bool autotemp_enabled=false;
|
90
|
90
|
#endif
|
91
|
91
|
|
92
|
92
|
//===========================================================================
|
|
@@ -100,27 +100,33 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
|
100
|
100
|
//=============================private variables ============================
|
101
|
101
|
//===========================================================================
|
102
|
102
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
103
|
|
- bool allow_cold_extrude=false;
|
|
103
|
+bool allow_cold_extrude=false;
|
104
|
104
|
#endif
|
105
|
105
|
#ifdef XY_FREQUENCY_LIMIT
|
106
|
|
- // Used for the frequency limit
|
107
|
|
- static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
108
|
|
- static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
|
109
|
|
- static long y_segment_time[3]={0,0,0};
|
|
106
|
+// Used for the frequency limit
|
|
107
|
+static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
|
108
|
+static long x_segment_time[3]={
|
|
109
|
+ 0,0,0}; // Segment times (in us). Used for speed calculations
|
|
110
|
+static long y_segment_time[3]={
|
|
111
|
+ 0,0,0};
|
110
|
112
|
#endif
|
111
|
113
|
|
112
|
114
|
// Returns the index of the next block in the ring buffer
|
113
|
115
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
114
|
116
|
static int8_t next_block_index(int8_t block_index) {
|
115
|
117
|
block_index++;
|
116
|
|
- if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
|
|
118
|
+ if (block_index == BLOCK_BUFFER_SIZE) {
|
|
119
|
+ block_index = 0;
|
|
120
|
+ }
|
117
|
121
|
return(block_index);
|
118
|
122
|
}
|
119
|
123
|
|
120
|
124
|
|
121
|
125
|
// Returns the index of the previous block in the ring buffer
|
122
|
126
|
static int8_t prev_block_index(int8_t block_index) {
|
123
|
|
- if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
|
|
127
|
+ if (block_index == 0) {
|
|
128
|
+ block_index = BLOCK_BUFFER_SIZE;
|
|
129
|
+ }
|
124
|
130
|
block_index--;
|
125
|
131
|
return(block_index);
|
126
|
132
|
}
|
|
@@ -134,8 +140,8 @@ static int8_t prev_block_index(int8_t block_index) {
|
134
|
140
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
135
|
141
|
{
|
136
|
142
|
if (acceleration!=0) {
|
137
|
|
- return((target_rate*target_rate-initial_rate*initial_rate)/
|
138
|
|
- (2.0*acceleration));
|
|
143
|
+ return((target_rate*target_rate-initial_rate*initial_rate)/
|
|
144
|
+ (2.0*acceleration));
|
139
|
145
|
}
|
140
|
146
|
else {
|
141
|
147
|
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
@@ -149,9 +155,9 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
|
149
|
155
|
|
150
|
156
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
151
|
157
|
{
|
152
|
|
- if (acceleration!=0) {
|
153
|
|
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
154
|
|
- (4.0*acceleration) );
|
|
158
|
+ if (acceleration!=0) {
|
|
159
|
+ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
160
|
+ (4.0*acceleration) );
|
155
|
161
|
}
|
156
|
162
|
else {
|
157
|
163
|
return 0.0; // acceleration was 0, set intersection distance to 0
|
|
@@ -165,46 +171,50 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
165
|
171
|
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
166
|
172
|
|
167
|
173
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
168
|
|
- if(initial_rate <120) {initial_rate=120; }
|
169
|
|
- if(final_rate < 120) {final_rate=120; }
|
170
|
|
-
|
|
174
|
+ if(initial_rate <120) {
|
|
175
|
+ initial_rate=120;
|
|
176
|
+ }
|
|
177
|
+ if(final_rate < 120) {
|
|
178
|
+ final_rate=120;
|
|
179
|
+ }
|
|
180
|
+
|
171
|
181
|
long acceleration = block->acceleration_st;
|
172
|
182
|
int32_t accelerate_steps =
|
173
|
183
|
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
|
174
|
184
|
int32_t decelerate_steps =
|
175
|
185
|
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
|
176
|
|
-
|
|
186
|
+
|
177
|
187
|
// Calculate the size of Plateau of Nominal Rate.
|
178
|
188
|
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
179
|
|
-
|
|
189
|
+
|
180
|
190
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
181
|
191
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
182
|
192
|
// in order to reach the final_rate exactly at the end of this block.
|
183
|
193
|
if (plateau_steps < 0) {
|
184
|
194
|
accelerate_steps = ceil(
|
185
|
|
- intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
|
|
195
|
+ intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
|
186
|
196
|
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
187
|
197
|
accelerate_steps = min(accelerate_steps,block->step_event_count);
|
188
|
198
|
plateau_steps = 0;
|
189
|
199
|
}
|
190
|
200
|
|
191
|
|
- #ifdef ADVANCE
|
192
|
|
- volatile long initial_advance = block->advance*entry_factor*entry_factor;
|
193
|
|
- volatile long final_advance = block->advance*exit_factor*exit_factor;
|
194
|
|
- #endif // ADVANCE
|
195
|
|
-
|
196
|
|
- // block->accelerate_until = accelerate_steps;
|
197
|
|
- // block->decelerate_after = accelerate_steps+plateau_steps;
|
|
201
|
+#ifdef ADVANCE
|
|
202
|
+ volatile long initial_advance = block->advance*entry_factor*entry_factor;
|
|
203
|
+ volatile long final_advance = block->advance*exit_factor*exit_factor;
|
|
204
|
+#endif // ADVANCE
|
|
205
|
+
|
|
206
|
+ // block->accelerate_until = accelerate_steps;
|
|
207
|
+ // block->decelerate_after = accelerate_steps+plateau_steps;
|
198
|
208
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
199
|
209
|
if(block->busy == false) { // Don't update variables if block is busy.
|
200
|
210
|
block->accelerate_until = accelerate_steps;
|
201
|
211
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
202
|
212
|
block->initial_rate = initial_rate;
|
203
|
213
|
block->final_rate = final_rate;
|
204
|
|
- #ifdef ADVANCE
|
205
|
|
- block->initial_advance = initial_advance;
|
206
|
|
- block->final_advance = final_advance;
|
207
|
|
- #endif //ADVANCE
|
|
214
|
+#ifdef ADVANCE
|
|
215
|
+ block->initial_advance = initial_advance;
|
|
216
|
+ block->final_advance = final_advance;
|
|
217
|
+#endif //ADVANCE
|
208
|
218
|
}
|
209
|
219
|
CRITICAL_SECTION_END;
|
210
|
220
|
}
|
|
@@ -226,24 +236,27 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
|
226
|
236
|
|
227
|
237
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
228
|
238
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
229
|
|
- if(!current) { return; }
|
230
|
|
-
|
231
|
|
- if (next) {
|
|
239
|
+ if(!current) {
|
|
240
|
+ return;
|
|
241
|
+ }
|
|
242
|
+
|
|
243
|
+ if (next) {
|
232
|
244
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
233
|
245
|
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
234
|
246
|
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
235
|
247
|
if (current->entry_speed != current->max_entry_speed) {
|
236
|
|
-
|
|
248
|
+
|
237
|
249
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
238
|
250
|
// for max allowable speed if block is decelerating and nominal length is false.
|
239
|
251
|
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
240
|
252
|
current->entry_speed = min( current->max_entry_speed,
|
241
|
|
- max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
242
|
|
- } else {
|
|
253
|
+ max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
|
254
|
+ }
|
|
255
|
+ else {
|
243
|
256
|
current->entry_speed = current->max_entry_speed;
|
244
|
257
|
}
|
245
|
258
|
current->recalculate_flag = true;
|
246
|
|
-
|
|
259
|
+
|
247
|
260
|
}
|
248
|
261
|
} // Skip last block. Already initialized and set for recalculation.
|
249
|
262
|
}
|
|
@@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
252
|
265
|
// implements the reverse pass.
|
253
|
266
|
void planner_reverse_pass() {
|
254
|
267
|
uint8_t block_index = block_buffer_head;
|
255
|
|
- if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
|
268
|
+
|
|
269
|
+ //Make a local copy of block_buffer_tail, because the interrupt can alter it
|
|
270
|
+ CRITICAL_SECTION_START;
|
|
271
|
+ unsigned char tail = block_buffer_tail;
|
|
272
|
+ CRITICAL_SECTION_END
|
|
273
|
+
|
|
274
|
+ if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
256
|
275
|
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
257
|
|
- block_t *block[3] = { NULL, NULL, NULL };
|
258
|
|
- while(block_index != block_buffer_tail) {
|
|
276
|
+ block_t *block[3] = {
|
|
277
|
+ NULL, NULL, NULL };
|
|
278
|
+ while(block_index != tail) {
|
259
|
279
|
block_index = prev_block_index(block_index);
|
260
|
280
|
block[2]= block[1];
|
261
|
281
|
block[1]= block[0];
|
|
@@ -267,8 +287,10 @@ void planner_reverse_pass() {
|
267
|
287
|
|
268
|
288
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
269
|
289
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
270
|
|
- if(!previous) { return; }
|
271
|
|
-
|
|
290
|
+ if(!previous) {
|
|
291
|
+ return;
|
|
292
|
+ }
|
|
293
|
+
|
272
|
294
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
273
|
295
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
274
|
296
|
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
|
@@ -276,7 +298,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
276
|
298
|
if (!previous->nominal_length_flag) {
|
277
|
299
|
if (previous->entry_speed < current->entry_speed) {
|
278
|
300
|
double entry_speed = min( current->entry_speed,
|
279
|
|
- max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
|
|
301
|
+ max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
|
280
|
302
|
|
281
|
303
|
// Check for junction speed change
|
282
|
304
|
if (current->entry_speed != entry_speed) {
|
|
@@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
291
|
313
|
// implements the forward pass.
|
292
|
314
|
void planner_forward_pass() {
|
293
|
315
|
uint8_t block_index = block_buffer_tail;
|
294
|
|
- block_t *block[3] = { NULL, NULL, NULL };
|
|
316
|
+ block_t *block[3] = {
|
|
317
|
+ NULL, NULL, NULL };
|
295
|
318
|
|
296
|
319
|
while(block_index != block_buffer_head) {
|
297
|
320
|
block[0] = block[1];
|
|
@@ -310,7 +333,7 @@ void planner_recalculate_trapezoids() {
|
310
|
333
|
int8_t block_index = block_buffer_tail;
|
311
|
334
|
block_t *current;
|
312
|
335
|
block_t *next = NULL;
|
313
|
|
-
|
|
336
|
+
|
314
|
337
|
while(block_index != block_buffer_head) {
|
315
|
338
|
current = next;
|
316
|
339
|
next = &block_buffer[block_index];
|
|
@@ -319,7 +342,7 @@ void planner_recalculate_trapezoids() {
|
319
|
342
|
if (current->recalculate_flag || next->recalculate_flag) {
|
320
|
343
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
321
|
344
|
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
322
|
|
- next->entry_speed/current->nominal_speed);
|
|
345
|
+ next->entry_speed/current->nominal_speed);
|
323
|
346
|
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
324
|
347
|
}
|
325
|
348
|
}
|
|
@@ -328,7 +351,7 @@ void planner_recalculate_trapezoids() {
|
328
|
351
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
329
|
352
|
if(next != NULL) {
|
330
|
353
|
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
331
|
|
- MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
|
354
|
+ MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
332
|
355
|
next->recalculate_flag = false;
|
333
|
356
|
}
|
334
|
357
|
}
|
|
@@ -380,14 +403,14 @@ void getHighESpeed()
|
380
|
403
|
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
|
381
|
404
|
return; //do nothing
|
382
|
405
|
}
|
383
|
|
-
|
|
406
|
+
|
384
|
407
|
float high=0.0;
|
385
|
408
|
uint8_t block_index = block_buffer_tail;
|
386
|
|
-
|
|
409
|
+
|
387
|
410
|
while(block_index != block_buffer_head) {
|
388
|
411
|
if((block_buffer[block_index].steps_x != 0) ||
|
389
|
|
- (block_buffer[block_index].steps_y != 0) ||
|
390
|
|
- (block_buffer[block_index].steps_z != 0)) {
|
|
412
|
+ (block_buffer[block_index].steps_y != 0) ||
|
|
413
|
+ (block_buffer[block_index].steps_z != 0)) {
|
391
|
414
|
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
|
392
|
415
|
//se; mm/sec;
|
393
|
416
|
if(se>high)
|
|
@@ -397,7 +420,7 @@ void getHighESpeed()
|
397
|
420
|
}
|
398
|
421
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
399
|
422
|
}
|
400
|
|
-
|
|
423
|
+
|
401
|
424
|
float g=autotemp_min+high*autotemp_factor;
|
402
|
425
|
float t=g;
|
403
|
426
|
if(t<autotemp_min)
|
|
@@ -436,17 +459,21 @@ void check_axes_activity() {
|
436
|
459
|
}
|
437
|
460
|
}
|
438
|
461
|
else {
|
439
|
|
- #if FAN_PIN > -1
|
440
|
|
- if (FanSpeed != 0){
|
441
|
|
- analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
442
|
|
- }
|
443
|
|
- #endif
|
|
462
|
+#if FAN_PIN > -1
|
|
463
|
+ if (FanSpeed != 0){
|
|
464
|
+ analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
|
465
|
+ }
|
|
466
|
+#endif
|
444
|
467
|
}
|
445
|
468
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
446
|
469
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
447
|
470
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
448
|
|
- if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
|
449
|
|
- #if FAN_PIN > -1
|
|
471
|
+ if((DISABLE_E) && (e_active == 0)) {
|
|
472
|
+ disable_e0();
|
|
473
|
+ disable_e1();
|
|
474
|
+ disable_e2();
|
|
475
|
+ }
|
|
476
|
+#if FAN_PIN > -1
|
450
|
477
|
if((FanSpeed == 0) && (fan_speed ==0)) {
|
451
|
478
|
analogWrite(FAN_PIN, 0);
|
452
|
479
|
}
|
|
@@ -454,10 +481,10 @@ void check_axes_activity() {
|
454
|
481
|
if (FanSpeed != 0 && tail_fan_speed !=0) {
|
455
|
482
|
analogWrite(FAN_PIN,tail_fan_speed);
|
456
|
483
|
}
|
457
|
|
- #endif
|
458
|
|
- #ifdef AUTOTEMP
|
459
|
|
- getHighESpeed();
|
460
|
|
- #endif
|
|
484
|
+#endif
|
|
485
|
+#ifdef AUTOTEMP
|
|
486
|
+ getHighESpeed();
|
|
487
|
+#endif
|
461
|
488
|
}
|
462
|
489
|
|
463
|
490
|
|
|
@@ -477,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
477
|
504
|
manage_inactivity(1);
|
478
|
505
|
LCD_STATUS;
|
479
|
506
|
}
|
480
|
|
-
|
|
507
|
+
|
481
|
508
|
// The target position of the tool in absolute steps
|
482
|
509
|
// Calculate target position in absolute steps
|
483
|
510
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
@@ -486,28 +513,28 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
486
|
513
|
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
487
|
514
|
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
488
|
515
|
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
489
|
|
-
|
490
|
|
- #ifdef PREVENT_DANGEROUS_EXTRUDE
|
491
|
|
- if(target[E_AXIS]!=position[E_AXIS])
|
|
516
|
+
|
|
517
|
+#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
518
|
+ if(target[E_AXIS]!=position[E_AXIS])
|
492
|
519
|
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
|
493
|
520
|
{
|
494
|
521
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
495
|
522
|
SERIAL_ECHO_START;
|
496
|
523
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
497
|
524
|
}
|
498
|
|
- #ifdef PREVENT_LENGTHY_EXTRUDE
|
499
|
|
- if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
500
|
|
- {
|
501
|
|
- position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
502
|
|
- SERIAL_ECHO_START;
|
503
|
|
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
504
|
|
- }
|
505
|
|
- #endif
|
506
|
|
- #endif
|
507
|
|
-
|
|
525
|
+#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
526
|
+ if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
527
|
+ {
|
|
528
|
+ position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
529
|
+ SERIAL_ECHO_START;
|
|
530
|
+ SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
531
|
+ }
|
|
532
|
+#endif
|
|
533
|
+#endif
|
|
534
|
+
|
508
|
535
|
// Prepare to set up new block
|
509
|
536
|
block_t *block = &block_buffer[block_buffer_head];
|
510
|
|
-
|
|
537
|
+
|
511
|
538
|
// Mark block as not busy (Not executed by the stepper interrupt)
|
512
|
539
|
block->busy = false;
|
513
|
540
|
|
|
@@ -521,36 +548,50 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
521
|
548
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
522
|
549
|
|
523
|
550
|
// Bail if this is a zero-length block
|
524
|
|
- if (block->step_event_count <= dropsegments) { return; };
|
|
551
|
+ if (block->step_event_count <= dropsegments) {
|
|
552
|
+ return;
|
|
553
|
+ };
|
525
|
554
|
|
526
|
555
|
block->fan_speed = FanSpeed;
|
527
|
|
-
|
|
556
|
+
|
528
|
557
|
// Compute direction bits for this block
|
529
|
558
|
block->direction_bits = 0;
|
530
|
|
- if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
531
|
|
- if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
532
|
|
- if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
|
533
|
|
- if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
|
534
|
|
-
|
|
559
|
+ if (target[X_AXIS] < position[X_AXIS]) {
|
|
560
|
+ block->direction_bits |= (1<<X_AXIS);
|
|
561
|
+ }
|
|
562
|
+ if (target[Y_AXIS] < position[Y_AXIS]) {
|
|
563
|
+ block->direction_bits |= (1<<Y_AXIS);
|
|
564
|
+ }
|
|
565
|
+ if (target[Z_AXIS] < position[Z_AXIS]) {
|
|
566
|
+ block->direction_bits |= (1<<Z_AXIS);
|
|
567
|
+ }
|
|
568
|
+ if (target[E_AXIS] < position[E_AXIS]) {
|
|
569
|
+ block->direction_bits |= (1<<E_AXIS);
|
|
570
|
+ }
|
|
571
|
+
|
535
|
572
|
block->active_extruder = extruder;
|
536
|
|
-
|
|
573
|
+
|
537
|
574
|
//enable active axes
|
538
|
575
|
if(block->steps_x != 0) enable_x();
|
539
|
576
|
if(block->steps_y != 0) enable_y();
|
540
|
|
- #ifndef Z_LATE_ENABLE
|
541
|
|
- if(block->steps_z != 0) enable_z();
|
542
|
|
- #endif
|
|
577
|
+#ifndef Z_LATE_ENABLE
|
|
578
|
+ if(block->steps_z != 0) enable_z();
|
|
579
|
+#endif
|
543
|
580
|
|
544
|
581
|
// Enable all
|
545
|
|
- if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
|
|
582
|
+ if(block->steps_e != 0) {
|
|
583
|
+ enable_e0();
|
|
584
|
+ enable_e1();
|
|
585
|
+ enable_e2();
|
|
586
|
+ }
|
546
|
587
|
|
547
|
588
|
if (block->steps_e == 0) {
|
548
|
|
- if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
589
|
+ if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
549
|
590
|
}
|
550
|
591
|
else {
|
551
|
|
- if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
|
592
|
+ if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
552
|
593
|
}
|
553
|
|
-
|
|
594
|
+
|
554
|
595
|
float delta_mm[4];
|
555
|
596
|
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
556
|
597
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
@@ -558,37 +599,38 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
558
|
599
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
559
|
600
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
|
560
|
601
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
561
|
|
- } else {
|
|
602
|
+ }
|
|
603
|
+ else {
|
562
|
604
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
563
|
605
|
}
|
564
|
606
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
565
|
|
-
|
566
|
|
- // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
607
|
+
|
|
608
|
+ // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
567
|
609
|
float inverse_second = feed_rate * inverse_millimeters;
|
568
|
|
-
|
|
610
|
+
|
569
|
611
|
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
570
|
|
-
|
|
612
|
+
|
571
|
613
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
572
|
|
- #ifdef OLD_SLOWDOWN
|
573
|
|
- if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
574
|
|
- #endif
|
|
614
|
+#ifdef OLD_SLOWDOWN
|
|
615
|
+ if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
|
616
|
+#endif
|
575
|
617
|
|
576
|
|
- #ifdef SLOWDOWN
|
|
618
|
+#ifdef SLOWDOWN
|
577
|
619
|
// segment time im micro seconds
|
578
|
620
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
579
|
621
|
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
|
580
|
622
|
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
581
|
|
- inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
|
623
|
+ inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
582
|
624
|
}
|
583
|
625
|
}
|
584
|
|
- #endif
|
|
626
|
+#endif
|
585
|
627
|
// END OF SLOW DOWN SECTION
|
586
|
628
|
|
587
|
|
-
|
|
629
|
+
|
588
|
630
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
589
|
631
|
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
590
|
632
|
|
591
|
|
- // Calculate and limit speed in mm/sec for each axis
|
|
633
|
+ // Calculate and limit speed in mm/sec for each axis
|
592
|
634
|
float current_speed[4];
|
593
|
635
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
594
|
636
|
for(int i=0; i < 4; i++) {
|
|
@@ -597,7 +639,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
597
|
639
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
598
|
640
|
}
|
599
|
641
|
|
600
|
|
-// Max segement time in us.
|
|
642
|
+ // Max segement time in us.
|
601
|
643
|
#ifdef XY_FREQUENCY_LIMIT
|
602
|
644
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
603
|
645
|
|
|
@@ -606,7 +648,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
606
|
648
|
old_direction_bits = block->direction_bits;
|
607
|
649
|
|
608
|
650
|
if((direction_change & (1<<X_AXIS)) == 0) {
|
609
|
|
- x_segment_time[0] += segment_time;
|
|
651
|
+ x_segment_time[0] += segment_time;
|
610
|
652
|
}
|
611
|
653
|
else {
|
612
|
654
|
x_segment_time[2] = x_segment_time[1];
|
|
@@ -614,7 +656,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
614
|
656
|
x_segment_time[0] = segment_time;
|
615
|
657
|
}
|
616
|
658
|
if((direction_change & (1<<Y_AXIS)) == 0) {
|
617
|
|
- y_segment_time[0] += segment_time;
|
|
659
|
+ y_segment_time[0] += segment_time;
|
618
|
660
|
}
|
619
|
661
|
else {
|
620
|
662
|
y_segment_time[2] = y_segment_time[1];
|
|
@@ -655,7 +697,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
655
|
697
|
}
|
656
|
698
|
block->acceleration = block->acceleration_st / steps_per_mm;
|
657
|
699
|
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
|
658
|
|
-
|
|
700
|
+
|
659
|
701
|
#if 0 // Use old jerk for now
|
660
|
702
|
// Compute path unit vector
|
661
|
703
|
double unit_vec[3];
|
|
@@ -663,7 +705,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
663
|
705
|
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
664
|
706
|
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
665
|
707
|
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
666
|
|
-
|
|
708
|
+
|
667
|
709
|
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
668
|
710
|
// Let a circle be tangent to both previous and current path line segments, where the junction
|
669
|
711
|
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
|
@@ -680,9 +722,9 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
680
|
722
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
681
|
723
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
682
|
724
|
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
683
|
|
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
684
|
|
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
685
|
|
-
|
|
725
|
+ - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
|
726
|
+ - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
|
727
|
+
|
686
|
728
|
// Skip and use default max junction speed for 0 degree acute junction.
|
687
|
729
|
if (cos_theta < 0.95) {
|
688
|
730
|
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
|
@@ -691,36 +733,39 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
691
|
733
|
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
692
|
734
|
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
693
|
735
|
vmax_junction = min(vmax_junction,
|
694
|
|
- sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
|
736
|
+ sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
695
|
737
|
}
|
696
|
738
|
}
|
697
|
739
|
}
|
698
|
740
|
#endif
|
699
|
741
|
// Start with a safe speed
|
700
|
|
- float vmax_junction = max_xy_jerk/2;
|
|
742
|
+ float vmax_junction = max_xy_jerk/2;
|
|
743
|
+ float vmax_junction_factor = 1.0;
|
701
|
744
|
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
702
|
|
- vmax_junction = max_z_jerk/2;
|
703
|
|
- vmax_junction = min(vmax_junction, block->nominal_speed);
|
|
745
|
+ vmax_junction = min(vmax_junction, max_z_jerk/2);
|
704
|
746
|
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
|
705
|
747
|
vmax_junction = min(vmax_junction, max_e_jerk/2);
|
706
|
|
-
|
|
748
|
+ vmax_junction = min(vmax_junction, block->nominal_speed);
|
|
749
|
+ float safe_speed = vmax_junction;
|
|
750
|
+
|
707
|
751
|
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
|
708
|
752
|
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
709
|
|
- if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
710
|
|
- vmax_junction = block->nominal_speed;
|
711
|
|
- }
|
|
753
|
+ // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
|
754
|
+ vmax_junction = block->nominal_speed;
|
|
755
|
+ // }
|
712
|
756
|
if (jerk > max_xy_jerk) {
|
713
|
|
- vmax_junction *= (max_xy_jerk/jerk);
|
|
757
|
+ vmax_junction_factor = (max_xy_jerk/jerk);
|
714
|
758
|
}
|
715
|
759
|
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
716
|
|
- vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
|
|
760
|
+ vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
|
717
|
761
|
}
|
718
|
762
|
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
|
719
|
|
- vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]));
|
|
763
|
+ vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
|
720
|
764
|
}
|
|
765
|
+ vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
721
|
766
|
}
|
722
|
767
|
block->max_entry_speed = vmax_junction;
|
723
|
|
-
|
|
768
|
+
|
724
|
769
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
725
|
770
|
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
|
726
|
771
|
block->entry_speed = min(vmax_junction, v_allowable);
|
|
@@ -733,48 +778,52 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
733
|
778
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
734
|
779
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
735
|
780
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
736
|
|
- if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
|
737
|
|
- else { block->nominal_length_flag = false; }
|
|
781
|
+ if (block->nominal_speed <= v_allowable) {
|
|
782
|
+ block->nominal_length_flag = true;
|
|
783
|
+ }
|
|
784
|
+ else {
|
|
785
|
+ block->nominal_length_flag = false;
|
|
786
|
+ }
|
738
|
787
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
739
|
|
-
|
|
788
|
+
|
740
|
789
|
// Update previous path unit_vector and nominal speed
|
741
|
790
|
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
742
|
791
|
previous_nominal_speed = block->nominal_speed;
|
743
|
792
|
|
744
|
|
-
|
745
|
|
- #ifdef ADVANCE
|
746
|
|
- // Calculate advance rate
|
747
|
|
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
|
793
|
+
|
|
794
|
+#ifdef ADVANCE
|
|
795
|
+ // Calculate advance rate
|
|
796
|
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
|
797
|
+ block->advance_rate = 0;
|
|
798
|
+ block->advance = 0;
|
|
799
|
+ }
|
|
800
|
+ else {
|
|
801
|
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
|
802
|
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
|
803
|
+ (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
|
|
804
|
+ block->advance = advance;
|
|
805
|
+ if(acc_dist == 0) {
|
748
|
806
|
block->advance_rate = 0;
|
749
|
|
- block->advance = 0;
|
750
|
|
- }
|
|
807
|
+ }
|
751
|
808
|
else {
|
752
|
|
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
753
|
|
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
754
|
|
- (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
|
755
|
|
- block->advance = advance;
|
756
|
|
- if(acc_dist == 0) {
|
757
|
|
- block->advance_rate = 0;
|
758
|
|
- }
|
759
|
|
- else {
|
760
|
|
- block->advance_rate = advance / (float)acc_dist;
|
761
|
|
- }
|
|
809
|
+ block->advance_rate = advance / (float)acc_dist;
|
762
|
810
|
}
|
763
|
|
- /*
|
|
811
|
+ }
|
|
812
|
+ /*
|
764
|
813
|
SERIAL_ECHO_START;
|
765
|
|
- SERIAL_ECHOPGM("advance :");
|
766
|
|
- SERIAL_ECHO(block->advance/256.0);
|
767
|
|
- SERIAL_ECHOPGM("advance rate :");
|
768
|
|
- SERIAL_ECHOLN(block->advance_rate/256.0);
|
769
|
|
- */
|
770
|
|
- #endif // ADVANCE
|
|
814
|
+ SERIAL_ECHOPGM("advance :");
|
|
815
|
+ SERIAL_ECHO(block->advance/256.0);
|
|
816
|
+ SERIAL_ECHOPGM("advance rate :");
|
|
817
|
+ SERIAL_ECHOLN(block->advance_rate/256.0);
|
|
818
|
+ */
|
|
819
|
+#endif // ADVANCE
|
771
|
820
|
|
772
|
821
|
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
773
|
|
- MINIMUM_PLANNER_SPEED/block->nominal_speed);
|
774
|
|
-
|
|
822
|
+ safe_speed/block->nominal_speed);
|
|
823
|
+
|
775
|
824
|
// Move buffer head
|
776
|
825
|
block_buffer_head = next_buffer_head;
|
777
|
|
-
|
|
826
|
+
|
778
|
827
|
// Update position
|
779
|
828
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
780
|
829
|
|
|
@@ -805,12 +854,13 @@ void plan_set_e_position(const float &e)
|
805
|
854
|
|
806
|
855
|
uint8_t movesplanned()
|
807
|
856
|
{
|
808
|
|
- return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
|
857
|
+ return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
809
|
858
|
}
|
810
|
859
|
|
811
|
860
|
void allow_cold_extrudes(bool allow)
|
812
|
861
|
{
|
813
|
|
- #ifdef PREVENT_DANGEROUS_EXTRUDE
|
814
|
|
- allow_cold_extrude=allow;
|
815
|
|
- #endif
|
|
862
|
+#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
863
|
+ allow_cold_extrude=allow;
|
|
864
|
+#endif
|
816
|
865
|
}
|
|
866
|
+
|