Explorar el Código

Initial HAL SPI API

Christopher Pepper hace 8 años
padre
commit
bcd050f33b

+ 9
- 16
Marlin/src/HAL/HAL_LPC1768/HAL_spi.cpp Ver fichero

@@ -37,12 +37,12 @@
37 37
 // --------------------------------------------------------------------------
38 38
 
39 39
 #include "../../../MarlinConfig.h"
40
+#include "../spi_api.h"
40 41
 
41 42
 // --------------------------------------------------------------------------
42 43
 // Public Variables
43 44
 // --------------------------------------------------------------------------
44 45
 
45
-
46 46
 // --------------------------------------------------------------------------
47 47
 // Public functions
48 48
 // --------------------------------------------------------------------------
@@ -138,39 +138,32 @@
138 138
   }
139 139
 #else
140 140
   void spiBegin() {
141
+    HAL::SPI::initialise(SD_SPI_CHANNEL);
141 142
   }
142 143
 
143 144
   void spiInit(uint8_t spiRate) {
145
+    uint32_t freq =  8000000 / (1u << spiRate);
146
+    HAL::SPI::set_frequency(SD_SPI_CHANNEL, freq);
144 147
   }
145 148
 
146 149
   void spiSend(byte b) {
147
-  }
148
-
149
-  void spiSend(const uint8_t* buf, size_t n) {
150
-  }
151
-
152
-  void spiSend(uint32_t chan, byte b) {
153
-  }
154
-
155
-  void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
156
-
150
+    HAL::SPI::write(SD_SPI_CHANNEL, b);
157 151
   }
158 152
 
159 153
   // Read single byte from SPI
160 154
   uint8_t spiRec() {
161
-    return 0;
162
-  }
163
-
164
-  uint8_t spiRec(uint32_t chan) {
165
-    return 0;
155
+    return HAL::SPI::read(SD_SPI_CHANNEL);
166 156
   }
167 157
 
168 158
   // Read from SPI into buffer
169 159
   void spiRead(uint8_t*buf, uint16_t nbyte) {
160
+    HAL::SPI::read(SD_SPI_CHANNEL, buf, nbyte);
170 161
   }
171 162
 
172 163
   // Write from buffer to SPI
173 164
   void spiSendBlock(uint8_t token, const uint8_t* buf) {
165
+    HAL::SPI::write(SD_SPI_CHANNEL, token);
166
+    HAL::SPI::write(SD_SPI_CHANNEL, buf, 512);
174 167
   }
175 168
 #endif // ENABLED(SOFTWARE_SPI)
176 169
 

+ 2
- 3
Marlin/src/HAL/HAL_LPC1768/main.cpp Ver fichero

@@ -43,7 +43,6 @@ static __INLINE uint32_t SysTick_Config(uint32_t ticks) {
43 43
   SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
44 44
   return (0); /* Function successful */
45 45
 }
46
-
47 46
 extern "C" {
48 47
 extern void disk_timerproc(void);
49 48
 volatile uint32_t _millis;
@@ -70,6 +69,7 @@ extern "C" void SystemPostInit() {
70 69
 extern uint32_t MSC_SD_Init(uint8_t pdrv);
71 70
 extern HalSerial usb_serial;
72 71
 int main(void) {
72
+  debug_frmwrk_init();
73 73
 
74 74
   (void)MSC_SD_Init(0);
75 75
   USB_Init();                               // USB Initialization
@@ -81,8 +81,7 @@ int main(void) {
81 81
     TOGGLE(13);     // Flash fast while USB initialisation completes
82 82
   }
83 83
 
84
-  debug_frmwrk_init();
85
-  usb_serial.printf("\n\nRe-ARM (LPC1768 @ %dMhz) UART0 Initialised\n", SystemCoreClock / 1000000);
84
+  usb_serial.printf("\n\nRe-ARM (LPC1768 @ %dMhz) USB Initialised\n", SystemCoreClock / 1000000);
86 85
 
87 86
   HAL_timer_init();
88 87
 

+ 402
- 0
Marlin/src/HAL/HAL_LPC1768/spi_impl.cpp Ver fichero

@@ -0,0 +1,402 @@
1
+#ifdef TARGET_LPC1768
2
+
3
+#include "../spi_api.h"
4
+
5
+#include <lpc17xx_ssp.h>
6
+#include <lpc17xx_pinsel.h>
7
+#include <lpc17xx_gpio.h>
8
+#include "lpc17xx_clkpwr.h"
9
+
10
+extern "C" void SSP0_IRQHandler(void);
11
+extern "C" void SSP1_IRQHandler(void);
12
+
13
+namespace HAL {
14
+namespace SPI {
15
+
16
+enum class SignalPolarity : uint8_t {
17
+  ACTIVE_LOW = 0,
18
+  ACTIVE_HIGH
19
+};
20
+
21
+/* Hardware channels :
22
+ * 0: clk(0_7),  mosi(0_9),  miso(0_8),  SSP1
23
+ * 1: clk(0_15), mosi(0_28), miso(0_17), SSP0
24
+
25
+ * Logical channels:
26
+ * 0: hwchannel: 1, ssel(0_6)
27
+ * 1: hwchannel: 0, ssel(0_16)
28
+ * 2: hwchannel: 0, ssel(1_23)
29
+ */
30
+
31
+/*
32
+ * Defines the Hardware setup for an SPI channel
33
+ * The pins and (if applicable) the Hardware Peripheral
34
+ *
35
+ */
36
+struct LogicalChannel; // who doesn't like circular dependencies
37
+
38
+struct HardwareChannel {
39
+  LPC_SSP_TypeDef *peripheral;
40
+  IRQn_Type IRQn;
41
+  uint8_t clk_port;
42
+  uint8_t clk_pin;
43
+  uint8_t mosi_port;
44
+  uint8_t mosi_pin;
45
+  uint8_t miso_port;
46
+  uint8_t miso_pin;
47
+  SSP_DATA_SETUP_Type xfer_config;
48
+  volatile FlagStatus xfer_complete;
49
+  bool initialised;
50
+  volatile bool in_use;
51
+  LogicalChannel* active_channel;
52
+} hardware_channels[2] = {
53
+    {LPC_SSP0, SSP0_IRQn, 0, 15, 0, 18, 0, 17, { nullptr, 0, nullptr, 0, 0, SSP_STAT_DONE }, RESET, false, false, nullptr},
54
+    {LPC_SSP1, SSP1_IRQn, 0, 7,  0, 9,  0, 8 , { nullptr, 0, nullptr, 0, 0, SSP_STAT_DONE }, RESET, false, false, nullptr}
55
+};
56
+
57
+/*
58
+ * Define all available logical SPI ports
59
+ */
60
+struct LogicalChannel {
61
+  HardwareChannel& hw_channel;
62
+  uint8_t ssel_port;
63
+  uint8_t ssel_pin;
64
+  SignalPolarity ssel_polarity;
65
+  bool ssel_override;
66
+  SSP_CFG_Type config;
67
+  uint32_t CR0;
68
+  uint32_t CPSR;
69
+} logical_channels[3] = {
70
+    { hardware_channels[1], 0, 6,  SignalPolarity::ACTIVE_LOW, false, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 },
71
+    { hardware_channels[0], 0, 16, SignalPolarity::ACTIVE_HIGH, true, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 },
72
+    { hardware_channels[0], 1, 23, SignalPolarity::ACTIVE_LOW, true, { SSP_DATABIT_8, SSP_CPHA_FIRST, SSP_CPOL_HI, SSP_MASTER_MODE, SSP_FRAME_SPI, 1000000 }, 0, 0 }
73
+};
74
+
75
+//Internal functions
76
+extern "C" void ssp_irq_handler(uint8_t hw_channel);
77
+LogicalChannel* get_logical_channel(uint8_t channel);
78
+bool set_ssel(LogicalChannel* logical_channel);
79
+void clear_ssel(LogicalChannel* logical_channel);
80
+void restore_frequency(LogicalChannel* logical_channel);
81
+
82
+LogicalChannel* get_logical_channel(uint8_t channel) {
83
+  if(channel > sizeof(logical_channels) - 1) {
84
+    return nullptr;
85
+  }
86
+  return &logical_channels[channel];
87
+}
88
+
89
+bool set_ssel(LogicalChannel* logical_channel) {
90
+  if(logical_channel->hw_channel.in_use == true) {
91
+    return false;
92
+  }
93
+
94
+  if(logical_channel->ssel_polarity == SignalPolarity::ACTIVE_HIGH) {
95
+    GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
96
+  } else {
97
+    GPIO_ClearValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
98
+  }
99
+  logical_channel->hw_channel.in_use = true;
100
+
101
+  return true;
102
+}
103
+
104
+void clear_ssel(LogicalChannel* logical_channel) {
105
+  if(logical_channel->ssel_polarity == SignalPolarity::ACTIVE_HIGH) {
106
+    GPIO_ClearValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
107
+  } else {
108
+    GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
109
+  }
110
+  logical_channel->hw_channel.in_use = false;
111
+}
112
+
113
+void restore_frequency(LogicalChannel* logical_channel) {
114
+  logical_channel->hw_channel.peripheral->CR0 = logical_channel->CR0;
115
+  logical_channel->hw_channel.peripheral->CPSR = logical_channel->CPSR;
116
+}
117
+
118
+/*
119
+ * SPI API Implementation
120
+ */
121
+bool initialise(uint8_t channel) {
122
+  LogicalChannel* logical_channel = get_logical_channel(channel);
123
+  if(logical_channel == nullptr) return false;
124
+  HardwareChannel& hw_channel = logical_channel->hw_channel;
125
+
126
+  PINSEL_CFG_Type pin_cfg;
127
+  pin_cfg.OpenDrain = PINSEL_PINMODE_NORMAL;
128
+  pin_cfg.Pinmode = PINSEL_PINMODE_PULLUP;
129
+
130
+  if(hw_channel.initialised == false) {
131
+    pin_cfg.Funcnum = 2; //ssp (spi) function
132
+    pin_cfg.Portnum = hw_channel.clk_port;
133
+    pin_cfg.Pinnum = hw_channel.clk_pin;
134
+    PINSEL_ConfigPin(&pin_cfg); //clk
135
+
136
+    pin_cfg.Portnum = hw_channel.miso_port;
137
+    pin_cfg.Pinnum = hw_channel.miso_pin;
138
+    PINSEL_ConfigPin(&pin_cfg); //miso
139
+
140
+    pin_cfg.Portnum = hw_channel.mosi_port;
141
+    pin_cfg.Pinnum = hw_channel.mosi_pin;
142
+    PINSEL_ConfigPin(&pin_cfg); //mosi
143
+
144
+    SSP_Init(hw_channel.peripheral, &logical_channel->config);
145
+    logical_channel->CR0 = logical_channel->hw_channel.peripheral->CR0; // preserve for restore
146
+    logical_channel->CPSR = logical_channel->hw_channel.peripheral->CPSR; // preserve for restore
147
+    SSP_Cmd(hw_channel.peripheral, ENABLE);
148
+
149
+    hw_channel.initialised = true;
150
+    hw_channel.active_channel = logical_channel;
151
+
152
+    //NVIC_SetPriority(hw_channel.IRQn, NVIC_EncodePriority(0, 3, 0)); //Very Low priority
153
+    //NVIC_EnableIRQ(hw_channel.IRQn);
154
+  }
155
+
156
+  pin_cfg.Portnum = logical_channel->ssel_port;
157
+  pin_cfg.Pinnum = logical_channel->ssel_pin;
158
+  pin_cfg.Pinmode = logical_channel->ssel_polarity ==  SignalPolarity::ACTIVE_LOW ? PINSEL_PINMODE_PULLUP : PINSEL_PINMODE_PULLDOWN;
159
+  pin_cfg.Funcnum = 0; //gpio function
160
+  PINSEL_ConfigPin(&pin_cfg); //ssel
161
+
162
+  GPIO_SetDir(logical_channel->ssel_port, (1 << logical_channel->ssel_pin), 1);
163
+  GPIO_SetValue(logical_channel->ssel_port, (1 << logical_channel->ssel_pin));
164
+  return true;
165
+}
166
+
167
+bool enable_cs(uint8_t channel) {
168
+  LogicalChannel* logical_channel = get_logical_channel(channel);
169
+  if(logical_channel == nullptr) return false;
170
+  return set_ssel(logical_channel);
171
+}
172
+
173
+void disable_cs(uint8_t channel) {
174
+  LogicalChannel* logical_channel = get_logical_channel(channel);
175
+  if(logical_channel == nullptr) return;
176
+  if(logical_channel->hw_channel.in_use && !logical_channel->ssel_override) return; //automatic SSel wasn't overridden
177
+
178
+  clear_ssel(logical_channel);
179
+}
180
+
181
+void set_frequency(uint8_t channel, uint32_t frequency) {
182
+  LogicalChannel* logical_channel = get_logical_channel(channel);
183
+  if(logical_channel == nullptr) return;
184
+
185
+  SSP_Cmd(logical_channel->hw_channel.peripheral, DISABLE);
186
+  uint32_t prescale, cr0_div, cmp_clk, ssp_clk;
187
+
188
+  if (logical_channel->hw_channel.peripheral == LPC_SSP0){
189
+    ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP0);
190
+  } else if (logical_channel->hw_channel.peripheral == LPC_SSP1) {
191
+    ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP1);
192
+  } else {
193
+    return;
194
+  }
195
+  //find the closest clock divider / prescaler
196
+  cr0_div = 0;
197
+  cmp_clk = 0xFFFFFFFF;
198
+  prescale = 2;
199
+  while (cmp_clk > frequency) {
200
+    cmp_clk = ssp_clk / ((cr0_div + 1) * prescale);
201
+    if (cmp_clk > frequency) {
202
+      cr0_div++;
203
+      if (cr0_div > 0xFF) {
204
+        cr0_div = 0;
205
+        prescale += 2;
206
+      }
207
+    }
208
+  }
209
+
210
+  logical_channel->hw_channel.peripheral->CR0 &= (~SSP_CR0_SCR(0xFF)) & SSP_CR0_BITMASK;
211
+  logical_channel->hw_channel.peripheral->CR0 |= (SSP_CR0_SCR(cr0_div)) & SSP_CR0_BITMASK;
212
+  logical_channel->CR0 = logical_channel->hw_channel.peripheral->CR0; // preserve for restore
213
+
214
+  logical_channel->hw_channel.peripheral->CPSR = prescale & SSP_CPSR_BITMASK;
215
+  logical_channel->CPSR = logical_channel->hw_channel.peripheral->CPSR; // preserve for restore
216
+
217
+  logical_channel->config.ClockRate = ssp_clk / ((cr0_div + 1) * prescale);
218
+
219
+  SSP_Cmd(logical_channel->hw_channel.peripheral, ENABLE);
220
+}
221
+
222
+void read(uint8_t channel, uint8_t *buffer, uint32_t length) {
223
+  transfer(channel, nullptr, buffer, length);
224
+}
225
+
226
+uint8_t read(uint8_t channel) {
227
+  uint8_t buffer;
228
+  transfer(channel, nullptr, &buffer, 1);
229
+  return buffer;
230
+}
231
+
232
+void write(uint8_t channel, const uint8_t *buffer, uint32_t length) {
233
+  transfer(channel, buffer, nullptr, length);
234
+}
235
+
236
+void write(uint8_t channel, uint8_t value) {
237
+  transfer(channel, &value, nullptr, 1);
238
+}
239
+
240
+void transfer(uint8_t channel, const uint8_t *buffer_write, uint8_t *buffer_read, uint32_t length) {
241
+  LogicalChannel* logical_channel = get_logical_channel(channel);
242
+  if(logical_channel == nullptr) return;
243
+
244
+  if((logical_channel->hw_channel.in_use && !logical_channel->ssel_override) || !logical_channel->hw_channel.initialised) return;
245
+  if(!logical_channel->ssel_override) {
246
+    if(!set_ssel(logical_channel)) return;
247
+  }
248
+
249
+  if(logical_channel != logical_channel->hw_channel.active_channel) {
250
+    restore_frequency(logical_channel);
251
+    logical_channel->hw_channel.active_channel = logical_channel;
252
+  }
253
+
254
+  logical_channel->hw_channel.xfer_config.tx_data = (void *)buffer_write;
255
+  logical_channel->hw_channel.xfer_config.rx_data = (void *)buffer_read;
256
+  logical_channel->hw_channel.xfer_config.length = length;
257
+
258
+  (void)SSP_ReadWrite(logical_channel->hw_channel.peripheral, &logical_channel->hw_channel.xfer_config, SSP_TRANSFER_POLLING); //SSP_TRANSFER_INTERRUPT
259
+
260
+  if(!logical_channel->ssel_override) {
261
+    clear_ssel(logical_channel->hw_channel.active_channel);
262
+  }
263
+}
264
+
265
+uint8_t transfer(uint8_t channel, uint8_t value) {
266
+  uint8_t buffer;
267
+  transfer(channel, &value, &buffer, 1);
268
+  return buffer;
269
+}
270
+
271
+/*
272
+ *  Interrupt Handlers
273
+ */
274
+extern "C" void ssp_irq_handler(uint8_t hw_channel) {
275
+
276
+  SSP_DATA_SETUP_Type *xf_setup;
277
+  uint32_t tmp;
278
+  uint8_t dataword;
279
+
280
+  // Disable all SSP interrupts
281
+  SSP_IntConfig(hardware_channels[hw_channel].peripheral, SSP_INTCFG_ROR | SSP_INTCFG_RT | SSP_INTCFG_RX | SSP_INTCFG_TX, DISABLE);
282
+
283
+  dataword = (SSP_GetDataSize(hardware_channels[hw_channel].peripheral) > 8) ? 1 : 0;
284
+
285
+  xf_setup = &hardware_channels[hw_channel].xfer_config;
286
+  // save status
287
+  tmp = SSP_GetRawIntStatusReg(hardware_channels[hw_channel].peripheral);
288
+  xf_setup->status = tmp;
289
+
290
+  // Check overrun error
291
+  if (tmp & SSP_RIS_ROR) {
292
+    // Clear interrupt
293
+    SSP_ClearIntPending(hardware_channels[hw_channel].peripheral, SSP_INTCLR_ROR);
294
+    // update status
295
+    xf_setup->status |= SSP_STAT_ERROR;
296
+    // Set Complete Flag
297
+    hardware_channels[hw_channel].xfer_complete = SET;
298
+    if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
299
+    return;
300
+  }
301
+
302
+  if ((xf_setup->tx_cnt != xf_setup->length) || (xf_setup->rx_cnt != xf_setup->length)) {
303
+    /* check if RX FIFO contains data */
304
+    while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_RXFIFO_NOTEMPTY)) && (xf_setup->rx_cnt != xf_setup->length)) {
305
+      // Read data from SSP data
306
+      tmp = SSP_ReceiveData(hardware_channels[hw_channel].peripheral);
307
+
308
+      // Store data to destination
309
+      if (xf_setup->rx_data != nullptr) {
310
+        if (dataword == 0) {
311
+          *(uint8_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
312
+        } else {
313
+          *(uint16_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
314
+        }
315
+      }
316
+      // Increase counter
317
+      if (dataword == 0) {
318
+        xf_setup->rx_cnt++;
319
+      } else {
320
+        xf_setup->rx_cnt += 2;
321
+      }
322
+    }
323
+
324
+    while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_TXFIFO_NOTFULL)) && (xf_setup->tx_cnt != xf_setup->length)) {
325
+      // Write data to buffer
326
+      if (xf_setup->tx_data == nullptr) {
327
+        if (dataword == 0) {
328
+          SSP_SendData(hardware_channels[hw_channel].peripheral, 0xFF);
329
+          xf_setup->tx_cnt++;
330
+        } else {
331
+          SSP_SendData(hardware_channels[hw_channel].peripheral, 0xFFFF);
332
+          xf_setup->tx_cnt += 2;
333
+        }
334
+      } else {
335
+        if (dataword == 0) {
336
+          SSP_SendData(hardware_channels[hw_channel].peripheral, (*(uint8_t *) ((uint32_t) xf_setup->tx_data + xf_setup->tx_cnt)));
337
+          xf_setup->tx_cnt++;
338
+        } else {
339
+          SSP_SendData(hardware_channels[hw_channel].peripheral, (*(uint16_t *) ((uint32_t) xf_setup->tx_data + xf_setup->tx_cnt)));
340
+          xf_setup->tx_cnt += 2;
341
+        }
342
+      }
343
+
344
+      // Check overrun error
345
+      if (SSP_GetRawIntStatus(hardware_channels[hw_channel].peripheral, SSP_INTSTAT_RAW_ROR)) {
346
+        // update status
347
+        xf_setup->status |= SSP_STAT_ERROR;
348
+        // Set Complete Flag
349
+        hardware_channels[hw_channel].xfer_complete = SET;
350
+        if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
351
+        return;
352
+      }
353
+
354
+      // Check for any data available in RX FIFO
355
+      while ((SSP_GetStatus(hardware_channels[hw_channel].peripheral, SSP_STAT_RXFIFO_NOTEMPTY)) && (xf_setup->rx_cnt != xf_setup->length)) {
356
+        // Read data from SSP data
357
+        tmp = SSP_ReceiveData(hardware_channels[hw_channel].peripheral);
358
+
359
+        // Store data to destination
360
+        if (xf_setup->rx_data != nullptr) {
361
+          if (dataword == 0) {
362
+            *(uint8_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
363
+          } else {
364
+            *(uint16_t *) ((uint32_t) xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
365
+          }
366
+        }
367
+        // Increase counter
368
+        if (dataword == 0) {
369
+          xf_setup->rx_cnt++;
370
+        } else {
371
+          xf_setup->rx_cnt += 2;
372
+        }
373
+      }
374
+    }
375
+  }
376
+
377
+  // If there more data to sent or receive
378
+  if ((xf_setup->rx_cnt != xf_setup->length) || (xf_setup->tx_cnt != xf_setup->length)) {
379
+    // Enable all interrupt
380
+    SSP_IntConfig(hardware_channels[hw_channel].peripheral, SSP_INTCFG_ROR | SSP_INTCFG_RT | SSP_INTCFG_RX | SSP_INTCFG_TX, ENABLE);
381
+  } else {
382
+    // Save status
383
+    xf_setup->status = SSP_STAT_DONE;
384
+    // Set Complete Flag
385
+    hardware_channels[hw_channel].xfer_complete = SET;
386
+    if(!hardware_channels[hw_channel].active_channel->ssel_override) clear_ssel(hardware_channels[hw_channel].active_channel);
387
+  }
388
+}
389
+
390
+}
391
+}
392
+
393
+extern "C" void SSP0_IRQHandler(void) {
394
+  HAL::SPI::ssp_irq_handler(0);
395
+}
396
+
397
+extern "C" void SSP1_IRQHandler(void) {
398
+  HAL::SPI::ssp_irq_handler(1);
399
+}
400
+
401
+
402
+#endif

+ 6
- 1
Marlin/src/HAL/HAL_LPC1768/spi_pins.h Ver fichero

@@ -21,7 +21,12 @@
21 21
 #ifndef SPI_PINS_LPC1768_H
22 22
 #define SPI_PINS_LPC1768_H
23 23
 
24
-#define SOFTWARE_SPI
24
+//new config options
25
+#define SD_SPI_CHANNEL (HAL::SPI::CHANNEL_2)
26
+#define LCD_SPI_FREQUENCY 4000000
27
+#define LCD_SPI_CHANNEL (HAL::SPI::CHANNEL_1)
28
+
29
+//#define SOFTWARE_SPI
25 30
 /** onboard SD card */
26 31
 //#define SCK_PIN           P0_7
27 32
 //#define MISO_PIN          P0_8

+ 46
- 0
Marlin/src/HAL/spi_api.h Ver fichero

@@ -0,0 +1,46 @@
1
+#ifndef _SPI_API_H_
2
+#define _SPI_API_H_
3
+
4
+#include <stdint.h>
5
+#include "HAL_spi_pins.h"
6
+
7
+namespace HAL {
8
+namespace SPI {
9
+
10
+enum SPI_CHANNELS {
11
+  CHANNEL_0 = 0,
12
+  CHANNEL_1,
13
+  CHANNEL_2,
14
+  CHANNEL_3,
15
+  CHANNEL_4,
16
+  CHANNEL_5
17
+};
18
+
19
+/*
20
+ * Initialise the hardware layer (pins and peripheral)
21
+ */
22
+bool initialise(uint8_t channel);
23
+
24
+/*
25
+ * Allow override of automatic Chip Select
26
+ */
27
+bool enable_cs(uint8_t channel);
28
+void disable_cs(uint8_t channel);
29
+
30
+
31
+void set_frequency(uint8_t channel, uint32_t frequency);
32
+
33
+void read(uint8_t channel, uint8_t *buffer, uint32_t length);
34
+uint8_t read(uint8_t channel);
35
+
36
+void write(uint8_t channel, const uint8_t *buffer, uint32_t length);
37
+void write(uint8_t channel, uint8_t value);
38
+
39
+void transfer(uint8_t channel, const uint8_t *buffer_write, uint8_t *buffer_read, uint32_t length);
40
+uint8_t transfer(uint8_t channel, uint8_t value);
41
+
42
+}
43
+}
44
+
45
+
46
+#endif /* _SPI_API_H_ */

Loading…
Cancelar
Guardar