|
@@ -23,23 +23,23 @@
|
23
|
23
|
|
24
|
24
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
25
|
25
|
|
26
|
|
- #include "../bedlevel.h"
|
27
|
|
- #include "../../../module/planner.h"
|
28
|
|
- #include "../../../module/stepper.h"
|
29
|
|
- #include "../../../module/motion.h"
|
|
26
|
+#include "../bedlevel.h"
|
|
27
|
+#include "../../../module/planner.h"
|
|
28
|
+#include "../../../module/stepper.h"
|
|
29
|
+#include "../../../module/motion.h"
|
30
|
30
|
|
31
|
|
- #if ENABLED(DELTA)
|
32
|
|
- #include "../../../module/delta.h"
|
33
|
|
- #endif
|
|
31
|
+#if ENABLED(DELTA)
|
|
32
|
+ #include "../../../module/delta.h"
|
|
33
|
+#endif
|
34
|
34
|
|
35
|
|
- #include "../../../Marlin.h"
|
36
|
|
- #include <math.h>
|
|
35
|
+#include "../../../Marlin.h"
|
|
36
|
+#include <math.h>
|
37
|
37
|
|
38
|
|
- #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
39
|
|
- inline void set_current_from_destination() { COPY(current_position, destination); }
|
40
|
|
- #else
|
41
|
|
- extern void set_current_from_destination();
|
42
|
|
- #endif
|
|
38
|
+#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
39
|
+ inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
40
|
+#else
|
|
41
|
+ extern void set_current_from_destination();
|
|
42
|
+#endif
|
43
|
43
|
|
44
|
44
|
#if !UBL_SEGMENTED
|
45
|
45
|
|
|
@@ -409,219 +409,219 @@
|
409
|
409
|
|
410
|
410
|
#else // UBL_SEGMENTED
|
411
|
411
|
|
412
|
|
- #if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
413
|
|
- static float scara_feed_factor, scara_oldA, scara_oldB;
|
|
412
|
+ #if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
413
|
+ static float scara_feed_factor, scara_oldA, scara_oldB;
|
|
414
|
+ #endif
|
|
415
|
+
|
|
416
|
+ // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
417
|
+ // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
418
|
+
|
|
419
|
+ inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
|
|
420
|
+
|
|
421
|
+ #if ENABLED(SKEW_CORRECTION)
|
|
422
|
+ float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
|
|
423
|
+ planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
|
424
|
+ #else
|
|
425
|
+ const float (&raw)[XYZE] = in_raw;
|
414
|
426
|
#endif
|
415
|
427
|
|
416
|
|
- // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
417
|
|
- // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
428
|
+ #if ENABLED(DELTA) // apply delta inverse_kinematics
|
418
|
429
|
|
419
|
|
- inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
|
|
430
|
+ DELTA_RAW_IK();
|
|
431
|
+ planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
|
420
|
432
|
|
421
|
|
- #if ENABLED(SKEW_CORRECTION)
|
422
|
|
- float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
|
423
|
|
- planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
424
|
|
- #else
|
425
|
|
- const float (&raw)[XYZE] = in_raw;
|
426
|
|
- #endif
|
|
433
|
+ #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
427
|
434
|
|
428
|
|
- #if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
435
|
+ inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
436
|
+ // should move the feedrate scaling to scara inverse_kinematics
|
429
|
437
|
|
430
|
|
- DELTA_RAW_IK();
|
431
|
|
- planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
|
|
438
|
+ const float adiff = FABS(delta[A_AXIS] - scara_oldA),
|
|
439
|
+ bdiff = FABS(delta[B_AXIS] - scara_oldB);
|
|
440
|
+ scara_oldA = delta[A_AXIS];
|
|
441
|
+ scara_oldB = delta[B_AXIS];
|
|
442
|
+ float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
432
|
443
|
|
433
|
|
- #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
444
|
+ planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
|
434
|
445
|
|
435
|
|
- inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
436
|
|
- // should move the feedrate scaling to scara inverse_kinematics
|
|
446
|
+ #else // CARTESIAN
|
437
|
447
|
|
438
|
|
- const float adiff = FABS(delta[A_AXIS] - scara_oldA),
|
439
|
|
- bdiff = FABS(delta[B_AXIS] - scara_oldB);
|
440
|
|
- scara_oldA = delta[A_AXIS];
|
441
|
|
- scara_oldB = delta[B_AXIS];
|
442
|
|
- float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
|
448
|
+ planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
|
443
|
449
|
|
444
|
|
- planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
|
|
450
|
+ #endif
|
|
451
|
+ }
|
445
|
452
|
|
446
|
|
- #else // CARTESIAN
|
|
453
|
+ #if IS_SCARA
|
|
454
|
+ #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
|
455
|
+ #elif ENABLED(DELTA)
|
|
456
|
+ #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
|
457
|
+ #else // CARTESIAN
|
|
458
|
+ #ifdef LEVELED_SEGMENT_LENGTH
|
|
459
|
+ #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
|
|
460
|
+ #else
|
|
461
|
+ #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
|
462
|
+ #endif
|
|
463
|
+ #endif
|
447
|
464
|
|
448
|
|
- planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
|
|
465
|
+ /**
|
|
466
|
+ * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
|
467
|
+ * This calls planner.buffer_segment multiple times for small incremental moves.
|
|
468
|
+ * Returns true if did NOT move, false if moved (requires current_position update).
|
|
469
|
+ */
|
449
|
470
|
|
450
|
|
- #endif
|
451
|
|
- }
|
|
471
|
+ bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
|
452
|
472
|
|
453
|
|
- #if IS_SCARA
|
454
|
|
- #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
455
|
|
- #elif ENABLED(DELTA)
|
456
|
|
- #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
457
|
|
- #else // CARTESIAN
|
458
|
|
- #ifdef LEVELED_SEGMENT_LENGTH
|
459
|
|
- #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
|
460
|
|
- #else
|
461
|
|
- #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
462
|
|
- #endif
|
|
473
|
+ if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
474
|
+ return true; // did not move, so current_position still accurate
|
|
475
|
+
|
|
476
|
+ const float total[XYZE] = {
|
|
477
|
+ rtarget[X_AXIS] - current_position[X_AXIS],
|
|
478
|
+ rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
479
|
+ rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
480
|
+ rtarget[E_AXIS] - current_position[E_AXIS]
|
|
481
|
+ };
|
|
482
|
+
|
|
483
|
+ const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
484
|
+
|
|
485
|
+ #if IS_KINEMATIC
|
|
486
|
+ const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
487
|
+ uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
|
488
|
+ seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
|
489
|
+ NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
|
490
|
+ #else
|
|
491
|
+ uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
463
|
492
|
#endif
|
464
|
493
|
|
465
|
|
- /**
|
466
|
|
- * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
467
|
|
- * This calls planner.buffer_segment multiple times for small incremental moves.
|
468
|
|
- * Returns true if did NOT move, false if moved (requires current_position update).
|
469
|
|
- */
|
|
494
|
+ NOLESS(segments, 1); // must have at least one segment
|
|
495
|
+ const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
470
|
496
|
|
471
|
|
- bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
|
472
|
|
-
|
473
|
|
- if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
474
|
|
- return true; // did not move, so current_position still accurate
|
475
|
|
-
|
476
|
|
- const float total[XYZE] = {
|
477
|
|
- rtarget[X_AXIS] - current_position[X_AXIS],
|
478
|
|
- rtarget[Y_AXIS] - current_position[Y_AXIS],
|
479
|
|
- rtarget[Z_AXIS] - current_position[Z_AXIS],
|
480
|
|
- rtarget[E_AXIS] - current_position[E_AXIS]
|
481
|
|
- };
|
482
|
|
-
|
483
|
|
- const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
484
|
|
-
|
485
|
|
- #if IS_KINEMATIC
|
486
|
|
- const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
487
|
|
- uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
488
|
|
- seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
489
|
|
- NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
490
|
|
- #else
|
491
|
|
- uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
492
|
|
- #endif
|
493
|
|
-
|
494
|
|
- NOLESS(segments, 1); // must have at least one segment
|
495
|
|
- const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
496
|
|
-
|
497
|
|
- #if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
498
|
|
- scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
|
499
|
|
- scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
|
500
|
|
- scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
501
|
|
- #endif
|
502
|
|
-
|
503
|
|
- const float diff[XYZE] = {
|
504
|
|
- total[X_AXIS] * inv_segments,
|
505
|
|
- total[Y_AXIS] * inv_segments,
|
506
|
|
- total[Z_AXIS] * inv_segments,
|
507
|
|
- total[E_AXIS] * inv_segments
|
508
|
|
- };
|
509
|
|
-
|
510
|
|
- // Note that E segment distance could vary slightly as z mesh height
|
511
|
|
- // changes for each segment, but small enough to ignore.
|
512
|
|
-
|
513
|
|
- float raw[XYZE] = {
|
514
|
|
- current_position[X_AXIS],
|
515
|
|
- current_position[Y_AXIS],
|
516
|
|
- current_position[Z_AXIS],
|
517
|
|
- current_position[E_AXIS]
|
518
|
|
- };
|
519
|
|
-
|
520
|
|
- // Only compute leveling per segment if ubl active and target below z_fade_height.
|
521
|
|
- if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
522
|
|
- while (--segments) {
|
523
|
|
- LOOP_XYZE(i) raw[i] += diff[i];
|
524
|
|
- ubl_buffer_segment_raw(raw, feedrate);
|
525
|
|
- }
|
526
|
|
- ubl_buffer_segment_raw(rtarget, feedrate);
|
527
|
|
- return false; // moved but did not set_current_from_destination();
|
|
497
|
+ #if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
498
|
+ scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
|
|
499
|
+ scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
|
|
500
|
+ scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
501
|
+ #endif
|
|
502
|
+
|
|
503
|
+ const float diff[XYZE] = {
|
|
504
|
+ total[X_AXIS] * inv_segments,
|
|
505
|
+ total[Y_AXIS] * inv_segments,
|
|
506
|
+ total[Z_AXIS] * inv_segments,
|
|
507
|
+ total[E_AXIS] * inv_segments
|
|
508
|
+ };
|
|
509
|
+
|
|
510
|
+ // Note that E segment distance could vary slightly as z mesh height
|
|
511
|
+ // changes for each segment, but small enough to ignore.
|
|
512
|
+
|
|
513
|
+ float raw[XYZE] = {
|
|
514
|
+ current_position[X_AXIS],
|
|
515
|
+ current_position[Y_AXIS],
|
|
516
|
+ current_position[Z_AXIS],
|
|
517
|
+ current_position[E_AXIS]
|
|
518
|
+ };
|
|
519
|
+
|
|
520
|
+ // Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
521
|
+ if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
522
|
+ while (--segments) {
|
|
523
|
+ LOOP_XYZE(i) raw[i] += diff[i];
|
|
524
|
+ ubl_buffer_segment_raw(raw, feedrate);
|
528
|
525
|
}
|
|
526
|
+ ubl_buffer_segment_raw(rtarget, feedrate);
|
|
527
|
+ return false; // moved but did not set_current_from_destination();
|
|
528
|
+ }
|
529
|
529
|
|
530
|
|
- // Otherwise perform per-segment leveling
|
|
530
|
+ // Otherwise perform per-segment leveling
|
531
|
531
|
|
532
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
533
|
|
- const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
|
534
|
|
- #endif
|
|
532
|
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
533
|
+ const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
|
|
534
|
+ #endif
|
535
|
535
|
|
536
|
|
- // increment to first segment destination
|
537
|
|
- LOOP_XYZE(i) raw[i] += diff[i];
|
|
536
|
+ // increment to first segment destination
|
|
537
|
+ LOOP_XYZE(i) raw[i] += diff[i];
|
538
|
538
|
|
539
|
|
- for(;;) { // for each mesh cell encountered during the move
|
|
539
|
+ for(;;) { // for each mesh cell encountered during the move
|
540
|
540
|
|
541
|
|
- // Compute mesh cell invariants that remain constant for all segments within cell.
|
542
|
|
- // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
543
|
|
- // the bilinear interpolation from the adjacent cell within the mesh will still work.
|
544
|
|
- // Inner loop will exit each time (because out of cell bounds) but will come back
|
545
|
|
- // in top of loop and again re-find same adjacent cell and use it, just less efficient
|
546
|
|
- // for mesh inset area.
|
|
541
|
+ // Compute mesh cell invariants that remain constant for all segments within cell.
|
|
542
|
+ // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
543
|
+ // the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
544
|
+ // Inner loop will exit each time (because out of cell bounds) but will come back
|
|
545
|
+ // in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
546
|
+ // for mesh inset area.
|
547
|
547
|
|
548
|
|
- int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
549
|
|
- cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
548
|
+ int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
549
|
+ cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
550
|
550
|
|
551
|
|
- cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
552
|
|
- cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
551
|
+ cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
|
552
|
+ cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
553
|
553
|
|
554
|
|
- const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
555
|
|
- y0 = mesh_index_to_ypos(cell_yi);
|
|
554
|
+ const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
|
555
|
+ y0 = mesh_index_to_ypos(cell_yi);
|
556
|
556
|
|
557
|
|
- float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
558
|
|
- z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
559
|
|
- z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
560
|
|
- z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
|
557
|
+ float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
|
558
|
+ z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
|
559
|
+ z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
|
560
|
+ z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
561
|
561
|
|
562
|
|
- if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
563
|
|
- if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
564
|
|
- if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
565
|
|
- if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
562
|
+ if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
563
|
+ if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
564
|
+ if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
565
|
+ if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
566
|
566
|
|
567
|
|
- float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
568
|
|
- cy = raw[Y_AXIS] - y0;
|
|
567
|
+ float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
568
|
+ cy = raw[Y_AXIS] - y0;
|
569
|
569
|
|
570
|
|
- const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
571
|
|
- z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
570
|
+ const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
571
|
+ z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
572
|
572
|
|
573
|
|
- float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
|
573
|
+ float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
574
|
574
|
|
575
|
|
- const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
576
|
|
- z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
|
575
|
+ const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
|
576
|
+ z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
577
|
577
|
|
578
|
|
- float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
|
578
|
+ float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
579
|
579
|
|
580
|
|
- // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
|
580
|
+ // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
581
|
581
|
|
582
|
|
- // As subsequent segments step through this cell, the z_cxy0 intercept will change
|
583
|
|
- // and the z_cxym slope will change, both as a function of cx within the cell, and
|
584
|
|
- // each change by a constant for fixed segment lengths.
|
|
582
|
+ // As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
583
|
+ // and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
584
|
+ // each change by a constant for fixed segment lengths.
|
585
|
585
|
|
586
|
|
- const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
587
|
|
- z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
586
|
+ const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
587
|
+ z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
588
|
588
|
|
589
|
|
- for(;;) { // for all segments within this mesh cell
|
|
589
|
+ for(;;) { // for all segments within this mesh cell
|
590
|
590
|
|
591
|
|
- if (--segments == 0) // if this is last segment, use rtarget for exact
|
592
|
|
- COPY(raw, rtarget);
|
|
591
|
+ if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
592
|
+ COPY(raw, rtarget);
|
593
|
593
|
|
594
|
|
- const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
595
|
|
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
596
|
|
- * fade_scaling_factor // apply fade factor to interpolated mesh height
|
597
|
|
- #endif
|
598
|
|
- ;
|
|
594
|
+ const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
|
595
|
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
596
|
+ * fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
597
|
+ #endif
|
|
598
|
+ ;
|
599
|
599
|
|
600
|
|
- const float z = raw[Z_AXIS];
|
601
|
|
- raw[Z_AXIS] += z_cxcy;
|
602
|
|
- ubl_buffer_segment_raw(raw, feedrate);
|
603
|
|
- raw[Z_AXIS] = z;
|
|
600
|
+ const float z = raw[Z_AXIS];
|
|
601
|
+ raw[Z_AXIS] += z_cxcy;
|
|
602
|
+ ubl_buffer_segment_raw(raw, feedrate);
|
|
603
|
+ raw[Z_AXIS] = z;
|
604
|
604
|
|
605
|
|
- if (segments == 0) // done with last segment
|
606
|
|
- return false; // did not set_current_from_destination()
|
|
605
|
+ if (segments == 0) // done with last segment
|
|
606
|
+ return false; // did not set_current_from_destination()
|
607
|
607
|
|
608
|
|
- LOOP_XYZE(i) raw[i] += diff[i];
|
|
608
|
+ LOOP_XYZE(i) raw[i] += diff[i];
|
609
|
609
|
|
610
|
|
- cx += diff[X_AXIS];
|
611
|
|
- cy += diff[Y_AXIS];
|
|
610
|
+ cx += diff[X_AXIS];
|
|
611
|
+ cy += diff[Y_AXIS];
|
612
|
612
|
|
613
|
|
- if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
614
|
|
- break;
|
|
613
|
+ if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
614
|
+ break;
|
615
|
615
|
|
616
|
|
- // Next segment still within same mesh cell, adjust the per-segment
|
617
|
|
- // slope and intercept to compute next z height.
|
|
616
|
+ // Next segment still within same mesh cell, adjust the per-segment
|
|
617
|
+ // slope and intercept to compute next z height.
|
618
|
618
|
|
619
|
|
- z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
620
|
|
- z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
619
|
+ z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
620
|
+ z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
621
|
621
|
|
622
|
|
- } // segment loop
|
623
|
|
- } // cell loop
|
624
|
|
- }
|
|
622
|
+ } // segment loop
|
|
623
|
+ } // cell loop
|
|
624
|
+ }
|
625
|
625
|
|
626
|
626
|
#endif // UBL_SEGMENTED
|
627
|
627
|
|