Browse Source

Merge pull request #8612 from thinkyhead/bf2_planner_parity

[2.0.x] Fix some planner bugs
Scott Lahteine 7 years ago
parent
commit
e3948d8582
No account linked to committer's email address
2 changed files with 100 additions and 182 deletions
  1. 91
    169
      Marlin/src/module/planner.cpp
  2. 9
    13
      Marlin/src/module/planner.h

+ 91
- 169
Marlin/src/module/planner.cpp View File

105
 
105
 
106
 int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
106
 int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
107
 
107
 
108
-// Initialized by settings.load()
109
-float Planner::e_factor[EXTRUDERS],              // The flow percentage and volumetric multiplier combine to scale E movement
110
-      Planner::filament_size[EXTRUDERS],         // As a baseline for the multiplier, filament diameter
108
+float Planner::e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
109
+      Planner::filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
111
       Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
110
       Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
112
-      Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
111
+      Planner::volumetric_multiplier[EXTRUDERS];  // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
113
 
112
 
114
 uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
113
 uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
115
          Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
114
          Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
129
   #if ABL_PLANAR
128
   #if ABL_PLANAR
130
     matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
129
     matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
131
   #endif
130
   #endif
132
-#endif
133
-
134
-#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
135
-  float Planner::z_fade_height, // Initialized by settings.load()
136
-        Planner::inverse_z_fade_height,
137
-        Planner::last_fade_z;
131
+  #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
132
+    float Planner::z_fade_height,      // Initialized by settings.load()
133
+          Planner::inverse_z_fade_height,
134
+          Planner::last_fade_z;
135
+  #endif
138
 #endif
136
 #endif
139
 
137
 
140
 #if ENABLED(AUTOTEMP)
138
 #if ENABLED(AUTOTEMP)
146
 
144
 
147
 // private:
145
 // private:
148
 
146
 
149
-long Planner::position[NUM_AXIS] = { 0 };
147
+int32_t Planner::position[NUM_AXIS] = { 0 };
150
 
148
 
151
 uint32_t Planner::cutoff_long;
149
 uint32_t Planner::cutoff_long;
152
 
150
 
166
 
164
 
167
 #if ENABLED(LIN_ADVANCE)
165
 #if ENABLED(LIN_ADVANCE)
168
   float Planner::extruder_advance_k, // Initialized by settings.load()
166
   float Planner::extruder_advance_k, // Initialized by settings.load()
169
-        Planner::advance_ed_ratio,   // Initialized by settings.load()
170
-        Planner::position_float[NUM_AXIS] = { 0 };
167
+        Planner::advance_ed_ratio;   // Initialized by settings.load()
171
 #endif
168
 #endif
172
 
169
 
173
 #if ENABLED(ULTRA_LCD)
170
 #if ENABLED(ULTRA_LCD)
183
 void Planner::init() {
180
 void Planner::init() {
184
   block_buffer_head = block_buffer_tail = 0;
181
   block_buffer_head = block_buffer_tail = 0;
185
   ZERO(position);
182
   ZERO(position);
186
-  #if ENABLED(LIN_ADVANCE)
187
-    ZERO(position_float);
188
-  #endif
189
   ZERO(previous_speed);
183
   ZERO(previous_speed);
190
   previous_nominal_speed = 0.0;
184
   previous_nominal_speed = 0.0;
191
   #if ABL_PLANAR
185
   #if ABL_PLANAR
571
    */
565
    */
572
   void Planner::apply_leveling(float &rx, float &ry, float &rz) {
566
   void Planner::apply_leveling(float &rx, float &ry, float &rz) {
573
 
567
 
574
-    if (!planner.leveling_active) return;
575
-
576
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
577
-      const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
578
-      if (!fade_scaling_factor) return;
579
-    #else
580
-      constexpr float fade_scaling_factor = 1.0;
581
-    #endif
568
+    if (!leveling_active) return;
582
 
569
 
583
-    #if ENABLED(AUTO_BED_LEVELING_UBL)
584
-
585
-      rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
586
-
587
-    #elif ENABLED(MESH_BED_LEVELING)
588
-
589
-      rz += mbl.get_z(rx, ry
590
-        #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
591
-          , fade_scaling_factor
592
-        #endif
593
-      );
594
-
595
-    #elif ABL_PLANAR
596
-
597
-      UNUSED(fade_scaling_factor);
570
+    #if ABL_PLANAR
598
 
571
 
599
       float dx = rx - (X_TILT_FULCRUM),
572
       float dx = rx - (X_TILT_FULCRUM),
600
             dy = ry - (Y_TILT_FULCRUM);
573
             dy = ry - (Y_TILT_FULCRUM);
604
       rx = dx + X_TILT_FULCRUM;
577
       rx = dx + X_TILT_FULCRUM;
605
       ry = dy + Y_TILT_FULCRUM;
578
       ry = dy + Y_TILT_FULCRUM;
606
 
579
 
607
-    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
608
-
609
-      float tmp[XYZ] = { rx, ry, 0 };
610
-      rz += bilinear_z_offset(tmp) * fade_scaling_factor;
611
-
612
-    #endif
613
-  }
614
-
615
-  void Planner::unapply_leveling(float raw[XYZ]) {
616
-
617
-    if (!planner.leveling_active) return;
618
-
619
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
620
-      if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return;
621
-    #endif
622
-
623
-    #if ENABLED(AUTO_BED_LEVELING_UBL)
624
-
625
-      const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]);
626
-            float z_raw = raw[Z_AXIS] - z_correct;
580
+    #else
627
 
581
 
628
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
582
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
583
+        const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
584
+        if (!fade_scaling_factor) return;
585
+      #elif HAS_MESH
586
+        constexpr float fade_scaling_factor = 1.0;
587
+      #endif
629
 
588
 
630
-        // for P=physical_z, L=raw_z, M=mesh_z, H=fade_height,
631
-        // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
632
-        //  then L=P-M(1-L/H)
633
-        //    so L=P-M+ML/H
634
-        //    so L-ML/H=P-M
635
-        //    so L(1-M/H)=P-M
636
-        //    so L=(P-M)/(1-M/H) for L<H
637
-
638
-        if (planner.z_fade_height) {
639
-          if (z_raw >= planner.z_fade_height)
640
-            z_raw = raw[Z_AXIS];
641
-          else
642
-            z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
643
-        }
589
+      #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
590
+        const float raw[XYZ] = { rx, ry, 0 };
591
+      #endif
644
 
592
 
645
-      #endif // ENABLE_LEVELING_FADE_HEIGHT
593
+      rz += (
594
+        #if ENABLED(AUTO_BED_LEVELING_UBL)
595
+          ubl.get_z_correction(rx, ry) * fade_scaling_factor
596
+        #elif ENABLED(MESH_BED_LEVELING)
597
+          mbl.get_z(rx, ry
598
+            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
599
+              , fade_scaling_factor
600
+            #endif
601
+          )
602
+        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
603
+          bilinear_z_offset(raw) * fade_scaling_factor
604
+        #else
605
+          0
606
+        #endif
607
+      );
646
 
608
 
647
-      raw[Z_AXIS] = z_raw;
609
+    #endif
610
+  }
648
 
611
 
649
-    #elif ENABLED(MESH_BED_LEVELING)
612
+  void Planner::unapply_leveling(float raw[XYZ]) {
650
 
613
 
651
-      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
652
-        const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
653
-        raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c);
654
-      #else
655
-        raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
656
-      #endif
614
+    if (!leveling_active) return;
657
 
615
 
658
-    #elif ABL_PLANAR
616
+    #if ABL_PLANAR
659
 
617
 
660
       matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
618
       matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
661
 
619
 
662
       float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
620
       float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
663
-            dy = raw[Y_AXIS] - (Y_TILT_FULCRUM),
664
-            dz = raw[Z_AXIS];
621
+            dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
665
 
622
 
666
-      apply_rotation_xyz(inverse, dx, dy, dz);
623
+      apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
667
 
624
 
668
       raw[X_AXIS] = dx + X_TILT_FULCRUM;
625
       raw[X_AXIS] = dx + X_TILT_FULCRUM;
669
       raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
626
       raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
670
-      raw[Z_AXIS] = dz;
671
 
627
 
672
-    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
628
+    #else
673
 
629
 
674
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
630
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
675
-        const float c = bilinear_z_offset(raw);
676
-        raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
677
-      #else
678
-        raw[Z_AXIS] -= bilinear_z_offset(raw);
631
+        const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
632
+        if (!fade_scaling_factor) return;
633
+      #elif HAS_MESH
634
+        constexpr float fade_scaling_factor = 1.0;
679
       #endif
635
       #endif
680
 
636
 
637
+      raw[Z_AXIS] -= (
638
+        #if ENABLED(AUTO_BED_LEVELING_UBL)
639
+          ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
640
+        #elif ENABLED(MESH_BED_LEVELING)
641
+          mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
642
+            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
643
+              , fade_scaling_factor
644
+            #endif
645
+          )
646
+        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
647
+          bilinear_z_offset(raw) * fade_scaling_factor
648
+        #else
649
+          0
650
+        #endif
651
+      );
652
+
681
     #endif
653
     #endif
682
   }
654
   }
683
 
655
 
714
     }
686
     }
715
   #endif
687
   #endif
716
 
688
 
717
-  #if ENABLED(LIN_ADVANCE)
718
-    const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
719
-  #endif
720
-
721
-  const long da = target[X_AXIS] - position[X_AXIS],
722
-             db = target[Y_AXIS] - position[Y_AXIS],
723
-             dc = target[Z_AXIS] - position[Z_AXIS];
689
+  const int32_t da = target[X_AXIS] - position[X_AXIS],
690
+                db = target[Y_AXIS] - position[Y_AXIS],
691
+                dc = target[Z_AXIS] - position[Z_AXIS];
724
 
692
 
725
   /*
693
   /*
726
   SERIAL_ECHOPAIR("  Planner FR:", fr_mm_s);
694
   SERIAL_ECHOPAIR("  Planner FR:", fr_mm_s);
745
   SERIAL_EOL();
713
   SERIAL_EOL();
746
   //*/
714
   //*/
747
 
715
 
748
-  // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
749
-  if (DEBUGGING(DRYRUN)) {
750
-    position[E_AXIS] = target[E_AXIS];
751
-    #if ENABLED(LIN_ADVANCE)
752
-      position_float[E_AXIS] = e;
753
-    #endif
754
-  }
755
-
756
-  long de = target[E_AXIS] - position[E_AXIS];
757
-
758
-  #if ENABLED(LIN_ADVANCE)
759
-    float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
760
-  #endif
716
+  int32_t de = target[E_AXIS] - position[E_AXIS];
761
 
717
 
762
   #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
718
   #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
763
     if (de) {
719
     if (de) {
765
         if (thermalManager.tooColdToExtrude(extruder)) {
721
         if (thermalManager.tooColdToExtrude(extruder)) {
766
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
722
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
767
           de = 0; // no difference
723
           de = 0; // no difference
768
-          #if ENABLED(LIN_ADVANCE)
769
-            position_float[E_AXIS] = e;
770
-            de_float = 0;
771
-          #endif
772
           SERIAL_ECHO_START();
724
           SERIAL_ECHO_START();
773
           SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
725
           SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
774
         }
726
         }
777
         if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
729
         if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
778
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
730
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
779
           de = 0; // no difference
731
           de = 0; // no difference
780
-          #if ENABLED(LIN_ADVANCE)
781
-            position_float[E_AXIS] = e;
782
-            de_float = 0;
783
-          #endif
784
           SERIAL_ECHO_START();
732
           SERIAL_ECHO_START();
785
           SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
733
           SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
786
         }
734
         }
1060
       #endif
1008
       #endif
1061
     );
1009
     );
1062
   }
1010
   }
1063
-  const float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
1011
+  float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
1064
 
1012
 
1065
   // Calculate moves/second for this move. No divide by zero due to previous checks.
1013
   // Calculate moves/second for this move. No divide by zero due to previous checks.
1066
   float inverse_mm_s = fr_mm_s * inverse_millimeters;
1014
   float inverse_mm_s = fr_mm_s * inverse_millimeters;
1384
   previous_safe_speed = safe_speed;
1332
   previous_safe_speed = safe_speed;
1385
 
1333
 
1386
   #if ENABLED(LIN_ADVANCE)
1334
   #if ENABLED(LIN_ADVANCE)
1387
-
1388
-    //
1389
-    // Use LIN_ADVANCE for blocks if all these are true:
1390
-    //
1391
-    // esteps                                          : We have E steps todo (a printing move)
1392
-    //
1393
-    // block->steps[X_AXIS] || block->steps[Y_AXIS]    : We have a movement in XY direction (i.e., not retract / prime).
1394
-    //
1395
-    // extruder_advance_k                              : There is an advance factor set.
1396
-    //
1397
-    // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
1398
-    //                                                   In that case, the retract and move will be executed together.
1399
-    //                                                   This leads to too many advance steps due to a huge e_acceleration.
1400
-    //                                                   The math is good, but we must avoid retract moves with advance!
1401
-    // de_float > 0.0                                  : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
1402
-    //
1403
-    block->use_advance_lead =  esteps
1404
-                            && (block->steps[X_AXIS] || block->steps[Y_AXIS])
1335
+    /**
1336
+     *
1337
+     * Use LIN_ADVANCE for blocks if all these are true:
1338
+     *
1339
+     * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
1340
+     *
1341
+     * extruder_advance_k                 : There is an advance factor set.
1342
+     *
1343
+     * esteps != block->step_event_count  : A problem occurs if the move before a retract is too small.
1344
+     *                                      In that case, the retract and move will be executed together.
1345
+     *                                      This leads to too many advance steps due to a huge e_acceleration.
1346
+     *                                      The math is good, but we must avoid retract moves with advance!
1347
+     * de > 0                             : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
1348
+     */
1349
+    block->use_advance_lead =  esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
1405
                             && extruder_advance_k
1350
                             && extruder_advance_k
1406
                             && (uint32_t)esteps != block->step_event_count
1351
                             && (uint32_t)esteps != block->step_event_count
1407
-                            && de_float > 0.0;
1352
+                            && de > 0;
1408
     if (block->use_advance_lead)
1353
     if (block->use_advance_lead)
1409
       block->abs_adv_steps_multiplier8 = LROUND(
1354
       block->abs_adv_steps_multiplier8 = LROUND(
1410
         extruder_advance_k
1355
         extruder_advance_k
1411
-        * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
1356
+        * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
1412
         * (block->nominal_speed / (float)block->nominal_rate)
1357
         * (block->nominal_speed / (float)block->nominal_rate)
1413
         * axis_steps_per_mm[E_AXIS_N] * 256.0
1358
         * axis_steps_per_mm[E_AXIS_N] * 256.0
1414
       );
1359
       );
1422
 
1367
 
1423
   // Update the position (only when a move was queued)
1368
   // Update the position (only when a move was queued)
1424
   COPY(position, target);
1369
   COPY(position, target);
1425
-  #if ENABLED(LIN_ADVANCE)
1426
-    position_float[X_AXIS] = a;
1427
-    position_float[Y_AXIS] = b;
1428
-    position_float[Z_AXIS] = c;
1429
-    position_float[E_AXIS] = e;
1430
-  #endif
1431
 
1370
 
1432
   recalculate();
1371
   recalculate();
1433
 
1372
 
1449
   #else
1388
   #else
1450
     #define _EINDEX E_AXIS
1389
     #define _EINDEX E_AXIS
1451
   #endif
1390
   #endif
1452
-  const long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
1453
-             nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
1454
-             nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
1455
-             ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
1456
-  #if ENABLED(LIN_ADVANCE)
1457
-    position_float[X_AXIS] = a;
1458
-    position_float[Y_AXIS] = b;
1459
-    position_float[Z_AXIS] = c;
1460
-    position_float[E_AXIS] = e;
1461
-  #endif
1391
+  const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
1392
+                nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
1393
+                nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
1394
+                ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
1462
   stepper.set_position(na, nb, nc, ne);
1395
   stepper.set_position(na, nb, nc, ne);
1463
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
1396
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
1464
   ZERO(previous_speed);
1397
   ZERO(previous_speed);
1483
  * Sync from the stepper positions. (e.g., after an interrupted move)
1416
  * Sync from the stepper positions. (e.g., after an interrupted move)
1484
  */
1417
  */
1485
 void Planner::sync_from_steppers() {
1418
 void Planner::sync_from_steppers() {
1486
-  LOOP_XYZE(i) {
1419
+  LOOP_XYZE(i)
1487
     position[i] = stepper.position((AxisEnum)i);
1420
     position[i] = stepper.position((AxisEnum)i);
1488
-    #if ENABLED(LIN_ADVANCE)
1489
-      position_float[i] = position[i] * steps_to_mm[i
1490
-        #if ENABLED(DISTINCT_E_FACTORS)
1491
-          + (i == E_AXIS ? active_extruder : 0)
1492
-        #endif
1493
-      ];
1494
-    #endif
1495
-  }
1496
 }
1421
 }
1497
 
1422
 
1498
 /**
1423
 /**
1506
     const uint8_t axis_index = axis;
1431
     const uint8_t axis_index = axis;
1507
   #endif
1432
   #endif
1508
   position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
1433
   position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
1509
-  #if ENABLED(LIN_ADVANCE)
1510
-    position_float[axis] = v;
1511
-  #endif
1512
   stepper.set_position(axis, v);
1434
   stepper.set_position(axis, v);
1513
   previous_speed[axis] = 0.0;
1435
   previous_speed[axis] = 0.0;
1514
 }
1436
 }

+ 9
- 13
Marlin/src/module/planner.h View File

144
       static uint8_t last_extruder;             // Respond to extruder change
144
       static uint8_t last_extruder;             // Respond to extruder change
145
     #endif
145
     #endif
146
 
146
 
147
-    static int16_t flow_percentage[EXTRUDERS];  // Extrusion factor for each extruder
147
+    static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
148
 
148
 
149
     static float e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
149
     static float e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
150
                  filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
150
                  filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
167
                  min_travel_feedrate_mm_s;
167
                  min_travel_feedrate_mm_s;
168
 
168
 
169
     #if HAS_LEVELING
169
     #if HAS_LEVELING
170
-      static bool leveling_active;              // Flag that bed leveling is enabled
170
+      static bool leveling_active;          // Flag that bed leveling is enabled
171
       #if ABL_PLANAR
171
       #if ABL_PLANAR
172
         static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
172
         static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
173
       #endif
173
       #endif
186
      * The current position of the tool in absolute steps
186
      * The current position of the tool in absolute steps
187
      * Recalculated if any axis_steps_per_mm are changed by gcode
187
      * Recalculated if any axis_steps_per_mm are changed by gcode
188
      */
188
      */
189
-    static long position[NUM_AXIS];
189
+    static int32_t position[NUM_AXIS];
190
 
190
 
191
     /**
191
     /**
192
      * Speed of previous path line segment
192
      * Speed of previous path line segment
220
       // Old direction bits. Used for speed calculations
220
       // Old direction bits. Used for speed calculations
221
       static unsigned char old_direction_bits;
221
       static unsigned char old_direction_bits;
222
       // Segment times (in µs). Used for speed calculations
222
       // Segment times (in µs). Used for speed calculations
223
-      static long axis_segment_time_us[2][3];
224
-    #endif
225
-
226
-    #if ENABLED(LIN_ADVANCE)
227
-      static float position_float[NUM_AXIS];
223
+      static uint32_t axis_segment_time_us[2][3];
228
     #endif
224
     #endif
229
 
225
 
230
     #if ENABLED(ULTRA_LCD)
226
     #if ENABLED(ULTRA_LCD)
342
     /**
338
     /**
343
      * Planner::_buffer_line
339
      * Planner::_buffer_line
344
      *
340
      *
345
-     * Add a new direct linear movement to the buffer.
341
+     * Add a new linear movement to the buffer in axis units.
346
      *
342
      *
347
-     * Leveling and kinematics should be applied ahead of this.
343
+     * Leveling and kinematics should be applied ahead of calling this.
348
      *
344
      *
349
-     *  a,b,c,e   - target position in mm or degrees
350
-     *  fr_mm_s   - (target) speed of the move (mm/s)
345
+     *  a,b,c,e   - target positions in mm and/or degrees
346
+     *  fr_mm_s   - (target) speed of the move
351
      *  extruder  - target extruder
347
      *  extruder  - target extruder
352
      */
348
      */
353
     static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
349
     static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
444
       if (blocks_queued()) {
440
       if (blocks_queued()) {
445
         block_t* block = &block_buffer[block_buffer_tail];
441
         block_t* block = &block_buffer[block_buffer_tail];
446
         #if ENABLED(ULTRA_LCD)
442
         #if ENABLED(ULTRA_LCD)
447
-          block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it.
443
+          block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
448
         #endif
444
         #endif
449
         SBI(block->flag, BLOCK_BIT_BUSY);
445
         SBI(block->flag, BLOCK_BIT_BUSY);
450
         return block;
446
         return block;

Loading…
Cancel
Save