Sfoglia il codice sorgente

Make POSITION macros global

Scott Lahteine 9 anni fa
parent
commit
f75b0c2ee1
2 ha cambiato i file con 47 aggiunte e 39 eliminazioni
  1. 16
    4
      Marlin/Marlin.h
  2. 31
    35
      Marlin/Marlin_main.cpp

+ 16
- 4
Marlin/Marlin.h Vedi File

@@ -292,14 +292,26 @@ extern bool volumetric_enabled;
292 292
 extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
293 293
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
294 294
 extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
295
-extern float current_position[NUM_AXIS];
296
-extern float home_offset[3]; // axis[n].home_offset
297
-extern float sw_endstop_min[3]; // axis[n].sw_endstop_min
298
-extern float sw_endstop_max[3]; // axis[n].sw_endstop_max
299 295
 extern bool axis_known_position[3]; // axis[n].is_known
300 296
 extern bool axis_homed[3]; // axis[n].is_homed
301 297
 extern volatile bool wait_for_heatup;
302 298
 
299
+extern float current_position[NUM_AXIS];
300
+extern float position_shift[3];
301
+extern float home_offset[3];
302
+extern float sw_endstop_min[3];
303
+extern float sw_endstop_max[3];
304
+
305
+#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
306
+#define RAW_POSITION(POS, AXIS)     (POS - home_offset[AXIS] - position_shift[AXIS])
307
+#define LOGICAL_X_POSITION(POS)     LOGICAL_POSITION(POS, X_AXIS)
308
+#define LOGICAL_Y_POSITION(POS)     LOGICAL_POSITION(POS, Y_AXIS)
309
+#define LOGICAL_Z_POSITION(POS)     LOGICAL_POSITION(POS, Z_AXIS)
310
+#define RAW_X_POSITION(POS)         RAW_POSITION(POS, X_AXIS)
311
+#define RAW_Y_POSITION(POS)         RAW_POSITION(POS, Y_AXIS)
312
+#define RAW_Z_POSITION(POS)         RAW_POSITION(POS, Z_AXIS)
313
+#define RAW_CURRENT_POSITION(AXIS)  RAW_POSITION(current_position[AXIS], AXIS)
314
+
303 315
 // GCode support for external objects
304 316
 bool code_seen(char);
305 317
 int code_value_int();

+ 31
- 35
Marlin/Marlin_main.cpp Vedi File

@@ -331,10 +331,6 @@ float position_shift[3] = { 0 };
331 331
 // Set by M206, M428, or menu item. Saved to EEPROM.
332 332
 float home_offset[3] = { 0 };
333 333
 
334
-#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
335
-#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
336
-#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
337
-
338 334
 // Software Endstops. Default to configured limits.
339 335
 float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
340 336
 float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
@@ -1408,7 +1404,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
1408 1404
 
1409 1405
   static float x_home_pos(int extruder) {
1410 1406
     if (extruder == 0)
1411
-      return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
1407
+      return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
1412 1408
     else
1413 1409
       /**
1414 1410
        * In dual carriage mode the extruder offset provides an override of the
@@ -1513,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
1513 1509
       if (active_extruder != 0)
1514 1510
         current_position[X_AXIS] = x_home_pos(active_extruder);
1515 1511
       else
1516
-        current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
1512
+        current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
1517 1513
       update_software_endstops(X_AXIS);
1518 1514
       return;
1519 1515
     }
@@ -1803,7 +1799,7 @@ static void clean_up_after_endstop_or_probe_move() {
1803 1799
         SERIAL_ECHOLNPGM(")");
1804 1800
       }
1805 1801
     #endif
1806
-    float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS);
1802
+    float z_dest = LOGICAL_Z_POSITION(z_raise);
1807 1803
 
1808 1804
     if (zprobe_zoffset < 0)
1809 1805
       z_dest -= zprobe_zoffset;
@@ -2964,7 +2960,7 @@ inline void gcode_G28() {
2964 2960
 
2965 2961
       if (home_all_axis || homeX || homeY) {
2966 2962
         // Raise Z before homing any other axes and z is not already high enough (never lower z)
2967
-        destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS);
2963
+        destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING);
2968 2964
         if (destination[Z_AXIS] > current_position[Z_AXIS]) {
2969 2965
 
2970 2966
           #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -3218,12 +3214,12 @@ inline void gcode_G28() {
3218 3214
     ;
3219 3215
     line_to_current_position();
3220 3216
 
3221
-    current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS);
3222
-    current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS);
3217
+    current_position[X_AXIS] = LOGICAL_X_POSITION(x);
3218
+    current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
3223 3219
     line_to_current_position();
3224 3220
 
3225 3221
     #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
3226
-      current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS);
3222
+      current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
3227 3223
       line_to_current_position();
3228 3224
     #endif
3229 3225
 
@@ -3641,14 +3637,14 @@ inline void gcode_G28() {
3641 3637
       #endif
3642 3638
 
3643 3639
       // Probe at 3 arbitrary points
3644
-      float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
3645
-                                  LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
3640
+      float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
3641
+                                  LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
3646 3642
                                   stow_probe_after_each, verbose_level),
3647
-            z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
3648
-                                  LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
3643
+            z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
3644
+                                  LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
3649 3645
                                   stow_probe_after_each, verbose_level),
3650
-            z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
3651
-                                  LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
3646
+            z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
3647
+                                  LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
3652 3648
                                   stow_probe_after_each, verbose_level);
3653 3649
 
3654 3650
       if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
@@ -7748,9 +7744,9 @@ void clamp_to_software_endstops(float target[3]) {
7748 7744
   void inverse_kinematics(const float in_cartesian[3]) {
7749 7745
 
7750 7746
     const float cartesian[3] = {
7751
-      RAW_POSITION(in_cartesian[X_AXIS], X_AXIS),
7752
-      RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS),
7753
-      RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS)
7747
+      RAW_X_POSITION(in_cartesian[X_AXIS]),
7748
+      RAW_Y_POSITION(in_cartesian[Y_AXIS]),
7749
+      RAW_Z_POSITION(in_cartesian[Z_AXIS])
7754 7750
     };
7755 7751
 
7756 7752
     delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
@@ -7778,13 +7774,13 @@ void clamp_to_software_endstops(float target[3]) {
7778 7774
 
7779 7775
   float delta_safe_distance_from_top() {
7780 7776
     float cartesian[3] = {
7781
-      LOGICAL_POSITION(0, X_AXIS),
7782
-      LOGICAL_POSITION(0, Y_AXIS),
7783
-      LOGICAL_POSITION(0, Z_AXIS)
7777
+      LOGICAL_X_POSITION(0),
7778
+      LOGICAL_Y_POSITION(0),
7779
+      LOGICAL_Z_POSITION(0)
7784 7780
     };
7785 7781
     inverse_kinematics(cartesian);
7786 7782
     float distance = delta[TOWER_3];
7787
-    cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS);
7783
+    cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
7788 7784
     inverse_kinematics(cartesian);
7789 7785
     return abs(distance - delta[TOWER_3]);
7790 7786
   }
@@ -7876,8 +7872,8 @@ void clamp_to_software_endstops(float target[3]) {
7876 7872
 
7877 7873
       int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
7878 7874
       float h1 = 0.001 - half, h2 = half - 0.001,
7879
-            grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])),
7880
-            grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1]));
7875
+            grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
7876
+            grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
7881 7877
       int floor_x = floor(grid_x), floor_y = floor(grid_y);
7882 7878
       float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
7883 7879
             z1 = bed_level[floor_x + half][floor_y + half],
@@ -7918,9 +7914,9 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
7918 7914
     current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
7919 7915
   #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
7920 7916
     vector_3 pos = planner.adjusted_position();
7921
-    current_position[axis] = LOGICAL_POSITION(axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z, axis);
7917
+    current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
7922 7918
   #else
7923
-    current_position[axis] = LOGICAL_POSITION(stepper.get_axis_position_mm(axis), axis); // CORE handled transparently
7919
+    current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
7924 7920
   #endif
7925 7921
 }
7926 7922
 
@@ -7930,8 +7926,8 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
7930 7926
 void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
7931 7927
   int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
7932 7928
       cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
7933
-      cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)),
7934
-      cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS));
7929
+      cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
7930
+      cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
7935 7931
   NOMORE(cx1, MESH_NUM_X_POINTS - 2);
7936 7932
   NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
7937 7933
   NOMORE(cx2, MESH_NUM_X_POINTS - 2);
@@ -7952,14 +7948,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
7952 7948
   int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
7953 7949
   if (cx2 != cx1 && TEST(x_splits, gcx)) {
7954 7950
     memcpy(end, destination, sizeof(end));
7955
-    destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS);
7951
+    destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
7956 7952
     normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
7957 7953
     destination[Y_AXIS] = MBL_SEGMENT_END(Y);
7958 7954
     CBI(x_splits, gcx);
7959 7955
   }
7960 7956
   else if (cy2 != cy1 && TEST(y_splits, gcy)) {
7961 7957
     memcpy(end, destination, sizeof(end));
7962
-    destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS);
7958
+    destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
7963 7959
     normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
7964 7960
     destination[X_AXIS] = MBL_SEGMENT_END(X);
7965 7961
     CBI(y_splits, gcy);
@@ -8374,8 +8370,8 @@ void prepare_move_to_destination() {
8374 8370
     float SCARA_pos[2];
8375 8371
     static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
8376 8372
 
8377
-    SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
8378
-    SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
8373
+    SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
8374
+    SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
8379 8375
 
8380 8376
     #if (Linkage_1 == Linkage_2)
8381 8377
       SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
@@ -8393,7 +8389,7 @@ void prepare_move_to_destination() {
8393 8389
 
8394 8390
     delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
8395 8391
     delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
8396
-    delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS);
8392
+    delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
8397 8393
 
8398 8394
     /**
8399 8395
     SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);

Loading…
Annulla
Salva