/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

/**
 * Marlin Firmware -- G26 - Mesh Validation Tool
 */

#define EXTRUSION_MULTIPLIER 1.0    // This is too much clutter for the main Configuration.h file  But
#define RETRACTION_MULTIPLIER 1.0   // some user have expressed an interest in being able to customize
#define NOZZLE 0.3                  // these numbers for thier printer so they don't need to type all
#define FILAMENT 1.75               // the options every time they do a Mesh Validation Print.
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0           // So, we put these number in an easy to find and change place.
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOOOZE_AMOUNT 0.3

#include "Marlin.h"
#include "Configuration.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "UBL.h"
#include "ultralcd.h"

#if ENABLED(AUTO_BED_LEVELING_UBL)

  #define SIZE_OF_INTERSECTION_CIRCLES 5
  #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle.  This number should be
                                // less than SIZE_OR_INTERSECTION_CIRCLES

  /**
   *   Roxy's G26 Mesh Validation Tool
   *  
   *   G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
   *   In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
   *   be defined.  G29 is designed to allow the user to quickly validate the correctness of her Mesh.  It will
   *   first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
   *   the intersections of those lines (respectively).
   *  
   *   This action allows the user to immediately see where the Mesh is properly defined and where it needs to
   *   be edited.  The command will generate the Mesh lines closest to the nozzle's starting position.  Alternatively
   *   the user can specify the X and Y position of interest with command parameters.  This allows the user to
   *   focus on a particular area of the Mesh where attention is needed.
   *  
   *   B #  Bed   Set the Bed Temperature.  If not specified, a default of 60 C. will be assumed.
   *  
   *   C    Current   When searching for Mesh Intersection points to draw, use the current nozzle location
   *        as the base for any distance comparison.
   *  
   *   D    Disable   Disable the Unified Bed Leveling System.  In the normal case the user is invoking this
   *        command to see how well a Mesh as been adjusted to match a print surface.  In order to do
   *        this the Unified Bed Leveling System is turned on by the G26 command.  The D parameter
   *        alters the command's normal behaviour and disables the Unified Bed Leveling System even if
   *        it is on.
   *  
   *   H #  Hotend    Set the Nozzle Temperature.  If not specified, a default of 205 C. will be assumed.
   *  
   *   F #  Filament  Used to specify the diameter of the filament being used.  If not specified
   *        1.75mm filament is assumed.  If you are not getting acceptable results by using the
   *        'correct' numbers, you can scale this number up or down a little bit to change the amount
   *        of filament that is being extruded during the printing of the various lines on the bed.
   *  
   *   K    Keep-On   Keep the heaters turned on at the end of the command.
   *  
   *   L #  Layer   Layer height.  (Height of nozzle above bed)  If not specified .20mm will be used.
   *  
   *   Q #  Multiplier  Retraction Multiplier.  Normally not needed.  Retraction defaults to 1.0mm and
   *        un-retraction is at 1.2mm   These numbers will be scaled by the specified amount
   *  
   *   N #  Nozzle    Used to control the size of nozzle diameter.  If not specified, a .4mm nozzle is assumed.
   *  
   *   O #  Ooooze    How much your nozzle will Ooooze filament while getting in position to print.  This
   *        is over kill, but using this parameter will let you get the very first 'cicle' perfect
   *        so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
   *        Mesh calibrated.  If not specified, a filament length of .3mm is assumed.
   *  
   *   P #  Prime   Prime the nozzle with specified length of filament.  If this parameter is not
   *        given, no prime action will take place.  If the parameter specifies an amount, that much
   *        will be purged before continuing.  If no amount is specified the command will start
   *        purging filament until the user provides an LCD Click and then it will continue with
   *        printing the Mesh.  You can carefully remove the spent filament with a needle nose
   *        pliers while holding the LCD Click wheel in a depressed state.
   *  
   *   R #  Random    Randomize the order that the circles are drawn on the bed.  The search for the closest
   *        undrawn cicle is still done.  But the distance to the location for each circle has a
   *        random number of the size specified added to it.  Specifying R50 will give an interesting
   *        deviation from the normal behaviour on a 10 x 10 Mesh.
   *  
   *   X #  X coordinate  Specify the starting location of the drawing activity.
   *  
   *   Y #  Y coordinate  Specify the starting location of the drawing activity.
   */

  extern int UBL_has_control_of_LCD_Panel;
  extern float feedrate;
  //extern bool relative_mode;
  extern Planner planner;
  //#if ENABLED(ULTRA_LCD)
    extern char lcd_status_message[];
  //#endif
  extern float destination[];
  extern void set_destination_to_current();
  extern void set_current_to_destination();
  extern float code_value_float();
  extern bool code_value_bool();
  extern bool code_has_value();
  extern void lcd_init();
  #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
  bool prepare_move_to_destination_cartesian();
  void line_to_destination();
  void line_to_destination(float );
  void gcode_G28();
  void sync_plan_position_e();
  void un_retract_filament();
  void retract_filament();
  void look_for_lines_to_connect();
  bool parse_G26_parameters();
  void move_to(const float&, const float&, const float&, const float&) ;
  void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
  bool turn_on_heaters();
  bool prime_nozzle();
  void chirp_at_user();

  static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
  float G26_E_AXIS_feedrate = 0.020,
        Random_Deviation = 0.0,
        Layer_Height = LAYER_HEIGHT;

  bool G26_retracted = false; // We keep track of the state of the nozzle to know if it
                              // is currently retracted or not.  This allows us to be
                              // less careful because mis-matched retractions and un-retractions
                              // won't leave us in a bad state.
  #if ENABLED(ULTRA_LCD)
    void lcd_setstatus(const char* message, bool persist);
  #endif

  float valid_trig_angle(float);
  mesh_index_pair find_closest_circle_to_print(float, float);
  void debug_current_and_destination(char *title);
  void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF);  /* needed for the old mesh_buffer_line() routine */

  static float E_Pos_Delta,
               Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
               Retraction_Multiplier = RETRACTION_MULTIPLIER,
               Nozzle = NOZZLE,
               Filament = FILAMENT,
               Prime_Length = PRIME_LENGTH,
               X_Pos, Y_Pos,
               bed_temp = BED_TEMP,
               hotend_temp = HOTEND_TEMP,
               Ooooze_Amount = OOOOZE_AMOUNT;

  int8_t Prime_Flag = 0;

  bool Keep_Heaters_On = false,
       G26_Debug_flag = false;

  /**
   * These support functions allow the use of large bit arrays of flags that take very
   * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
   * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
   * in the future.
   */
  void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
  void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
  bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }

  /**
   * G26: Mesh Validation Pattern generation.
   * 
   * Used to interactively edit UBL's Mesh by placing the
   * nozzle in a problem area and doing a G29 P4 R command.
   */
  void gcode_G26() {
    float circle_x, circle_y, x, y, xe, ye, tmp,
          start_angle, end_angle;
    int   i, xi, yi, lcd_init_counter = 0;
    mesh_index_pair location;

    if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
      gcode_G28();

    if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command

    if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
      do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
      stepper.synchronize();
      set_current_to_destination();
    }

    if (turn_on_heaters())     // Turn on the heaters, leave the command if anything
      goto LEAVE;              // has gone wrong.

    axis_relative_modes[E_AXIS] = false;    // Get things setup so we can take control of the
    //relative_mode = false;                  // planner and stepper motors!
    current_position[E_AXIS] = 0.0;
    sync_plan_position_e();

    if (Prime_Flag && prime_nozzle())       // if prime_nozzle() returns an error, we just bail out.
      goto LEAVE;

    /**
     *      Bed is preheated
     *
     *      Nozzle is at temperature
     *
     *      Filament is primed!
     *
     *      It's  "Show Time" !!!
     */

    // Clear all of the flags we need
    ZERO(circle_flags);
    ZERO(horizontal_mesh_line_flags);
    ZERO(vertical_mesh_line_flags);

    //
    // Move nozzle to the specified height for the first layer
    //
    set_destination_to_current();
    destination[Z_AXIS] = Layer_Height;
    move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
    move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);

    UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
    debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern.");

    do {
      if (G29_lcd_clicked()) {                                 // Check if the user wants to stop the Mesh Validation
        strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
        while (G29_lcd_clicked()) idle(); // Debounce the switch click
        #if ENABLED(ULTRA_LCD)
          lcd_setstatus("Mesh Validation Stopped.", true);
          lcd_quick_feedback();
        #endif
        goto LEAVE;
      }

      if (Continue_with_closest)
        location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
      else
        location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.

      if (location.x_index >= 0 && location.y_index >= 0) {
        circle_x = blm.map_x_index_to_bed_location(location.x_index);
        circle_y = blm.map_y_index_to_bed_location(location.y_index);

        // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
        #ifdef DELTA
          if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
            SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
            goto LEAVE;
          }
        #endif

        if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
          SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
          goto LEAVE;
        }

        xi = location.x_index;  // Just to shrink the next few lines and make them easier to understand
        yi = location.y_index;

        if (G26_Debug_flag) {
          SERIAL_ECHOPGM("   Doing circle at: (xi=");
          SERIAL_ECHO(xi);
          SERIAL_ECHOPGM(", yi=");
          SERIAL_ECHO(yi);
          SERIAL_ECHOLNPGM(")");
        }

        start_angle = 0.0;    // assume it is going to be a full circle
        end_angle   = 360.0;
        if (xi == 0) {       // Check for bottom edge
          start_angle = -90.0;
          end_angle   =  90.0;
          if (yi == 0)        // it is an edge, check for the two left corners
            start_angle = 0.0;
          else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
            end_angle = 0.0;
        }
        else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
          start_angle =  90.0;
          end_angle   = 270.0;
          if (yi == 0)                  // it is an edge, check for the two right corners
            end_angle = 180.0;
          else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
            start_angle = 180.0;
        }
        else if (yi == 0) {
          start_angle =   0.0;         // only do the top   side of the cirlce
          end_angle   = 180.0;
        }
        else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
          start_angle = 180.0;         // only do the bottom side of the cirlce
          end_angle   = 360.0;
        }

        /**
         * Declare and generate a sin() & cos() table to be used during the circle drawing.  This will lighten
         * the CPU load and make the arc drawing faster and more smooth
         */
        float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
        int tmp_div_30;
        for (i = 0; i <= 360 / 30; i++) {
          cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
          sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
        }

        for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
          tmp_div_30 = tmp / 30.0;
          if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;

          x = circle_x + cos_table[tmp_div_30];    // for speed, these are now a lookup table entry
          y = circle_y + sin_table[tmp_div_30];

          if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
          xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
          ye = circle_y + sin_table[tmp_div_30 + 1];
          #ifdef DELTA
            if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS))   // Check to make sure this part of
              continue;                                      // the 'circle' is on the bed.  If
          #else                                              // not, we need to skip
            x  = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1);     // This keeps us from bumping the endstops
            y  = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
            xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
            ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
          #endif

          if (G26_Debug_flag) {
            char ccc, *cptr, seg_msg[50], seg_num[10];
            strcpy(seg_msg, "   segment: ");
            strcpy(seg_num, "    \n");
            cptr = (char *) "01234567890ABCDEF????????";
            ccc = cptr[tmp_div_30];
            seg_num[1] = ccc;
            strcat(seg_msg, seg_num);
            debug_current_and_destination(seg_msg);
          }

          print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
        }
        lcd_init_counter++;
        if (lcd_init_counter > 10) {
          lcd_init_counter = 0;
          lcd_init(); // Some people's LCD Displays are locking up.  This might help them
        }

        debug_current_and_destination((char *)"Looking for lines to connect.");
        look_for_lines_to_connect();
        debug_current_and_destination((char *)"Done with line connect.");
      }

      debug_current_and_destination((char *)"Done with current circle.");

    }
    while (location.x_index >= 0 && location.y_index >= 0) ;

    LEAVE:

    retract_filament();
    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                             // Raise the nozzle

    debug_current_and_destination((char *)"ready to do Z-Raise.");
    move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
    debug_current_and_destination((char *)"done doing Z-Raise.");

    destination[X_AXIS] = X_Pos;                                                // Move back to the starting position
    destination[Y_AXIS] = Y_Pos;
    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                             // Keep the nozzle where it is

    move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
    debug_current_and_destination((char *)"done doing X/Y move.");

    UBL_has_control_of_LCD_Panel = 0;     // Give back control of the LCD Panel!

    if (!Keep_Heaters_On) {
      #if HAS_TEMP_BED
        thermalManager.setTargetBed(0.0);
      #endif
      thermalManager.setTargetHotend(0.0, 0);
    }
    lcd_init(); // Some people's LCD Displays are locking up.  This might help them
  }


  float valid_trig_angle(float d) {
    while (d > 360.0) d -= 360.0;
    while (d < 0.0) d += 360.0;
    return d;
  }

  mesh_index_pair find_closest_circle_to_print( float X, float Y) {
    float f, mx, my, dx, dy, closest = 99999.99;
    mesh_index_pair return_val;

    return_val.x_index = return_val.y_index = -1;

    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
      for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
        if (!is_bit_set(circle_flags, i, j))  {
          mx = blm.map_x_index_to_bed_location(i);  // We found a circle that needs to be printed
          my = blm.map_y_index_to_bed_location(j);

          dx = X - mx;        // Get the distance to this intersection
          dy = Y - my;
          f = HYPOT(dx, dy);

          dx = X_Pos - mx;                  // It is possible that we are being called with the values
          dy = Y_Pos - my;                  // to let us find the closest circle to the start position.
          f += HYPOT(dx, dy) / 15.0;        // But if this is not the case,
                                            // we are going to add in a small
                                            // weighting to the distance calculation to help it choose
                                            // a better place to continue.

          if (Random_Deviation > 1.0)
            f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search

          if (f < closest) {
            closest = f;              // We found a closer location that is still
            return_val.x_index = i;   // un-printed  --- save the data for it
            return_val.y_index = j;
            return_val.distance= closest;
          }
        }
      }
    }
    bit_set(circle_flags, return_val.x_index, return_val.y_index);   // Mark this location as done.
    return return_val;
  }

  void look_for_lines_to_connect() {
    float sx, sy, ex, ey;

    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
      for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {

        if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
                                      // This is already a half circle because we are at the edge of the bed.

          if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
            if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {

              //
              // We found two circles that need a horizontal line to connect them
              // Print it!
              //
              sx = blm.map_x_index_to_bed_location(i);
              sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
              sy = blm.map_y_index_to_bed_location(j);

              ex = blm.map_x_index_to_bed_location(i + 1);
              ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
              ey = sy;

              sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);             // This keeps us from bumping the endstops
              sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
              ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
              ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);

              if (G26_Debug_flag) {
                SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
                SERIAL_ECHO(sx);
                SERIAL_ECHOPGM(", sy=");
                SERIAL_ECHO(sy);
                SERIAL_ECHOPGM(") -> (ex=");
                SERIAL_ECHO(ex);
                SERIAL_ECHOPGM(", ey=");
                SERIAL_ECHO(ey);
                SERIAL_ECHOLNPGM(")");
                debug_current_and_destination((char *)"Connecting horizontal line.");
              }

              print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
              bit_set(horizontal_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
            }
          }

          if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
                                        // This is already a half circle because we are at the edge  of the bed.

            if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
              if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
                //
                // We found two circles that need a vertical line to connect them
                // Print it!
                //
                sx = blm.map_x_index_to_bed_location(i);
                sy = blm.map_y_index_to_bed_location(j);
                sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle

                ex = sx;
                ey = blm.map_y_index_to_bed_location(j + 1);
                ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle

                sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);             // This keeps us from bumping the endstops
                sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
                ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
                ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);

                if (G26_Debug_flag) {
                  SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
                  SERIAL_ECHO(sx);
                  SERIAL_ECHOPGM(", sy=");
                  SERIAL_ECHO(sy);
                  SERIAL_ECHOPGM(") -> (ex=");
                  SERIAL_ECHO(ex);
                  SERIAL_ECHOPGM(", ey=");
                  SERIAL_ECHO(ey);
                  SERIAL_ECHOLNPGM(")");
                  debug_current_and_destination((char *)"Connecting vertical line.");
                }
                print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
                bit_set( vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
              }
            }
          }
        }
      }
    }
  }

  void debug_current_and_destination(char *title) {
    float dx, dy, de, xy_dist, fpmm;

    // if the title message starts with a '!' it is so important, we are going to
    // ignore the status of the G26_Debug_Flag
    if (*title != '!' && !G26_Debug_flag) return;

    dx = current_position[X_AXIS] - destination[X_AXIS];
    dy = current_position[Y_AXIS] - destination[Y_AXIS];
    de = destination[E_AXIS] - current_position[E_AXIS];
    if (de == 0.0) return;

    xy_dist = HYPOT(dx, dy);
    if (xy_dist == 0.0) {
      return;
      //SERIAL_ECHOPGM("   FPMM=");
      //fpmm = de;
      //SERIAL_PROTOCOL_F(fpmm, 6);
    }
    else {
      SERIAL_ECHOPGM("   fpmm=");
      fpmm = de / xy_dist;
      SERIAL_PROTOCOL_F(fpmm, 6);
    }

    SERIAL_ECHOPGM("    current=( ");
    SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
    SERIAL_ECHOPGM(", ");
    SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
    SERIAL_ECHOPGM(", ");
    SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
    SERIAL_ECHOPGM(", ");
    SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
    SERIAL_ECHOPGM(" )   destination=( ");
    if (current_position[X_AXIS] == destination[X_AXIS])
      SERIAL_ECHOPGM("-------------");
    else
      SERIAL_PROTOCOL_F(destination[X_AXIS], 6);

    SERIAL_ECHOPGM(", ");

    if (current_position[Y_AXIS] == destination[Y_AXIS])
      SERIAL_ECHOPGM("-------------");
    else
      SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);

    SERIAL_ECHOPGM(", ");

    if (current_position[Z_AXIS] == destination[Z_AXIS])
      SERIAL_ECHOPGM("-------------");
    else
      SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);

    SERIAL_ECHOPGM(", ");

    if (current_position[E_AXIS] == destination[E_AXIS])
      SERIAL_ECHOPGM("-------------");
    else
      SERIAL_PROTOCOL_F(destination[E_AXIS], 6);

    SERIAL_ECHOPGM(" )   ");
    SERIAL_ECHO(title);
    SERIAL_EOL;

    SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66.  Right Switch is on pin 65

    //if (been_to_2_6) {
    //while ((digitalRead(66) & 0x01) != 0)
    //  idle();
    //}
  }

  void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
    float feed_value;
    static float last_z = -999.99;

    bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.

    if (G26_Debug_flag) {
      SERIAL_ECHOPAIR("in move_to()  has_XY_component:", (int)has_XY_component);
      SERIAL_EOL;
    }

    if (z != last_z) {

      if (G26_Debug_flag) {
        SERIAL_ECHOPAIR("in move_to()  changing Z to ", (int)z);
        SERIAL_EOL;
      }
      last_z = z;
      feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0);  // Base the feed rate off of the configured Z_AXIS feed rate

      destination[X_AXIS] = current_position[X_AXIS];
      destination[Y_AXIS] = current_position[Y_AXIS];
      destination[Z_AXIS] = z;                          // We know the last_z==z or we wouldn't be in this block of code.
      destination[E_AXIS] = current_position[E_AXIS];

      UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);

      stepper.synchronize();
      set_destination_to_current();

      if (G26_Debug_flag)
        debug_current_and_destination((char *)" in move_to() done with Z move");
    }

    // Check if X or Y is involved in the movement.
    // Yes: a 'normal' movement. No: a retract() or un_retract()
    feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;

    if (G26_Debug_flag) {
      SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
      SERIAL_EOL;
    }

    destination[X_AXIS] = x;
    destination[Y_AXIS] = y;
    destination[E_AXIS] += e_delta;

    if (G26_Debug_flag)
      debug_current_and_destination((char *)" in move_to() doing last move");

    UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);

    if (G26_Debug_flag)
      debug_current_and_destination((char *)" in move_to() after last move");

    stepper.synchronize();
    set_destination_to_current();
  }

  void retract_filament() {
    if (!G26_retracted) { // Only retract if we are not already retracted!
      G26_retracted = true;
      if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
      move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
      if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
    }
  }

  void un_retract_filament() {
    if (G26_retracted) { // Only un-retract if we are retracted.
      move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
      G26_retracted = false;
      if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
    }
  }

  /**
   * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
   * to the other.  But there are really three sets of coordinates involved.  The first coordinate
   * is the present location of the nozzle.  We don't necessarily want to print from this location.
   * We first need to move the nozzle to the start of line segment where we want to print.  Once
   * there, we can use the two coordinates supplied to draw the line.
   *
   * Note:  Although we assume the first set of coordinates is the start of the line and the second
   * set of coordinates is the end of the line, it does not always work out that way.  This function
   * optimizes the movement to minimize the travel distance before it can start printing.  This saves
   * a lot of time and eleminates a lot of non-sensical movement of the nozzle.   However, it does
   * cause a lot of very little short retracement of th nozzle when it draws the very first line
   * segment of a 'circle'.   The time this requires is very short and is easily saved by the other
   * cases where the optimization comes into play.
   */
  void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
    float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;

    dx_s = current_position[X_AXIS] - sx;   // find our distance from the start of the actual line segment
    dy_s = current_position[Y_AXIS] - sy;
    dist_start = HYPOT2(dx_s, dy_s);        // We don't need to do a sqrt(), we can compare the distance^2
                                            // to save computation time
    dx_e = current_position[X_AXIS] - ex;   // find our distance from the end of the actual line segment
    dy_e = current_position[Y_AXIS] - ey;
    dist_end = HYPOT2(dx_e, dy_e);

    dx = ex - sx;
    dy = ey - sy;
    Line_Length = HYPOT(dx, dy);

    // If the end point of the line is closer to the nozzle, we are going to
    // flip the direction of this line.   We will print it from the end to the start.
    // On very small lines we don't do the optimization because it just isn't worth it.
    //
    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
      if (G26_Debug_flag)
        SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
      print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
      return;
    }

    // Now decide if we should retract.

    if (dist_start > 2.0) {
      retract_filament();
      if (G26_Debug_flag)
        SERIAL_ECHOLNPGM("  filament retracted.");
    }
    move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion

    E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;

    un_retract_filament();
    if (G26_Debug_flag) {
      SERIAL_ECHOLNPGM("  doing printing move.");
      debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()");
    }
    move_to(ex, ey, ez, E_Pos_Delta);  // Get to the ending point with an appropriate amount of extrusion
  }

  /**
   * This function used to be inline code in G26. But there are so many
   * parameters it made sense to turn them into static globals and get
   * this code out of sight of the main routine.
   */
  bool parse_G26_parameters() {

    Extrusion_Multiplier  = EXTRUSION_MULTIPLIER;
    Retraction_Multiplier = RETRACTION_MULTIPLIER;
    Nozzle                = NOZZLE;
    Filament              = FILAMENT;
    Layer_Height          = LAYER_HEIGHT;
    Prime_Length          = PRIME_LENGTH;
    bed_temp              = BED_TEMP;
    hotend_temp           = HOTEND_TEMP;
    Ooooze_Amount         = OOOOZE_AMOUNT;
    Prime_Flag            = 0;
    Keep_Heaters_On       = false;

    if (code_seen('B')) {
      bed_temp = code_value_float();
      if (bed_temp < 15.0 || bed_temp > 140.0) {
        SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
        return UBL_ERR;
      }
    }

    if (code_seen('C')) Continue_with_closest++;

    if (code_seen('L')) {
      Layer_Height = code_value_float();
      if (Layer_Height<0.0 || Layer_Height>2.0) {
        SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
        return UBL_ERR;
      }
    }

    if (code_seen('Q')) {
      if (code_has_value()) {
        Retraction_Multiplier = code_value_float();
        if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
          SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
          return UBL_ERR;
        }
      }
      else {
        SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
        return UBL_ERR;
      }
    }

    if (code_seen('N')) {
      Nozzle = code_value_float();
      if (Nozzle < 0.1 || Nozzle > 1.0) {
        SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
        return UBL_ERR;
      }
    }

    if (code_seen('K')) Keep_Heaters_On++;

    if (code_seen('O') && code_has_value())
      Ooooze_Amount = code_value_float();

    if (code_seen('P')) {
      if (!code_has_value())
        Prime_Flag = -1;
      else {
        Prime_Flag++;
        Prime_Length = code_value_float();
        if (Prime_Length < 0.0 || Prime_Length > 25.0) {
          SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
          return UBL_ERR;
        }
      }
    }

    if (code_seen('F')) {
      Filament = code_value_float();
      if (Filament < 1.0 || Filament > 4.0) {
        SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
        return UBL_ERR;
      }
    }
    Extrusion_Multiplier *= sq(1.75) / sq(Filament);  // If we aren't using 1.75mm filament, we need to
                                                              // scale up or down the length needed to get the
                                                              // same volume of filament
    Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size

    if (code_seen('H')) {
      hotend_temp = code_value_float();
      if (hotend_temp < 165.0 || hotend_temp > 280.0) {
        SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
        return UBL_ERR;
      }
    }

    if (code_seen('R')) {
      randomSeed(millis());
      Random_Deviation = code_has_value() ? code_value_float() : 50.0;
    }

    X_Pos = current_position[X_AXIS];
    Y_Pos = current_position[Y_AXIS];

    if (code_seen('X')) {
      X_Pos = code_value_float();
      if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
        SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
        return UBL_ERR;
      }
    }
    else

    if (code_seen('Y')) {
      Y_Pos = code_value_float();
      if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
        SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
        return UBL_ERR;
      }
    }

    /**
     * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
     * end.  The reason is, if one of the parameters specified up above is incorrect, we don't want to
     * alter the system's status.  We wait until we know everything is correct before altering the state
     * of the system.
     */
    blm.state.active = !code_seen('D');

    return UBL_OK;
  }

  /**
   * Turn on the bed and nozzle heat and
   * wait for them to get up to temperature.
   */
  bool turn_on_heaters() {
    #if HAS_TEMP_BED
      #if ENABLED(ULTRA_LCD)
        if (bed_temp > 25) {
          lcd_setstatus("G26 Heating Bed.", true);
          lcd_quick_feedback();
      #endif
          UBL_has_control_of_LCD_Panel++;
          thermalManager.setTargetBed(bed_temp);
          while (abs(thermalManager.degBed() - bed_temp) > 3) {
            if (G29_lcd_clicked()) {
              strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
              while (G29_lcd_clicked()) idle();          // Debounce the switch
              lcd_setstatus("Leaving G26", true);        // Now we do it right.
              return UBL_ERR;
            }
            idle();
          }
      #if ENABLED(ULTRA_LCD)
        }
        lcd_setstatus("G26 Heating Nozzle.", true);
        lcd_quick_feedback();
      #endif
    #endif

    // Start heating the nozzle and wait for it to reach temperature.
    thermalManager.setTargetHotend(hotend_temp, 0);
    while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
      if (G29_lcd_clicked()) {
        strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
        while (G29_lcd_clicked()) idle();          // Debounce the switch
        lcd_setstatus("Leaving G26", true);        // Now we do it right.
        return UBL_ERR;
      }
      idle();
    }

    #if ENABLED(ULTRA_LCD)
      lcd_setstatus("", true);
      lcd_quick_feedback();
    #endif
    return UBL_OK;
  }

  /**
   * Prime the nozzle if needed. Return true on error.
   */
  bool prime_nozzle() {
    float Total_Prime = 0.0;

    if (Prime_Flag == -1) {  // The user wants to control how much filament gets purged
      lcd_setstatus("User Controled Prime", true);
      chirp_at_user();

      set_destination_to_current();

      un_retract_filament();    // Lets make sure the G26 command doesn't think the filament is
                                // retracted().  We are here because we want to prime the nozzle.
                                // So let's just unretract just to be sure.

      UBL_has_control_of_LCD_Panel++;
      while (!G29_lcd_clicked()) {
        chirp_at_user();
        destination[E_AXIS] += 0.25;
        #ifdef PREVENT_LENGTHY_EXTRUDE
          Total_Prime += 0.25;
          if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
        #endif
        UBL_line_to_destination(
          destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
          //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
          planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
        );

        stepper.synchronize();    // Without this synchronize, the purge is more consistent,
                                  // but because the planner has a buffer, we won't be able
                                  // to stop as quickly.  So we put up with the less smooth
                                  // action to give the user a more responsive 'Stop'.
        set_destination_to_current();
        idle();
      }

      strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
                                                  // So...  We cheat to get a message up.

      while (G29_lcd_clicked()) idle(); // Debounce the switch

      #if ENABLED(ULTRA_LCD)
        UBL_has_control_of_LCD_Panel = 0;
        lcd_setstatus("Done Priming", true);      // Now we do it right.
        lcd_quick_feedback();
      #endif
    }
    else {
      #if ENABLED(ULTRA_LCD)
        lcd_setstatus("Fixed Length Prime.", true);
        lcd_quick_feedback();
      #endif
      set_destination_to_current();
      destination[E_AXIS] += Prime_Length;
      UBL_line_to_destination(
        destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
        //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
        planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
      );
      stepper.synchronize();
      set_destination_to_current();
      retract_filament();
    }
    return UBL_OK;
  }

#endif // AUTO_BED_LEVELING_UBL