My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

configuration_store.cpp 63KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V46"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V46 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8) + 64
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8) + 64
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8) + 64
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time_us (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend) +16
  62. *
  63. * Global Leveling: 4 bytes
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S planner.leveling_active (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 46 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 2 bytes
  87. * 352 G29 A planner.leveling_active (bool)
  88. * 353 G29 S ubl.storage_slot (int8_t)
  89. *
  90. * DELTA: 44 bytes
  91. * 354 M666 H delta_height (float)
  92. * 358 M666 XYZ delta_endstop_adj (float x3)
  93. * 370 M665 R delta_radius (float)
  94. * 374 M665 L delta_diagonal_rod (float)
  95. * 378 M665 S delta_segments_per_second (float)
  96. * 382 M665 B delta_calibration_radius (float)
  97. * 386 M665 X delta_tower_angle_trim[A] (float)
  98. * 390 M665 Y delta_tower_angle_trim[B] (float)
  99. * 394 M665 Z delta_tower_angle_trim[C] (float)
  100. *
  101. * [XYZ]_DUAL_ENDSTOPS: 12 bytes
  102. * 354 M666 X x_endstop_adj (float)
  103. * 358 M666 Y y_endstop_adj (float)
  104. * 362 M666 Z z_endstop_adj (float)
  105. *
  106. * ULTIPANEL: 6 bytes
  107. * 398 M145 S0 H lcd_preheat_hotend_temp (int x2)
  108. * 402 M145 S0 B lcd_preheat_bed_temp (int x2)
  109. * 406 M145 S0 F lcd_preheat_fan_speed (int x2)
  110. *
  111. * PIDTEMP: 82 bytes
  112. * 410 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  113. * 426 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  114. * 442 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  115. * 458 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 474 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  117. * 490 M301 L lpq_len (int)
  118. *
  119. * PIDTEMPBED: 12 bytes
  120. * 492 M304 PID bedKp, .bedKi, .bedKd (float x3)
  121. *
  122. * DOGLCD: 2 bytes
  123. * 504 M250 C lcd_contrast (uint16_t)
  124. *
  125. * FWRETRACT: 33 bytes
  126. * 506 M209 S autoretract_enabled (bool)
  127. * 507 M207 S retract_length (float)
  128. * 511 M207 F retract_feedrate_mm_s (float)
  129. * 515 M207 Z retract_zlift (float)
  130. * 519 M208 S retract_recover_length (float)
  131. * 523 M208 F retract_recover_feedrate_mm_s (float)
  132. * 527 M207 W swap_retract_length (float)
  133. * 531 M208 W swap_retract_recover_length (float)
  134. * 535 M208 R swap_retract_recover_feedrate_mm_s (float)
  135. *
  136. * Volumetric Extrusion: 21 bytes
  137. * 539 M200 D parser.volumetric_enabled (bool)
  138. * 540 M200 T D planner.filament_size (float x5) (T0..3)
  139. *
  140. * HAVE_TMC2130: 22 bytes
  141. * 560 M906 X Stepper X current (uint16_t)
  142. * 562 M906 Y Stepper Y current (uint16_t)
  143. * 564 M906 Z Stepper Z current (uint16_t)
  144. * 566 M906 X2 Stepper X2 current (uint16_t)
  145. * 568 M906 Y2 Stepper Y2 current (uint16_t)
  146. * 570 M906 Z2 Stepper Z2 current (uint16_t)
  147. * 572 M906 E0 Stepper E0 current (uint16_t)
  148. * 574 M906 E1 Stepper E1 current (uint16_t)
  149. * 576 M906 E2 Stepper E2 current (uint16_t)
  150. * 578 M906 E3 Stepper E3 current (uint16_t)
  151. * 580 M906 E4 Stepper E4 current (uint16_t)
  152. *
  153. * LIN_ADVANCE: 8 bytes
  154. * 582 M900 K extruder_advance_k (float)
  155. * 586 M900 WHD advance_ed_ratio (float)
  156. *
  157. * HAS_MOTOR_CURRENT_PWM:
  158. * 590 M907 X Stepper XY current (uint32_t)
  159. * 594 M907 Z Stepper Z current (uint32_t)
  160. * 598 M907 E Stepper E current (uint32_t)
  161. *
  162. * CNC_COORDINATE_SYSTEMS 108 bytes
  163. * 602 G54-G59.3 coordinate_system (float x 27)
  164. *
  165. * SKEW_CORRECTION: 12 bytes
  166. * 710 M852 I planner.xy_skew_factor (float)
  167. * 714 M852 J planner.xz_skew_factor (float)
  168. * 718 M852 K planner.yz_skew_factor (float)
  169. *
  170. * 722 Minimum end-point
  171. * 2251 (722 + 208 + 36 + 9 + 288 + 988) Maximum end-point
  172. *
  173. * ========================================================================
  174. * meshes_begin (between max and min end-point, directly above)
  175. * -- MESHES --
  176. * meshes_end
  177. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  178. * mat_end = E2END (0xFFF)
  179. *
  180. */
  181. #include "configuration_store.h"
  182. MarlinSettings settings;
  183. #include "Marlin.h"
  184. #include "language.h"
  185. #include "endstops.h"
  186. #include "planner.h"
  187. #include "temperature.h"
  188. #include "ultralcd.h"
  189. #include "stepper.h"
  190. #include "gcode.h"
  191. #if ENABLED(MESH_BED_LEVELING)
  192. #include "mesh_bed_leveling.h"
  193. #endif
  194. #if ENABLED(HAVE_TMC2130)
  195. #include "stepper_indirection.h"
  196. #endif
  197. #if ENABLED(AUTO_BED_LEVELING_UBL)
  198. #include "ubl.h"
  199. #endif
  200. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  201. extern void refresh_bed_level();
  202. #endif
  203. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  204. float new_z_fade_height;
  205. #endif
  206. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  207. bool position_changed;
  208. #endif
  209. /**
  210. * Post-process after Retrieve or Reset
  211. */
  212. void MarlinSettings::postprocess() {
  213. // steps per s2 needs to be updated to agree with units per s2
  214. planner.reset_acceleration_rates();
  215. // Make sure delta kinematics are updated before refreshing the
  216. // planner position so the stepper counts will be set correctly.
  217. #if ENABLED(DELTA)
  218. recalc_delta_settings();
  219. #endif
  220. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  221. // and init stepper.count[], planner.position[] with current_position
  222. planner.refresh_positioning();
  223. #if ENABLED(PIDTEMP)
  224. thermalManager.updatePID();
  225. #endif
  226. planner.calculate_volumetric_multipliers();
  227. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  228. // Software endstops depend on home_offset
  229. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  230. #endif
  231. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  232. set_z_fade_height(new_z_fade_height);
  233. #endif
  234. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  235. refresh_bed_level();
  236. //set_bed_leveling_enabled(leveling_is_on);
  237. #endif
  238. #if HAS_MOTOR_CURRENT_PWM
  239. stepper.refresh_motor_power();
  240. #endif
  241. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  242. if (position_changed) {
  243. report_current_position();
  244. position_changed = false;
  245. }
  246. #endif
  247. }
  248. #if ENABLED(EEPROM_SETTINGS)
  249. #define DUMMY_PID_VALUE 3000.0f
  250. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  251. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  252. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  253. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  254. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  255. const char version[4] = EEPROM_VERSION;
  256. bool MarlinSettings::eeprom_error;
  257. #if ENABLED(AUTO_BED_LEVELING_UBL)
  258. int MarlinSettings::meshes_begin;
  259. #endif
  260. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  261. if (eeprom_error) return;
  262. while (size--) {
  263. uint8_t * const p = (uint8_t * const)pos;
  264. uint8_t v = *value;
  265. // EEPROM has only ~100,000 write cycles,
  266. // so only write bytes that have changed!
  267. if (v != eeprom_read_byte(p)) {
  268. eeprom_write_byte(p, v);
  269. if (eeprom_read_byte(p) != v) {
  270. SERIAL_ECHO_START();
  271. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  272. eeprom_error = true;
  273. return;
  274. }
  275. }
  276. crc16(crc, &v, 1);
  277. pos++;
  278. value++;
  279. };
  280. }
  281. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  282. if (eeprom_error) return;
  283. do {
  284. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  285. *value = c;
  286. crc16(crc, &c, 1);
  287. pos++;
  288. value++;
  289. } while (--size);
  290. }
  291. /**
  292. * M500 - Store Configuration
  293. */
  294. bool MarlinSettings::save() {
  295. float dummy = 0.0f;
  296. char ver[4] = "000";
  297. uint16_t working_crc = 0;
  298. EEPROM_START();
  299. eeprom_error = false;
  300. EEPROM_WRITE(ver); // invalidate data first
  301. EEPROM_SKIP(working_crc); // Skip the checksum slot
  302. working_crc = 0; // clear before first "real data"
  303. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  304. EEPROM_WRITE(esteppers);
  305. EEPROM_WRITE(planner.axis_steps_per_mm);
  306. EEPROM_WRITE(planner.max_feedrate_mm_s);
  307. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  308. EEPROM_WRITE(planner.acceleration);
  309. EEPROM_WRITE(planner.retract_acceleration);
  310. EEPROM_WRITE(planner.travel_acceleration);
  311. EEPROM_WRITE(planner.min_feedrate_mm_s);
  312. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  313. EEPROM_WRITE(planner.min_segment_time_us);
  314. EEPROM_WRITE(planner.max_jerk);
  315. #if !HAS_HOME_OFFSET
  316. const float home_offset[XYZ] = { 0 };
  317. #endif
  318. EEPROM_WRITE(home_offset);
  319. #if HOTENDS > 1
  320. // Skip hotend 0 which must be 0
  321. for (uint8_t e = 1; e < HOTENDS; e++)
  322. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  323. #endif
  324. //
  325. // Global Leveling
  326. //
  327. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  328. const float zfh = planner.z_fade_height;
  329. #else
  330. const float zfh = 10.0;
  331. #endif
  332. EEPROM_WRITE(zfh);
  333. //
  334. // Mesh Bed Leveling
  335. //
  336. #if ENABLED(MESH_BED_LEVELING)
  337. // Compile time test that sizeof(mbl.z_values) is as expected
  338. static_assert(
  339. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  340. "MBL Z array is the wrong size."
  341. );
  342. const bool leveling_is_on = mbl.has_mesh;
  343. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  344. EEPROM_WRITE(leveling_is_on);
  345. EEPROM_WRITE(mbl.z_offset);
  346. EEPROM_WRITE(mesh_num_x);
  347. EEPROM_WRITE(mesh_num_y);
  348. EEPROM_WRITE(mbl.z_values);
  349. #else // For disabled MBL write a default mesh
  350. const bool leveling_is_on = false;
  351. dummy = 0.0f;
  352. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  353. EEPROM_WRITE(leveling_is_on);
  354. EEPROM_WRITE(dummy); // z_offset
  355. EEPROM_WRITE(mesh_num_x);
  356. EEPROM_WRITE(mesh_num_y);
  357. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  358. #endif // MESH_BED_LEVELING
  359. #if !HAS_BED_PROBE
  360. const float zprobe_zoffset = 0;
  361. #endif
  362. EEPROM_WRITE(zprobe_zoffset);
  363. //
  364. // Planar Bed Leveling matrix
  365. //
  366. #if ABL_PLANAR
  367. EEPROM_WRITE(planner.bed_level_matrix);
  368. #else
  369. dummy = 0.0;
  370. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  371. #endif
  372. //
  373. // Bilinear Auto Bed Leveling
  374. //
  375. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  376. // Compile time test that sizeof(z_values) is as expected
  377. static_assert(
  378. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  379. "Bilinear Z array is the wrong size."
  380. );
  381. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  382. EEPROM_WRITE(grid_max_x); // 1 byte
  383. EEPROM_WRITE(grid_max_y); // 1 byte
  384. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  385. EEPROM_WRITE(bilinear_start); // 2 ints
  386. EEPROM_WRITE(z_values); // 9-256 floats
  387. #else
  388. // For disabled Bilinear Grid write an empty 3x3 grid
  389. const uint8_t grid_max_x = 3, grid_max_y = 3;
  390. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  391. dummy = 0.0f;
  392. EEPROM_WRITE(grid_max_x);
  393. EEPROM_WRITE(grid_max_y);
  394. EEPROM_WRITE(bilinear_grid_spacing);
  395. EEPROM_WRITE(bilinear_start);
  396. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  397. #endif // AUTO_BED_LEVELING_BILINEAR
  398. #if ENABLED(AUTO_BED_LEVELING_UBL)
  399. EEPROM_WRITE(planner.leveling_active);
  400. EEPROM_WRITE(ubl.storage_slot);
  401. #else
  402. const bool ubl_active = false;
  403. const int8_t storage_slot = -1;
  404. EEPROM_WRITE(ubl_active);
  405. EEPROM_WRITE(storage_slot);
  406. #endif // AUTO_BED_LEVELING_UBL
  407. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  408. #if ENABLED(DELTA)
  409. EEPROM_WRITE(delta_height); // 1 float
  410. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  411. EEPROM_WRITE(delta_radius); // 1 float
  412. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  413. EEPROM_WRITE(delta_segments_per_second); // 1 float
  414. EEPROM_WRITE(delta_calibration_radius); // 1 float
  415. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  416. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  417. // Write dual endstops in X, Y, Z order. Unused = 0.0
  418. dummy = 0.0f;
  419. #if ENABLED(X_DUAL_ENDSTOPS)
  420. EEPROM_WRITE(x_endstop_adj); // 1 float
  421. #else
  422. EEPROM_WRITE(dummy);
  423. #endif
  424. #if ENABLED(Y_DUAL_ENDSTOPS)
  425. EEPROM_WRITE(y_endstop_adj); // 1 float
  426. #else
  427. EEPROM_WRITE(dummy);
  428. #endif
  429. #if ENABLED(Z_DUAL_ENDSTOPS)
  430. EEPROM_WRITE(z_endstop_adj); // 1 float
  431. #else
  432. EEPROM_WRITE(dummy);
  433. #endif
  434. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  435. #else
  436. dummy = 0.0f;
  437. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  438. #endif
  439. #if DISABLED(ULTIPANEL)
  440. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  441. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  442. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  443. #endif
  444. EEPROM_WRITE(lcd_preheat_hotend_temp);
  445. EEPROM_WRITE(lcd_preheat_bed_temp);
  446. EEPROM_WRITE(lcd_preheat_fan_speed);
  447. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  448. #if ENABLED(PIDTEMP)
  449. if (e < HOTENDS) {
  450. EEPROM_WRITE(PID_PARAM(Kp, e));
  451. EEPROM_WRITE(PID_PARAM(Ki, e));
  452. EEPROM_WRITE(PID_PARAM(Kd, e));
  453. #if ENABLED(PID_EXTRUSION_SCALING)
  454. EEPROM_WRITE(PID_PARAM(Kc, e));
  455. #else
  456. dummy = 1.0f; // 1.0 = default kc
  457. EEPROM_WRITE(dummy);
  458. #endif
  459. }
  460. else
  461. #endif // !PIDTEMP
  462. {
  463. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  464. EEPROM_WRITE(dummy); // Kp
  465. dummy = 0.0f;
  466. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  467. }
  468. } // Hotends Loop
  469. #if DISABLED(PID_EXTRUSION_SCALING)
  470. int lpq_len = 20;
  471. #endif
  472. EEPROM_WRITE(lpq_len);
  473. #if DISABLED(PIDTEMPBED)
  474. dummy = DUMMY_PID_VALUE;
  475. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  476. #else
  477. EEPROM_WRITE(thermalManager.bedKp);
  478. EEPROM_WRITE(thermalManager.bedKi);
  479. EEPROM_WRITE(thermalManager.bedKd);
  480. #endif
  481. #if !HAS_LCD_CONTRAST
  482. const uint16_t lcd_contrast = 32;
  483. #endif
  484. EEPROM_WRITE(lcd_contrast);
  485. #if DISABLED(FWRETRACT)
  486. const bool autoretract_enabled = false;
  487. const float retract_length = 3,
  488. retract_feedrate_mm_s = 45,
  489. retract_zlift = 0,
  490. retract_recover_length = 0,
  491. retract_recover_feedrate_mm_s = 0,
  492. swap_retract_length = 13,
  493. swap_retract_recover_length = 0,
  494. swap_retract_recover_feedrate_mm_s = 8;
  495. #endif
  496. EEPROM_WRITE(autoretract_enabled);
  497. EEPROM_WRITE(retract_length);
  498. EEPROM_WRITE(retract_feedrate_mm_s);
  499. EEPROM_WRITE(retract_zlift);
  500. EEPROM_WRITE(retract_recover_length);
  501. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  502. EEPROM_WRITE(swap_retract_length);
  503. EEPROM_WRITE(swap_retract_recover_length);
  504. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  505. EEPROM_WRITE(parser.volumetric_enabled);
  506. // Save filament sizes
  507. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  508. if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
  509. EEPROM_WRITE(dummy);
  510. }
  511. // Save TMC2130 Configuration, and placeholder values
  512. uint16_t val;
  513. #if ENABLED(HAVE_TMC2130)
  514. #if ENABLED(X_IS_TMC2130)
  515. val = stepperX.getCurrent();
  516. #else
  517. val = 0;
  518. #endif
  519. EEPROM_WRITE(val);
  520. #if ENABLED(Y_IS_TMC2130)
  521. val = stepperY.getCurrent();
  522. #else
  523. val = 0;
  524. #endif
  525. EEPROM_WRITE(val);
  526. #if ENABLED(Z_IS_TMC2130)
  527. val = stepperZ.getCurrent();
  528. #else
  529. val = 0;
  530. #endif
  531. EEPROM_WRITE(val);
  532. #if ENABLED(X2_IS_TMC2130)
  533. val = stepperX2.getCurrent();
  534. #else
  535. val = 0;
  536. #endif
  537. EEPROM_WRITE(val);
  538. #if ENABLED(Y2_IS_TMC2130)
  539. val = stepperY2.getCurrent();
  540. #else
  541. val = 0;
  542. #endif
  543. EEPROM_WRITE(val);
  544. #if ENABLED(Z2_IS_TMC2130)
  545. val = stepperZ2.getCurrent();
  546. #else
  547. val = 0;
  548. #endif
  549. EEPROM_WRITE(val);
  550. #if ENABLED(E0_IS_TMC2130)
  551. val = stepperE0.getCurrent();
  552. #else
  553. val = 0;
  554. #endif
  555. EEPROM_WRITE(val);
  556. #if ENABLED(E1_IS_TMC2130)
  557. val = stepperE1.getCurrent();
  558. #else
  559. val = 0;
  560. #endif
  561. EEPROM_WRITE(val);
  562. #if ENABLED(E2_IS_TMC2130)
  563. val = stepperE2.getCurrent();
  564. #else
  565. val = 0;
  566. #endif
  567. EEPROM_WRITE(val);
  568. #if ENABLED(E3_IS_TMC2130)
  569. val = stepperE3.getCurrent();
  570. #else
  571. val = 0;
  572. #endif
  573. EEPROM_WRITE(val);
  574. #if ENABLED(E4_IS_TMC2130)
  575. val = stepperE4.getCurrent();
  576. #else
  577. val = 0;
  578. #endif
  579. EEPROM_WRITE(val);
  580. #else
  581. val = 0;
  582. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  583. #endif
  584. //
  585. // Linear Advance
  586. //
  587. #if ENABLED(LIN_ADVANCE)
  588. EEPROM_WRITE(planner.extruder_advance_k);
  589. EEPROM_WRITE(planner.advance_ed_ratio);
  590. #else
  591. dummy = 0.0f;
  592. EEPROM_WRITE(dummy);
  593. EEPROM_WRITE(dummy);
  594. #endif
  595. #if HAS_MOTOR_CURRENT_PWM
  596. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  597. #else
  598. const uint32_t dummyui32 = 0;
  599. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  600. #endif
  601. //
  602. // CNC Coordinate Systems
  603. //
  604. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  605. EEPROM_WRITE(coordinate_system); // 27 floats
  606. #else
  607. dummy = 0.0f;
  608. for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy);
  609. #endif
  610. //
  611. // Skew correction factors
  612. //
  613. #if ENABLED(SKEW_CORRECTION)
  614. EEPROM_WRITE(planner.xy_skew_factor);
  615. EEPROM_WRITE(planner.xz_skew_factor);
  616. EEPROM_WRITE(planner.yz_skew_factor);
  617. #else
  618. dummy = 0.0f;
  619. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  620. #endif
  621. if (!eeprom_error) {
  622. const int eeprom_size = eeprom_index;
  623. const uint16_t final_crc = working_crc;
  624. // Write the EEPROM header
  625. eeprom_index = EEPROM_OFFSET;
  626. EEPROM_WRITE(version);
  627. EEPROM_WRITE(final_crc);
  628. // Report storage size
  629. #if ENABLED(EEPROM_CHITCHAT)
  630. SERIAL_ECHO_START();
  631. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  632. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  633. SERIAL_ECHOLNPGM(")");
  634. #endif
  635. }
  636. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  637. if (ubl.storage_slot >= 0)
  638. store_mesh(ubl.storage_slot);
  639. #endif
  640. return !eeprom_error;
  641. }
  642. /**
  643. * M501 - Retrieve Configuration
  644. */
  645. bool MarlinSettings::load() {
  646. uint16_t working_crc = 0;
  647. EEPROM_START();
  648. char stored_ver[4];
  649. EEPROM_READ(stored_ver);
  650. uint16_t stored_crc;
  651. EEPROM_READ(stored_crc);
  652. // Version has to match or defaults are used
  653. if (strncmp(version, stored_ver, 3) != 0) {
  654. if (stored_ver[0] != 'V') {
  655. stored_ver[0] = '?';
  656. stored_ver[1] = '\0';
  657. }
  658. #if ENABLED(EEPROM_CHITCHAT)
  659. SERIAL_ECHO_START();
  660. SERIAL_ECHOPGM("EEPROM version mismatch ");
  661. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  662. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  663. #endif
  664. reset();
  665. }
  666. else {
  667. float dummy = 0;
  668. bool dummyb;
  669. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  670. // Number of esteppers may change
  671. uint8_t esteppers;
  672. EEPROM_READ(esteppers);
  673. //
  674. // Planner Motion
  675. //
  676. // Get only the number of E stepper parameters previously stored
  677. // Any steppers added later are set to their defaults
  678. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  679. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  680. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  681. uint32_t tmp3[XYZ + esteppers];
  682. EEPROM_READ(tmp1);
  683. EEPROM_READ(tmp2);
  684. EEPROM_READ(tmp3);
  685. LOOP_XYZE_N(i) {
  686. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  687. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  688. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  689. }
  690. EEPROM_READ(planner.acceleration);
  691. EEPROM_READ(planner.retract_acceleration);
  692. EEPROM_READ(planner.travel_acceleration);
  693. EEPROM_READ(planner.min_feedrate_mm_s);
  694. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  695. EEPROM_READ(planner.min_segment_time_us);
  696. EEPROM_READ(planner.max_jerk);
  697. //
  698. // Home Offset (M206)
  699. //
  700. #if !HAS_HOME_OFFSET
  701. float home_offset[XYZ];
  702. #endif
  703. EEPROM_READ(home_offset);
  704. //
  705. // Hotend Offsets, if any
  706. //
  707. #if HOTENDS > 1
  708. // Skip hotend 0 which must be 0
  709. for (uint8_t e = 1; e < HOTENDS; e++)
  710. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  711. #endif
  712. //
  713. // Global Leveling
  714. //
  715. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  716. EEPROM_READ(new_z_fade_height);
  717. #else
  718. EEPROM_READ(dummy);
  719. #endif
  720. //
  721. // Mesh (Manual) Bed Leveling
  722. //
  723. bool leveling_is_on;
  724. uint8_t mesh_num_x, mesh_num_y;
  725. EEPROM_READ(leveling_is_on);
  726. EEPROM_READ(dummy);
  727. EEPROM_READ(mesh_num_x);
  728. EEPROM_READ(mesh_num_y);
  729. #if ENABLED(MESH_BED_LEVELING)
  730. mbl.has_mesh = leveling_is_on;
  731. mbl.z_offset = dummy;
  732. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  733. // EEPROM data fits the current mesh
  734. EEPROM_READ(mbl.z_values);
  735. }
  736. else {
  737. // EEPROM data is stale
  738. mbl.reset();
  739. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  740. }
  741. #else
  742. // MBL is disabled - skip the stored data
  743. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  744. #endif // MESH_BED_LEVELING
  745. #if !HAS_BED_PROBE
  746. float zprobe_zoffset;
  747. #endif
  748. EEPROM_READ(zprobe_zoffset);
  749. //
  750. // Planar Bed Leveling matrix
  751. //
  752. #if ABL_PLANAR
  753. EEPROM_READ(planner.bed_level_matrix);
  754. #else
  755. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  756. #endif
  757. //
  758. // Bilinear Auto Bed Leveling
  759. //
  760. uint8_t grid_max_x, grid_max_y;
  761. EEPROM_READ(grid_max_x); // 1 byte
  762. EEPROM_READ(grid_max_y); // 1 byte
  763. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  764. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  765. set_bed_leveling_enabled(false);
  766. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  767. EEPROM_READ(bilinear_start); // 2 ints
  768. EEPROM_READ(z_values); // 9 to 256 floats
  769. }
  770. else // EEPROM data is stale
  771. #endif // AUTO_BED_LEVELING_BILINEAR
  772. {
  773. // Skip past disabled (or stale) Bilinear Grid data
  774. int bgs[2], bs[2];
  775. EEPROM_READ(bgs);
  776. EEPROM_READ(bs);
  777. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  778. }
  779. //
  780. // Unified Bed Leveling active state
  781. //
  782. #if ENABLED(AUTO_BED_LEVELING_UBL)
  783. EEPROM_READ(planner.leveling_active);
  784. EEPROM_READ(ubl.storage_slot);
  785. #else
  786. uint8_t dummyui8;
  787. EEPROM_READ(dummyb);
  788. EEPROM_READ(dummyui8);
  789. #endif // AUTO_BED_LEVELING_UBL
  790. //
  791. // DELTA Geometry or Dual Endstops offsets
  792. //
  793. #if ENABLED(DELTA)
  794. EEPROM_READ(delta_height); // 1 float
  795. EEPROM_READ(delta_endstop_adj); // 3 floats
  796. EEPROM_READ(delta_radius); // 1 float
  797. EEPROM_READ(delta_diagonal_rod); // 1 float
  798. EEPROM_READ(delta_segments_per_second); // 1 float
  799. EEPROM_READ(delta_calibration_radius); // 1 float
  800. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  801. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  802. #if ENABLED(X_DUAL_ENDSTOPS)
  803. EEPROM_READ(x_endstop_adj); // 1 float
  804. #else
  805. EEPROM_READ(dummy);
  806. #endif
  807. #if ENABLED(Y_DUAL_ENDSTOPS)
  808. EEPROM_READ(y_endstop_adj); // 1 float
  809. #else
  810. EEPROM_READ(dummy);
  811. #endif
  812. #if ENABLED(Z_DUAL_ENDSTOPS)
  813. EEPROM_READ(z_endstop_adj); // 1 float
  814. #else
  815. EEPROM_READ(dummy);
  816. #endif
  817. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  818. #else
  819. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  820. #endif
  821. //
  822. // LCD Preheat settings
  823. //
  824. #if DISABLED(ULTIPANEL)
  825. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  826. #endif
  827. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  828. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  829. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  830. //EEPROM_ASSERT(
  831. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  832. // "lcd_preheat_fan_speed out of range"
  833. //);
  834. //
  835. // Hotend PID
  836. //
  837. #if ENABLED(PIDTEMP)
  838. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  839. EEPROM_READ(dummy); // Kp
  840. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  841. // do not need to scale PID values as the values in EEPROM are already scaled
  842. PID_PARAM(Kp, e) = dummy;
  843. EEPROM_READ(PID_PARAM(Ki, e));
  844. EEPROM_READ(PID_PARAM(Kd, e));
  845. #if ENABLED(PID_EXTRUSION_SCALING)
  846. EEPROM_READ(PID_PARAM(Kc, e));
  847. #else
  848. EEPROM_READ(dummy);
  849. #endif
  850. }
  851. else {
  852. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  853. }
  854. }
  855. #else // !PIDTEMP
  856. // 4 x 4 = 16 slots for PID parameters
  857. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  858. #endif // !PIDTEMP
  859. //
  860. // PID Extrusion Scaling
  861. //
  862. #if DISABLED(PID_EXTRUSION_SCALING)
  863. int lpq_len;
  864. #endif
  865. EEPROM_READ(lpq_len);
  866. //
  867. // Heated Bed PID
  868. //
  869. #if ENABLED(PIDTEMPBED)
  870. EEPROM_READ(dummy); // bedKp
  871. if (dummy != DUMMY_PID_VALUE) {
  872. thermalManager.bedKp = dummy;
  873. EEPROM_READ(thermalManager.bedKi);
  874. EEPROM_READ(thermalManager.bedKd);
  875. }
  876. #else
  877. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  878. #endif
  879. //
  880. // LCD Contrast
  881. //
  882. #if !HAS_LCD_CONTRAST
  883. uint16_t lcd_contrast;
  884. #endif
  885. EEPROM_READ(lcd_contrast);
  886. //
  887. // Firmware Retraction
  888. //
  889. #if ENABLED(FWRETRACT)
  890. EEPROM_READ(autoretract_enabled);
  891. EEPROM_READ(retract_length);
  892. EEPROM_READ(retract_feedrate_mm_s);
  893. EEPROM_READ(retract_zlift);
  894. EEPROM_READ(retract_recover_length);
  895. EEPROM_READ(retract_recover_feedrate_mm_s);
  896. EEPROM_READ(swap_retract_length);
  897. EEPROM_READ(swap_retract_recover_length);
  898. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  899. #else
  900. EEPROM_READ(dummyb);
  901. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  902. #endif
  903. //
  904. // Volumetric & Filament Size
  905. //
  906. EEPROM_READ(parser.volumetric_enabled);
  907. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  908. EEPROM_READ(dummy);
  909. if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
  910. }
  911. //
  912. // TMC2130 Stepper Current
  913. //
  914. uint16_t val;
  915. #if ENABLED(HAVE_TMC2130)
  916. EEPROM_READ(val);
  917. #if ENABLED(X_IS_TMC2130)
  918. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  919. #endif
  920. EEPROM_READ(val);
  921. #if ENABLED(Y_IS_TMC2130)
  922. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  923. #endif
  924. EEPROM_READ(val);
  925. #if ENABLED(Z_IS_TMC2130)
  926. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  927. #endif
  928. EEPROM_READ(val);
  929. #if ENABLED(X2_IS_TMC2130)
  930. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  931. #endif
  932. EEPROM_READ(val);
  933. #if ENABLED(Y2_IS_TMC2130)
  934. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  935. #endif
  936. EEPROM_READ(val);
  937. #if ENABLED(Z2_IS_TMC2130)
  938. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  939. #endif
  940. EEPROM_READ(val);
  941. #if ENABLED(E0_IS_TMC2130)
  942. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  943. #endif
  944. EEPROM_READ(val);
  945. #if ENABLED(E1_IS_TMC2130)
  946. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  947. #endif
  948. EEPROM_READ(val);
  949. #if ENABLED(E2_IS_TMC2130)
  950. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  951. #endif
  952. EEPROM_READ(val);
  953. #if ENABLED(E3_IS_TMC2130)
  954. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  955. #endif
  956. EEPROM_READ(val);
  957. #if ENABLED(E4_IS_TMC2130)
  958. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  959. #endif
  960. #else
  961. for (uint8_t q = 11; q--;) EEPROM_READ(val);
  962. #endif
  963. //
  964. // Linear Advance
  965. //
  966. #if ENABLED(LIN_ADVANCE)
  967. EEPROM_READ(planner.extruder_advance_k);
  968. EEPROM_READ(planner.advance_ed_ratio);
  969. #else
  970. EEPROM_READ(dummy);
  971. EEPROM_READ(dummy);
  972. #endif
  973. //
  974. // Motor Current PWM
  975. //
  976. #if HAS_MOTOR_CURRENT_PWM
  977. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  978. #else
  979. uint32_t dummyui32;
  980. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  981. #endif
  982. //
  983. // CNC Coordinate System
  984. //
  985. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  986. position_changed = select_coordinate_system(-1); // Go back to machine space
  987. EEPROM_READ(coordinate_system); // 27 floats
  988. #else
  989. for (uint8_t q = 27; q--;) EEPROM_READ(dummy);
  990. #endif
  991. //
  992. // Skew correction factors
  993. //
  994. #if ENABLED(SKEW_CORRECTION_GCODE)
  995. EEPROM_READ(planner.xy_skew_factor);
  996. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  997. EEPROM_READ(planner.xz_skew_factor);
  998. EEPROM_READ(planner.yz_skew_factor);
  999. #else
  1000. EEPROM_READ(dummy);
  1001. EEPROM_READ(dummy);
  1002. #endif
  1003. #else
  1004. for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
  1005. #endif
  1006. if (working_crc == stored_crc) {
  1007. postprocess();
  1008. #if ENABLED(EEPROM_CHITCHAT)
  1009. SERIAL_ECHO_START();
  1010. SERIAL_ECHO(version);
  1011. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1012. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  1013. SERIAL_ECHOLNPGM(")");
  1014. #endif
  1015. }
  1016. else {
  1017. #if ENABLED(EEPROM_CHITCHAT)
  1018. SERIAL_ERROR_START();
  1019. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  1020. SERIAL_ERROR(stored_crc);
  1021. SERIAL_ERRORPGM(" != ");
  1022. SERIAL_ERROR(working_crc);
  1023. SERIAL_ERRORLNPGM(" (calculated)!");
  1024. #endif
  1025. reset();
  1026. }
  1027. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1028. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  1029. // can float up or down a little bit without
  1030. // disrupting the mesh data
  1031. ubl.report_state();
  1032. if (!ubl.sanity_check()) {
  1033. SERIAL_EOL();
  1034. #if ENABLED(EEPROM_CHITCHAT)
  1035. ubl.echo_name();
  1036. SERIAL_ECHOLNPGM(" initialized.\n");
  1037. #endif
  1038. }
  1039. else {
  1040. #if ENABLED(EEPROM_CHITCHAT)
  1041. SERIAL_PROTOCOLPGM("?Can't enable ");
  1042. ubl.echo_name();
  1043. SERIAL_PROTOCOLLNPGM(".");
  1044. #endif
  1045. ubl.reset();
  1046. }
  1047. if (ubl.storage_slot >= 0) {
  1048. load_mesh(ubl.storage_slot);
  1049. #if ENABLED(EEPROM_CHITCHAT)
  1050. SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
  1051. SERIAL_ECHOLNPGM(" loaded from storage.");
  1052. #endif
  1053. }
  1054. else {
  1055. ubl.reset();
  1056. #if ENABLED(EEPROM_CHITCHAT)
  1057. SERIAL_ECHOLNPGM("UBL System reset()");
  1058. #endif
  1059. }
  1060. #endif
  1061. }
  1062. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1063. report();
  1064. #endif
  1065. return !eeprom_error;
  1066. }
  1067. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1068. #if ENABLED(EEPROM_CHITCHAT)
  1069. void ubl_invalid_slot(const int s) {
  1070. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1071. SERIAL_PROTOCOL(s);
  1072. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1073. }
  1074. #endif
  1075. int MarlinSettings::calc_num_meshes() {
  1076. //obviously this will get more sophisticated once we've added an actual MAT
  1077. if (meshes_begin <= 0) return 0;
  1078. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  1079. }
  1080. void MarlinSettings::store_mesh(int8_t slot) {
  1081. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1082. const int a = calc_num_meshes();
  1083. if (!WITHIN(slot, 0, a - 1)) {
  1084. #if ENABLED(EEPROM_CHITCHAT)
  1085. ubl_invalid_slot(a);
  1086. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1087. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1088. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1089. SERIAL_EOL();
  1090. #endif
  1091. return;
  1092. }
  1093. uint16_t crc = 0;
  1094. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1095. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1096. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1097. #if ENABLED(EEPROM_CHITCHAT)
  1098. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1099. #endif
  1100. #else
  1101. // Other mesh types
  1102. #endif
  1103. }
  1104. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  1105. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1106. const int16_t a = settings.calc_num_meshes();
  1107. if (!WITHIN(slot, 0, a - 1)) {
  1108. #if ENABLED(EEPROM_CHITCHAT)
  1109. ubl_invalid_slot(a);
  1110. #endif
  1111. return;
  1112. }
  1113. uint16_t crc = 0;
  1114. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1115. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1116. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1117. // Compare crc with crc from MAT, or read from end
  1118. #if ENABLED(EEPROM_CHITCHAT)
  1119. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1120. #endif
  1121. #else
  1122. // Other mesh types
  1123. #endif
  1124. }
  1125. //void MarlinSettings::delete_mesh() { return; }
  1126. //void MarlinSettings::defrag_meshes() { return; }
  1127. #endif // AUTO_BED_LEVELING_UBL
  1128. #else // !EEPROM_SETTINGS
  1129. bool MarlinSettings::save() {
  1130. SERIAL_ERROR_START();
  1131. SERIAL_ERRORLNPGM("EEPROM disabled");
  1132. return false;
  1133. }
  1134. #endif // !EEPROM_SETTINGS
  1135. /**
  1136. * M502 - Reset Configuration
  1137. */
  1138. void MarlinSettings::reset() {
  1139. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1140. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1141. LOOP_XYZE_N(i) {
  1142. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1143. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1144. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1145. }
  1146. planner.acceleration = DEFAULT_ACCELERATION;
  1147. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1148. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1149. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1150. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1151. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1152. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1153. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1154. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1155. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1156. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1157. new_z_fade_height = 10.0;
  1158. #endif
  1159. #if HAS_HOME_OFFSET
  1160. ZERO(home_offset);
  1161. #endif
  1162. #if HOTENDS > 1
  1163. constexpr float tmp4[XYZ][HOTENDS] = {
  1164. HOTEND_OFFSET_X,
  1165. HOTEND_OFFSET_Y
  1166. #ifdef HOTEND_OFFSET_Z
  1167. , HOTEND_OFFSET_Z
  1168. #else
  1169. , { 0 }
  1170. #endif
  1171. };
  1172. static_assert(
  1173. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1174. "Offsets for the first hotend must be 0.0."
  1175. );
  1176. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1177. #endif
  1178. // Applies to all MBL and ABL
  1179. #if HAS_LEVELING
  1180. reset_bed_level();
  1181. #endif
  1182. #if HAS_BED_PROBE
  1183. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1184. #endif
  1185. #if ENABLED(DELTA)
  1186. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1187. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1188. delta_height = DELTA_HEIGHT;
  1189. COPY(delta_endstop_adj, adj);
  1190. delta_radius = DELTA_RADIUS;
  1191. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1192. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1193. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1194. COPY(delta_tower_angle_trim, dta);
  1195. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1196. #if ENABLED(X_DUAL_ENDSTOPS)
  1197. x_endstop_adj = (
  1198. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1199. X_DUAL_ENDSTOPS_ADJUSTMENT
  1200. #else
  1201. 0
  1202. #endif
  1203. );
  1204. #endif
  1205. #if ENABLED(Y_DUAL_ENDSTOPS)
  1206. y_endstop_adj = (
  1207. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1208. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1209. #else
  1210. 0
  1211. #endif
  1212. );
  1213. #endif
  1214. #if ENABLED(Z_DUAL_ENDSTOPS)
  1215. z_endstop_adj = (
  1216. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1217. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1218. #else
  1219. 0
  1220. #endif
  1221. );
  1222. #endif
  1223. #endif
  1224. #if ENABLED(ULTIPANEL)
  1225. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1226. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1227. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1228. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1229. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1230. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1231. #endif
  1232. #if HAS_LCD_CONTRAST
  1233. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1234. #endif
  1235. #if ENABLED(PIDTEMP)
  1236. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1237. HOTEND_LOOP()
  1238. #endif
  1239. {
  1240. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1241. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1242. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1243. #if ENABLED(PID_EXTRUSION_SCALING)
  1244. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1245. #endif
  1246. }
  1247. #if ENABLED(PID_EXTRUSION_SCALING)
  1248. lpq_len = 20; // default last-position-queue size
  1249. #endif
  1250. #endif // PIDTEMP
  1251. #if ENABLED(PIDTEMPBED)
  1252. thermalManager.bedKp = DEFAULT_bedKp;
  1253. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1254. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1255. #endif
  1256. #if ENABLED(FWRETRACT)
  1257. autoretract_enabled = false;
  1258. retract_length = RETRACT_LENGTH;
  1259. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1260. retract_zlift = RETRACT_ZLIFT;
  1261. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1262. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1263. swap_retract_length = RETRACT_LENGTH_SWAP;
  1264. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1265. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1266. #endif // FWRETRACT
  1267. parser.volumetric_enabled =
  1268. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1269. true
  1270. #else
  1271. false
  1272. #endif
  1273. ;
  1274. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1275. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1276. endstops.enable_globally(
  1277. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1278. true
  1279. #else
  1280. false
  1281. #endif
  1282. );
  1283. #if ENABLED(HAVE_TMC2130)
  1284. #if ENABLED(X_IS_TMC2130)
  1285. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1286. #endif
  1287. #if ENABLED(Y_IS_TMC2130)
  1288. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1289. #endif
  1290. #if ENABLED(Z_IS_TMC2130)
  1291. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1292. #endif
  1293. #if ENABLED(X2_IS_TMC2130)
  1294. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1295. #endif
  1296. #if ENABLED(Y2_IS_TMC2130)
  1297. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1298. #endif
  1299. #if ENABLED(Z2_IS_TMC2130)
  1300. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1301. #endif
  1302. #if ENABLED(E0_IS_TMC2130)
  1303. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1304. #endif
  1305. #if ENABLED(E1_IS_TMC2130)
  1306. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1307. #endif
  1308. #if ENABLED(E2_IS_TMC2130)
  1309. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1310. #endif
  1311. #if ENABLED(E3_IS_TMC2130)
  1312. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1313. #endif
  1314. #endif
  1315. #if ENABLED(LIN_ADVANCE)
  1316. planner.extruder_advance_k = LIN_ADVANCE_K;
  1317. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1318. #endif
  1319. #if HAS_MOTOR_CURRENT_PWM
  1320. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1321. for (uint8_t q = 3; q--;)
  1322. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1323. #endif
  1324. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1325. ubl.reset();
  1326. #endif
  1327. #if ENABLED(SKEW_CORRECTION_GCODE)
  1328. planner.xy_skew_factor = XY_SKEW_FACTOR;
  1329. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1330. planner.xz_skew_factor = XZ_SKEW_FACTOR;
  1331. planner.yz_skew_factor = YZ_SKEW_FACTOR;
  1332. #endif
  1333. #endif
  1334. postprocess();
  1335. #if ENABLED(EEPROM_CHITCHAT)
  1336. SERIAL_ECHO_START();
  1337. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1338. #endif
  1339. }
  1340. #if DISABLED(DISABLE_M503)
  1341. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1342. /**
  1343. * M503 - Report current settings in RAM
  1344. *
  1345. * Unless specifically disabled, M503 is available even without EEPROM
  1346. */
  1347. void MarlinSettings::report(const bool forReplay) {
  1348. /**
  1349. * Announce current units, in case inches are being displayed
  1350. */
  1351. CONFIG_ECHO_START;
  1352. #if ENABLED(INCH_MODE_SUPPORT)
  1353. #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
  1354. #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1355. SERIAL_ECHOPGM(" G2");
  1356. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1357. SERIAL_ECHOPGM(" ; Units in ");
  1358. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1359. #else
  1360. #define LINEAR_UNIT(N) (N)
  1361. #define VOLUMETRIC_UNIT(N) (N)
  1362. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1363. #endif
  1364. #if ENABLED(ULTIPANEL)
  1365. // Temperature units - for Ultipanel temperature options
  1366. CONFIG_ECHO_START;
  1367. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1368. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1369. SERIAL_ECHOPGM(" M149 ");
  1370. SERIAL_CHAR(parser.temp_units_code());
  1371. SERIAL_ECHOPGM(" ; Units in ");
  1372. serialprintPGM(parser.temp_units_name());
  1373. #else
  1374. #define TEMP_UNIT(N) (N)
  1375. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1376. #endif
  1377. #endif
  1378. SERIAL_EOL();
  1379. /**
  1380. * Volumetric extrusion M200
  1381. */
  1382. if (!forReplay) {
  1383. CONFIG_ECHO_START;
  1384. SERIAL_ECHOPGM("Filament settings:");
  1385. if (parser.volumetric_enabled)
  1386. SERIAL_EOL();
  1387. else
  1388. SERIAL_ECHOLNPGM(" Disabled");
  1389. }
  1390. CONFIG_ECHO_START;
  1391. SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1392. SERIAL_EOL();
  1393. #if EXTRUDERS > 1
  1394. CONFIG_ECHO_START;
  1395. SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1396. SERIAL_EOL();
  1397. #if EXTRUDERS > 2
  1398. CONFIG_ECHO_START;
  1399. SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1400. SERIAL_EOL();
  1401. #if EXTRUDERS > 3
  1402. CONFIG_ECHO_START;
  1403. SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1404. SERIAL_EOL();
  1405. #if EXTRUDERS > 4
  1406. CONFIG_ECHO_START;
  1407. SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1408. SERIAL_EOL();
  1409. #endif // EXTRUDERS > 4
  1410. #endif // EXTRUDERS > 3
  1411. #endif // EXTRUDERS > 2
  1412. #endif // EXTRUDERS > 1
  1413. if (!parser.volumetric_enabled) {
  1414. CONFIG_ECHO_START;
  1415. SERIAL_ECHOLNPGM(" M200 D0");
  1416. }
  1417. if (!forReplay) {
  1418. CONFIG_ECHO_START;
  1419. SERIAL_ECHOLNPGM("Steps per unit:");
  1420. }
  1421. CONFIG_ECHO_START;
  1422. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1423. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1424. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1425. #if DISABLED(DISTINCT_E_FACTORS)
  1426. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1427. #endif
  1428. SERIAL_EOL();
  1429. #if ENABLED(DISTINCT_E_FACTORS)
  1430. CONFIG_ECHO_START;
  1431. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1432. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1433. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1434. }
  1435. #endif
  1436. if (!forReplay) {
  1437. CONFIG_ECHO_START;
  1438. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1439. }
  1440. CONFIG_ECHO_START;
  1441. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1442. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1443. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1444. #if DISABLED(DISTINCT_E_FACTORS)
  1445. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1446. #endif
  1447. SERIAL_EOL();
  1448. #if ENABLED(DISTINCT_E_FACTORS)
  1449. CONFIG_ECHO_START;
  1450. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1451. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1452. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1453. }
  1454. #endif
  1455. if (!forReplay) {
  1456. CONFIG_ECHO_START;
  1457. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1458. }
  1459. CONFIG_ECHO_START;
  1460. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1461. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1462. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1463. #if DISABLED(DISTINCT_E_FACTORS)
  1464. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1465. #endif
  1466. SERIAL_EOL();
  1467. #if ENABLED(DISTINCT_E_FACTORS)
  1468. CONFIG_ECHO_START;
  1469. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1470. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1471. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1472. }
  1473. #endif
  1474. if (!forReplay) {
  1475. CONFIG_ECHO_START;
  1476. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1477. }
  1478. CONFIG_ECHO_START;
  1479. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1480. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1481. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1482. if (!forReplay) {
  1483. CONFIG_ECHO_START;
  1484. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1485. }
  1486. CONFIG_ECHO_START;
  1487. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1488. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1489. SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
  1490. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1491. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1492. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1493. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1494. #if HAS_M206_COMMAND
  1495. if (!forReplay) {
  1496. CONFIG_ECHO_START;
  1497. SERIAL_ECHOLNPGM("Home offset:");
  1498. }
  1499. CONFIG_ECHO_START;
  1500. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1501. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1502. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1503. #endif
  1504. #if HOTENDS > 1
  1505. if (!forReplay) {
  1506. CONFIG_ECHO_START;
  1507. SERIAL_ECHOLNPGM("Hotend offsets:");
  1508. }
  1509. CONFIG_ECHO_START;
  1510. for (uint8_t e = 1; e < HOTENDS; e++) {
  1511. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1512. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1513. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1514. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1515. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1516. #endif
  1517. SERIAL_EOL();
  1518. }
  1519. #endif
  1520. /**
  1521. * Bed Leveling
  1522. */
  1523. #if HAS_LEVELING
  1524. #if ENABLED(MESH_BED_LEVELING)
  1525. if (!forReplay) {
  1526. CONFIG_ECHO_START;
  1527. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1528. }
  1529. CONFIG_ECHO_START;
  1530. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1531. if (!forReplay) {
  1532. CONFIG_ECHO_START;
  1533. ubl.echo_name();
  1534. SERIAL_ECHOLNPGM(":");
  1535. }
  1536. CONFIG_ECHO_START;
  1537. #elif HAS_ABL
  1538. if (!forReplay) {
  1539. CONFIG_ECHO_START;
  1540. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1541. }
  1542. CONFIG_ECHO_START;
  1543. #endif
  1544. CONFIG_ECHO_START;
  1545. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  1546. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1547. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1548. #endif
  1549. SERIAL_EOL();
  1550. #if ENABLED(MESH_BED_LEVELING)
  1551. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1552. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1553. CONFIG_ECHO_START;
  1554. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1555. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1556. SERIAL_ECHOPGM(" Z");
  1557. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1558. SERIAL_EOL();
  1559. }
  1560. }
  1561. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1562. if (!forReplay) {
  1563. SERIAL_EOL();
  1564. ubl.report_state();
  1565. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  1566. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1567. SERIAL_ECHOLNPGM(" meshes.\n");
  1568. }
  1569. #endif
  1570. #endif // HAS_LEVELING
  1571. #if ENABLED(DELTA)
  1572. if (!forReplay) {
  1573. CONFIG_ECHO_START;
  1574. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1575. }
  1576. CONFIG_ECHO_START;
  1577. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1578. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1579. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1580. if (!forReplay) {
  1581. CONFIG_ECHO_START;
  1582. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1583. }
  1584. CONFIG_ECHO_START;
  1585. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1586. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1587. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
  1588. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1589. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1590. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1591. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1592. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1593. SERIAL_EOL();
  1594. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1595. if (!forReplay) {
  1596. CONFIG_ECHO_START;
  1597. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1598. }
  1599. CONFIG_ECHO_START;
  1600. SERIAL_ECHOPGM(" M666");
  1601. #if ENABLED(X_DUAL_ENDSTOPS)
  1602. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
  1603. #endif
  1604. #if ENABLED(Y_DUAL_ENDSTOPS)
  1605. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
  1606. #endif
  1607. #if ENABLED(Z_DUAL_ENDSTOPS)
  1608. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
  1609. #endif
  1610. SERIAL_EOL();
  1611. #endif // DELTA
  1612. #if ENABLED(ULTIPANEL)
  1613. if (!forReplay) {
  1614. CONFIG_ECHO_START;
  1615. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1616. }
  1617. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1618. CONFIG_ECHO_START;
  1619. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1620. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1621. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1622. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1623. }
  1624. #endif // ULTIPANEL
  1625. #if HAS_PID_HEATING
  1626. if (!forReplay) {
  1627. CONFIG_ECHO_START;
  1628. SERIAL_ECHOLNPGM("PID settings:");
  1629. }
  1630. #if ENABLED(PIDTEMP)
  1631. #if HOTENDS > 1
  1632. if (forReplay) {
  1633. HOTEND_LOOP() {
  1634. CONFIG_ECHO_START;
  1635. SERIAL_ECHOPAIR(" M301 E", e);
  1636. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1637. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1638. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1639. #if ENABLED(PID_EXTRUSION_SCALING)
  1640. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1641. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1642. #endif
  1643. SERIAL_EOL();
  1644. }
  1645. }
  1646. else
  1647. #endif // HOTENDS > 1
  1648. // !forReplay || HOTENDS == 1
  1649. {
  1650. CONFIG_ECHO_START;
  1651. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1652. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1653. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1654. #if ENABLED(PID_EXTRUSION_SCALING)
  1655. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1656. SERIAL_ECHOPAIR(" L", lpq_len);
  1657. #endif
  1658. SERIAL_EOL();
  1659. }
  1660. #endif // PIDTEMP
  1661. #if ENABLED(PIDTEMPBED)
  1662. CONFIG_ECHO_START;
  1663. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1664. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1665. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1666. SERIAL_EOL();
  1667. #endif
  1668. #endif // PIDTEMP || PIDTEMPBED
  1669. #if HAS_LCD_CONTRAST
  1670. if (!forReplay) {
  1671. CONFIG_ECHO_START;
  1672. SERIAL_ECHOLNPGM("LCD Contrast:");
  1673. }
  1674. CONFIG_ECHO_START;
  1675. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1676. #endif
  1677. #if ENABLED(FWRETRACT)
  1678. if (!forReplay) {
  1679. CONFIG_ECHO_START;
  1680. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1681. }
  1682. CONFIG_ECHO_START;
  1683. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1684. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1685. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1686. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1687. if (!forReplay) {
  1688. CONFIG_ECHO_START;
  1689. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1690. }
  1691. CONFIG_ECHO_START;
  1692. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1693. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1694. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1695. if (!forReplay) {
  1696. CONFIG_ECHO_START;
  1697. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1698. }
  1699. CONFIG_ECHO_START;
  1700. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1701. #endif // FWRETRACT
  1702. /**
  1703. * Probe Offset
  1704. */
  1705. #if HAS_BED_PROBE
  1706. if (!forReplay) {
  1707. CONFIG_ECHO_START;
  1708. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1709. }
  1710. CONFIG_ECHO_START;
  1711. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1712. #endif
  1713. /**
  1714. * Bed Skew Correction
  1715. */
  1716. #if ENABLED(SKEW_CORRECTION_GCODE)
  1717. if (!forReplay) {
  1718. CONFIG_ECHO_START;
  1719. SERIAL_ECHOLNPGM("Skew Factor: ");
  1720. }
  1721. CONFIG_ECHO_START;
  1722. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1723. SERIAL_ECHOPAIR(" M852 I", LINEAR_UNIT(planner.xy_skew_factor));
  1724. SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.xz_skew_factor));
  1725. SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(planner.yz_skew_factor));
  1726. #else
  1727. SERIAL_ECHOLNPAIR(" M852 S", LINEAR_UNIT(planner.xy_skew_factor));
  1728. #endif
  1729. #endif
  1730. /**
  1731. * TMC2130 stepper driver current
  1732. */
  1733. #if ENABLED(HAVE_TMC2130)
  1734. if (!forReplay) {
  1735. CONFIG_ECHO_START;
  1736. SERIAL_ECHOLNPGM("Stepper driver current:");
  1737. }
  1738. CONFIG_ECHO_START;
  1739. SERIAL_ECHO(" M906");
  1740. #if ENABLED(X_IS_TMC2130)
  1741. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1742. #endif
  1743. #if ENABLED(Y_IS_TMC2130)
  1744. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1745. #endif
  1746. #if ENABLED(Z_IS_TMC2130)
  1747. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1748. #endif
  1749. #if ENABLED(X2_IS_TMC2130)
  1750. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1751. #endif
  1752. #if ENABLED(Y2_IS_TMC2130)
  1753. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1754. #endif
  1755. #if ENABLED(Z2_IS_TMC2130)
  1756. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1757. #endif
  1758. #if ENABLED(E0_IS_TMC2130)
  1759. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1760. #endif
  1761. #if ENABLED(E1_IS_TMC2130)
  1762. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1763. #endif
  1764. #if ENABLED(E2_IS_TMC2130)
  1765. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1766. #endif
  1767. #if ENABLED(E3_IS_TMC2130)
  1768. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1769. #endif
  1770. SERIAL_EOL();
  1771. #endif
  1772. /**
  1773. * Linear Advance
  1774. */
  1775. #if ENABLED(LIN_ADVANCE)
  1776. if (!forReplay) {
  1777. CONFIG_ECHO_START;
  1778. SERIAL_ECHOLNPGM("Linear Advance:");
  1779. }
  1780. CONFIG_ECHO_START;
  1781. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1782. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1783. #endif
  1784. #if HAS_MOTOR_CURRENT_PWM
  1785. CONFIG_ECHO_START;
  1786. if (!forReplay) {
  1787. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1788. CONFIG_ECHO_START;
  1789. }
  1790. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1791. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1792. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1793. SERIAL_EOL();
  1794. #endif
  1795. }
  1796. #endif // !DISABLE_M503