My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.cpp 49KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. int16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  119. uint16_t Stepper::OCR1A_nominal,
  120. Stepper::acc_step_rate; // needed for deceleration start point
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. /**
  255. * __________________________
  256. * /| |\ _________________ ^
  257. * / | | \ /| |\ |
  258. * / | | \ / | | \ s
  259. * / | | | | | \ p
  260. * / | | | | | \ e
  261. * +-----+------------------------+---+--+---------------+----+ e
  262. * | BLOCK 1 | BLOCK 2 | d
  263. *
  264. * time ----->
  265. *
  266. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  267. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  268. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  269. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  270. */
  271. void Stepper::wake_up() {
  272. // TCNT1 = 0;
  273. ENABLE_STEPPER_DRIVER_INTERRUPT();
  274. }
  275. /**
  276. * Set the stepper direction of each axis
  277. *
  278. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  279. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  280. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  281. */
  282. void Stepper::set_directions() {
  283. #define SET_STEP_DIR(AXIS) \
  284. if (motor_direction(AXIS ##_AXIS)) { \
  285. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  286. count_direction[AXIS ##_AXIS] = -1; \
  287. } \
  288. else { \
  289. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  290. count_direction[AXIS ##_AXIS] = 1; \
  291. }
  292. #if HAS_X_DIR
  293. SET_STEP_DIR(X); // A
  294. #endif
  295. #if HAS_Y_DIR
  296. SET_STEP_DIR(Y); // B
  297. #endif
  298. #if HAS_Z_DIR
  299. SET_STEP_DIR(Z); // C
  300. #endif
  301. #if DISABLED(LIN_ADVANCE)
  302. if (motor_direction(E_AXIS)) {
  303. REV_E_DIR();
  304. count_direction[E_AXIS] = -1;
  305. }
  306. else {
  307. NORM_E_DIR();
  308. count_direction[E_AXIS] = 1;
  309. }
  310. #endif // !LIN_ADVANCE
  311. }
  312. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  313. extern volatile uint8_t e_hit;
  314. #endif
  315. /**
  316. * Stepper Driver Interrupt
  317. *
  318. * Directly pulses the stepper motors at high frequency.
  319. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  320. *
  321. * OCR1A Frequency
  322. * 1 2 MHz
  323. * 50 40 KHz
  324. * 100 20 KHz - capped max rate
  325. * 200 10 KHz - nominal max rate
  326. * 2000 1 KHz - sleep rate
  327. * 4000 500 Hz - init rate
  328. */
  329. ISR(TIMER1_COMPA_vect) {
  330. #if ENABLED(LIN_ADVANCE)
  331. Stepper::advance_isr_scheduler();
  332. #else
  333. Stepper::isr();
  334. #endif
  335. }
  336. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  337. void Stepper::isr() {
  338. uint16_t ocr_val;
  339. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  340. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  341. #if DISABLED(LIN_ADVANCE)
  342. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  343. CBI(TIMSK0, OCIE0B); // Temperature ISR
  344. DISABLE_STEPPER_DRIVER_INTERRUPT();
  345. sei();
  346. #endif
  347. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  348. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  349. #define SPLIT(L) _SPLIT(L)
  350. #else // !ENDSTOP_INTERRUPTS_FEATURE : Sample endstops between stepping ISRs
  351. static uint32_t step_remaining = 0;
  352. #define SPLIT(L) do { \
  353. _SPLIT(L); \
  354. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  355. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  356. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  357. step_remaining = (uint16_t)L - ocr_val; \
  358. } \
  359. }while(0)
  360. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  361. endstops.update();
  362. // Next ISR either for endstops or stepping
  363. ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
  364. step_remaining -= ocr_val;
  365. _NEXT_ISR(ocr_val);
  366. NOLESS(OCR1A, TCNT1 + 16);
  367. _ENABLE_ISRs(); // re-enable ISRs
  368. return;
  369. }
  370. #endif // !ENDSTOP_INTERRUPTS_FEATURE
  371. //
  372. // When cleaning, discard the current block and run fast
  373. //
  374. if (cleaning_buffer_counter) {
  375. if (cleaning_buffer_counter < 0) { // Count up for endstop hit
  376. if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
  377. if (!planner.discard_continued_block()) // Discard next CONTINUED block
  378. cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
  379. }
  380. else {
  381. planner.discard_current_block();
  382. --cleaning_buffer_counter; // Count down for abort print
  383. #ifdef SD_FINISHED_RELEASECOMMAND
  384. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  385. #endif
  386. }
  387. current_block = NULL; // Prep to get a new block after cleaning
  388. _NEXT_ISR(200); // Run at max speed - 10 KHz
  389. _ENABLE_ISRs();
  390. return;
  391. }
  392. // If there is no current block, attempt to pop one from the buffer
  393. if (!current_block) {
  394. // Anything in the buffer?
  395. if ((current_block = planner.get_current_block())) {
  396. trapezoid_generator_reset();
  397. // Initialize Bresenham counters to 1/2 the ceiling
  398. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  399. #if ENABLED(MIXING_EXTRUDER)
  400. MIXING_STEPPERS_LOOP(i)
  401. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  402. #endif
  403. step_events_completed = 0;
  404. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  405. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  406. // No 'change' can be detected.
  407. #endif
  408. #if ENABLED(Z_LATE_ENABLE)
  409. if (current_block->steps[Z_AXIS] > 0) {
  410. enable_Z();
  411. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  412. _ENABLE_ISRs(); // re-enable ISRs
  413. return;
  414. }
  415. #endif
  416. }
  417. else {
  418. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  419. _ENABLE_ISRs(); // re-enable ISRs
  420. return;
  421. }
  422. }
  423. // Update endstops state, if enabled
  424. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  425. if (e_hit && ENDSTOPS_ENABLED) {
  426. endstops.update();
  427. e_hit--;
  428. }
  429. #else
  430. if (ENDSTOPS_ENABLED) endstops.update();
  431. #endif
  432. // Take multiple steps per interrupt (For high speed moves)
  433. bool all_steps_done = false;
  434. for (uint8_t i = step_loops; i--;) {
  435. #if ENABLED(LIN_ADVANCE)
  436. counter_E += current_block->steps[E_AXIS];
  437. if (counter_E > 0) {
  438. counter_E -= current_block->step_event_count;
  439. #if DISABLED(MIXING_EXTRUDER)
  440. // Don't step E here for mixing extruder
  441. count_position[E_AXIS] += count_direction[E_AXIS];
  442. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  443. #endif
  444. }
  445. #if ENABLED(MIXING_EXTRUDER)
  446. // Step mixing steppers proportionally
  447. const bool dir = motor_direction(E_AXIS);
  448. MIXING_STEPPERS_LOOP(j) {
  449. counter_m[j] += current_block->steps[E_AXIS];
  450. if (counter_m[j] > 0) {
  451. counter_m[j] -= current_block->mix_event_count[j];
  452. dir ? --e_steps[j] : ++e_steps[j];
  453. }
  454. }
  455. #endif
  456. #endif // LIN_ADVANCE
  457. #define _COUNTER(AXIS) counter_## AXIS
  458. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  459. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  460. // Advance the Bresenham counter; start a pulse if the axis needs a step
  461. #define PULSE_START(AXIS) \
  462. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  463. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  464. // Stop an active pulse, reset the Bresenham counter, update the position
  465. #define PULSE_STOP(AXIS) \
  466. if (_COUNTER(AXIS) > 0) { \
  467. _COUNTER(AXIS) -= current_block->step_event_count; \
  468. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  469. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  470. }
  471. /**
  472. * Estimate the number of cycles that the stepper logic already takes
  473. * up between the start and stop of the X stepper pulse.
  474. *
  475. * Currently this uses very modest estimates of around 5 cycles.
  476. * True values may be derived by careful testing.
  477. *
  478. * Once any delay is added, the cost of the delay code itself
  479. * may be subtracted from this value to get a more accurate delay.
  480. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  481. * Longer delays use a loop. The resolution is 8 cycles.
  482. */
  483. #if HAS_X_STEP
  484. #define _CYCLE_APPROX_1 5
  485. #else
  486. #define _CYCLE_APPROX_1 0
  487. #endif
  488. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  489. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  490. #else
  491. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  492. #endif
  493. #if HAS_Y_STEP
  494. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  495. #else
  496. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  497. #endif
  498. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  499. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  500. #else
  501. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  502. #endif
  503. #if HAS_Z_STEP
  504. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  505. #else
  506. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  507. #endif
  508. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  509. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  510. #else
  511. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  512. #endif
  513. #if DISABLED(LIN_ADVANCE)
  514. #if ENABLED(MIXING_EXTRUDER)
  515. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  516. #else
  517. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  518. #endif
  519. #else
  520. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  521. #endif
  522. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  523. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  524. /**
  525. * If a minimum pulse time was specified get the timer 0 value.
  526. *
  527. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  528. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  529. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  530. * 10µs = 160 or 200 cycles.
  531. */
  532. #if EXTRA_CYCLES_XYZE > 20
  533. uint32_t pulse_start = TCNT0;
  534. #endif
  535. #if HAS_X_STEP
  536. PULSE_START(X);
  537. #endif
  538. #if HAS_Y_STEP
  539. PULSE_START(Y);
  540. #endif
  541. #if HAS_Z_STEP
  542. PULSE_START(Z);
  543. #endif
  544. // For non-advance use linear interpolation for E also
  545. #if DISABLED(LIN_ADVANCE)
  546. #if ENABLED(MIXING_EXTRUDER)
  547. // Keep updating the single E axis
  548. counter_E += current_block->steps[E_AXIS];
  549. // Tick the counters used for this mix
  550. MIXING_STEPPERS_LOOP(j) {
  551. // Step mixing steppers (proportionally)
  552. counter_m[j] += current_block->steps[E_AXIS];
  553. // Step when the counter goes over zero
  554. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  555. }
  556. #else // !MIXING_EXTRUDER
  557. PULSE_START(E);
  558. #endif
  559. #endif // !LIN_ADVANCE
  560. // For minimum pulse time wait before stopping pulses
  561. #if EXTRA_CYCLES_XYZE > 20
  562. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  563. pulse_start = TCNT0;
  564. #elif EXTRA_CYCLES_XYZE > 0
  565. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  566. #endif
  567. #if HAS_X_STEP
  568. PULSE_STOP(X);
  569. #endif
  570. #if HAS_Y_STEP
  571. PULSE_STOP(Y);
  572. #endif
  573. #if HAS_Z_STEP
  574. PULSE_STOP(Z);
  575. #endif
  576. #if DISABLED(LIN_ADVANCE)
  577. #if ENABLED(MIXING_EXTRUDER)
  578. // Always step the single E axis
  579. if (counter_E > 0) {
  580. counter_E -= current_block->step_event_count;
  581. count_position[E_AXIS] += count_direction[E_AXIS];
  582. }
  583. MIXING_STEPPERS_LOOP(j) {
  584. if (counter_m[j] > 0) {
  585. counter_m[j] -= current_block->mix_event_count[j];
  586. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  587. }
  588. }
  589. #else // !MIXING_EXTRUDER
  590. PULSE_STOP(E);
  591. #endif
  592. #endif // !LIN_ADVANCE
  593. if (++step_events_completed >= current_block->step_event_count) {
  594. all_steps_done = true;
  595. break;
  596. }
  597. // For minimum pulse time wait after stopping pulses also
  598. #if EXTRA_CYCLES_XYZE > 20
  599. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  600. #elif EXTRA_CYCLES_XYZE > 0
  601. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  602. #endif
  603. } // steps_loop
  604. #if ENABLED(LIN_ADVANCE)
  605. if (current_block->use_advance_lead) {
  606. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  607. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  608. #if ENABLED(MIXING_EXTRUDER)
  609. // Mixing extruders apply advance lead proportionally
  610. MIXING_STEPPERS_LOOP(j)
  611. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  612. #else
  613. // For most extruders, advance the single E stepper
  614. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  615. #endif
  616. }
  617. // If we have esteps to execute, fire the next advance_isr "now"
  618. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  619. #endif // LIN_ADVANCE
  620. // Calculate new timer value
  621. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  622. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  623. acc_step_rate += current_block->initial_rate;
  624. // upper limit
  625. NOMORE(acc_step_rate, current_block->nominal_rate);
  626. // step_rate to timer interval
  627. const uint16_t interval = calc_timer_interval(acc_step_rate);
  628. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  629. _NEXT_ISR(ocr_val);
  630. acceleration_time += interval;
  631. #if ENABLED(LIN_ADVANCE)
  632. if (current_block->use_advance_lead) {
  633. #if ENABLED(MIXING_EXTRUDER)
  634. MIXING_STEPPERS_LOOP(j)
  635. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  636. #else
  637. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  638. #endif
  639. }
  640. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  641. #endif // LIN_ADVANCE
  642. }
  643. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  644. uint16_t step_rate;
  645. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  646. if (step_rate < acc_step_rate) { // Still decelerating?
  647. step_rate = acc_step_rate - step_rate;
  648. NOLESS(step_rate, current_block->final_rate);
  649. }
  650. else
  651. step_rate = current_block->final_rate;
  652. // step_rate to timer interval
  653. const uint16_t interval = calc_timer_interval(step_rate);
  654. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  655. _NEXT_ISR(ocr_val);
  656. deceleration_time += interval;
  657. #if ENABLED(LIN_ADVANCE)
  658. if (current_block->use_advance_lead) {
  659. #if ENABLED(MIXING_EXTRUDER)
  660. MIXING_STEPPERS_LOOP(j)
  661. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  662. #else
  663. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  664. #endif
  665. }
  666. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  667. #endif // LIN_ADVANCE
  668. }
  669. else {
  670. #if ENABLED(LIN_ADVANCE)
  671. if (current_block->use_advance_lead)
  672. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  673. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  674. #endif
  675. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  676. _NEXT_ISR(ocr_val);
  677. // ensure we're running at the correct step rate, even if we just came off an acceleration
  678. step_loops = step_loops_nominal;
  679. }
  680. #if DISABLED(LIN_ADVANCE)
  681. NOLESS(OCR1A, TCNT1 + 16);
  682. #endif
  683. // If current block is finished, reset pointer
  684. if (all_steps_done) {
  685. current_block = NULL;
  686. planner.discard_current_block();
  687. }
  688. #if DISABLED(LIN_ADVANCE)
  689. _ENABLE_ISRs(); // re-enable ISRs
  690. #endif
  691. }
  692. #if ENABLED(LIN_ADVANCE)
  693. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  694. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  695. // Timer interrupt for E. e_steps is set in the main routine;
  696. void Stepper::advance_isr() {
  697. nextAdvanceISR = eISR_Rate;
  698. #if ENABLED(MK2_MULTIPLEXER)
  699. // Even-numbered steppers are reversed
  700. #define SET_E_STEP_DIR(INDEX) \
  701. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  702. #else
  703. #define SET_E_STEP_DIR(INDEX) \
  704. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  705. #endif
  706. #define START_E_PULSE(INDEX) \
  707. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  708. #define STOP_E_PULSE(INDEX) \
  709. if (e_steps[INDEX]) { \
  710. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  711. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  712. }
  713. SET_E_STEP_DIR(0);
  714. #if E_STEPPERS > 1
  715. SET_E_STEP_DIR(1);
  716. #if E_STEPPERS > 2
  717. SET_E_STEP_DIR(2);
  718. #if E_STEPPERS > 3
  719. SET_E_STEP_DIR(3);
  720. #if E_STEPPERS > 4
  721. SET_E_STEP_DIR(4);
  722. #endif
  723. #endif
  724. #endif
  725. #endif
  726. // Step all E steppers that have steps
  727. for (uint8_t i = step_loops; i--;) {
  728. #if EXTRA_CYCLES_E > 20
  729. uint32_t pulse_start = TCNT0;
  730. #endif
  731. START_E_PULSE(0);
  732. #if E_STEPPERS > 1
  733. START_E_PULSE(1);
  734. #if E_STEPPERS > 2
  735. START_E_PULSE(2);
  736. #if E_STEPPERS > 3
  737. START_E_PULSE(3);
  738. #if E_STEPPERS > 4
  739. START_E_PULSE(4);
  740. #endif
  741. #endif
  742. #endif
  743. #endif
  744. // For minimum pulse time wait before stopping pulses
  745. #if EXTRA_CYCLES_E > 20
  746. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  747. pulse_start = TCNT0;
  748. #elif EXTRA_CYCLES_E > 0
  749. DELAY_NOPS(EXTRA_CYCLES_E);
  750. #endif
  751. STOP_E_PULSE(0);
  752. #if E_STEPPERS > 1
  753. STOP_E_PULSE(1);
  754. #if E_STEPPERS > 2
  755. STOP_E_PULSE(2);
  756. #if E_STEPPERS > 3
  757. STOP_E_PULSE(3);
  758. #if E_STEPPERS > 4
  759. STOP_E_PULSE(4);
  760. #endif
  761. #endif
  762. #endif
  763. #endif
  764. // For minimum pulse time wait before looping
  765. #if EXTRA_CYCLES_E > 20
  766. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  767. #elif EXTRA_CYCLES_E > 0
  768. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  769. #endif
  770. } // steps_loop
  771. }
  772. void Stepper::advance_isr_scheduler() {
  773. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  774. CBI(TIMSK0, OCIE0B); // Temperature ISR
  775. DISABLE_STEPPER_DRIVER_INTERRUPT();
  776. sei();
  777. // Run main stepping ISR if flagged
  778. if (!nextMainISR) isr();
  779. // Run Advance stepping ISR if flagged
  780. if (!nextAdvanceISR) advance_isr();
  781. // Is the next advance ISR scheduled before the next main ISR?
  782. if (nextAdvanceISR <= nextMainISR) {
  783. // Set up the next interrupt
  784. OCR1A = nextAdvanceISR;
  785. // New interval for the next main ISR
  786. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  787. // Will call Stepper::advance_isr on the next interrupt
  788. nextAdvanceISR = 0;
  789. }
  790. else {
  791. // The next main ISR comes first
  792. OCR1A = nextMainISR;
  793. // New interval for the next advance ISR, if any
  794. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  795. nextAdvanceISR -= nextMainISR;
  796. // Will call Stepper::isr on the next interrupt
  797. nextMainISR = 0;
  798. }
  799. // Don't run the ISR faster than possible
  800. NOLESS(OCR1A, TCNT1 + 16);
  801. // Restore original ISR settings
  802. _ENABLE_ISRs();
  803. }
  804. #endif // LIN_ADVANCE
  805. void Stepper::init() {
  806. // Init Digipot Motor Current
  807. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  808. digipot_init();
  809. #endif
  810. // Init Microstepping Pins
  811. #if HAS_MICROSTEPS
  812. microstep_init();
  813. #endif
  814. // Init TMC Steppers
  815. #if ENABLED(HAVE_TMCDRIVER)
  816. tmc_init();
  817. #endif
  818. // Init TMC2130 Steppers
  819. #if ENABLED(HAVE_TMC2130)
  820. tmc2130_init();
  821. #endif
  822. // Init L6470 Steppers
  823. #if ENABLED(HAVE_L6470DRIVER)
  824. L6470_init();
  825. #endif
  826. // Init Dir Pins
  827. #if HAS_X_DIR
  828. X_DIR_INIT;
  829. #endif
  830. #if HAS_X2_DIR
  831. X2_DIR_INIT;
  832. #endif
  833. #if HAS_Y_DIR
  834. Y_DIR_INIT;
  835. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  836. Y2_DIR_INIT;
  837. #endif
  838. #endif
  839. #if HAS_Z_DIR
  840. Z_DIR_INIT;
  841. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  842. Z2_DIR_INIT;
  843. #endif
  844. #endif
  845. #if HAS_E0_DIR
  846. E0_DIR_INIT;
  847. #endif
  848. #if HAS_E1_DIR
  849. E1_DIR_INIT;
  850. #endif
  851. #if HAS_E2_DIR
  852. E2_DIR_INIT;
  853. #endif
  854. #if HAS_E3_DIR
  855. E3_DIR_INIT;
  856. #endif
  857. #if HAS_E4_DIR
  858. E4_DIR_INIT;
  859. #endif
  860. // Init Enable Pins - steppers default to disabled.
  861. #if HAS_X_ENABLE
  862. X_ENABLE_INIT;
  863. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  864. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  865. X2_ENABLE_INIT;
  866. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  867. #endif
  868. #endif
  869. #if HAS_Y_ENABLE
  870. Y_ENABLE_INIT;
  871. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  872. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  873. Y2_ENABLE_INIT;
  874. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  875. #endif
  876. #endif
  877. #if HAS_Z_ENABLE
  878. Z_ENABLE_INIT;
  879. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  880. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  881. Z2_ENABLE_INIT;
  882. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  883. #endif
  884. #endif
  885. #if HAS_E0_ENABLE
  886. E0_ENABLE_INIT;
  887. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  888. #endif
  889. #if HAS_E1_ENABLE
  890. E1_ENABLE_INIT;
  891. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  892. #endif
  893. #if HAS_E2_ENABLE
  894. E2_ENABLE_INIT;
  895. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  896. #endif
  897. #if HAS_E3_ENABLE
  898. E3_ENABLE_INIT;
  899. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  900. #endif
  901. #if HAS_E4_ENABLE
  902. E4_ENABLE_INIT;
  903. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  904. #endif
  905. // Init endstops and pullups
  906. endstops.init();
  907. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  908. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  909. #define _DISABLE(AXIS) disable_## AXIS()
  910. #define AXIS_INIT(AXIS, PIN) \
  911. _STEP_INIT(AXIS); \
  912. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  913. _DISABLE(AXIS)
  914. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  915. // Init Step Pins
  916. #if HAS_X_STEP
  917. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  918. X2_STEP_INIT;
  919. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  920. #endif
  921. AXIS_INIT(X, X);
  922. #endif
  923. #if HAS_Y_STEP
  924. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  925. Y2_STEP_INIT;
  926. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  927. #endif
  928. AXIS_INIT(Y, Y);
  929. #endif
  930. #if HAS_Z_STEP
  931. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  932. Z2_STEP_INIT;
  933. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  934. #endif
  935. AXIS_INIT(Z, Z);
  936. #endif
  937. #if HAS_E0_STEP
  938. E_AXIS_INIT(0);
  939. #endif
  940. #if HAS_E1_STEP
  941. E_AXIS_INIT(1);
  942. #endif
  943. #if HAS_E2_STEP
  944. E_AXIS_INIT(2);
  945. #endif
  946. #if HAS_E3_STEP
  947. E_AXIS_INIT(3);
  948. #endif
  949. #if HAS_E4_STEP
  950. E_AXIS_INIT(4);
  951. #endif
  952. // waveform generation = 0100 = CTC
  953. SET_WGM(1, CTC_OCRnA);
  954. // output mode = 00 (disconnected)
  955. SET_COMA(1, NORMAL);
  956. // Set the timer pre-scaler
  957. // Generally we use a divider of 8, resulting in a 2MHz timer
  958. // frequency on a 16MHz MCU. If you are going to change this, be
  959. // sure to regenerate speed_lookuptable.h with
  960. // create_speed_lookuptable.py
  961. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  962. // Init Stepper ISR to 122 Hz for quick starting
  963. OCR1A = 0x4000;
  964. TCNT1 = 0;
  965. ENABLE_STEPPER_DRIVER_INTERRUPT();
  966. #if ENABLED(LIN_ADVANCE)
  967. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  968. ZERO(current_adv_steps);
  969. #endif
  970. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  971. sei();
  972. set_directions(); // Init directions to last_direction_bits = 0
  973. }
  974. /**
  975. * Block until all buffered steps are executed / cleaned
  976. */
  977. void Stepper::synchronize() { while (planner.blocks_queued() || cleaning_buffer_counter) idle(); }
  978. /**
  979. * Set the stepper positions directly in steps
  980. *
  981. * The input is based on the typical per-axis XYZ steps.
  982. * For CORE machines XYZ needs to be translated to ABC.
  983. *
  984. * This allows get_axis_position_mm to correctly
  985. * derive the current XYZ position later on.
  986. */
  987. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  988. synchronize(); // Bad to set stepper counts in the middle of a move
  989. CRITICAL_SECTION_START;
  990. #if CORE_IS_XY
  991. // corexy positioning
  992. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  993. count_position[A_AXIS] = a + b;
  994. count_position[B_AXIS] = CORESIGN(a - b);
  995. count_position[Z_AXIS] = c;
  996. #elif CORE_IS_XZ
  997. // corexz planning
  998. count_position[A_AXIS] = a + c;
  999. count_position[Y_AXIS] = b;
  1000. count_position[C_AXIS] = CORESIGN(a - c);
  1001. #elif CORE_IS_YZ
  1002. // coreyz planning
  1003. count_position[X_AXIS] = a;
  1004. count_position[B_AXIS] = b + c;
  1005. count_position[C_AXIS] = CORESIGN(b - c);
  1006. #else
  1007. // default non-h-bot planning
  1008. count_position[X_AXIS] = a;
  1009. count_position[Y_AXIS] = b;
  1010. count_position[Z_AXIS] = c;
  1011. #endif
  1012. count_position[E_AXIS] = e;
  1013. CRITICAL_SECTION_END;
  1014. }
  1015. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1016. CRITICAL_SECTION_START;
  1017. count_position[axis] = v;
  1018. CRITICAL_SECTION_END;
  1019. }
  1020. void Stepper::set_e_position(const long &e) {
  1021. CRITICAL_SECTION_START;
  1022. count_position[E_AXIS] = e;
  1023. CRITICAL_SECTION_END;
  1024. }
  1025. /**
  1026. * Get a stepper's position in steps.
  1027. */
  1028. long Stepper::position(AxisEnum axis) {
  1029. CRITICAL_SECTION_START;
  1030. const long count_pos = count_position[axis];
  1031. CRITICAL_SECTION_END;
  1032. return count_pos;
  1033. }
  1034. /**
  1035. * Get an axis position according to stepper position(s)
  1036. * For CORE machines apply translation from ABC to XYZ.
  1037. */
  1038. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1039. float axis_steps;
  1040. #if IS_CORE
  1041. // Requesting one of the "core" axes?
  1042. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1043. CRITICAL_SECTION_START;
  1044. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1045. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1046. axis_steps = 0.5f * (
  1047. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1048. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1049. );
  1050. CRITICAL_SECTION_END;
  1051. }
  1052. else
  1053. axis_steps = position(axis);
  1054. #else
  1055. axis_steps = position(axis);
  1056. #endif
  1057. return axis_steps * planner.steps_to_mm[axis];
  1058. }
  1059. void Stepper::finish_and_disable() {
  1060. synchronize();
  1061. disable_all_steppers();
  1062. }
  1063. void Stepper::quick_stop() {
  1064. cleaning_buffer_counter = 5000;
  1065. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1066. while (planner.blocks_queued()) planner.discard_current_block();
  1067. current_block = NULL;
  1068. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1069. #if ENABLED(ULTRA_LCD)
  1070. planner.clear_block_buffer_runtime();
  1071. #endif
  1072. }
  1073. void Stepper::endstop_triggered(AxisEnum axis) {
  1074. #if IS_CORE
  1075. endstops_trigsteps[axis] = 0.5f * (
  1076. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1077. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1078. );
  1079. #else // !COREXY && !COREXZ && !COREYZ
  1080. endstops_trigsteps[axis] = count_position[axis];
  1081. #endif // !COREXY && !COREXZ && !COREYZ
  1082. kill_current_block();
  1083. cleaning_buffer_counter = -1; // Discard the rest of the move
  1084. }
  1085. void Stepper::report_positions() {
  1086. CRITICAL_SECTION_START;
  1087. const long xpos = count_position[X_AXIS],
  1088. ypos = count_position[Y_AXIS],
  1089. zpos = count_position[Z_AXIS];
  1090. CRITICAL_SECTION_END;
  1091. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1092. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1093. #else
  1094. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1095. #endif
  1096. SERIAL_PROTOCOL(xpos);
  1097. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1098. SERIAL_PROTOCOLPGM(" B:");
  1099. #else
  1100. SERIAL_PROTOCOLPGM(" Y:");
  1101. #endif
  1102. SERIAL_PROTOCOL(ypos);
  1103. #if CORE_IS_XZ || CORE_IS_YZ
  1104. SERIAL_PROTOCOLPGM(" C:");
  1105. #else
  1106. SERIAL_PROTOCOLPGM(" Z:");
  1107. #endif
  1108. SERIAL_PROTOCOL(zpos);
  1109. SERIAL_EOL();
  1110. }
  1111. #if ENABLED(BABYSTEPPING)
  1112. #if ENABLED(DELTA)
  1113. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1114. #else
  1115. #define CYCLES_EATEN_BABYSTEP 0
  1116. #endif
  1117. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1118. #define _ENABLE(AXIS) enable_## AXIS()
  1119. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1120. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1121. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1122. #if EXTRA_CYCLES_BABYSTEP > 20
  1123. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1124. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1125. #else
  1126. #define _SAVE_START NOOP
  1127. #if EXTRA_CYCLES_BABYSTEP > 0
  1128. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1129. #elif STEP_PULSE_CYCLES > 0
  1130. #define _PULSE_WAIT NOOP
  1131. #elif ENABLED(DELTA)
  1132. #define _PULSE_WAIT delayMicroseconds(2);
  1133. #else
  1134. #define _PULSE_WAIT delayMicroseconds(4);
  1135. #endif
  1136. #endif
  1137. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1138. const uint8_t old_dir = _READ_DIR(AXIS); \
  1139. _ENABLE(AXIS); \
  1140. _SAVE_START; \
  1141. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1142. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1143. _PULSE_WAIT; \
  1144. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1145. _APPLY_DIR(AXIS, old_dir); \
  1146. }
  1147. // MUST ONLY BE CALLED BY AN ISR,
  1148. // No other ISR should ever interrupt this!
  1149. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1150. cli();
  1151. switch (axis) {
  1152. #if ENABLED(BABYSTEP_XY)
  1153. case X_AXIS:
  1154. BABYSTEP_AXIS(X, false);
  1155. break;
  1156. case Y_AXIS:
  1157. BABYSTEP_AXIS(Y, false);
  1158. break;
  1159. #endif
  1160. case Z_AXIS: {
  1161. #if DISABLED(DELTA)
  1162. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1163. #else // DELTA
  1164. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1165. enable_X();
  1166. enable_Y();
  1167. enable_Z();
  1168. const uint8_t old_x_dir_pin = X_DIR_READ,
  1169. old_y_dir_pin = Y_DIR_READ,
  1170. old_z_dir_pin = Z_DIR_READ;
  1171. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1172. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1173. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1174. _SAVE_START;
  1175. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1176. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1177. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1178. _PULSE_WAIT;
  1179. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1180. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1181. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1182. // Restore direction bits
  1183. X_DIR_WRITE(old_x_dir_pin);
  1184. Y_DIR_WRITE(old_y_dir_pin);
  1185. Z_DIR_WRITE(old_z_dir_pin);
  1186. #endif
  1187. } break;
  1188. default: break;
  1189. }
  1190. sei();
  1191. }
  1192. #endif // BABYSTEPPING
  1193. /**
  1194. * Software-controlled Stepper Motor Current
  1195. */
  1196. #if HAS_DIGIPOTSS
  1197. // From Arduino DigitalPotControl example
  1198. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1199. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1200. SPI.transfer(address); // Send the address and value via SPI
  1201. SPI.transfer(value);
  1202. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1203. //delay(10);
  1204. }
  1205. #endif // HAS_DIGIPOTSS
  1206. #if HAS_MOTOR_CURRENT_PWM
  1207. void Stepper::refresh_motor_power() {
  1208. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1209. switch (i) {
  1210. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1211. case 0:
  1212. #endif
  1213. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1214. case 1:
  1215. #endif
  1216. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1217. case 2:
  1218. #endif
  1219. digipot_current(i, motor_current_setting[i]);
  1220. default: break;
  1221. }
  1222. }
  1223. }
  1224. #endif // HAS_MOTOR_CURRENT_PWM
  1225. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1226. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1227. #if HAS_DIGIPOTSS
  1228. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1229. digitalPotWrite(digipot_ch[driver], current);
  1230. #elif HAS_MOTOR_CURRENT_PWM
  1231. if (WITHIN(driver, 0, 2))
  1232. motor_current_setting[driver] = current; // update motor_current_setting
  1233. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1234. switch (driver) {
  1235. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1236. case 0: _WRITE_CURRENT_PWM(XY); break;
  1237. #endif
  1238. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1239. case 1: _WRITE_CURRENT_PWM(Z); break;
  1240. #endif
  1241. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1242. case 2: _WRITE_CURRENT_PWM(E); break;
  1243. #endif
  1244. }
  1245. #endif
  1246. }
  1247. void Stepper::digipot_init() {
  1248. #if HAS_DIGIPOTSS
  1249. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1250. SPI.begin();
  1251. SET_OUTPUT(DIGIPOTSS_PIN);
  1252. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1253. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1254. digipot_current(i, digipot_motor_current[i]);
  1255. }
  1256. #elif HAS_MOTOR_CURRENT_PWM
  1257. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1258. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1259. #endif
  1260. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1261. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1262. #endif
  1263. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1264. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1265. #endif
  1266. refresh_motor_power();
  1267. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1268. SET_CS5(PRESCALER_1);
  1269. #endif
  1270. }
  1271. #endif
  1272. #if HAS_MICROSTEPS
  1273. /**
  1274. * Software-controlled Microstepping
  1275. */
  1276. void Stepper::microstep_init() {
  1277. SET_OUTPUT(X_MS1_PIN);
  1278. SET_OUTPUT(X_MS2_PIN);
  1279. #if HAS_Y_MICROSTEPS
  1280. SET_OUTPUT(Y_MS1_PIN);
  1281. SET_OUTPUT(Y_MS2_PIN);
  1282. #endif
  1283. #if HAS_Z_MICROSTEPS
  1284. SET_OUTPUT(Z_MS1_PIN);
  1285. SET_OUTPUT(Z_MS2_PIN);
  1286. #endif
  1287. #if HAS_E0_MICROSTEPS
  1288. SET_OUTPUT(E0_MS1_PIN);
  1289. SET_OUTPUT(E0_MS2_PIN);
  1290. #endif
  1291. #if HAS_E1_MICROSTEPS
  1292. SET_OUTPUT(E1_MS1_PIN);
  1293. SET_OUTPUT(E1_MS2_PIN);
  1294. #endif
  1295. #if HAS_E2_MICROSTEPS
  1296. SET_OUTPUT(E2_MS1_PIN);
  1297. SET_OUTPUT(E2_MS2_PIN);
  1298. #endif
  1299. #if HAS_E3_MICROSTEPS
  1300. SET_OUTPUT(E3_MS1_PIN);
  1301. SET_OUTPUT(E3_MS2_PIN);
  1302. #endif
  1303. #if HAS_E4_MICROSTEPS
  1304. SET_OUTPUT(E4_MS1_PIN);
  1305. SET_OUTPUT(E4_MS2_PIN);
  1306. #endif
  1307. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1308. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1309. microstep_mode(i, microstep_modes[i]);
  1310. }
  1311. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1312. if (ms1 >= 0) switch (driver) {
  1313. case 0: WRITE(X_MS1_PIN, ms1); break;
  1314. #if HAS_Y_MICROSTEPS
  1315. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1316. #endif
  1317. #if HAS_Z_MICROSTEPS
  1318. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1319. #endif
  1320. #if HAS_E0_MICROSTEPS
  1321. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1322. #endif
  1323. #if HAS_E1_MICROSTEPS
  1324. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1325. #endif
  1326. #if HAS_E2_MICROSTEPS
  1327. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1328. #endif
  1329. #if HAS_E3_MICROSTEPS
  1330. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1331. #endif
  1332. #if HAS_E4_MICROSTEPS
  1333. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1334. #endif
  1335. }
  1336. if (ms2 >= 0) switch (driver) {
  1337. case 0: WRITE(X_MS2_PIN, ms2); break;
  1338. #if HAS_Y_MICROSTEPS
  1339. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1340. #endif
  1341. #if HAS_Z_MICROSTEPS
  1342. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1343. #endif
  1344. #if HAS_E0_MICROSTEPS
  1345. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1346. #endif
  1347. #if HAS_E1_MICROSTEPS
  1348. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1349. #endif
  1350. #if HAS_E2_MICROSTEPS
  1351. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1352. #endif
  1353. #if HAS_E3_MICROSTEPS
  1354. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1355. #endif
  1356. #if HAS_E4_MICROSTEPS
  1357. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1358. #endif
  1359. }
  1360. }
  1361. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1362. switch (stepping_mode) {
  1363. case 1: microstep_ms(driver, MICROSTEP1); break;
  1364. case 2: microstep_ms(driver, MICROSTEP2); break;
  1365. case 4: microstep_ms(driver, MICROSTEP4); break;
  1366. case 8: microstep_ms(driver, MICROSTEP8); break;
  1367. case 16: microstep_ms(driver, MICROSTEP16); break;
  1368. }
  1369. }
  1370. void Stepper::microstep_readings() {
  1371. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1372. SERIAL_PROTOCOLPGM("X: ");
  1373. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1374. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1375. #if HAS_Y_MICROSTEPS
  1376. SERIAL_PROTOCOLPGM("Y: ");
  1377. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1378. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1379. #endif
  1380. #if HAS_Z_MICROSTEPS
  1381. SERIAL_PROTOCOLPGM("Z: ");
  1382. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1383. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1384. #endif
  1385. #if HAS_E0_MICROSTEPS
  1386. SERIAL_PROTOCOLPGM("E0: ");
  1387. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1388. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1389. #endif
  1390. #if HAS_E1_MICROSTEPS
  1391. SERIAL_PROTOCOLPGM("E1: ");
  1392. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1393. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1394. #endif
  1395. #if HAS_E2_MICROSTEPS
  1396. SERIAL_PROTOCOLPGM("E2: ");
  1397. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1398. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1399. #endif
  1400. #if HAS_E3_MICROSTEPS
  1401. SERIAL_PROTOCOLPGM("E3: ");
  1402. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1403. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1404. #endif
  1405. #if HAS_E4_MICROSTEPS
  1406. SERIAL_PROTOCOLPGM("E4: ");
  1407. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1408. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1409. #endif
  1410. }
  1411. #endif // HAS_MICROSTEPS