My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistortables.h"
  28. #include "MarlinConfig.h"
  29. #if ENABLED(PID_EXTRUSION_SCALING)
  30. #include "stepper.h"
  31. #endif
  32. #ifndef SOFT_PWM_SCALE
  33. #define SOFT_PWM_SCALE 0
  34. #endif
  35. #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
  36. #if HOTENDS == 1
  37. #define HOTEND_INDEX 0
  38. #define EXTRUDER_IDX 0
  39. #else
  40. #define HOTEND_INDEX e
  41. #define EXTRUDER_IDX active_extruder
  42. #endif
  43. /**
  44. * States for ADC reading in the ISR
  45. */
  46. enum ADCSensorState {
  47. #if HAS_TEMP_0
  48. PrepareTemp_0,
  49. MeasureTemp_0,
  50. #endif
  51. #if HAS_TEMP_1
  52. PrepareTemp_1,
  53. MeasureTemp_1,
  54. #endif
  55. #if HAS_TEMP_2
  56. PrepareTemp_2,
  57. MeasureTemp_2,
  58. #endif
  59. #if HAS_TEMP_3
  60. PrepareTemp_3,
  61. MeasureTemp_3,
  62. #endif
  63. #if HAS_TEMP_4
  64. PrepareTemp_4,
  65. MeasureTemp_4,
  66. #endif
  67. #if HAS_TEMP_BED
  68. PrepareTemp_BED,
  69. MeasureTemp_BED,
  70. #endif
  71. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  72. Prepare_FILWIDTH,
  73. Measure_FILWIDTH,
  74. #endif
  75. #if ENABLED(ADC_KEYPAD)
  76. Prepare_ADC_KEY,
  77. Measure_ADC_KEY,
  78. #endif
  79. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  80. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  81. };
  82. // Minimum number of Temperature::ISR loops between sensor readings.
  83. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  84. // get all oversampled sensor readings
  85. #define MIN_ADC_ISR_LOOPS 10
  86. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  87. #if HAS_PID_HEATING
  88. #define PID_K2 (1.0-PID_K1)
  89. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
  90. // Apply the scale factors to the PID values
  91. #define scalePID_i(i) ( (i) * PID_dT )
  92. #define unscalePID_i(i) ( (i) / PID_dT )
  93. #define scalePID_d(d) ( (d) / PID_dT )
  94. #define unscalePID_d(d) ( (d) * PID_dT )
  95. #endif
  96. #if !HAS_HEATER_BED
  97. constexpr int16_t target_temperature_bed = 0;
  98. #endif
  99. class Temperature {
  100. public:
  101. static float current_temperature[HOTENDS],
  102. current_temperature_bed;
  103. static int16_t current_temperature_raw[HOTENDS],
  104. target_temperature[HOTENDS],
  105. current_temperature_bed_raw;
  106. #if HAS_HEATER_BED
  107. static int16_t target_temperature_bed;
  108. #endif
  109. static volatile bool in_temp_isr;
  110. static uint8_t soft_pwm_amount[HOTENDS],
  111. soft_pwm_amount_bed;
  112. #if ENABLED(FAN_SOFT_PWM)
  113. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  114. soft_pwm_count_fan[FAN_COUNT];
  115. #endif
  116. #if ENABLED(PIDTEMP)
  117. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  118. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  119. #if ENABLED(PID_EXTRUSION_SCALING)
  120. static float Kc[HOTENDS];
  121. #endif
  122. #define PID_PARAM(param, h) Temperature::param[h]
  123. #else
  124. static float Kp, Ki, Kd;
  125. #if ENABLED(PID_EXTRUSION_SCALING)
  126. static float Kc;
  127. #endif
  128. #define PID_PARAM(param, h) Temperature::param
  129. #endif // PID_PARAMS_PER_HOTEND
  130. #endif
  131. #if ENABLED(PIDTEMPBED)
  132. static float bedKp, bedKi, bedKd;
  133. #endif
  134. #if ENABLED(BABYSTEPPING)
  135. static volatile int babystepsTodo[3];
  136. #endif
  137. #if WATCH_HOTENDS
  138. static uint16_t watch_target_temp[HOTENDS];
  139. static millis_t watch_heater_next_ms[HOTENDS];
  140. #endif
  141. #if WATCH_THE_BED
  142. static uint16_t watch_target_bed_temp;
  143. static millis_t watch_bed_next_ms;
  144. #endif
  145. #if ENABLED(PREVENT_COLD_EXTRUSION)
  146. static bool allow_cold_extrude;
  147. static int16_t extrude_min_temp;
  148. static bool tooColdToExtrude(uint8_t e) {
  149. #if HOTENDS == 1
  150. UNUSED(e);
  151. #endif
  152. return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
  153. }
  154. #else
  155. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  156. #endif
  157. private:
  158. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  159. static uint16_t redundant_temperature_raw;
  160. static float redundant_temperature;
  161. #endif
  162. static volatile bool temp_meas_ready;
  163. #if ENABLED(PIDTEMP)
  164. static float temp_iState[HOTENDS],
  165. temp_dState[HOTENDS],
  166. pTerm[HOTENDS],
  167. iTerm[HOTENDS],
  168. dTerm[HOTENDS];
  169. #if ENABLED(PID_EXTRUSION_SCALING)
  170. static float cTerm[HOTENDS];
  171. static long last_e_position;
  172. static long lpq[LPQ_MAX_LEN];
  173. static int lpq_ptr;
  174. #endif
  175. static float pid_error[HOTENDS];
  176. static bool pid_reset[HOTENDS];
  177. #endif
  178. #if ENABLED(PIDTEMPBED)
  179. static float temp_iState_bed,
  180. temp_dState_bed,
  181. pTerm_bed,
  182. iTerm_bed,
  183. dTerm_bed,
  184. pid_error_bed;
  185. #else
  186. static millis_t next_bed_check_ms;
  187. #endif
  188. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  189. raw_temp_bed_value;
  190. // Init min and max temp with extreme values to prevent false errors during startup
  191. static int16_t minttemp_raw[HOTENDS],
  192. maxttemp_raw[HOTENDS],
  193. minttemp[HOTENDS],
  194. maxttemp[HOTENDS];
  195. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  196. static uint8_t consecutive_low_temperature_error[HOTENDS];
  197. #endif
  198. #ifdef MILLISECONDS_PREHEAT_TIME
  199. static millis_t preheat_end_time[HOTENDS];
  200. #endif
  201. #ifdef BED_MINTEMP
  202. static int16_t bed_minttemp_raw;
  203. #endif
  204. #ifdef BED_MAXTEMP
  205. static int16_t bed_maxttemp_raw;
  206. #endif
  207. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  208. static int8_t meas_shift_index; // Index of a delayed sample in buffer
  209. #endif
  210. #if HAS_AUTO_FAN
  211. static millis_t next_auto_fan_check_ms;
  212. #endif
  213. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  214. static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
  215. #endif
  216. #if ENABLED(PROBING_HEATERS_OFF)
  217. static bool paused;
  218. #endif
  219. #if HEATER_IDLE_HANDLER
  220. static millis_t heater_idle_timeout_ms[HOTENDS];
  221. static bool heater_idle_timeout_exceeded[HOTENDS];
  222. #if HAS_TEMP_BED
  223. static millis_t bed_idle_timeout_ms;
  224. static bool bed_idle_timeout_exceeded;
  225. #endif
  226. #endif
  227. public:
  228. #if ENABLED(ADC_KEYPAD)
  229. static uint32_t current_ADCKey_raw;
  230. static uint8_t ADCKey_count;
  231. #endif
  232. /**
  233. * Instance Methods
  234. */
  235. Temperature();
  236. void init();
  237. /**
  238. * Static (class) methods
  239. */
  240. static float analog2temp(int raw, uint8_t e);
  241. static float analog2tempBed(int raw);
  242. /**
  243. * Called from the Temperature ISR
  244. */
  245. static void isr();
  246. /**
  247. * Call periodically to manage heaters
  248. */
  249. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  250. /**
  251. * Preheating hotends
  252. */
  253. #ifdef MILLISECONDS_PREHEAT_TIME
  254. static bool is_preheating(uint8_t e) {
  255. #if HOTENDS == 1
  256. UNUSED(e);
  257. #endif
  258. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  259. }
  260. static void start_preheat_time(uint8_t e) {
  261. #if HOTENDS == 1
  262. UNUSED(e);
  263. #endif
  264. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  265. }
  266. static void reset_preheat_time(uint8_t e) {
  267. #if HOTENDS == 1
  268. UNUSED(e);
  269. #endif
  270. preheat_end_time[HOTEND_INDEX] = 0;
  271. }
  272. #else
  273. #define is_preheating(n) (false)
  274. #endif
  275. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  276. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  277. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  278. #endif
  279. //high level conversion routines, for use outside of temperature.cpp
  280. //inline so that there is no performance decrease.
  281. //deg=degreeCelsius
  282. static float degHotend(uint8_t e) {
  283. #if HOTENDS == 1
  284. UNUSED(e);
  285. #endif
  286. return current_temperature[HOTEND_INDEX];
  287. }
  288. static float degBed() { return current_temperature_bed; }
  289. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  290. static int16_t rawHotendTemp(uint8_t e) {
  291. #if HOTENDS == 1
  292. UNUSED(e);
  293. #endif
  294. return current_temperature_raw[HOTEND_INDEX];
  295. }
  296. static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  297. #endif
  298. static int16_t degTargetHotend(uint8_t e) {
  299. #if HOTENDS == 1
  300. UNUSED(e);
  301. #endif
  302. return target_temperature[HOTEND_INDEX];
  303. }
  304. static int16_t degTargetBed() { return target_temperature_bed; }
  305. #if WATCH_HOTENDS
  306. static void start_watching_heater(const uint8_t e = 0);
  307. #endif
  308. #if WATCH_THE_BED
  309. static void start_watching_bed();
  310. #endif
  311. static void setTargetHotend(const int16_t celsius, const uint8_t e) {
  312. #if HOTENDS == 1
  313. UNUSED(e);
  314. #endif
  315. #ifdef MILLISECONDS_PREHEAT_TIME
  316. if (celsius == 0)
  317. reset_preheat_time(HOTEND_INDEX);
  318. else if (target_temperature[HOTEND_INDEX] == 0)
  319. start_preheat_time(HOTEND_INDEX);
  320. #endif
  321. target_temperature[HOTEND_INDEX] = celsius;
  322. #if WATCH_HOTENDS
  323. start_watching_heater(HOTEND_INDEX);
  324. #endif
  325. }
  326. static void setTargetBed(const int16_t celsius) {
  327. #if HAS_HEATER_BED
  328. target_temperature_bed =
  329. #ifdef BED_MAXTEMP
  330. min(celsius, BED_MAXTEMP)
  331. #else
  332. celsius
  333. #endif
  334. ;
  335. #if WATCH_THE_BED
  336. start_watching_bed();
  337. #endif
  338. #endif
  339. }
  340. static bool isHeatingHotend(uint8_t e) {
  341. #if HOTENDS == 1
  342. UNUSED(e);
  343. #endif
  344. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  345. }
  346. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  347. static bool isCoolingHotend(uint8_t e) {
  348. #if HOTENDS == 1
  349. UNUSED(e);
  350. #endif
  351. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  352. }
  353. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  354. /**
  355. * The software PWM power for a heater
  356. */
  357. static int getHeaterPower(int heater);
  358. /**
  359. * Switch off all heaters, set all target temperatures to 0
  360. */
  361. static void disable_all_heaters();
  362. /**
  363. * Perform auto-tuning for hotend or bed in response to M303
  364. */
  365. #if HAS_PID_HEATING
  366. static void PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
  367. /**
  368. * Update the temp manager when PID values change
  369. */
  370. #if ENABLED(PIDTEMP)
  371. FORCE_INLINE static void updatePID() {
  372. #if ENABLED(PID_EXTRUSION_SCALING)
  373. last_e_position = 0;
  374. #endif
  375. }
  376. #endif
  377. #endif
  378. #if ENABLED(BABYSTEPPING)
  379. static void babystep_axis(const AxisEnum axis, const int16_t distance) {
  380. if (axis_known_position[axis]) {
  381. #if IS_CORE
  382. #if ENABLED(BABYSTEP_XY)
  383. switch (axis) {
  384. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  385. babystepsTodo[CORE_AXIS_1] += distance * 2;
  386. babystepsTodo[CORE_AXIS_2] += distance * 2;
  387. break;
  388. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  389. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  390. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  391. break;
  392. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  393. babystepsTodo[NORMAL_AXIS] += distance;
  394. break;
  395. }
  396. #elif CORE_IS_XZ || CORE_IS_YZ
  397. // Only Z stepping needs to be handled here
  398. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  399. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  400. #else
  401. babystepsTodo[Z_AXIS] += distance;
  402. #endif
  403. #else
  404. babystepsTodo[axis] += distance;
  405. #endif
  406. }
  407. }
  408. #endif // BABYSTEPPING
  409. #if ENABLED(PROBING_HEATERS_OFF)
  410. static void pause(const bool p);
  411. static bool is_paused() { return paused; }
  412. #endif
  413. #if HEATER_IDLE_HANDLER
  414. static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
  415. #if HOTENDS == 1
  416. UNUSED(e);
  417. #endif
  418. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  419. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  420. }
  421. static void reset_heater_idle_timer(uint8_t e) {
  422. #if HOTENDS == 1
  423. UNUSED(e);
  424. #endif
  425. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  426. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  427. #if WATCH_HOTENDS
  428. start_watching_heater(HOTEND_INDEX);
  429. #endif
  430. }
  431. static bool is_heater_idle(uint8_t e) {
  432. #if HOTENDS == 1
  433. UNUSED(e);
  434. #endif
  435. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  436. }
  437. #if HAS_TEMP_BED
  438. static void start_bed_idle_timer(millis_t timeout_ms) {
  439. bed_idle_timeout_ms = millis() + timeout_ms;
  440. bed_idle_timeout_exceeded = false;
  441. }
  442. static void reset_bed_idle_timer() {
  443. bed_idle_timeout_ms = 0;
  444. bed_idle_timeout_exceeded = false;
  445. #if WATCH_THE_BED
  446. start_watching_bed();
  447. #endif
  448. }
  449. static bool is_bed_idle() {
  450. return bed_idle_timeout_exceeded;
  451. }
  452. #endif
  453. #endif
  454. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  455. static void print_heaterstates();
  456. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  457. static uint8_t auto_report_temp_interval;
  458. static millis_t next_temp_report_ms;
  459. static void auto_report_temperatures(void);
  460. FORCE_INLINE void set_auto_report_interval(uint8_t v) {
  461. NOMORE(v, 60);
  462. auto_report_temp_interval = v;
  463. next_temp_report_ms = millis() + 1000UL * v;
  464. }
  465. #endif
  466. #endif
  467. private:
  468. static void set_current_temp_raw();
  469. static void updateTemperaturesFromRawValues();
  470. #if ENABLED(HEATER_0_USES_MAX6675)
  471. static int read_max6675();
  472. #endif
  473. static void checkExtruderAutoFans();
  474. static float get_pid_output(const int8_t e);
  475. #if ENABLED(PIDTEMPBED)
  476. static float get_pid_output_bed();
  477. #endif
  478. static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
  479. static void min_temp_error(const int8_t e);
  480. static void max_temp_error(const int8_t e);
  481. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  482. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  483. static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  484. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  485. static TRState thermal_runaway_state_machine[HOTENDS];
  486. static millis_t thermal_runaway_timer[HOTENDS];
  487. #endif
  488. #if HAS_THERMALLY_PROTECTED_BED
  489. static TRState thermal_runaway_bed_state_machine;
  490. static millis_t thermal_runaway_bed_timer;
  491. #endif
  492. #endif // THERMAL_PROTECTION
  493. };
  494. extern Temperature thermalManager;
  495. #endif // TEMPERATURE_H