My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 46KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V30"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V30 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Mesh bed leveling:
  64. * 219 M420 S from mbl.status (bool)
  65. * 220 mbl.z_offset (float)
  66. * 224 MESH_NUM_X_POINTS (uint8 as set in firmware)
  67. * 225 MESH_NUM_Y_POINTS (uint8 as set in firmware)
  68. * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) +288
  69. *
  70. * AUTO BED LEVELING
  71. * 262 M851 zprobe_zoffset (float)
  72. *
  73. * ABL_PLANAR (or placeholder): 36 bytes
  74. * 266 planner.bed_level_matrix (matrix_3x3 = float x9)
  75. *
  76. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  77. * 302 ABL_GRID_MAX_POINTS_X (uint8_t)
  78. * 303 ABL_GRID_MAX_POINTS_Y (uint8_t)
  79. * 304 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y
  80. * 308 G29 L F bilinear_start (int x2)
  81. * 312 bed_level_grid[][] (float x9, up to float x256) +988
  82. *
  83. * DELTA (if deltabot): 48 bytes
  84. * 348 M666 XYZ endstop_adj (float x3)
  85. * 360 M665 R delta_radius (float)
  86. * 364 M665 L delta_diagonal_rod (float)
  87. * 368 M665 S delta_segments_per_second (float)
  88. * 372 M665 A delta_diagonal_rod_trim_tower_1 (float)
  89. * 376 M665 B delta_diagonal_rod_trim_tower_2 (float)
  90. * 380 M665 C delta_diagonal_rod_trim_tower_3 (float)
  91. * 384 M665 I delta_tower_angle_trim_1 (float)
  92. * 388 M665 J delta_tower_angle_trim_2 (float)
  93. * 392 M665 K delta_tower_angle_trim_3 (float)
  94. *
  95. * Z_DUAL_ENDSTOPS: 4 bytes
  96. * 384 M666 Z z_endstop_adj (float)
  97. *
  98. * ULTIPANEL: 6 bytes
  99. * 388 M145 S0 H lcd_preheat_hotend_temp (int x2)
  100. * 392 M145 S0 B lcd_preheat_bed_temp (int x2)
  101. * 396 M145 S0 F lcd_preheat_fan_speed (int x2)
  102. *
  103. * PIDTEMP: 66 bytes
  104. * 400 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  105. * 416 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  106. * 432 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  107. * 448 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  108. * 464 M301 L lpq_len (int)
  109. *
  110. * PIDTEMPBED:
  111. * 466 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  112. *
  113. * DOGLCD: 2 bytes
  114. * 478 M250 C lcd_contrast (int)
  115. *
  116. * FWRETRACT: 29 bytes
  117. * 480 M209 S autoretract_enabled (bool)
  118. * 481 M207 S retract_length (float)
  119. * 485 M207 W retract_length_swap (float)
  120. * 489 M207 F retract_feedrate_mm_s (float)
  121. * 493 M207 Z retract_zlift (float)
  122. * 497 M208 S retract_recover_length (float)
  123. * 501 M208 W retract_recover_length_swap (float)
  124. * 505 M208 F retract_recover_feedrate_mm_s (float)
  125. *
  126. * Volumetric Extrusion: 17 bytes
  127. * 509 M200 D volumetric_enabled (bool)
  128. * 510 M200 T D filament_size (float x4) (T0..3)
  129. *
  130. * TMC2130: 20 bytes
  131. * 526 M906 X TMC2130 X-stepper current (uint16_t)
  132. * 528 M906 Y TMC2130 Y-stepper current (uint16_t)
  133. * 530 M906 Z TMC2130 Z-stepper current (uint16_t)
  134. * 532 M906 X2 TMC2130 X2-stepper current (uint16_t)
  135. * 534 M906 Y2 TMC2130 Y2-stepper current (uint16_t)
  136. * 536 M906 Z2 TMC2130 Z2-stepper current (uint16_t)
  137. * 538 M906 E0 TMC2130 E0-stepper current (uint16_t)
  138. * 540 M906 E1 TMC2130 E1-stepper current (uint16_t)
  139. * 542 M906 E2 TMC2130 E2-stepper current (uint16_t)
  140. * 544 M906 E3 TMC2130 E3-stepper current (uint16_t)
  141. *
  142. * 546 Minimum end-point
  143. * 1867 (546 + 36 + 9 + 288 + 988) Maximum end-point
  144. *
  145. */
  146. #include "Marlin.h"
  147. #include "language.h"
  148. #include "endstops.h"
  149. #include "planner.h"
  150. #include "temperature.h"
  151. #include "ultralcd.h"
  152. #include "configuration_store.h"
  153. #if ENABLED(MESH_BED_LEVELING)
  154. #include "mesh_bed_leveling.h"
  155. #endif
  156. #if ENABLED(HAVE_TMC2130)
  157. #include "stepper_indirection.h"
  158. #endif
  159. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  160. extern void bed_level_virt_interpolate();
  161. #endif
  162. /**
  163. * Post-process after Retrieve or Reset
  164. */
  165. void Config_Postprocess() {
  166. // steps per s2 needs to be updated to agree with units per s2
  167. planner.reset_acceleration_rates();
  168. // Make sure delta kinematics are updated before refreshing the
  169. // planner position so the stepper counts will be set correctly.
  170. #if ENABLED(DELTA)
  171. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  172. #endif
  173. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  174. // and init stepper.count[], planner.position[] with current_position
  175. planner.refresh_positioning();
  176. #if ENABLED(PIDTEMP)
  177. thermalManager.updatePID();
  178. #endif
  179. calculate_volumetric_multipliers();
  180. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  181. // Software endstops depend on home_offset
  182. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  183. #endif
  184. }
  185. #if ENABLED(EEPROM_SETTINGS)
  186. uint16_t eeprom_checksum;
  187. const char version[4] = EEPROM_VERSION;
  188. bool eeprom_write_error;
  189. void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) {
  190. if (eeprom_write_error) return;
  191. while (size--) {
  192. uint8_t * const p = (uint8_t * const)pos;
  193. const uint8_t v = *value;
  194. // EEPROM has only ~100,000 write cycles,
  195. // so only write bytes that have changed!
  196. if (v != eeprom_read_byte(p)) {
  197. eeprom_write_byte(p, v);
  198. if (eeprom_read_byte(p) != v) {
  199. SERIAL_ECHO_START;
  200. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  201. eeprom_write_error = true;
  202. return;
  203. }
  204. }
  205. eeprom_checksum += v;
  206. pos++;
  207. value++;
  208. };
  209. }
  210. bool eeprom_read_error;
  211. void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) {
  212. do {
  213. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  214. if (!eeprom_read_error) *value = c;
  215. eeprom_checksum += c;
  216. pos++;
  217. value++;
  218. } while (--size);
  219. }
  220. #define DUMMY_PID_VALUE 3000.0f
  221. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  222. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  223. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  224. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  225. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  226. /**
  227. * M500 - Store Configuration
  228. */
  229. void Config_StoreSettings() {
  230. float dummy = 0.0f;
  231. char ver[4] = "000";
  232. EEPROM_START();
  233. eeprom_write_error = false;
  234. EEPROM_WRITE(ver); // invalidate data first
  235. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  236. eeprom_checksum = 0; // clear before first "real data"
  237. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  238. EEPROM_WRITE(esteppers);
  239. EEPROM_WRITE(planner.axis_steps_per_mm);
  240. EEPROM_WRITE(planner.max_feedrate_mm_s);
  241. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  242. EEPROM_WRITE(planner.acceleration);
  243. EEPROM_WRITE(planner.retract_acceleration);
  244. EEPROM_WRITE(planner.travel_acceleration);
  245. EEPROM_WRITE(planner.min_feedrate_mm_s);
  246. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  247. EEPROM_WRITE(planner.min_segment_time);
  248. EEPROM_WRITE(planner.max_jerk);
  249. #if ENABLED(NO_WORKSPACE_OFFSETS)
  250. float home_offset[XYZ] = { 0 };
  251. #endif
  252. EEPROM_WRITE(home_offset);
  253. #if HOTENDS > 1
  254. // Skip hotend 0 which must be 0
  255. for (uint8_t e = 1; e < HOTENDS; e++)
  256. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  257. #endif
  258. //
  259. // Mesh Bed Leveling
  260. //
  261. #if ENABLED(MESH_BED_LEVELING)
  262. // Compile time test that sizeof(mbl.z_values) is as expected
  263. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  264. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  265. const uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS;
  266. EEPROM_WRITE(leveling_is_on);
  267. EEPROM_WRITE(mbl.z_offset);
  268. EEPROM_WRITE(mesh_num_x);
  269. EEPROM_WRITE(mesh_num_y);
  270. EEPROM_WRITE(mbl.z_values);
  271. #else
  272. // For disabled MBL write a default mesh
  273. const bool leveling_is_on = false;
  274. dummy = 0.0f;
  275. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  276. EEPROM_WRITE(leveling_is_on);
  277. EEPROM_WRITE(dummy); // z_offset
  278. EEPROM_WRITE(mesh_num_x);
  279. EEPROM_WRITE(mesh_num_y);
  280. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  281. #endif // MESH_BED_LEVELING
  282. #if !HAS_BED_PROBE
  283. float zprobe_zoffset = 0;
  284. #endif
  285. EEPROM_WRITE(zprobe_zoffset);
  286. //
  287. // Planar Bed Leveling matrix
  288. //
  289. #if ABL_PLANAR
  290. EEPROM_WRITE(planner.bed_level_matrix);
  291. #else
  292. dummy = 0.0;
  293. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  294. #endif
  295. //
  296. // Bilinear Auto Bed Leveling
  297. //
  298. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  299. // Compile time test that sizeof(bed_level_grid) is as expected
  300. typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  301. const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y;
  302. EEPROM_WRITE(grid_max_x); // 1 byte
  303. EEPROM_WRITE(grid_max_y); // 1 byte
  304. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  305. EEPROM_WRITE(bilinear_start); // 2 ints
  306. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  307. #else
  308. // For disabled Bilinear Grid write an empty 3x3 grid
  309. const uint8_t grid_max_x = 3, grid_max_y = 3;
  310. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  311. dummy = 0.0f;
  312. EEPROM_WRITE(grid_max_x);
  313. EEPROM_WRITE(grid_max_y);
  314. EEPROM_WRITE(bilinear_grid_spacing);
  315. EEPROM_WRITE(bilinear_start);
  316. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  317. #endif // AUTO_BED_LEVELING_BILINEAR
  318. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  319. #if ENABLED(DELTA)
  320. EEPROM_WRITE(endstop_adj); // 3 floats
  321. EEPROM_WRITE(delta_radius); // 1 float
  322. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  323. EEPROM_WRITE(delta_segments_per_second); // 1 float
  324. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  325. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  326. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  327. EEPROM_WRITE(delta_tower_angle_trim_1); // 1 float
  328. EEPROM_WRITE(delta_tower_angle_trim_2); // 1 float
  329. EEPROM_WRITE(delta_tower_angle_trim_3); // 1 float
  330. #elif ENABLED(Z_DUAL_ENDSTOPS)
  331. EEPROM_WRITE(z_endstop_adj); // 1 float
  332. dummy = 0.0f;
  333. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  334. #else
  335. dummy = 0.0f;
  336. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  337. #endif
  338. #if DISABLED(ULTIPANEL)
  339. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  340. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  341. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  342. #endif // !ULTIPANEL
  343. EEPROM_WRITE(lcd_preheat_hotend_temp);
  344. EEPROM_WRITE(lcd_preheat_bed_temp);
  345. EEPROM_WRITE(lcd_preheat_fan_speed);
  346. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  347. #if ENABLED(PIDTEMP)
  348. if (e < HOTENDS) {
  349. EEPROM_WRITE(PID_PARAM(Kp, e));
  350. EEPROM_WRITE(PID_PARAM(Ki, e));
  351. EEPROM_WRITE(PID_PARAM(Kd, e));
  352. #if ENABLED(PID_EXTRUSION_SCALING)
  353. EEPROM_WRITE(PID_PARAM(Kc, e));
  354. #else
  355. dummy = 1.0f; // 1.0 = default kc
  356. EEPROM_WRITE(dummy);
  357. #endif
  358. }
  359. else
  360. #endif // !PIDTEMP
  361. {
  362. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  363. EEPROM_WRITE(dummy); // Kp
  364. dummy = 0.0f;
  365. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  366. }
  367. } // Hotends Loop
  368. #if DISABLED(PID_EXTRUSION_SCALING)
  369. int lpq_len = 20;
  370. #endif
  371. EEPROM_WRITE(lpq_len);
  372. #if DISABLED(PIDTEMPBED)
  373. dummy = DUMMY_PID_VALUE;
  374. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  375. #else
  376. EEPROM_WRITE(thermalManager.bedKp);
  377. EEPROM_WRITE(thermalManager.bedKi);
  378. EEPROM_WRITE(thermalManager.bedKd);
  379. #endif
  380. #if !HAS_LCD_CONTRAST
  381. const int lcd_contrast = 32;
  382. #endif
  383. EEPROM_WRITE(lcd_contrast);
  384. #if ENABLED(FWRETRACT)
  385. EEPROM_WRITE(autoretract_enabled);
  386. EEPROM_WRITE(retract_length);
  387. #if EXTRUDERS > 1
  388. EEPROM_WRITE(retract_length_swap);
  389. #else
  390. dummy = 0.0f;
  391. EEPROM_WRITE(dummy);
  392. #endif
  393. EEPROM_WRITE(retract_feedrate_mm_s);
  394. EEPROM_WRITE(retract_zlift);
  395. EEPROM_WRITE(retract_recover_length);
  396. #if EXTRUDERS > 1
  397. EEPROM_WRITE(retract_recover_length_swap);
  398. #else
  399. dummy = 0.0f;
  400. EEPROM_WRITE(dummy);
  401. #endif
  402. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  403. #endif // FWRETRACT
  404. EEPROM_WRITE(volumetric_enabled);
  405. // Save filament sizes
  406. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  407. if (q < COUNT(filament_size)) dummy = filament_size[q];
  408. EEPROM_WRITE(dummy);
  409. }
  410. // Save TCM2130 Configuration, and placeholder values
  411. uint16_t val;
  412. #if ENABLED(HAVE_TMC2130)
  413. #if ENABLED(X_IS_TMC2130)
  414. val = stepperX.getCurrent();
  415. #else
  416. val = 0;
  417. #endif
  418. EEPROM_WRITE(val);
  419. #if ENABLED(Y_IS_TMC2130)
  420. val = stepperY.getCurrent();
  421. #else
  422. val = 0;
  423. #endif
  424. EEPROM_WRITE(val);
  425. #if ENABLED(Z_IS_TMC2130)
  426. val = stepperZ.getCurrent();
  427. #else
  428. val = 0;
  429. #endif
  430. EEPROM_WRITE(val);
  431. #if ENABLED(X2_IS_TMC2130)
  432. val = stepperX2.getCurrent();
  433. #else
  434. val = 0;
  435. #endif
  436. EEPROM_WRITE(val);
  437. #if ENABLED(Y2_IS_TMC2130)
  438. val = stepperY2.getCurrent();
  439. #else
  440. val = 0;
  441. #endif
  442. EEPROM_WRITE(val);
  443. #if ENABLED(Z2_IS_TMC2130)
  444. val = stepperZ2.getCurrent();
  445. #else
  446. val = 0;
  447. #endif
  448. EEPROM_WRITE(val);
  449. #if ENABLED(E0_IS_TMC2130)
  450. val = stepperE0.getCurrent();
  451. #else
  452. val = 0;
  453. #endif
  454. EEPROM_WRITE(val);
  455. #if ENABLED(E1_IS_TMC2130)
  456. val = stepperE1.getCurrent();
  457. #else
  458. val = 0;
  459. #endif
  460. EEPROM_WRITE(val);
  461. #if ENABLED(E2_IS_TMC2130)
  462. val = stepperE2.getCurrent();
  463. #else
  464. val = 0;
  465. #endif
  466. EEPROM_WRITE(val);
  467. #if ENABLED(E3_IS_TMC2130)
  468. val = stepperE3.getCurrent();
  469. #else
  470. val = 0;
  471. #endif
  472. EEPROM_WRITE(val);
  473. #else
  474. val = 0;
  475. for (uint8_t q = 0; q < 10; ++q) EEPROM_WRITE(val);
  476. #endif
  477. if (!eeprom_write_error) {
  478. const uint16_t final_checksum = eeprom_checksum,
  479. eeprom_size = eeprom_index;
  480. // Write the EEPROM header
  481. eeprom_index = EEPROM_OFFSET;
  482. EEPROM_WRITE(version);
  483. EEPROM_WRITE(final_checksum);
  484. // Report storage size
  485. SERIAL_ECHO_START;
  486. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  487. SERIAL_ECHOLNPGM(" bytes)");
  488. }
  489. }
  490. /**
  491. * M501 - Retrieve Configuration
  492. */
  493. void Config_RetrieveSettings() {
  494. EEPROM_START();
  495. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  496. char stored_ver[4];
  497. EEPROM_READ(stored_ver);
  498. uint16_t stored_checksum;
  499. EEPROM_READ(stored_checksum);
  500. // Version has to match or defaults are used
  501. if (strncmp(version, stored_ver, 3) != 0) {
  502. if (stored_ver[0] != 'V') {
  503. stored_ver[0] = '?';
  504. stored_ver[1] = '\0';
  505. }
  506. SERIAL_ECHO_START;
  507. SERIAL_ECHOPGM("EEPROM version mismatch ");
  508. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  509. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  510. Config_ResetDefault();
  511. }
  512. else {
  513. float dummy = 0;
  514. eeprom_checksum = 0; // clear before reading first "real data"
  515. // Number of esteppers may change
  516. uint8_t esteppers;
  517. EEPROM_READ(esteppers);
  518. // Get only the number of E stepper parameters previously stored
  519. // Any steppers added later are set to their defaults
  520. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  521. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  522. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  523. uint32_t tmp3[XYZ + esteppers];
  524. EEPROM_READ(tmp1);
  525. EEPROM_READ(tmp2);
  526. EEPROM_READ(tmp3);
  527. LOOP_XYZE_N(i) {
  528. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  529. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  530. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  531. }
  532. EEPROM_READ(planner.acceleration);
  533. EEPROM_READ(planner.retract_acceleration);
  534. EEPROM_READ(planner.travel_acceleration);
  535. EEPROM_READ(planner.min_feedrate_mm_s);
  536. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  537. EEPROM_READ(planner.min_segment_time);
  538. EEPROM_READ(planner.max_jerk);
  539. #if ENABLED(NO_WORKSPACE_OFFSETS)
  540. float home_offset[XYZ];
  541. #endif
  542. EEPROM_READ(home_offset);
  543. #if HOTENDS > 1
  544. // Skip hotend 0 which must be 0
  545. for (uint8_t e = 1; e < HOTENDS; e++)
  546. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  547. #endif
  548. //
  549. // Mesh (Manual) Bed Leveling
  550. //
  551. bool leveling_is_on;
  552. uint8_t mesh_num_x, mesh_num_y;
  553. EEPROM_READ(leveling_is_on);
  554. EEPROM_READ(dummy);
  555. EEPROM_READ(mesh_num_x);
  556. EEPROM_READ(mesh_num_y);
  557. #if ENABLED(MESH_BED_LEVELING)
  558. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  559. mbl.z_offset = dummy;
  560. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  561. // EEPROM data fits the current mesh
  562. EEPROM_READ(mbl.z_values);
  563. }
  564. else {
  565. // EEPROM data is stale
  566. mbl.reset();
  567. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  568. }
  569. #else
  570. // MBL is disabled - skip the stored data
  571. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  572. #endif // MESH_BED_LEVELING
  573. #if !HAS_BED_PROBE
  574. float zprobe_zoffset = 0;
  575. #endif
  576. EEPROM_READ(zprobe_zoffset);
  577. //
  578. // Planar Bed Leveling matrix
  579. //
  580. #if ABL_PLANAR
  581. EEPROM_READ(planner.bed_level_matrix);
  582. #else
  583. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  584. #endif
  585. //
  586. // Bilinear Auto Bed Leveling
  587. //
  588. uint8_t grid_max_x, grid_max_y;
  589. EEPROM_READ(grid_max_x); // 1 byte
  590. EEPROM_READ(grid_max_y); // 1 byte
  591. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  592. if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) {
  593. set_bed_leveling_enabled(false);
  594. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  595. EEPROM_READ(bilinear_start); // 2 ints
  596. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  597. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  598. bed_level_virt_interpolate();
  599. #endif
  600. //set_bed_leveling_enabled(leveling_is_on);
  601. }
  602. else // EEPROM data is stale
  603. #endif // AUTO_BED_LEVELING_BILINEAR
  604. {
  605. // Skip past disabled (or stale) Bilinear Grid data
  606. int bgs[2], bs[2];
  607. EEPROM_READ(bgs);
  608. EEPROM_READ(bs);
  609. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  610. }
  611. #if ENABLED(DELTA)
  612. EEPROM_READ(endstop_adj); // 3 floats
  613. EEPROM_READ(delta_radius); // 1 float
  614. EEPROM_READ(delta_diagonal_rod); // 1 float
  615. EEPROM_READ(delta_segments_per_second); // 1 float
  616. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  617. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  618. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  619. EEPROM_READ(delta_tower_angle_trim_1); // 1 float
  620. EEPROM_READ(delta_tower_angle_trim_2); // 1 float
  621. EEPROM_READ(delta_tower_angle_trim_3); // 1 float
  622. #elif ENABLED(Z_DUAL_ENDSTOPS)
  623. EEPROM_READ(z_endstop_adj);
  624. dummy = 0.0f;
  625. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  626. #else
  627. dummy = 0.0f;
  628. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  629. #endif
  630. #if DISABLED(ULTIPANEL)
  631. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  632. #endif
  633. EEPROM_READ(lcd_preheat_hotend_temp);
  634. EEPROM_READ(lcd_preheat_bed_temp);
  635. EEPROM_READ(lcd_preheat_fan_speed);
  636. #if ENABLED(PIDTEMP)
  637. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  638. EEPROM_READ(dummy); // Kp
  639. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  640. // do not need to scale PID values as the values in EEPROM are already scaled
  641. PID_PARAM(Kp, e) = dummy;
  642. EEPROM_READ(PID_PARAM(Ki, e));
  643. EEPROM_READ(PID_PARAM(Kd, e));
  644. #if ENABLED(PID_EXTRUSION_SCALING)
  645. EEPROM_READ(PID_PARAM(Kc, e));
  646. #else
  647. EEPROM_READ(dummy);
  648. #endif
  649. }
  650. else {
  651. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  652. }
  653. }
  654. #else // !PIDTEMP
  655. // 4 x 4 = 16 slots for PID parameters
  656. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  657. #endif // !PIDTEMP
  658. #if DISABLED(PID_EXTRUSION_SCALING)
  659. int lpq_len;
  660. #endif
  661. EEPROM_READ(lpq_len);
  662. #if ENABLED(PIDTEMPBED)
  663. EEPROM_READ(dummy); // bedKp
  664. if (dummy != DUMMY_PID_VALUE) {
  665. thermalManager.bedKp = dummy;
  666. EEPROM_READ(thermalManager.bedKi);
  667. EEPROM_READ(thermalManager.bedKd);
  668. }
  669. #else
  670. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  671. #endif
  672. #if !HAS_LCD_CONTRAST
  673. int lcd_contrast;
  674. #endif
  675. EEPROM_READ(lcd_contrast);
  676. #if ENABLED(FWRETRACT)
  677. EEPROM_READ(autoretract_enabled);
  678. EEPROM_READ(retract_length);
  679. #if EXTRUDERS > 1
  680. EEPROM_READ(retract_length_swap);
  681. #else
  682. EEPROM_READ(dummy);
  683. #endif
  684. EEPROM_READ(retract_feedrate_mm_s);
  685. EEPROM_READ(retract_zlift);
  686. EEPROM_READ(retract_recover_length);
  687. #if EXTRUDERS > 1
  688. EEPROM_READ(retract_recover_length_swap);
  689. #else
  690. EEPROM_READ(dummy);
  691. #endif
  692. EEPROM_READ(retract_recover_feedrate_mm_s);
  693. #endif // FWRETRACT
  694. EEPROM_READ(volumetric_enabled);
  695. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  696. EEPROM_READ(dummy);
  697. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  698. }
  699. uint16_t val;
  700. #if ENABLED(HAVE_TMC2130)
  701. EEPROM_READ(val);
  702. #if ENABLED(X_IS_TMC2130)
  703. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  704. #endif
  705. EEPROM_READ(val);
  706. #if ENABLED(Y_IS_TMC2130)
  707. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  708. #endif
  709. EEPROM_READ(val);
  710. #if ENABLED(Z_IS_TMC2130)
  711. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  712. #endif
  713. EEPROM_READ(val);
  714. #if ENABLED(X2_IS_TMC2130)
  715. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  716. #endif
  717. EEPROM_READ(val);
  718. #if ENABLED(Y2_IS_TMC2130)
  719. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  720. #endif
  721. EEPROM_READ(val);
  722. #if ENABLED(Z2_IS_TMC2130)
  723. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  724. #endif
  725. EEPROM_READ(val);
  726. #if ENABLED(E0_IS_TMC2130)
  727. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  728. #endif
  729. EEPROM_READ(val);
  730. #if ENABLED(E1_IS_TMC2130)
  731. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  732. #endif
  733. EEPROM_READ(val);
  734. #if ENABLED(E2_IS_TMC2130)
  735. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  736. #endif
  737. EEPROM_READ(val);
  738. #if ENABLED(E3_IS_TMC2130)
  739. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  740. #endif
  741. #else
  742. for (uint8_t q = 0; q < 10; q++) EEPROM_READ(val);
  743. #endif
  744. if (eeprom_checksum == stored_checksum) {
  745. if (eeprom_read_error)
  746. Config_ResetDefault();
  747. else {
  748. Config_Postprocess();
  749. SERIAL_ECHO_START;
  750. SERIAL_ECHO(version);
  751. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  752. SERIAL_ECHOLNPGM(" bytes)");
  753. }
  754. }
  755. else {
  756. SERIAL_ERROR_START;
  757. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  758. Config_ResetDefault();
  759. }
  760. }
  761. #if ENABLED(EEPROM_CHITCHAT)
  762. Config_PrintSettings();
  763. #endif
  764. }
  765. #else // !EEPROM_SETTINGS
  766. void Config_StoreSettings() {
  767. SERIAL_ERROR_START;
  768. SERIAL_ERRORLNPGM("EEPROM disabled");
  769. }
  770. #endif // !EEPROM_SETTINGS
  771. /**
  772. * M502 - Reset Configuration
  773. */
  774. void Config_ResetDefault() {
  775. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  776. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  777. LOOP_XYZE_N(i) {
  778. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  779. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  780. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  781. }
  782. planner.acceleration = DEFAULT_ACCELERATION;
  783. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  784. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  785. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  786. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  787. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  788. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  789. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  790. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  791. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  792. #if DISABLED(NO_WORKSPACE_OFFSETS)
  793. ZERO(home_offset);
  794. #endif
  795. #if HOTENDS > 1
  796. constexpr float tmp4[XYZ][HOTENDS] = {
  797. HOTEND_OFFSET_X,
  798. HOTEND_OFFSET_Y
  799. #ifdef HOTEND_OFFSET_Z
  800. , HOTEND_OFFSET_Z
  801. #else
  802. , { 0 }
  803. #endif
  804. };
  805. static_assert(
  806. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  807. "Offsets for the first hotend must be 0.0."
  808. );
  809. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  810. #endif
  811. // Applies to all MBL and ABL
  812. #if PLANNER_LEVELING
  813. reset_bed_level();
  814. #endif
  815. #if HAS_BED_PROBE
  816. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  817. #endif
  818. #if ENABLED(DELTA)
  819. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  820. endstop_adj[A_AXIS] = adj[A_AXIS];
  821. endstop_adj[B_AXIS] = adj[B_AXIS];
  822. endstop_adj[C_AXIS] = adj[C_AXIS];
  823. delta_radius = DELTA_RADIUS;
  824. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  825. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  826. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  827. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  828. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  829. delta_tower_angle_trim_1 = DELTA_TOWER_ANGLE_TRIM_1;
  830. delta_tower_angle_trim_2 = DELTA_TOWER_ANGLE_TRIM_2;
  831. delta_tower_angle_trim_3 = DELTA_TOWER_ANGLE_TRIM_3;
  832. #elif ENABLED(Z_DUAL_ENDSTOPS)
  833. z_endstop_adj = 0;
  834. #endif
  835. #if ENABLED(ULTIPANEL)
  836. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  837. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  838. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  839. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  840. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  841. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  842. #endif
  843. #if HAS_LCD_CONTRAST
  844. lcd_contrast = DEFAULT_LCD_CONTRAST;
  845. #endif
  846. #if ENABLED(PIDTEMP)
  847. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  848. HOTEND_LOOP()
  849. #endif
  850. {
  851. PID_PARAM(Kp, e) = DEFAULT_Kp;
  852. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  853. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  854. #if ENABLED(PID_EXTRUSION_SCALING)
  855. PID_PARAM(Kc, e) = DEFAULT_Kc;
  856. #endif
  857. }
  858. #if ENABLED(PID_EXTRUSION_SCALING)
  859. lpq_len = 20; // default last-position-queue size
  860. #endif
  861. #endif // PIDTEMP
  862. #if ENABLED(PIDTEMPBED)
  863. thermalManager.bedKp = DEFAULT_bedKp;
  864. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  865. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  866. #endif
  867. #if ENABLED(FWRETRACT)
  868. autoretract_enabled = false;
  869. retract_length = RETRACT_LENGTH;
  870. #if EXTRUDERS > 1
  871. retract_length_swap = RETRACT_LENGTH_SWAP;
  872. #endif
  873. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  874. retract_zlift = RETRACT_ZLIFT;
  875. retract_recover_length = RETRACT_RECOVER_LENGTH;
  876. #if EXTRUDERS > 1
  877. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  878. #endif
  879. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  880. #endif
  881. volumetric_enabled =
  882. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  883. true
  884. #else
  885. false
  886. #endif
  887. ;
  888. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  889. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  890. endstops.enable_globally(
  891. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  892. (true)
  893. #else
  894. (false)
  895. #endif
  896. );
  897. #if ENABLED(HAVE_TMC2130)
  898. #if ENABLED(X_IS_TMC2130)
  899. stepperX.setCurrent(X_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  900. #endif
  901. #if ENABLED(Y_IS_TMC2130)
  902. stepperY.setCurrent(Y_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  903. #endif
  904. #if ENABLED(Z_IS_TMC2130)
  905. stepperZ.setCurrent(Z_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  906. #endif
  907. #if ENABLED(X2_IS_TMC2130)
  908. stepperX2.setCurrent(X2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  909. #endif
  910. #if ENABLED(Y2_IS_TMC2130)
  911. stepperY2.setCurrent(Y2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  912. #endif
  913. #if ENABLED(Z2_IS_TMC2130)
  914. stepperZ2.setCurrent(Z2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  915. #endif
  916. #if ENABLED(E0_IS_TMC2130)
  917. stepperE0.setCurrent(E0_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  918. #endif
  919. #if ENABLED(E1_IS_TMC2130)
  920. stepperE1.setCurrent(E1_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  921. #endif
  922. #if ENABLED(E2_IS_TMC2130)
  923. stepperE2.setCurrent(E2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  924. #endif
  925. #if ENABLED(E3_IS_TMC2130)
  926. stepperE3.setCurrent(E3_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  927. #endif
  928. #endif
  929. Config_Postprocess();
  930. SERIAL_ECHO_START;
  931. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  932. }
  933. #if DISABLED(DISABLE_M503)
  934. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  935. /**
  936. * M503 - Print Configuration
  937. */
  938. void Config_PrintSettings(bool forReplay) {
  939. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  940. CONFIG_ECHO_START;
  941. if (!forReplay) {
  942. SERIAL_ECHOLNPGM("Steps per unit:");
  943. CONFIG_ECHO_START;
  944. }
  945. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  946. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  947. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  948. #if DISABLED(DISTINCT_E_FACTORS)
  949. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  950. #endif
  951. SERIAL_EOL;
  952. #if ENABLED(DISTINCT_E_FACTORS)
  953. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  954. SERIAL_ECHOPAIR(" M92 T", (int)i);
  955. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  956. }
  957. #endif
  958. CONFIG_ECHO_START;
  959. if (!forReplay) {
  960. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  961. CONFIG_ECHO_START;
  962. }
  963. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  964. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  965. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  966. #if DISABLED(DISTINCT_E_FACTORS)
  967. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  968. #endif
  969. SERIAL_EOL;
  970. #if ENABLED(DISTINCT_E_FACTORS)
  971. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  972. SERIAL_ECHOPAIR(" M203 T", (int)i);
  973. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  974. }
  975. #endif
  976. CONFIG_ECHO_START;
  977. if (!forReplay) {
  978. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  979. CONFIG_ECHO_START;
  980. }
  981. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  982. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  983. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  984. #if DISABLED(DISTINCT_E_FACTORS)
  985. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  986. #endif
  987. SERIAL_EOL;
  988. #if ENABLED(DISTINCT_E_FACTORS)
  989. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  990. SERIAL_ECHOPAIR(" M201 T", (int)i);
  991. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  992. }
  993. #endif
  994. CONFIG_ECHO_START;
  995. if (!forReplay) {
  996. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  997. CONFIG_ECHO_START;
  998. }
  999. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  1000. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  1001. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  1002. SERIAL_EOL;
  1003. CONFIG_ECHO_START;
  1004. if (!forReplay) {
  1005. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  1006. CONFIG_ECHO_START;
  1007. }
  1008. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  1009. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  1010. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1011. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  1012. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  1013. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  1014. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  1015. SERIAL_EOL;
  1016. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1017. CONFIG_ECHO_START;
  1018. if (!forReplay) {
  1019. SERIAL_ECHOLNPGM("Home offset (mm)");
  1020. CONFIG_ECHO_START;
  1021. }
  1022. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  1023. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  1024. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  1025. SERIAL_EOL;
  1026. #endif
  1027. #if HOTENDS > 1
  1028. CONFIG_ECHO_START;
  1029. if (!forReplay) {
  1030. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  1031. CONFIG_ECHO_START;
  1032. }
  1033. for (uint8_t e = 1; e < HOTENDS; e++) {
  1034. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1035. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  1036. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  1037. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  1038. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  1039. #endif
  1040. SERIAL_EOL;
  1041. }
  1042. #endif
  1043. #if ENABLED(MESH_BED_LEVELING)
  1044. if (!forReplay) {
  1045. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1046. CONFIG_ECHO_START;
  1047. }
  1048. SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1049. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  1050. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  1051. CONFIG_ECHO_START;
  1052. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  1053. SERIAL_ECHOPAIR(" Y", (int)py);
  1054. SERIAL_ECHOPGM(" Z");
  1055. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  1056. SERIAL_EOL;
  1057. }
  1058. }
  1059. #elif HAS_ABL
  1060. if (!forReplay) {
  1061. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1062. CONFIG_ECHO_START;
  1063. }
  1064. SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1065. #endif
  1066. #if ENABLED(DELTA)
  1067. CONFIG_ECHO_START;
  1068. if (!forReplay) {
  1069. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  1070. CONFIG_ECHO_START;
  1071. }
  1072. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  1073. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  1074. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  1075. SERIAL_EOL;
  1076. CONFIG_ECHO_START;
  1077. if (!forReplay) {
  1078. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123], IJK=tower_angle_trim[123]");
  1079. CONFIG_ECHO_START;
  1080. }
  1081. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  1082. SERIAL_ECHOPAIR(" R", delta_radius);
  1083. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1084. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  1085. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  1086. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  1087. SERIAL_ECHOPAIR(" I", delta_tower_angle_trim_1);
  1088. SERIAL_ECHOPAIR(" J", delta_tower_angle_trim_2);
  1089. SERIAL_ECHOPAIR(" K", delta_tower_angle_trim_3);
  1090. SERIAL_EOL;
  1091. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1092. CONFIG_ECHO_START;
  1093. if (!forReplay) {
  1094. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  1095. CONFIG_ECHO_START;
  1096. }
  1097. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  1098. SERIAL_EOL;
  1099. #endif // DELTA
  1100. #if ENABLED(ULTIPANEL)
  1101. CONFIG_ECHO_START;
  1102. if (!forReplay) {
  1103. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1104. CONFIG_ECHO_START;
  1105. }
  1106. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1107. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1108. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  1109. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  1110. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  1111. SERIAL_EOL;
  1112. }
  1113. #endif // ULTIPANEL
  1114. #if HAS_PID_HEATING
  1115. CONFIG_ECHO_START;
  1116. if (!forReplay) {
  1117. SERIAL_ECHOLNPGM("PID settings:");
  1118. }
  1119. #if ENABLED(PIDTEMP)
  1120. #if HOTENDS > 1
  1121. if (forReplay) {
  1122. HOTEND_LOOP() {
  1123. CONFIG_ECHO_START;
  1124. SERIAL_ECHOPAIR(" M301 E", e);
  1125. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1126. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1127. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1128. #if ENABLED(PID_EXTRUSION_SCALING)
  1129. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1130. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1131. #endif
  1132. SERIAL_EOL;
  1133. }
  1134. }
  1135. else
  1136. #endif // HOTENDS > 1
  1137. // !forReplay || HOTENDS == 1
  1138. {
  1139. CONFIG_ECHO_START;
  1140. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1141. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1142. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1143. #if ENABLED(PID_EXTRUSION_SCALING)
  1144. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1145. SERIAL_ECHOPAIR(" L", lpq_len);
  1146. #endif
  1147. SERIAL_EOL;
  1148. }
  1149. #endif // PIDTEMP
  1150. #if ENABLED(PIDTEMPBED)
  1151. CONFIG_ECHO_START;
  1152. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1153. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1154. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1155. SERIAL_EOL;
  1156. #endif
  1157. #endif // PIDTEMP || PIDTEMPBED
  1158. #if HAS_LCD_CONTRAST
  1159. CONFIG_ECHO_START;
  1160. if (!forReplay) {
  1161. SERIAL_ECHOLNPGM("LCD Contrast:");
  1162. CONFIG_ECHO_START;
  1163. }
  1164. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  1165. SERIAL_EOL;
  1166. #endif
  1167. #if ENABLED(FWRETRACT)
  1168. CONFIG_ECHO_START;
  1169. if (!forReplay) {
  1170. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  1171. CONFIG_ECHO_START;
  1172. }
  1173. SERIAL_ECHOPAIR(" M207 S", retract_length);
  1174. #if EXTRUDERS > 1
  1175. SERIAL_ECHOPAIR(" W", retract_length_swap);
  1176. #endif
  1177. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  1178. SERIAL_ECHOPAIR(" Z", retract_zlift);
  1179. SERIAL_EOL;
  1180. CONFIG_ECHO_START;
  1181. if (!forReplay) {
  1182. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  1183. CONFIG_ECHO_START;
  1184. }
  1185. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  1186. #if EXTRUDERS > 1
  1187. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  1188. #endif
  1189. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  1190. SERIAL_EOL;
  1191. CONFIG_ECHO_START;
  1192. if (!forReplay) {
  1193. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1194. CONFIG_ECHO_START;
  1195. }
  1196. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1197. SERIAL_EOL;
  1198. #endif // FWRETRACT
  1199. /**
  1200. * Volumetric extrusion M200
  1201. */
  1202. if (!forReplay) {
  1203. CONFIG_ECHO_START;
  1204. SERIAL_ECHOPGM("Filament settings:");
  1205. if (volumetric_enabled)
  1206. SERIAL_EOL;
  1207. else
  1208. SERIAL_ECHOLNPGM(" Disabled");
  1209. }
  1210. CONFIG_ECHO_START;
  1211. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1212. SERIAL_EOL;
  1213. #if EXTRUDERS > 1
  1214. CONFIG_ECHO_START;
  1215. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1216. SERIAL_EOL;
  1217. #if EXTRUDERS > 2
  1218. CONFIG_ECHO_START;
  1219. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1220. SERIAL_EOL;
  1221. #if EXTRUDERS > 3
  1222. CONFIG_ECHO_START;
  1223. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1224. SERIAL_EOL;
  1225. #endif
  1226. #endif
  1227. #endif
  1228. if (!volumetric_enabled) {
  1229. CONFIG_ECHO_START;
  1230. SERIAL_ECHOLNPGM(" M200 D0");
  1231. }
  1232. /**
  1233. * Auto Bed Leveling
  1234. */
  1235. #if HAS_BED_PROBE
  1236. CONFIG_ECHO_START;
  1237. if (!forReplay) {
  1238. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1239. CONFIG_ECHO_START;
  1240. }
  1241. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1242. SERIAL_EOL;
  1243. #endif
  1244. /**
  1245. * TMC2130 stepper driver current
  1246. */
  1247. #if ENABLED(HAVE_TMC2130)
  1248. CONFIG_ECHO_START;
  1249. if (!forReplay) {
  1250. SERIAL_ECHOLNPGM("Stepper driver current:");
  1251. CONFIG_ECHO_START;
  1252. }
  1253. SERIAL_ECHO(" M906");
  1254. #if ENABLED(X_IS_TMC2130)
  1255. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1256. #endif
  1257. #if ENABLED(Y_IS_TMC2130)
  1258. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1259. #endif
  1260. #if ENABLED(Z_IS_TMC2130)
  1261. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1262. #endif
  1263. #if ENABLED(X2_IS_TMC2130)
  1264. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1265. #endif
  1266. #if ENABLED(Y2_IS_TMC2130)
  1267. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1268. #endif
  1269. #if ENABLED(Z2_IS_TMC2130)
  1270. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1271. #endif
  1272. #if ENABLED(E0_IS_TMC2130)
  1273. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1274. #endif
  1275. #if ENABLED(E1_IS_TMC2130)
  1276. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1277. #endif
  1278. #if ENABLED(E2_IS_TMC2130)
  1279. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1280. #endif
  1281. #if ENABLED(E3_IS_TMC2130)
  1282. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1283. #endif
  1284. SERIAL_EOL;
  1285. #endif
  1286. }
  1287. #endif // !DISABLE_M503