My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin.pde 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include "Marlin.h"
  23. #include "ultralcd.h"
  24. #include "planner.h"
  25. #include "stepper.h"
  26. #include "temperature.h"
  27. #include "motion_control.h"
  28. #include "cardreader.h"
  29. #include "watchdog.h"
  30. #include "EEPROMwrite.h"
  31. #include "language.h"
  32. #define VERSION_STRING "1.0.0 RC1"
  33. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  34. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  35. //Implemented Codes
  36. //-------------------
  37. // G0 -> G1
  38. // G1 - Coordinated Movement X Y Z E
  39. // G2 - CW ARC
  40. // G3 - CCW ARC
  41. // G4 - Dwell S<seconds> or P<milliseconds>
  42. // G28 - Home all Axis
  43. // G90 - Use Absolute Coordinates
  44. // G91 - Use Relative Coordinates
  45. // G92 - Set current position to cordinates given
  46. //RepRap M Codes
  47. // M104 - Set extruder target temp
  48. // M105 - Read current temp
  49. // M106 - Fan on
  50. // M107 - Fan off
  51. // M109 - Wait for extruder current temp to reach target temp.
  52. // M114 - Display current position
  53. //Custom M Codes
  54. // M17 - Enable/Power all stepper motors
  55. // M18 - Disable all stepper motors; same as M84
  56. // M20 - List SD card
  57. // M21 - Init SD card
  58. // M22 - Release SD card
  59. // M23 - Select SD file (M23 filename.g)
  60. // M24 - Start/resume SD print
  61. // M25 - Pause SD print
  62. // M26 - Set SD position in bytes (M26 S12345)
  63. // M27 - Report SD print status
  64. // M28 - Start SD write (M28 filename.g)
  65. // M29 - Stop SD write
  66. // M30 - Output time since last M109 or SD card start to serial
  67. // M42 - Change pin status via gcode
  68. // M80 - Turn on Power Supply
  69. // M81 - Turn off Power Supply
  70. // M82 - Set E codes absolute (default)
  71. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  72. // M84 - Disable steppers until next move,
  73. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  74. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  75. // M92 - Set axis_steps_per_unit - same syntax as G92
  76. // M114 - Output current position to serial port
  77. // M115 - Capabilities string
  78. // M117 - display message
  79. // M119 - Output Endstop status to serial port
  80. // M140 - Set bed target temp
  81. // M190 - Wait for bed current temp to reach target temp.
  82. // M200 - Set filament diameter
  83. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  84. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  85. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  86. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  87. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  88. // M206 - set additional homeing offset
  89. // M220 - set speed factor override percentage S:factor in percent
  90. // M240 - Trigger a camera to take a photograph
  91. // M301 - Set PID parameters P I and D
  92. // M302 - Allow cold extrudes
  93. // M400 - Finish all moves
  94. // M500 - stores paramters in EEPROM
  95. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  96. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  97. // M503 - print the current settings (from memory not from eeprom)
  98. //Stepper Movement Variables
  99. //===========================================================================
  100. //=============================imported variables============================
  101. //===========================================================================
  102. //===========================================================================
  103. //=============================public variables=============================
  104. //===========================================================================
  105. #ifdef SDSUPPORT
  106. CardReader card;
  107. #endif
  108. float homing_feedrate[] = HOMING_FEEDRATE;
  109. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  110. volatile int feedmultiply=100; //100->1 200->2
  111. int saved_feedmultiply;
  112. volatile bool feedmultiplychanged=false;
  113. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  114. float add_homeing[3]={0,0,0};
  115. uint8_t active_extruder = 0;
  116. bool stop_heating_wait=false;
  117. //===========================================================================
  118. //=============================private variables=============================
  119. //===========================================================================
  120. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  121. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  122. static float offset[3] = {0.0, 0.0, 0.0};
  123. static bool home_all_axis = true;
  124. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  125. static long gcode_N, gcode_LastN;
  126. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  127. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  128. static uint8_t fanpwm=0;
  129. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  130. static bool fromsd[BUFSIZE];
  131. static int bufindr = 0;
  132. static int bufindw = 0;
  133. static int buflen = 0;
  134. //static int i = 0;
  135. static char serial_char;
  136. static int serial_count = 0;
  137. static boolean comment_mode = false;
  138. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  139. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  140. //static float tt = 0;
  141. //static float bt = 0;
  142. //Inactivity shutdown variables
  143. static unsigned long previous_millis_cmd = 0;
  144. static unsigned long max_inactive_time = 0;
  145. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  146. static unsigned long starttime=0;
  147. static unsigned long stoptime=0;
  148. static uint8_t tmp_extruder;
  149. //===========================================================================
  150. //=============================ROUTINES=============================
  151. //===========================================================================
  152. void get_arc_coordinates();
  153. extern "C"{
  154. extern unsigned int __bss_end;
  155. extern unsigned int __heap_start;
  156. extern void *__brkval;
  157. int freeMemory() {
  158. int free_memory;
  159. if((int)__brkval == 0)
  160. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  161. else
  162. free_memory = ((int)&free_memory) - ((int)__brkval);
  163. return free_memory;
  164. }
  165. }
  166. //adds an command to the main command buffer
  167. //thats really done in a non-safe way.
  168. //needs overworking someday
  169. void enquecommand(const char *cmd)
  170. {
  171. if(buflen < BUFSIZE)
  172. {
  173. //this is dangerous if a mixing of serial and this happsens
  174. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  175. SERIAL_ECHO_START;
  176. SERIAL_ECHOPGM("enqueing \"");
  177. SERIAL_ECHO(cmdbuffer[bufindw]);
  178. SERIAL_ECHOLNPGM("\"");
  179. bufindw= (bufindw + 1)%BUFSIZE;
  180. buflen += 1;
  181. }
  182. }
  183. void setup_photpin()
  184. {
  185. #ifdef PHOTOGRAPH_PIN
  186. #if (PHOTOGRAPH_PIN > -1)
  187. SET_OUTPUT(PHOTOGRAPH_PIN);
  188. WRITE(PHOTOGRAPH_PIN, LOW);
  189. #endif
  190. #endif
  191. }
  192. void setup_powerhold()
  193. {
  194. #ifdef SUICIDE_PIN
  195. #if (SUICIDE_PIN> -1)
  196. SET_OUTPUT(SUICIDE_PIN);
  197. WRITE(SUICIDE_PIN, HIGH);
  198. #endif
  199. #endif
  200. }
  201. void suicide()
  202. {
  203. #ifdef SUICIDE_PIN
  204. #if (SUICIDE_PIN> -1)
  205. SET_OUTPUT(SUICIDE_PIN);
  206. WRITE(SUICIDE_PIN, LOW);
  207. #endif
  208. #endif
  209. }
  210. void setup()
  211. {
  212. setup_powerhold();
  213. MYSERIAL.begin(BAUDRATE);
  214. SERIAL_PROTOCOLLNPGM("start");
  215. SERIAL_ECHO_START;
  216. SERIAL_ECHOPGM("Marlin: ");
  217. SERIAL_ECHOLNPGM(VERSION_STRING);
  218. #ifdef STRING_VERSION_CONFIG_H
  219. #ifdef STRING_CONFIG_H_AUTHOR
  220. SERIAL_ECHO_START;
  221. SERIAL_ECHOPGM("Configuration.h: ");
  222. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  223. SERIAL_ECHOPGM(" | Author: ");
  224. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  225. #endif
  226. #endif
  227. SERIAL_ECHO_START;
  228. SERIAL_ECHOPGM("Free Memory:");
  229. SERIAL_ECHO(freeMemory());
  230. SERIAL_ECHOPGM(" PlannerBufferBytes:");
  231. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  232. for(int8_t i = 0; i < BUFSIZE; i++)
  233. {
  234. fromsd[i] = false;
  235. }
  236. EEPROM_RetrieveSettings(); // loads data from EEPROM if available
  237. for(int8_t i=0; i < NUM_AXIS; i++)
  238. {
  239. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  240. }
  241. tp_init(); // Initialize temperature loop
  242. plan_init(); // Initialize planner;
  243. st_init(); // Initialize stepper;
  244. wd_init();
  245. setup_photpin();
  246. }
  247. void loop()
  248. {
  249. if(buflen<3)
  250. get_command();
  251. #ifdef SDSUPPORT
  252. card.checkautostart(false);
  253. #endif
  254. if(buflen)
  255. {
  256. #ifdef SDSUPPORT
  257. if(card.saving)
  258. {
  259. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  260. {
  261. card.write_command(cmdbuffer[bufindr]);
  262. SERIAL_PROTOCOLLNPGM("ok");
  263. }
  264. else
  265. {
  266. card.closefile();
  267. SERIAL_PROTOCOLLNPGM("Done saving file.");
  268. }
  269. }
  270. else
  271. {
  272. process_commands();
  273. }
  274. #else
  275. process_commands();
  276. #endif //SDSUPPORT
  277. buflen = (buflen-1);
  278. bufindr = (bufindr + 1)%BUFSIZE;
  279. }
  280. //check heater every n milliseconds
  281. manage_heater();
  282. manage_inactivity(1);
  283. checkHitEndstops();
  284. LCD_STATUS;
  285. }
  286. void get_command()
  287. {
  288. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  289. serial_char = MYSERIAL.read();
  290. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  291. {
  292. if(!serial_count) return; //if empty line
  293. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  294. if(!comment_mode){
  295. fromsd[bufindw] = false;
  296. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  297. {
  298. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  299. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  300. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  301. SERIAL_ERROR_START;
  302. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  303. SERIAL_ERRORLN(gcode_LastN);
  304. //Serial.println(gcode_N);
  305. FlushSerialRequestResend();
  306. serial_count = 0;
  307. return;
  308. }
  309. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  310. {
  311. byte checksum = 0;
  312. byte count = 0;
  313. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  314. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  315. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  316. SERIAL_ERROR_START;
  317. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  318. SERIAL_ERRORLN(gcode_LastN);
  319. FlushSerialRequestResend();
  320. serial_count = 0;
  321. return;
  322. }
  323. //if no errors, continue parsing
  324. }
  325. else
  326. {
  327. SERIAL_ERROR_START;
  328. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  329. SERIAL_ERRORLN(gcode_LastN);
  330. FlushSerialRequestResend();
  331. serial_count = 0;
  332. return;
  333. }
  334. gcode_LastN = gcode_N;
  335. //if no errors, continue parsing
  336. }
  337. else // if we don't receive 'N' but still see '*'
  338. {
  339. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  340. {
  341. SERIAL_ERROR_START;
  342. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  343. SERIAL_ERRORLN(gcode_LastN);
  344. serial_count = 0;
  345. return;
  346. }
  347. }
  348. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  349. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  350. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  351. case 0:
  352. case 1:
  353. case 2:
  354. case 3:
  355. #ifdef SDSUPPORT
  356. if(card.saving)
  357. break;
  358. #endif //SDSUPPORT
  359. SERIAL_PROTOCOLLNPGM("ok");
  360. break;
  361. default:
  362. break;
  363. }
  364. }
  365. bufindw = (bufindw + 1)%BUFSIZE;
  366. buflen += 1;
  367. }
  368. comment_mode = false; //for new command
  369. serial_count = 0; //clear buffer
  370. }
  371. else
  372. {
  373. if(serial_char == ';') comment_mode = true;
  374. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  375. }
  376. }
  377. #ifdef SDSUPPORT
  378. if(!card.sdprinting || serial_count!=0){
  379. return;
  380. }
  381. while( !card.eof() && buflen < BUFSIZE) {
  382. int16_t n=card.get();
  383. serial_char = (char)n;
  384. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  385. {
  386. if(card.eof()){
  387. SERIAL_PROTOCOLLNPGM("Done printing file");
  388. stoptime=millis();
  389. char time[30];
  390. unsigned long t=(stoptime-starttime)/1000;
  391. int sec,min;
  392. min=t/60;
  393. sec=t%60;
  394. sprintf(time,"%i min, %i sec",min,sec);
  395. SERIAL_ECHO_START;
  396. SERIAL_ECHOLN(time);
  397. LCD_MESSAGE(time);
  398. card.printingHasFinished();
  399. card.checkautostart(true);
  400. }
  401. if(serial_char=='\n')
  402. comment_mode = false; //for new command
  403. if(!serial_count)
  404. {
  405. return; //if empty line
  406. }
  407. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  408. if(!comment_mode){
  409. fromsd[bufindw] = true;
  410. buflen += 1;
  411. bufindw = (bufindw + 1)%BUFSIZE;
  412. }
  413. serial_count = 0; //clear buffer
  414. }
  415. else
  416. {
  417. if(serial_char == ';') comment_mode = true;
  418. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  419. }
  420. }
  421. #endif //SDSUPPORT
  422. }
  423. float code_value()
  424. {
  425. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  426. }
  427. long code_value_long()
  428. {
  429. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  430. }
  431. bool code_seen(char code_string[]) //Return True if the string was found
  432. {
  433. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  434. }
  435. bool code_seen(char code)
  436. {
  437. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  438. return (strchr_pointer != NULL); //Return True if a character was found
  439. }
  440. #define HOMEAXIS(LETTER) \
  441. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  442. { \
  443. current_position[LETTER##_AXIS] = 0; \
  444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  445. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  446. feedrate = homing_feedrate[LETTER##_AXIS]; \
  447. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  448. \
  449. current_position[LETTER##_AXIS] = 0;\
  450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  451. destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  452. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  453. \
  454. destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  455. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  456. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  457. \
  458. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? LETTER##_HOME_POS : LETTER##_MAX_LENGTH;\
  459. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  460. feedrate = 0.0;\
  461. st_synchronize();\
  462. endstops_hit_on_purpose();\
  463. }
  464. void process_commands()
  465. {
  466. unsigned long codenum; //throw away variable
  467. char *starpos = NULL;
  468. if(code_seen('G'))
  469. {
  470. switch((int)code_value())
  471. {
  472. case 0: // G0 -> G1
  473. case 1: // G1
  474. get_coordinates(); // For X Y Z E F
  475. prepare_move();
  476. //ClearToSend();
  477. return;
  478. //break;
  479. case 2: // G2 - CW ARC
  480. get_arc_coordinates();
  481. prepare_arc_move(true);
  482. return;
  483. case 3: // G3 - CCW ARC
  484. get_arc_coordinates();
  485. prepare_arc_move(false);
  486. return;
  487. case 4: // G4 dwell
  488. LCD_MESSAGEPGM("DWELL...");
  489. codenum = 0;
  490. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  491. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  492. st_synchronize();
  493. codenum += millis(); // keep track of when we started waiting
  494. previous_millis_cmd = millis();
  495. while(millis() < codenum ){
  496. manage_heater();
  497. }
  498. break;
  499. case 28: //G28 Home all Axis one at a time
  500. saved_feedrate = feedrate;
  501. saved_feedmultiply = feedmultiply;
  502. feedmultiply = 100;
  503. enable_endstops(true);
  504. for(int8_t i=0; i < NUM_AXIS; i++) {
  505. destination[i] = current_position[i];
  506. }
  507. feedrate = 0.0;
  508. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  509. #ifdef QUICK_HOME
  510. if( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS]) ) //first diagonal move
  511. {
  512. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  514. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  515. feedrate = homing_feedrate[X_AXIS];
  516. if(homing_feedrate[Y_AXIS]<feedrate)
  517. feedrate =homing_feedrate[Y_AXIS];
  518. prepare_move();
  519. current_position[X_AXIS] = (X_HOME_DIR == -1) ? X_HOME_POS : X_MAX_LENGTH;
  520. current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? Y_HOME_POS : Y_MAX_LENGTH;
  521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  522. destination[X_AXIS] = current_position[X_AXIS];
  523. destination[Y_AXIS] = current_position[Y_AXIS];
  524. feedrate = 0.0;
  525. st_synchronize();
  526. endstops_hit_on_purpose();
  527. }
  528. #endif
  529. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  530. {
  531. HOMEAXIS(X);
  532. }
  533. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  534. HOMEAXIS(Y);
  535. }
  536. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  537. HOMEAXIS(Z);
  538. }
  539. if(code_seen(axis_codes[X_AXIS]))
  540. {
  541. current_position[0]=code_value()+add_homeing[0];
  542. }
  543. if(code_seen(axis_codes[Y_AXIS])) {
  544. current_position[1]=code_value()+add_homeing[1];
  545. }
  546. if(code_seen(axis_codes[Z_AXIS])) {
  547. current_position[2]=code_value()+add_homeing[2];
  548. }
  549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  550. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  551. enable_endstops(false);
  552. #endif
  553. feedrate = saved_feedrate;
  554. feedmultiply = saved_feedmultiply;
  555. previous_millis_cmd = millis();
  556. endstops_hit_on_purpose();
  557. break;
  558. case 90: // G90
  559. relative_mode = false;
  560. break;
  561. case 91: // G91
  562. relative_mode = true;
  563. break;
  564. case 92: // G92
  565. if(!code_seen(axis_codes[E_AXIS]))
  566. st_synchronize();
  567. for(int8_t i=0; i < NUM_AXIS; i++) {
  568. if(code_seen(axis_codes[i])) {
  569. current_position[i] = code_value()+add_homeing[i];
  570. if(i == E_AXIS) {
  571. current_position[i] = code_value();
  572. plan_set_e_position(current_position[E_AXIS]);
  573. }
  574. else {
  575. current_position[i] = code_value()+add_homeing[i];
  576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  577. }
  578. }
  579. }
  580. break;
  581. }
  582. }
  583. else if(code_seen('M'))
  584. {
  585. switch( (int)code_value() )
  586. {
  587. case 17:
  588. LCD_MESSAGEPGM("No move.");
  589. enable_x();
  590. enable_y();
  591. enable_z();
  592. enable_e0();
  593. enable_e1();
  594. enable_e2();
  595. break;
  596. #ifdef SDSUPPORT
  597. case 20: // M20 - list SD card
  598. SERIAL_PROTOCOLLNPGM("Begin file list");
  599. card.ls();
  600. SERIAL_PROTOCOLLNPGM("End file list");
  601. break;
  602. case 21: // M21 - init SD card
  603. card.initsd();
  604. break;
  605. case 22: //M22 - release SD card
  606. card.release();
  607. break;
  608. case 23: //M23 - Select file
  609. starpos = (strchr(strchr_pointer + 4,'*'));
  610. if(starpos!=NULL)
  611. *(starpos-1)='\0';
  612. card.openFile(strchr_pointer + 4,true);
  613. break;
  614. case 24: //M24 - Start SD print
  615. card.startFileprint();
  616. starttime=millis();
  617. break;
  618. case 25: //M25 - Pause SD print
  619. card.pauseSDPrint();
  620. break;
  621. case 26: //M26 - Set SD index
  622. if(card.cardOK && code_seen('S')) {
  623. card.setIndex(code_value_long());
  624. }
  625. break;
  626. case 27: //M27 - Get SD status
  627. card.getStatus();
  628. break;
  629. case 28: //M28 - Start SD write
  630. starpos = (strchr(strchr_pointer + 4,'*'));
  631. if(starpos != NULL){
  632. char* npos = strchr(cmdbuffer[bufindr], 'N');
  633. strchr_pointer = strchr(npos,' ') + 1;
  634. *(starpos-1) = '\0';
  635. }
  636. card.openFile(strchr_pointer+4,false);
  637. break;
  638. case 29: //M29 - Stop SD write
  639. //processed in write to file routine above
  640. //card,saving = false;
  641. break;
  642. #endif //SDSUPPORT
  643. case 30: //M30 take time since the start of the SD print or an M109 command
  644. {
  645. stoptime=millis();
  646. char time[30];
  647. unsigned long t=(stoptime-starttime)/1000;
  648. int sec,min;
  649. min=t/60;
  650. sec=t%60;
  651. sprintf(time,"%i min, %i sec",min,sec);
  652. SERIAL_ECHO_START;
  653. SERIAL_ECHOLN(time);
  654. LCD_MESSAGE(time);
  655. autotempShutdown();
  656. }
  657. break;
  658. case 42: //M42 -Change pin status via gcode
  659. if (code_seen('S'))
  660. {
  661. int pin_status = code_value();
  662. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  663. {
  664. int pin_number = code_value();
  665. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  666. {
  667. if (sensitive_pins[i] == pin_number)
  668. {
  669. pin_number = -1;
  670. break;
  671. }
  672. }
  673. if (pin_number > -1)
  674. {
  675. pinMode(pin_number, OUTPUT);
  676. digitalWrite(pin_number, pin_status);
  677. analogWrite(pin_number, pin_status);
  678. }
  679. }
  680. }
  681. break;
  682. case 104: // M104
  683. tmp_extruder = active_extruder;
  684. if(code_seen('T')) {
  685. tmp_extruder = code_value();
  686. if(tmp_extruder >= EXTRUDERS) {
  687. SERIAL_ECHO_START;
  688. SERIAL_ECHO("M104 Invalid extruder ");
  689. SERIAL_ECHOLN(tmp_extruder);
  690. break;
  691. }
  692. }
  693. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  694. setWatch();
  695. break;
  696. case 140: // M140 set bed temp
  697. if (code_seen('S')) setTargetBed(code_value());
  698. break;
  699. case 105 : // M105
  700. tmp_extruder = active_extruder;
  701. if(code_seen('T')) {
  702. tmp_extruder = code_value();
  703. if(tmp_extruder >= EXTRUDERS) {
  704. SERIAL_ECHO_START;
  705. SERIAL_ECHO("M105 Invalid extruder ");
  706. SERIAL_ECHOLN(tmp_extruder);
  707. break;
  708. }
  709. }
  710. #if (TEMP_0_PIN > -1)
  711. SERIAL_PROTOCOLPGM("ok T:");
  712. SERIAL_PROTOCOL(degHotend(tmp_extruder));
  713. #if TEMP_BED_PIN > -1
  714. SERIAL_PROTOCOLPGM(" B:");
  715. SERIAL_PROTOCOL(degBed());
  716. #endif //TEMP_BED_PIN
  717. #else
  718. SERIAL_ERROR_START;
  719. SERIAL_ERRORLNPGM("No thermistors - no temp");
  720. #endif
  721. #ifdef PIDTEMP
  722. SERIAL_PROTOCOLPGM(" @:");
  723. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  724. #endif
  725. SERIAL_PROTOCOLLN("");
  726. return;
  727. break;
  728. case 109:
  729. {// M109 - Wait for extruder heater to reach target.
  730. tmp_extruder = active_extruder;
  731. if(code_seen('T')) {
  732. tmp_extruder = code_value();
  733. if(tmp_extruder >= EXTRUDERS) {
  734. SERIAL_ECHO_START;
  735. SERIAL_ECHO("M109 Invalid extruder ");
  736. SERIAL_ECHOLN(tmp_extruder);
  737. break;
  738. }
  739. }
  740. LCD_MESSAGEPGM("Heating...");
  741. #ifdef AUTOTEMP
  742. autotemp_enabled=false;
  743. #endif
  744. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  745. #ifdef AUTOTEMP
  746. if (code_seen('S')) autotemp_min=code_value();
  747. if (code_seen('G')) autotemp_max=code_value();
  748. if (code_seen('F'))
  749. {
  750. autotemp_factor=code_value();
  751. autotemp_enabled=true;
  752. }
  753. #endif
  754. setWatch();
  755. codenum = millis();
  756. /* See if we are heating up or cooling down */
  757. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  758. #ifdef TEMP_RESIDENCY_TIME
  759. long residencyStart;
  760. residencyStart = -1;
  761. /* continue to loop until we have reached the target temp
  762. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  763. while((residencyStart == -1) ||
  764. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  765. #else
  766. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  767. #endif //TEMP_RESIDENCY_TIME
  768. if( (millis() - codenum) > 1000UL )
  769. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  770. SERIAL_PROTOCOLPGM("T:");
  771. SERIAL_PROTOCOL( degHotend(tmp_extruder) );
  772. SERIAL_PROTOCOLPGM(" E:");
  773. SERIAL_PROTOCOL( (int)tmp_extruder );
  774. #ifdef TEMP_RESIDENCY_TIME
  775. SERIAL_PROTOCOLPGM(" W:");
  776. if(residencyStart > -1)
  777. {
  778. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  779. SERIAL_PROTOCOLLN( codenum );
  780. }
  781. else
  782. {
  783. SERIAL_PROTOCOLLN( "?" );
  784. }
  785. #else
  786. SERIAL_PROTOCOLLN("");
  787. #endif
  788. codenum = millis();
  789. }
  790. manage_heater();
  791. LCD_STATUS;
  792. if(stop_heating_wait) break;
  793. #ifdef TEMP_RESIDENCY_TIME
  794. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  795. or when current temp falls outside the hysteresis after target temp was reached */
  796. if ((residencyStart == -1 && target_direction && !isHeatingHotend(tmp_extruder)) ||
  797. (residencyStart == -1 && !target_direction && !isCoolingHotend(tmp_extruder)) ||
  798. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  799. {
  800. residencyStart = millis();
  801. }
  802. #endif //TEMP_RESIDENCY_TIME
  803. }
  804. LCD_MESSAGEPGM("Heating done.");
  805. starttime=millis();
  806. previous_millis_cmd = millis();
  807. }
  808. break;
  809. case 190: // M190 - Wait for bed heater to reach target.
  810. #if TEMP_BED_PIN > -1
  811. LCD_MESSAGEPGM("Bed Heating.");
  812. if (code_seen('S')) setTargetBed(code_value());
  813. codenum = millis();
  814. while(isHeatingBed())
  815. {
  816. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  817. {
  818. float tt=degHotend(active_extruder);
  819. SERIAL_PROTOCOLPGM("T:");
  820. SERIAL_PROTOCOL(tt);
  821. SERIAL_PROTOCOLPGM(" E:");
  822. SERIAL_PROTOCOL( (int)active_extruder );
  823. SERIAL_PROTOCOLPGM(" B:");
  824. SERIAL_PROTOCOLLN(degBed());
  825. codenum = millis();
  826. }
  827. manage_heater();
  828. }
  829. LCD_MESSAGEPGM("Bed done.");
  830. previous_millis_cmd = millis();
  831. #endif
  832. break;
  833. #if FAN_PIN > -1
  834. case 106: //M106 Fan On
  835. if (code_seen('S')){
  836. WRITE(FAN_PIN,HIGH);
  837. fanpwm=constrain(code_value(),0,255);
  838. analogWrite(FAN_PIN, fanpwm);
  839. }
  840. else {
  841. WRITE(FAN_PIN,HIGH);
  842. fanpwm=255;
  843. analogWrite(FAN_PIN, fanpwm);
  844. }
  845. break;
  846. case 107: //M107 Fan Off
  847. WRITE(FAN_PIN,LOW);
  848. analogWrite(FAN_PIN, 0);
  849. break;
  850. #endif //FAN_PIN
  851. #if (PS_ON_PIN > -1)
  852. case 80: // M80 - ATX Power On
  853. SET_OUTPUT(PS_ON_PIN); //GND
  854. break;
  855. #endif
  856. case 81: // M81 - ATX Power Off
  857. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  858. st_synchronize();
  859. suicide();
  860. #elif (PS_ON_PIN > -1)
  861. SET_INPUT(PS_ON_PIN); //Floating
  862. #endif
  863. break;
  864. case 82:
  865. axis_relative_modes[3] = false;
  866. break;
  867. case 83:
  868. axis_relative_modes[3] = true;
  869. break;
  870. case 18: //compatibility
  871. case 84: // M84
  872. if(code_seen('S')){
  873. stepper_inactive_time = code_value() * 1000;
  874. }
  875. else
  876. {
  877. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  878. if(all_axis)
  879. {
  880. st_synchronize();
  881. disable_e0();
  882. disable_e1();
  883. disable_e2();
  884. finishAndDisableSteppers();
  885. }
  886. else
  887. {
  888. st_synchronize();
  889. if(code_seen('X')) disable_x();
  890. if(code_seen('Y')) disable_y();
  891. if(code_seen('Z')) disable_z();
  892. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  893. if(code_seen('E')) {
  894. disable_e0();
  895. disable_e1();
  896. disable_e2();
  897. }
  898. #endif
  899. LCD_MESSAGEPGM("Partial Release");
  900. }
  901. }
  902. break;
  903. case 85: // M85
  904. code_seen('S');
  905. max_inactive_time = code_value() * 1000;
  906. break;
  907. case 92: // M92
  908. for(int8_t i=0; i < NUM_AXIS; i++)
  909. {
  910. if(code_seen(axis_codes[i]))
  911. axis_steps_per_unit[i] = code_value();
  912. }
  913. break;
  914. case 115: // M115
  915. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\n");
  916. break;
  917. case 117: // M117 display message
  918. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  919. break;
  920. case 114: // M114
  921. SERIAL_PROTOCOLPGM("X:");
  922. SERIAL_PROTOCOL(current_position[X_AXIS]);
  923. SERIAL_PROTOCOLPGM("Y:");
  924. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  925. SERIAL_PROTOCOLPGM("Z:");
  926. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  927. SERIAL_PROTOCOLPGM("E:");
  928. SERIAL_PROTOCOL(current_position[E_AXIS]);
  929. SERIAL_PROTOCOLPGM(" Count X:");
  930. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  931. SERIAL_PROTOCOLPGM("Y:");
  932. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  933. SERIAL_PROTOCOLPGM("Z:");
  934. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  935. SERIAL_PROTOCOLLN("");
  936. break;
  937. case 119: // M119
  938. #if (X_MIN_PIN > -1)
  939. SERIAL_PROTOCOLPGM("x_min:");
  940. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  941. #endif
  942. #if (X_MAX_PIN > -1)
  943. SERIAL_PROTOCOLPGM("x_max:");
  944. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  945. #endif
  946. #if (Y_MIN_PIN > -1)
  947. SERIAL_PROTOCOLPGM("y_min:");
  948. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  949. #endif
  950. #if (Y_MAX_PIN > -1)
  951. SERIAL_PROTOCOLPGM("y_max:");
  952. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  953. #endif
  954. #if (Z_MIN_PIN > -1)
  955. SERIAL_PROTOCOLPGM("z_min:");
  956. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  957. #endif
  958. #if (Z_MAX_PIN > -1)
  959. SERIAL_PROTOCOLPGM("z_max:");
  960. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  961. #endif
  962. SERIAL_PROTOCOLLN("");
  963. break;
  964. //TODO: update for all axis, use for loop
  965. case 201: // M201
  966. for(int8_t i=0; i < NUM_AXIS; i++)
  967. {
  968. if(code_seen(axis_codes[i]))
  969. {
  970. max_acceleration_units_per_sq_second[i] = code_value();
  971. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  972. }
  973. }
  974. break;
  975. #if 0 // Not used for Sprinter/grbl gen6
  976. case 202: // M202
  977. for(int8_t i=0; i < NUM_AXIS; i++) {
  978. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  979. }
  980. break;
  981. #endif
  982. case 203: // M203 max feedrate mm/sec
  983. for(int8_t i=0; i < NUM_AXIS; i++) {
  984. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  985. }
  986. break;
  987. case 204: // M204 acclereration S normal moves T filmanent only moves
  988. {
  989. if(code_seen('S')) acceleration = code_value() ;
  990. if(code_seen('T')) retract_acceleration = code_value() ;
  991. }
  992. break;
  993. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  994. {
  995. if(code_seen('S')) minimumfeedrate = code_value();
  996. if(code_seen('T')) mintravelfeedrate = code_value();
  997. if(code_seen('B')) minsegmenttime = code_value() ;
  998. if(code_seen('X')) max_xy_jerk = code_value() ;
  999. if(code_seen('Z')) max_z_jerk = code_value() ;
  1000. }
  1001. break;
  1002. case 206: // M206 additional homeing offset
  1003. for(int8_t i=0; i < 3; i++)
  1004. {
  1005. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1006. }
  1007. break;
  1008. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1009. {
  1010. if(code_seen('S'))
  1011. {
  1012. feedmultiply = code_value() ;
  1013. feedmultiplychanged=true;
  1014. }
  1015. }
  1016. break;
  1017. #ifdef PIDTEMP
  1018. case 301: // M301
  1019. {
  1020. if(code_seen('P')) Kp = code_value();
  1021. if(code_seen('I')) Ki = code_value()*PID_dT;
  1022. if(code_seen('D')) Kd = code_value()/PID_dT;
  1023. #ifdef PID_ADD_EXTRUSION_RATE
  1024. if(code_seen('C')) Kc = code_value();
  1025. #endif
  1026. updatePID();
  1027. SERIAL_PROTOCOL("ok p:");
  1028. SERIAL_PROTOCOL(Kp);
  1029. SERIAL_PROTOCOL(" i:");
  1030. SERIAL_PROTOCOL(Ki/PID_dT);
  1031. SERIAL_PROTOCOL(" d:");
  1032. SERIAL_PROTOCOL(Kd*PID_dT);
  1033. #ifdef PID_ADD_EXTRUSION_RATE
  1034. SERIAL_PROTOCOL(" c:");
  1035. SERIAL_PROTOCOL(Kc*PID_dT);
  1036. #endif
  1037. SERIAL_PROTOCOLLN("");
  1038. }
  1039. break;
  1040. #endif //PIDTEMP
  1041. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1042. {
  1043. #ifdef PHOTOGRAPH_PIN
  1044. #if (PHOTOGRAPH_PIN > -1)
  1045. const uint8_t NUM_PULSES=16;
  1046. const float PULSE_LENGTH=0.01524;
  1047. for(int i=0; i < NUM_PULSES; i++) {
  1048. WRITE(PHOTOGRAPH_PIN, HIGH);
  1049. _delay_ms(PULSE_LENGTH);
  1050. WRITE(PHOTOGRAPH_PIN, LOW);
  1051. _delay_ms(PULSE_LENGTH);
  1052. }
  1053. delay(7.33);
  1054. for(int i=0; i < NUM_PULSES; i++) {
  1055. WRITE(PHOTOGRAPH_PIN, HIGH);
  1056. _delay_ms(PULSE_LENGTH);
  1057. WRITE(PHOTOGRAPH_PIN, LOW);
  1058. _delay_ms(PULSE_LENGTH);
  1059. }
  1060. #endif
  1061. #endif
  1062. }
  1063. break;
  1064. case 302: // finish all moves
  1065. {
  1066. allow_cold_extrudes(true);
  1067. }
  1068. break;
  1069. case 400: // finish all moves
  1070. {
  1071. st_synchronize();
  1072. }
  1073. break;
  1074. case 500: // Store settings in EEPROM
  1075. {
  1076. EEPROM_StoreSettings();
  1077. }
  1078. break;
  1079. case 501: // Read settings from EEPROM
  1080. {
  1081. EEPROM_RetrieveSettings();
  1082. }
  1083. break;
  1084. case 502: // Revert to default settings
  1085. {
  1086. EEPROM_RetrieveSettings(true);
  1087. }
  1088. break;
  1089. case 503: // print settings currently in memory
  1090. {
  1091. EEPROM_printSettings();
  1092. }
  1093. break;
  1094. }
  1095. }
  1096. else if(code_seen('T'))
  1097. {
  1098. tmp_extruder = code_value();
  1099. if(tmp_extruder >= EXTRUDERS) {
  1100. SERIAL_ECHO_START;
  1101. SERIAL_ECHO("T");
  1102. SERIAL_ECHO(tmp_extruder);
  1103. SERIAL_ECHOLN("Invalid extruder");
  1104. }
  1105. else {
  1106. active_extruder = tmp_extruder;
  1107. SERIAL_ECHO_START;
  1108. SERIAL_ECHO("Active Extruder: ");
  1109. SERIAL_PROTOCOLLN((int)active_extruder);
  1110. }
  1111. }
  1112. else
  1113. {
  1114. SERIAL_ECHO_START;
  1115. SERIAL_ECHOPGM("Unknown command:\"");
  1116. SERIAL_ECHO(cmdbuffer[bufindr]);
  1117. SERIAL_ECHOLNPGM("\"");
  1118. }
  1119. ClearToSend();
  1120. }
  1121. void FlushSerialRequestResend()
  1122. {
  1123. //char cmdbuffer[bufindr][100]="Resend:";
  1124. MYSERIAL.flush();
  1125. SERIAL_PROTOCOLPGM("Resend:");
  1126. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1127. ClearToSend();
  1128. }
  1129. void ClearToSend()
  1130. {
  1131. previous_millis_cmd = millis();
  1132. #ifdef SDSUPPORT
  1133. if(fromsd[bufindr])
  1134. return;
  1135. #endif //SDSUPPORT
  1136. SERIAL_PROTOCOLLNPGM("ok");
  1137. }
  1138. void get_coordinates()
  1139. {
  1140. for(int8_t i=0; i < NUM_AXIS; i++) {
  1141. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1142. else destination[i] = current_position[i]; //Are these else lines really needed?
  1143. }
  1144. if(code_seen('F')) {
  1145. next_feedrate = code_value();
  1146. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1147. }
  1148. }
  1149. void get_arc_coordinates()
  1150. {
  1151. get_coordinates();
  1152. if(code_seen('I')) offset[0] = code_value();
  1153. if(code_seen('J')) offset[1] = code_value();
  1154. }
  1155. void prepare_move()
  1156. {
  1157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1158. for(int8_t i=0; i < NUM_AXIS; i++) {
  1159. current_position[i] = destination[i];
  1160. }
  1161. previous_millis_cmd = millis();
  1162. }
  1163. void prepare_arc_move(char isclockwise) {
  1164. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1165. // Trace the arc
  1166. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1167. // As far as the parser is concerned, the position is now == target. In reality the
  1168. // motion control system might still be processing the action and the real tool position
  1169. // in any intermediate location.
  1170. for(int8_t i=0; i < NUM_AXIS; i++) {
  1171. current_position[i] = destination[i];
  1172. }
  1173. previous_millis_cmd = millis();
  1174. }
  1175. void manage_inactivity(byte debug)
  1176. {
  1177. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1178. if(max_inactive_time)
  1179. kill();
  1180. if(stepper_inactive_time) {
  1181. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1182. {
  1183. disable_x();
  1184. disable_y();
  1185. disable_z();
  1186. disable_e0();
  1187. disable_e1();
  1188. disable_e2();
  1189. }
  1190. }
  1191. #ifdef EXTRUDER_RUNOUT_PREVENT
  1192. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1193. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1194. {
  1195. bool oldstatus=READ(E0_ENABLE_PIN);
  1196. enable_e0();
  1197. float oldepos=current_position[E_AXIS];
  1198. float oldedes=destination[E_AXIS];
  1199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1200. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1201. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1202. current_position[E_AXIS]=oldepos;
  1203. destination[E_AXIS]=oldedes;
  1204. plan_set_e_position(oldepos);
  1205. previous_millis_cmd=millis();
  1206. st_synchronize();
  1207. WRITE(E0_ENABLE_PIN,oldstatus);
  1208. }
  1209. #endif
  1210. check_axes_activity();
  1211. }
  1212. void kill()
  1213. {
  1214. cli(); // Stop interrupts
  1215. disable_heater();
  1216. disable_x();
  1217. disable_y();
  1218. disable_z();
  1219. disable_e0();
  1220. disable_e1();
  1221. disable_e2();
  1222. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1223. SERIAL_ERROR_START;
  1224. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  1225. LCD_MESSAGEPGM("KILLED. ");
  1226. suicide();
  1227. while(1); // Wait for reset
  1228. }