My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 185KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extrudemultiply = 100; //100->1 200->2
  193. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  194. bool volumetric_enabled = false;
  195. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  196. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  197. float current_position[NUM_AXIS] = { 0.0 };
  198. float home_offset[3] = { 0 };
  199. #ifdef DELTA
  200. float endstop_adj[3] = { 0 };
  201. #elif defined(Z_DUAL_ENDSTOPS)
  202. float z_endstop_adj = 0;
  203. #endif
  204. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  205. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  206. bool axis_known_position[3] = { false };
  207. // Extruder offset
  208. #if EXTRUDERS > 1
  209. #ifndef EXTRUDER_OFFSET_X
  210. #define EXTRUDER_OFFSET_X 0
  211. #endif
  212. #ifndef EXTRUDER_OFFSET_Y
  213. #define EXTRUDER_OFFSET_Y 0
  214. #endif
  215. #ifndef DUAL_X_CARRIAGE
  216. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  217. #else
  218. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  219. #endif
  220. #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
  221. float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
  222. #endif
  223. uint8_t active_extruder = 0;
  224. int fanSpeed = 0;
  225. #ifdef SERVO_ENDSTOPS
  226. int servo_endstops[] = SERVO_ENDSTOPS;
  227. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  228. #endif
  229. #ifdef BARICUDA
  230. int ValvePressure = 0;
  231. int EtoPPressure = 0;
  232. #endif
  233. #ifdef FWRETRACT
  234. bool autoretract_enabled = false;
  235. bool retracted[EXTRUDERS] = { false };
  236. bool retracted_swap[EXTRUDERS] = { false };
  237. float retract_length = RETRACT_LENGTH;
  238. float retract_length_swap = RETRACT_LENGTH_SWAP;
  239. float retract_feedrate = RETRACT_FEEDRATE;
  240. float retract_zlift = RETRACT_ZLIFT;
  241. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  242. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  243. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  244. #endif // FWRETRACT
  245. #ifdef ULTIPANEL
  246. bool powersupply =
  247. #ifdef PS_DEFAULT_OFF
  248. false
  249. #else
  250. true
  251. #endif
  252. ;
  253. #endif
  254. #ifdef DELTA
  255. float delta[3] = { 0, 0, 0 };
  256. #define SIN_60 0.8660254037844386
  257. #define COS_60 0.5
  258. // these are the default values, can be overriden with M665
  259. float delta_radius = DELTA_RADIUS;
  260. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  261. float delta_tower1_y = -COS_60 * delta_radius;
  262. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  263. float delta_tower2_y = -COS_60 * delta_radius;
  264. float delta_tower3_x = 0; // back middle tower
  265. float delta_tower3_y = delta_radius;
  266. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  267. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  268. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  269. #ifdef ENABLE_AUTO_BED_LEVELING
  270. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  271. #endif
  272. #endif
  273. #ifdef SCARA
  274. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  275. static float delta[3] = { 0, 0, 0 };
  276. #endif
  277. bool cancel_heatup = false;
  278. #ifdef FILAMENT_SENSOR
  279. //Variables for Filament Sensor input
  280. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  281. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  282. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  283. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  284. int delay_index1=0; //index into ring buffer
  285. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  286. float delay_dist=0; //delay distance counter
  287. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  288. #endif
  289. #ifdef FILAMENT_RUNOUT_SENSOR
  290. static bool filrunoutEnqued = false;
  291. #endif
  292. const char errormagic[] PROGMEM = "Error:";
  293. const char echomagic[] PROGMEM = "echo:";
  294. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  295. static float destination[NUM_AXIS] = { 0 };
  296. static float offset[3] = { 0 };
  297. #ifndef DELTA
  298. static bool home_all_axis = true;
  299. #endif
  300. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  301. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  302. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  303. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  304. #ifdef SDSUPPORT
  305. static bool fromsd[BUFSIZE];
  306. #endif
  307. static int bufindr = 0;
  308. static int bufindw = 0;
  309. static int buflen = 0;
  310. static char serial_char;
  311. static int serial_count = 0;
  312. static boolean comment_mode = false;
  313. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  314. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  315. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  316. // Inactivity shutdown
  317. static unsigned long previous_millis_cmd = 0;
  318. static unsigned long max_inactive_time = 0;
  319. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  320. unsigned long starttime = 0; ///< Print job start time
  321. unsigned long stoptime = 0; ///< Print job stop time
  322. static uint8_t tmp_extruder;
  323. bool Stopped = false;
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. bool CooldownNoWait = true;
  328. bool target_direction;
  329. #ifdef CHDK
  330. unsigned long chdkHigh = 0;
  331. boolean chdkActive = false;
  332. #endif
  333. //===========================================================================
  334. //=============================Routines======================================
  335. //===========================================================================
  336. void get_arc_coordinates();
  337. bool setTargetedHotend(int code);
  338. void serial_echopair_P(const char *s_P, float v)
  339. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  340. void serial_echopair_P(const char *s_P, double v)
  341. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  342. void serial_echopair_P(const char *s_P, unsigned long v)
  343. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  344. #ifdef SDSUPPORT
  345. #include "SdFatUtil.h"
  346. int freeMemory() { return SdFatUtil::FreeRam(); }
  347. #else
  348. extern "C" {
  349. extern unsigned int __bss_end;
  350. extern unsigned int __heap_start;
  351. extern void *__brkval;
  352. int freeMemory() {
  353. int free_memory;
  354. if ((int)__brkval == 0)
  355. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  356. else
  357. free_memory = ((int)&free_memory) - ((int)__brkval);
  358. return free_memory;
  359. }
  360. }
  361. #endif //!SDSUPPORT
  362. //Injects the next command from the pending sequence of commands, when possible
  363. //Return false if and only if no command was pending
  364. static bool drain_queued_commands_P()
  365. {
  366. char cmd[30];
  367. if(!queued_commands_P)
  368. return false;
  369. // Get the next 30 chars from the sequence of gcodes to run
  370. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  371. cmd[sizeof(cmd)-1]= 0;
  372. // Look for the end of line, or the end of sequence
  373. size_t i= 0;
  374. char c;
  375. while( (c= cmd[i]) && c!='\n' )
  376. ++i; // look for the end of this gcode command
  377. cmd[i]= 0;
  378. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  379. {
  380. if(c)
  381. queued_commands_P+= i+1; // move to next command
  382. else
  383. queued_commands_P= NULL; // will have no more commands in the sequence
  384. }
  385. return true;
  386. }
  387. //Record one or many commands to run from program memory.
  388. //Aborts the current queue, if any.
  389. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  390. void enquecommands_P(const char* pgcode)
  391. {
  392. queued_commands_P= pgcode;
  393. drain_queued_commands_P(); // first command exectuted asap (when possible)
  394. }
  395. //adds a single command to the main command buffer, from RAM
  396. //that is really done in a non-safe way.
  397. //needs overworking someday
  398. //Returns false if it failed to do so
  399. bool enquecommand(const char *cmd)
  400. {
  401. if(*cmd==';')
  402. return false;
  403. if(buflen >= BUFSIZE)
  404. return false;
  405. //this is dangerous if a mixing of serial and this happens
  406. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_Enqueing);
  409. SERIAL_ECHO(cmdbuffer[bufindw]);
  410. SERIAL_ECHOLNPGM("\"");
  411. bufindw= (bufindw + 1)%BUFSIZE;
  412. buflen += 1;
  413. return true;
  414. }
  415. void setup_killpin()
  416. {
  417. #if defined(KILL_PIN) && KILL_PIN > -1
  418. SET_INPUT(KILL_PIN);
  419. WRITE(KILL_PIN,HIGH);
  420. #endif
  421. }
  422. void setup_filrunoutpin()
  423. {
  424. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  425. pinMode(FILRUNOUT_PIN,INPUT);
  426. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  427. WRITE(FILLRUNOUT_PIN,HIGH);
  428. #endif
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  443. #endif
  444. }
  445. void setup_powerhold()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. OUT_WRITE(SUICIDE_PIN, HIGH);
  449. #endif
  450. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  451. #if defined(PS_DEFAULT_OFF)
  452. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  453. #else
  454. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  455. #endif
  456. #endif
  457. }
  458. void suicide()
  459. {
  460. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  461. OUT_WRITE(SUICIDE_PIN, LOW);
  462. #endif
  463. }
  464. void servo_init()
  465. {
  466. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  467. servos[0].attach(SERVO0_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  470. servos[1].attach(SERVO1_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  473. servos[2].attach(SERVO2_PIN);
  474. #endif
  475. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  476. servos[3].attach(SERVO3_PIN);
  477. #endif
  478. #if (NUM_SERVOS >= 5)
  479. #error "TODO: enter initalisation code for more servos"
  480. #endif
  481. // Set position of Servo Endstops that are defined
  482. #ifdef SERVO_ENDSTOPS
  483. for(int8_t i = 0; i < 3; i++)
  484. {
  485. if(servo_endstops[i] > -1) {
  486. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  487. }
  488. }
  489. #endif
  490. #if SERVO_LEVELING
  491. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  492. servos[servo_endstops[Z_AXIS]].detach();
  493. #endif
  494. }
  495. void setup()
  496. {
  497. setup_killpin();
  498. setup_filrunoutpin();
  499. setup_powerhold();
  500. MYSERIAL.begin(BAUDRATE);
  501. SERIAL_PROTOCOLLNPGM("start");
  502. SERIAL_ECHO_START;
  503. // Check startup - does nothing if bootloader sets MCUSR to 0
  504. byte mcu = MCUSR;
  505. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  506. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  507. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  508. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  509. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  510. MCUSR=0;
  511. SERIAL_ECHOPGM(MSG_MARLIN);
  512. SERIAL_ECHOLNPGM(STRING_VERSION);
  513. #ifdef STRING_VERSION_CONFIG_H
  514. #ifdef STRING_CONFIG_H_AUTHOR
  515. SERIAL_ECHO_START;
  516. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  517. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  518. SERIAL_ECHOPGM(MSG_AUTHOR);
  519. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  520. SERIAL_ECHOPGM("Compiled: ");
  521. SERIAL_ECHOLNPGM(__DATE__);
  522. #endif // STRING_CONFIG_H_AUTHOR
  523. #endif // STRING_VERSION_CONFIG_H
  524. SERIAL_ECHO_START;
  525. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  526. SERIAL_ECHO(freeMemory());
  527. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  528. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  529. #ifdef SDSUPPORT
  530. for(int8_t i = 0; i < BUFSIZE; i++)
  531. {
  532. fromsd[i] = false;
  533. }
  534. #endif //!SDSUPPORT
  535. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  536. Config_RetrieveSettings();
  537. tp_init(); // Initialize temperature loop
  538. plan_init(); // Initialize planner;
  539. watchdog_init();
  540. st_init(); // Initialize stepper, this enables interrupts!
  541. setup_photpin();
  542. servo_init();
  543. lcd_init();
  544. _delay_ms(1000); // wait 1sec to display the splash screen
  545. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  546. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  547. #endif
  548. #ifdef DIGIPOT_I2C
  549. digipot_i2c_init();
  550. #endif
  551. #ifdef Z_PROBE_SLED
  552. pinMode(SERVO0_PIN, OUTPUT);
  553. digitalWrite(SERVO0_PIN, LOW); // turn it off
  554. #endif // Z_PROBE_SLED
  555. setup_homepin();
  556. #ifdef STAT_LED_RED
  557. pinMode(STAT_LED_RED, OUTPUT);
  558. digitalWrite(STAT_LED_RED, LOW); // turn it off
  559. #endif
  560. #ifdef STAT_LED_BLUE
  561. pinMode(STAT_LED_BLUE, OUTPUT);
  562. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  563. #endif
  564. }
  565. void loop()
  566. {
  567. if(buflen < (BUFSIZE-1))
  568. get_command();
  569. #ifdef SDSUPPORT
  570. card.checkautostart(false);
  571. #endif
  572. if(buflen)
  573. {
  574. #ifdef SDSUPPORT
  575. if(card.saving)
  576. {
  577. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  578. {
  579. card.write_command(cmdbuffer[bufindr]);
  580. if(card.logging)
  581. {
  582. process_commands();
  583. }
  584. else
  585. {
  586. SERIAL_PROTOCOLLNPGM(MSG_OK);
  587. }
  588. }
  589. else
  590. {
  591. card.closefile();
  592. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  593. }
  594. }
  595. else
  596. {
  597. process_commands();
  598. }
  599. #else
  600. process_commands();
  601. #endif //SDSUPPORT
  602. buflen = (buflen-1);
  603. bufindr = (bufindr + 1)%BUFSIZE;
  604. }
  605. //check heater every n milliseconds
  606. manage_heater();
  607. manage_inactivity();
  608. checkHitEndstops();
  609. lcd_update();
  610. }
  611. void get_command()
  612. {
  613. if(drain_queued_commands_P()) // priority is given to non-serial commands
  614. return;
  615. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  616. serial_char = MYSERIAL.read();
  617. if(serial_char == '\n' ||
  618. serial_char == '\r' ||
  619. serial_count >= (MAX_CMD_SIZE - 1) )
  620. {
  621. // end of line == end of comment
  622. comment_mode = false;
  623. if(!serial_count) {
  624. // short cut for empty lines
  625. return;
  626. }
  627. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  628. #ifdef SDSUPPORT
  629. fromsd[bufindw] = false;
  630. #endif //!SDSUPPORT
  631. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  632. {
  633. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  634. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  635. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  636. SERIAL_ERROR_START;
  637. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  638. SERIAL_ERRORLN(gcode_LastN);
  639. //Serial.println(gcode_N);
  640. FlushSerialRequestResend();
  641. serial_count = 0;
  642. return;
  643. }
  644. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  645. {
  646. byte checksum = 0;
  647. byte count = 0;
  648. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  649. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  650. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. FlushSerialRequestResend();
  655. serial_count = 0;
  656. return;
  657. }
  658. //if no errors, continue parsing
  659. }
  660. else
  661. {
  662. SERIAL_ERROR_START;
  663. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  664. SERIAL_ERRORLN(gcode_LastN);
  665. FlushSerialRequestResend();
  666. serial_count = 0;
  667. return;
  668. }
  669. gcode_LastN = gcode_N;
  670. //if no errors, continue parsing
  671. }
  672. else // if we don't receive 'N' but still see '*'
  673. {
  674. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  675. {
  676. SERIAL_ERROR_START;
  677. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  678. SERIAL_ERRORLN(gcode_LastN);
  679. serial_count = 0;
  680. return;
  681. }
  682. }
  683. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  684. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  685. switch(strtol(strchr_pointer + 1, NULL, 10)){
  686. case 0:
  687. case 1:
  688. case 2:
  689. case 3:
  690. if (Stopped == true) {
  691. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  692. LCD_MESSAGEPGM(MSG_STOPPED);
  693. }
  694. break;
  695. default:
  696. break;
  697. }
  698. }
  699. //If command was e-stop process now
  700. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  701. kill();
  702. bufindw = (bufindw + 1)%BUFSIZE;
  703. buflen += 1;
  704. serial_count = 0; //clear buffer
  705. }
  706. else if(serial_char == '\\') { //Handle escapes
  707. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  708. // if we have one more character, copy it over
  709. serial_char = MYSERIAL.read();
  710. cmdbuffer[bufindw][serial_count++] = serial_char;
  711. }
  712. //otherwise do nothing
  713. }
  714. else { // its not a newline, carriage return or escape char
  715. if(serial_char == ';') comment_mode = true;
  716. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  717. }
  718. }
  719. #ifdef SDSUPPORT
  720. if(!card.sdprinting || serial_count!=0){
  721. return;
  722. }
  723. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  724. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  725. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  726. static bool stop_buffering=false;
  727. if(buflen==0) stop_buffering=false;
  728. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  729. int16_t n=card.get();
  730. serial_char = (char)n;
  731. if(serial_char == '\n' ||
  732. serial_char == '\r' ||
  733. (serial_char == '#' && comment_mode == false) ||
  734. (serial_char == ':' && comment_mode == false) ||
  735. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  736. {
  737. if(card.eof()){
  738. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  739. stoptime=millis();
  740. char time[30];
  741. unsigned long t=(stoptime-starttime)/1000;
  742. int hours, minutes;
  743. minutes=(t/60)%60;
  744. hours=t/60/60;
  745. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  746. SERIAL_ECHO_START;
  747. SERIAL_ECHOLN(time);
  748. lcd_setstatus(time);
  749. card.printingHasFinished();
  750. card.checkautostart(true);
  751. }
  752. if(serial_char=='#')
  753. stop_buffering=true;
  754. if(!serial_count)
  755. {
  756. comment_mode = false; //for new command
  757. return; //if empty line
  758. }
  759. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  760. // if(!comment_mode){
  761. fromsd[bufindw] = true;
  762. buflen += 1;
  763. bufindw = (bufindw + 1)%BUFSIZE;
  764. // }
  765. comment_mode = false; //for new command
  766. serial_count = 0; //clear buffer
  767. }
  768. else
  769. {
  770. if(serial_char == ';') comment_mode = true;
  771. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  772. }
  773. }
  774. #endif //SDSUPPORT
  775. }
  776. float code_value() {
  777. float ret;
  778. char *e = strchr(strchr_pointer, 'E');
  779. if (e) {
  780. *e = 0;
  781. ret = strtod(strchr_pointer+1, NULL);
  782. *e = 'E';
  783. }
  784. else
  785. ret = strtod(strchr_pointer+1, NULL);
  786. return ret;
  787. }
  788. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  789. bool code_seen(char code) {
  790. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  791. return (strchr_pointer != NULL); //Return True if a character was found
  792. }
  793. #define DEFINE_PGM_READ_ANY(type, reader) \
  794. static inline type pgm_read_any(const type *p) \
  795. { return pgm_read_##reader##_near(p); }
  796. DEFINE_PGM_READ_ANY(float, float);
  797. DEFINE_PGM_READ_ANY(signed char, byte);
  798. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  799. static const PROGMEM type array##_P[3] = \
  800. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  801. static inline type array(int axis) \
  802. { return pgm_read_any(&array##_P[axis]); }
  803. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  806. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  807. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  808. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  809. #ifdef DUAL_X_CARRIAGE
  810. #define DXC_FULL_CONTROL_MODE 0
  811. #define DXC_AUTO_PARK_MODE 1
  812. #define DXC_DUPLICATION_MODE 2
  813. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  814. static float x_home_pos(int extruder) {
  815. if (extruder == 0)
  816. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  817. else
  818. // In dual carriage mode the extruder offset provides an override of the
  819. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  820. // This allow soft recalibration of the second extruder offset position without firmware reflash
  821. // (through the M218 command).
  822. return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
  823. }
  824. static int x_home_dir(int extruder) {
  825. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  826. }
  827. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  828. static bool active_extruder_parked = false; // used in mode 1 & 2
  829. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  830. static unsigned long delayed_move_time = 0; // used in mode 1
  831. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  832. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  833. bool extruder_duplication_enabled = false; // used in mode 2
  834. #endif //DUAL_X_CARRIAGE
  835. static void axis_is_at_home(int axis) {
  836. #ifdef DUAL_X_CARRIAGE
  837. if (axis == X_AXIS) {
  838. if (active_extruder != 0) {
  839. current_position[X_AXIS] = x_home_pos(active_extruder);
  840. min_pos[X_AXIS] = X2_MIN_POS;
  841. max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
  842. return;
  843. }
  844. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  848. max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
  849. return;
  850. }
  851. }
  852. #endif
  853. #ifdef SCARA
  854. float homeposition[3];
  855. if (axis < 2) {
  856. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  857. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  858. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  859. // Works out real Homeposition angles using inverse kinematics,
  860. // and calculates homing offset using forward kinematics
  861. calculate_delta(homeposition);
  862. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  863. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  864. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  865. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  868. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  869. calculate_SCARA_forward_Transform(delta);
  870. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  871. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  872. current_position[axis] = delta[axis];
  873. // SCARA home positions are based on configuration since the actual limits are determined by the
  874. // inverse kinematic transform.
  875. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  877. }
  878. else {
  879. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  880. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  881. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  882. }
  883. #else
  884. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  885. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  886. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  887. #endif
  888. }
  889. /**
  890. * Shorthand to tell the planner our current position (in mm).
  891. */
  892. inline void sync_plan_position() {
  893. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  894. }
  895. #ifdef ENABLE_AUTO_BED_LEVELING
  896. #ifdef AUTO_BED_LEVELING_GRID
  897. #ifndef DELTA
  898. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  899. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  900. planeNormal.debug("planeNormal");
  901. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  902. //bedLevel.debug("bedLevel");
  903. //plan_bed_level_matrix.debug("bed level before");
  904. //vector_3 uncorrected_position = plan_get_position_mm();
  905. //uncorrected_position.debug("position before");
  906. vector_3 corrected_position = plan_get_position();
  907. //corrected_position.debug("position after");
  908. current_position[X_AXIS] = corrected_position.x;
  909. current_position[Y_AXIS] = corrected_position.y;
  910. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  911. sync_plan_position();
  912. }
  913. #endif
  914. #else // not AUTO_BED_LEVELING_GRID
  915. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  916. plan_bed_level_matrix.set_to_identity();
  917. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  918. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  919. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  920. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  921. if (planeNormal.z < 0) {
  922. planeNormal.x = -planeNormal.x;
  923. planeNormal.y = -planeNormal.y;
  924. planeNormal.z = -planeNormal.z;
  925. }
  926. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  927. vector_3 corrected_position = plan_get_position();
  928. current_position[X_AXIS] = corrected_position.x;
  929. current_position[Y_AXIS] = corrected_position.y;
  930. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  931. sync_plan_position();
  932. }
  933. #endif // AUTO_BED_LEVELING_GRID
  934. static void run_z_probe() {
  935. #ifdef DELTA
  936. float start_z = current_position[Z_AXIS];
  937. long start_steps = st_get_position(Z_AXIS);
  938. // move down slowly until you find the bed
  939. feedrate = homing_feedrate[Z_AXIS] / 4;
  940. destination[Z_AXIS] = -10;
  941. prepare_move_raw();
  942. st_synchronize();
  943. endstops_hit_on_purpose();
  944. // we have to let the planner know where we are right now as it is not where we said to go.
  945. long stop_steps = st_get_position(Z_AXIS);
  946. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  947. current_position[Z_AXIS] = mm;
  948. calculate_delta(current_position);
  949. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  950. #else
  951. plan_bed_level_matrix.set_to_identity();
  952. feedrate = homing_feedrate[Z_AXIS];
  953. // move down until you find the bed
  954. float zPosition = -10;
  955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  956. st_synchronize();
  957. // we have to let the planner know where we are right now as it is not where we said to go.
  958. zPosition = st_get_position_mm(Z_AXIS);
  959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  960. // move up the retract distance
  961. zPosition += home_retract_mm(Z_AXIS);
  962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  963. st_synchronize();
  964. endstops_hit_on_purpose();
  965. // move back down slowly to find bed
  966. if (homing_bump_divisor[Z_AXIS] >= 1) {
  967. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  968. }
  969. else {
  970. feedrate = homing_feedrate[Z_AXIS]/10;
  971. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  972. }
  973. zPosition -= home_retract_mm(Z_AXIS) * 2;
  974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  975. st_synchronize();
  976. endstops_hit_on_purpose();
  977. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  978. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  979. sync_plan_position();
  980. #endif
  981. }
  982. static void do_blocking_move_to(float x, float y, float z) {
  983. float oldFeedRate = feedrate;
  984. #ifdef DELTA
  985. feedrate = XY_TRAVEL_SPEED;
  986. destination[X_AXIS] = x;
  987. destination[Y_AXIS] = y;
  988. destination[Z_AXIS] = z;
  989. prepare_move_raw();
  990. st_synchronize();
  991. #else
  992. feedrate = homing_feedrate[Z_AXIS];
  993. current_position[Z_AXIS] = z;
  994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  995. st_synchronize();
  996. feedrate = xy_travel_speed;
  997. current_position[X_AXIS] = x;
  998. current_position[Y_AXIS] = y;
  999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1000. st_synchronize();
  1001. #endif
  1002. feedrate = oldFeedRate;
  1003. }
  1004. static void setup_for_endstop_move() {
  1005. saved_feedrate = feedrate;
  1006. saved_feedmultiply = feedmultiply;
  1007. feedmultiply = 100;
  1008. previous_millis_cmd = millis();
  1009. enable_endstops(true);
  1010. }
  1011. static void clean_up_after_endstop_move() {
  1012. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1013. enable_endstops(false);
  1014. #endif
  1015. feedrate = saved_feedrate;
  1016. feedmultiply = saved_feedmultiply;
  1017. previous_millis_cmd = millis();
  1018. }
  1019. static void engage_z_probe() {
  1020. // Engage Z Servo endstop if enabled
  1021. #ifdef SERVO_ENDSTOPS
  1022. if (servo_endstops[Z_AXIS] > -1) {
  1023. #if SERVO_LEVELING
  1024. servos[servo_endstops[Z_AXIS]].attach(0);
  1025. #endif
  1026. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1027. #if SERVO_LEVELING
  1028. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1029. servos[servo_endstops[Z_AXIS]].detach();
  1030. #endif
  1031. }
  1032. #elif defined(Z_PROBE_ALLEN_KEY)
  1033. feedrate = homing_feedrate[X_AXIS];
  1034. // Move to the start position to initiate deployment
  1035. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1036. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1037. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1038. prepare_move_raw();
  1039. // Home X to touch the belt
  1040. feedrate = homing_feedrate[X_AXIS]/10;
  1041. destination[X_AXIS] = 0;
  1042. prepare_move_raw();
  1043. // Home Y for safety
  1044. feedrate = homing_feedrate[X_AXIS]/2;
  1045. destination[Y_AXIS] = 0;
  1046. prepare_move_raw();
  1047. st_synchronize();
  1048. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1049. if (z_min_endstop)
  1050. {
  1051. if (!Stopped)
  1052. {
  1053. SERIAL_ERROR_START;
  1054. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1055. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1056. }
  1057. Stop();
  1058. }
  1059. #endif
  1060. }
  1061. static void retract_z_probe() {
  1062. // Retract Z Servo endstop if enabled
  1063. #ifdef SERVO_ENDSTOPS
  1064. if (servo_endstops[Z_AXIS] > -1)
  1065. {
  1066. #if Z_RAISE_AFTER_PROBING > 0
  1067. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1068. st_synchronize();
  1069. #endif
  1070. #if SERVO_LEVELING
  1071. servos[servo_endstops[Z_AXIS]].attach(0);
  1072. #endif
  1073. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1074. #if SERVO_LEVELING
  1075. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1076. servos[servo_endstops[Z_AXIS]].detach();
  1077. #endif
  1078. }
  1079. #elif defined(Z_PROBE_ALLEN_KEY)
  1080. // Move up for safety
  1081. feedrate = homing_feedrate[X_AXIS];
  1082. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1083. prepare_move_raw();
  1084. // Move to the start position to initiate retraction
  1085. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1086. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1087. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1088. prepare_move_raw();
  1089. // Move the nozzle down to push the probe into retracted position
  1090. feedrate = homing_feedrate[Z_AXIS]/10;
  1091. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1092. prepare_move_raw();
  1093. // Move up for safety
  1094. feedrate = homing_feedrate[Z_AXIS]/2;
  1095. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1096. prepare_move_raw();
  1097. // Home XY for safety
  1098. feedrate = homing_feedrate[X_AXIS]/2;
  1099. destination[X_AXIS] = 0;
  1100. destination[Y_AXIS] = 0;
  1101. prepare_move_raw();
  1102. st_synchronize();
  1103. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1104. if (!z_min_endstop)
  1105. {
  1106. if (!Stopped)
  1107. {
  1108. SERIAL_ERROR_START;
  1109. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1110. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1111. }
  1112. Stop();
  1113. }
  1114. #endif
  1115. }
  1116. enum ProbeAction {
  1117. ProbeStay = 0,
  1118. ProbeEngage = BIT(0),
  1119. ProbeRetract = BIT(1),
  1120. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1121. };
  1122. /// Probe bed height at position (x,y), returns the measured z value
  1123. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1124. // move to right place
  1125. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1126. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1127. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1128. if (retract_action & ProbeEngage) engage_z_probe();
  1129. #endif
  1130. run_z_probe();
  1131. float measured_z = current_position[Z_AXIS];
  1132. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1133. if (retract_action & ProbeRetract) retract_z_probe();
  1134. #endif
  1135. if (verbose_level > 2) {
  1136. SERIAL_PROTOCOLPGM(MSG_BED);
  1137. SERIAL_PROTOCOLPGM(" X: ");
  1138. SERIAL_PROTOCOL_F(x, 3);
  1139. SERIAL_PROTOCOLPGM(" Y: ");
  1140. SERIAL_PROTOCOL_F(y, 3);
  1141. SERIAL_PROTOCOLPGM(" Z: ");
  1142. SERIAL_PROTOCOL_F(measured_z, 3);
  1143. SERIAL_EOL;
  1144. }
  1145. return measured_z;
  1146. }
  1147. #ifdef DELTA
  1148. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1149. if (bed_level[x][y] != 0.0) {
  1150. return; // Don't overwrite good values.
  1151. }
  1152. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1153. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1154. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1155. float median = c; // Median is robust (ignores outliers).
  1156. if (a < b) {
  1157. if (b < c) median = b;
  1158. if (c < a) median = a;
  1159. } else { // b <= a
  1160. if (c < b) median = b;
  1161. if (a < c) median = a;
  1162. }
  1163. bed_level[x][y] = median;
  1164. }
  1165. // Fill in the unprobed points (corners of circular print surface)
  1166. // using linear extrapolation, away from the center.
  1167. static void extrapolate_unprobed_bed_level() {
  1168. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1169. for (int y = 0; y <= half; y++) {
  1170. for (int x = 0; x <= half; x++) {
  1171. if (x + y < 3) continue;
  1172. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1173. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1174. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1175. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1176. }
  1177. }
  1178. }
  1179. // Print calibration results for plotting or manual frame adjustment.
  1180. static void print_bed_level() {
  1181. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1182. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1183. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1184. SERIAL_PROTOCOLPGM(" ");
  1185. }
  1186. SERIAL_ECHOLN("");
  1187. }
  1188. }
  1189. // Reset calibration results to zero.
  1190. void reset_bed_level() {
  1191. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1192. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1193. bed_level[x][y] = 0.0;
  1194. }
  1195. }
  1196. }
  1197. #endif // DELTA
  1198. #endif // ENABLE_AUTO_BED_LEVELING
  1199. static void homeaxis(int axis) {
  1200. #define HOMEAXIS_DO(LETTER) \
  1201. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1202. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1203. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1204. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1205. 0) {
  1206. int axis_home_dir = home_dir(axis);
  1207. #ifdef DUAL_X_CARRIAGE
  1208. if (axis == X_AXIS)
  1209. axis_home_dir = x_home_dir(active_extruder);
  1210. #endif
  1211. current_position[axis] = 0;
  1212. sync_plan_position();
  1213. #ifndef Z_PROBE_SLED
  1214. // Engage Servo endstop if enabled
  1215. #ifdef SERVO_ENDSTOPS
  1216. #if SERVO_LEVELING
  1217. if (axis==Z_AXIS) {
  1218. engage_z_probe();
  1219. }
  1220. else
  1221. #endif
  1222. if (servo_endstops[axis] > -1) {
  1223. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1224. }
  1225. #endif
  1226. #endif // Z_PROBE_SLED
  1227. #ifdef Z_DUAL_ENDSTOPS
  1228. if (axis==Z_AXIS) In_Homing_Process(true);
  1229. #endif
  1230. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1231. feedrate = homing_feedrate[axis];
  1232. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1233. st_synchronize();
  1234. current_position[axis] = 0;
  1235. sync_plan_position();
  1236. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1237. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1238. st_synchronize();
  1239. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1240. if (homing_bump_divisor[axis] >= 1)
  1241. {
  1242. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1243. }
  1244. else
  1245. {
  1246. feedrate = homing_feedrate[axis]/10;
  1247. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1248. }
  1249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1250. st_synchronize();
  1251. #ifdef Z_DUAL_ENDSTOPS
  1252. if (axis==Z_AXIS)
  1253. {
  1254. feedrate = homing_feedrate[axis];
  1255. sync_plan_position();
  1256. if (axis_home_dir > 0)
  1257. {
  1258. destination[axis] = (-1) * fabs(z_endstop_adj);
  1259. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1260. } else {
  1261. destination[axis] = fabs(z_endstop_adj);
  1262. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1263. }
  1264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1265. st_synchronize();
  1266. Lock_z_motor(false);
  1267. Lock_z2_motor(false);
  1268. In_Homing_Process(false);
  1269. }
  1270. #endif
  1271. #ifdef DELTA
  1272. // retrace by the amount specified in endstop_adj
  1273. if (endstop_adj[axis] * axis_home_dir < 0) {
  1274. sync_plan_position();
  1275. destination[axis] = endstop_adj[axis];
  1276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. }
  1279. #endif
  1280. axis_is_at_home(axis);
  1281. destination[axis] = current_position[axis];
  1282. feedrate = 0.0;
  1283. endstops_hit_on_purpose();
  1284. axis_known_position[axis] = true;
  1285. // Retract Servo endstop if enabled
  1286. #ifdef SERVO_ENDSTOPS
  1287. if (servo_endstops[axis] > -1) {
  1288. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1289. }
  1290. #endif
  1291. #if SERVO_LEVELING
  1292. #ifndef Z_PROBE_SLED
  1293. if (axis==Z_AXIS) retract_z_probe();
  1294. #endif
  1295. #endif
  1296. }
  1297. }
  1298. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1299. void refresh_cmd_timeout(void)
  1300. {
  1301. previous_millis_cmd = millis();
  1302. }
  1303. #ifdef FWRETRACT
  1304. void retract(bool retracting, bool swapretract = false) {
  1305. if(retracting && !retracted[active_extruder]) {
  1306. destination[X_AXIS]=current_position[X_AXIS];
  1307. destination[Y_AXIS]=current_position[Y_AXIS];
  1308. destination[Z_AXIS]=current_position[Z_AXIS];
  1309. destination[E_AXIS]=current_position[E_AXIS];
  1310. if (swapretract) {
  1311. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1312. } else {
  1313. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1314. }
  1315. plan_set_e_position(current_position[E_AXIS]);
  1316. float oldFeedrate = feedrate;
  1317. feedrate=retract_feedrate*60;
  1318. retracted[active_extruder]=true;
  1319. prepare_move();
  1320. if(retract_zlift > 0.01) {
  1321. current_position[Z_AXIS]-=retract_zlift;
  1322. #ifdef DELTA
  1323. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1324. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1325. #else
  1326. sync_plan_position();
  1327. #endif
  1328. prepare_move();
  1329. }
  1330. feedrate = oldFeedrate;
  1331. } else if(!retracting && retracted[active_extruder]) {
  1332. destination[X_AXIS]=current_position[X_AXIS];
  1333. destination[Y_AXIS]=current_position[Y_AXIS];
  1334. destination[Z_AXIS]=current_position[Z_AXIS];
  1335. destination[E_AXIS]=current_position[E_AXIS];
  1336. if(retract_zlift > 0.01) {
  1337. current_position[Z_AXIS]+=retract_zlift;
  1338. #ifdef DELTA
  1339. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1340. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1341. #else
  1342. sync_plan_position();
  1343. #endif
  1344. //prepare_move();
  1345. }
  1346. if (swapretract) {
  1347. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1348. } else {
  1349. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1350. }
  1351. plan_set_e_position(current_position[E_AXIS]);
  1352. float oldFeedrate = feedrate;
  1353. feedrate=retract_recover_feedrate*60;
  1354. retracted[active_extruder]=false;
  1355. prepare_move();
  1356. feedrate = oldFeedrate;
  1357. }
  1358. } //retract
  1359. #endif //FWRETRACT
  1360. #ifdef Z_PROBE_SLED
  1361. #ifndef SLED_DOCKING_OFFSET
  1362. #define SLED_DOCKING_OFFSET 0
  1363. #endif
  1364. //
  1365. // Method to dock/undock a sled designed by Charles Bell.
  1366. //
  1367. // dock[in] If true, move to MAX_X and engage the electromagnet
  1368. // offset[in] The additional distance to move to adjust docking location
  1369. //
  1370. static void dock_sled(bool dock, int offset=0) {
  1371. int z_loc;
  1372. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1373. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1374. SERIAL_ECHO_START;
  1375. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1376. return;
  1377. }
  1378. if (dock) {
  1379. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1380. current_position[Y_AXIS],
  1381. current_position[Z_AXIS]);
  1382. // turn off magnet
  1383. digitalWrite(SERVO0_PIN, LOW);
  1384. } else {
  1385. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1386. z_loc = Z_RAISE_BEFORE_PROBING;
  1387. else
  1388. z_loc = current_position[Z_AXIS];
  1389. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1390. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1391. // turn on magnet
  1392. digitalWrite(SERVO0_PIN, HIGH);
  1393. }
  1394. }
  1395. #endif
  1396. /**
  1397. *
  1398. * G-Code Handler functions
  1399. *
  1400. */
  1401. /**
  1402. * G0, G1: Coordinated movement of X Y Z E axes
  1403. */
  1404. inline void gcode_G0_G1() {
  1405. if (!Stopped) {
  1406. get_coordinates(); // For X Y Z E F
  1407. #ifdef FWRETRACT
  1408. if (autoretract_enabled)
  1409. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1410. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1411. // Is this move an attempt to retract or recover?
  1412. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1413. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1414. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1415. retract(!retracted[active_extruder]);
  1416. return;
  1417. }
  1418. }
  1419. #endif //FWRETRACT
  1420. prepare_move();
  1421. //ClearToSend();
  1422. }
  1423. }
  1424. /**
  1425. * G2: Clockwise Arc
  1426. * G3: Counterclockwise Arc
  1427. */
  1428. inline void gcode_G2_G3(bool clockwise) {
  1429. if (!Stopped) {
  1430. get_arc_coordinates();
  1431. prepare_arc_move(clockwise);
  1432. }
  1433. }
  1434. /**
  1435. * G4: Dwell S<seconds> or P<milliseconds>
  1436. */
  1437. inline void gcode_G4() {
  1438. unsigned long codenum=0;
  1439. LCD_MESSAGEPGM(MSG_DWELL);
  1440. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1441. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1442. st_synchronize();
  1443. previous_millis_cmd = millis();
  1444. codenum += previous_millis_cmd; // keep track of when we started waiting
  1445. while(millis() < codenum) {
  1446. manage_heater();
  1447. manage_inactivity();
  1448. lcd_update();
  1449. }
  1450. }
  1451. #ifdef FWRETRACT
  1452. /**
  1453. * G10 - Retract filament according to settings of M207
  1454. * G11 - Recover filament according to settings of M208
  1455. */
  1456. inline void gcode_G10_G11(bool doRetract=false) {
  1457. #if EXTRUDERS > 1
  1458. if (doRetract) {
  1459. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1460. }
  1461. #endif
  1462. retract(doRetract
  1463. #if EXTRUDERS > 1
  1464. , retracted_swap[active_extruder]
  1465. #endif
  1466. );
  1467. }
  1468. #endif //FWRETRACT
  1469. /**
  1470. * G28: Home all axes according to settings
  1471. *
  1472. * Parameters
  1473. *
  1474. * None Home to all axes with no parameters.
  1475. * With QUICK_HOME enabled XY will home together, then Z.
  1476. *
  1477. * Cartesian parameters
  1478. *
  1479. * X Home to the X endstop
  1480. * Y Home to the Y endstop
  1481. * Z Home to the Z endstop
  1482. *
  1483. * If numbers are included with XYZ set the position as with G92
  1484. * Currently adds the home_offset, which may be wrong and removed soon.
  1485. *
  1486. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1487. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1488. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1489. */
  1490. inline void gcode_G28() {
  1491. #ifdef ENABLE_AUTO_BED_LEVELING
  1492. #ifdef DELTA
  1493. reset_bed_level();
  1494. #else
  1495. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1496. #endif
  1497. #endif
  1498. #if defined(MESH_BED_LEVELING)
  1499. uint8_t mbl_was_active = mbl.active;
  1500. mbl.active = 0;
  1501. #endif // MESH_BED_LEVELING
  1502. saved_feedrate = feedrate;
  1503. saved_feedmultiply = feedmultiply;
  1504. feedmultiply = 100;
  1505. previous_millis_cmd = millis();
  1506. enable_endstops(true);
  1507. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1508. feedrate = 0.0;
  1509. #ifdef DELTA
  1510. // A delta can only safely home all axis at the same time
  1511. // all axis have to home at the same time
  1512. // Move all carriages up together until the first endstop is hit.
  1513. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1514. sync_plan_position();
  1515. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1516. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. endstops_hit_on_purpose();
  1520. // Destination reached
  1521. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1522. // take care of back off and rehome now we are all at the top
  1523. HOMEAXIS(X);
  1524. HOMEAXIS(Y);
  1525. HOMEAXIS(Z);
  1526. calculate_delta(current_position);
  1527. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1528. #else // NOT DELTA
  1529. bool homeX = code_seen(axis_codes[X_AXIS]),
  1530. homeY = code_seen(axis_codes[Y_AXIS]),
  1531. homeZ = code_seen(axis_codes[Z_AXIS]);
  1532. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1533. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1534. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1535. #endif
  1536. #ifdef QUICK_HOME
  1537. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1538. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1539. #ifdef DUAL_X_CARRIAGE
  1540. int x_axis_home_dir = x_home_dir(active_extruder);
  1541. extruder_duplication_enabled = false;
  1542. #else
  1543. int x_axis_home_dir = home_dir(X_AXIS);
  1544. #endif
  1545. sync_plan_position();
  1546. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1547. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1548. feedrate = homing_feedrate[X_AXIS];
  1549. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1550. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1551. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1552. } else {
  1553. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1554. }
  1555. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1556. st_synchronize();
  1557. axis_is_at_home(X_AXIS);
  1558. axis_is_at_home(Y_AXIS);
  1559. sync_plan_position();
  1560. destination[X_AXIS] = current_position[X_AXIS];
  1561. destination[Y_AXIS] = current_position[Y_AXIS];
  1562. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1563. feedrate = 0.0;
  1564. st_synchronize();
  1565. endstops_hit_on_purpose();
  1566. current_position[X_AXIS] = destination[X_AXIS];
  1567. current_position[Y_AXIS] = destination[Y_AXIS];
  1568. #ifndef SCARA
  1569. current_position[Z_AXIS] = destination[Z_AXIS];
  1570. #endif
  1571. }
  1572. #endif //QUICK_HOME
  1573. // Home X
  1574. if (home_all_axis || homeX) {
  1575. #ifdef DUAL_X_CARRIAGE
  1576. int tmp_extruder = active_extruder;
  1577. extruder_duplication_enabled = false;
  1578. active_extruder = !active_extruder;
  1579. HOMEAXIS(X);
  1580. inactive_extruder_x_pos = current_position[X_AXIS];
  1581. active_extruder = tmp_extruder;
  1582. HOMEAXIS(X);
  1583. // reset state used by the different modes
  1584. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1585. delayed_move_time = 0;
  1586. active_extruder_parked = true;
  1587. #else
  1588. HOMEAXIS(X);
  1589. #endif
  1590. }
  1591. // Home Y
  1592. if (home_all_axis || homeY) HOMEAXIS(Y);
  1593. // Set the X position, if included
  1594. // Adds the home_offset as well, which may be wrong
  1595. if (code_seen(axis_codes[X_AXIS])) {
  1596. float v = code_value();
  1597. if (v) current_position[X_AXIS] = v
  1598. #ifndef SCARA
  1599. + home_offset[X_AXIS]
  1600. #endif
  1601. ;
  1602. }
  1603. // Set the Y position, if included
  1604. // Adds the home_offset as well, which may be wrong
  1605. if (code_seen(axis_codes[Y_AXIS])) {
  1606. float v = code_value();
  1607. if (v) current_position[Y_AXIS] = v
  1608. #ifndef SCARA
  1609. + home_offset[Y_AXIS]
  1610. #endif
  1611. ;
  1612. }
  1613. // Home Z last if homing towards the bed
  1614. #if Z_HOME_DIR < 0
  1615. #ifndef Z_SAFE_HOMING
  1616. if (home_all_axis || homeZ) {
  1617. // Raise Z before homing Z? Shouldn't this happen before homing X or Y?
  1618. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1619. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1620. feedrate = max_feedrate[Z_AXIS];
  1621. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1622. st_synchronize();
  1623. #endif
  1624. HOMEAXIS(Z);
  1625. }
  1626. #else // Z_SAFE_HOMING
  1627. if (home_all_axis) {
  1628. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1629. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1630. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1631. feedrate = XY_TRAVEL_SPEED / 60;
  1632. current_position[Z_AXIS] = 0;
  1633. sync_plan_position();
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1635. st_synchronize();
  1636. current_position[X_AXIS] = destination[X_AXIS];
  1637. current_position[Y_AXIS] = destination[Y_AXIS];
  1638. HOMEAXIS(Z);
  1639. }
  1640. // Let's see if X and Y are homed and probe is inside bed area.
  1641. if (homeZ) {
  1642. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1643. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1644. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1645. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1646. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1647. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1648. current_position[Z_AXIS] = 0;
  1649. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1650. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1651. feedrate = max_feedrate[Z_AXIS];
  1652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1653. st_synchronize();
  1654. HOMEAXIS(Z);
  1655. }
  1656. else {
  1657. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1658. SERIAL_ECHO_START;
  1659. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1660. }
  1661. }
  1662. else {
  1663. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1664. SERIAL_ECHO_START;
  1665. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1666. }
  1667. }
  1668. #endif // Z_SAFE_HOMING
  1669. #endif // Z_HOME_DIR < 0
  1670. // Set the Z position, if included
  1671. // Adds the home_offset as well, which may be wrong
  1672. if (code_seen(axis_codes[Z_AXIS])) {
  1673. float v = code_value();
  1674. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1675. }
  1676. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1677. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1678. #endif
  1679. sync_plan_position();
  1680. #endif // else DELTA
  1681. #ifdef SCARA
  1682. calculate_delta(current_position);
  1683. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1684. #endif
  1685. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1686. enable_endstops(false);
  1687. #endif
  1688. #if defined(MESH_BED_LEVELING)
  1689. if (mbl_was_active) {
  1690. current_position[X_AXIS] = mbl.get_x(0);
  1691. current_position[Y_AXIS] = mbl.get_y(0);
  1692. destination[X_AXIS] = current_position[X_AXIS];
  1693. destination[Y_AXIS] = current_position[Y_AXIS];
  1694. destination[Z_AXIS] = current_position[Z_AXIS];
  1695. destination[E_AXIS] = current_position[E_AXIS];
  1696. feedrate = homing_feedrate[X_AXIS];
  1697. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1698. st_synchronize();
  1699. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1700. sync_plan_position();
  1701. mbl.active = 1;
  1702. }
  1703. #endif
  1704. feedrate = saved_feedrate;
  1705. feedmultiply = saved_feedmultiply;
  1706. previous_millis_cmd = millis();
  1707. endstops_hit_on_purpose();
  1708. }
  1709. #ifdef MESH_BED_LEVELING
  1710. /**
  1711. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1712. * mesh to compensate for variable bed height
  1713. *
  1714. * Parameters With MESH_BED_LEVELING:
  1715. *
  1716. * S0 Produce a mesh report
  1717. * S1 Start probing mesh points
  1718. * S2 Probe the next mesh point
  1719. *
  1720. */
  1721. inline void gcode_G29() {
  1722. static int probe_point = -1;
  1723. int state = 0;
  1724. if (code_seen('S') || code_seen('s')) {
  1725. state = code_value_long();
  1726. if (state < 0 || state > 2) {
  1727. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1728. return;
  1729. }
  1730. }
  1731. if (state == 0) { // Dump mesh_bed_leveling
  1732. if (mbl.active) {
  1733. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1734. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1735. SERIAL_PROTOCOLPGM(",");
  1736. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1737. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1738. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1739. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1740. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1741. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1742. SERIAL_PROTOCOLPGM(" ");
  1743. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1744. }
  1745. SERIAL_EOL;
  1746. }
  1747. } else {
  1748. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1749. }
  1750. } else if (state == 1) { // Begin probing mesh points
  1751. mbl.reset();
  1752. probe_point = 0;
  1753. enquecommands_P(PSTR("G28"));
  1754. enquecommands_P(PSTR("G29 S2"));
  1755. } else if (state == 2) { // Goto next point
  1756. if (probe_point < 0) {
  1757. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1758. return;
  1759. }
  1760. int ix, iy;
  1761. if (probe_point == 0) {
  1762. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1763. sync_plan_position();
  1764. } else {
  1765. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1766. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1767. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1768. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1769. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1771. st_synchronize();
  1772. }
  1773. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1774. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1775. probe_point = -1;
  1776. mbl.active = 1;
  1777. enquecommands_P(PSTR("G28"));
  1778. return;
  1779. }
  1780. ix = probe_point % MESH_NUM_X_POINTS;
  1781. iy = probe_point / MESH_NUM_X_POINTS;
  1782. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1783. current_position[X_AXIS] = mbl.get_x(ix);
  1784. current_position[Y_AXIS] = mbl.get_y(iy);
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1786. st_synchronize();
  1787. probe_point++;
  1788. }
  1789. }
  1790. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1791. /**
  1792. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1793. * Will fail if the printer has not been homed with G28.
  1794. *
  1795. * Enhanced G29 Auto Bed Leveling Probe Routine
  1796. *
  1797. * Parameters With AUTO_BED_LEVELING_GRID:
  1798. *
  1799. * P Set the size of the grid that will be probed (P x P points).
  1800. * Not supported by non-linear delta printer bed leveling.
  1801. * Example: "G29 P4"
  1802. *
  1803. * S Set the XY travel speed between probe points (in mm/min)
  1804. *
  1805. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1806. * or clean the rotation Matrix. Useful to check the topology
  1807. * after a first run of G29.
  1808. *
  1809. * V Set the verbose level (0-4). Example: "G29 V3"
  1810. *
  1811. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1812. * This is useful for manual bed leveling and finding flaws in the bed (to
  1813. * assist with part placement).
  1814. * Not supported by non-linear delta printer bed leveling.
  1815. *
  1816. * F Set the Front limit of the probing grid
  1817. * B Set the Back limit of the probing grid
  1818. * L Set the Left limit of the probing grid
  1819. * R Set the Right limit of the probing grid
  1820. *
  1821. * Global Parameters:
  1822. *
  1823. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1824. * Include "E" to engage/disengage the probe for each sample.
  1825. * There's no extra effect if you have a fixed probe.
  1826. * Usage: "G29 E" or "G29 e"
  1827. *
  1828. */
  1829. inline void gcode_G29() {
  1830. // Prevent user from running a G29 without first homing in X and Y
  1831. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1832. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1833. SERIAL_ECHO_START;
  1834. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1835. return;
  1836. }
  1837. int verbose_level = 1;
  1838. if (code_seen('V') || code_seen('v')) {
  1839. verbose_level = code_value_long();
  1840. if (verbose_level < 0 || verbose_level > 4) {
  1841. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1842. return;
  1843. }
  1844. }
  1845. bool dryrun = code_seen('D') || code_seen('d');
  1846. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1847. #ifdef AUTO_BED_LEVELING_GRID
  1848. #ifndef DELTA
  1849. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1850. #endif
  1851. if (verbose_level > 0)
  1852. {
  1853. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1854. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1855. }
  1856. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1857. #ifndef DELTA
  1858. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1859. if (auto_bed_leveling_grid_points < 2) {
  1860. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1861. return;
  1862. }
  1863. #endif
  1864. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1865. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1866. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1867. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1868. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1869. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1870. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1871. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1872. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1873. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1874. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1875. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1876. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1877. if (left_out || right_out || front_out || back_out) {
  1878. if (left_out) {
  1879. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1880. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1881. }
  1882. if (right_out) {
  1883. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1884. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1885. }
  1886. if (front_out) {
  1887. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1888. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1889. }
  1890. if (back_out) {
  1891. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1892. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1893. }
  1894. return;
  1895. }
  1896. #endif // AUTO_BED_LEVELING_GRID
  1897. #ifdef Z_PROBE_SLED
  1898. dock_sled(false); // engage (un-dock) the probe
  1899. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1900. engage_z_probe();
  1901. #endif
  1902. st_synchronize();
  1903. if (!dryrun)
  1904. {
  1905. #ifdef DELTA
  1906. reset_bed_level();
  1907. #else //!DELTA
  1908. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1909. //vector_3 corrected_position = plan_get_position_mm();
  1910. //corrected_position.debug("position before G29");
  1911. plan_bed_level_matrix.set_to_identity();
  1912. vector_3 uncorrected_position = plan_get_position();
  1913. //uncorrected_position.debug("position during G29");
  1914. current_position[X_AXIS] = uncorrected_position.x;
  1915. current_position[Y_AXIS] = uncorrected_position.y;
  1916. current_position[Z_AXIS] = uncorrected_position.z;
  1917. sync_plan_position();
  1918. #endif
  1919. }
  1920. setup_for_endstop_move();
  1921. feedrate = homing_feedrate[Z_AXIS];
  1922. #ifdef AUTO_BED_LEVELING_GRID
  1923. // probe at the points of a lattice grid
  1924. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1925. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1926. #ifdef DELTA
  1927. delta_grid_spacing[0] = xGridSpacing;
  1928. delta_grid_spacing[1] = yGridSpacing;
  1929. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1930. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1931. #else // !DELTA
  1932. // solve the plane equation ax + by + d = z
  1933. // A is the matrix with rows [x y 1] for all the probed points
  1934. // B is the vector of the Z positions
  1935. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1936. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1937. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1938. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1939. eqnBVector[abl2], // "B" vector of Z points
  1940. mean = 0.0;
  1941. #endif // !DELTA
  1942. int probePointCounter = 0;
  1943. bool zig = true;
  1944. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1945. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1946. int xStart, xStop, xInc;
  1947. if (zig) {
  1948. xStart = 0;
  1949. xStop = auto_bed_leveling_grid_points;
  1950. xInc = 1;
  1951. }
  1952. else {
  1953. xStart = auto_bed_leveling_grid_points - 1;
  1954. xStop = -1;
  1955. xInc = -1;
  1956. }
  1957. #ifndef DELTA
  1958. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1959. // This gets the probe points in more readable order.
  1960. if (!do_topography_map) zig = !zig;
  1961. #endif
  1962. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1963. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1964. // raise extruder
  1965. float measured_z,
  1966. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1967. #ifdef DELTA
  1968. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1969. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1970. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1971. continue;
  1972. #endif //DELTA
  1973. // Enhanced G29 - Do not retract servo between probes
  1974. ProbeAction act;
  1975. if (engage_probe_for_each_reading)
  1976. act = ProbeEngageAndRetract;
  1977. else if (yProbe == front_probe_bed_position && xCount == 0)
  1978. act = ProbeEngage;
  1979. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1980. act = ProbeRetract;
  1981. else
  1982. act = ProbeStay;
  1983. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1984. #ifndef DELTA
  1985. mean += measured_z;
  1986. eqnBVector[probePointCounter] = measured_z;
  1987. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1988. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1989. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1990. #else
  1991. bed_level[xCount][yCount] = measured_z + z_offset;
  1992. #endif
  1993. probePointCounter++;
  1994. } //xProbe
  1995. } //yProbe
  1996. clean_up_after_endstop_move();
  1997. #ifdef DELTA
  1998. if (!dryrun) extrapolate_unprobed_bed_level();
  1999. print_bed_level();
  2000. #else // !DELTA
  2001. // solve lsq problem
  2002. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2003. mean /= abl2;
  2004. if (verbose_level) {
  2005. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2006. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2007. SERIAL_PROTOCOLPGM(" b: ");
  2008. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2009. SERIAL_PROTOCOLPGM(" d: ");
  2010. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2011. SERIAL_EOL;
  2012. if (verbose_level > 2) {
  2013. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2014. SERIAL_PROTOCOL_F(mean, 8);
  2015. SERIAL_EOL;
  2016. }
  2017. }
  2018. // Show the Topography map if enabled
  2019. if (do_topography_map) {
  2020. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2021. SERIAL_PROTOCOLPGM("+-----------+\n");
  2022. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2023. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2024. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2025. SERIAL_PROTOCOLPGM("+-----------+\n");
  2026. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2027. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2028. int ind = yy * auto_bed_leveling_grid_points + xx;
  2029. float diff = eqnBVector[ind] - mean;
  2030. if (diff >= 0.0)
  2031. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2032. else
  2033. SERIAL_PROTOCOLPGM(" ");
  2034. SERIAL_PROTOCOL_F(diff, 5);
  2035. } // xx
  2036. SERIAL_EOL;
  2037. } // yy
  2038. SERIAL_EOL;
  2039. } //do_topography_map
  2040. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2041. free(plane_equation_coefficients);
  2042. #endif //!DELTA
  2043. #else // !AUTO_BED_LEVELING_GRID
  2044. // Probe at 3 arbitrary points
  2045. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2046. ProbeAction p1, p2, p3;
  2047. if (engage_probe_for_each_reading)
  2048. p1 = p2 = p3 = ProbeEngageAndRetract;
  2049. else
  2050. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2051. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level);
  2052. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level);
  2053. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2054. clean_up_after_endstop_move();
  2055. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2056. #endif // !AUTO_BED_LEVELING_GRID
  2057. #ifndef DELTA
  2058. if (verbose_level > 0)
  2059. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2060. // Correct the Z height difference from z-probe position and hotend tip position.
  2061. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2062. // When the bed is uneven, this height must be corrected.
  2063. if (!dryrun)
  2064. {
  2065. float x_tmp, y_tmp, z_tmp, real_z;
  2066. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2067. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2068. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2069. z_tmp = current_position[Z_AXIS];
  2070. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2071. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2072. sync_plan_position();
  2073. }
  2074. #endif // !DELTA
  2075. #ifdef Z_PROBE_SLED
  2076. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2077. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2078. retract_z_probe();
  2079. #endif
  2080. #ifdef Z_PROBE_END_SCRIPT
  2081. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2082. st_synchronize();
  2083. #endif
  2084. }
  2085. #ifndef Z_PROBE_SLED
  2086. inline void gcode_G30() {
  2087. engage_z_probe(); // Engage Z Servo endstop if available
  2088. st_synchronize();
  2089. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2090. setup_for_endstop_move();
  2091. feedrate = homing_feedrate[Z_AXIS];
  2092. run_z_probe();
  2093. SERIAL_PROTOCOLPGM(MSG_BED);
  2094. SERIAL_PROTOCOLPGM(" X: ");
  2095. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2096. SERIAL_PROTOCOLPGM(" Y: ");
  2097. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2098. SERIAL_PROTOCOLPGM(" Z: ");
  2099. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2100. SERIAL_EOL;
  2101. clean_up_after_endstop_move();
  2102. retract_z_probe(); // Retract Z Servo endstop if available
  2103. }
  2104. #endif //!Z_PROBE_SLED
  2105. #endif //ENABLE_AUTO_BED_LEVELING
  2106. /**
  2107. * G92: Set current position to given X Y Z E
  2108. */
  2109. inline void gcode_G92() {
  2110. if (!code_seen(axis_codes[E_AXIS]))
  2111. st_synchronize();
  2112. bool didXYZ = false;
  2113. for (int i = 0; i < NUM_AXIS; i++) {
  2114. if (code_seen(axis_codes[i])) {
  2115. float v = current_position[i] = code_value();
  2116. if (i == E_AXIS)
  2117. plan_set_e_position(v);
  2118. else
  2119. didXYZ = true;
  2120. }
  2121. }
  2122. if (didXYZ) sync_plan_position();
  2123. }
  2124. #ifdef ULTIPANEL
  2125. /**
  2126. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2127. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2128. */
  2129. inline void gcode_M0_M1() {
  2130. char *src = strchr_pointer + 2;
  2131. unsigned long codenum = 0;
  2132. bool hasP = false, hasS = false;
  2133. if (code_seen('P')) {
  2134. codenum = code_value(); // milliseconds to wait
  2135. hasP = codenum > 0;
  2136. }
  2137. if (code_seen('S')) {
  2138. codenum = code_value() * 1000; // seconds to wait
  2139. hasS = codenum > 0;
  2140. }
  2141. char* starpos = strchr(src, '*');
  2142. if (starpos != NULL) *(starpos) = '\0';
  2143. while (*src == ' ') ++src;
  2144. if (!hasP && !hasS && *src != '\0')
  2145. lcd_setstatus(src);
  2146. else
  2147. LCD_MESSAGEPGM(MSG_USERWAIT);
  2148. lcd_ignore_click();
  2149. st_synchronize();
  2150. previous_millis_cmd = millis();
  2151. if (codenum > 0) {
  2152. codenum += previous_millis_cmd; // keep track of when we started waiting
  2153. while(millis() < codenum && !lcd_clicked()) {
  2154. manage_heater();
  2155. manage_inactivity();
  2156. lcd_update();
  2157. }
  2158. lcd_ignore_click(false);
  2159. }
  2160. else {
  2161. if (!lcd_detected()) return;
  2162. while (!lcd_clicked()) {
  2163. manage_heater();
  2164. manage_inactivity();
  2165. lcd_update();
  2166. }
  2167. }
  2168. if (IS_SD_PRINTING)
  2169. LCD_MESSAGEPGM(MSG_RESUMING);
  2170. else
  2171. LCD_MESSAGEPGM(WELCOME_MSG);
  2172. }
  2173. #endif // ULTIPANEL
  2174. /**
  2175. * M17: Enable power on all stepper motors
  2176. */
  2177. inline void gcode_M17() {
  2178. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2179. enable_x();
  2180. enable_y();
  2181. enable_z();
  2182. enable_e0();
  2183. enable_e1();
  2184. enable_e2();
  2185. enable_e3();
  2186. }
  2187. #ifdef SDSUPPORT
  2188. /**
  2189. * M20: List SD card to serial output
  2190. */
  2191. inline void gcode_M20() {
  2192. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2193. card.ls();
  2194. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2195. }
  2196. /**
  2197. * M21: Init SD Card
  2198. */
  2199. inline void gcode_M21() {
  2200. card.initsd();
  2201. }
  2202. /**
  2203. * M22: Release SD Card
  2204. */
  2205. inline void gcode_M22() {
  2206. card.release();
  2207. }
  2208. /**
  2209. * M23: Select a file
  2210. */
  2211. inline void gcode_M23() {
  2212. char* codepos = strchr_pointer + 4;
  2213. char* starpos = strchr(codepos, '*');
  2214. if (starpos) *starpos = '\0';
  2215. card.openFile(codepos, true);
  2216. }
  2217. /**
  2218. * M24: Start SD Print
  2219. */
  2220. inline void gcode_M24() {
  2221. card.startFileprint();
  2222. starttime = millis();
  2223. }
  2224. /**
  2225. * M25: Pause SD Print
  2226. */
  2227. inline void gcode_M25() {
  2228. card.pauseSDPrint();
  2229. }
  2230. /**
  2231. * M26: Set SD Card file index
  2232. */
  2233. inline void gcode_M26() {
  2234. if (card.cardOK && code_seen('S'))
  2235. card.setIndex(code_value_long());
  2236. }
  2237. /**
  2238. * M27: Get SD Card status
  2239. */
  2240. inline void gcode_M27() {
  2241. card.getStatus();
  2242. }
  2243. /**
  2244. * M28: Start SD Write
  2245. */
  2246. inline void gcode_M28() {
  2247. char* codepos = strchr_pointer + 4;
  2248. char* starpos = strchr(codepos, '*');
  2249. if (starpos) {
  2250. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2251. strchr_pointer = strchr(npos, ' ') + 1;
  2252. *(starpos) = '\0';
  2253. }
  2254. card.openFile(codepos, false);
  2255. }
  2256. /**
  2257. * M29: Stop SD Write
  2258. * Processed in write to file routine above
  2259. */
  2260. inline void gcode_M29() {
  2261. // card.saving = false;
  2262. }
  2263. /**
  2264. * M30 <filename>: Delete SD Card file
  2265. */
  2266. inline void gcode_M30() {
  2267. if (card.cardOK) {
  2268. card.closefile();
  2269. char* starpos = strchr(strchr_pointer + 4, '*');
  2270. if (starpos) {
  2271. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2272. strchr_pointer = strchr(npos, ' ') + 1;
  2273. *(starpos) = '\0';
  2274. }
  2275. card.removeFile(strchr_pointer + 4);
  2276. }
  2277. }
  2278. #endif
  2279. /**
  2280. * M31: Get the time since the start of SD Print (or last M109)
  2281. */
  2282. inline void gcode_M31() {
  2283. stoptime = millis();
  2284. unsigned long t = (stoptime - starttime) / 1000;
  2285. int min = t / 60, sec = t % 60;
  2286. char time[30];
  2287. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2288. SERIAL_ECHO_START;
  2289. SERIAL_ECHOLN(time);
  2290. lcd_setstatus(time);
  2291. autotempShutdown();
  2292. }
  2293. #ifdef SDSUPPORT
  2294. /**
  2295. * M32: Select file and start SD Print
  2296. */
  2297. inline void gcode_M32() {
  2298. if (card.sdprinting)
  2299. st_synchronize();
  2300. char* codepos = strchr_pointer + 4;
  2301. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2302. if (! namestartpos)
  2303. namestartpos = codepos; //default name position, 4 letters after the M
  2304. else
  2305. namestartpos++; //to skip the '!'
  2306. char* starpos = strchr(codepos, '*');
  2307. if (starpos) *(starpos) = '\0';
  2308. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2309. if (card.cardOK) {
  2310. card.openFile(namestartpos, true, !call_procedure);
  2311. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2312. card.setIndex(code_value_long());
  2313. card.startFileprint();
  2314. if (!call_procedure)
  2315. starttime = millis(); //procedure calls count as normal print time.
  2316. }
  2317. }
  2318. /**
  2319. * M928: Start SD Write
  2320. */
  2321. inline void gcode_M928() {
  2322. char* starpos = strchr(strchr_pointer + 5, '*');
  2323. if (starpos) {
  2324. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2325. strchr_pointer = strchr(npos, ' ') + 1;
  2326. *(starpos) = '\0';
  2327. }
  2328. card.openLogFile(strchr_pointer + 5);
  2329. }
  2330. #endif // SDSUPPORT
  2331. /**
  2332. * M42: Change pin status via GCode
  2333. */
  2334. inline void gcode_M42() {
  2335. if (code_seen('S')) {
  2336. int pin_status = code_value(),
  2337. pin_number = LED_PIN;
  2338. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2339. pin_number = code_value();
  2340. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2341. if (sensitive_pins[i] == pin_number) {
  2342. pin_number = -1;
  2343. break;
  2344. }
  2345. }
  2346. #if defined(FAN_PIN) && FAN_PIN > -1
  2347. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2348. #endif
  2349. if (pin_number > -1) {
  2350. pinMode(pin_number, OUTPUT);
  2351. digitalWrite(pin_number, pin_status);
  2352. analogWrite(pin_number, pin_status);
  2353. }
  2354. } // code_seen('S')
  2355. }
  2356. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2357. #if Z_MIN_PIN == -1
  2358. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2359. #endif
  2360. /**
  2361. * M48: Z-Probe repeatability measurement function.
  2362. *
  2363. * Usage:
  2364. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2365. * P = Number of sampled points (4-50, default 10)
  2366. * X = Sample X position
  2367. * Y = Sample Y position
  2368. * V = Verbose level (0-4, default=1)
  2369. * E = Engage probe for each reading
  2370. * L = Number of legs of movement before probe
  2371. *
  2372. * This function assumes the bed has been homed. Specifically, that a G28 command
  2373. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2374. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2375. * regenerated.
  2376. *
  2377. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2378. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2379. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2380. */
  2381. inline void gcode_M48() {
  2382. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2383. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2384. double X_current, Y_current, Z_current;
  2385. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2386. if (code_seen('V') || code_seen('v')) {
  2387. verbose_level = code_value();
  2388. if (verbose_level < 0 || verbose_level > 4 ) {
  2389. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2390. return;
  2391. }
  2392. }
  2393. if (verbose_level > 0)
  2394. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2395. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2396. n_samples = code_value();
  2397. if (n_samples < 4 || n_samples > 50) {
  2398. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2399. return;
  2400. }
  2401. }
  2402. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2403. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2404. Z_current = st_get_position_mm(Z_AXIS);
  2405. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2406. ext_position = st_get_position_mm(E_AXIS);
  2407. if (code_seen('E') || code_seen('e'))
  2408. engage_probe_for_each_reading++;
  2409. if (code_seen('X') || code_seen('x')) {
  2410. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2411. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2412. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2413. return;
  2414. }
  2415. }
  2416. if (code_seen('Y') || code_seen('y')) {
  2417. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2418. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2419. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2420. return;
  2421. }
  2422. }
  2423. if (code_seen('L') || code_seen('l')) {
  2424. n_legs = code_value();
  2425. if (n_legs == 1) n_legs = 2;
  2426. if (n_legs < 0 || n_legs > 15) {
  2427. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2428. return;
  2429. }
  2430. }
  2431. //
  2432. // Do all the preliminary setup work. First raise the probe.
  2433. //
  2434. st_synchronize();
  2435. plan_bed_level_matrix.set_to_identity();
  2436. plan_buffer_line(X_current, Y_current, Z_start_location,
  2437. ext_position,
  2438. homing_feedrate[Z_AXIS] / 60,
  2439. active_extruder);
  2440. st_synchronize();
  2441. //
  2442. // Now get everything to the specified probe point So we can safely do a probe to
  2443. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2444. // use that as a starting point for each probe.
  2445. //
  2446. if (verbose_level > 2)
  2447. SERIAL_PROTOCOL("Positioning the probe...\n");
  2448. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2449. ext_position,
  2450. homing_feedrate[X_AXIS]/60,
  2451. active_extruder);
  2452. st_synchronize();
  2453. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2454. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2455. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2456. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2457. //
  2458. // OK, do the inital probe to get us close to the bed.
  2459. // Then retrace the right amount and use that in subsequent probes
  2460. //
  2461. engage_z_probe();
  2462. setup_for_endstop_move();
  2463. run_z_probe();
  2464. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2465. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2466. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2467. ext_position,
  2468. homing_feedrate[X_AXIS]/60,
  2469. active_extruder);
  2470. st_synchronize();
  2471. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2472. if (engage_probe_for_each_reading) retract_z_probe();
  2473. for (n=0; n < n_samples; n++) {
  2474. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2475. if (n_legs) {
  2476. double radius=0.0, theta=0.0;
  2477. int l;
  2478. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2479. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2480. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2481. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2482. //SERIAL_ECHOPAIR(" theta: ",theta);
  2483. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2484. //SERIAL_EOL;
  2485. float dir = rotational_direction ? 1 : -1;
  2486. for (l = 0; l < n_legs - 1; l++) {
  2487. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2488. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2489. if (radius < 0.0) radius = -radius;
  2490. X_current = X_probe_location + cos(theta) * radius;
  2491. Y_current = Y_probe_location + sin(theta) * radius;
  2492. // Make sure our X & Y are sane
  2493. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2494. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2495. if (verbose_level > 3) {
  2496. SERIAL_ECHOPAIR("x: ", X_current);
  2497. SERIAL_ECHOPAIR("y: ", Y_current);
  2498. SERIAL_EOL;
  2499. }
  2500. do_blocking_move_to( X_current, Y_current, Z_current );
  2501. }
  2502. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2503. }
  2504. if (engage_probe_for_each_reading) {
  2505. engage_z_probe();
  2506. delay(1000);
  2507. }
  2508. setup_for_endstop_move();
  2509. run_z_probe();
  2510. sample_set[n] = current_position[Z_AXIS];
  2511. //
  2512. // Get the current mean for the data points we have so far
  2513. //
  2514. sum = 0.0;
  2515. for (j=0; j<=n; j++) sum += sample_set[j];
  2516. mean = sum / (double (n+1));
  2517. //
  2518. // Now, use that mean to calculate the standard deviation for the
  2519. // data points we have so far
  2520. //
  2521. sum = 0.0;
  2522. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2523. sigma = sqrt( sum / (double (n+1)) );
  2524. if (verbose_level > 1) {
  2525. SERIAL_PROTOCOL(n+1);
  2526. SERIAL_PROTOCOL(" of ");
  2527. SERIAL_PROTOCOL(n_samples);
  2528. SERIAL_PROTOCOLPGM(" z: ");
  2529. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2530. }
  2531. if (verbose_level > 2) {
  2532. SERIAL_PROTOCOL(" mean: ");
  2533. SERIAL_PROTOCOL_F(mean,6);
  2534. SERIAL_PROTOCOL(" sigma: ");
  2535. SERIAL_PROTOCOL_F(sigma,6);
  2536. }
  2537. if (verbose_level > 0) SERIAL_EOL;
  2538. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2539. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2540. st_synchronize();
  2541. if (engage_probe_for_each_reading) {
  2542. retract_z_probe();
  2543. delay(1000);
  2544. }
  2545. }
  2546. retract_z_probe();
  2547. delay(1000);
  2548. clean_up_after_endstop_move();
  2549. // enable_endstops(true);
  2550. if (verbose_level > 0) {
  2551. SERIAL_PROTOCOLPGM("Mean: ");
  2552. SERIAL_PROTOCOL_F(mean, 6);
  2553. SERIAL_EOL;
  2554. }
  2555. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2556. SERIAL_PROTOCOL_F(sigma, 6);
  2557. SERIAL_EOL; SERIAL_EOL;
  2558. }
  2559. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2560. /**
  2561. * M104: Set hot end temperature
  2562. */
  2563. inline void gcode_M104() {
  2564. if (setTargetedHotend(104)) return;
  2565. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2566. #ifdef DUAL_X_CARRIAGE
  2567. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2568. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2569. #endif
  2570. setWatch();
  2571. }
  2572. /**
  2573. * M105: Read hot end and bed temperature
  2574. */
  2575. inline void gcode_M105() {
  2576. if (setTargetedHotend(105)) return;
  2577. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2578. SERIAL_PROTOCOLPGM("ok T:");
  2579. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2580. SERIAL_PROTOCOLPGM(" /");
  2581. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2582. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2583. SERIAL_PROTOCOLPGM(" B:");
  2584. SERIAL_PROTOCOL_F(degBed(),1);
  2585. SERIAL_PROTOCOLPGM(" /");
  2586. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2587. #endif //TEMP_BED_PIN
  2588. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2589. SERIAL_PROTOCOLPGM(" T");
  2590. SERIAL_PROTOCOL(cur_extruder);
  2591. SERIAL_PROTOCOLPGM(":");
  2592. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2593. SERIAL_PROTOCOLPGM(" /");
  2594. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2595. }
  2596. #else
  2597. SERIAL_ERROR_START;
  2598. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2599. #endif
  2600. SERIAL_PROTOCOLPGM(" @:");
  2601. #ifdef EXTRUDER_WATTS
  2602. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2603. SERIAL_PROTOCOLPGM("W");
  2604. #else
  2605. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2606. #endif
  2607. SERIAL_PROTOCOLPGM(" B@:");
  2608. #ifdef BED_WATTS
  2609. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2610. SERIAL_PROTOCOLPGM("W");
  2611. #else
  2612. SERIAL_PROTOCOL(getHeaterPower(-1));
  2613. #endif
  2614. #ifdef SHOW_TEMP_ADC_VALUES
  2615. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2616. SERIAL_PROTOCOLPGM(" ADC B:");
  2617. SERIAL_PROTOCOL_F(degBed(),1);
  2618. SERIAL_PROTOCOLPGM("C->");
  2619. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2620. #endif
  2621. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2622. SERIAL_PROTOCOLPGM(" T");
  2623. SERIAL_PROTOCOL(cur_extruder);
  2624. SERIAL_PROTOCOLPGM(":");
  2625. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2626. SERIAL_PROTOCOLPGM("C->");
  2627. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2628. }
  2629. #endif
  2630. SERIAL_PROTOCOLLN("");
  2631. }
  2632. #if defined(FAN_PIN) && FAN_PIN > -1
  2633. /**
  2634. * M106: Set Fan Speed
  2635. */
  2636. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2637. /**
  2638. * M107: Fan Off
  2639. */
  2640. inline void gcode_M107() { fanSpeed = 0; }
  2641. #endif //FAN_PIN
  2642. /**
  2643. * M109: Wait for extruder(s) to reach temperature
  2644. */
  2645. inline void gcode_M109() {
  2646. if (setTargetedHotend(109)) return;
  2647. LCD_MESSAGEPGM(MSG_HEATING);
  2648. CooldownNoWait = code_seen('S');
  2649. if (CooldownNoWait || code_seen('R')) {
  2650. setTargetHotend(code_value(), tmp_extruder);
  2651. #ifdef DUAL_X_CARRIAGE
  2652. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2653. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2654. #endif
  2655. }
  2656. #ifdef AUTOTEMP
  2657. autotemp_enabled = code_seen('F');
  2658. if (autotemp_enabled) autotemp_factor = code_value();
  2659. if (code_seen('S')) autotemp_min = code_value();
  2660. if (code_seen('B')) autotemp_max = code_value();
  2661. #endif
  2662. setWatch();
  2663. unsigned long timetemp = millis();
  2664. /* See if we are heating up or cooling down */
  2665. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2666. cancel_heatup = false;
  2667. #ifdef TEMP_RESIDENCY_TIME
  2668. long residencyStart = -1;
  2669. /* continue to loop until we have reached the target temp
  2670. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2671. while((!cancel_heatup)&&((residencyStart == -1) ||
  2672. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2673. #else
  2674. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2675. #endif //TEMP_RESIDENCY_TIME
  2676. { // while loop
  2677. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2678. SERIAL_PROTOCOLPGM("T:");
  2679. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2680. SERIAL_PROTOCOLPGM(" E:");
  2681. SERIAL_PROTOCOL((int)tmp_extruder);
  2682. #ifdef TEMP_RESIDENCY_TIME
  2683. SERIAL_PROTOCOLPGM(" W:");
  2684. if (residencyStart > -1) {
  2685. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2686. SERIAL_PROTOCOLLN( timetemp );
  2687. }
  2688. else {
  2689. SERIAL_PROTOCOLLN( "?" );
  2690. }
  2691. #else
  2692. SERIAL_PROTOCOLLN("");
  2693. #endif
  2694. timetemp = millis();
  2695. }
  2696. manage_heater();
  2697. manage_inactivity();
  2698. lcd_update();
  2699. #ifdef TEMP_RESIDENCY_TIME
  2700. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2701. // or when current temp falls outside the hysteresis after target temp was reached
  2702. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2703. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2704. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2705. {
  2706. residencyStart = millis();
  2707. }
  2708. #endif //TEMP_RESIDENCY_TIME
  2709. }
  2710. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2711. starttime = previous_millis_cmd = millis();
  2712. }
  2713. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2714. /**
  2715. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2716. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2717. */
  2718. inline void gcode_M190() {
  2719. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2720. CooldownNoWait = code_seen('S');
  2721. if (CooldownNoWait || code_seen('R'))
  2722. setTargetBed(code_value());
  2723. unsigned long timetemp = millis();
  2724. cancel_heatup = false;
  2725. target_direction = isHeatingBed(); // true if heating, false if cooling
  2726. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2727. unsigned long ms = millis();
  2728. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2729. timetemp = ms;
  2730. float tt = degHotend(active_extruder);
  2731. SERIAL_PROTOCOLPGM("T:");
  2732. SERIAL_PROTOCOL(tt);
  2733. SERIAL_PROTOCOLPGM(" E:");
  2734. SERIAL_PROTOCOL((int)active_extruder);
  2735. SERIAL_PROTOCOLPGM(" B:");
  2736. SERIAL_PROTOCOL_F(degBed(), 1);
  2737. SERIAL_PROTOCOLLN("");
  2738. }
  2739. manage_heater();
  2740. manage_inactivity();
  2741. lcd_update();
  2742. }
  2743. LCD_MESSAGEPGM(MSG_BED_DONE);
  2744. previous_millis_cmd = millis();
  2745. }
  2746. #endif // TEMP_BED_PIN > -1
  2747. /**
  2748. * M112: Emergency Stop
  2749. */
  2750. inline void gcode_M112() {
  2751. kill();
  2752. }
  2753. #ifdef BARICUDA
  2754. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2755. /**
  2756. * M126: Heater 1 valve open
  2757. */
  2758. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2759. /**
  2760. * M127: Heater 1 valve close
  2761. */
  2762. inline void gcode_M127() { ValvePressure = 0; }
  2763. #endif
  2764. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2765. /**
  2766. * M128: Heater 2 valve open
  2767. */
  2768. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2769. /**
  2770. * M129: Heater 2 valve close
  2771. */
  2772. inline void gcode_M129() { EtoPPressure = 0; }
  2773. #endif
  2774. #endif //BARICUDA
  2775. /**
  2776. * M140: Set bed temperature
  2777. */
  2778. inline void gcode_M140() {
  2779. if (code_seen('S')) setTargetBed(code_value());
  2780. }
  2781. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2782. /**
  2783. * M80: Turn on Power Supply
  2784. */
  2785. inline void gcode_M80() {
  2786. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2787. // If you have a switch on suicide pin, this is useful
  2788. // if you want to start another print with suicide feature after
  2789. // a print without suicide...
  2790. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2791. OUT_WRITE(SUICIDE_PIN, HIGH);
  2792. #endif
  2793. #ifdef ULTIPANEL
  2794. powersupply = true;
  2795. LCD_MESSAGEPGM(WELCOME_MSG);
  2796. lcd_update();
  2797. #endif
  2798. }
  2799. #endif // PS_ON_PIN
  2800. /**
  2801. * M81: Turn off Power Supply
  2802. */
  2803. inline void gcode_M81() {
  2804. disable_heater();
  2805. st_synchronize();
  2806. disable_e0();
  2807. disable_e1();
  2808. disable_e2();
  2809. disable_e3();
  2810. finishAndDisableSteppers();
  2811. fanSpeed = 0;
  2812. delay(1000); // Wait 1 second before switching off
  2813. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2814. st_synchronize();
  2815. suicide();
  2816. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2817. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2818. #endif
  2819. #ifdef ULTIPANEL
  2820. powersupply = false;
  2821. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2822. lcd_update();
  2823. #endif
  2824. }
  2825. /**
  2826. * M82: Set E codes absolute (default)
  2827. */
  2828. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2829. /**
  2830. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2831. */
  2832. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2833. /**
  2834. * M18, M84: Disable all stepper motors
  2835. */
  2836. inline void gcode_M18_M84() {
  2837. if (code_seen('S')) {
  2838. stepper_inactive_time = code_value() * 1000;
  2839. }
  2840. else {
  2841. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2842. if (all_axis) {
  2843. st_synchronize();
  2844. disable_e0();
  2845. disable_e1();
  2846. disable_e2();
  2847. disable_e3();
  2848. finishAndDisableSteppers();
  2849. }
  2850. else {
  2851. st_synchronize();
  2852. if (code_seen('X')) disable_x();
  2853. if (code_seen('Y')) disable_y();
  2854. if (code_seen('Z')) disable_z();
  2855. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2856. if (code_seen('E')) {
  2857. disable_e0();
  2858. disable_e1();
  2859. disable_e2();
  2860. disable_e3();
  2861. }
  2862. #endif
  2863. }
  2864. }
  2865. }
  2866. /**
  2867. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2868. */
  2869. inline void gcode_M85() {
  2870. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2871. }
  2872. /**
  2873. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2874. */
  2875. inline void gcode_M92() {
  2876. for(int8_t i=0; i < NUM_AXIS; i++) {
  2877. if (code_seen(axis_codes[i])) {
  2878. if (i == E_AXIS) {
  2879. float value = code_value();
  2880. if (value < 20.0) {
  2881. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2882. max_e_jerk *= factor;
  2883. max_feedrate[i] *= factor;
  2884. axis_steps_per_sqr_second[i] *= factor;
  2885. }
  2886. axis_steps_per_unit[i] = value;
  2887. }
  2888. else {
  2889. axis_steps_per_unit[i] = code_value();
  2890. }
  2891. }
  2892. }
  2893. }
  2894. /**
  2895. * M114: Output current position to serial port
  2896. */
  2897. inline void gcode_M114() {
  2898. SERIAL_PROTOCOLPGM("X:");
  2899. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2900. SERIAL_PROTOCOLPGM(" Y:");
  2901. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2902. SERIAL_PROTOCOLPGM(" Z:");
  2903. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2904. SERIAL_PROTOCOLPGM(" E:");
  2905. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2906. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2907. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2908. SERIAL_PROTOCOLPGM(" Y:");
  2909. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2910. SERIAL_PROTOCOLPGM(" Z:");
  2911. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2912. SERIAL_PROTOCOLLN("");
  2913. #ifdef SCARA
  2914. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2915. SERIAL_PROTOCOL(delta[X_AXIS]);
  2916. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2917. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2918. SERIAL_PROTOCOLLN("");
  2919. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2920. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2922. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2923. SERIAL_PROTOCOLLN("");
  2924. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2925. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2926. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2927. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2928. SERIAL_PROTOCOLLN("");
  2929. SERIAL_PROTOCOLLN("");
  2930. #endif
  2931. }
  2932. /**
  2933. * M115: Capabilities string
  2934. */
  2935. inline void gcode_M115() {
  2936. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2937. }
  2938. /**
  2939. * M117: Set LCD Status Message
  2940. */
  2941. inline void gcode_M117() {
  2942. char* codepos = strchr_pointer + 5;
  2943. char* starpos = strchr(codepos, '*');
  2944. if (starpos) *starpos = '\0';
  2945. lcd_setstatus(codepos);
  2946. }
  2947. /**
  2948. * M119: Output endstop states to serial output
  2949. */
  2950. inline void gcode_M119() {
  2951. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2952. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2953. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2954. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2955. #endif
  2956. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2957. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2958. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2959. #endif
  2960. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2961. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2962. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2963. #endif
  2964. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2965. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2966. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2967. #endif
  2968. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2969. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2970. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2971. #endif
  2972. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2973. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2974. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2975. #endif
  2976. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2977. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2978. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2979. #endif
  2980. }
  2981. /**
  2982. * M120: Enable endstops
  2983. */
  2984. inline void gcode_M120() { enable_endstops(false); }
  2985. /**
  2986. * M121: Disable endstops
  2987. */
  2988. inline void gcode_M121() { enable_endstops(true); }
  2989. #ifdef BLINKM
  2990. /**
  2991. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2992. */
  2993. inline void gcode_M150() {
  2994. SendColors(
  2995. code_seen('R') ? (byte)code_value() : 0,
  2996. code_seen('U') ? (byte)code_value() : 0,
  2997. code_seen('B') ? (byte)code_value() : 0
  2998. );
  2999. }
  3000. #endif // BLINKM
  3001. /**
  3002. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3003. * T<extruder>
  3004. * D<millimeters>
  3005. */
  3006. inline void gcode_M200() {
  3007. tmp_extruder = active_extruder;
  3008. if (code_seen('T')) {
  3009. tmp_extruder = code_value();
  3010. if (tmp_extruder >= EXTRUDERS) {
  3011. SERIAL_ECHO_START;
  3012. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3013. return;
  3014. }
  3015. }
  3016. if (code_seen('D')) {
  3017. float diameter = code_value();
  3018. // setting any extruder filament size disables volumetric on the assumption that
  3019. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3020. // for all extruders
  3021. volumetric_enabled = (diameter != 0.0);
  3022. if (volumetric_enabled) {
  3023. filament_size[tmp_extruder] = diameter;
  3024. // make sure all extruders have some sane value for the filament size
  3025. for (int i=0; i<EXTRUDERS; i++)
  3026. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3027. }
  3028. }
  3029. else {
  3030. //reserved for setting filament diameter via UFID or filament measuring device
  3031. return;
  3032. }
  3033. calculate_volumetric_multipliers();
  3034. }
  3035. /**
  3036. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3037. */
  3038. inline void gcode_M201() {
  3039. for (int8_t i=0; i < NUM_AXIS; i++) {
  3040. if (code_seen(axis_codes[i])) {
  3041. max_acceleration_units_per_sq_second[i] = code_value();
  3042. }
  3043. }
  3044. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3045. reset_acceleration_rates();
  3046. }
  3047. #if 0 // Not used for Sprinter/grbl gen6
  3048. inline void gcode_M202() {
  3049. for(int8_t i=0; i < NUM_AXIS; i++) {
  3050. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3051. }
  3052. }
  3053. #endif
  3054. /**
  3055. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3056. */
  3057. inline void gcode_M203() {
  3058. for (int8_t i=0; i < NUM_AXIS; i++) {
  3059. if (code_seen(axis_codes[i])) {
  3060. max_feedrate[i] = code_value();
  3061. }
  3062. }
  3063. }
  3064. /**
  3065. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3066. *
  3067. * P = Printing moves
  3068. * R = Retract only (no X, Y, Z) moves
  3069. * T = Travel (non printing) moves
  3070. *
  3071. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3072. */
  3073. inline void gcode_M204() {
  3074. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3075. {
  3076. acceleration = code_value();
  3077. travel_acceleration = acceleration;
  3078. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3079. SERIAL_EOL;
  3080. }
  3081. if (code_seen('P'))
  3082. {
  3083. acceleration = code_value();
  3084. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3085. SERIAL_EOL;
  3086. }
  3087. if (code_seen('R'))
  3088. {
  3089. retract_acceleration = code_value();
  3090. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3091. SERIAL_EOL;
  3092. }
  3093. if (code_seen('T'))
  3094. {
  3095. travel_acceleration = code_value();
  3096. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3097. SERIAL_EOL;
  3098. }
  3099. }
  3100. /**
  3101. * M205: Set Advanced Settings
  3102. *
  3103. * S = Min Feed Rate (mm/s)
  3104. * T = Min Travel Feed Rate (mm/s)
  3105. * B = Min Segment Time (µs)
  3106. * X = Max XY Jerk (mm/s/s)
  3107. * Z = Max Z Jerk (mm/s/s)
  3108. * E = Max E Jerk (mm/s/s)
  3109. */
  3110. inline void gcode_M205() {
  3111. if (code_seen('S')) minimumfeedrate = code_value();
  3112. if (code_seen('T')) mintravelfeedrate = code_value();
  3113. if (code_seen('B')) minsegmenttime = code_value();
  3114. if (code_seen('X')) max_xy_jerk = code_value();
  3115. if (code_seen('Z')) max_z_jerk = code_value();
  3116. if (code_seen('E')) max_e_jerk = code_value();
  3117. }
  3118. /**
  3119. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3120. */
  3121. inline void gcode_M206() {
  3122. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3123. if (code_seen(axis_codes[i])) {
  3124. home_offset[i] = code_value();
  3125. }
  3126. }
  3127. #ifdef SCARA
  3128. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3129. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3130. #endif
  3131. }
  3132. #ifdef DELTA
  3133. /**
  3134. * M665: Set delta configurations
  3135. *
  3136. * L = diagonal rod
  3137. * R = delta radius
  3138. * S = segments per second
  3139. */
  3140. inline void gcode_M665() {
  3141. if (code_seen('L')) delta_diagonal_rod = code_value();
  3142. if (code_seen('R')) delta_radius = code_value();
  3143. if (code_seen('S')) delta_segments_per_second = code_value();
  3144. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3145. }
  3146. /**
  3147. * M666: Set delta endstop adjustment
  3148. */
  3149. inline void gcode_M666() {
  3150. for (int8_t i = 0; i < 3; i++) {
  3151. if (code_seen(axis_codes[i])) {
  3152. endstop_adj[i] = code_value();
  3153. }
  3154. }
  3155. }
  3156. #elif defined(Z_DUAL_ENDSTOPS)
  3157. /**
  3158. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3159. */
  3160. inline void gcode_M666() {
  3161. if (code_seen('Z')) z_endstop_adj = code_value();
  3162. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3163. SERIAL_EOL;
  3164. }
  3165. #endif // DELTA
  3166. #ifdef FWRETRACT
  3167. /**
  3168. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3169. */
  3170. inline void gcode_M207() {
  3171. if (code_seen('S')) retract_length = code_value();
  3172. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3173. if (code_seen('Z')) retract_zlift = code_value();
  3174. }
  3175. /**
  3176. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3177. */
  3178. inline void gcode_M208() {
  3179. if (code_seen('S')) retract_recover_length = code_value();
  3180. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3181. }
  3182. /**
  3183. * M209: Enable automatic retract (M209 S1)
  3184. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3185. */
  3186. inline void gcode_M209() {
  3187. if (code_seen('S')) {
  3188. int t = code_value();
  3189. switch(t) {
  3190. case 0:
  3191. autoretract_enabled = false;
  3192. break;
  3193. case 1:
  3194. autoretract_enabled = true;
  3195. break;
  3196. default:
  3197. SERIAL_ECHO_START;
  3198. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3199. SERIAL_ECHO(cmdbuffer[bufindr]);
  3200. SERIAL_ECHOLNPGM("\"");
  3201. return;
  3202. }
  3203. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3204. }
  3205. }
  3206. #endif // FWRETRACT
  3207. #if EXTRUDERS > 1
  3208. /**
  3209. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3210. */
  3211. inline void gcode_M218() {
  3212. if (setTargetedHotend(218)) return;
  3213. if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
  3214. if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
  3215. #ifdef DUAL_X_CARRIAGE
  3216. if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
  3217. #endif
  3218. SERIAL_ECHO_START;
  3219. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3220. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3221. SERIAL_ECHO(" ");
  3222. SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
  3223. SERIAL_ECHO(",");
  3224. SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
  3225. #ifdef DUAL_X_CARRIAGE
  3226. SERIAL_ECHO(",");
  3227. SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
  3228. #endif
  3229. }
  3230. SERIAL_EOL;
  3231. }
  3232. #endif // EXTRUDERS > 1
  3233. /**
  3234. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3235. */
  3236. inline void gcode_M220() {
  3237. if (code_seen('S')) feedmultiply = code_value();
  3238. }
  3239. /**
  3240. * M221: Set extrusion percentage (M221 T0 S95)
  3241. */
  3242. inline void gcode_M221() {
  3243. if (code_seen('S')) {
  3244. int sval = code_value();
  3245. if (code_seen('T')) {
  3246. if (setTargetedHotend(221)) return;
  3247. extruder_multiply[tmp_extruder] = sval;
  3248. }
  3249. else {
  3250. extrudemultiply = sval;
  3251. }
  3252. }
  3253. }
  3254. /**
  3255. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3256. */
  3257. inline void gcode_M226() {
  3258. if (code_seen('P')) {
  3259. int pin_number = code_value();
  3260. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3261. if (pin_state >= -1 && pin_state <= 1) {
  3262. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3263. if (sensitive_pins[i] == pin_number) {
  3264. pin_number = -1;
  3265. break;
  3266. }
  3267. }
  3268. if (pin_number > -1) {
  3269. int target = LOW;
  3270. st_synchronize();
  3271. pinMode(pin_number, INPUT);
  3272. switch(pin_state){
  3273. case 1:
  3274. target = HIGH;
  3275. break;
  3276. case 0:
  3277. target = LOW;
  3278. break;
  3279. case -1:
  3280. target = !digitalRead(pin_number);
  3281. break;
  3282. }
  3283. while(digitalRead(pin_number) != target) {
  3284. manage_heater();
  3285. manage_inactivity();
  3286. lcd_update();
  3287. }
  3288. } // pin_number > -1
  3289. } // pin_state -1 0 1
  3290. } // code_seen('P')
  3291. }
  3292. #if NUM_SERVOS > 0
  3293. /**
  3294. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3295. */
  3296. inline void gcode_M280() {
  3297. int servo_index = code_seen('P') ? code_value() : -1;
  3298. int servo_position = 0;
  3299. if (code_seen('S')) {
  3300. servo_position = code_value();
  3301. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3302. #if SERVO_LEVELING
  3303. servos[servo_index].attach(0);
  3304. #endif
  3305. servos[servo_index].write(servo_position);
  3306. #if SERVO_LEVELING
  3307. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3308. servos[servo_index].detach();
  3309. #endif
  3310. }
  3311. else {
  3312. SERIAL_ECHO_START;
  3313. SERIAL_ECHO("Servo ");
  3314. SERIAL_ECHO(servo_index);
  3315. SERIAL_ECHOLN(" out of range");
  3316. }
  3317. }
  3318. else if (servo_index >= 0) {
  3319. SERIAL_PROTOCOL(MSG_OK);
  3320. SERIAL_PROTOCOL(" Servo ");
  3321. SERIAL_PROTOCOL(servo_index);
  3322. SERIAL_PROTOCOL(": ");
  3323. SERIAL_PROTOCOL(servos[servo_index].read());
  3324. SERIAL_PROTOCOLLN("");
  3325. }
  3326. }
  3327. #endif // NUM_SERVOS > 0
  3328. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3329. /**
  3330. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3331. */
  3332. inline void gcode_M300() {
  3333. int beepS = code_seen('S') ? code_value() : 110;
  3334. int beepP = code_seen('P') ? code_value() : 1000;
  3335. if (beepS > 0) {
  3336. #if BEEPER > 0
  3337. tone(BEEPER, beepS);
  3338. delay(beepP);
  3339. noTone(BEEPER);
  3340. #elif defined(ULTRALCD)
  3341. lcd_buzz(beepS, beepP);
  3342. #elif defined(LCD_USE_I2C_BUZZER)
  3343. lcd_buzz(beepP, beepS);
  3344. #endif
  3345. }
  3346. else {
  3347. delay(beepP);
  3348. }
  3349. }
  3350. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3351. #ifdef PIDTEMP
  3352. /**
  3353. * M301: Set PID parameters P I D (and optionally C)
  3354. */
  3355. inline void gcode_M301() {
  3356. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3357. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3358. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3359. if (e < EXTRUDERS) { // catch bad input value
  3360. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3361. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3362. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3363. #ifdef PID_ADD_EXTRUSION_RATE
  3364. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3365. #endif
  3366. updatePID();
  3367. SERIAL_PROTOCOL(MSG_OK);
  3368. #ifdef PID_PARAMS_PER_EXTRUDER
  3369. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3370. SERIAL_PROTOCOL(e);
  3371. #endif // PID_PARAMS_PER_EXTRUDER
  3372. SERIAL_PROTOCOL(" p:");
  3373. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3374. SERIAL_PROTOCOL(" i:");
  3375. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3376. SERIAL_PROTOCOL(" d:");
  3377. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3378. #ifdef PID_ADD_EXTRUSION_RATE
  3379. SERIAL_PROTOCOL(" c:");
  3380. //Kc does not have scaling applied above, or in resetting defaults
  3381. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3382. #endif
  3383. SERIAL_PROTOCOLLN("");
  3384. }
  3385. else {
  3386. SERIAL_ECHO_START;
  3387. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3388. }
  3389. }
  3390. #endif // PIDTEMP
  3391. #ifdef PIDTEMPBED
  3392. inline void gcode_M304() {
  3393. if (code_seen('P')) bedKp = code_value();
  3394. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3395. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3396. updatePID();
  3397. SERIAL_PROTOCOL(MSG_OK);
  3398. SERIAL_PROTOCOL(" p:");
  3399. SERIAL_PROTOCOL(bedKp);
  3400. SERIAL_PROTOCOL(" i:");
  3401. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3402. SERIAL_PROTOCOL(" d:");
  3403. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3404. SERIAL_PROTOCOLLN("");
  3405. }
  3406. #endif // PIDTEMPBED
  3407. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3408. /**
  3409. * M240: Trigger a camera by emulating a Canon RC-1
  3410. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3411. */
  3412. inline void gcode_M240() {
  3413. #ifdef CHDK
  3414. OUT_WRITE(CHDK, HIGH);
  3415. chdkHigh = millis();
  3416. chdkActive = true;
  3417. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3418. const uint8_t NUM_PULSES = 16;
  3419. const float PULSE_LENGTH = 0.01524;
  3420. for (int i = 0; i < NUM_PULSES; i++) {
  3421. WRITE(PHOTOGRAPH_PIN, HIGH);
  3422. _delay_ms(PULSE_LENGTH);
  3423. WRITE(PHOTOGRAPH_PIN, LOW);
  3424. _delay_ms(PULSE_LENGTH);
  3425. }
  3426. delay(7.33);
  3427. for (int i = 0; i < NUM_PULSES; i++) {
  3428. WRITE(PHOTOGRAPH_PIN, HIGH);
  3429. _delay_ms(PULSE_LENGTH);
  3430. WRITE(PHOTOGRAPH_PIN, LOW);
  3431. _delay_ms(PULSE_LENGTH);
  3432. }
  3433. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3434. }
  3435. #endif // CHDK || PHOTOGRAPH_PIN
  3436. #ifdef DOGLCD
  3437. /**
  3438. * M250: Read and optionally set the LCD contrast
  3439. */
  3440. inline void gcode_M250() {
  3441. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3442. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3443. SERIAL_PROTOCOL(lcd_contrast);
  3444. SERIAL_PROTOCOLLN("");
  3445. }
  3446. #endif // DOGLCD
  3447. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3448. /**
  3449. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3450. */
  3451. inline void gcode_M302() {
  3452. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3453. }
  3454. #endif // PREVENT_DANGEROUS_EXTRUDE
  3455. /**
  3456. * M303: PID relay autotune
  3457. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3458. * E<extruder> (-1 for the bed)
  3459. * C<cycles>
  3460. */
  3461. inline void gcode_M303() {
  3462. int e = code_seen('E') ? code_value_long() : 0;
  3463. int c = code_seen('C') ? code_value_long() : 5;
  3464. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3465. PID_autotune(temp, e, c);
  3466. }
  3467. #ifdef SCARA
  3468. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3469. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3470. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3471. if (! Stopped) {
  3472. //get_coordinates(); // For X Y Z E F
  3473. delta[X_AXIS] = delta_x;
  3474. delta[Y_AXIS] = delta_y;
  3475. calculate_SCARA_forward_Transform(delta);
  3476. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3477. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3478. prepare_move();
  3479. //ClearToSend();
  3480. return true;
  3481. }
  3482. return false;
  3483. }
  3484. /**
  3485. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3486. */
  3487. inline bool gcode_M360() {
  3488. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3489. return SCARA_move_to_cal(0, 120);
  3490. }
  3491. /**
  3492. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3493. */
  3494. inline bool gcode_M361() {
  3495. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3496. return SCARA_move_to_cal(90, 130);
  3497. }
  3498. /**
  3499. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3500. */
  3501. inline bool gcode_M362() {
  3502. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3503. return SCARA_move_to_cal(60, 180);
  3504. }
  3505. /**
  3506. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3507. */
  3508. inline bool gcode_M363() {
  3509. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3510. return SCARA_move_to_cal(50, 90);
  3511. }
  3512. /**
  3513. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3514. */
  3515. inline bool gcode_M364() {
  3516. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3517. return SCARA_move_to_cal(45, 135);
  3518. }
  3519. /**
  3520. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3521. */
  3522. inline void gcode_M365() {
  3523. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3524. if (code_seen(axis_codes[i])) {
  3525. axis_scaling[i] = code_value();
  3526. }
  3527. }
  3528. }
  3529. #endif // SCARA
  3530. #ifdef EXT_SOLENOID
  3531. void enable_solenoid(uint8_t num) {
  3532. switch(num) {
  3533. case 0:
  3534. OUT_WRITE(SOL0_PIN, HIGH);
  3535. break;
  3536. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3537. case 1:
  3538. OUT_WRITE(SOL1_PIN, HIGH);
  3539. break;
  3540. #endif
  3541. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3542. case 2:
  3543. OUT_WRITE(SOL2_PIN, HIGH);
  3544. break;
  3545. #endif
  3546. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3547. case 3:
  3548. OUT_WRITE(SOL3_PIN, HIGH);
  3549. break;
  3550. #endif
  3551. default:
  3552. SERIAL_ECHO_START;
  3553. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3554. break;
  3555. }
  3556. }
  3557. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3558. void disable_all_solenoids() {
  3559. OUT_WRITE(SOL0_PIN, LOW);
  3560. OUT_WRITE(SOL1_PIN, LOW);
  3561. OUT_WRITE(SOL2_PIN, LOW);
  3562. OUT_WRITE(SOL3_PIN, LOW);
  3563. }
  3564. /**
  3565. * M380: Enable solenoid on the active extruder
  3566. */
  3567. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3568. /**
  3569. * M381: Disable all solenoids
  3570. */
  3571. inline void gcode_M381() { disable_all_solenoids(); }
  3572. #endif // EXT_SOLENOID
  3573. /**
  3574. * M400: Finish all moves
  3575. */
  3576. inline void gcode_M400() { st_synchronize(); }
  3577. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3578. /**
  3579. * M401: Engage Z Servo endstop if available
  3580. */
  3581. inline void gcode_M401() { engage_z_probe(); }
  3582. /**
  3583. * M402: Retract Z Servo endstop if enabled
  3584. */
  3585. inline void gcode_M402() { retract_z_probe(); }
  3586. #endif
  3587. #ifdef FILAMENT_SENSOR
  3588. /**
  3589. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3590. */
  3591. inline void gcode_M404() {
  3592. #if FILWIDTH_PIN > -1
  3593. if (code_seen('W')) {
  3594. filament_width_nominal = code_value();
  3595. }
  3596. else {
  3597. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3598. SERIAL_PROTOCOLLN(filament_width_nominal);
  3599. }
  3600. #endif
  3601. }
  3602. /**
  3603. * M405: Turn on filament sensor for control
  3604. */
  3605. inline void gcode_M405() {
  3606. if (code_seen('D')) meas_delay_cm = code_value();
  3607. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3608. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3609. int temp_ratio = widthFil_to_size_ratio();
  3610. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3611. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3612. delay_index1 = delay_index2 = 0;
  3613. }
  3614. filament_sensor = true;
  3615. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3616. //SERIAL_PROTOCOL(filament_width_meas);
  3617. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3618. //SERIAL_PROTOCOL(extrudemultiply);
  3619. }
  3620. /**
  3621. * M406: Turn off filament sensor for control
  3622. */
  3623. inline void gcode_M406() { filament_sensor = false; }
  3624. /**
  3625. * M407: Get measured filament diameter on serial output
  3626. */
  3627. inline void gcode_M407() {
  3628. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3629. SERIAL_PROTOCOLLN(filament_width_meas);
  3630. }
  3631. #endif // FILAMENT_SENSOR
  3632. /**
  3633. * M500: Store settings in EEPROM
  3634. */
  3635. inline void gcode_M500() {
  3636. Config_StoreSettings();
  3637. }
  3638. /**
  3639. * M501: Read settings from EEPROM
  3640. */
  3641. inline void gcode_M501() {
  3642. Config_RetrieveSettings();
  3643. }
  3644. /**
  3645. * M502: Revert to default settings
  3646. */
  3647. inline void gcode_M502() {
  3648. Config_ResetDefault();
  3649. }
  3650. /**
  3651. * M503: print settings currently in memory
  3652. */
  3653. inline void gcode_M503() {
  3654. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3655. }
  3656. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3657. /**
  3658. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3659. */
  3660. inline void gcode_M540() {
  3661. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3662. }
  3663. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3664. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3665. inline void gcode_SET_Z_PROBE_OFFSET() {
  3666. float value;
  3667. if (code_seen('Z')) {
  3668. value = code_value();
  3669. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3670. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3671. SERIAL_ECHO_START;
  3672. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3673. SERIAL_PROTOCOLLN("");
  3674. }
  3675. else {
  3676. SERIAL_ECHO_START;
  3677. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3678. SERIAL_ECHOPGM(MSG_Z_MIN);
  3679. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3680. SERIAL_ECHOPGM(MSG_Z_MAX);
  3681. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3682. SERIAL_PROTOCOLLN("");
  3683. }
  3684. }
  3685. else {
  3686. SERIAL_ECHO_START;
  3687. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3688. SERIAL_ECHO(-zprobe_zoffset);
  3689. SERIAL_PROTOCOLLN("");
  3690. }
  3691. }
  3692. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3693. #ifdef FILAMENTCHANGEENABLE
  3694. /**
  3695. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3696. */
  3697. inline void gcode_M600() {
  3698. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3699. for (int i=0; i<NUM_AXIS; i++)
  3700. target[i] = lastpos[i] = current_position[i];
  3701. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3702. #ifdef DELTA
  3703. #define RUNPLAN calculate_delta(target); BASICPLAN
  3704. #else
  3705. #define RUNPLAN BASICPLAN
  3706. #endif
  3707. //retract by E
  3708. if (code_seen('E')) target[E_AXIS] += code_value();
  3709. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3710. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3711. #endif
  3712. RUNPLAN;
  3713. //lift Z
  3714. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3715. #ifdef FILAMENTCHANGE_ZADD
  3716. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3717. #endif
  3718. RUNPLAN;
  3719. //move xy
  3720. if (code_seen('X')) target[X_AXIS] = code_value();
  3721. #ifdef FILAMENTCHANGE_XPOS
  3722. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3723. #endif
  3724. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3725. #ifdef FILAMENTCHANGE_YPOS
  3726. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3727. #endif
  3728. RUNPLAN;
  3729. if (code_seen('L')) target[E_AXIS] += code_value();
  3730. #ifdef FILAMENTCHANGE_FINALRETRACT
  3731. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3732. #endif
  3733. RUNPLAN;
  3734. //finish moves
  3735. st_synchronize();
  3736. //disable extruder steppers so filament can be removed
  3737. disable_e0();
  3738. disable_e1();
  3739. disable_e2();
  3740. disable_e3();
  3741. delay(100);
  3742. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3743. uint8_t cnt = 0;
  3744. while (!lcd_clicked()) {
  3745. cnt++;
  3746. manage_heater();
  3747. manage_inactivity(true);
  3748. lcd_update();
  3749. if (cnt == 0) {
  3750. #if BEEPER > 0
  3751. OUT_WRITE(BEEPER,HIGH);
  3752. delay(3);
  3753. WRITE(BEEPER,LOW);
  3754. delay(3);
  3755. #else
  3756. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3757. lcd_buzz(1000/6, 100);
  3758. #else
  3759. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3760. #endif
  3761. #endif
  3762. }
  3763. } // while(!lcd_clicked)
  3764. //return to normal
  3765. if (code_seen('L')) target[E_AXIS] -= code_value();
  3766. #ifdef FILAMENTCHANGE_FINALRETRACT
  3767. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3768. #endif
  3769. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3770. plan_set_e_position(current_position[E_AXIS]);
  3771. RUNPLAN; //should do nothing
  3772. lcd_reset_alert_level();
  3773. #ifdef DELTA
  3774. calculate_delta(lastpos);
  3775. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3776. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3777. #else
  3778. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3780. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3781. #endif
  3782. #ifdef FILAMENT_RUNOUT_SENSOR
  3783. filrunoutEnqued = false;
  3784. #endif
  3785. }
  3786. #endif // FILAMENTCHANGEENABLE
  3787. #ifdef DUAL_X_CARRIAGE
  3788. /**
  3789. * M605: Set dual x-carriage movement mode
  3790. *
  3791. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3792. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3793. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3794. * millimeters x-offset and an optional differential hotend temperature of
  3795. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3796. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3797. *
  3798. * Note: the X axis should be homed after changing dual x-carriage mode.
  3799. */
  3800. inline void gcode_M605() {
  3801. st_synchronize();
  3802. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3803. switch(dual_x_carriage_mode) {
  3804. case DXC_DUPLICATION_MODE:
  3805. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3806. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3807. SERIAL_ECHO_START;
  3808. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3809. SERIAL_ECHO(" ");
  3810. SERIAL_ECHO(extruder_offset[0][X_AXIS]);
  3811. SERIAL_ECHO(",");
  3812. SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
  3813. SERIAL_ECHO(" ");
  3814. SERIAL_ECHO(duplicate_extruder_x_offset);
  3815. SERIAL_ECHO(",");
  3816. SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
  3817. break;
  3818. case DXC_FULL_CONTROL_MODE:
  3819. case DXC_AUTO_PARK_MODE:
  3820. break;
  3821. default:
  3822. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3823. break;
  3824. }
  3825. active_extruder_parked = false;
  3826. extruder_duplication_enabled = false;
  3827. delayed_move_time = 0;
  3828. }
  3829. #endif // DUAL_X_CARRIAGE
  3830. /**
  3831. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3832. */
  3833. inline void gcode_M907() {
  3834. #if HAS_DIGIPOTSS
  3835. for (int i=0;i<NUM_AXIS;i++)
  3836. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3837. if (code_seen('B')) digipot_current(4, code_value());
  3838. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3839. #endif
  3840. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3841. if (code_seen('X')) digipot_current(0, code_value());
  3842. #endif
  3843. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3844. if (code_seen('Z')) digipot_current(1, code_value());
  3845. #endif
  3846. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3847. if (code_seen('E')) digipot_current(2, code_value());
  3848. #endif
  3849. #ifdef DIGIPOT_I2C
  3850. // this one uses actual amps in floating point
  3851. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3852. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3853. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3854. #endif
  3855. }
  3856. #if HAS_DIGIPOTSS
  3857. /**
  3858. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3859. */
  3860. inline void gcode_M908() {
  3861. digitalPotWrite(
  3862. code_seen('P') ? code_value() : 0,
  3863. code_seen('S') ? code_value() : 0
  3864. );
  3865. }
  3866. #endif // HAS_DIGIPOTSS
  3867. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3868. inline void gcode_M350() {
  3869. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3870. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3871. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3872. if(code_seen('B')) microstep_mode(4,code_value());
  3873. microstep_readings();
  3874. #endif
  3875. }
  3876. /**
  3877. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3878. * S# determines MS1 or MS2, X# sets the pin high/low.
  3879. */
  3880. inline void gcode_M351() {
  3881. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3882. if (code_seen('S')) switch(code_value_long()) {
  3883. case 1:
  3884. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3885. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3886. break;
  3887. case 2:
  3888. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3889. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3890. break;
  3891. }
  3892. microstep_readings();
  3893. #endif
  3894. }
  3895. /**
  3896. * M999: Restart after being stopped
  3897. */
  3898. inline void gcode_M999() {
  3899. Stopped = false;
  3900. lcd_reset_alert_level();
  3901. gcode_LastN = Stopped_gcode_LastN;
  3902. FlushSerialRequestResend();
  3903. }
  3904. inline void gcode_T() {
  3905. tmp_extruder = code_value();
  3906. if (tmp_extruder >= EXTRUDERS) {
  3907. SERIAL_ECHO_START;
  3908. SERIAL_ECHO("T");
  3909. SERIAL_ECHO(tmp_extruder);
  3910. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3911. }
  3912. else {
  3913. #if EXTRUDERS > 1
  3914. bool make_move = false;
  3915. #endif
  3916. if (code_seen('F')) {
  3917. #if EXTRUDERS > 1
  3918. make_move = true;
  3919. #endif
  3920. next_feedrate = code_value();
  3921. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3922. }
  3923. #if EXTRUDERS > 1
  3924. if (tmp_extruder != active_extruder) {
  3925. // Save current position to return to after applying extruder offset
  3926. memcpy(destination, current_position, sizeof(destination));
  3927. #ifdef DUAL_X_CARRIAGE
  3928. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3929. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3930. // Park old head: 1) raise 2) move to park position 3) lower
  3931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3932. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3933. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3934. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3935. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3936. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3937. st_synchronize();
  3938. }
  3939. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3940. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3941. extruder_offset[active_extruder][Y_AXIS] +
  3942. extruder_offset[tmp_extruder][Y_AXIS];
  3943. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3944. extruder_offset[active_extruder][Z_AXIS] +
  3945. extruder_offset[tmp_extruder][Z_AXIS];
  3946. active_extruder = tmp_extruder;
  3947. // This function resets the max/min values - the current position may be overwritten below.
  3948. axis_is_at_home(X_AXIS);
  3949. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3950. current_position[X_AXIS] = inactive_extruder_x_pos;
  3951. inactive_extruder_x_pos = destination[X_AXIS];
  3952. }
  3953. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3954. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3955. if (active_extruder == 0 || active_extruder_parked)
  3956. current_position[X_AXIS] = inactive_extruder_x_pos;
  3957. else
  3958. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3959. inactive_extruder_x_pos = destination[X_AXIS];
  3960. extruder_duplication_enabled = false;
  3961. }
  3962. else {
  3963. // record raised toolhead position for use by unpark
  3964. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3965. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3966. active_extruder_parked = true;
  3967. delayed_move_time = 0;
  3968. }
  3969. #else // !DUAL_X_CARRIAGE
  3970. // Offset extruder (only by XY)
  3971. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3972. current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
  3973. // Set the new active extruder and position
  3974. active_extruder = tmp_extruder;
  3975. #endif // !DUAL_X_CARRIAGE
  3976. #ifdef DELTA
  3977. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3978. //sent position to plan_set_position();
  3979. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3980. #else
  3981. sync_plan_position();
  3982. #endif
  3983. // Move to the old position if 'F' was in the parameters
  3984. if (make_move && !Stopped) prepare_move();
  3985. }
  3986. #ifdef EXT_SOLENOID
  3987. st_synchronize();
  3988. disable_all_solenoids();
  3989. enable_solenoid_on_active_extruder();
  3990. #endif // EXT_SOLENOID
  3991. #endif // EXTRUDERS > 1
  3992. SERIAL_ECHO_START;
  3993. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3994. SERIAL_PROTOCOLLN((int)active_extruder);
  3995. }
  3996. }
  3997. /**
  3998. * Process Commands and dispatch them to handlers
  3999. */
  4000. void process_commands() {
  4001. if (code_seen('G')) {
  4002. int gCode = code_value_long();
  4003. switch(gCode) {
  4004. // G0, G1
  4005. case 0:
  4006. case 1:
  4007. gcode_G0_G1();
  4008. break;
  4009. // G2, G3
  4010. #ifndef SCARA
  4011. case 2: // G2 - CW ARC
  4012. case 3: // G3 - CCW ARC
  4013. gcode_G2_G3(gCode == 2);
  4014. break;
  4015. #endif
  4016. // G4 Dwell
  4017. case 4:
  4018. gcode_G4();
  4019. break;
  4020. #ifdef FWRETRACT
  4021. case 10: // G10: retract
  4022. case 11: // G11: retract_recover
  4023. gcode_G10_G11(gCode == 10);
  4024. break;
  4025. #endif //FWRETRACT
  4026. case 28: // G28: Home all axes, one at a time
  4027. gcode_G28();
  4028. break;
  4029. #if defined(MESH_BED_LEVELING)
  4030. case 29: // G29 Handle mesh based leveling
  4031. gcode_G29();
  4032. break;
  4033. #endif
  4034. #ifdef ENABLE_AUTO_BED_LEVELING
  4035. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4036. gcode_G29();
  4037. break;
  4038. #ifndef Z_PROBE_SLED
  4039. case 30: // G30 Single Z Probe
  4040. gcode_G30();
  4041. break;
  4042. #else // Z_PROBE_SLED
  4043. case 31: // G31: dock the sled
  4044. case 32: // G32: undock the sled
  4045. dock_sled(gCode == 31);
  4046. break;
  4047. #endif // Z_PROBE_SLED
  4048. #endif // ENABLE_AUTO_BED_LEVELING
  4049. case 90: // G90
  4050. relative_mode = false;
  4051. break;
  4052. case 91: // G91
  4053. relative_mode = true;
  4054. break;
  4055. case 92: // G92
  4056. gcode_G92();
  4057. break;
  4058. }
  4059. }
  4060. else if (code_seen('M')) {
  4061. switch( code_value_long() ) {
  4062. #ifdef ULTIPANEL
  4063. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4064. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4065. gcode_M0_M1();
  4066. break;
  4067. #endif // ULTIPANEL
  4068. case 17:
  4069. gcode_M17();
  4070. break;
  4071. #ifdef SDSUPPORT
  4072. case 20: // M20 - list SD card
  4073. gcode_M20(); break;
  4074. case 21: // M21 - init SD card
  4075. gcode_M21(); break;
  4076. case 22: //M22 - release SD card
  4077. gcode_M22(); break;
  4078. case 23: //M23 - Select file
  4079. gcode_M23(); break;
  4080. case 24: //M24 - Start SD print
  4081. gcode_M24(); break;
  4082. case 25: //M25 - Pause SD print
  4083. gcode_M25(); break;
  4084. case 26: //M26 - Set SD index
  4085. gcode_M26(); break;
  4086. case 27: //M27 - Get SD status
  4087. gcode_M27(); break;
  4088. case 28: //M28 - Start SD write
  4089. gcode_M28(); break;
  4090. case 29: //M29 - Stop SD write
  4091. gcode_M29(); break;
  4092. case 30: //M30 <filename> Delete File
  4093. gcode_M30(); break;
  4094. case 32: //M32 - Select file and start SD print
  4095. gcode_M32(); break;
  4096. case 928: //M928 - Start SD write
  4097. gcode_M928(); break;
  4098. #endif //SDSUPPORT
  4099. case 31: //M31 take time since the start of the SD print or an M109 command
  4100. gcode_M31();
  4101. break;
  4102. case 42: //M42 -Change pin status via gcode
  4103. gcode_M42();
  4104. break;
  4105. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4106. case 48: // M48 Z-Probe repeatability
  4107. gcode_M48();
  4108. break;
  4109. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4110. case 104: // M104
  4111. gcode_M104();
  4112. break;
  4113. case 112: // M112 Emergency Stop
  4114. gcode_M112();
  4115. break;
  4116. case 140: // M140 Set bed temp
  4117. gcode_M140();
  4118. break;
  4119. case 105: // M105 Read current temperature
  4120. gcode_M105();
  4121. return;
  4122. break;
  4123. case 109: // M109 Wait for temperature
  4124. gcode_M109();
  4125. break;
  4126. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4127. case 190: // M190 - Wait for bed heater to reach target.
  4128. gcode_M190();
  4129. break;
  4130. #endif //TEMP_BED_PIN
  4131. #if defined(FAN_PIN) && FAN_PIN > -1
  4132. case 106: //M106 Fan On
  4133. gcode_M106();
  4134. break;
  4135. case 107: //M107 Fan Off
  4136. gcode_M107();
  4137. break;
  4138. #endif //FAN_PIN
  4139. #ifdef BARICUDA
  4140. // PWM for HEATER_1_PIN
  4141. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4142. case 126: // M126 valve open
  4143. gcode_M126();
  4144. break;
  4145. case 127: // M127 valve closed
  4146. gcode_M127();
  4147. break;
  4148. #endif //HEATER_1_PIN
  4149. // PWM for HEATER_2_PIN
  4150. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4151. case 128: // M128 valve open
  4152. gcode_M128();
  4153. break;
  4154. case 129: // M129 valve closed
  4155. gcode_M129();
  4156. break;
  4157. #endif //HEATER_2_PIN
  4158. #endif //BARICUDA
  4159. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4160. case 80: // M80 - Turn on Power Supply
  4161. gcode_M80();
  4162. break;
  4163. #endif // PS_ON_PIN
  4164. case 81: // M81 - Turn off Power Supply
  4165. gcode_M81();
  4166. break;
  4167. case 82:
  4168. gcode_M82();
  4169. break;
  4170. case 83:
  4171. gcode_M83();
  4172. break;
  4173. case 18: //compatibility
  4174. case 84: // M84
  4175. gcode_M18_M84();
  4176. break;
  4177. case 85: // M85
  4178. gcode_M85();
  4179. break;
  4180. case 92: // M92
  4181. gcode_M92();
  4182. break;
  4183. case 115: // M115
  4184. gcode_M115();
  4185. break;
  4186. case 117: // M117 display message
  4187. gcode_M117();
  4188. break;
  4189. case 114: // M114
  4190. gcode_M114();
  4191. break;
  4192. case 120: // M120
  4193. gcode_M120();
  4194. break;
  4195. case 121: // M121
  4196. gcode_M121();
  4197. break;
  4198. case 119: // M119
  4199. gcode_M119();
  4200. break;
  4201. //TODO: update for all axis, use for loop
  4202. #ifdef BLINKM
  4203. case 150: // M150
  4204. gcode_M150();
  4205. break;
  4206. #endif //BLINKM
  4207. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4208. gcode_M200();
  4209. break;
  4210. case 201: // M201
  4211. gcode_M201();
  4212. break;
  4213. #if 0 // Not used for Sprinter/grbl gen6
  4214. case 202: // M202
  4215. gcode_M202();
  4216. break;
  4217. #endif
  4218. case 203: // M203 max feedrate mm/sec
  4219. gcode_M203();
  4220. break;
  4221. case 204: // M204 acclereration S normal moves T filmanent only moves
  4222. gcode_M204();
  4223. break;
  4224. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4225. gcode_M205();
  4226. break;
  4227. case 206: // M206 additional homing offset
  4228. gcode_M206();
  4229. break;
  4230. #ifdef DELTA
  4231. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4232. gcode_M665();
  4233. break;
  4234. #endif
  4235. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4236. case 666: // M666 set delta / dual endstop adjustment
  4237. gcode_M666();
  4238. break;
  4239. #endif
  4240. #ifdef FWRETRACT
  4241. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4242. gcode_M207();
  4243. break;
  4244. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4245. gcode_M208();
  4246. break;
  4247. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4248. gcode_M209();
  4249. break;
  4250. #endif // FWRETRACT
  4251. #if EXTRUDERS > 1
  4252. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4253. gcode_M218();
  4254. break;
  4255. #endif
  4256. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4257. gcode_M220();
  4258. break;
  4259. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4260. gcode_M221();
  4261. break;
  4262. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4263. gcode_M226();
  4264. break;
  4265. #if NUM_SERVOS > 0
  4266. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4267. gcode_M280();
  4268. break;
  4269. #endif // NUM_SERVOS > 0
  4270. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4271. case 300: // M300 - Play beep tone
  4272. gcode_M300();
  4273. break;
  4274. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4275. #ifdef PIDTEMP
  4276. case 301: // M301
  4277. gcode_M301();
  4278. break;
  4279. #endif // PIDTEMP
  4280. #ifdef PIDTEMPBED
  4281. case 304: // M304
  4282. gcode_M304();
  4283. break;
  4284. #endif // PIDTEMPBED
  4285. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4286. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4287. gcode_M240();
  4288. break;
  4289. #endif // CHDK || PHOTOGRAPH_PIN
  4290. #ifdef DOGLCD
  4291. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4292. gcode_M250();
  4293. break;
  4294. #endif // DOGLCD
  4295. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4296. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4297. gcode_M302();
  4298. break;
  4299. #endif // PREVENT_DANGEROUS_EXTRUDE
  4300. case 303: // M303 PID autotune
  4301. gcode_M303();
  4302. break;
  4303. #ifdef SCARA
  4304. case 360: // M360 SCARA Theta pos1
  4305. if (gcode_M360()) return;
  4306. break;
  4307. case 361: // M361 SCARA Theta pos2
  4308. if (gcode_M361()) return;
  4309. break;
  4310. case 362: // M362 SCARA Psi pos1
  4311. if (gcode_M362()) return;
  4312. break;
  4313. case 363: // M363 SCARA Psi pos2
  4314. if (gcode_M363()) return;
  4315. break;
  4316. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4317. if (gcode_M364()) return;
  4318. break;
  4319. case 365: // M365 Set SCARA scaling for X Y Z
  4320. gcode_M365();
  4321. break;
  4322. #endif // SCARA
  4323. case 400: // M400 finish all moves
  4324. gcode_M400();
  4325. break;
  4326. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4327. case 401:
  4328. gcode_M401();
  4329. break;
  4330. case 402:
  4331. gcode_M402();
  4332. break;
  4333. #endif
  4334. #ifdef FILAMENT_SENSOR
  4335. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4336. gcode_M404();
  4337. break;
  4338. case 405: //M405 Turn on filament sensor for control
  4339. gcode_M405();
  4340. break;
  4341. case 406: //M406 Turn off filament sensor for control
  4342. gcode_M406();
  4343. break;
  4344. case 407: //M407 Display measured filament diameter
  4345. gcode_M407();
  4346. break;
  4347. #endif // FILAMENT_SENSOR
  4348. case 500: // M500 Store settings in EEPROM
  4349. gcode_M500();
  4350. break;
  4351. case 501: // M501 Read settings from EEPROM
  4352. gcode_M501();
  4353. break;
  4354. case 502: // M502 Revert to default settings
  4355. gcode_M502();
  4356. break;
  4357. case 503: // M503 print settings currently in memory
  4358. gcode_M503();
  4359. break;
  4360. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4361. case 540:
  4362. gcode_M540();
  4363. break;
  4364. #endif
  4365. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4366. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4367. gcode_SET_Z_PROBE_OFFSET();
  4368. break;
  4369. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4370. #ifdef FILAMENTCHANGEENABLE
  4371. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4372. gcode_M600();
  4373. break;
  4374. #endif // FILAMENTCHANGEENABLE
  4375. #ifdef DUAL_X_CARRIAGE
  4376. case 605:
  4377. gcode_M605();
  4378. break;
  4379. #endif // DUAL_X_CARRIAGE
  4380. case 907: // M907 Set digital trimpot motor current using axis codes.
  4381. gcode_M907();
  4382. break;
  4383. #if HAS_DIGIPOTSS
  4384. case 908: // M908 Control digital trimpot directly.
  4385. gcode_M908();
  4386. break;
  4387. #endif // HAS_DIGIPOTSS
  4388. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4389. gcode_M350();
  4390. break;
  4391. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4392. gcode_M351();
  4393. break;
  4394. case 999: // M999: Restart after being Stopped
  4395. gcode_M999();
  4396. break;
  4397. }
  4398. }
  4399. else if (code_seen('T')) {
  4400. gcode_T();
  4401. }
  4402. else {
  4403. SERIAL_ECHO_START;
  4404. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4405. SERIAL_ECHO(cmdbuffer[bufindr]);
  4406. SERIAL_ECHOLNPGM("\"");
  4407. }
  4408. ClearToSend();
  4409. }
  4410. void FlushSerialRequestResend()
  4411. {
  4412. //char cmdbuffer[bufindr][100]="Resend:";
  4413. MYSERIAL.flush();
  4414. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4415. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4416. ClearToSend();
  4417. }
  4418. void ClearToSend()
  4419. {
  4420. previous_millis_cmd = millis();
  4421. #ifdef SDSUPPORT
  4422. if(fromsd[bufindr])
  4423. return;
  4424. #endif //SDSUPPORT
  4425. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4426. }
  4427. void get_coordinates() {
  4428. for (int i = 0; i < NUM_AXIS; i++) {
  4429. if (code_seen(axis_codes[i]))
  4430. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4431. else
  4432. destination[i] = current_position[i];
  4433. }
  4434. if (code_seen('F')) {
  4435. next_feedrate = code_value();
  4436. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4437. }
  4438. }
  4439. void get_arc_coordinates()
  4440. {
  4441. #ifdef SF_ARC_FIX
  4442. bool relative_mode_backup = relative_mode;
  4443. relative_mode = true;
  4444. #endif
  4445. get_coordinates();
  4446. #ifdef SF_ARC_FIX
  4447. relative_mode=relative_mode_backup;
  4448. #endif
  4449. if(code_seen('I')) {
  4450. offset[0] = code_value();
  4451. }
  4452. else {
  4453. offset[0] = 0.0;
  4454. }
  4455. if(code_seen('J')) {
  4456. offset[1] = code_value();
  4457. }
  4458. else {
  4459. offset[1] = 0.0;
  4460. }
  4461. }
  4462. void clamp_to_software_endstops(float target[3])
  4463. {
  4464. if (min_software_endstops) {
  4465. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4466. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4467. float negative_z_offset = 0;
  4468. #ifdef ENABLE_AUTO_BED_LEVELING
  4469. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4470. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4471. #endif
  4472. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4473. }
  4474. if (max_software_endstops) {
  4475. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4476. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4477. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4478. }
  4479. }
  4480. #ifdef DELTA
  4481. void recalc_delta_settings(float radius, float diagonal_rod)
  4482. {
  4483. delta_tower1_x= -SIN_60*radius; // front left tower
  4484. delta_tower1_y= -COS_60*radius;
  4485. delta_tower2_x= SIN_60*radius; // front right tower
  4486. delta_tower2_y= -COS_60*radius;
  4487. delta_tower3_x= 0.0; // back middle tower
  4488. delta_tower3_y= radius;
  4489. delta_diagonal_rod_2= sq(diagonal_rod);
  4490. }
  4491. void calculate_delta(float cartesian[3])
  4492. {
  4493. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4494. - sq(delta_tower1_x-cartesian[X_AXIS])
  4495. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4496. ) + cartesian[Z_AXIS];
  4497. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4498. - sq(delta_tower2_x-cartesian[X_AXIS])
  4499. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4500. ) + cartesian[Z_AXIS];
  4501. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4502. - sq(delta_tower3_x-cartesian[X_AXIS])
  4503. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4504. ) + cartesian[Z_AXIS];
  4505. /*
  4506. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4507. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4508. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4509. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4510. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4511. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4512. */
  4513. }
  4514. #ifdef ENABLE_AUTO_BED_LEVELING
  4515. // Adjust print surface height by linear interpolation over the bed_level array.
  4516. int delta_grid_spacing[2] = { 0, 0 };
  4517. void adjust_delta(float cartesian[3])
  4518. {
  4519. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4520. return; // G29 not done
  4521. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4522. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4523. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4524. int floor_x = floor(grid_x);
  4525. int floor_y = floor(grid_y);
  4526. float ratio_x = grid_x - floor_x;
  4527. float ratio_y = grid_y - floor_y;
  4528. float z1 = bed_level[floor_x+half][floor_y+half];
  4529. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4530. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4531. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4532. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4533. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4534. float offset = (1-ratio_x)*left + ratio_x*right;
  4535. delta[X_AXIS] += offset;
  4536. delta[Y_AXIS] += offset;
  4537. delta[Z_AXIS] += offset;
  4538. /*
  4539. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4540. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4541. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4542. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4543. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4544. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4545. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4546. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4547. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4548. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4549. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4550. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4551. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4552. */
  4553. }
  4554. #endif //ENABLE_AUTO_BED_LEVELING
  4555. void prepare_move_raw()
  4556. {
  4557. previous_millis_cmd = millis();
  4558. calculate_delta(destination);
  4559. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4560. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4561. active_extruder);
  4562. for(int8_t i=0; i < NUM_AXIS; i++) {
  4563. current_position[i] = destination[i];
  4564. }
  4565. }
  4566. #endif //DELTA
  4567. #if defined(MESH_BED_LEVELING)
  4568. #if !defined(MIN)
  4569. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4570. #endif // ! MIN
  4571. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4572. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4573. {
  4574. if (!mbl.active) {
  4575. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4576. for(int8_t i=0; i < NUM_AXIS; i++) {
  4577. current_position[i] = destination[i];
  4578. }
  4579. return;
  4580. }
  4581. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4582. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4583. int ix = mbl.select_x_index(x);
  4584. int iy = mbl.select_y_index(y);
  4585. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4586. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4587. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4588. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4589. if (pix == ix && piy == iy) {
  4590. // Start and end on same mesh square
  4591. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4592. for(int8_t i=0; i < NUM_AXIS; i++) {
  4593. current_position[i] = destination[i];
  4594. }
  4595. return;
  4596. }
  4597. float nx, ny, ne, normalized_dist;
  4598. if (ix > pix && (x_splits) & BIT(ix)) {
  4599. nx = mbl.get_x(ix);
  4600. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4601. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4602. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4603. x_splits ^= BIT(ix);
  4604. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4605. nx = mbl.get_x(pix);
  4606. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4607. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4608. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4609. x_splits ^= BIT(pix);
  4610. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4611. ny = mbl.get_y(iy);
  4612. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4613. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4614. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4615. y_splits ^= BIT(iy);
  4616. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4617. ny = mbl.get_y(piy);
  4618. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4619. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4620. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4621. y_splits ^= BIT(piy);
  4622. } else {
  4623. // Already split on a border
  4624. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4625. for(int8_t i=0; i < NUM_AXIS; i++) {
  4626. current_position[i] = destination[i];
  4627. }
  4628. return;
  4629. }
  4630. // Do the split and look for more borders
  4631. destination[X_AXIS] = nx;
  4632. destination[Y_AXIS] = ny;
  4633. destination[E_AXIS] = ne;
  4634. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4635. destination[X_AXIS] = x;
  4636. destination[Y_AXIS] = y;
  4637. destination[E_AXIS] = e;
  4638. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4639. }
  4640. #endif // MESH_BED_LEVELING
  4641. void prepare_move()
  4642. {
  4643. clamp_to_software_endstops(destination);
  4644. previous_millis_cmd = millis();
  4645. #ifdef SCARA //for now same as delta-code
  4646. float difference[NUM_AXIS];
  4647. for (int8_t i=0; i < NUM_AXIS; i++) {
  4648. difference[i] = destination[i] - current_position[i];
  4649. }
  4650. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4651. sq(difference[Y_AXIS]) +
  4652. sq(difference[Z_AXIS]));
  4653. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4654. if (cartesian_mm < 0.000001) { return; }
  4655. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4656. int steps = max(1, int(scara_segments_per_second * seconds));
  4657. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4658. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4659. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4660. for (int s = 1; s <= steps; s++) {
  4661. float fraction = float(s) / float(steps);
  4662. for(int8_t i=0; i < NUM_AXIS; i++) {
  4663. destination[i] = current_position[i] + difference[i] * fraction;
  4664. }
  4665. calculate_delta(destination);
  4666. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4667. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4668. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4669. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4670. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4671. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4672. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4673. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4674. active_extruder);
  4675. }
  4676. #endif // SCARA
  4677. #ifdef DELTA
  4678. float difference[NUM_AXIS];
  4679. for (int8_t i=0; i < NUM_AXIS; i++) {
  4680. difference[i] = destination[i] - current_position[i];
  4681. }
  4682. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4683. sq(difference[Y_AXIS]) +
  4684. sq(difference[Z_AXIS]));
  4685. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4686. if (cartesian_mm < 0.000001) { return; }
  4687. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4688. int steps = max(1, int(delta_segments_per_second * seconds));
  4689. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4690. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4691. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4692. for (int s = 1; s <= steps; s++) {
  4693. float fraction = float(s) / float(steps);
  4694. for(int8_t i=0; i < NUM_AXIS; i++) {
  4695. destination[i] = current_position[i] + difference[i] * fraction;
  4696. }
  4697. calculate_delta(destination);
  4698. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4699. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4700. active_extruder);
  4701. }
  4702. #endif // DELTA
  4703. #ifdef DUAL_X_CARRIAGE
  4704. if (active_extruder_parked)
  4705. {
  4706. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4707. {
  4708. // move duplicate extruder into correct duplication position.
  4709. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4710. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4711. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4712. sync_plan_position();
  4713. st_synchronize();
  4714. extruder_duplication_enabled = true;
  4715. active_extruder_parked = false;
  4716. }
  4717. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4718. {
  4719. if (current_position[E_AXIS] == destination[E_AXIS])
  4720. {
  4721. // this is a travel move - skit it but keep track of current position (so that it can later
  4722. // be used as start of first non-travel move)
  4723. if (delayed_move_time != 0xFFFFFFFFUL)
  4724. {
  4725. memcpy(current_position, destination, sizeof(current_position));
  4726. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4727. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4728. delayed_move_time = millis();
  4729. return;
  4730. }
  4731. }
  4732. delayed_move_time = 0;
  4733. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4734. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4736. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4738. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4739. active_extruder_parked = false;
  4740. }
  4741. }
  4742. #endif //DUAL_X_CARRIAGE
  4743. #if ! (defined DELTA || defined SCARA)
  4744. // Do not use feedmultiply for E or Z only moves
  4745. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4747. } else {
  4748. #if defined(MESH_BED_LEVELING)
  4749. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4750. return;
  4751. #else
  4752. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4753. #endif // MESH_BED_LEVELING
  4754. }
  4755. #endif // !(DELTA || SCARA)
  4756. for(int8_t i=0; i < NUM_AXIS; i++) {
  4757. current_position[i] = destination[i];
  4758. }
  4759. }
  4760. void prepare_arc_move(char isclockwise) {
  4761. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4762. // Trace the arc
  4763. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4764. // As far as the parser is concerned, the position is now == target. In reality the
  4765. // motion control system might still be processing the action and the real tool position
  4766. // in any intermediate location.
  4767. for(int8_t i=0; i < NUM_AXIS; i++) {
  4768. current_position[i] = destination[i];
  4769. }
  4770. previous_millis_cmd = millis();
  4771. }
  4772. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4773. #if defined(FAN_PIN)
  4774. #if CONTROLLERFAN_PIN == FAN_PIN
  4775. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4776. #endif
  4777. #endif
  4778. unsigned long lastMotor = 0; // Last time a motor was turned on
  4779. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4780. void controllerFan() {
  4781. uint32_t ms = millis();
  4782. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4783. lastMotorCheck = ms;
  4784. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4785. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4786. #if EXTRUDERS > 1
  4787. || E1_ENABLE_READ == E_ENABLE_ON
  4788. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4789. || X2_ENABLE_READ == X_ENABLE_ON
  4790. #endif
  4791. #if EXTRUDERS > 2
  4792. || E2_ENABLE_READ == E_ENABLE_ON
  4793. #if EXTRUDERS > 3
  4794. || E3_ENABLE_READ == E_ENABLE_ON
  4795. #endif
  4796. #endif
  4797. #endif
  4798. ) {
  4799. lastMotor = ms; //... set time to NOW so the fan will turn on
  4800. }
  4801. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4802. // allows digital or PWM fan output to be used (see M42 handling)
  4803. digitalWrite(CONTROLLERFAN_PIN, speed);
  4804. analogWrite(CONTROLLERFAN_PIN, speed);
  4805. }
  4806. }
  4807. #endif
  4808. #ifdef SCARA
  4809. void calculate_SCARA_forward_Transform(float f_scara[3])
  4810. {
  4811. // Perform forward kinematics, and place results in delta[3]
  4812. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4813. float x_sin, x_cos, y_sin, y_cos;
  4814. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4815. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4816. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4817. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4818. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4819. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4820. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4821. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4822. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4823. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4824. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4825. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4826. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4827. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4828. }
  4829. void calculate_delta(float cartesian[3]){
  4830. //reverse kinematics.
  4831. // Perform reversed kinematics, and place results in delta[3]
  4832. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4833. float SCARA_pos[2];
  4834. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4835. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4836. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4837. #if (Linkage_1 == Linkage_2)
  4838. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4839. #else
  4840. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4841. #endif
  4842. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4843. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4844. SCARA_K2 = Linkage_2 * SCARA_S2;
  4845. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4846. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4847. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4848. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4849. delta[Z_AXIS] = cartesian[Z_AXIS];
  4850. /*
  4851. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4852. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4853. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4854. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4855. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4856. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4857. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4858. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4859. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4860. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4861. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4862. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4863. SERIAL_ECHOLN(" ");*/
  4864. }
  4865. #endif
  4866. #ifdef TEMP_STAT_LEDS
  4867. static bool blue_led = false;
  4868. static bool red_led = false;
  4869. static uint32_t stat_update = 0;
  4870. void handle_status_leds(void) {
  4871. float max_temp = 0.0;
  4872. if(millis() > stat_update) {
  4873. stat_update += 500; // Update every 0.5s
  4874. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4875. max_temp = max(max_temp, degHotend(cur_extruder));
  4876. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4877. }
  4878. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4879. max_temp = max(max_temp, degTargetBed());
  4880. max_temp = max(max_temp, degBed());
  4881. #endif
  4882. if((max_temp > 55.0) && (red_led == false)) {
  4883. digitalWrite(STAT_LED_RED, 1);
  4884. digitalWrite(STAT_LED_BLUE, 0);
  4885. red_led = true;
  4886. blue_led = false;
  4887. }
  4888. if((max_temp < 54.0) && (blue_led == false)) {
  4889. digitalWrite(STAT_LED_RED, 0);
  4890. digitalWrite(STAT_LED_BLUE, 1);
  4891. red_led = false;
  4892. blue_led = true;
  4893. }
  4894. }
  4895. }
  4896. #endif
  4897. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4898. {
  4899. #if defined(KILL_PIN) && KILL_PIN > -1
  4900. static int killCount = 0; // make the inactivity button a bit less responsive
  4901. const int KILL_DELAY = 750;
  4902. #endif
  4903. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4904. if(card.sdprinting) {
  4905. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4906. filrunout(); }
  4907. #endif
  4908. #if defined(HOME_PIN) && HOME_PIN > -1
  4909. static int homeDebounceCount = 0; // poor man's debouncing count
  4910. const int HOME_DEBOUNCE_DELAY = 750;
  4911. #endif
  4912. if(buflen < (BUFSIZE-1))
  4913. get_command();
  4914. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4915. if(max_inactive_time)
  4916. kill();
  4917. if(stepper_inactive_time) {
  4918. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4919. {
  4920. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4921. disable_x();
  4922. disable_y();
  4923. disable_z();
  4924. disable_e0();
  4925. disable_e1();
  4926. disable_e2();
  4927. disable_e3();
  4928. }
  4929. }
  4930. }
  4931. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4932. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4933. {
  4934. chdkActive = false;
  4935. WRITE(CHDK, LOW);
  4936. }
  4937. #endif
  4938. #if defined(KILL_PIN) && KILL_PIN > -1
  4939. // Check if the kill button was pressed and wait just in case it was an accidental
  4940. // key kill key press
  4941. // -------------------------------------------------------------------------------
  4942. if( 0 == READ(KILL_PIN) )
  4943. {
  4944. killCount++;
  4945. }
  4946. else if (killCount > 0)
  4947. {
  4948. killCount--;
  4949. }
  4950. // Exceeded threshold and we can confirm that it was not accidental
  4951. // KILL the machine
  4952. // ----------------------------------------------------------------
  4953. if ( killCount >= KILL_DELAY)
  4954. {
  4955. kill();
  4956. }
  4957. #endif
  4958. #if defined(HOME_PIN) && HOME_PIN > -1
  4959. // Check to see if we have to home, use poor man's debouncer
  4960. // ---------------------------------------------------------
  4961. if ( 0 == READ(HOME_PIN) )
  4962. {
  4963. if (homeDebounceCount == 0)
  4964. {
  4965. enquecommands_P((PSTR("G28")));
  4966. homeDebounceCount++;
  4967. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4968. }
  4969. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4970. {
  4971. homeDebounceCount++;
  4972. }
  4973. else
  4974. {
  4975. homeDebounceCount = 0;
  4976. }
  4977. }
  4978. #endif
  4979. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4980. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4981. #endif
  4982. #ifdef EXTRUDER_RUNOUT_PREVENT
  4983. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4984. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4985. {
  4986. bool oldstatus=E0_ENABLE_READ;
  4987. enable_e0();
  4988. float oldepos=current_position[E_AXIS];
  4989. float oldedes=destination[E_AXIS];
  4990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4991. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4992. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4993. current_position[E_AXIS]=oldepos;
  4994. destination[E_AXIS]=oldedes;
  4995. plan_set_e_position(oldepos);
  4996. previous_millis_cmd=millis();
  4997. st_synchronize();
  4998. E0_ENABLE_WRITE(oldstatus);
  4999. }
  5000. #endif
  5001. #if defined(DUAL_X_CARRIAGE)
  5002. // handle delayed move timeout
  5003. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5004. {
  5005. // travel moves have been received so enact them
  5006. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5007. memcpy(destination,current_position,sizeof(destination));
  5008. prepare_move();
  5009. }
  5010. #endif
  5011. #ifdef TEMP_STAT_LEDS
  5012. handle_status_leds();
  5013. #endif
  5014. check_axes_activity();
  5015. }
  5016. void kill()
  5017. {
  5018. cli(); // Stop interrupts
  5019. disable_heater();
  5020. disable_x();
  5021. disable_y();
  5022. disable_z();
  5023. disable_e0();
  5024. disable_e1();
  5025. disable_e2();
  5026. disable_e3();
  5027. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5028. pinMode(PS_ON_PIN,INPUT);
  5029. #endif
  5030. SERIAL_ERROR_START;
  5031. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5032. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5033. // FMC small patch to update the LCD before ending
  5034. sei(); // enable interrupts
  5035. for ( int i=5; i--; lcd_update())
  5036. {
  5037. delay(200);
  5038. }
  5039. cli(); // disable interrupts
  5040. suicide();
  5041. while(1) { /* Intentionally left empty */ } // Wait for reset
  5042. }
  5043. #ifdef FILAMENT_RUNOUT_SENSOR
  5044. void filrunout()
  5045. {
  5046. if filrunoutEnqued == false {
  5047. filrunoutEnqued = true;
  5048. enquecommand("M600");
  5049. }
  5050. }
  5051. #endif
  5052. void Stop()
  5053. {
  5054. disable_heater();
  5055. if(Stopped == false) {
  5056. Stopped = true;
  5057. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5058. SERIAL_ERROR_START;
  5059. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5060. LCD_MESSAGEPGM(MSG_STOPPED);
  5061. }
  5062. }
  5063. bool IsStopped() { return Stopped; };
  5064. #ifdef FAST_PWM_FAN
  5065. void setPwmFrequency(uint8_t pin, int val)
  5066. {
  5067. val &= 0x07;
  5068. switch(digitalPinToTimer(pin))
  5069. {
  5070. #if defined(TCCR0A)
  5071. case TIMER0A:
  5072. case TIMER0B:
  5073. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5074. // TCCR0B |= val;
  5075. break;
  5076. #endif
  5077. #if defined(TCCR1A)
  5078. case TIMER1A:
  5079. case TIMER1B:
  5080. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5081. // TCCR1B |= val;
  5082. break;
  5083. #endif
  5084. #if defined(TCCR2)
  5085. case TIMER2:
  5086. case TIMER2:
  5087. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5088. TCCR2 |= val;
  5089. break;
  5090. #endif
  5091. #if defined(TCCR2A)
  5092. case TIMER2A:
  5093. case TIMER2B:
  5094. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5095. TCCR2B |= val;
  5096. break;
  5097. #endif
  5098. #if defined(TCCR3A)
  5099. case TIMER3A:
  5100. case TIMER3B:
  5101. case TIMER3C:
  5102. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5103. TCCR3B |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR4A)
  5107. case TIMER4A:
  5108. case TIMER4B:
  5109. case TIMER4C:
  5110. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5111. TCCR4B |= val;
  5112. break;
  5113. #endif
  5114. #if defined(TCCR5A)
  5115. case TIMER5A:
  5116. case TIMER5B:
  5117. case TIMER5C:
  5118. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5119. TCCR5B |= val;
  5120. break;
  5121. #endif
  5122. }
  5123. }
  5124. #endif //FAST_PWM_FAN
  5125. bool setTargetedHotend(int code){
  5126. tmp_extruder = active_extruder;
  5127. if(code_seen('T')) {
  5128. tmp_extruder = code_value();
  5129. if(tmp_extruder >= EXTRUDERS) {
  5130. SERIAL_ECHO_START;
  5131. switch(code){
  5132. case 104:
  5133. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5134. break;
  5135. case 105:
  5136. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5137. break;
  5138. case 109:
  5139. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5140. break;
  5141. case 218:
  5142. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5143. break;
  5144. case 221:
  5145. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5146. break;
  5147. }
  5148. SERIAL_ECHOLN(tmp_extruder);
  5149. return true;
  5150. }
  5151. }
  5152. return false;
  5153. }
  5154. float calculate_volumetric_multiplier(float diameter) {
  5155. if (!volumetric_enabled || diameter == 0) return 1.0;
  5156. float d2 = diameter * 0.5;
  5157. return 1.0 / (M_PI * d2 * d2);
  5158. }
  5159. void calculate_volumetric_multipliers() {
  5160. for (int i=0; i<EXTRUDERS; i++)
  5161. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5162. }