My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 274KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - Retract filament according to settings of M207
  97. * G11 - Retract recover filament according to settings of M208
  98. * G12 - Clean tool
  99. * G20 - Set input units to inches
  100. * G21 - Set input units to millimeters
  101. * G28 - Home one or more axes
  102. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  103. * G30 - Single Z probe, probes bed at current XY location.
  104. * G31 - Dock sled (Z_PROBE_SLED only)
  105. * G32 - Undock sled (Z_PROBE_SLED only)
  106. * G90 - Use Absolute Coordinates
  107. * G91 - Use Relative Coordinates
  108. * G92 - Set current position to coordinates given
  109. *
  110. * "M" Codes
  111. *
  112. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  113. * M1 - Same as M0
  114. * M17 - Enable/Power all stepper motors
  115. * M18 - Disable all stepper motors; same as M84
  116. * M20 - List SD card
  117. * M21 - Init SD card
  118. * M22 - Release SD card
  119. * M23 - Select SD file (M23 filename.g)
  120. * M24 - Start/resume SD print
  121. * M25 - Pause SD print
  122. * M26 - Set SD position in bytes (M26 S12345)
  123. * M27 - Report SD print status
  124. * M28 - Start SD write (M28 filename.g)
  125. * M29 - Stop SD write
  126. * M30 - Delete file from SD (M30 filename.g)
  127. * M31 - Output time since last M109 or SD card start to serial
  128. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  129. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  130. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path
  133. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  134. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  135. * M75 - Start the print job timer
  136. * M76 - Pause the print job timer
  137. * M77 - Stop the print job timer
  138. * M78 - Show statistical information about the print jobs
  139. * M80 - Turn on Power Supply
  140. * M81 - Turn off Power Supply
  141. * M82 - Set E codes absolute (default)
  142. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  143. * M84 - Disable steppers until next move,
  144. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  147. * M104 - Set extruder target temp
  148. * M105 - Read current temp
  149. * M106 - Fan on
  150. * M107 - Fan off
  151. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number
  156. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  157. * M112 - Emergency stop
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  159. * M114 - Output current position to serial port
  160. * M115 - Capabilities string
  161. * M117 - Display a message on the controller screen
  162. * M119 - Output Endstop status to serial port
  163. * M120 - Enable endstop detection
  164. * M121 - Disable endstop detection
  165. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  166. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  167. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M140 - Set bed target temp
  170. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units
  172. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  173. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  174. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  177. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  180. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  181. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  182. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  190. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  193. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  194. * M221 - Set Flow Percentage: S<percent>
  195. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  196. * M240 - Trigger a camera to take a photograph
  197. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  198. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  199. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  200. * M301 - Set PID parameters P I and D
  201. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  202. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  203. * M304 - Set bed PID parameters P I and D
  204. * M380 - Activate solenoid on active extruder
  205. * M381 - Disable all solenoids
  206. * M400 - Finish all moves
  207. * M401 - Lower Z probe if present
  208. * M402 - Raise Z probe if present
  209. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  210. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  211. * M406 - Disable Filament Sensor extrusion control
  212. * M407 - Display measured filament diameter in millimeters
  213. * M410 - Quickstop. Abort all the planned moves
  214. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  215. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  216. * M428 - Set the home_offset logically based on the current_position
  217. * M500 - Store parameters in EEPROM
  218. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  219. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  220. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  221. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  222. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  223. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  224. * M666 - Set delta endstop adjustment
  225. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  227. * M907 - Set digital trimpot motor current using axis codes.
  228. * M908 - Control digital trimpot directly.
  229. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  230. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  231. * M350 - Set microstepping mode.
  232. * M351 - Toggle MS1 MS2 pins directly.
  233. *
  234. * ************ SCARA Specific - This can change to suit future G-code regulations
  235. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  236. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  237. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  238. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  239. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  240. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging Only)
  245. * M928 - Start SD logging (M928 filename.g) - ended by M29
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. static float feedrate = 1500.0, saved_feedrate;
  265. float current_position[NUM_AXIS] = { 0.0 };
  266. static float destination[NUM_AXIS] = { 0.0 };
  267. bool axis_known_position[3] = { false };
  268. bool axis_homed[3] = { false };
  269. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  270. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  271. static char* current_command, *current_command_args;
  272. static uint8_t cmd_queue_index_r = 0,
  273. cmd_queue_index_w = 0,
  274. commands_in_queue = 0;
  275. #if ENABLED(INCH_MODE_SUPPORT)
  276. float linear_unit_factor = 1.0;
  277. float volumetric_unit_factor = 1.0;
  278. #endif
  279. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  280. TempUnit input_temp_units = TEMPUNIT_C;
  281. #endif
  282. const float homing_feedrate[] = HOMING_FEEDRATE;
  283. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  284. int feedrate_multiplier = 100; //100->1 200->2
  285. int saved_feedrate_multiplier;
  286. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  287. bool volumetric_enabled = false;
  288. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  289. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  290. // The distance that XYZ has been offset by G92. Reset by G28.
  291. float position_shift[3] = { 0 };
  292. // This offset is added to the configured home position.
  293. // Set by M206, M428, or menu item. Saved to EEPROM.
  294. float home_offset[3] = { 0 };
  295. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  296. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  297. // Software Endstops. Default to configured limits.
  298. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  299. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  300. #if ENABLED(DELTA)
  301. float delta_clip_start_height = Z_MAX_POS;
  302. #endif
  303. #if FAN_COUNT > 0
  304. int fanSpeeds[FAN_COUNT] = { 0 };
  305. #endif
  306. // The active extruder (tool). Set with T<extruder> command.
  307. uint8_t active_extruder = 0;
  308. // Relative Mode. Enable with G91, disable with G90.
  309. static bool relative_mode = false;
  310. volatile bool wait_for_heatup = true;
  311. const char errormagic[] PROGMEM = "Error:";
  312. const char echomagic[] PROGMEM = "echo:";
  313. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  314. static int serial_count = 0;
  315. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  316. static char* seen_pointer;
  317. // Next Immediate GCode Command pointer. NULL if none.
  318. const char* queued_commands_P = NULL;
  319. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  320. // Inactivity shutdown
  321. millis_t previous_cmd_ms = 0;
  322. static millis_t max_inactive_time = 0;
  323. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  324. // Print Job Timer
  325. #if ENABLED(PRINTCOUNTER)
  326. PrintCounter print_job_timer = PrintCounter();
  327. #else
  328. Stopwatch print_job_timer = Stopwatch();
  329. #endif
  330. // Buzzer
  331. #if HAS_BUZZER
  332. #if ENABLED(SPEAKER)
  333. Speaker buzzer;
  334. #else
  335. Buzzer buzzer;
  336. #endif
  337. #endif
  338. static uint8_t target_extruder;
  339. #if HAS_BED_PROBE
  340. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  341. #endif
  342. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  343. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  344. int xy_probe_speed = XY_PROBE_SPEED;
  345. bool bed_leveling_in_progress = false;
  346. #define XY_PROBE_FEEDRATE xy_probe_speed
  347. #elif defined(XY_PROBE_SPEED)
  348. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  349. #else
  350. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  351. #endif
  352. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  353. float z_endstop_adj = 0;
  354. #endif
  355. // Extruder offsets
  356. #if HOTENDS > 1
  357. float hotend_offset[][HOTENDS] = {
  358. HOTEND_OFFSET_X,
  359. HOTEND_OFFSET_Y
  360. #ifdef HOTEND_OFFSET_Z
  361. , HOTEND_OFFSET_Z
  362. #endif
  363. };
  364. #endif
  365. #if HAS_Z_SERVO_ENDSTOP
  366. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  367. #endif
  368. #if ENABLED(BARICUDA)
  369. int baricuda_valve_pressure = 0;
  370. int baricuda_e_to_p_pressure = 0;
  371. #endif
  372. #if ENABLED(FWRETRACT)
  373. bool autoretract_enabled = false;
  374. bool retracted[EXTRUDERS] = { false };
  375. bool retracted_swap[EXTRUDERS] = { false };
  376. float retract_length = RETRACT_LENGTH;
  377. float retract_length_swap = RETRACT_LENGTH_SWAP;
  378. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  379. float retract_zlift = RETRACT_ZLIFT;
  380. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  381. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  382. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  383. #endif // FWRETRACT
  384. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  385. bool powersupply =
  386. #if ENABLED(PS_DEFAULT_OFF)
  387. false
  388. #else
  389. true
  390. #endif
  391. ;
  392. #endif
  393. #if ENABLED(DELTA)
  394. #define TOWER_1 X_AXIS
  395. #define TOWER_2 Y_AXIS
  396. #define TOWER_3 Z_AXIS
  397. float delta[3] = { 0 };
  398. #define SIN_60 0.8660254037844386
  399. #define COS_60 0.5
  400. float endstop_adj[3] = { 0 };
  401. // these are the default values, can be overriden with M665
  402. float delta_radius = DELTA_RADIUS;
  403. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  404. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  405. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  406. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  407. float delta_tower3_x = 0; // back middle tower
  408. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  409. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  410. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  411. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  412. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  413. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  414. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  415. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  416. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  417. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  418. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  419. int delta_grid_spacing[2] = { 0, 0 };
  420. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  421. #endif
  422. #else
  423. static bool home_all_axis = true;
  424. #endif
  425. #if ENABLED(SCARA)
  426. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  427. static float delta[3] = { 0 };
  428. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  429. #endif
  430. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  431. //Variables for Filament Sensor input
  432. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  433. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  434. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  435. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  436. int filwidth_delay_index1 = 0; //index into ring buffer
  437. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  438. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  439. #endif
  440. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  441. static bool filament_ran_out = false;
  442. #endif
  443. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  444. FilamentChangeMenuResponse filament_change_menu_response;
  445. #endif
  446. #if ENABLED(MIXING_EXTRUDER)
  447. float mixing_factor[MIXING_STEPPERS];
  448. #if MIXING_VIRTUAL_TOOLS > 1
  449. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  450. #endif
  451. #endif
  452. static bool send_ok[BUFSIZE];
  453. #if HAS_SERVOS
  454. Servo servo[NUM_SERVOS];
  455. #define MOVE_SERVO(I, P) servo[I].move(P)
  456. #if HAS_Z_SERVO_ENDSTOP
  457. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  458. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  459. #endif
  460. #endif
  461. #ifdef CHDK
  462. millis_t chdkHigh = 0;
  463. boolean chdkActive = false;
  464. #endif
  465. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  466. int lpq_len = 20;
  467. #endif
  468. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  469. // States for managing Marlin and host communication
  470. // Marlin sends messages if blocked or busy
  471. enum MarlinBusyState {
  472. NOT_BUSY, // Not in a handler
  473. IN_HANDLER, // Processing a GCode
  474. IN_PROCESS, // Known to be blocking command input (as in G29)
  475. PAUSED_FOR_USER, // Blocking pending any input
  476. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  477. };
  478. static MarlinBusyState busy_state = NOT_BUSY;
  479. static millis_t next_busy_signal_ms = 0;
  480. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  481. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  482. #else
  483. #define host_keepalive() ;
  484. #define KEEPALIVE_STATE(n) ;
  485. #endif // HOST_KEEPALIVE_FEATURE
  486. /**
  487. * ***************************************************************************
  488. * ******************************** FUNCTIONS ********************************
  489. * ***************************************************************************
  490. */
  491. void stop();
  492. void get_available_commands();
  493. void process_next_command();
  494. void prepare_move_to_destination();
  495. #if ENABLED(ARC_SUPPORT)
  496. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  497. #endif
  498. #if ENABLED(BEZIER_CURVE_SUPPORT)
  499. void plan_cubic_move(const float offset[4]);
  500. #endif
  501. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  502. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  503. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  504. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  505. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  506. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  507. static void report_current_position();
  508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  509. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  510. serialprintPGM(prefix);
  511. SERIAL_ECHOPAIR("(", x);
  512. SERIAL_ECHOPAIR(", ", y);
  513. SERIAL_ECHOPAIR(", ", z);
  514. SERIAL_ECHOPGM(")");
  515. if (suffix) serialprintPGM(suffix);
  516. else SERIAL_EOL;
  517. }
  518. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  519. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  520. }
  521. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  522. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  523. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  524. }
  525. #endif
  526. #define DEBUG_POS(SUFFIX,VAR) do { \
  527. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  528. #endif
  529. #if ENABLED(DELTA) || ENABLED(SCARA)
  530. inline void sync_plan_position_delta() {
  531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  532. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  533. #endif
  534. calculate_delta(current_position);
  535. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  536. }
  537. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  538. #else
  539. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  540. #endif
  541. #if ENABLED(SDSUPPORT)
  542. #include "SdFatUtil.h"
  543. int freeMemory() { return SdFatUtil::FreeRam(); }
  544. #else
  545. extern "C" {
  546. extern unsigned int __bss_end;
  547. extern unsigned int __heap_start;
  548. extern void* __brkval;
  549. int freeMemory() {
  550. int free_memory;
  551. if ((int)__brkval == 0)
  552. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  553. else
  554. free_memory = ((int)&free_memory) - ((int)__brkval);
  555. return free_memory;
  556. }
  557. }
  558. #endif //!SDSUPPORT
  559. #if ENABLED(DIGIPOT_I2C)
  560. extern void digipot_i2c_set_current(int channel, float current);
  561. extern void digipot_i2c_init();
  562. #endif
  563. /**
  564. * Inject the next "immediate" command, when possible.
  565. * Return true if any immediate commands remain to inject.
  566. */
  567. static bool drain_queued_commands_P() {
  568. if (queued_commands_P != NULL) {
  569. size_t i = 0;
  570. char c, cmd[30];
  571. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  572. cmd[sizeof(cmd) - 1] = '\0';
  573. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  574. cmd[i] = '\0';
  575. if (enqueue_and_echo_command(cmd)) { // success?
  576. if (c) // newline char?
  577. queued_commands_P += i + 1; // advance to the next command
  578. else
  579. queued_commands_P = NULL; // nul char? no more commands
  580. }
  581. }
  582. return (queued_commands_P != NULL); // return whether any more remain
  583. }
  584. /**
  585. * Record one or many commands to run from program memory.
  586. * Aborts the current queue, if any.
  587. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  588. */
  589. void enqueue_and_echo_commands_P(const char* pgcode) {
  590. queued_commands_P = pgcode;
  591. drain_queued_commands_P(); // first command executed asap (when possible)
  592. }
  593. void clear_command_queue() {
  594. cmd_queue_index_r = cmd_queue_index_w;
  595. commands_in_queue = 0;
  596. }
  597. /**
  598. * Once a new command is in the ring buffer, call this to commit it
  599. */
  600. inline void _commit_command(bool say_ok) {
  601. send_ok[cmd_queue_index_w] = say_ok;
  602. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  603. commands_in_queue++;
  604. }
  605. /**
  606. * Copy a command directly into the main command buffer, from RAM.
  607. * Returns true if successfully adds the command
  608. */
  609. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  610. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  611. strcpy(command_queue[cmd_queue_index_w], cmd);
  612. _commit_command(say_ok);
  613. return true;
  614. }
  615. void enqueue_and_echo_command_now(const char* cmd) {
  616. while (!enqueue_and_echo_command(cmd)) idle();
  617. }
  618. /**
  619. * Enqueue with Serial Echo
  620. */
  621. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  622. if (_enqueuecommand(cmd, say_ok)) {
  623. SERIAL_ECHO_START;
  624. SERIAL_ECHOPGM(MSG_Enqueueing);
  625. SERIAL_ECHO(cmd);
  626. SERIAL_ECHOLNPGM("\"");
  627. return true;
  628. }
  629. return false;
  630. }
  631. void setup_killpin() {
  632. #if HAS_KILL
  633. SET_INPUT(KILL_PIN);
  634. WRITE(KILL_PIN, HIGH);
  635. #endif
  636. }
  637. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  638. void setup_filrunoutpin() {
  639. pinMode(FIL_RUNOUT_PIN, INPUT);
  640. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  641. WRITE(FIL_RUNOUT_PIN, HIGH);
  642. #endif
  643. }
  644. #endif
  645. // Set home pin
  646. void setup_homepin(void) {
  647. #if HAS_HOME
  648. SET_INPUT(HOME_PIN);
  649. WRITE(HOME_PIN, HIGH);
  650. #endif
  651. }
  652. void setup_photpin() {
  653. #if HAS_PHOTOGRAPH
  654. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  655. #endif
  656. }
  657. void setup_powerhold() {
  658. #if HAS_SUICIDE
  659. OUT_WRITE(SUICIDE_PIN, HIGH);
  660. #endif
  661. #if HAS_POWER_SWITCH
  662. #if ENABLED(PS_DEFAULT_OFF)
  663. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  664. #else
  665. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  666. #endif
  667. #endif
  668. }
  669. void suicide() {
  670. #if HAS_SUICIDE
  671. OUT_WRITE(SUICIDE_PIN, LOW);
  672. #endif
  673. }
  674. void servo_init() {
  675. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  676. servo[0].attach(SERVO0_PIN);
  677. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  678. #endif
  679. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  680. servo[1].attach(SERVO1_PIN);
  681. servo[1].detach();
  682. #endif
  683. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  684. servo[2].attach(SERVO2_PIN);
  685. servo[2].detach();
  686. #endif
  687. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  688. servo[3].attach(SERVO3_PIN);
  689. servo[3].detach();
  690. #endif
  691. #if HAS_Z_SERVO_ENDSTOP
  692. /**
  693. * Set position of Z Servo Endstop
  694. *
  695. * The servo might be deployed and positioned too low to stow
  696. * when starting up the machine or rebooting the board.
  697. * There's no way to know where the nozzle is positioned until
  698. * homing has been done - no homing with z-probe without init!
  699. *
  700. */
  701. STOW_Z_SERVO();
  702. #endif
  703. #if HAS_BED_PROBE
  704. endstops.enable_z_probe(false);
  705. #endif
  706. }
  707. /**
  708. * Stepper Reset (RigidBoard, et.al.)
  709. */
  710. #if HAS_STEPPER_RESET
  711. void disableStepperDrivers() {
  712. pinMode(STEPPER_RESET_PIN, OUTPUT);
  713. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  714. }
  715. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  716. #endif
  717. /**
  718. * Marlin entry-point: Set up before the program loop
  719. * - Set up the kill pin, filament runout, power hold
  720. * - Start the serial port
  721. * - Print startup messages and diagnostics
  722. * - Get EEPROM or default settings
  723. * - Initialize managers for:
  724. * • temperature
  725. * • planner
  726. * • watchdog
  727. * • stepper
  728. * • photo pin
  729. * • servos
  730. * • LCD controller
  731. * • Digipot I2C
  732. * • Z probe sled
  733. * • status LEDs
  734. */
  735. void setup() {
  736. #ifdef DISABLE_JTAG
  737. // Disable JTAG on AT90USB chips to free up pins for IO
  738. MCUCR = 0x80;
  739. MCUCR = 0x80;
  740. #endif
  741. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  742. setup_filrunoutpin();
  743. #endif
  744. setup_killpin();
  745. setup_powerhold();
  746. #if HAS_STEPPER_RESET
  747. disableStepperDrivers();
  748. #endif
  749. MYSERIAL.begin(BAUDRATE);
  750. SERIAL_PROTOCOLLNPGM("start");
  751. SERIAL_ECHO_START;
  752. // Check startup - does nothing if bootloader sets MCUSR to 0
  753. byte mcu = MCUSR;
  754. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  755. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  756. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  757. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  758. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  759. MCUSR = 0;
  760. SERIAL_ECHOPGM(MSG_MARLIN);
  761. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  762. #ifdef STRING_DISTRIBUTION_DATE
  763. #ifdef STRING_CONFIG_H_AUTHOR
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  766. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  767. SERIAL_ECHOPGM(MSG_AUTHOR);
  768. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  769. SERIAL_ECHOPGM("Compiled: ");
  770. SERIAL_ECHOLNPGM(__DATE__);
  771. #endif // STRING_CONFIG_H_AUTHOR
  772. #endif // STRING_DISTRIBUTION_DATE
  773. SERIAL_ECHO_START;
  774. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  775. SERIAL_ECHO(freeMemory());
  776. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  777. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  778. // Send "ok" after commands by default
  779. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  780. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  781. Config_RetrieveSettings();
  782. // Initialize current position based on home_offset
  783. memcpy(current_position, home_offset, sizeof(home_offset));
  784. #if ENABLED(DELTA) || ENABLED(SCARA)
  785. // Vital to init kinematic equivalent for X0 Y0 Z0
  786. SYNC_PLAN_POSITION_KINEMATIC();
  787. #endif
  788. thermalManager.init(); // Initialize temperature loop
  789. #if ENABLED(USE_WATCHDOG)
  790. watchdog_init();
  791. #endif
  792. stepper.init(); // Initialize stepper, this enables interrupts!
  793. setup_photpin();
  794. servo_init();
  795. #if HAS_CONTROLLERFAN
  796. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  797. #endif
  798. #if HAS_STEPPER_RESET
  799. enableStepperDrivers();
  800. #endif
  801. #if ENABLED(DIGIPOT_I2C)
  802. digipot_i2c_init();
  803. #endif
  804. #if ENABLED(DAC_STEPPER_CURRENT)
  805. dac_init();
  806. #endif
  807. #if ENABLED(Z_PROBE_SLED)
  808. pinMode(SLED_PIN, OUTPUT);
  809. digitalWrite(SLED_PIN, LOW); // turn it off
  810. #endif // Z_PROBE_SLED
  811. setup_homepin();
  812. #ifdef STAT_LED_RED
  813. pinMode(STAT_LED_RED, OUTPUT);
  814. digitalWrite(STAT_LED_RED, LOW); // turn it off
  815. #endif
  816. #ifdef STAT_LED_BLUE
  817. pinMode(STAT_LED_BLUE, OUTPUT);
  818. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  819. #endif
  820. lcd_init();
  821. #if ENABLED(SHOW_BOOTSCREEN)
  822. #if ENABLED(DOGLCD)
  823. safe_delay(BOOTSCREEN_TIMEOUT);
  824. #elif ENABLED(ULTRA_LCD)
  825. bootscreen();
  826. lcd_init();
  827. #endif
  828. #endif
  829. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  830. // Initialize mixing to 100% color 1
  831. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  832. mixing_factor[i] = (i == 0) ? 1 : 0;
  833. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  834. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  835. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  836. #endif
  837. }
  838. /**
  839. * The main Marlin program loop
  840. *
  841. * - Save or log commands to SD
  842. * - Process available commands (if not saving)
  843. * - Call heater manager
  844. * - Call inactivity manager
  845. * - Call endstop manager
  846. * - Call LCD update
  847. */
  848. void loop() {
  849. if (commands_in_queue < BUFSIZE) get_available_commands();
  850. #if ENABLED(SDSUPPORT)
  851. card.checkautostart(false);
  852. #endif
  853. if (commands_in_queue) {
  854. #if ENABLED(SDSUPPORT)
  855. if (card.saving) {
  856. char* command = command_queue[cmd_queue_index_r];
  857. if (strstr_P(command, PSTR("M29"))) {
  858. // M29 closes the file
  859. card.closefile();
  860. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  861. ok_to_send();
  862. }
  863. else {
  864. // Write the string from the read buffer to SD
  865. card.write_command(command);
  866. if (card.logging)
  867. process_next_command(); // The card is saving because it's logging
  868. else
  869. ok_to_send();
  870. }
  871. }
  872. else
  873. process_next_command();
  874. #else
  875. process_next_command();
  876. #endif // SDSUPPORT
  877. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  878. if (commands_in_queue) {
  879. --commands_in_queue;
  880. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  881. }
  882. }
  883. endstops.report_state();
  884. idle();
  885. }
  886. void gcode_line_error(const char* err, bool doFlush = true) {
  887. SERIAL_ERROR_START;
  888. serialprintPGM(err);
  889. SERIAL_ERRORLN(gcode_LastN);
  890. //Serial.println(gcode_N);
  891. if (doFlush) FlushSerialRequestResend();
  892. serial_count = 0;
  893. }
  894. inline void get_serial_commands() {
  895. static char serial_line_buffer[MAX_CMD_SIZE];
  896. static boolean serial_comment_mode = false;
  897. // If the command buffer is empty for too long,
  898. // send "wait" to indicate Marlin is still waiting.
  899. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  900. static millis_t last_command_time = 0;
  901. millis_t ms = millis();
  902. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  903. SERIAL_ECHOLNPGM(MSG_WAIT);
  904. last_command_time = ms;
  905. }
  906. #endif
  907. /**
  908. * Loop while serial characters are incoming and the queue is not full
  909. */
  910. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  911. char serial_char = MYSERIAL.read();
  912. /**
  913. * If the character ends the line
  914. */
  915. if (serial_char == '\n' || serial_char == '\r') {
  916. serial_comment_mode = false; // end of line == end of comment
  917. if (!serial_count) continue; // skip empty lines
  918. serial_line_buffer[serial_count] = 0; // terminate string
  919. serial_count = 0; //reset buffer
  920. char* command = serial_line_buffer;
  921. while (*command == ' ') command++; // skip any leading spaces
  922. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  923. char* apos = strchr(command, '*');
  924. if (npos) {
  925. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  926. if (M110) {
  927. char* n2pos = strchr(command + 4, 'N');
  928. if (n2pos) npos = n2pos;
  929. }
  930. gcode_N = strtol(npos + 1, NULL, 10);
  931. if (gcode_N != gcode_LastN + 1 && !M110) {
  932. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  933. return;
  934. }
  935. if (apos) {
  936. byte checksum = 0, count = 0;
  937. while (command[count] != '*') checksum ^= command[count++];
  938. if (strtol(apos + 1, NULL, 10) != checksum) {
  939. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  940. return;
  941. }
  942. // if no errors, continue parsing
  943. }
  944. else {
  945. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  946. return;
  947. }
  948. gcode_LastN = gcode_N;
  949. // if no errors, continue parsing
  950. }
  951. else if (apos) { // No '*' without 'N'
  952. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  953. return;
  954. }
  955. // Movement commands alert when stopped
  956. if (IsStopped()) {
  957. char* gpos = strchr(command, 'G');
  958. if (gpos) {
  959. int codenum = strtol(gpos + 1, NULL, 10);
  960. switch (codenum) {
  961. case 0:
  962. case 1:
  963. case 2:
  964. case 3:
  965. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  966. LCD_MESSAGEPGM(MSG_STOPPED);
  967. break;
  968. }
  969. }
  970. }
  971. #if DISABLED(EMERGENCY_PARSER)
  972. // If command was e-stop process now
  973. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  974. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  975. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  976. #endif
  977. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  978. last_command_time = ms;
  979. #endif
  980. // Add the command to the queue
  981. _enqueuecommand(serial_line_buffer, true);
  982. }
  983. else if (serial_count >= MAX_CMD_SIZE - 1) {
  984. // Keep fetching, but ignore normal characters beyond the max length
  985. // The command will be injected when EOL is reached
  986. }
  987. else if (serial_char == '\\') { // Handle escapes
  988. if (MYSERIAL.available() > 0) {
  989. // if we have one more character, copy it over
  990. serial_char = MYSERIAL.read();
  991. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  992. }
  993. // otherwise do nothing
  994. }
  995. else { // it's not a newline, carriage return or escape char
  996. if (serial_char == ';') serial_comment_mode = true;
  997. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  998. }
  999. } // queue has space, serial has data
  1000. }
  1001. #if ENABLED(SDSUPPORT)
  1002. inline void get_sdcard_commands() {
  1003. static bool stop_buffering = false,
  1004. sd_comment_mode = false;
  1005. if (!card.sdprinting) return;
  1006. /**
  1007. * '#' stops reading from SD to the buffer prematurely, so procedural
  1008. * macro calls are possible. If it occurs, stop_buffering is triggered
  1009. * and the buffer is run dry; this character _can_ occur in serial com
  1010. * due to checksums, however, no checksums are used in SD printing.
  1011. */
  1012. if (commands_in_queue == 0) stop_buffering = false;
  1013. uint16_t sd_count = 0;
  1014. bool card_eof = card.eof();
  1015. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1016. int16_t n = card.get();
  1017. char sd_char = (char)n;
  1018. card_eof = card.eof();
  1019. if (card_eof || n == -1
  1020. || sd_char == '\n' || sd_char == '\r'
  1021. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1022. ) {
  1023. if (card_eof) {
  1024. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1025. card.printingHasFinished();
  1026. card.checkautostart(true);
  1027. }
  1028. else if (n == -1) {
  1029. SERIAL_ERROR_START;
  1030. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1031. }
  1032. if (sd_char == '#') stop_buffering = true;
  1033. sd_comment_mode = false; //for new command
  1034. if (!sd_count) continue; //skip empty lines
  1035. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1036. sd_count = 0; //clear buffer
  1037. _commit_command(false);
  1038. }
  1039. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1040. /**
  1041. * Keep fetching, but ignore normal characters beyond the max length
  1042. * The command will be injected when EOL is reached
  1043. */
  1044. }
  1045. else {
  1046. if (sd_char == ';') sd_comment_mode = true;
  1047. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1048. }
  1049. }
  1050. }
  1051. #endif // SDSUPPORT
  1052. /**
  1053. * Add to the circular command queue the next command from:
  1054. * - The command-injection queue (queued_commands_P)
  1055. * - The active serial input (usually USB)
  1056. * - The SD card file being actively printed
  1057. */
  1058. void get_available_commands() {
  1059. // if any immediate commands remain, don't get other commands yet
  1060. if (drain_queued_commands_P()) return;
  1061. get_serial_commands();
  1062. #if ENABLED(SDSUPPORT)
  1063. get_sdcard_commands();
  1064. #endif
  1065. }
  1066. inline bool code_has_value() {
  1067. int i = 1;
  1068. char c = seen_pointer[i];
  1069. while (c == ' ') c = seen_pointer[++i];
  1070. if (c == '-' || c == '+') c = seen_pointer[++i];
  1071. if (c == '.') c = seen_pointer[++i];
  1072. return NUMERIC(c);
  1073. }
  1074. inline float code_value_float() {
  1075. float ret;
  1076. char* e = strchr(seen_pointer, 'E');
  1077. if (e) {
  1078. *e = 0;
  1079. ret = strtod(seen_pointer + 1, NULL);
  1080. *e = 'E';
  1081. }
  1082. else
  1083. ret = strtod(seen_pointer + 1, NULL);
  1084. return ret;
  1085. }
  1086. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1087. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1088. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1089. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1090. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1091. inline bool code_value_bool() { return code_value_byte() > 0; }
  1092. #if ENABLED(INCH_MODE_SUPPORT)
  1093. inline void set_input_linear_units(LinearUnit units) {
  1094. switch (units) {
  1095. case LINEARUNIT_INCH:
  1096. linear_unit_factor = 25.4;
  1097. break;
  1098. case LINEARUNIT_MM:
  1099. default:
  1100. linear_unit_factor = 1.0;
  1101. break;
  1102. }
  1103. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1104. }
  1105. inline float axis_unit_factor(int axis) {
  1106. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1107. }
  1108. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1109. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1110. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1111. #else
  1112. inline float code_value_linear_units() { return code_value_float(); }
  1113. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1114. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1115. #endif
  1116. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1117. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1118. float code_value_temp_abs() {
  1119. switch (input_temp_units) {
  1120. case TEMPUNIT_C:
  1121. return code_value_float();
  1122. case TEMPUNIT_F:
  1123. return (code_value_float() - 32) / 1.8;
  1124. case TEMPUNIT_K:
  1125. return code_value_float() - 272.15;
  1126. default:
  1127. return code_value_float();
  1128. }
  1129. }
  1130. float code_value_temp_diff() {
  1131. switch (input_temp_units) {
  1132. case TEMPUNIT_C:
  1133. case TEMPUNIT_K:
  1134. return code_value_float();
  1135. case TEMPUNIT_F:
  1136. return code_value_float() / 1.8;
  1137. default:
  1138. return code_value_float();
  1139. }
  1140. }
  1141. #else
  1142. float code_value_temp_abs() { return code_value_float(); }
  1143. float code_value_temp_diff() { return code_value_float(); }
  1144. #endif
  1145. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1146. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1147. bool code_seen(char code) {
  1148. seen_pointer = strchr(current_command_args, code);
  1149. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1150. }
  1151. /**
  1152. * Set target_extruder from the T parameter or the active_extruder
  1153. *
  1154. * Returns TRUE if the target is invalid
  1155. */
  1156. bool get_target_extruder_from_command(int code) {
  1157. if (code_seen('T')) {
  1158. if (code_value_byte() >= EXTRUDERS) {
  1159. SERIAL_ECHO_START;
  1160. SERIAL_CHAR('M');
  1161. SERIAL_ECHO(code);
  1162. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1163. SERIAL_EOL;
  1164. return true;
  1165. }
  1166. target_extruder = code_value_byte();
  1167. }
  1168. else
  1169. target_extruder = active_extruder;
  1170. return false;
  1171. }
  1172. #define DEFINE_PGM_READ_ANY(type, reader) \
  1173. static inline type pgm_read_any(const type *p) \
  1174. { return pgm_read_##reader##_near(p); }
  1175. DEFINE_PGM_READ_ANY(float, float);
  1176. DEFINE_PGM_READ_ANY(signed char, byte);
  1177. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1178. static const PROGMEM type array##_P[3] = \
  1179. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1180. static inline type array(int axis) \
  1181. { return pgm_read_any(&array##_P[axis]); }
  1182. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1183. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1184. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1185. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1186. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1187. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1188. #if ENABLED(DUAL_X_CARRIAGE)
  1189. #define DXC_FULL_CONTROL_MODE 0
  1190. #define DXC_AUTO_PARK_MODE 1
  1191. #define DXC_DUPLICATION_MODE 2
  1192. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1193. static float x_home_pos(int extruder) {
  1194. if (extruder == 0)
  1195. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1196. else
  1197. /**
  1198. * In dual carriage mode the extruder offset provides an override of the
  1199. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1200. * This allow soft recalibration of the second extruder offset position
  1201. * without firmware reflash (through the M218 command).
  1202. */
  1203. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1204. }
  1205. static int x_home_dir(int extruder) {
  1206. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1207. }
  1208. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1209. static bool active_extruder_parked = false; // used in mode 1 & 2
  1210. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1211. static millis_t delayed_move_time = 0; // used in mode 1
  1212. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1213. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1214. bool extruder_duplication_enabled = false; // used in mode 2
  1215. #endif //DUAL_X_CARRIAGE
  1216. /**
  1217. * Software endstops can be used to monitor the open end of
  1218. * an axis that has a hardware endstop on the other end. Or
  1219. * they can prevent axes from moving past endstops and grinding.
  1220. *
  1221. * To keep doing their job as the coordinate system changes,
  1222. * the software endstop positions must be refreshed to remain
  1223. * at the same positions relative to the machine.
  1224. */
  1225. static void update_software_endstops(AxisEnum axis) {
  1226. float offs = home_offset[axis] + position_shift[axis];
  1227. #if ENABLED(DUAL_X_CARRIAGE)
  1228. if (axis == X_AXIS) {
  1229. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1230. if (active_extruder != 0) {
  1231. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1232. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1233. return;
  1234. }
  1235. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1236. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1237. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1238. return;
  1239. }
  1240. }
  1241. else
  1242. #endif
  1243. {
  1244. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1245. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1246. }
  1247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1248. if (DEBUGGING(LEVELING)) {
  1249. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1250. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1251. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1252. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1253. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1254. SERIAL_EOL;
  1255. }
  1256. #endif
  1257. #if ENABLED(DELTA)
  1258. if (axis == Z_AXIS) {
  1259. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1260. }
  1261. #endif
  1262. }
  1263. /**
  1264. * Change the home offset for an axis, update the current
  1265. * position and the software endstops to retain the same
  1266. * relative distance to the new home.
  1267. *
  1268. * Since this changes the current_position, code should
  1269. * call sync_plan_position soon after this.
  1270. */
  1271. static void set_home_offset(AxisEnum axis, float v) {
  1272. current_position[axis] += v - home_offset[axis];
  1273. home_offset[axis] = v;
  1274. update_software_endstops(axis);
  1275. }
  1276. static void set_axis_is_at_home(AxisEnum axis) {
  1277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1278. if (DEBUGGING(LEVELING)) {
  1279. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1280. SERIAL_ECHOLNPGM(")");
  1281. }
  1282. #endif
  1283. position_shift[axis] = 0;
  1284. #if ENABLED(DUAL_X_CARRIAGE)
  1285. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1286. if (active_extruder != 0)
  1287. current_position[X_AXIS] = x_home_pos(active_extruder);
  1288. else
  1289. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1290. update_software_endstops(X_AXIS);
  1291. return;
  1292. }
  1293. #endif
  1294. #if ENABLED(SCARA)
  1295. if (axis == X_AXIS || axis == Y_AXIS) {
  1296. float homeposition[3];
  1297. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1298. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1299. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1300. /**
  1301. * Works out real Homeposition angles using inverse kinematics,
  1302. * and calculates homing offset using forward kinematics
  1303. */
  1304. calculate_delta(homeposition);
  1305. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1306. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1307. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1308. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1309. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1310. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1311. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1312. calculate_SCARA_forward_Transform(delta);
  1313. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1314. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1315. current_position[axis] = delta[axis];
  1316. /**
  1317. * SCARA home positions are based on configuration since the actual
  1318. * limits are determined by the inverse kinematic transform.
  1319. */
  1320. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1321. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1322. }
  1323. else
  1324. #endif
  1325. {
  1326. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1327. update_software_endstops(axis);
  1328. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1329. if (axis == Z_AXIS) {
  1330. current_position[Z_AXIS] -= zprobe_zoffset;
  1331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1332. if (DEBUGGING(LEVELING)) {
  1333. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1334. SERIAL_EOL;
  1335. }
  1336. #endif
  1337. }
  1338. #endif
  1339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1340. if (DEBUGGING(LEVELING)) {
  1341. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1342. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1343. SERIAL_EOL;
  1344. DEBUG_POS("", current_position);
  1345. }
  1346. #endif
  1347. }
  1348. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1349. if (DEBUGGING(LEVELING)) {
  1350. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1351. SERIAL_ECHOLNPGM(")");
  1352. }
  1353. #endif
  1354. }
  1355. /**
  1356. * Some planner shorthand inline functions
  1357. */
  1358. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1359. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1360. int hbd = homing_bump_divisor[axis];
  1361. if (hbd < 1) {
  1362. hbd = 10;
  1363. SERIAL_ECHO_START;
  1364. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1365. }
  1366. feedrate = homing_feedrate[axis] / hbd;
  1367. }
  1368. //
  1369. // line_to_current_position
  1370. // Move the planner to the current position from wherever it last moved
  1371. // (or from wherever it has been told it is located).
  1372. //
  1373. inline void line_to_current_position() {
  1374. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1375. }
  1376. inline void line_to_z(float zPosition) {
  1377. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1378. }
  1379. //
  1380. // line_to_destination
  1381. // Move the planner, not necessarily synced with current_position
  1382. //
  1383. inline void line_to_destination(float mm_m) {
  1384. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1385. }
  1386. inline void line_to_destination() { line_to_destination(feedrate); }
  1387. /**
  1388. * sync_plan_position
  1389. * Set planner / stepper positions to the cartesian current_position.
  1390. * The stepper code translates these coordinates into step units.
  1391. * Allows translation between steps and millimeters for cartesian & core robots
  1392. */
  1393. inline void sync_plan_position() {
  1394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1395. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1396. #endif
  1397. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1398. }
  1399. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1400. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1401. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1402. #if ENABLED(DELTA)
  1403. /**
  1404. * Calculate delta, start a line, and set current_position to destination
  1405. */
  1406. void prepare_move_to_destination_raw() {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1409. #endif
  1410. refresh_cmd_timeout();
  1411. calculate_delta(destination);
  1412. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1413. set_current_to_destination();
  1414. }
  1415. #endif
  1416. /**
  1417. * Plan a move to (X, Y, Z) and set the current_position
  1418. * The final current_position may not be the one that was requested
  1419. */
  1420. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1421. float old_feedrate = feedrate;
  1422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1423. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
  1424. #endif
  1425. #if ENABLED(DELTA)
  1426. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1427. destination[X_AXIS] = x;
  1428. destination[Y_AXIS] = y;
  1429. destination[Z_AXIS] = z;
  1430. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1431. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1432. else
  1433. prepare_move_to_destination(); // this will also set_current_to_destination
  1434. #else
  1435. // If Z needs to raise, do it before moving XY
  1436. if (current_position[Z_AXIS] < z) {
  1437. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1438. current_position[Z_AXIS] = z;
  1439. line_to_current_position();
  1440. }
  1441. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1442. current_position[X_AXIS] = x;
  1443. current_position[Y_AXIS] = y;
  1444. line_to_current_position();
  1445. // If Z needs to lower, do it after moving XY
  1446. if (current_position[Z_AXIS] > z) {
  1447. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1448. current_position[Z_AXIS] = z;
  1449. line_to_current_position();
  1450. }
  1451. #endif
  1452. stepper.synchronize();
  1453. feedrate = old_feedrate;
  1454. }
  1455. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1456. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1457. }
  1458. inline void do_blocking_move_to_y(float y) {
  1459. do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
  1460. }
  1461. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1462. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1463. }
  1464. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1465. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1466. }
  1467. //
  1468. // Prepare to do endstop or probe moves
  1469. // with custom feedrates.
  1470. //
  1471. // - Save current feedrates
  1472. // - Reset the rate multiplier
  1473. // - Reset the command timeout
  1474. // - Enable the endstops (for endstop moves)
  1475. //
  1476. static void setup_for_endstop_or_probe_move() {
  1477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1478. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1479. #endif
  1480. saved_feedrate = feedrate;
  1481. saved_feedrate_multiplier = feedrate_multiplier;
  1482. feedrate_multiplier = 100;
  1483. refresh_cmd_timeout();
  1484. }
  1485. static void clean_up_after_endstop_or_probe_move() {
  1486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1487. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1488. #endif
  1489. feedrate = saved_feedrate;
  1490. feedrate_multiplier = saved_feedrate_multiplier;
  1491. refresh_cmd_timeout();
  1492. }
  1493. #if HAS_BED_PROBE
  1494. /**
  1495. * Raise Z to a minimum height to make room for a probe to move
  1496. */
  1497. inline void do_probe_raise(float z_raise) {
  1498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1499. if (DEBUGGING(LEVELING)) {
  1500. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1501. SERIAL_ECHOLNPGM(")");
  1502. }
  1503. #endif
  1504. float z_dest = home_offset[Z_AXIS] + z_raise;
  1505. if (zprobe_zoffset < 0)
  1506. z_dest -= zprobe_zoffset;
  1507. if (z_dest > current_position[Z_AXIS])
  1508. do_blocking_move_to_z(z_dest);
  1509. }
  1510. #endif //HAS_BED_PROBE
  1511. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1512. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1513. const bool xx = x && !axis_homed[X_AXIS],
  1514. yy = y && !axis_homed[Y_AXIS],
  1515. zz = z && !axis_homed[Z_AXIS];
  1516. if (xx || yy || zz) {
  1517. SERIAL_ECHO_START;
  1518. SERIAL_ECHOPGM(MSG_HOME " ");
  1519. if (xx) SERIAL_ECHOPGM(MSG_X);
  1520. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1521. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1522. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1523. #if ENABLED(ULTRA_LCD)
  1524. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1525. strcat_P(message, PSTR(MSG_HOME " "));
  1526. if (xx) strcat_P(message, PSTR(MSG_X));
  1527. if (yy) strcat_P(message, PSTR(MSG_Y));
  1528. if (zz) strcat_P(message, PSTR(MSG_Z));
  1529. strcat_P(message, PSTR(" " MSG_FIRST));
  1530. lcd_setstatus(message);
  1531. #endif
  1532. return true;
  1533. }
  1534. return false;
  1535. }
  1536. #endif
  1537. #if ENABLED(Z_PROBE_SLED)
  1538. #ifndef SLED_DOCKING_OFFSET
  1539. #define SLED_DOCKING_OFFSET 0
  1540. #endif
  1541. /**
  1542. * Method to dock/undock a sled designed by Charles Bell.
  1543. *
  1544. * stow[in] If false, move to MAX_X and engage the solenoid
  1545. * If true, move to MAX_X and release the solenoid
  1546. */
  1547. static void dock_sled(bool stow) {
  1548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1549. if (DEBUGGING(LEVELING)) {
  1550. SERIAL_ECHOPAIR("dock_sled(", stow);
  1551. SERIAL_ECHOLNPGM(")");
  1552. }
  1553. #endif
  1554. // Dock sled a bit closer to ensure proper capturing
  1555. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1556. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1557. }
  1558. #endif // Z_PROBE_SLED
  1559. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1560. void run_deploy_moves_script() {
  1561. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1564. #endif
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1573. #endif
  1574. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1575. #endif
  1576. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1588. #endif
  1589. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1590. #endif
  1591. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1603. #endif
  1604. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1605. #endif
  1606. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1620. #endif
  1621. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1633. #endif
  1634. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1635. #endif
  1636. }
  1637. void run_stow_moves_script() {
  1638. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1640. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1643. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1646. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1649. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1650. #endif
  1651. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1652. #endif
  1653. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1655. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1658. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1661. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1664. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1665. #endif
  1666. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1667. #endif
  1668. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1670. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1673. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1676. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1679. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1680. #endif
  1681. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1695. #endif
  1696. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1697. #endif
  1698. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1700. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1703. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1706. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1709. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1710. #endif
  1711. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1712. #endif
  1713. }
  1714. #endif
  1715. #if HAS_BED_PROBE
  1716. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1717. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1718. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1719. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1720. #else
  1721. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1722. #endif
  1723. #endif
  1724. #define DEPLOY_PROBE() set_probe_deployed( true )
  1725. #define STOW_PROBE() set_probe_deployed( false )
  1726. // returns false for ok and true for failure
  1727. static bool set_probe_deployed(bool deploy) {
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. DEBUG_POS("set_probe_deployed", current_position);
  1731. SERIAL_ECHOPAIR("deploy: ", deploy);
  1732. }
  1733. #endif
  1734. if (endstops.z_probe_enabled == deploy) return false;
  1735. // Make room for probe
  1736. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1737. #if ENABLED(Z_PROBE_SLED)
  1738. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1739. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1740. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1741. #endif
  1742. float oldXpos = current_position[X_AXIS]; // save x position
  1743. float oldYpos = current_position[Y_AXIS]; // save y position
  1744. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1745. // If endstop is already false, the Z probe is deployed
  1746. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1747. // Would a goto be less ugly?
  1748. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1749. // for a triggered when stowed manual probe.
  1750. #endif
  1751. #if ENABLED(Z_PROBE_SLED)
  1752. dock_sled(!deploy);
  1753. #elif HAS_Z_SERVO_ENDSTOP
  1754. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1755. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1756. if (!deploy) run_stow_moves_script();
  1757. else run_deploy_moves_script();
  1758. #else
  1759. // Nothing to be done. Just enable_z_probe below...
  1760. #endif
  1761. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1762. }; // opened before the probe specific actions
  1763. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1764. if (IsRunning()) {
  1765. SERIAL_ERROR_START;
  1766. SERIAL_ERRORLNPGM("Z-Probe failed");
  1767. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1768. }
  1769. stop();
  1770. return true;
  1771. }
  1772. #endif
  1773. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1774. endstops.enable_z_probe( deploy );
  1775. return false;
  1776. }
  1777. // Do a single Z probe and return with current_position[Z_AXIS]
  1778. // at the height where the probe triggered.
  1779. static float run_z_probe() {
  1780. float old_feedrate = feedrate;
  1781. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1782. refresh_cmd_timeout();
  1783. #if ENABLED(DELTA)
  1784. float start_z = current_position[Z_AXIS];
  1785. long start_steps = stepper.position(Z_AXIS);
  1786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1787. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1788. #endif
  1789. // move down slowly until you find the bed
  1790. feedrate = homing_feedrate[Z_AXIS] / 4;
  1791. destination[Z_AXIS] = -10;
  1792. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1793. stepper.synchronize();
  1794. endstops.hit_on_purpose(); // clear endstop hit flags
  1795. /**
  1796. * We have to let the planner know where we are right now as it
  1797. * is not where we said to go.
  1798. */
  1799. long stop_steps = stepper.position(Z_AXIS);
  1800. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1801. current_position[Z_AXIS] = mm;
  1802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1803. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1804. #endif
  1805. #else // !DELTA
  1806. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1807. planner.bed_level_matrix.set_to_identity();
  1808. #endif
  1809. feedrate = homing_feedrate[Z_AXIS];
  1810. // Move down until the Z probe (or endstop?) is triggered
  1811. float zPosition = -(Z_MAX_LENGTH + 10);
  1812. line_to_z(zPosition);
  1813. stepper.synchronize();
  1814. // Tell the planner where we ended up - Get this from the stepper handler
  1815. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1816. planner.set_position_mm(
  1817. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1818. current_position[E_AXIS]
  1819. );
  1820. // move up the retract distance
  1821. zPosition += home_bump_mm(Z_AXIS);
  1822. line_to_z(zPosition);
  1823. stepper.synchronize();
  1824. endstops.hit_on_purpose(); // clear endstop hit flags
  1825. // move back down slowly to find bed
  1826. set_homing_bump_feedrate(Z_AXIS);
  1827. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1828. line_to_z(zPosition);
  1829. stepper.synchronize();
  1830. endstops.hit_on_purpose(); // clear endstop hit flags
  1831. // Get the current stepper position after bumping an endstop
  1832. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1834. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1835. #endif
  1836. #endif // !DELTA
  1837. SYNC_PLAN_POSITION_KINEMATIC();
  1838. feedrate = old_feedrate;
  1839. return current_position[Z_AXIS];
  1840. }
  1841. //
  1842. // - Move to the given XY
  1843. // - Deploy the probe, if not already deployed
  1844. // - Probe the bed, get the Z position
  1845. // - Depending on the 'stow' flag
  1846. // - Stow the probe, or
  1847. // - Raise to the BETWEEN height
  1848. // - Return the probed Z position
  1849. //
  1850. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) {
  1853. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1854. SERIAL_ECHOPAIR(", ", y);
  1855. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1856. SERIAL_ECHOLNPGM(")");
  1857. DEBUG_POS("", current_position);
  1858. }
  1859. #endif
  1860. float old_feedrate = feedrate;
  1861. // Ensure a minimum height before moving the probe
  1862. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1863. // Move to the XY where we shall probe
  1864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1865. if (DEBUGGING(LEVELING)) {
  1866. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1867. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1868. SERIAL_ECHOLNPGM(")");
  1869. }
  1870. #endif
  1871. feedrate = XY_PROBE_FEEDRATE;
  1872. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1873. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1874. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1875. #endif
  1876. if (DEPLOY_PROBE()) return NAN;
  1877. float measured_z = run_z_probe();
  1878. if (stow) {
  1879. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1880. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1881. #endif
  1882. if (STOW_PROBE()) return NAN;
  1883. }
  1884. else {
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1887. #endif
  1888. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1889. }
  1890. if (verbose_level > 2) {
  1891. SERIAL_PROTOCOLPGM("Bed X: ");
  1892. SERIAL_PROTOCOL_F(x, 3);
  1893. SERIAL_PROTOCOLPGM(" Y: ");
  1894. SERIAL_PROTOCOL_F(y, 3);
  1895. SERIAL_PROTOCOLPGM(" Z: ");
  1896. SERIAL_PROTOCOL_F(measured_z, 3);
  1897. SERIAL_EOL;
  1898. }
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1901. #endif
  1902. feedrate = old_feedrate;
  1903. return measured_z;
  1904. }
  1905. #endif // HAS_BED_PROBE
  1906. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1907. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1908. #if DISABLED(DELTA)
  1909. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1910. //planner.bed_level_matrix.debug("bed level before");
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. planner.bed_level_matrix.set_to_identity();
  1913. if (DEBUGGING(LEVELING)) {
  1914. vector_3 uncorrected_position = planner.adjusted_position();
  1915. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1916. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1917. }
  1918. #endif
  1919. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1920. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1921. vector_3 corrected_position = planner.adjusted_position();
  1922. current_position[X_AXIS] = corrected_position.x;
  1923. current_position[Y_AXIS] = corrected_position.y;
  1924. current_position[Z_AXIS] = corrected_position.z;
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1927. #endif
  1928. SYNC_PLAN_POSITION_KINEMATIC();
  1929. }
  1930. #endif // !DELTA
  1931. #else // !AUTO_BED_LEVELING_GRID
  1932. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1933. planner.bed_level_matrix.set_to_identity();
  1934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1935. if (DEBUGGING(LEVELING)) {
  1936. vector_3 uncorrected_position = planner.adjusted_position();
  1937. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1938. }
  1939. #endif
  1940. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1941. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1942. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1943. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1944. if (planeNormal.z < 0) {
  1945. planeNormal.x = -planeNormal.x;
  1946. planeNormal.y = -planeNormal.y;
  1947. planeNormal.z = -planeNormal.z;
  1948. }
  1949. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1950. vector_3 corrected_position = planner.adjusted_position();
  1951. current_position[X_AXIS] = corrected_position.x;
  1952. current_position[Y_AXIS] = corrected_position.y;
  1953. current_position[Z_AXIS] = corrected_position.z;
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1956. #endif
  1957. SYNC_PLAN_POSITION_KINEMATIC();
  1958. }
  1959. #endif // !AUTO_BED_LEVELING_GRID
  1960. #if ENABLED(DELTA)
  1961. /**
  1962. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1963. */
  1964. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1965. if (bed_level[x][y] != 0.0) {
  1966. return; // Don't overwrite good values.
  1967. }
  1968. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1969. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1970. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1971. float median = c; // Median is robust (ignores outliers).
  1972. if (a < b) {
  1973. if (b < c) median = b;
  1974. if (c < a) median = a;
  1975. }
  1976. else { // b <= a
  1977. if (c < b) median = b;
  1978. if (a < c) median = a;
  1979. }
  1980. bed_level[x][y] = median;
  1981. }
  1982. /**
  1983. * Fill in the unprobed points (corners of circular print surface)
  1984. * using linear extrapolation, away from the center.
  1985. */
  1986. static void extrapolate_unprobed_bed_level() {
  1987. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1988. for (int y = 0; y <= half; y++) {
  1989. for (int x = 0; x <= half; x++) {
  1990. if (x + y < 3) continue;
  1991. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1992. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1993. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1994. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1995. }
  1996. }
  1997. }
  1998. /**
  1999. * Print calibration results for plotting or manual frame adjustment.
  2000. */
  2001. static void print_bed_level() {
  2002. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2003. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2004. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2005. SERIAL_PROTOCOLCHAR(' ');
  2006. }
  2007. SERIAL_EOL;
  2008. }
  2009. }
  2010. /**
  2011. * Reset calibration results to zero.
  2012. */
  2013. void reset_bed_level() {
  2014. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2015. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2016. #endif
  2017. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2018. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2019. bed_level[x][y] = 0.0;
  2020. }
  2021. }
  2022. }
  2023. #endif // DELTA
  2024. #endif // AUTO_BED_LEVELING_FEATURE
  2025. /**
  2026. * Home an individual axis
  2027. */
  2028. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2029. static void homeaxis(AxisEnum axis) {
  2030. #define HOMEAXIS_DO(LETTER) \
  2031. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2032. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2034. if (DEBUGGING(LEVELING)) {
  2035. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2036. SERIAL_ECHOLNPGM(")");
  2037. }
  2038. #endif
  2039. int axis_home_dir =
  2040. #if ENABLED(DUAL_X_CARRIAGE)
  2041. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2042. #endif
  2043. home_dir(axis);
  2044. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2045. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2046. if (axis == Z_AXIS && axis_home_dir < 0) {
  2047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2048. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2049. #endif
  2050. if (DEPLOY_PROBE()) return;
  2051. }
  2052. #endif
  2053. // Set the axis position as setup for the move
  2054. current_position[axis] = 0;
  2055. sync_plan_position();
  2056. // Set a flag for Z motor locking
  2057. #if ENABLED(Z_DUAL_ENDSTOPS)
  2058. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2059. #endif
  2060. // Move towards the endstop until an endstop is triggered
  2061. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2062. feedrate = homing_feedrate[axis];
  2063. line_to_destination();
  2064. stepper.synchronize();
  2065. // Set the axis position as setup for the move
  2066. current_position[axis] = 0;
  2067. sync_plan_position();
  2068. // Move away from the endstop by the axis HOME_BUMP_MM
  2069. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2070. line_to_destination();
  2071. stepper.synchronize();
  2072. // Slow down the feedrate for the next move
  2073. set_homing_bump_feedrate(axis);
  2074. // Move slowly towards the endstop until triggered
  2075. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2076. line_to_destination();
  2077. stepper.synchronize();
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2080. #endif
  2081. #if ENABLED(Z_DUAL_ENDSTOPS)
  2082. if (axis == Z_AXIS) {
  2083. float adj = fabs(z_endstop_adj);
  2084. bool lockZ1;
  2085. if (axis_home_dir > 0) {
  2086. adj = -adj;
  2087. lockZ1 = (z_endstop_adj > 0);
  2088. }
  2089. else
  2090. lockZ1 = (z_endstop_adj < 0);
  2091. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2092. sync_plan_position();
  2093. // Move to the adjusted endstop height
  2094. feedrate = homing_feedrate[axis];
  2095. destination[Z_AXIS] = adj;
  2096. line_to_destination();
  2097. stepper.synchronize();
  2098. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2099. stepper.set_homing_flag(false);
  2100. } // Z_AXIS
  2101. #endif
  2102. #if ENABLED(DELTA)
  2103. // retrace by the amount specified in endstop_adj
  2104. if (endstop_adj[axis] * axis_home_dir < 0) {
  2105. sync_plan_position();
  2106. destination[axis] = endstop_adj[axis];
  2107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2108. if (DEBUGGING(LEVELING)) {
  2109. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2110. DEBUG_POS("", destination);
  2111. }
  2112. #endif
  2113. line_to_destination();
  2114. stepper.synchronize();
  2115. }
  2116. #endif
  2117. // Set the axis position to its home position (plus home offsets)
  2118. set_axis_is_at_home(axis);
  2119. SYNC_PLAN_POSITION_KINEMATIC();
  2120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2121. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2122. #endif
  2123. destination[axis] = current_position[axis];
  2124. endstops.hit_on_purpose(); // clear endstop hit flags
  2125. axis_known_position[axis] = true;
  2126. axis_homed[axis] = true;
  2127. // Put away the Z probe
  2128. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2129. if (axis == Z_AXIS && axis_home_dir < 0) {
  2130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2131. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2132. #endif
  2133. if (STOW_PROBE()) return;
  2134. }
  2135. #endif
  2136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2137. if (DEBUGGING(LEVELING)) {
  2138. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2139. SERIAL_ECHOLNPGM(")");
  2140. }
  2141. #endif
  2142. }
  2143. #if ENABLED(FWRETRACT)
  2144. void retract(bool retracting, bool swapping = false) {
  2145. if (retracting == retracted[active_extruder]) return;
  2146. float old_feedrate = feedrate;
  2147. set_destination_to_current();
  2148. if (retracting) {
  2149. feedrate = retract_feedrate_mm_s * 60;
  2150. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2151. sync_plan_position_e();
  2152. prepare_move_to_destination();
  2153. if (retract_zlift > 0.01) {
  2154. current_position[Z_AXIS] -= retract_zlift;
  2155. SYNC_PLAN_POSITION_KINEMATIC();
  2156. prepare_move_to_destination();
  2157. }
  2158. }
  2159. else {
  2160. if (retract_zlift > 0.01) {
  2161. current_position[Z_AXIS] += retract_zlift;
  2162. SYNC_PLAN_POSITION_KINEMATIC();
  2163. }
  2164. feedrate = retract_recover_feedrate * 60;
  2165. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2166. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2167. sync_plan_position_e();
  2168. prepare_move_to_destination();
  2169. }
  2170. feedrate = old_feedrate;
  2171. retracted[active_extruder] = retracting;
  2172. } // retract()
  2173. #endif // FWRETRACT
  2174. #if ENABLED(MIXING_EXTRUDER)
  2175. void normalize_mix() {
  2176. float mix_total = 0.0;
  2177. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2178. float v = mixing_factor[i];
  2179. if (v < 0) v = mixing_factor[i] = 0;
  2180. mix_total += v;
  2181. }
  2182. // Scale all values if they don't add up to ~1.0
  2183. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2184. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2185. float mix_scale = 1.0 / mix_total;
  2186. for (int i = 0; i < MIXING_STEPPERS; i++)
  2187. mixing_factor[i] *= mix_scale;
  2188. }
  2189. }
  2190. #if ENABLED(DIRECT_MIXING_IN_G1)
  2191. // Get mixing parameters from the GCode
  2192. // Factors that are left out are set to 0
  2193. // The total "must" be 1.0 (but it will be normalized)
  2194. void gcode_get_mix() {
  2195. const char* mixing_codes = "ABCDHI";
  2196. for (int i = 0; i < MIXING_STEPPERS; i++)
  2197. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2198. normalize_mix();
  2199. }
  2200. #endif
  2201. #endif
  2202. /**
  2203. * ***************************************************************************
  2204. * ***************************** G-CODE HANDLING *****************************
  2205. * ***************************************************************************
  2206. */
  2207. /**
  2208. * Set XYZE destination and feedrate from the current GCode command
  2209. *
  2210. * - Set destination from included axis codes
  2211. * - Set to current for missing axis codes
  2212. * - Set the feedrate, if included
  2213. */
  2214. void gcode_get_destination() {
  2215. for (int i = 0; i < NUM_AXIS; i++) {
  2216. if (code_seen(axis_codes[i]))
  2217. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2218. else
  2219. destination[i] = current_position[i];
  2220. }
  2221. if (code_seen('F') && code_value_linear_units() > 0.0)
  2222. feedrate = code_value_linear_units();
  2223. #if ENABLED(PRINTCOUNTER)
  2224. if(!DEBUGGING(DRYRUN))
  2225. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2226. #endif
  2227. // Get ABCDHI mixing factors
  2228. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2229. gcode_get_mix();
  2230. #endif
  2231. }
  2232. void unknown_command_error() {
  2233. SERIAL_ECHO_START;
  2234. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2235. SERIAL_ECHO(current_command);
  2236. SERIAL_ECHOLNPGM("\"");
  2237. }
  2238. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2239. /**
  2240. * Output a "busy" message at regular intervals
  2241. * while the machine is not accepting commands.
  2242. */
  2243. void host_keepalive() {
  2244. millis_t ms = millis();
  2245. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2246. if (PENDING(ms, next_busy_signal_ms)) return;
  2247. switch (busy_state) {
  2248. case IN_HANDLER:
  2249. case IN_PROCESS:
  2250. SERIAL_ECHO_START;
  2251. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2252. break;
  2253. case PAUSED_FOR_USER:
  2254. SERIAL_ECHO_START;
  2255. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2256. break;
  2257. case PAUSED_FOR_INPUT:
  2258. SERIAL_ECHO_START;
  2259. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2260. break;
  2261. default:
  2262. break;
  2263. }
  2264. }
  2265. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2266. }
  2267. #endif //HOST_KEEPALIVE_FEATURE
  2268. /**
  2269. * G0, G1: Coordinated movement of X Y Z E axes
  2270. */
  2271. inline void gcode_G0_G1() {
  2272. if (IsRunning()) {
  2273. gcode_get_destination(); // For X Y Z E F
  2274. #if ENABLED(FWRETRACT)
  2275. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2276. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2277. // Is this move an attempt to retract or recover?
  2278. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2279. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2280. sync_plan_position_e(); // AND from the planner
  2281. retract(!retracted[active_extruder]);
  2282. return;
  2283. }
  2284. }
  2285. #endif //FWRETRACT
  2286. prepare_move_to_destination();
  2287. }
  2288. }
  2289. /**
  2290. * G2: Clockwise Arc
  2291. * G3: Counterclockwise Arc
  2292. */
  2293. #if ENABLED(ARC_SUPPORT)
  2294. inline void gcode_G2_G3(bool clockwise) {
  2295. if (IsRunning()) {
  2296. #if ENABLED(SF_ARC_FIX)
  2297. bool relative_mode_backup = relative_mode;
  2298. relative_mode = true;
  2299. #endif
  2300. gcode_get_destination();
  2301. #if ENABLED(SF_ARC_FIX)
  2302. relative_mode = relative_mode_backup;
  2303. #endif
  2304. // Center of arc as offset from current_position
  2305. float arc_offset[2] = {
  2306. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2307. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2308. };
  2309. // Send an arc to the planner
  2310. plan_arc(destination, arc_offset, clockwise);
  2311. refresh_cmd_timeout();
  2312. }
  2313. }
  2314. #endif
  2315. /**
  2316. * G4: Dwell S<seconds> or P<milliseconds>
  2317. */
  2318. inline void gcode_G4() {
  2319. millis_t dwell_ms = 0;
  2320. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2321. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2322. stepper.synchronize();
  2323. refresh_cmd_timeout();
  2324. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2325. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2326. while (PENDING(millis(), dwell_ms)) idle();
  2327. }
  2328. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2329. /**
  2330. * Parameters interpreted according to:
  2331. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2332. * However I, J omission is not supported at this point; all
  2333. * parameters can be omitted and default to zero.
  2334. */
  2335. /**
  2336. * G5: Cubic B-spline
  2337. */
  2338. inline void gcode_G5() {
  2339. if (IsRunning()) {
  2340. gcode_get_destination();
  2341. float offset[] = {
  2342. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2343. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2344. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2345. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2346. };
  2347. plan_cubic_move(offset);
  2348. }
  2349. }
  2350. #endif // BEZIER_CURVE_SUPPORT
  2351. #if ENABLED(FWRETRACT)
  2352. /**
  2353. * G10 - Retract filament according to settings of M207
  2354. * G11 - Recover filament according to settings of M208
  2355. */
  2356. inline void gcode_G10_G11(bool doRetract=false) {
  2357. #if EXTRUDERS > 1
  2358. if (doRetract) {
  2359. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2360. }
  2361. #endif
  2362. retract(doRetract
  2363. #if EXTRUDERS > 1
  2364. , retracted_swap[active_extruder]
  2365. #endif
  2366. );
  2367. }
  2368. #endif //FWRETRACT
  2369. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  2370. #include "nozzle.h"
  2371. /**
  2372. * G12: Clean the nozzle
  2373. */
  2374. inline void gcode_G12() {
  2375. // Don't allow nozzle cleaning without homing first
  2376. if (axis_unhomed_error(true, true, true)) { return; }
  2377. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2378. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2379. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2380. Nozzle::clean(pattern, strokes, objects);
  2381. }
  2382. #endif
  2383. #if ENABLED(INCH_MODE_SUPPORT)
  2384. /**
  2385. * G20: Set input mode to inches
  2386. */
  2387. inline void gcode_G20() {
  2388. set_input_linear_units(LINEARUNIT_INCH);
  2389. }
  2390. /**
  2391. * G21: Set input mode to millimeters
  2392. */
  2393. inline void gcode_G21() {
  2394. set_input_linear_units(LINEARUNIT_MM);
  2395. }
  2396. #endif
  2397. #if ENABLED(QUICK_HOME)
  2398. static void quick_home_xy() {
  2399. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2400. #if ENABLED(DUAL_X_CARRIAGE)
  2401. int x_axis_home_dir = x_home_dir(active_extruder);
  2402. extruder_duplication_enabled = false;
  2403. #else
  2404. int x_axis_home_dir = home_dir(X_AXIS);
  2405. #endif
  2406. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2407. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2408. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2409. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2410. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2411. line_to_destination();
  2412. stepper.synchronize();
  2413. endstops.hit_on_purpose(); // clear endstop hit flags
  2414. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2415. }
  2416. #endif // QUICK_HOME
  2417. #if ENABLED(NOZZLE_PARK_FEATURE)
  2418. #include "nozzle.h"
  2419. /**
  2420. * G27: Park the nozzle
  2421. */
  2422. inline void gcode_G27() {
  2423. // Don't allow nozzle parking without homing first
  2424. if (axis_unhomed_error(true, true, true)) { return; }
  2425. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2426. Nozzle::park(z_action);
  2427. }
  2428. #endif // NOZZLE_PARK_FEATURE
  2429. /**
  2430. * G28: Home all axes according to settings
  2431. *
  2432. * Parameters
  2433. *
  2434. * None Home to all axes with no parameters.
  2435. * With QUICK_HOME enabled XY will home together, then Z.
  2436. *
  2437. * Cartesian parameters
  2438. *
  2439. * X Home to the X endstop
  2440. * Y Home to the Y endstop
  2441. * Z Home to the Z endstop
  2442. *
  2443. */
  2444. inline void gcode_G28() {
  2445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2446. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2447. #endif
  2448. // Wait for planner moves to finish!
  2449. stepper.synchronize();
  2450. // For auto bed leveling, clear the level matrix
  2451. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2452. planner.bed_level_matrix.set_to_identity();
  2453. #if ENABLED(DELTA)
  2454. reset_bed_level();
  2455. #endif
  2456. #endif
  2457. /**
  2458. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2459. * on again when homing all axis
  2460. */
  2461. #if ENABLED(MESH_BED_LEVELING)
  2462. float pre_home_z = MESH_HOME_SEARCH_Z;
  2463. if (mbl.active()) {
  2464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2465. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2466. #endif
  2467. // Save known Z position if already homed
  2468. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2469. pre_home_z = current_position[Z_AXIS];
  2470. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2471. }
  2472. mbl.set_active(false);
  2473. current_position[Z_AXIS] = pre_home_z;
  2474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2475. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2476. #endif
  2477. }
  2478. #endif
  2479. setup_for_endstop_or_probe_move();
  2480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2481. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2482. #endif
  2483. endstops.enable(true); // Enable endstops for next homing move
  2484. #if ENABLED(DELTA)
  2485. /**
  2486. * A delta can only safely home all axes at the same time
  2487. */
  2488. // Pretend the current position is 0,0,0
  2489. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2490. sync_plan_position();
  2491. // Move all carriages up together until the first endstop is hit.
  2492. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2493. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2494. line_to_destination();
  2495. stepper.synchronize();
  2496. endstops.hit_on_purpose(); // clear endstop hit flags
  2497. // Destination reached
  2498. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2499. // take care of back off and rehome now we are all at the top
  2500. HOMEAXIS(X);
  2501. HOMEAXIS(Y);
  2502. HOMEAXIS(Z);
  2503. SYNC_PLAN_POSITION_KINEMATIC();
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2506. #endif
  2507. #else // NOT DELTA
  2508. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2509. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2510. set_destination_to_current();
  2511. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2512. if (home_all_axis || homeZ) {
  2513. HOMEAXIS(Z);
  2514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2515. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2516. #endif
  2517. }
  2518. #else
  2519. if (home_all_axis || homeX || homeY) {
  2520. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2521. destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2522. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) {
  2525. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2526. SERIAL_EOL;
  2527. }
  2528. #endif
  2529. do_blocking_move_to_z(destination[Z_AXIS]);
  2530. }
  2531. }
  2532. #endif
  2533. #if ENABLED(QUICK_HOME)
  2534. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2535. #endif
  2536. #if ENABLED(HOME_Y_BEFORE_X)
  2537. // Home Y
  2538. if (home_all_axis || homeY) {
  2539. HOMEAXIS(Y);
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2542. #endif
  2543. }
  2544. #endif
  2545. // Home X
  2546. if (home_all_axis || homeX) {
  2547. #if ENABLED(DUAL_X_CARRIAGE)
  2548. int tmp_extruder = active_extruder;
  2549. extruder_duplication_enabled = false;
  2550. active_extruder = !active_extruder;
  2551. HOMEAXIS(X);
  2552. inactive_extruder_x_pos = current_position[X_AXIS];
  2553. active_extruder = tmp_extruder;
  2554. HOMEAXIS(X);
  2555. // reset state used by the different modes
  2556. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2557. delayed_move_time = 0;
  2558. active_extruder_parked = true;
  2559. #else
  2560. HOMEAXIS(X);
  2561. #endif
  2562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2563. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2564. #endif
  2565. }
  2566. #if DISABLED(HOME_Y_BEFORE_X)
  2567. // Home Y
  2568. if (home_all_axis || homeY) {
  2569. HOMEAXIS(Y);
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2572. #endif
  2573. }
  2574. #endif
  2575. // Home Z last if homing towards the bed
  2576. #if Z_HOME_DIR < 0
  2577. if (home_all_axis || homeZ) {
  2578. #if ENABLED(Z_SAFE_HOMING)
  2579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2580. if (DEBUGGING(LEVELING)) {
  2581. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2582. }
  2583. #endif
  2584. if (home_all_axis) {
  2585. /**
  2586. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2587. * No need to move Z any more as this height should already be safe
  2588. * enough to reach Z_SAFE_HOMING XY positions.
  2589. * Just make sure the planner is in sync.
  2590. */
  2591. SYNC_PLAN_POSITION_KINEMATIC();
  2592. /**
  2593. * Set the Z probe (or just the nozzle) destination to the safe
  2594. * homing point
  2595. */
  2596. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2597. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2598. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2599. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2600. if (DEBUGGING(LEVELING)) {
  2601. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2602. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2603. }
  2604. #endif
  2605. // Move in the XY plane
  2606. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2607. }
  2608. // Let's see if X and Y are homed
  2609. if (axis_unhomed_error(true, true, false)) return;
  2610. /**
  2611. * Make sure the Z probe is within the physical limits
  2612. * NOTE: This doesn't necessarily ensure the Z probe is also
  2613. * within the bed!
  2614. */
  2615. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2616. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2617. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2618. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2619. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2620. // Home the Z axis
  2621. HOMEAXIS(Z);
  2622. }
  2623. else {
  2624. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2625. SERIAL_ECHO_START;
  2626. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2627. }
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) {
  2630. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2631. }
  2632. #endif
  2633. #else // !Z_SAFE_HOMING
  2634. HOMEAXIS(Z);
  2635. #endif // !Z_SAFE_HOMING
  2636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2637. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2638. #endif
  2639. } // home_all_axis || homeZ
  2640. #endif // Z_HOME_DIR < 0
  2641. SYNC_PLAN_POSITION_KINEMATIC();
  2642. #endif // !DELTA (gcode_G28)
  2643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2644. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2645. #endif
  2646. endstops.not_homing();
  2647. endstops.hit_on_purpose(); // clear endstop hit flags
  2648. // Enable mesh leveling again
  2649. #if ENABLED(MESH_BED_LEVELING)
  2650. if (mbl.has_mesh()) {
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2653. #endif
  2654. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2656. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2657. #endif
  2658. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2659. #if Z_HOME_DIR > 0
  2660. + Z_MAX_POS
  2661. #endif
  2662. ;
  2663. SYNC_PLAN_POSITION_KINEMATIC();
  2664. mbl.set_active(true);
  2665. #if ENABLED(MESH_G28_REST_ORIGIN)
  2666. current_position[Z_AXIS] = 0.0;
  2667. set_destination_to_current();
  2668. feedrate = homing_feedrate[Z_AXIS];
  2669. line_to_destination();
  2670. stepper.synchronize();
  2671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2672. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2673. #endif
  2674. #else
  2675. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2676. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2677. #if Z_HOME_DIR > 0
  2678. + Z_MAX_POS
  2679. #endif
  2680. ;
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2683. #endif
  2684. #endif
  2685. }
  2686. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2687. current_position[Z_AXIS] = pre_home_z;
  2688. SYNC_PLAN_POSITION_KINEMATIC();
  2689. mbl.set_active(true);
  2690. current_position[Z_AXIS] = pre_home_z -
  2691. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2693. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2694. #endif
  2695. }
  2696. }
  2697. #endif
  2698. #if ENABLED(DELTA)
  2699. // move to a height where we can use the full xy-area
  2700. do_blocking_move_to_z(delta_clip_start_height);
  2701. #endif
  2702. clean_up_after_endstop_or_probe_move();
  2703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2704. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2705. #endif
  2706. report_current_position();
  2707. }
  2708. #if HAS_PROBING_PROCEDURE
  2709. void out_of_range_error(const char* p_edge) {
  2710. SERIAL_PROTOCOLPGM("?Probe ");
  2711. serialprintPGM(p_edge);
  2712. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2713. }
  2714. #endif
  2715. #if ENABLED(MESH_BED_LEVELING)
  2716. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2717. inline void _mbl_goto_xy(float x, float y) {
  2718. float old_feedrate = feedrate;
  2719. feedrate = homing_feedrate[X_AXIS];
  2720. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2721. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2722. + Z_RAISE_BETWEEN_PROBINGS
  2723. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2724. + MIN_Z_HEIGHT_FOR_HOMING
  2725. #endif
  2726. ;
  2727. line_to_current_position();
  2728. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2729. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2730. line_to_current_position();
  2731. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2732. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2733. line_to_current_position();
  2734. #endif
  2735. feedrate = old_feedrate;
  2736. stepper.synchronize();
  2737. }
  2738. /**
  2739. * G29: Mesh-based Z probe, probes a grid and produces a
  2740. * mesh to compensate for variable bed height
  2741. *
  2742. * Parameters With MESH_BED_LEVELING:
  2743. *
  2744. * S0 Produce a mesh report
  2745. * S1 Start probing mesh points
  2746. * S2 Probe the next mesh point
  2747. * S3 Xn Yn Zn.nn Manually modify a single point
  2748. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2749. * S5 Reset and disable mesh
  2750. *
  2751. * The S0 report the points as below
  2752. *
  2753. * +----> X-axis 1-n
  2754. * |
  2755. * |
  2756. * v Y-axis 1-n
  2757. *
  2758. */
  2759. inline void gcode_G29() {
  2760. static int probe_point = -1;
  2761. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2762. if (state < 0 || state > 5) {
  2763. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2764. return;
  2765. }
  2766. int8_t px, py;
  2767. switch (state) {
  2768. case MeshReport:
  2769. if (mbl.has_mesh()) {
  2770. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2771. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2772. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2773. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2774. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2775. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2776. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2777. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2778. SERIAL_PROTOCOLPGM(" ");
  2779. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2780. }
  2781. SERIAL_EOL;
  2782. }
  2783. }
  2784. else
  2785. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2786. break;
  2787. case MeshStart:
  2788. mbl.reset();
  2789. probe_point = 0;
  2790. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2791. break;
  2792. case MeshNext:
  2793. if (probe_point < 0) {
  2794. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2795. return;
  2796. }
  2797. // For each G29 S2...
  2798. if (probe_point == 0) {
  2799. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2800. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2801. #if Z_HOME_DIR > 0
  2802. + Z_MAX_POS
  2803. #endif
  2804. ;
  2805. SYNC_PLAN_POSITION_KINEMATIC();
  2806. }
  2807. else {
  2808. // For G29 S2 after adjusting Z.
  2809. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2810. }
  2811. // If there's another point to sample, move there with optional lift.
  2812. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2813. mbl.zigzag(probe_point, px, py);
  2814. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2815. probe_point++;
  2816. }
  2817. else {
  2818. // One last "return to the bed" (as originally coded) at completion
  2819. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2820. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2821. + Z_RAISE_BETWEEN_PROBINGS
  2822. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2823. + MIN_Z_HEIGHT_FOR_HOMING
  2824. #endif
  2825. ;
  2826. line_to_current_position();
  2827. stepper.synchronize();
  2828. // After recording the last point, activate the mbl and home
  2829. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2830. probe_point = -1;
  2831. mbl.set_has_mesh(true);
  2832. enqueue_and_echo_commands_P(PSTR("G28"));
  2833. }
  2834. break;
  2835. case MeshSet:
  2836. if (code_seen('X')) {
  2837. px = code_value_int() - 1;
  2838. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2839. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2840. return;
  2841. }
  2842. }
  2843. else {
  2844. SERIAL_PROTOCOLLNPGM("X not entered.");
  2845. return;
  2846. }
  2847. if (code_seen('Y')) {
  2848. py = code_value_int() - 1;
  2849. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2850. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2851. return;
  2852. }
  2853. }
  2854. else {
  2855. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2856. return;
  2857. }
  2858. if (code_seen('Z')) {
  2859. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2860. }
  2861. else {
  2862. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2863. return;
  2864. }
  2865. break;
  2866. case MeshSetZOffset:
  2867. if (code_seen('Z')) {
  2868. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2869. }
  2870. else {
  2871. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2872. return;
  2873. }
  2874. break;
  2875. case MeshReset:
  2876. if (mbl.active()) {
  2877. current_position[Z_AXIS] +=
  2878. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2879. mbl.reset();
  2880. SYNC_PLAN_POSITION_KINEMATIC();
  2881. }
  2882. else
  2883. mbl.reset();
  2884. } // switch(state)
  2885. report_current_position();
  2886. }
  2887. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2888. /**
  2889. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2890. * Will fail if the printer has not been homed with G28.
  2891. *
  2892. * Enhanced G29 Auto Bed Leveling Probe Routine
  2893. *
  2894. * Parameters With AUTO_BED_LEVELING_GRID:
  2895. *
  2896. * P Set the size of the grid that will be probed (P x P points).
  2897. * Not supported by non-linear delta printer bed leveling.
  2898. * Example: "G29 P4"
  2899. *
  2900. * S Set the XY travel speed between probe points (in units/min)
  2901. *
  2902. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2903. * or clean the rotation Matrix. Useful to check the topology
  2904. * after a first run of G29.
  2905. *
  2906. * V Set the verbose level (0-4). Example: "G29 V3"
  2907. *
  2908. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2909. * This is useful for manual bed leveling and finding flaws in the bed (to
  2910. * assist with part placement).
  2911. * Not supported by non-linear delta printer bed leveling.
  2912. *
  2913. * F Set the Front limit of the probing grid
  2914. * B Set the Back limit of the probing grid
  2915. * L Set the Left limit of the probing grid
  2916. * R Set the Right limit of the probing grid
  2917. *
  2918. * Global Parameters:
  2919. *
  2920. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2921. * Include "E" to engage/disengage the Z probe for each sample.
  2922. * There's no extra effect if you have a fixed Z probe.
  2923. * Usage: "G29 E" or "G29 e"
  2924. *
  2925. */
  2926. inline void gcode_G29() {
  2927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2928. if (DEBUGGING(LEVELING)) {
  2929. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2930. DEBUG_POS("", current_position);
  2931. }
  2932. #endif
  2933. // Don't allow auto-leveling without homing first
  2934. if (axis_unhomed_error(true, true, true)) return;
  2935. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2936. if (verbose_level < 0 || verbose_level > 4) {
  2937. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2938. return;
  2939. }
  2940. bool dryrun = code_seen('D');
  2941. bool stow_probe_after_each = code_seen('E');
  2942. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2943. #if DISABLED(DELTA)
  2944. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2945. #endif
  2946. if (verbose_level > 0) {
  2947. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2948. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2949. }
  2950. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2951. #if DISABLED(DELTA)
  2952. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2953. if (auto_bed_leveling_grid_points < 2) {
  2954. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2955. return;
  2956. }
  2957. #endif
  2958. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2959. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2960. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2961. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2962. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2963. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2964. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2965. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2966. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2967. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2968. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2969. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2970. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2971. if (left_out || right_out || front_out || back_out) {
  2972. if (left_out) {
  2973. out_of_range_error(PSTR("(L)eft"));
  2974. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2975. }
  2976. if (right_out) {
  2977. out_of_range_error(PSTR("(R)ight"));
  2978. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2979. }
  2980. if (front_out) {
  2981. out_of_range_error(PSTR("(F)ront"));
  2982. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2983. }
  2984. if (back_out) {
  2985. out_of_range_error(PSTR("(B)ack"));
  2986. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2987. }
  2988. return;
  2989. }
  2990. #endif // AUTO_BED_LEVELING_GRID
  2991. if (!dryrun) {
  2992. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2993. if (DEBUGGING(LEVELING)) {
  2994. vector_3 corrected_position = planner.adjusted_position();
  2995. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2996. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2997. }
  2998. #endif
  2999. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3000. planner.bed_level_matrix.set_to_identity();
  3001. #if ENABLED(DELTA)
  3002. reset_bed_level();
  3003. #else //!DELTA
  3004. //vector_3 corrected_position = planner.adjusted_position();
  3005. //corrected_position.debug("position before G29");
  3006. vector_3 uncorrected_position = planner.adjusted_position();
  3007. //uncorrected_position.debug("position during G29");
  3008. current_position[X_AXIS] = uncorrected_position.x;
  3009. current_position[Y_AXIS] = uncorrected_position.y;
  3010. current_position[Z_AXIS] = uncorrected_position.z;
  3011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3012. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3013. #endif
  3014. SYNC_PLAN_POSITION_KINEMATIC();
  3015. #endif // !DELTA
  3016. }
  3017. stepper.synchronize();
  3018. setup_for_endstop_or_probe_move();
  3019. // Deploy the probe. Probe will raise if needed.
  3020. if (DEPLOY_PROBE()) return;
  3021. bed_leveling_in_progress = true;
  3022. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3023. // probe at the points of a lattice grid
  3024. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3025. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3026. #if ENABLED(DELTA)
  3027. delta_grid_spacing[0] = xGridSpacing;
  3028. delta_grid_spacing[1] = yGridSpacing;
  3029. float zoffset = zprobe_zoffset;
  3030. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3031. #else // !DELTA
  3032. /**
  3033. * solve the plane equation ax + by + d = z
  3034. * A is the matrix with rows [x y 1] for all the probed points
  3035. * B is the vector of the Z positions
  3036. * the normal vector to the plane is formed by the coefficients of the
  3037. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3038. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3039. */
  3040. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  3041. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3042. eqnBVector[abl2], // "B" vector of Z points
  3043. mean = 0.0;
  3044. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3045. #endif // !DELTA
  3046. int probePointCounter = 0;
  3047. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3048. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3049. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3050. int xStart, xStop, xInc;
  3051. if (zig) {
  3052. xStart = 0;
  3053. xStop = auto_bed_leveling_grid_points;
  3054. xInc = 1;
  3055. }
  3056. else {
  3057. xStart = auto_bed_leveling_grid_points - 1;
  3058. xStop = -1;
  3059. xInc = -1;
  3060. }
  3061. zig = !zig;
  3062. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3063. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3064. #if ENABLED(DELTA)
  3065. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3066. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3067. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3068. #endif //DELTA
  3069. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3070. #if DISABLED(DELTA)
  3071. mean += measured_z;
  3072. eqnBVector[probePointCounter] = measured_z;
  3073. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3074. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3075. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3076. indexIntoAB[xCount][yCount] = probePointCounter;
  3077. #else
  3078. bed_level[xCount][yCount] = measured_z + zoffset;
  3079. #endif
  3080. probePointCounter++;
  3081. idle();
  3082. } //xProbe
  3083. } //yProbe
  3084. #else // !AUTO_BED_LEVELING_GRID
  3085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3086. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3087. #endif
  3088. // Probe at 3 arbitrary points
  3089. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3090. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3091. stow_probe_after_each, verbose_level),
  3092. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3093. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3094. stow_probe_after_each, verbose_level),
  3095. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3096. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3097. stow_probe_after_each, verbose_level);
  3098. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3099. #endif // !AUTO_BED_LEVELING_GRID
  3100. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3101. if (STOW_PROBE()) return;
  3102. // Restore state after probing
  3103. clean_up_after_endstop_or_probe_move();
  3104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3105. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3106. #endif
  3107. // Calculate leveling, print reports, correct the position
  3108. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3109. #if ENABLED(DELTA)
  3110. if (!dryrun) extrapolate_unprobed_bed_level();
  3111. print_bed_level();
  3112. #else // !DELTA
  3113. // solve lsq problem
  3114. double plane_equation_coefficients[3];
  3115. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3116. mean /= abl2;
  3117. if (verbose_level) {
  3118. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3119. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3120. SERIAL_PROTOCOLPGM(" b: ");
  3121. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3122. SERIAL_PROTOCOLPGM(" d: ");
  3123. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3124. SERIAL_EOL;
  3125. if (verbose_level > 2) {
  3126. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3127. SERIAL_PROTOCOL_F(mean, 8);
  3128. SERIAL_EOL;
  3129. }
  3130. }
  3131. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3132. // Show the Topography map if enabled
  3133. if (do_topography_map) {
  3134. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3135. " +--- BACK --+\n"
  3136. " | |\n"
  3137. " L | (+) | R\n"
  3138. " E | | I\n"
  3139. " F | (-) N (+) | G\n"
  3140. " T | | H\n"
  3141. " | (-) | T\n"
  3142. " | |\n"
  3143. " O-- FRONT --+\n"
  3144. " (0,0)");
  3145. float min_diff = 999;
  3146. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3147. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3148. int ind = indexIntoAB[xx][yy];
  3149. float diff = eqnBVector[ind] - mean;
  3150. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3151. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3152. z_tmp = 0;
  3153. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3154. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3155. if (diff >= 0.0)
  3156. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3157. else
  3158. SERIAL_PROTOCOLCHAR(' ');
  3159. SERIAL_PROTOCOL_F(diff, 5);
  3160. } // xx
  3161. SERIAL_EOL;
  3162. } // yy
  3163. SERIAL_EOL;
  3164. if (verbose_level > 3) {
  3165. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3166. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3167. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3168. int ind = indexIntoAB[xx][yy];
  3169. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3170. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3171. z_tmp = 0;
  3172. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3173. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3174. if (diff >= 0.0)
  3175. SERIAL_PROTOCOLPGM(" +");
  3176. // Include + for column alignment
  3177. else
  3178. SERIAL_PROTOCOLCHAR(' ');
  3179. SERIAL_PROTOCOL_F(diff, 5);
  3180. } // xx
  3181. SERIAL_EOL;
  3182. } // yy
  3183. SERIAL_EOL;
  3184. }
  3185. } //do_topography_map
  3186. #endif //!DELTA
  3187. #endif // AUTO_BED_LEVELING_GRID
  3188. #if DISABLED(DELTA)
  3189. if (verbose_level > 0)
  3190. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3191. if (!dryrun) {
  3192. /**
  3193. * Correct the Z height difference from Z probe position and nozzle tip position.
  3194. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3195. * from the nozzle. When the bed is uneven, this height must be corrected.
  3196. */
  3197. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3198. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3199. z_tmp = current_position[Z_AXIS],
  3200. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3202. if (DEBUGGING(LEVELING)) {
  3203. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3204. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3205. SERIAL_EOL;
  3206. }
  3207. #endif
  3208. // Apply the correction sending the Z probe offset
  3209. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3211. if (DEBUGGING(LEVELING)) {
  3212. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3213. SERIAL_EOL;
  3214. }
  3215. #endif
  3216. // Adjust the current Z and send it to the planner.
  3217. current_position[Z_AXIS] += z_tmp - stepper_z;
  3218. SYNC_PLAN_POSITION_KINEMATIC();
  3219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3220. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3221. #endif
  3222. }
  3223. #endif // !DELTA
  3224. #ifdef Z_PROBE_END_SCRIPT
  3225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3226. if (DEBUGGING(LEVELING)) {
  3227. SERIAL_ECHOPGM("Z Probe End Script: ");
  3228. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3229. }
  3230. #endif
  3231. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3232. stepper.synchronize();
  3233. #endif
  3234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3235. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3236. #endif
  3237. bed_leveling_in_progress = false;
  3238. report_current_position();
  3239. KEEPALIVE_STATE(IN_HANDLER);
  3240. }
  3241. #endif //AUTO_BED_LEVELING_FEATURE
  3242. #if HAS_BED_PROBE
  3243. /**
  3244. * G30: Do a single Z probe at the current XY
  3245. */
  3246. inline void gcode_G30() {
  3247. setup_for_endstop_or_probe_move();
  3248. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3249. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3250. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3251. true, 1);
  3252. SERIAL_PROTOCOLPGM("Bed X: ");
  3253. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3254. SERIAL_PROTOCOLPGM(" Y: ");
  3255. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3256. SERIAL_PROTOCOLPGM(" Z: ");
  3257. SERIAL_PROTOCOL(measured_z + 0.0001);
  3258. SERIAL_EOL;
  3259. clean_up_after_endstop_or_probe_move();
  3260. report_current_position();
  3261. }
  3262. #if ENABLED(Z_PROBE_SLED)
  3263. /**
  3264. * G31: Deploy the Z probe
  3265. */
  3266. inline void gcode_G31() { DEPLOY_PROBE(); }
  3267. /**
  3268. * G32: Stow the Z probe
  3269. */
  3270. inline void gcode_G32() { STOW_PROBE(); }
  3271. #endif // Z_PROBE_SLED
  3272. #endif // HAS_BED_PROBE
  3273. /**
  3274. * G92: Set current position to given X Y Z E
  3275. */
  3276. inline void gcode_G92() {
  3277. bool didE = code_seen('E');
  3278. if (!didE) stepper.synchronize();
  3279. bool didXYZ = false;
  3280. for (int i = 0; i < NUM_AXIS; i++) {
  3281. if (code_seen(axis_codes[i])) {
  3282. float p = current_position[i],
  3283. v = code_value_axis_units(i);
  3284. current_position[i] = v;
  3285. if (i != E_AXIS) {
  3286. position_shift[i] += v - p; // Offset the coordinate space
  3287. update_software_endstops((AxisEnum)i);
  3288. didXYZ = true;
  3289. }
  3290. }
  3291. }
  3292. if (didXYZ)
  3293. SYNC_PLAN_POSITION_KINEMATIC();
  3294. else if (didE)
  3295. sync_plan_position_e();
  3296. }
  3297. #if ENABLED(ULTIPANEL)
  3298. /**
  3299. * M0: Unconditional stop - Wait for user button press on LCD
  3300. * M1: Conditional stop - Wait for user button press on LCD
  3301. */
  3302. inline void gcode_M0_M1() {
  3303. char* args = current_command_args;
  3304. millis_t codenum = 0;
  3305. bool hasP = false, hasS = false;
  3306. if (code_seen('P')) {
  3307. codenum = code_value_millis(); // milliseconds to wait
  3308. hasP = codenum > 0;
  3309. }
  3310. if (code_seen('S')) {
  3311. codenum = code_value_millis_from_seconds(); // seconds to wait
  3312. hasS = codenum > 0;
  3313. }
  3314. if (!hasP && !hasS && *args != '\0')
  3315. lcd_setstatus(args, true);
  3316. else {
  3317. LCD_MESSAGEPGM(MSG_USERWAIT);
  3318. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3319. dontExpireStatus();
  3320. #endif
  3321. }
  3322. lcd_ignore_click();
  3323. stepper.synchronize();
  3324. refresh_cmd_timeout();
  3325. if (codenum > 0) {
  3326. codenum += previous_cmd_ms; // wait until this time for a click
  3327. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3328. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3329. KEEPALIVE_STATE(IN_HANDLER);
  3330. lcd_ignore_click(false);
  3331. }
  3332. else {
  3333. if (!lcd_detected()) return;
  3334. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3335. while (!lcd_clicked()) idle();
  3336. KEEPALIVE_STATE(IN_HANDLER);
  3337. }
  3338. if (IS_SD_PRINTING)
  3339. LCD_MESSAGEPGM(MSG_RESUMING);
  3340. else
  3341. LCD_MESSAGEPGM(WELCOME_MSG);
  3342. }
  3343. #endif // ULTIPANEL
  3344. /**
  3345. * M17: Enable power on all stepper motors
  3346. */
  3347. inline void gcode_M17() {
  3348. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3349. enable_all_steppers();
  3350. }
  3351. #if ENABLED(SDSUPPORT)
  3352. /**
  3353. * M20: List SD card to serial output
  3354. */
  3355. inline void gcode_M20() {
  3356. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3357. card.ls();
  3358. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3359. }
  3360. /**
  3361. * M21: Init SD Card
  3362. */
  3363. inline void gcode_M21() {
  3364. card.initsd();
  3365. }
  3366. /**
  3367. * M22: Release SD Card
  3368. */
  3369. inline void gcode_M22() {
  3370. card.release();
  3371. }
  3372. /**
  3373. * M23: Open a file
  3374. */
  3375. inline void gcode_M23() {
  3376. card.openFile(current_command_args, true);
  3377. }
  3378. /**
  3379. * M24: Start SD Print
  3380. */
  3381. inline void gcode_M24() {
  3382. card.startFileprint();
  3383. print_job_timer.start();
  3384. }
  3385. /**
  3386. * M25: Pause SD Print
  3387. */
  3388. inline void gcode_M25() {
  3389. card.pauseSDPrint();
  3390. }
  3391. /**
  3392. * M26: Set SD Card file index
  3393. */
  3394. inline void gcode_M26() {
  3395. if (card.cardOK && code_seen('S'))
  3396. card.setIndex(code_value_long());
  3397. }
  3398. /**
  3399. * M27: Get SD Card status
  3400. */
  3401. inline void gcode_M27() {
  3402. card.getStatus();
  3403. }
  3404. /**
  3405. * M28: Start SD Write
  3406. */
  3407. inline void gcode_M28() {
  3408. card.openFile(current_command_args, false);
  3409. }
  3410. /**
  3411. * M29: Stop SD Write
  3412. * Processed in write to file routine above
  3413. */
  3414. inline void gcode_M29() {
  3415. // card.saving = false;
  3416. }
  3417. /**
  3418. * M30 <filename>: Delete SD Card file
  3419. */
  3420. inline void gcode_M30() {
  3421. if (card.cardOK) {
  3422. card.closefile();
  3423. card.removeFile(current_command_args);
  3424. }
  3425. }
  3426. #endif //SDSUPPORT
  3427. /**
  3428. * M31: Get the time since the start of SD Print (or last M109)
  3429. */
  3430. inline void gcode_M31() {
  3431. millis_t t = print_job_timer.duration();
  3432. int d = int(t / 60 / 60 / 24),
  3433. h = int(t / 60 / 60) % 60,
  3434. m = int(t / 60) % 60,
  3435. s = int(t % 60);
  3436. char time[18]; // 123456789012345678
  3437. if (d)
  3438. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3439. else
  3440. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3441. lcd_setstatus(time);
  3442. SERIAL_ECHO_START;
  3443. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3444. SERIAL_ECHOLN(time);
  3445. thermalManager.autotempShutdown();
  3446. }
  3447. #if ENABLED(SDSUPPORT)
  3448. /**
  3449. * M32: Select file and start SD Print
  3450. */
  3451. inline void gcode_M32() {
  3452. if (card.sdprinting)
  3453. stepper.synchronize();
  3454. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3455. if (!namestartpos)
  3456. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3457. else
  3458. namestartpos++; //to skip the '!'
  3459. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3460. if (card.cardOK) {
  3461. card.openFile(namestartpos, true, call_procedure);
  3462. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3463. card.setIndex(code_value_long());
  3464. card.startFileprint();
  3465. // Procedure calls count as normal print time.
  3466. if (!call_procedure) print_job_timer.start();
  3467. }
  3468. }
  3469. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3470. /**
  3471. * M33: Get the long full path of a file or folder
  3472. *
  3473. * Parameters:
  3474. * <dospath> Case-insensitive DOS-style path to a file or folder
  3475. *
  3476. * Example:
  3477. * M33 miscel~1/armchair/armcha~1.gco
  3478. *
  3479. * Output:
  3480. * /Miscellaneous/Armchair/Armchair.gcode
  3481. */
  3482. inline void gcode_M33() {
  3483. card.printLongPath(current_command_args);
  3484. }
  3485. #endif
  3486. /**
  3487. * M928: Start SD Write
  3488. */
  3489. inline void gcode_M928() {
  3490. card.openLogFile(current_command_args);
  3491. }
  3492. #endif // SDSUPPORT
  3493. /**
  3494. * M42: Change pin status via GCode
  3495. *
  3496. * P<pin> Pin number (LED if omitted)
  3497. * S<byte> Pin status from 0 - 255
  3498. */
  3499. inline void gcode_M42() {
  3500. if (!code_seen('S')) return;
  3501. int pin_status = code_value_int();
  3502. if (pin_status < 0 || pin_status > 255) return;
  3503. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3504. if (pin_number < 0) return;
  3505. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3506. if (pin_number == sensitive_pins[i]) return;
  3507. pinMode(pin_number, OUTPUT);
  3508. digitalWrite(pin_number, pin_status);
  3509. analogWrite(pin_number, pin_status);
  3510. #if FAN_COUNT > 0
  3511. switch (pin_number) {
  3512. #if HAS_FAN0
  3513. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3514. #endif
  3515. #if HAS_FAN1
  3516. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3517. #endif
  3518. #if HAS_FAN2
  3519. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3520. #endif
  3521. }
  3522. #endif
  3523. }
  3524. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3525. /**
  3526. * M48: Z probe repeatability measurement function.
  3527. *
  3528. * Usage:
  3529. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3530. * P = Number of sampled points (4-50, default 10)
  3531. * X = Sample X position
  3532. * Y = Sample Y position
  3533. * V = Verbose level (0-4, default=1)
  3534. * E = Engage Z probe for each reading
  3535. * L = Number of legs of movement before probe
  3536. * S = Schizoid (Or Star if you prefer)
  3537. *
  3538. * This function assumes the bed has been homed. Specifically, that a G28 command
  3539. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3540. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3541. * regenerated.
  3542. */
  3543. inline void gcode_M48() {
  3544. if (axis_unhomed_error(true, true, true)) return;
  3545. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3546. if (verbose_level < 0 || verbose_level > 4) {
  3547. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3548. return;
  3549. }
  3550. if (verbose_level > 0)
  3551. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3552. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3553. if (n_samples < 4 || n_samples > 50) {
  3554. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3555. return;
  3556. }
  3557. float X_current = current_position[X_AXIS],
  3558. Y_current = current_position[Y_AXIS];
  3559. bool stow_probe_after_each = code_seen('E');
  3560. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3561. #if DISABLED(DELTA)
  3562. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3563. out_of_range_error(PSTR("X"));
  3564. return;
  3565. }
  3566. #endif
  3567. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3568. #if DISABLED(DELTA)
  3569. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3570. out_of_range_error(PSTR("Y"));
  3571. return;
  3572. }
  3573. #else
  3574. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3575. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3576. return;
  3577. }
  3578. #endif
  3579. bool seen_L = code_seen('L');
  3580. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3581. if (n_legs > 15) {
  3582. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3583. return;
  3584. }
  3585. if (n_legs == 1) n_legs = 2;
  3586. bool schizoid_flag = code_seen('S');
  3587. if (schizoid_flag && !seen_L) n_legs = 7;
  3588. /**
  3589. * Now get everything to the specified probe point So we can safely do a
  3590. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3591. * we don't want to use that as a starting point for each probe.
  3592. */
  3593. if (verbose_level > 2)
  3594. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3595. #if ENABLED(DELTA)
  3596. // we don't do bed level correction in M48 because we want the raw data when we probe
  3597. reset_bed_level();
  3598. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3599. // we don't do bed level correction in M48 because we want the raw data when we probe
  3600. planner.bed_level_matrix.set_to_identity();
  3601. #endif
  3602. setup_for_endstop_or_probe_move();
  3603. // Move to the first point, deploy, and probe
  3604. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3605. randomSeed(millis());
  3606. double mean = 0, sigma = 0, sample_set[n_samples];
  3607. for (uint8_t n = 0; n < n_samples; n++) {
  3608. if (n_legs) {
  3609. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3610. float angle = random(0.0, 360.0),
  3611. radius = random(
  3612. #if ENABLED(DELTA)
  3613. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3614. #else
  3615. 5, X_MAX_LENGTH / 8
  3616. #endif
  3617. );
  3618. if (verbose_level > 3) {
  3619. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3620. SERIAL_ECHOPAIR(" angle: ", angle);
  3621. SERIAL_ECHOPGM(" Direction: ");
  3622. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3623. SERIAL_ECHOLNPGM("Clockwise");
  3624. }
  3625. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3626. double delta_angle;
  3627. if (schizoid_flag)
  3628. // The points of a 5 point star are 72 degrees apart. We need to
  3629. // skip a point and go to the next one on the star.
  3630. delta_angle = dir * 2.0 * 72.0;
  3631. else
  3632. // If we do this line, we are just trying to move further
  3633. // around the circle.
  3634. delta_angle = dir * (float) random(25, 45);
  3635. angle += delta_angle;
  3636. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3637. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3638. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3639. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3640. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3641. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3642. #if DISABLED(DELTA)
  3643. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3644. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3645. #else
  3646. // If we have gone out too far, we can do a simple fix and scale the numbers
  3647. // back in closer to the origin.
  3648. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3649. X_current /= 1.25;
  3650. Y_current /= 1.25;
  3651. if (verbose_level > 3) {
  3652. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3653. SERIAL_ECHOPAIR(", ", Y_current);
  3654. SERIAL_EOL;
  3655. }
  3656. }
  3657. #endif
  3658. if (verbose_level > 3) {
  3659. SERIAL_PROTOCOLPGM("Going to:");
  3660. SERIAL_ECHOPAIR(" X", X_current);
  3661. SERIAL_ECHOPAIR(" Y", Y_current);
  3662. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3663. SERIAL_EOL;
  3664. }
  3665. do_blocking_move_to_xy(X_current, Y_current);
  3666. } // n_legs loop
  3667. } // n_legs
  3668. // Probe a single point
  3669. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3670. /**
  3671. * Get the current mean for the data points we have so far
  3672. */
  3673. double sum = 0.0;
  3674. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3675. mean = sum / (n + 1);
  3676. /**
  3677. * Now, use that mean to calculate the standard deviation for the
  3678. * data points we have so far
  3679. */
  3680. sum = 0.0;
  3681. for (uint8_t j = 0; j <= n; j++) {
  3682. float ss = sample_set[j] - mean;
  3683. sum += ss * ss;
  3684. }
  3685. sigma = sqrt(sum / (n + 1));
  3686. if (verbose_level > 0) {
  3687. if (verbose_level > 1) {
  3688. SERIAL_PROTOCOL(n + 1);
  3689. SERIAL_PROTOCOLPGM(" of ");
  3690. SERIAL_PROTOCOL((int)n_samples);
  3691. SERIAL_PROTOCOLPGM(" z: ");
  3692. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3693. if (verbose_level > 2) {
  3694. SERIAL_PROTOCOLPGM(" mean: ");
  3695. SERIAL_PROTOCOL_F(mean, 6);
  3696. SERIAL_PROTOCOLPGM(" sigma: ");
  3697. SERIAL_PROTOCOL_F(sigma, 6);
  3698. }
  3699. }
  3700. SERIAL_EOL;
  3701. }
  3702. } // End of probe loop
  3703. if (STOW_PROBE()) return;
  3704. if (verbose_level > 0) {
  3705. SERIAL_PROTOCOLPGM("Mean: ");
  3706. SERIAL_PROTOCOL_F(mean, 6);
  3707. SERIAL_EOL;
  3708. }
  3709. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3710. SERIAL_PROTOCOL_F(sigma, 6);
  3711. SERIAL_EOL; SERIAL_EOL;
  3712. clean_up_after_endstop_or_probe_move();
  3713. report_current_position();
  3714. }
  3715. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3716. /**
  3717. * M75: Start print timer
  3718. */
  3719. inline void gcode_M75() { print_job_timer.start(); }
  3720. /**
  3721. * M76: Pause print timer
  3722. */
  3723. inline void gcode_M76() { print_job_timer.pause(); }
  3724. /**
  3725. * M77: Stop print timer
  3726. */
  3727. inline void gcode_M77() { print_job_timer.stop(); }
  3728. #if ENABLED(PRINTCOUNTER)
  3729. /*+
  3730. * M78: Show print statistics
  3731. */
  3732. inline void gcode_M78() {
  3733. // "M78 S78" will reset the statistics
  3734. if (code_seen('S') && code_value_int() == 78)
  3735. print_job_timer.initStats();
  3736. else print_job_timer.showStats();
  3737. }
  3738. #endif
  3739. /**
  3740. * M104: Set hot end temperature
  3741. */
  3742. inline void gcode_M104() {
  3743. if (get_target_extruder_from_command(104)) return;
  3744. if (DEBUGGING(DRYRUN)) return;
  3745. #if ENABLED(SINGLENOZZLE)
  3746. if (target_extruder != active_extruder) return;
  3747. #endif
  3748. if (code_seen('S')) {
  3749. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3750. #if ENABLED(DUAL_X_CARRIAGE)
  3751. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3752. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3753. #endif
  3754. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3755. /**
  3756. * Stop the timer at the end of print, starting is managed by
  3757. * 'heat and wait' M109.
  3758. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3759. * stand by mode, for instance in a dual extruder setup, without affecting
  3760. * the running print timer.
  3761. */
  3762. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3763. print_job_timer.stop();
  3764. LCD_MESSAGEPGM(WELCOME_MSG);
  3765. }
  3766. #endif
  3767. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3768. }
  3769. }
  3770. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3771. void print_heaterstates() {
  3772. #if HAS_TEMP_HOTEND
  3773. SERIAL_PROTOCOLPGM(" T:");
  3774. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3775. SERIAL_PROTOCOLPGM(" /");
  3776. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3777. #endif
  3778. #if HAS_TEMP_BED
  3779. SERIAL_PROTOCOLPGM(" B:");
  3780. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3781. SERIAL_PROTOCOLPGM(" /");
  3782. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3783. #endif
  3784. #if HOTENDS > 1
  3785. HOTEND_LOOP() {
  3786. SERIAL_PROTOCOLPGM(" T");
  3787. SERIAL_PROTOCOL(e);
  3788. SERIAL_PROTOCOLCHAR(':');
  3789. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3790. SERIAL_PROTOCOLPGM(" /");
  3791. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3792. }
  3793. #endif
  3794. #if HAS_TEMP_BED
  3795. SERIAL_PROTOCOLPGM(" B@:");
  3796. #ifdef BED_WATTS
  3797. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3798. SERIAL_PROTOCOLCHAR('W');
  3799. #else
  3800. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3801. #endif
  3802. #endif
  3803. SERIAL_PROTOCOLPGM(" @:");
  3804. #ifdef EXTRUDER_WATTS
  3805. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3806. SERIAL_PROTOCOLCHAR('W');
  3807. #else
  3808. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3809. #endif
  3810. #if HOTENDS > 1
  3811. HOTEND_LOOP() {
  3812. SERIAL_PROTOCOLPGM(" @");
  3813. SERIAL_PROTOCOL(e);
  3814. SERIAL_PROTOCOLCHAR(':');
  3815. #ifdef EXTRUDER_WATTS
  3816. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3817. SERIAL_PROTOCOLCHAR('W');
  3818. #else
  3819. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3820. #endif
  3821. }
  3822. #endif
  3823. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3824. #if HAS_TEMP_BED
  3825. SERIAL_PROTOCOLPGM(" ADC B:");
  3826. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3827. SERIAL_PROTOCOLPGM("C->");
  3828. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3829. #endif
  3830. HOTEND_LOOP() {
  3831. SERIAL_PROTOCOLPGM(" T");
  3832. SERIAL_PROTOCOL(e);
  3833. SERIAL_PROTOCOLCHAR(':');
  3834. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3835. SERIAL_PROTOCOLPGM("C->");
  3836. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3837. }
  3838. #endif
  3839. }
  3840. #endif
  3841. /**
  3842. * M105: Read hot end and bed temperature
  3843. */
  3844. inline void gcode_M105() {
  3845. if (get_target_extruder_from_command(105)) return;
  3846. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3847. SERIAL_PROTOCOLPGM(MSG_OK);
  3848. print_heaterstates();
  3849. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3850. SERIAL_ERROR_START;
  3851. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3852. #endif
  3853. SERIAL_EOL;
  3854. }
  3855. #if FAN_COUNT > 0
  3856. /**
  3857. * M106: Set Fan Speed
  3858. *
  3859. * S<int> Speed between 0-255
  3860. * P<index> Fan index, if more than one fan
  3861. */
  3862. inline void gcode_M106() {
  3863. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3864. p = code_seen('P') ? code_value_ushort() : 0;
  3865. NOMORE(s, 255);
  3866. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3867. }
  3868. /**
  3869. * M107: Fan Off
  3870. */
  3871. inline void gcode_M107() {
  3872. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3873. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3874. }
  3875. #endif // FAN_COUNT > 0
  3876. #if DISABLED(EMERGENCY_PARSER)
  3877. /**
  3878. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3879. */
  3880. inline void gcode_M108() { wait_for_heatup = false; }
  3881. /**
  3882. * M112: Emergency Stop
  3883. */
  3884. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3885. /**
  3886. * M410: Quickstop - Abort all planned moves
  3887. *
  3888. * This will stop the carriages mid-move, so most likely they
  3889. * will be out of sync with the stepper position after this.
  3890. */
  3891. inline void gcode_M410() { quickstop_stepper(); }
  3892. #endif
  3893. #ifndef MIN_COOLING_SLOPE_DEG
  3894. #define MIN_COOLING_SLOPE_DEG 1.50
  3895. #endif
  3896. #ifndef MIN_COOLING_SLOPE_TIME
  3897. #define MIN_COOLING_SLOPE_TIME 60
  3898. #endif
  3899. /**
  3900. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3901. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3902. */
  3903. inline void gcode_M109() {
  3904. if (get_target_extruder_from_command(109)) return;
  3905. if (DEBUGGING(DRYRUN)) return;
  3906. #if ENABLED(SINGLENOZZLE)
  3907. if (target_extruder != active_extruder) return;
  3908. #endif
  3909. bool no_wait_for_cooling = code_seen('S');
  3910. if (no_wait_for_cooling || code_seen('R')) {
  3911. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3912. #if ENABLED(DUAL_X_CARRIAGE)
  3913. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3914. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3915. #endif
  3916. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3917. /**
  3918. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3919. * stand by mode, for instance in a dual extruder setup, without affecting
  3920. * the running print timer.
  3921. */
  3922. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3923. print_job_timer.stop();
  3924. LCD_MESSAGEPGM(WELCOME_MSG);
  3925. }
  3926. /**
  3927. * We do not check if the timer is already running because this check will
  3928. * be done for us inside the Stopwatch::start() method thus a running timer
  3929. * will not restart.
  3930. */
  3931. else print_job_timer.start();
  3932. #endif
  3933. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3934. }
  3935. #if ENABLED(AUTOTEMP)
  3936. planner.autotemp_M109();
  3937. #endif
  3938. #if TEMP_RESIDENCY_TIME > 0
  3939. millis_t residency_start_ms = 0;
  3940. // Loop until the temperature has stabilized
  3941. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3942. #else
  3943. // Loop until the temperature is very close target
  3944. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3945. #endif //TEMP_RESIDENCY_TIME > 0
  3946. float theTarget = -1.0, old_temp = 9999.0;
  3947. bool wants_to_cool = false;
  3948. wait_for_heatup = true;
  3949. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3950. KEEPALIVE_STATE(NOT_BUSY);
  3951. do {
  3952. // Target temperature might be changed during the loop
  3953. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3954. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3955. theTarget = thermalManager.degTargetHotend(target_extruder);
  3956. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3957. if (no_wait_for_cooling && wants_to_cool) break;
  3958. }
  3959. now = millis();
  3960. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3961. next_temp_ms = now + 1000UL;
  3962. print_heaterstates();
  3963. #if TEMP_RESIDENCY_TIME > 0
  3964. SERIAL_PROTOCOLPGM(" W:");
  3965. if (residency_start_ms) {
  3966. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3967. SERIAL_PROTOCOLLN(rem);
  3968. }
  3969. else {
  3970. SERIAL_PROTOCOLLNPGM("?");
  3971. }
  3972. #else
  3973. SERIAL_EOL;
  3974. #endif
  3975. }
  3976. idle();
  3977. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3978. float temp = thermalManager.degHotend(target_extruder);
  3979. #if TEMP_RESIDENCY_TIME > 0
  3980. float temp_diff = fabs(theTarget - temp);
  3981. if (!residency_start_ms) {
  3982. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3983. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3984. }
  3985. else if (temp_diff > TEMP_HYSTERESIS) {
  3986. // Restart the timer whenever the temperature falls outside the hysteresis.
  3987. residency_start_ms = now;
  3988. }
  3989. #endif //TEMP_RESIDENCY_TIME > 0
  3990. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3991. if (wants_to_cool) {
  3992. // break after MIN_COOLING_SLOPE_TIME seconds
  3993. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3994. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3995. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3996. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3997. old_temp = temp;
  3998. }
  3999. }
  4000. } while (wait_for_heatup && TEMP_CONDITIONS);
  4001. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4002. KEEPALIVE_STATE(IN_HANDLER);
  4003. }
  4004. #if HAS_TEMP_BED
  4005. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4006. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4007. #endif
  4008. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4009. #define MIN_COOLING_SLOPE_TIME_BED 60
  4010. #endif
  4011. /**
  4012. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4013. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4014. */
  4015. inline void gcode_M190() {
  4016. if (DEBUGGING(DRYRUN)) return;
  4017. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4018. bool no_wait_for_cooling = code_seen('S');
  4019. if (no_wait_for_cooling || code_seen('R')) {
  4020. thermalManager.setTargetBed(code_value_temp_abs());
  4021. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4022. if (code_value_temp_abs() > BED_MINTEMP) {
  4023. /**
  4024. * We start the timer when 'heating and waiting' command arrives, LCD
  4025. * functions never wait. Cooling down managed by extruders.
  4026. *
  4027. * We do not check if the timer is already running because this check will
  4028. * be done for us inside the Stopwatch::start() method thus a running timer
  4029. * will not restart.
  4030. */
  4031. print_job_timer.start();
  4032. }
  4033. #endif
  4034. }
  4035. #if TEMP_BED_RESIDENCY_TIME > 0
  4036. millis_t residency_start_ms = 0;
  4037. // Loop until the temperature has stabilized
  4038. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4039. #else
  4040. // Loop until the temperature is very close target
  4041. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4042. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4043. float theTarget = -1.0, old_temp = 9999.0;
  4044. bool wants_to_cool = false;
  4045. wait_for_heatup = true;
  4046. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4047. KEEPALIVE_STATE(NOT_BUSY);
  4048. target_extruder = active_extruder; // for print_heaterstates
  4049. do {
  4050. // Target temperature might be changed during the loop
  4051. if (theTarget != thermalManager.degTargetBed()) {
  4052. wants_to_cool = thermalManager.isCoolingBed();
  4053. theTarget = thermalManager.degTargetBed();
  4054. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4055. if (no_wait_for_cooling && wants_to_cool) break;
  4056. }
  4057. now = millis();
  4058. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4059. next_temp_ms = now + 1000UL;
  4060. print_heaterstates();
  4061. #if TEMP_BED_RESIDENCY_TIME > 0
  4062. SERIAL_PROTOCOLPGM(" W:");
  4063. if (residency_start_ms) {
  4064. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4065. SERIAL_PROTOCOLLN(rem);
  4066. }
  4067. else {
  4068. SERIAL_PROTOCOLLNPGM("?");
  4069. }
  4070. #else
  4071. SERIAL_EOL;
  4072. #endif
  4073. }
  4074. idle();
  4075. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4076. float temp = thermalManager.degBed();
  4077. #if TEMP_BED_RESIDENCY_TIME > 0
  4078. float temp_diff = fabs(theTarget - temp);
  4079. if (!residency_start_ms) {
  4080. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4081. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4082. }
  4083. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4084. // Restart the timer whenever the temperature falls outside the hysteresis.
  4085. residency_start_ms = now;
  4086. }
  4087. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4088. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4089. if (wants_to_cool) {
  4090. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4091. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4092. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4093. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4094. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4095. old_temp = temp;
  4096. }
  4097. }
  4098. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4099. LCD_MESSAGEPGM(MSG_BED_DONE);
  4100. KEEPALIVE_STATE(IN_HANDLER);
  4101. }
  4102. #endif // HAS_TEMP_BED
  4103. /**
  4104. * M110: Set Current Line Number
  4105. */
  4106. inline void gcode_M110() {
  4107. if (code_seen('N')) gcode_N = code_value_long();
  4108. }
  4109. /**
  4110. * M111: Set the debug level
  4111. */
  4112. inline void gcode_M111() {
  4113. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4114. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4115. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4116. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4117. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4118. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4120. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4121. #endif
  4122. const static char* const debug_strings[] PROGMEM = {
  4123. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4125. str_debug_32
  4126. #endif
  4127. };
  4128. SERIAL_ECHO_START;
  4129. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4130. if (marlin_debug_flags) {
  4131. uint8_t comma = 0;
  4132. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4133. if (TEST(marlin_debug_flags, i)) {
  4134. if (comma++) SERIAL_CHAR(',');
  4135. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4136. }
  4137. }
  4138. }
  4139. else {
  4140. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4141. }
  4142. SERIAL_EOL;
  4143. }
  4144. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4145. /**
  4146. * M113: Get or set Host Keepalive interval (0 to disable)
  4147. *
  4148. * S<seconds> Optional. Set the keepalive interval.
  4149. */
  4150. inline void gcode_M113() {
  4151. if (code_seen('S')) {
  4152. host_keepalive_interval = code_value_byte();
  4153. NOMORE(host_keepalive_interval, 60);
  4154. }
  4155. else {
  4156. SERIAL_ECHO_START;
  4157. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4158. SERIAL_EOL;
  4159. }
  4160. }
  4161. #endif
  4162. #if ENABLED(BARICUDA)
  4163. #if HAS_HEATER_1
  4164. /**
  4165. * M126: Heater 1 valve open
  4166. */
  4167. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4168. /**
  4169. * M127: Heater 1 valve close
  4170. */
  4171. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4172. #endif
  4173. #if HAS_HEATER_2
  4174. /**
  4175. * M128: Heater 2 valve open
  4176. */
  4177. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4178. /**
  4179. * M129: Heater 2 valve close
  4180. */
  4181. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4182. #endif
  4183. #endif //BARICUDA
  4184. /**
  4185. * M140: Set bed temperature
  4186. */
  4187. inline void gcode_M140() {
  4188. if (DEBUGGING(DRYRUN)) return;
  4189. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4190. }
  4191. #if ENABLED(ULTIPANEL)
  4192. /**
  4193. * M145: Set the heatup state for a material in the LCD menu
  4194. * S<material> (0=PLA, 1=ABS)
  4195. * H<hotend temp>
  4196. * B<bed temp>
  4197. * F<fan speed>
  4198. */
  4199. inline void gcode_M145() {
  4200. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4201. if (material < 0 || material > 1) {
  4202. SERIAL_ERROR_START;
  4203. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4204. }
  4205. else {
  4206. int v;
  4207. switch (material) {
  4208. case 0:
  4209. if (code_seen('H')) {
  4210. v = code_value_int();
  4211. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4212. }
  4213. if (code_seen('F')) {
  4214. v = code_value_int();
  4215. preheatFanSpeed1 = constrain(v, 0, 255);
  4216. }
  4217. #if TEMP_SENSOR_BED != 0
  4218. if (code_seen('B')) {
  4219. v = code_value_int();
  4220. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4221. }
  4222. #endif
  4223. break;
  4224. case 1:
  4225. if (code_seen('H')) {
  4226. v = code_value_int();
  4227. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4228. }
  4229. if (code_seen('F')) {
  4230. v = code_value_int();
  4231. preheatFanSpeed2 = constrain(v, 0, 255);
  4232. }
  4233. #if TEMP_SENSOR_BED != 0
  4234. if (code_seen('B')) {
  4235. v = code_value_int();
  4236. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4237. }
  4238. #endif
  4239. break;
  4240. }
  4241. }
  4242. }
  4243. #endif
  4244. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4245. /**
  4246. * M149: Set temperature units
  4247. */
  4248. inline void gcode_M149() {
  4249. if (code_seen('C')) {
  4250. set_input_temp_units(TEMPUNIT_C);
  4251. } else if (code_seen('K')) {
  4252. set_input_temp_units(TEMPUNIT_K);
  4253. } else if (code_seen('F')) {
  4254. set_input_temp_units(TEMPUNIT_F);
  4255. }
  4256. }
  4257. #endif
  4258. #if HAS_POWER_SWITCH
  4259. /**
  4260. * M80: Turn on Power Supply
  4261. */
  4262. inline void gcode_M80() {
  4263. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4264. /**
  4265. * If you have a switch on suicide pin, this is useful
  4266. * if you want to start another print with suicide feature after
  4267. * a print without suicide...
  4268. */
  4269. #if HAS_SUICIDE
  4270. OUT_WRITE(SUICIDE_PIN, HIGH);
  4271. #endif
  4272. #if ENABLED(ULTIPANEL)
  4273. powersupply = true;
  4274. LCD_MESSAGEPGM(WELCOME_MSG);
  4275. lcd_update();
  4276. #endif
  4277. }
  4278. #endif // HAS_POWER_SWITCH
  4279. /**
  4280. * M81: Turn off Power, including Power Supply, if there is one.
  4281. *
  4282. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4283. */
  4284. inline void gcode_M81() {
  4285. thermalManager.disable_all_heaters();
  4286. stepper.finish_and_disable();
  4287. #if FAN_COUNT > 0
  4288. #if FAN_COUNT > 1
  4289. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4290. #else
  4291. fanSpeeds[0] = 0;
  4292. #endif
  4293. #endif
  4294. delay(1000); // Wait 1 second before switching off
  4295. #if HAS_SUICIDE
  4296. stepper.synchronize();
  4297. suicide();
  4298. #elif HAS_POWER_SWITCH
  4299. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4300. #endif
  4301. #if ENABLED(ULTIPANEL)
  4302. #if HAS_POWER_SWITCH
  4303. powersupply = false;
  4304. #endif
  4305. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4306. lcd_update();
  4307. #endif
  4308. }
  4309. /**
  4310. * M82: Set E codes absolute (default)
  4311. */
  4312. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4313. /**
  4314. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4315. */
  4316. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4317. /**
  4318. * M18, M84: Disable all stepper motors
  4319. */
  4320. inline void gcode_M18_M84() {
  4321. if (code_seen('S')) {
  4322. stepper_inactive_time = code_value_millis_from_seconds();
  4323. }
  4324. else {
  4325. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4326. if (all_axis) {
  4327. stepper.finish_and_disable();
  4328. }
  4329. else {
  4330. stepper.synchronize();
  4331. if (code_seen('X')) disable_x();
  4332. if (code_seen('Y')) disable_y();
  4333. if (code_seen('Z')) disable_z();
  4334. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4335. if (code_seen('E')) {
  4336. disable_e0();
  4337. disable_e1();
  4338. disable_e2();
  4339. disable_e3();
  4340. }
  4341. #endif
  4342. }
  4343. }
  4344. }
  4345. /**
  4346. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4347. */
  4348. inline void gcode_M85() {
  4349. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4350. }
  4351. /**
  4352. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4353. * (Follows the same syntax as G92)
  4354. */
  4355. inline void gcode_M92() {
  4356. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4357. if (code_seen(axis_codes[i])) {
  4358. if (i == E_AXIS) {
  4359. float value = code_value_per_axis_unit(i);
  4360. if (value < 20.0) {
  4361. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4362. planner.max_e_jerk *= factor;
  4363. planner.max_feedrate[i] *= factor;
  4364. planner.max_acceleration_steps_per_s2[i] *= factor;
  4365. }
  4366. planner.axis_steps_per_mm[i] = value;
  4367. }
  4368. else {
  4369. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4370. }
  4371. }
  4372. }
  4373. }
  4374. /**
  4375. * Output the current position to serial
  4376. */
  4377. static void report_current_position() {
  4378. SERIAL_PROTOCOLPGM("X:");
  4379. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4380. SERIAL_PROTOCOLPGM(" Y:");
  4381. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4382. SERIAL_PROTOCOLPGM(" Z:");
  4383. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4384. SERIAL_PROTOCOLPGM(" E:");
  4385. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4386. stepper.report_positions();
  4387. #if ENABLED(SCARA)
  4388. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4389. SERIAL_PROTOCOL(delta[X_AXIS]);
  4390. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4391. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4392. SERIAL_EOL;
  4393. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4394. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4395. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4396. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4397. SERIAL_EOL;
  4398. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4399. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4400. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4401. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4402. SERIAL_EOL; SERIAL_EOL;
  4403. #endif
  4404. }
  4405. /**
  4406. * M114: Output current position to serial port
  4407. */
  4408. inline void gcode_M114() { report_current_position(); }
  4409. /**
  4410. * M115: Capabilities string
  4411. */
  4412. inline void gcode_M115() {
  4413. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4414. }
  4415. /**
  4416. * M117: Set LCD Status Message
  4417. */
  4418. inline void gcode_M117() {
  4419. lcd_setstatus(current_command_args);
  4420. }
  4421. /**
  4422. * M119: Output endstop states to serial output
  4423. */
  4424. inline void gcode_M119() { endstops.M119(); }
  4425. /**
  4426. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4427. */
  4428. inline void gcode_M120() { endstops.enable_globally(true); }
  4429. /**
  4430. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4431. */
  4432. inline void gcode_M121() { endstops.enable_globally(false); }
  4433. #if ENABLED(BLINKM)
  4434. /**
  4435. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4436. */
  4437. inline void gcode_M150() {
  4438. SendColors(
  4439. code_seen('R') ? code_value_byte() : 0,
  4440. code_seen('U') ? code_value_byte() : 0,
  4441. code_seen('B') ? code_value_byte() : 0
  4442. );
  4443. }
  4444. #endif // BLINKM
  4445. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4446. /**
  4447. * M155: Send data to a I2C slave device
  4448. *
  4449. * This is a PoC, the formating and arguments for the GCODE will
  4450. * change to be more compatible, the current proposal is:
  4451. *
  4452. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4453. *
  4454. * M155 B<byte-1 value in base 10>
  4455. * M155 B<byte-2 value in base 10>
  4456. * M155 B<byte-3 value in base 10>
  4457. *
  4458. * M155 S1 ; Send the buffered data and reset the buffer
  4459. * M155 R1 ; Reset the buffer without sending data
  4460. *
  4461. */
  4462. inline void gcode_M155() {
  4463. // Set the target address
  4464. if (code_seen('A'))
  4465. i2c.address(code_value_byte());
  4466. // Add a new byte to the buffer
  4467. else if (code_seen('B'))
  4468. i2c.addbyte(code_value_int());
  4469. // Flush the buffer to the bus
  4470. else if (code_seen('S')) i2c.send();
  4471. // Reset and rewind the buffer
  4472. else if (code_seen('R')) i2c.reset();
  4473. }
  4474. /**
  4475. * M156: Request X bytes from I2C slave device
  4476. *
  4477. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4478. */
  4479. inline void gcode_M156() {
  4480. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4481. int bytes = code_seen('B') ? code_value_int() : 1;
  4482. if (addr && bytes > 0 && bytes <= 32) {
  4483. i2c.address(addr);
  4484. i2c.reqbytes(bytes);
  4485. }
  4486. else {
  4487. SERIAL_ERROR_START;
  4488. SERIAL_ERRORLN("Bad i2c request");
  4489. }
  4490. }
  4491. #endif //EXPERIMENTAL_I2CBUS
  4492. /**
  4493. * M200: Set filament diameter and set E axis units to cubic units
  4494. *
  4495. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4496. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4497. */
  4498. inline void gcode_M200() {
  4499. if (get_target_extruder_from_command(200)) return;
  4500. if (code_seen('D')) {
  4501. // setting any extruder filament size disables volumetric on the assumption that
  4502. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4503. // for all extruders
  4504. volumetric_enabled = (code_value_linear_units() != 0.0);
  4505. if (volumetric_enabled) {
  4506. filament_size[target_extruder] = code_value_linear_units();
  4507. // make sure all extruders have some sane value for the filament size
  4508. for (int i = 0; i < COUNT(filament_size); i++)
  4509. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4510. }
  4511. }
  4512. else {
  4513. //reserved for setting filament diameter via UFID or filament measuring device
  4514. return;
  4515. }
  4516. calculate_volumetric_multipliers();
  4517. }
  4518. /**
  4519. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4520. */
  4521. inline void gcode_M201() {
  4522. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4523. if (code_seen(axis_codes[i])) {
  4524. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4525. }
  4526. }
  4527. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4528. planner.reset_acceleration_rates();
  4529. }
  4530. #if 0 // Not used for Sprinter/grbl gen6
  4531. inline void gcode_M202() {
  4532. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4533. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4534. }
  4535. }
  4536. #endif
  4537. /**
  4538. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4539. */
  4540. inline void gcode_M203() {
  4541. for (int8_t i = 0; i < NUM_AXIS; i++)
  4542. if (code_seen(axis_codes[i]))
  4543. planner.max_feedrate[i] = code_value_axis_units(i);
  4544. }
  4545. /**
  4546. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4547. *
  4548. * P = Printing moves
  4549. * R = Retract only (no X, Y, Z) moves
  4550. * T = Travel (non printing) moves
  4551. *
  4552. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4553. */
  4554. inline void gcode_M204() {
  4555. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4556. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4557. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4558. SERIAL_EOL;
  4559. }
  4560. if (code_seen('P')) {
  4561. planner.acceleration = code_value_linear_units();
  4562. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4563. SERIAL_EOL;
  4564. }
  4565. if (code_seen('R')) {
  4566. planner.retract_acceleration = code_value_linear_units();
  4567. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4568. SERIAL_EOL;
  4569. }
  4570. if (code_seen('T')) {
  4571. planner.travel_acceleration = code_value_linear_units();
  4572. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4573. SERIAL_EOL;
  4574. }
  4575. }
  4576. /**
  4577. * M205: Set Advanced Settings
  4578. *
  4579. * S = Min Feed Rate (units/s)
  4580. * T = Min Travel Feed Rate (units/s)
  4581. * B = Min Segment Time (µs)
  4582. * X = Max XY Jerk (units/sec^2)
  4583. * Z = Max Z Jerk (units/sec^2)
  4584. * E = Max E Jerk (units/sec^2)
  4585. */
  4586. inline void gcode_M205() {
  4587. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4588. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4589. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4590. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4591. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4592. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4593. }
  4594. /**
  4595. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4596. */
  4597. inline void gcode_M206() {
  4598. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4599. if (code_seen(axis_codes[i]))
  4600. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4601. #if ENABLED(SCARA)
  4602. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4603. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4604. #endif
  4605. SYNC_PLAN_POSITION_KINEMATIC();
  4606. report_current_position();
  4607. }
  4608. #if ENABLED(DELTA)
  4609. /**
  4610. * M665: Set delta configurations
  4611. *
  4612. * L = diagonal rod
  4613. * R = delta radius
  4614. * S = segments per second
  4615. * A = Alpha (Tower 1) diagonal rod trim
  4616. * B = Beta (Tower 2) diagonal rod trim
  4617. * C = Gamma (Tower 3) diagonal rod trim
  4618. */
  4619. inline void gcode_M665() {
  4620. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4621. if (code_seen('R')) delta_radius = code_value_linear_units();
  4622. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4623. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4624. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4625. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4626. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4627. }
  4628. /**
  4629. * M666: Set delta endstop adjustment
  4630. */
  4631. inline void gcode_M666() {
  4632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4633. if (DEBUGGING(LEVELING)) {
  4634. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4635. }
  4636. #endif
  4637. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4638. if (code_seen(axis_codes[i])) {
  4639. endstop_adj[i] = code_value_axis_units(i);
  4640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4641. if (DEBUGGING(LEVELING)) {
  4642. SERIAL_ECHOPGM("endstop_adj[");
  4643. SERIAL_ECHO(axis_codes[i]);
  4644. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4645. SERIAL_EOL;
  4646. }
  4647. #endif
  4648. }
  4649. }
  4650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4651. if (DEBUGGING(LEVELING)) {
  4652. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4653. }
  4654. #endif
  4655. }
  4656. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4657. /**
  4658. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4659. */
  4660. inline void gcode_M666() {
  4661. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4662. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4663. SERIAL_EOL;
  4664. }
  4665. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4666. #if ENABLED(FWRETRACT)
  4667. /**
  4668. * M207: Set firmware retraction values
  4669. *
  4670. * S[+units] retract_length
  4671. * W[+units] retract_length_swap (multi-extruder)
  4672. * F[units/min] retract_feedrate_mm_s
  4673. * Z[units] retract_zlift
  4674. */
  4675. inline void gcode_M207() {
  4676. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4677. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4678. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4679. #if EXTRUDERS > 1
  4680. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4681. #endif
  4682. }
  4683. /**
  4684. * M208: Set firmware un-retraction values
  4685. *
  4686. * S[+units] retract_recover_length (in addition to M207 S*)
  4687. * W[+units] retract_recover_length_swap (multi-extruder)
  4688. * F[units/min] retract_recover_feedrate
  4689. */
  4690. inline void gcode_M208() {
  4691. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4692. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4693. #if EXTRUDERS > 1
  4694. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4695. #endif
  4696. }
  4697. /**
  4698. * M209: Enable automatic retract (M209 S1)
  4699. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4700. */
  4701. inline void gcode_M209() {
  4702. if (code_seen('S')) {
  4703. int t = code_value_int();
  4704. switch (t) {
  4705. case 0:
  4706. autoretract_enabled = false;
  4707. break;
  4708. case 1:
  4709. autoretract_enabled = true;
  4710. break;
  4711. default:
  4712. unknown_command_error();
  4713. return;
  4714. }
  4715. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4716. }
  4717. }
  4718. #endif // FWRETRACT
  4719. #if HOTENDS > 1
  4720. /**
  4721. * M218 - set hotend offset (in linear units)
  4722. *
  4723. * T<tool>
  4724. * X<xoffset>
  4725. * Y<yoffset>
  4726. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4727. */
  4728. inline void gcode_M218() {
  4729. if (get_target_extruder_from_command(218)) return;
  4730. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4731. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4732. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4733. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4734. #endif
  4735. SERIAL_ECHO_START;
  4736. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4737. HOTEND_LOOP() {
  4738. SERIAL_CHAR(' ');
  4739. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4740. SERIAL_CHAR(',');
  4741. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4742. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4743. SERIAL_CHAR(',');
  4744. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4745. #endif
  4746. }
  4747. SERIAL_EOL;
  4748. }
  4749. #endif // HOTENDS > 1
  4750. /**
  4751. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4752. */
  4753. inline void gcode_M220() {
  4754. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4755. }
  4756. /**
  4757. * M221: Set extrusion percentage (M221 T0 S95)
  4758. */
  4759. inline void gcode_M221() {
  4760. if (get_target_extruder_from_command(221)) return;
  4761. if (code_seen('S'))
  4762. extruder_multiplier[target_extruder] = code_value_int();
  4763. }
  4764. /**
  4765. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4766. */
  4767. inline void gcode_M226() {
  4768. if (code_seen('P')) {
  4769. int pin_number = code_value_int();
  4770. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4771. if (pin_state >= -1 && pin_state <= 1) {
  4772. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4773. if (sensitive_pins[i] == pin_number) {
  4774. pin_number = -1;
  4775. break;
  4776. }
  4777. }
  4778. if (pin_number > -1) {
  4779. int target = LOW;
  4780. stepper.synchronize();
  4781. pinMode(pin_number, INPUT);
  4782. switch (pin_state) {
  4783. case 1:
  4784. target = HIGH;
  4785. break;
  4786. case 0:
  4787. target = LOW;
  4788. break;
  4789. case -1:
  4790. target = !digitalRead(pin_number);
  4791. break;
  4792. }
  4793. while (digitalRead(pin_number) != target) idle();
  4794. } // pin_number > -1
  4795. } // pin_state -1 0 1
  4796. } // code_seen('P')
  4797. }
  4798. #if HAS_SERVOS
  4799. /**
  4800. * M280: Get or set servo position. P<index> [S<angle>]
  4801. */
  4802. inline void gcode_M280() {
  4803. if (!code_seen('P')) return;
  4804. int servo_index = code_value_int();
  4805. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4806. if (code_seen('S'))
  4807. MOVE_SERVO(servo_index, code_value_int());
  4808. else {
  4809. SERIAL_ECHO_START;
  4810. SERIAL_ECHOPGM(" Servo ");
  4811. SERIAL_ECHO(servo_index);
  4812. SERIAL_ECHOPGM(": ");
  4813. SERIAL_ECHOLN(servo[servo_index].read());
  4814. }
  4815. }
  4816. else {
  4817. SERIAL_ERROR_START;
  4818. SERIAL_ERROR("Servo ");
  4819. SERIAL_ERROR(servo_index);
  4820. SERIAL_ERRORLN(" out of range");
  4821. }
  4822. }
  4823. #endif // HAS_SERVOS
  4824. #if HAS_BUZZER
  4825. /**
  4826. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4827. */
  4828. inline void gcode_M300() {
  4829. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4830. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4831. // Limits the tone duration to 0-5 seconds.
  4832. NOMORE(duration, 5000);
  4833. buzzer.tone(duration, frequency);
  4834. }
  4835. #endif // HAS_BUZZER
  4836. #if ENABLED(PIDTEMP)
  4837. /**
  4838. * M301: Set PID parameters P I D (and optionally C, L)
  4839. *
  4840. * P[float] Kp term
  4841. * I[float] Ki term (unscaled)
  4842. * D[float] Kd term (unscaled)
  4843. *
  4844. * With PID_ADD_EXTRUSION_RATE:
  4845. *
  4846. * C[float] Kc term
  4847. * L[float] LPQ length
  4848. */
  4849. inline void gcode_M301() {
  4850. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4851. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4852. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4853. if (e < HOTENDS) { // catch bad input value
  4854. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4855. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4856. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4857. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4858. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4859. if (code_seen('L')) lpq_len = code_value_float();
  4860. NOMORE(lpq_len, LPQ_MAX_LEN);
  4861. #endif
  4862. thermalManager.updatePID();
  4863. SERIAL_ECHO_START;
  4864. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4865. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4866. SERIAL_ECHO(e);
  4867. #endif // PID_PARAMS_PER_HOTEND
  4868. SERIAL_ECHOPGM(" p:");
  4869. SERIAL_ECHO(PID_PARAM(Kp, e));
  4870. SERIAL_ECHOPGM(" i:");
  4871. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4872. SERIAL_ECHOPGM(" d:");
  4873. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4874. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4875. SERIAL_ECHOPGM(" c:");
  4876. //Kc does not have scaling applied above, or in resetting defaults
  4877. SERIAL_ECHO(PID_PARAM(Kc, e));
  4878. #endif
  4879. SERIAL_EOL;
  4880. }
  4881. else {
  4882. SERIAL_ERROR_START;
  4883. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4884. }
  4885. }
  4886. #endif // PIDTEMP
  4887. #if ENABLED(PIDTEMPBED)
  4888. inline void gcode_M304() {
  4889. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4890. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4891. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4892. thermalManager.updatePID();
  4893. SERIAL_ECHO_START;
  4894. SERIAL_ECHOPGM(" p:");
  4895. SERIAL_ECHO(thermalManager.bedKp);
  4896. SERIAL_ECHOPGM(" i:");
  4897. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4898. SERIAL_ECHOPGM(" d:");
  4899. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4900. }
  4901. #endif // PIDTEMPBED
  4902. #if defined(CHDK) || HAS_PHOTOGRAPH
  4903. /**
  4904. * M240: Trigger a camera by emulating a Canon RC-1
  4905. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4906. */
  4907. inline void gcode_M240() {
  4908. #ifdef CHDK
  4909. OUT_WRITE(CHDK, HIGH);
  4910. chdkHigh = millis();
  4911. chdkActive = true;
  4912. #elif HAS_PHOTOGRAPH
  4913. const uint8_t NUM_PULSES = 16;
  4914. const float PULSE_LENGTH = 0.01524;
  4915. for (int i = 0; i < NUM_PULSES; i++) {
  4916. WRITE(PHOTOGRAPH_PIN, HIGH);
  4917. _delay_ms(PULSE_LENGTH);
  4918. WRITE(PHOTOGRAPH_PIN, LOW);
  4919. _delay_ms(PULSE_LENGTH);
  4920. }
  4921. delay(7.33);
  4922. for (int i = 0; i < NUM_PULSES; i++) {
  4923. WRITE(PHOTOGRAPH_PIN, HIGH);
  4924. _delay_ms(PULSE_LENGTH);
  4925. WRITE(PHOTOGRAPH_PIN, LOW);
  4926. _delay_ms(PULSE_LENGTH);
  4927. }
  4928. #endif // !CHDK && HAS_PHOTOGRAPH
  4929. }
  4930. #endif // CHDK || PHOTOGRAPH_PIN
  4931. #if HAS_LCD_CONTRAST
  4932. /**
  4933. * M250: Read and optionally set the LCD contrast
  4934. */
  4935. inline void gcode_M250() {
  4936. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4937. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4938. SERIAL_PROTOCOL(lcd_contrast);
  4939. SERIAL_EOL;
  4940. }
  4941. #endif // HAS_LCD_CONTRAST
  4942. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4943. /**
  4944. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4945. *
  4946. * S<temperature> sets the minimum extrude temperature
  4947. * P<bool> enables (1) or disables (0) cold extrusion
  4948. *
  4949. * Examples:
  4950. *
  4951. * M302 ; report current cold extrusion state
  4952. * M302 P0 ; enable cold extrusion checking
  4953. * M302 P1 ; disables cold extrusion checking
  4954. * M302 S0 ; always allow extrusion (disables checking)
  4955. * M302 S170 ; only allow extrusion above 170
  4956. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4957. */
  4958. inline void gcode_M302() {
  4959. bool seen_S = code_seen('S');
  4960. if (seen_S) {
  4961. thermalManager.extrude_min_temp = code_value_temp_abs();
  4962. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4963. }
  4964. if (code_seen('P'))
  4965. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4966. else if (!seen_S) {
  4967. // Report current state
  4968. SERIAL_ECHO_START;
  4969. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4970. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4971. SERIAL_ECHOLNPGM("C)");
  4972. }
  4973. }
  4974. #endif // PREVENT_DANGEROUS_EXTRUDE
  4975. /**
  4976. * M303: PID relay autotune
  4977. *
  4978. * S<temperature> sets the target temperature. (default 150C)
  4979. * E<extruder> (-1 for the bed) (default 0)
  4980. * C<cycles>
  4981. * U<bool> with a non-zero value will apply the result to current settings
  4982. */
  4983. inline void gcode_M303() {
  4984. #if HAS_PID_HEATING
  4985. int e = code_seen('E') ? code_value_int() : 0;
  4986. int c = code_seen('C') ? code_value_int() : 5;
  4987. bool u = code_seen('U') && code_value_bool();
  4988. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4989. if (e >= 0 && e < HOTENDS)
  4990. target_extruder = e;
  4991. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4992. thermalManager.PID_autotune(temp, e, c, u);
  4993. KEEPALIVE_STATE(IN_HANDLER);
  4994. #else
  4995. SERIAL_ERROR_START;
  4996. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4997. #endif
  4998. }
  4999. #if ENABLED(SCARA)
  5000. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  5001. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  5002. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  5003. if (IsRunning()) {
  5004. //gcode_get_destination(); // For X Y Z E F
  5005. delta[X_AXIS] = delta_x;
  5006. delta[Y_AXIS] = delta_y;
  5007. calculate_SCARA_forward_Transform(delta);
  5008. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  5009. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  5010. prepare_move_to_destination();
  5011. //ok_to_send();
  5012. return true;
  5013. }
  5014. return false;
  5015. }
  5016. /**
  5017. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5018. */
  5019. inline bool gcode_M360() {
  5020. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5021. return SCARA_move_to_cal(0, 120);
  5022. }
  5023. /**
  5024. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5025. */
  5026. inline bool gcode_M361() {
  5027. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5028. return SCARA_move_to_cal(90, 130);
  5029. }
  5030. /**
  5031. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5032. */
  5033. inline bool gcode_M362() {
  5034. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5035. return SCARA_move_to_cal(60, 180);
  5036. }
  5037. /**
  5038. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5039. */
  5040. inline bool gcode_M363() {
  5041. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5042. return SCARA_move_to_cal(50, 90);
  5043. }
  5044. /**
  5045. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5046. */
  5047. inline bool gcode_M364() {
  5048. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5049. return SCARA_move_to_cal(45, 135);
  5050. }
  5051. /**
  5052. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5053. */
  5054. inline void gcode_M365() {
  5055. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  5056. if (code_seen(axis_codes[i]))
  5057. axis_scaling[i] = code_value_float();
  5058. }
  5059. #endif // SCARA
  5060. #if ENABLED(EXT_SOLENOID)
  5061. void enable_solenoid(uint8_t num) {
  5062. switch (num) {
  5063. case 0:
  5064. OUT_WRITE(SOL0_PIN, HIGH);
  5065. break;
  5066. #if HAS_SOLENOID_1
  5067. case 1:
  5068. OUT_WRITE(SOL1_PIN, HIGH);
  5069. break;
  5070. #endif
  5071. #if HAS_SOLENOID_2
  5072. case 2:
  5073. OUT_WRITE(SOL2_PIN, HIGH);
  5074. break;
  5075. #endif
  5076. #if HAS_SOLENOID_3
  5077. case 3:
  5078. OUT_WRITE(SOL3_PIN, HIGH);
  5079. break;
  5080. #endif
  5081. default:
  5082. SERIAL_ECHO_START;
  5083. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5084. break;
  5085. }
  5086. }
  5087. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5088. void disable_all_solenoids() {
  5089. OUT_WRITE(SOL0_PIN, LOW);
  5090. OUT_WRITE(SOL1_PIN, LOW);
  5091. OUT_WRITE(SOL2_PIN, LOW);
  5092. OUT_WRITE(SOL3_PIN, LOW);
  5093. }
  5094. /**
  5095. * M380: Enable solenoid on the active extruder
  5096. */
  5097. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5098. /**
  5099. * M381: Disable all solenoids
  5100. */
  5101. inline void gcode_M381() { disable_all_solenoids(); }
  5102. #endif // EXT_SOLENOID
  5103. /**
  5104. * M400: Finish all moves
  5105. */
  5106. inline void gcode_M400() { stepper.synchronize(); }
  5107. #if HAS_BED_PROBE
  5108. /**
  5109. * M401: Engage Z Servo endstop if available
  5110. */
  5111. inline void gcode_M401() { DEPLOY_PROBE(); }
  5112. /**
  5113. * M402: Retract Z Servo endstop if enabled
  5114. */
  5115. inline void gcode_M402() { STOW_PROBE(); }
  5116. #endif // HAS_BED_PROBE
  5117. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5118. /**
  5119. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5120. */
  5121. inline void gcode_M404() {
  5122. if (code_seen('W')) {
  5123. filament_width_nominal = code_value_linear_units();
  5124. }
  5125. else {
  5126. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5127. SERIAL_PROTOCOLLN(filament_width_nominal);
  5128. }
  5129. }
  5130. /**
  5131. * M405: Turn on filament sensor for control
  5132. */
  5133. inline void gcode_M405() {
  5134. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5135. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5136. if (code_seen('D')) meas_delay_cm = code_value_int();
  5137. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5138. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5139. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5140. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5141. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5142. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5143. }
  5144. filament_sensor = true;
  5145. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5146. //SERIAL_PROTOCOL(filament_width_meas);
  5147. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5148. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5149. }
  5150. /**
  5151. * M406: Turn off filament sensor for control
  5152. */
  5153. inline void gcode_M406() { filament_sensor = false; }
  5154. /**
  5155. * M407: Get measured filament diameter on serial output
  5156. */
  5157. inline void gcode_M407() {
  5158. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5159. SERIAL_PROTOCOLLN(filament_width_meas);
  5160. }
  5161. #endif // FILAMENT_WIDTH_SENSOR
  5162. void quickstop_stepper() {
  5163. stepper.quick_stop();
  5164. #if DISABLED(DELTA) && DISABLED(SCARA)
  5165. stepper.synchronize();
  5166. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5167. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5168. current_position[X_AXIS] = pos.x;
  5169. current_position[Y_AXIS] = pos.y;
  5170. current_position[Z_AXIS] = pos.z;
  5171. #else
  5172. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5173. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5174. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5175. #endif
  5176. sync_plan_position(); // ...re-apply to planner position
  5177. #endif
  5178. }
  5179. #if ENABLED(MESH_BED_LEVELING)
  5180. /**
  5181. * M420: Enable/Disable Mesh Bed Leveling
  5182. */
  5183. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5184. /**
  5185. * M421: Set a single Mesh Bed Leveling Z coordinate
  5186. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5187. */
  5188. inline void gcode_M421() {
  5189. int8_t px = 0, py = 0;
  5190. float z = 0;
  5191. bool hasX, hasY, hasZ, hasI, hasJ;
  5192. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5193. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5194. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5195. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5196. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5197. if (hasX && hasY && hasZ) {
  5198. if (px >= 0 && py >= 0)
  5199. mbl.set_z(px, py, z);
  5200. else {
  5201. SERIAL_ERROR_START;
  5202. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5203. }
  5204. }
  5205. else if (hasI && hasJ && hasZ) {
  5206. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5207. mbl.set_z(px, py, z);
  5208. else {
  5209. SERIAL_ERROR_START;
  5210. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5211. }
  5212. }
  5213. else {
  5214. SERIAL_ERROR_START;
  5215. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5216. }
  5217. }
  5218. #endif
  5219. /**
  5220. * M428: Set home_offset based on the distance between the
  5221. * current_position and the nearest "reference point."
  5222. * If an axis is past center its endstop position
  5223. * is the reference-point. Otherwise it uses 0. This allows
  5224. * the Z offset to be set near the bed when using a max endstop.
  5225. *
  5226. * M428 can't be used more than 2cm away from 0 or an endstop.
  5227. *
  5228. * Use M206 to set these values directly.
  5229. */
  5230. inline void gcode_M428() {
  5231. bool err = false;
  5232. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5233. if (axis_homed[i]) {
  5234. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5235. diff = current_position[i] - base;
  5236. if (diff > -20 && diff < 20) {
  5237. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5238. }
  5239. else {
  5240. SERIAL_ERROR_START;
  5241. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5242. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5243. #if HAS_BUZZER
  5244. buzzer.tone(200, 40);
  5245. #endif
  5246. err = true;
  5247. break;
  5248. }
  5249. }
  5250. }
  5251. if (!err) {
  5252. SYNC_PLAN_POSITION_KINEMATIC();
  5253. report_current_position();
  5254. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5255. #if HAS_BUZZER
  5256. buzzer.tone(200, 659);
  5257. buzzer.tone(200, 698);
  5258. #endif
  5259. }
  5260. }
  5261. /**
  5262. * M500: Store settings in EEPROM
  5263. */
  5264. inline void gcode_M500() {
  5265. Config_StoreSettings();
  5266. }
  5267. /**
  5268. * M501: Read settings from EEPROM
  5269. */
  5270. inline void gcode_M501() {
  5271. Config_RetrieveSettings();
  5272. }
  5273. /**
  5274. * M502: Revert to default settings
  5275. */
  5276. inline void gcode_M502() {
  5277. Config_ResetDefault();
  5278. }
  5279. /**
  5280. * M503: print settings currently in memory
  5281. */
  5282. inline void gcode_M503() {
  5283. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5284. }
  5285. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5286. /**
  5287. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5288. */
  5289. inline void gcode_M540() {
  5290. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5291. }
  5292. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5293. #if HAS_BED_PROBE
  5294. inline void gcode_M851() {
  5295. SERIAL_ECHO_START;
  5296. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5297. SERIAL_CHAR(' ');
  5298. if (code_seen('Z')) {
  5299. float value = code_value_axis_units(Z_AXIS);
  5300. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5301. zprobe_zoffset = value;
  5302. SERIAL_ECHO(zprobe_zoffset);
  5303. }
  5304. else {
  5305. SERIAL_ECHOPGM(MSG_Z_MIN);
  5306. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5307. SERIAL_CHAR(' ');
  5308. SERIAL_ECHOPGM(MSG_Z_MAX);
  5309. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5310. }
  5311. }
  5312. else {
  5313. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5314. }
  5315. SERIAL_EOL;
  5316. }
  5317. #endif // HAS_BED_PROBE
  5318. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5319. /**
  5320. * M600: Pause for filament change
  5321. *
  5322. * E[distance] - Retract the filament this far (negative value)
  5323. * Z[distance] - Move the Z axis by this distance
  5324. * X[position] - Move to this X position, with Y
  5325. * Y[position] - Move to this Y position, with X
  5326. * L[distance] - Retract distance for removal (manual reload)
  5327. *
  5328. * Default values are used for omitted arguments.
  5329. *
  5330. */
  5331. inline void gcode_M600() {
  5332. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5333. SERIAL_ERROR_START;
  5334. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5335. return;
  5336. }
  5337. // Show initial message and wait for synchronize steppers
  5338. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5339. stepper.synchronize();
  5340. float lastpos[NUM_AXIS];
  5341. // Save current position of all axes
  5342. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5343. lastpos[i] = destination[i] = current_position[i];
  5344. // Define runplan for move axes
  5345. #if ENABLED(DELTA)
  5346. #define RUNPLAN(RATE) calculate_delta(destination); \
  5347. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5348. #else
  5349. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5350. #endif
  5351. KEEPALIVE_STATE(IN_HANDLER);
  5352. // Initial retract before move to filament change position
  5353. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5354. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5355. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5356. #endif
  5357. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5358. // Lift Z axis
  5359. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5360. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5361. FILAMENT_CHANGE_Z_ADD
  5362. #else
  5363. 0
  5364. #endif
  5365. ;
  5366. if (z_lift > 0) {
  5367. destination[Z_AXIS] += z_lift;
  5368. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5369. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5370. }
  5371. // Move XY axes to filament exchange position
  5372. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5373. #ifdef FILAMENT_CHANGE_X_POS
  5374. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5375. #endif
  5376. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5377. #ifdef FILAMENT_CHANGE_Y_POS
  5378. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5379. #endif
  5380. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5381. stepper.synchronize();
  5382. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5383. // Unload filament
  5384. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5385. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5386. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5387. #endif
  5388. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5389. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5390. stepper.synchronize();
  5391. disable_e0();
  5392. disable_e1();
  5393. disable_e2();
  5394. disable_e3();
  5395. delay(100);
  5396. #if HAS_BUZZER
  5397. millis_t next_tick = 0;
  5398. #endif
  5399. // Wait for filament insert by user and press button
  5400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5401. while (!lcd_clicked()) {
  5402. #if HAS_BUZZER
  5403. millis_t ms = millis();
  5404. if (ms >= next_tick) {
  5405. buzzer.tone(300, 2000);
  5406. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5407. }
  5408. #endif
  5409. idle(true);
  5410. }
  5411. delay(100);
  5412. while (lcd_clicked()) idle(true);
  5413. delay(100);
  5414. // Show load message
  5415. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5416. // Load filament
  5417. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5418. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5419. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5420. #endif
  5421. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5422. stepper.synchronize();
  5423. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5424. do {
  5425. // Extrude filament to get into hotend
  5426. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5427. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5428. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5429. stepper.synchronize();
  5430. // Ask user if more filament should be extruded
  5431. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5432. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5433. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5434. KEEPALIVE_STATE(IN_HANDLER);
  5435. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5436. #endif
  5437. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5438. KEEPALIVE_STATE(IN_HANDLER);
  5439. // Set extruder to saved position
  5440. current_position[E_AXIS] = lastpos[E_AXIS];
  5441. destination[E_AXIS] = lastpos[E_AXIS];
  5442. planner.set_e_position_mm(current_position[E_AXIS]);
  5443. #if ENABLED(DELTA)
  5444. // Move XYZ to starting position, then E
  5445. calculate_delta(lastpos);
  5446. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5447. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5448. #else
  5449. // Move XY to starting position, then Z, then E
  5450. destination[X_AXIS] = lastpos[X_AXIS];
  5451. destination[Y_AXIS] = lastpos[Y_AXIS];
  5452. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5453. destination[Z_AXIS] = lastpos[Z_AXIS];
  5454. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5455. #endif
  5456. stepper.synchronize();
  5457. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5458. filament_ran_out = false;
  5459. #endif
  5460. // Show status screen
  5461. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5462. }
  5463. #endif // FILAMENT_CHANGE_FEATURE
  5464. #if ENABLED(DUAL_X_CARRIAGE)
  5465. /**
  5466. * M605: Set dual x-carriage movement mode
  5467. *
  5468. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5469. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5470. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5471. * units x-offset and an optional differential hotend temperature of
  5472. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5473. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5474. *
  5475. * Note: the X axis should be homed after changing dual x-carriage mode.
  5476. */
  5477. inline void gcode_M605() {
  5478. stepper.synchronize();
  5479. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5480. switch (dual_x_carriage_mode) {
  5481. case DXC_DUPLICATION_MODE:
  5482. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5483. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5484. SERIAL_ECHO_START;
  5485. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5486. SERIAL_CHAR(' ');
  5487. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5488. SERIAL_CHAR(',');
  5489. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5490. SERIAL_CHAR(' ');
  5491. SERIAL_ECHO(duplicate_extruder_x_offset);
  5492. SERIAL_CHAR(',');
  5493. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5494. break;
  5495. case DXC_FULL_CONTROL_MODE:
  5496. case DXC_AUTO_PARK_MODE:
  5497. break;
  5498. default:
  5499. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5500. break;
  5501. }
  5502. active_extruder_parked = false;
  5503. extruder_duplication_enabled = false;
  5504. delayed_move_time = 0;
  5505. }
  5506. #endif // DUAL_X_CARRIAGE
  5507. #if ENABLED(LIN_ADVANCE)
  5508. /**
  5509. * M905: Set advance factor
  5510. */
  5511. inline void gcode_M905() {
  5512. stepper.synchronize();
  5513. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5514. }
  5515. #endif
  5516. /**
  5517. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5518. */
  5519. inline void gcode_M907() {
  5520. #if HAS_DIGIPOTSS
  5521. for (int i = 0; i < NUM_AXIS; i++)
  5522. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5523. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5524. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5525. #endif
  5526. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5527. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5528. #endif
  5529. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5530. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5531. #endif
  5532. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5533. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5534. #endif
  5535. #if ENABLED(DIGIPOT_I2C)
  5536. // this one uses actual amps in floating point
  5537. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5538. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5539. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5540. #endif
  5541. #if ENABLED(DAC_STEPPER_CURRENT)
  5542. if (code_seen('S')) {
  5543. float dac_percent = code_value_float();
  5544. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5545. }
  5546. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5547. #endif
  5548. }
  5549. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5550. /**
  5551. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5552. */
  5553. inline void gcode_M908() {
  5554. #if HAS_DIGIPOTSS
  5555. stepper.digitalPotWrite(
  5556. code_seen('P') ? code_value_int() : 0,
  5557. code_seen('S') ? code_value_int() : 0
  5558. );
  5559. #endif
  5560. #ifdef DAC_STEPPER_CURRENT
  5561. dac_current_raw(
  5562. code_seen('P') ? code_value_byte() : -1,
  5563. code_seen('S') ? code_value_ushort() : 0
  5564. );
  5565. #endif
  5566. }
  5567. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5568. inline void gcode_M909() { dac_print_values(); }
  5569. inline void gcode_M910() { dac_commit_eeprom(); }
  5570. #endif
  5571. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5572. #if HAS_MICROSTEPS
  5573. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5574. inline void gcode_M350() {
  5575. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5576. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5577. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5578. stepper.microstep_readings();
  5579. }
  5580. /**
  5581. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5582. * S# determines MS1 or MS2, X# sets the pin high/low.
  5583. */
  5584. inline void gcode_M351() {
  5585. if (code_seen('S')) switch (code_value_byte()) {
  5586. case 1:
  5587. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5588. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5589. break;
  5590. case 2:
  5591. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5592. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5593. break;
  5594. }
  5595. stepper.microstep_readings();
  5596. }
  5597. #endif // HAS_MICROSTEPS
  5598. #if ENABLED(MIXING_EXTRUDER)
  5599. /**
  5600. * M163: Set a single mix factor for a mixing extruder
  5601. * This is called "weight" by some systems.
  5602. *
  5603. * S[index] The channel index to set
  5604. * P[float] The mix value
  5605. *
  5606. */
  5607. inline void gcode_M163() {
  5608. int mix_index = code_seen('S') ? code_value_int() : 0;
  5609. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5610. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5611. }
  5612. #if MIXING_VIRTUAL_TOOLS > 1
  5613. /**
  5614. * M164: Store the current mix factors as a virtual tool.
  5615. *
  5616. * S[index] The virtual tool to store
  5617. *
  5618. */
  5619. inline void gcode_M164() {
  5620. int tool_index = code_seen('S') ? code_value_int() : 0;
  5621. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5622. normalize_mix();
  5623. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5624. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5625. }
  5626. }
  5627. #endif
  5628. #if ENABLED(DIRECT_MIXING_IN_G1)
  5629. /**
  5630. * M165: Set multiple mix factors for a mixing extruder.
  5631. * Factors that are left out will be set to 0.
  5632. * All factors together must add up to 1.0.
  5633. *
  5634. * A[factor] Mix factor for extruder stepper 1
  5635. * B[factor] Mix factor for extruder stepper 2
  5636. * C[factor] Mix factor for extruder stepper 3
  5637. * D[factor] Mix factor for extruder stepper 4
  5638. * H[factor] Mix factor for extruder stepper 5
  5639. * I[factor] Mix factor for extruder stepper 6
  5640. *
  5641. */
  5642. inline void gcode_M165() { gcode_get_mix(); }
  5643. #endif
  5644. #endif // MIXING_EXTRUDER
  5645. /**
  5646. * M999: Restart after being stopped
  5647. *
  5648. * Default behaviour is to flush the serial buffer and request
  5649. * a resend to the host starting on the last N line received.
  5650. *
  5651. * Sending "M999 S1" will resume printing without flushing the
  5652. * existing command buffer.
  5653. *
  5654. */
  5655. inline void gcode_M999() {
  5656. Running = true;
  5657. lcd_reset_alert_level();
  5658. if (code_seen('S') && code_value_bool()) return;
  5659. // gcode_LastN = Stopped_gcode_LastN;
  5660. FlushSerialRequestResend();
  5661. }
  5662. #if ENABLED(SWITCHING_EXTRUDER)
  5663. inline void move_extruder_servo(uint8_t e) {
  5664. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5665. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5666. }
  5667. #endif
  5668. inline void invalid_extruder_error(const uint8_t &e) {
  5669. SERIAL_ECHO_START;
  5670. SERIAL_CHAR('T');
  5671. SERIAL_PROTOCOL_F(e, DEC);
  5672. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5673. }
  5674. /**
  5675. * T0-T3: Switch tool, usually switching extruders
  5676. *
  5677. * F[units/min] Set the movement feedrate
  5678. * S1 Don't move the tool in XY after change
  5679. */
  5680. inline void gcode_T(uint8_t tmp_extruder) {
  5681. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5682. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5683. invalid_extruder_error(tmp_extruder);
  5684. return;
  5685. }
  5686. // T0-Tnnn: Switch virtual tool by changing the mix
  5687. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5688. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5689. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5691. if (DEBUGGING(LEVELING)) {
  5692. SERIAL_ECHOLNPGM(">>> gcode_T");
  5693. DEBUG_POS("BEFORE", current_position);
  5694. }
  5695. #endif
  5696. #if HOTENDS > 1
  5697. if (tmp_extruder >= EXTRUDERS) {
  5698. invalid_extruder_error(tmp_extruder);
  5699. return;
  5700. }
  5701. float old_feedrate = feedrate;
  5702. if (code_seen('F')) {
  5703. float next_feedrate = code_value_axis_units(X_AXIS);
  5704. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5705. }
  5706. else
  5707. feedrate = XY_PROBE_FEEDRATE;
  5708. if (tmp_extruder != active_extruder) {
  5709. bool no_move = code_seen('S') && code_value_bool();
  5710. if (!no_move && axis_unhomed_error(true, true, true)) {
  5711. SERIAL_ECHOLNPGM("No move on toolchange");
  5712. no_move = true;
  5713. }
  5714. // Save current position to destination, for use later
  5715. set_destination_to_current();
  5716. #if ENABLED(DUAL_X_CARRIAGE)
  5717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5718. if (DEBUGGING(LEVELING)) {
  5719. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5720. switch (dual_x_carriage_mode) {
  5721. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5722. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5723. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5724. }
  5725. }
  5726. #endif
  5727. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5728. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5729. ) {
  5730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5731. if (DEBUGGING(LEVELING)) {
  5732. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5733. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5734. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5735. }
  5736. #endif
  5737. // Park old head: 1) raise 2) move to park position 3) lower
  5738. for (uint8_t i = 0; i < 3; i++)
  5739. planner.buffer_line(
  5740. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5741. current_position[Y_AXIS],
  5742. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5743. current_position[E_AXIS],
  5744. planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS],
  5745. active_extruder
  5746. );
  5747. stepper.synchronize();
  5748. }
  5749. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5750. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5751. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5752. active_extruder = tmp_extruder;
  5753. // This function resets the max/min values - the current position may be overwritten below.
  5754. set_axis_is_at_home(X_AXIS);
  5755. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5756. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5757. #endif
  5758. switch (dual_x_carriage_mode) {
  5759. case DXC_FULL_CONTROL_MODE:
  5760. current_position[X_AXIS] = inactive_extruder_x_pos;
  5761. inactive_extruder_x_pos = destination[X_AXIS];
  5762. break;
  5763. case DXC_DUPLICATION_MODE:
  5764. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5765. if (active_extruder_parked)
  5766. current_position[X_AXIS] = inactive_extruder_x_pos;
  5767. else
  5768. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5769. inactive_extruder_x_pos = destination[X_AXIS];
  5770. extruder_duplication_enabled = false;
  5771. break;
  5772. default:
  5773. // record raised toolhead position for use by unpark
  5774. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5775. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5776. active_extruder_parked = true;
  5777. delayed_move_time = 0;
  5778. break;
  5779. }
  5780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5781. if (DEBUGGING(LEVELING)) {
  5782. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5783. SERIAL_EOL;
  5784. DEBUG_POS("New extruder (parked)", current_position);
  5785. }
  5786. #endif
  5787. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5788. #else // !DUAL_X_CARRIAGE
  5789. #if ENABLED(SWITCHING_EXTRUDER)
  5790. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5791. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5792. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5793. // Always raise by some amount
  5794. planner.buffer_line(
  5795. current_position[X_AXIS],
  5796. current_position[Y_AXIS],
  5797. current_position[Z_AXIS] + z_raise,
  5798. current_position[E_AXIS],
  5799. planner.max_feedrate[Z_AXIS],
  5800. active_extruder
  5801. );
  5802. stepper.synchronize();
  5803. move_extruder_servo(active_extruder);
  5804. delay(500);
  5805. // Move back down, if needed
  5806. if (z_raise != z_diff) {
  5807. planner.buffer_line(
  5808. current_position[X_AXIS],
  5809. current_position[Y_AXIS],
  5810. current_position[Z_AXIS] + z_diff,
  5811. current_position[E_AXIS],
  5812. planner.max_feedrate[Z_AXIS],
  5813. active_extruder
  5814. );
  5815. stepper.synchronize();
  5816. }
  5817. #endif
  5818. /**
  5819. * Set current_position to the position of the new nozzle.
  5820. * Offsets are based on linear distance, so we need to get
  5821. * the resulting position in coordinate space.
  5822. *
  5823. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5824. * - With mesh leveling, update Z for the new position
  5825. * - Otherwise, just use the raw linear distance
  5826. *
  5827. * Software endstops are altered here too. Consider a case where:
  5828. * E0 at X=0 ... E1 at X=10
  5829. * When we switch to E1 now X=10, but E1 can't move left.
  5830. * To express this we apply the change in XY to the software endstops.
  5831. * E1 can move farther right than E0, so the right limit is extended.
  5832. *
  5833. * Note that we don't adjust the Z software endstops. Why not?
  5834. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5835. * because the bed is 1mm lower at the new position. As long as
  5836. * the first nozzle is out of the way, the carriage should be
  5837. * allowed to move 1mm lower. This technically "breaks" the
  5838. * Z software endstop. But this is technically correct (and
  5839. * there is no viable alternative).
  5840. */
  5841. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5842. // Offset extruder, make sure to apply the bed level rotation matrix
  5843. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5844. hotend_offset[Y_AXIS][tmp_extruder],
  5845. 0),
  5846. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5847. hotend_offset[Y_AXIS][active_extruder],
  5848. 0),
  5849. offset_vec = tmp_offset_vec - act_offset_vec;
  5850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5851. if (DEBUGGING(LEVELING)) {
  5852. tmp_offset_vec.debug("tmp_offset_vec");
  5853. act_offset_vec.debug("act_offset_vec");
  5854. offset_vec.debug("offset_vec (BEFORE)");
  5855. }
  5856. #endif
  5857. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5859. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5860. #endif
  5861. // Adjustments to the current position
  5862. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5863. current_position[Z_AXIS] += offset_vec.z;
  5864. #else // !AUTO_BED_LEVELING_FEATURE
  5865. float xydiff[2] = {
  5866. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5867. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5868. };
  5869. #if ENABLED(MESH_BED_LEVELING)
  5870. if (mbl.active()) {
  5871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5872. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5873. #endif
  5874. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5875. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5876. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5878. if (DEBUGGING(LEVELING)) {
  5879. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5880. SERIAL_EOL;
  5881. }
  5882. #endif
  5883. }
  5884. #endif // MESH_BED_LEVELING
  5885. #endif // !AUTO_BED_LEVELING_FEATURE
  5886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5887. if (DEBUGGING(LEVELING)) {
  5888. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5889. SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
  5890. SERIAL_ECHOLNPGM(" }");
  5891. }
  5892. #endif
  5893. // The newly-selected extruder XY is actually at...
  5894. current_position[X_AXIS] += xydiff[X_AXIS];
  5895. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5896. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5897. position_shift[i] += xydiff[i];
  5898. update_software_endstops((AxisEnum)i);
  5899. }
  5900. // Set the new active extruder
  5901. active_extruder = tmp_extruder;
  5902. #endif // !DUAL_X_CARRIAGE
  5903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5904. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5905. #endif
  5906. // Tell the planner the new "current position"
  5907. SYNC_PLAN_POSITION_KINEMATIC();
  5908. // Move to the "old position" (move the extruder into place)
  5909. if (!no_move && IsRunning()) {
  5910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5911. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5912. #endif
  5913. prepare_move_to_destination();
  5914. }
  5915. } // (tmp_extruder != active_extruder)
  5916. stepper.synchronize();
  5917. #if ENABLED(EXT_SOLENOID)
  5918. disable_all_solenoids();
  5919. enable_solenoid_on_active_extruder();
  5920. #endif // EXT_SOLENOID
  5921. feedrate = old_feedrate;
  5922. #else // HOTENDS <= 1
  5923. // Set the new active extruder
  5924. active_extruder = tmp_extruder;
  5925. #endif // HOTENDS <= 1
  5926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5927. if (DEBUGGING(LEVELING)) {
  5928. DEBUG_POS("AFTER", current_position);
  5929. SERIAL_ECHOLNPGM("<<< gcode_T");
  5930. }
  5931. #endif
  5932. SERIAL_ECHO_START;
  5933. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5934. SERIAL_PROTOCOLLN((int)active_extruder);
  5935. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5936. }
  5937. /**
  5938. * Process a single command and dispatch it to its handler
  5939. * This is called from the main loop()
  5940. */
  5941. void process_next_command() {
  5942. current_command = command_queue[cmd_queue_index_r];
  5943. if (DEBUGGING(ECHO)) {
  5944. SERIAL_ECHO_START;
  5945. SERIAL_ECHOLN(current_command);
  5946. }
  5947. // Sanitize the current command:
  5948. // - Skip leading spaces
  5949. // - Bypass N[-0-9][0-9]*[ ]*
  5950. // - Overwrite * with nul to mark the end
  5951. while (*current_command == ' ') ++current_command;
  5952. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5953. current_command += 2; // skip N[-0-9]
  5954. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5955. while (*current_command == ' ') ++current_command; // skip [ ]*
  5956. }
  5957. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5958. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5959. char *cmd_ptr = current_command;
  5960. // Get the command code, which must be G, M, or T
  5961. char command_code = *cmd_ptr++;
  5962. // Skip spaces to get the numeric part
  5963. while (*cmd_ptr == ' ') cmd_ptr++;
  5964. uint16_t codenum = 0; // define ahead of goto
  5965. // Bail early if there's no code
  5966. bool code_is_good = NUMERIC(*cmd_ptr);
  5967. if (!code_is_good) goto ExitUnknownCommand;
  5968. // Get and skip the code number
  5969. do {
  5970. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5971. cmd_ptr++;
  5972. } while (NUMERIC(*cmd_ptr));
  5973. // Skip all spaces to get to the first argument, or nul
  5974. while (*cmd_ptr == ' ') cmd_ptr++;
  5975. // The command's arguments (if any) start here, for sure!
  5976. current_command_args = cmd_ptr;
  5977. KEEPALIVE_STATE(IN_HANDLER);
  5978. // Handle a known G, M, or T
  5979. switch (command_code) {
  5980. case 'G': switch (codenum) {
  5981. // G0, G1
  5982. case 0:
  5983. case 1:
  5984. gcode_G0_G1();
  5985. break;
  5986. // G2, G3
  5987. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5988. case 2: // G2 - CW ARC
  5989. case 3: // G3 - CCW ARC
  5990. gcode_G2_G3(codenum == 2);
  5991. break;
  5992. #endif
  5993. // G4 Dwell
  5994. case 4:
  5995. gcode_G4();
  5996. break;
  5997. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5998. // G5
  5999. case 5: // G5 - Cubic B_spline
  6000. gcode_G5();
  6001. break;
  6002. #endif // BEZIER_CURVE_SUPPORT
  6003. #if ENABLED(FWRETRACT)
  6004. case 10: // G10: retract
  6005. case 11: // G11: retract_recover
  6006. gcode_G10_G11(codenum == 10);
  6007. break;
  6008. #endif // FWRETRACT
  6009. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  6010. case 12:
  6011. gcode_G12(); // G12: Nozzle Clean
  6012. break;
  6013. #endif // NOZZLE_CLEAN_FEATURE
  6014. #if ENABLED(INCH_MODE_SUPPORT)
  6015. case 20: //G20: Inch Mode
  6016. gcode_G20();
  6017. break;
  6018. case 21: //G21: MM Mode
  6019. gcode_G21();
  6020. break;
  6021. #endif // INCH_MODE_SUPPORT
  6022. #if ENABLED(NOZZLE_PARK_FEATURE)
  6023. case 27: // G27: Nozzle Park
  6024. gcode_G27();
  6025. break;
  6026. #endif // NOZZLE_PARK_FEATURE
  6027. case 28: // G28: Home all axes, one at a time
  6028. gcode_G28();
  6029. break;
  6030. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6031. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6032. gcode_G29();
  6033. break;
  6034. #endif // AUTO_BED_LEVELING_FEATURE
  6035. #if HAS_BED_PROBE
  6036. case 30: // G30 Single Z probe
  6037. gcode_G30();
  6038. break;
  6039. #if ENABLED(Z_PROBE_SLED)
  6040. case 31: // G31: dock the sled
  6041. gcode_G31();
  6042. break;
  6043. case 32: // G32: undock the sled
  6044. gcode_G32();
  6045. break;
  6046. #endif // Z_PROBE_SLED
  6047. #endif // HAS_BED_PROBE
  6048. case 90: // G90
  6049. relative_mode = false;
  6050. break;
  6051. case 91: // G91
  6052. relative_mode = true;
  6053. break;
  6054. case 92: // G92
  6055. gcode_G92();
  6056. break;
  6057. }
  6058. break;
  6059. case 'M': switch (codenum) {
  6060. #if ENABLED(ULTIPANEL)
  6061. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6062. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6063. gcode_M0_M1();
  6064. break;
  6065. #endif // ULTIPANEL
  6066. case 17:
  6067. gcode_M17();
  6068. break;
  6069. #if ENABLED(SDSUPPORT)
  6070. case 20: // M20 - list SD card
  6071. gcode_M20(); break;
  6072. case 21: // M21 - init SD card
  6073. gcode_M21(); break;
  6074. case 22: //M22 - release SD card
  6075. gcode_M22(); break;
  6076. case 23: //M23 - Select file
  6077. gcode_M23(); break;
  6078. case 24: //M24 - Start SD print
  6079. gcode_M24(); break;
  6080. case 25: //M25 - Pause SD print
  6081. gcode_M25(); break;
  6082. case 26: //M26 - Set SD index
  6083. gcode_M26(); break;
  6084. case 27: //M27 - Get SD status
  6085. gcode_M27(); break;
  6086. case 28: //M28 - Start SD write
  6087. gcode_M28(); break;
  6088. case 29: //M29 - Stop SD write
  6089. gcode_M29(); break;
  6090. case 30: //M30 <filename> Delete File
  6091. gcode_M30(); break;
  6092. case 32: //M32 - Select file and start SD print
  6093. gcode_M32(); break;
  6094. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6095. case 33: //M33 - Get the long full path to a file or folder
  6096. gcode_M33(); break;
  6097. #endif // LONG_FILENAME_HOST_SUPPORT
  6098. case 928: //M928 - Start SD write
  6099. gcode_M928(); break;
  6100. #endif //SDSUPPORT
  6101. case 31: //M31 take time since the start of the SD print or an M109 command
  6102. gcode_M31();
  6103. break;
  6104. case 42: //M42 -Change pin status via gcode
  6105. gcode_M42();
  6106. break;
  6107. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6108. case 48: // M48 Z probe repeatability
  6109. gcode_M48();
  6110. break;
  6111. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6112. case 75: // Start print timer
  6113. gcode_M75();
  6114. break;
  6115. case 76: // Pause print timer
  6116. gcode_M76();
  6117. break;
  6118. case 77: // Stop print timer
  6119. gcode_M77();
  6120. break;
  6121. #if ENABLED(PRINTCOUNTER)
  6122. case 78: // Show print statistics
  6123. gcode_M78();
  6124. break;
  6125. #endif
  6126. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6127. case 100:
  6128. gcode_M100();
  6129. break;
  6130. #endif
  6131. case 104: // M104
  6132. gcode_M104();
  6133. break;
  6134. case 110: // M110: Set Current Line Number
  6135. gcode_M110();
  6136. break;
  6137. case 111: // M111: Set debug level
  6138. gcode_M111();
  6139. break;
  6140. #if DISABLED(EMERGENCY_PARSER)
  6141. case 108: // M108: Cancel Waiting
  6142. gcode_M108();
  6143. break;
  6144. case 112: // M112: Emergency Stop
  6145. gcode_M112();
  6146. break;
  6147. case 410: // M410 quickstop - Abort all the planned moves.
  6148. gcode_M410();
  6149. break;
  6150. #endif
  6151. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6152. case 113: // M113: Set Host Keepalive interval
  6153. gcode_M113();
  6154. break;
  6155. #endif
  6156. case 140: // M140: Set bed temp
  6157. gcode_M140();
  6158. break;
  6159. case 105: // M105: Read current temperature
  6160. gcode_M105();
  6161. KEEPALIVE_STATE(NOT_BUSY);
  6162. return; // "ok" already printed
  6163. case 109: // M109: Wait for temperature
  6164. gcode_M109();
  6165. break;
  6166. #if HAS_TEMP_BED
  6167. case 190: // M190: Wait for bed heater to reach target
  6168. gcode_M190();
  6169. break;
  6170. #endif // HAS_TEMP_BED
  6171. #if FAN_COUNT > 0
  6172. case 106: // M106: Fan On
  6173. gcode_M106();
  6174. break;
  6175. case 107: // M107: Fan Off
  6176. gcode_M107();
  6177. break;
  6178. #endif // FAN_COUNT > 0
  6179. #if ENABLED(BARICUDA)
  6180. // PWM for HEATER_1_PIN
  6181. #if HAS_HEATER_1
  6182. case 126: // M126: valve open
  6183. gcode_M126();
  6184. break;
  6185. case 127: // M127: valve closed
  6186. gcode_M127();
  6187. break;
  6188. #endif // HAS_HEATER_1
  6189. // PWM for HEATER_2_PIN
  6190. #if HAS_HEATER_2
  6191. case 128: // M128: valve open
  6192. gcode_M128();
  6193. break;
  6194. case 129: // M129: valve closed
  6195. gcode_M129();
  6196. break;
  6197. #endif // HAS_HEATER_2
  6198. #endif // BARICUDA
  6199. #if HAS_POWER_SWITCH
  6200. case 80: // M80: Turn on Power Supply
  6201. gcode_M80();
  6202. break;
  6203. #endif // HAS_POWER_SWITCH
  6204. case 81: // M81: Turn off Power, including Power Supply, if possible
  6205. gcode_M81();
  6206. break;
  6207. case 82:
  6208. gcode_M82();
  6209. break;
  6210. case 83:
  6211. gcode_M83();
  6212. break;
  6213. case 18: // (for compatibility)
  6214. case 84: // M84
  6215. gcode_M18_M84();
  6216. break;
  6217. case 85: // M85
  6218. gcode_M85();
  6219. break;
  6220. case 92: // M92: Set the steps-per-unit for one or more axes
  6221. gcode_M92();
  6222. break;
  6223. case 115: // M115: Report capabilities
  6224. gcode_M115();
  6225. break;
  6226. case 117: // M117: Set LCD message text, if possible
  6227. gcode_M117();
  6228. break;
  6229. case 114: // M114: Report current position
  6230. gcode_M114();
  6231. break;
  6232. case 120: // M120: Enable endstops
  6233. gcode_M120();
  6234. break;
  6235. case 121: // M121: Disable endstops
  6236. gcode_M121();
  6237. break;
  6238. case 119: // M119: Report endstop states
  6239. gcode_M119();
  6240. break;
  6241. #if ENABLED(ULTIPANEL)
  6242. case 145: // M145: Set material heatup parameters
  6243. gcode_M145();
  6244. break;
  6245. #endif
  6246. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6247. case 149:
  6248. gcode_M149();
  6249. break;
  6250. #endif
  6251. #if ENABLED(BLINKM)
  6252. case 150: // M150
  6253. gcode_M150();
  6254. break;
  6255. #endif //BLINKM
  6256. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6257. case 155:
  6258. gcode_M155();
  6259. break;
  6260. case 156:
  6261. gcode_M156();
  6262. break;
  6263. #endif //EXPERIMENTAL_I2CBUS
  6264. #if ENABLED(MIXING_EXTRUDER)
  6265. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6266. gcode_M163();
  6267. break;
  6268. #if MIXING_VIRTUAL_TOOLS > 1
  6269. case 164: // M164 S<int> save current mix as a virtual extruder
  6270. gcode_M164();
  6271. break;
  6272. #endif
  6273. #if ENABLED(DIRECT_MIXING_IN_G1)
  6274. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6275. gcode_M165();
  6276. break;
  6277. #endif
  6278. #endif
  6279. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6280. gcode_M200();
  6281. break;
  6282. case 201: // M201
  6283. gcode_M201();
  6284. break;
  6285. #if 0 // Not used for Sprinter/grbl gen6
  6286. case 202: // M202
  6287. gcode_M202();
  6288. break;
  6289. #endif
  6290. case 203: // M203 max feedrate units/sec
  6291. gcode_M203();
  6292. break;
  6293. case 204: // M204 acclereration S normal moves T filmanent only moves
  6294. gcode_M204();
  6295. break;
  6296. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6297. gcode_M205();
  6298. break;
  6299. case 206: // M206 additional homing offset
  6300. gcode_M206();
  6301. break;
  6302. #if ENABLED(DELTA)
  6303. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6304. gcode_M665();
  6305. break;
  6306. #endif
  6307. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6308. case 666: // M666 set delta / dual endstop adjustment
  6309. gcode_M666();
  6310. break;
  6311. #endif
  6312. #if ENABLED(FWRETRACT)
  6313. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6314. gcode_M207();
  6315. break;
  6316. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6317. gcode_M208();
  6318. break;
  6319. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6320. gcode_M209();
  6321. break;
  6322. #endif // FWRETRACT
  6323. #if HOTENDS > 1
  6324. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6325. gcode_M218();
  6326. break;
  6327. #endif
  6328. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6329. gcode_M220();
  6330. break;
  6331. case 221: // M221 - Set Flow Percentage: S<percent>
  6332. gcode_M221();
  6333. break;
  6334. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6335. gcode_M226();
  6336. break;
  6337. #if HAS_SERVOS
  6338. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6339. gcode_M280();
  6340. break;
  6341. #endif // HAS_SERVOS
  6342. #if HAS_BUZZER
  6343. case 300: // M300 - Play beep tone
  6344. gcode_M300();
  6345. break;
  6346. #endif // HAS_BUZZER
  6347. #if ENABLED(PIDTEMP)
  6348. case 301: // M301
  6349. gcode_M301();
  6350. break;
  6351. #endif // PIDTEMP
  6352. #if ENABLED(PIDTEMPBED)
  6353. case 304: // M304
  6354. gcode_M304();
  6355. break;
  6356. #endif // PIDTEMPBED
  6357. #if defined(CHDK) || HAS_PHOTOGRAPH
  6358. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6359. gcode_M240();
  6360. break;
  6361. #endif // CHDK || PHOTOGRAPH_PIN
  6362. #if HAS_LCD_CONTRAST
  6363. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6364. gcode_M250();
  6365. break;
  6366. #endif // HAS_LCD_CONTRAST
  6367. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6368. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6369. gcode_M302();
  6370. break;
  6371. #endif // PREVENT_DANGEROUS_EXTRUDE
  6372. case 303: // M303 PID autotune
  6373. gcode_M303();
  6374. break;
  6375. #if ENABLED(SCARA)
  6376. case 360: // M360 SCARA Theta pos1
  6377. if (gcode_M360()) return;
  6378. break;
  6379. case 361: // M361 SCARA Theta pos2
  6380. if (gcode_M361()) return;
  6381. break;
  6382. case 362: // M362 SCARA Psi pos1
  6383. if (gcode_M362()) return;
  6384. break;
  6385. case 363: // M363 SCARA Psi pos2
  6386. if (gcode_M363()) return;
  6387. break;
  6388. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6389. if (gcode_M364()) return;
  6390. break;
  6391. case 365: // M365 Set SCARA scaling for X Y Z
  6392. gcode_M365();
  6393. break;
  6394. #endif // SCARA
  6395. case 400: // M400 finish all moves
  6396. gcode_M400();
  6397. break;
  6398. #if HAS_BED_PROBE
  6399. case 401:
  6400. gcode_M401();
  6401. break;
  6402. case 402:
  6403. gcode_M402();
  6404. break;
  6405. #endif // HAS_BED_PROBE
  6406. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6407. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6408. gcode_M404();
  6409. break;
  6410. case 405: //M405 Turn on filament sensor for control
  6411. gcode_M405();
  6412. break;
  6413. case 406: //M406 Turn off filament sensor for control
  6414. gcode_M406();
  6415. break;
  6416. case 407: //M407 Display measured filament diameter
  6417. gcode_M407();
  6418. break;
  6419. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6420. #if ENABLED(MESH_BED_LEVELING)
  6421. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6422. gcode_M420();
  6423. break;
  6424. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6425. gcode_M421();
  6426. break;
  6427. #endif
  6428. case 428: // M428 Apply current_position to home_offset
  6429. gcode_M428();
  6430. break;
  6431. case 500: // M500 Store settings in EEPROM
  6432. gcode_M500();
  6433. break;
  6434. case 501: // M501 Read settings from EEPROM
  6435. gcode_M501();
  6436. break;
  6437. case 502: // M502 Revert to default settings
  6438. gcode_M502();
  6439. break;
  6440. case 503: // M503 print settings currently in memory
  6441. gcode_M503();
  6442. break;
  6443. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6444. case 540:
  6445. gcode_M540();
  6446. break;
  6447. #endif
  6448. #if HAS_BED_PROBE
  6449. case 851:
  6450. gcode_M851();
  6451. break;
  6452. #endif // HAS_BED_PROBE
  6453. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6454. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6455. gcode_M600();
  6456. break;
  6457. #endif // FILAMENT_CHANGE_FEATURE
  6458. #if ENABLED(DUAL_X_CARRIAGE)
  6459. case 605:
  6460. gcode_M605();
  6461. break;
  6462. #endif // DUAL_X_CARRIAGE
  6463. #if ENABLED(LIN_ADVANCE)
  6464. case 905: // M905 Set advance factor.
  6465. gcode_M905();
  6466. break;
  6467. #endif
  6468. case 907: // M907 Set digital trimpot motor current using axis codes.
  6469. gcode_M907();
  6470. break;
  6471. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6472. case 908: // M908 Control digital trimpot directly.
  6473. gcode_M908();
  6474. break;
  6475. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6476. case 909: // M909 Print digipot/DAC current value
  6477. gcode_M909();
  6478. break;
  6479. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6480. gcode_M910();
  6481. break;
  6482. #endif
  6483. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6484. #if HAS_MICROSTEPS
  6485. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6486. gcode_M350();
  6487. break;
  6488. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6489. gcode_M351();
  6490. break;
  6491. #endif // HAS_MICROSTEPS
  6492. case 999: // M999: Restart after being Stopped
  6493. gcode_M999();
  6494. break;
  6495. }
  6496. break;
  6497. case 'T':
  6498. gcode_T(codenum);
  6499. break;
  6500. default: code_is_good = false;
  6501. }
  6502. KEEPALIVE_STATE(NOT_BUSY);
  6503. ExitUnknownCommand:
  6504. // Still unknown command? Throw an error
  6505. if (!code_is_good) unknown_command_error();
  6506. ok_to_send();
  6507. }
  6508. void FlushSerialRequestResend() {
  6509. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6510. MYSERIAL.flush();
  6511. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6512. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6513. ok_to_send();
  6514. }
  6515. void ok_to_send() {
  6516. refresh_cmd_timeout();
  6517. if (!send_ok[cmd_queue_index_r]) return;
  6518. SERIAL_PROTOCOLPGM(MSG_OK);
  6519. #if ENABLED(ADVANCED_OK)
  6520. char* p = command_queue[cmd_queue_index_r];
  6521. if (*p == 'N') {
  6522. SERIAL_PROTOCOL(' ');
  6523. SERIAL_ECHO(*p++);
  6524. while (NUMERIC_SIGNED(*p))
  6525. SERIAL_ECHO(*p++);
  6526. }
  6527. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6528. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6529. #endif
  6530. SERIAL_EOL;
  6531. }
  6532. void clamp_to_software_endstops(float target[3]) {
  6533. if (min_software_endstops) {
  6534. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6535. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6536. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6537. }
  6538. if (max_software_endstops) {
  6539. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6540. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6541. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6542. }
  6543. }
  6544. #if ENABLED(DELTA)
  6545. void recalc_delta_settings(float radius, float diagonal_rod) {
  6546. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6547. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6548. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6549. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6550. delta_tower3_x = 0.0; // back middle tower
  6551. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6552. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6553. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6554. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6555. }
  6556. void calculate_delta(float cartesian[3]) {
  6557. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6558. - sq(delta_tower1_x - cartesian[X_AXIS])
  6559. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6560. ) + cartesian[Z_AXIS];
  6561. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6562. - sq(delta_tower2_x - cartesian[X_AXIS])
  6563. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6564. ) + cartesian[Z_AXIS];
  6565. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6566. - sq(delta_tower3_x - cartesian[X_AXIS])
  6567. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6568. ) + cartesian[Z_AXIS];
  6569. /**
  6570. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6571. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6572. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6573. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6574. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6575. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6576. */
  6577. }
  6578. float delta_safe_distance_from_top() {
  6579. float cartesian[3] = { 0 };
  6580. calculate_delta(cartesian);
  6581. float distance = delta[TOWER_3];
  6582. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  6583. calculate_delta(cartesian);
  6584. return abs(distance - delta[TOWER_3]);
  6585. }
  6586. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6587. // Adjust print surface height by linear interpolation over the bed_level array.
  6588. void adjust_delta(float cartesian[3]) {
  6589. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6590. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6591. float h1 = 0.001 - half, h2 = half - 0.001,
  6592. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6593. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6594. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6595. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6596. z1 = bed_level[floor_x + half][floor_y + half],
  6597. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6598. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6599. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6600. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6601. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6602. offset = (1 - ratio_x) * left + ratio_x * right;
  6603. delta[X_AXIS] += offset;
  6604. delta[Y_AXIS] += offset;
  6605. delta[Z_AXIS] += offset;
  6606. /**
  6607. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6608. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6609. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6610. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6611. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6612. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6613. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6614. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6615. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6616. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6617. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6618. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6619. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6620. */
  6621. }
  6622. #endif // AUTO_BED_LEVELING_FEATURE
  6623. #endif // DELTA
  6624. #if ENABLED(MESH_BED_LEVELING)
  6625. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6626. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6627. if (!mbl.active()) {
  6628. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6629. set_current_to_destination();
  6630. return;
  6631. }
  6632. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6633. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6634. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6635. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6636. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6637. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6638. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6639. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6640. if (pcx == cx && pcy == cy) {
  6641. // Start and end on same mesh square
  6642. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6643. set_current_to_destination();
  6644. return;
  6645. }
  6646. float nx, ny, nz, ne, normalized_dist;
  6647. if (cx > pcx && TEST(x_splits, cx)) {
  6648. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6649. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6650. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6651. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6652. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6653. CBI(x_splits, cx);
  6654. }
  6655. else if (cx < pcx && TEST(x_splits, pcx)) {
  6656. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6657. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6658. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6659. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6660. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6661. CBI(x_splits, pcx);
  6662. }
  6663. else if (cy > pcy && TEST(y_splits, cy)) {
  6664. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6665. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6666. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6667. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6668. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6669. CBI(y_splits, cy);
  6670. }
  6671. else if (cy < pcy && TEST(y_splits, pcy)) {
  6672. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6673. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6674. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6675. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6676. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6677. CBI(y_splits, pcy);
  6678. }
  6679. else {
  6680. // Already split on a border
  6681. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6682. set_current_to_destination();
  6683. return;
  6684. }
  6685. // Do the split and look for more borders
  6686. destination[X_AXIS] = nx;
  6687. destination[Y_AXIS] = ny;
  6688. destination[Z_AXIS] = nz;
  6689. destination[E_AXIS] = ne;
  6690. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6691. destination[X_AXIS] = x;
  6692. destination[Y_AXIS] = y;
  6693. destination[Z_AXIS] = z;
  6694. destination[E_AXIS] = e;
  6695. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6696. }
  6697. #endif // MESH_BED_LEVELING
  6698. #if ENABLED(DELTA) || ENABLED(SCARA)
  6699. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6700. float difference[NUM_AXIS];
  6701. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6702. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6703. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6704. if (cartesian_mm < 0.000001) return false;
  6705. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6706. float seconds = cartesian_mm / _feedrate;
  6707. int steps = max(1, int(delta_segments_per_second * seconds));
  6708. float inv_steps = 1.0/steps;
  6709. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6710. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6711. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6712. for (int s = 1; s <= steps; s++) {
  6713. float fraction = float(s) * inv_steps;
  6714. for (int8_t i = 0; i < NUM_AXIS; i++)
  6715. target[i] = current_position[i] + difference[i] * fraction;
  6716. calculate_delta(target);
  6717. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6718. if (!bed_leveling_in_progress) adjust_delta(target);
  6719. #endif
  6720. //DEBUG_POS("prepare_delta_move_to", target);
  6721. //DEBUG_POS("prepare_delta_move_to", delta);
  6722. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6723. }
  6724. return true;
  6725. }
  6726. #endif // DELTA || SCARA
  6727. #if ENABLED(SCARA)
  6728. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6729. #endif
  6730. #if ENABLED(DUAL_X_CARRIAGE)
  6731. inline bool prepare_move_to_destination_dualx() {
  6732. if (active_extruder_parked) {
  6733. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6734. // move duplicate extruder into correct duplication position.
  6735. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6736. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6737. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6738. SYNC_PLAN_POSITION_KINEMATIC();
  6739. stepper.synchronize();
  6740. extruder_duplication_enabled = true;
  6741. active_extruder_parked = false;
  6742. }
  6743. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6744. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6745. // This is a travel move (with no extrusion)
  6746. // Skip it, but keep track of the current position
  6747. // (so it can be used as the start of the next non-travel move)
  6748. if (delayed_move_time != 0xFFFFFFFFUL) {
  6749. set_current_to_destination();
  6750. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6751. delayed_move_time = millis();
  6752. return false;
  6753. }
  6754. }
  6755. delayed_move_time = 0;
  6756. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6757. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6758. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6759. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6760. active_extruder_parked = false;
  6761. }
  6762. }
  6763. return true;
  6764. }
  6765. #endif // DUAL_X_CARRIAGE
  6766. #if DISABLED(DELTA) && DISABLED(SCARA)
  6767. inline bool prepare_move_to_destination_cartesian() {
  6768. // Do not use feedrate_multiplier for E or Z only moves
  6769. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6770. line_to_destination();
  6771. }
  6772. else {
  6773. #if ENABLED(MESH_BED_LEVELING)
  6774. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6775. return false;
  6776. #else
  6777. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6778. #endif
  6779. }
  6780. return true;
  6781. }
  6782. #endif // !DELTA && !SCARA
  6783. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6784. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6785. if (DEBUGGING(DRYRUN)) return;
  6786. float de = dest_e - curr_e;
  6787. if (de) {
  6788. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6789. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6790. SERIAL_ECHO_START;
  6791. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6792. }
  6793. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6794. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6795. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6796. SERIAL_ECHO_START;
  6797. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6798. }
  6799. #endif
  6800. }
  6801. }
  6802. #endif // PREVENT_DANGEROUS_EXTRUDE
  6803. /**
  6804. * Prepare a single move and get ready for the next one
  6805. *
  6806. * (This may call planner.buffer_line several times to put
  6807. * smaller moves into the planner for DELTA or SCARA.)
  6808. */
  6809. void prepare_move_to_destination() {
  6810. clamp_to_software_endstops(destination);
  6811. refresh_cmd_timeout();
  6812. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6813. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6814. #endif
  6815. #if ENABLED(SCARA)
  6816. if (!prepare_scara_move_to(destination)) return;
  6817. #elif ENABLED(DELTA)
  6818. if (!prepare_delta_move_to(destination)) return;
  6819. #else
  6820. #if ENABLED(DUAL_X_CARRIAGE)
  6821. if (!prepare_move_to_destination_dualx()) return;
  6822. #endif
  6823. if (!prepare_move_to_destination_cartesian()) return;
  6824. #endif
  6825. set_current_to_destination();
  6826. }
  6827. #if ENABLED(ARC_SUPPORT)
  6828. /**
  6829. * Plan an arc in 2 dimensions
  6830. *
  6831. * The arc is approximated by generating many small linear segments.
  6832. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6833. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6834. * larger segments will tend to be more efficient. Your slicer should have
  6835. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6836. */
  6837. void plan_arc(
  6838. float target[NUM_AXIS], // Destination position
  6839. float* offset, // Center of rotation relative to current_position
  6840. uint8_t clockwise // Clockwise?
  6841. ) {
  6842. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6843. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6844. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6845. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6846. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6847. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6848. r_Y = -offset[Y_AXIS],
  6849. rt_X = target[X_AXIS] - center_X,
  6850. rt_Y = target[Y_AXIS] - center_Y;
  6851. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6852. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6853. if (angular_travel < 0) angular_travel += RADIANS(360);
  6854. if (clockwise) angular_travel -= RADIANS(360);
  6855. // Make a circle if the angular rotation is 0
  6856. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6857. angular_travel += RADIANS(360);
  6858. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6859. if (mm_of_travel < 0.001) return;
  6860. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6861. if (segments == 0) segments = 1;
  6862. float theta_per_segment = angular_travel / segments;
  6863. float linear_per_segment = linear_travel / segments;
  6864. float extruder_per_segment = extruder_travel / segments;
  6865. /**
  6866. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6867. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6868. * r_T = [cos(phi) -sin(phi);
  6869. * sin(phi) cos(phi] * r ;
  6870. *
  6871. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6872. * defined from the circle center to the initial position. Each line segment is formed by successive
  6873. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6874. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6875. * all double numbers are single precision on the Arduino. (True double precision will not have
  6876. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6877. * tool precision in some cases. Therefore, arc path correction is implemented.
  6878. *
  6879. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6880. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6881. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6882. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6883. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6884. * issue for CNC machines with the single precision Arduino calculations.
  6885. *
  6886. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6887. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6888. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6889. * This is important when there are successive arc motions.
  6890. */
  6891. // Vector rotation matrix values
  6892. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6893. float sin_T = theta_per_segment;
  6894. float arc_target[NUM_AXIS];
  6895. float sin_Ti, cos_Ti, r_new_Y;
  6896. uint16_t i;
  6897. int8_t count = 0;
  6898. // Initialize the linear axis
  6899. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6900. // Initialize the extruder axis
  6901. arc_target[E_AXIS] = current_position[E_AXIS];
  6902. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6903. millis_t next_idle_ms = millis() + 200UL;
  6904. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6905. thermalManager.manage_heater();
  6906. millis_t now = millis();
  6907. if (ELAPSED(now, next_idle_ms)) {
  6908. next_idle_ms = now + 200UL;
  6909. idle();
  6910. }
  6911. if (++count < N_ARC_CORRECTION) {
  6912. // Apply vector rotation matrix to previous r_X / 1
  6913. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6914. r_X = r_X * cos_T - r_Y * sin_T;
  6915. r_Y = r_new_Y;
  6916. }
  6917. else {
  6918. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6919. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6920. // To reduce stuttering, the sin and cos could be computed at different times.
  6921. // For now, compute both at the same time.
  6922. cos_Ti = cos(i * theta_per_segment);
  6923. sin_Ti = sin(i * theta_per_segment);
  6924. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6925. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6926. count = 0;
  6927. }
  6928. // Update arc_target location
  6929. arc_target[X_AXIS] = center_X + r_X;
  6930. arc_target[Y_AXIS] = center_Y + r_Y;
  6931. arc_target[Z_AXIS] += linear_per_segment;
  6932. arc_target[E_AXIS] += extruder_per_segment;
  6933. clamp_to_software_endstops(arc_target);
  6934. #if ENABLED(DELTA) || ENABLED(SCARA)
  6935. calculate_delta(arc_target);
  6936. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6937. adjust_delta(arc_target);
  6938. #endif
  6939. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6940. #else
  6941. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6942. #endif
  6943. }
  6944. // Ensure last segment arrives at target location.
  6945. #if ENABLED(DELTA) || ENABLED(SCARA)
  6946. calculate_delta(target);
  6947. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6948. adjust_delta(target);
  6949. #endif
  6950. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6951. #else
  6952. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6953. #endif
  6954. // As far as the parser is concerned, the position is now == target. In reality the
  6955. // motion control system might still be processing the action and the real tool position
  6956. // in any intermediate location.
  6957. set_current_to_destination();
  6958. }
  6959. #endif
  6960. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6961. void plan_cubic_move(const float offset[4]) {
  6962. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6963. // As far as the parser is concerned, the position is now == target. In reality the
  6964. // motion control system might still be processing the action and the real tool position
  6965. // in any intermediate location.
  6966. set_current_to_destination();
  6967. }
  6968. #endif // BEZIER_CURVE_SUPPORT
  6969. #if HAS_CONTROLLERFAN
  6970. void controllerFan() {
  6971. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6972. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6973. millis_t ms = millis();
  6974. if (ELAPSED(ms, nextMotorCheck)) {
  6975. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6976. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6977. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6978. #if E_STEPPERS > 1
  6979. || E1_ENABLE_READ == E_ENABLE_ON
  6980. #if HAS_X2_ENABLE
  6981. || X2_ENABLE_READ == X_ENABLE_ON
  6982. #endif
  6983. #if E_STEPPERS > 2
  6984. || E2_ENABLE_READ == E_ENABLE_ON
  6985. #if E_STEPPERS > 3
  6986. || E3_ENABLE_READ == E_ENABLE_ON
  6987. #endif
  6988. #endif
  6989. #endif
  6990. ) {
  6991. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6992. }
  6993. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6994. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6995. // allows digital or PWM fan output to be used (see M42 handling)
  6996. digitalWrite(CONTROLLERFAN_PIN, speed);
  6997. analogWrite(CONTROLLERFAN_PIN, speed);
  6998. }
  6999. }
  7000. #endif // HAS_CONTROLLERFAN
  7001. #if ENABLED(SCARA)
  7002. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  7003. // Perform forward kinematics, and place results in delta[3]
  7004. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7005. float x_sin, x_cos, y_sin, y_cos;
  7006. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7007. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7008. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7009. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7010. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7011. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7012. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7013. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7014. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7015. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7016. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7017. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7018. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7019. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7020. }
  7021. void calculate_delta(float cartesian[3]) {
  7022. //reverse kinematics.
  7023. // Perform reversed kinematics, and place results in delta[3]
  7024. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7025. float SCARA_pos[2];
  7026. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7027. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7028. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7029. #if (Linkage_1 == Linkage_2)
  7030. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7031. #else
  7032. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7033. #endif
  7034. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7035. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7036. SCARA_K2 = Linkage_2 * SCARA_S2;
  7037. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7038. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7039. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7040. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7041. delta[Z_AXIS] = cartesian[Z_AXIS];
  7042. /**
  7043. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7044. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7045. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7046. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7047. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7048. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7049. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7050. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7051. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7052. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7053. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7054. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7055. SERIAL_EOL;
  7056. */
  7057. }
  7058. #endif // SCARA
  7059. #if ENABLED(TEMP_STAT_LEDS)
  7060. static bool red_led = false;
  7061. static millis_t next_status_led_update_ms = 0;
  7062. void handle_status_leds(void) {
  7063. float max_temp = 0.0;
  7064. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7065. next_status_led_update_ms += 500; // Update every 0.5s
  7066. HOTEND_LOOP() {
  7067. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7068. }
  7069. #if HAS_TEMP_BED
  7070. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7071. #endif
  7072. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7073. if (new_led != red_led) {
  7074. red_led = new_led;
  7075. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7076. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7077. }
  7078. }
  7079. }
  7080. #endif
  7081. void enable_all_steppers() {
  7082. enable_x();
  7083. enable_y();
  7084. enable_z();
  7085. enable_e0();
  7086. enable_e1();
  7087. enable_e2();
  7088. enable_e3();
  7089. }
  7090. void disable_all_steppers() {
  7091. disable_x();
  7092. disable_y();
  7093. disable_z();
  7094. disable_e0();
  7095. disable_e1();
  7096. disable_e2();
  7097. disable_e3();
  7098. }
  7099. /**
  7100. * Standard idle routine keeps the machine alive
  7101. */
  7102. void idle(
  7103. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7104. bool no_stepper_sleep/*=false*/
  7105. #endif
  7106. ) {
  7107. lcd_update();
  7108. host_keepalive();
  7109. manage_inactivity(
  7110. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7111. no_stepper_sleep
  7112. #endif
  7113. );
  7114. thermalManager.manage_heater();
  7115. #if ENABLED(PRINTCOUNTER)
  7116. print_job_timer.tick();
  7117. #endif
  7118. #if HAS_BUZZER
  7119. buzzer.tick();
  7120. #endif
  7121. }
  7122. /**
  7123. * Manage several activities:
  7124. * - Check for Filament Runout
  7125. * - Keep the command buffer full
  7126. * - Check for maximum inactive time between commands
  7127. * - Check for maximum inactive time between stepper commands
  7128. * - Check if pin CHDK needs to go LOW
  7129. * - Check for KILL button held down
  7130. * - Check for HOME button held down
  7131. * - Check if cooling fan needs to be switched on
  7132. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7133. */
  7134. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7135. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7136. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7137. handle_filament_runout();
  7138. #endif
  7139. if (commands_in_queue < BUFSIZE) get_available_commands();
  7140. millis_t ms = millis();
  7141. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7142. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7143. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7144. #if ENABLED(DISABLE_INACTIVE_X)
  7145. disable_x();
  7146. #endif
  7147. #if ENABLED(DISABLE_INACTIVE_Y)
  7148. disable_y();
  7149. #endif
  7150. #if ENABLED(DISABLE_INACTIVE_Z)
  7151. disable_z();
  7152. #endif
  7153. #if ENABLED(DISABLE_INACTIVE_E)
  7154. disable_e0();
  7155. disable_e1();
  7156. disable_e2();
  7157. disable_e3();
  7158. #endif
  7159. }
  7160. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7161. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7162. chdkActive = false;
  7163. WRITE(CHDK, LOW);
  7164. }
  7165. #endif
  7166. #if HAS_KILL
  7167. // Check if the kill button was pressed and wait just in case it was an accidental
  7168. // key kill key press
  7169. // -------------------------------------------------------------------------------
  7170. static int killCount = 0; // make the inactivity button a bit less responsive
  7171. const int KILL_DELAY = 750;
  7172. if (!READ(KILL_PIN))
  7173. killCount++;
  7174. else if (killCount > 0)
  7175. killCount--;
  7176. // Exceeded threshold and we can confirm that it was not accidental
  7177. // KILL the machine
  7178. // ----------------------------------------------------------------
  7179. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7180. #endif
  7181. #if HAS_HOME
  7182. // Check to see if we have to home, use poor man's debouncer
  7183. // ---------------------------------------------------------
  7184. static int homeDebounceCount = 0; // poor man's debouncing count
  7185. const int HOME_DEBOUNCE_DELAY = 2500;
  7186. if (!READ(HOME_PIN)) {
  7187. if (!homeDebounceCount) {
  7188. enqueue_and_echo_commands_P(PSTR("G28"));
  7189. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7190. }
  7191. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7192. homeDebounceCount++;
  7193. else
  7194. homeDebounceCount = 0;
  7195. }
  7196. #endif
  7197. #if HAS_CONTROLLERFAN
  7198. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7199. #endif
  7200. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7201. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7202. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7203. #if ENABLED(SWITCHING_EXTRUDER)
  7204. bool oldstatus = E0_ENABLE_READ;
  7205. enable_e0();
  7206. #else // !SWITCHING_EXTRUDER
  7207. bool oldstatus;
  7208. switch (active_extruder) {
  7209. case 0:
  7210. oldstatus = E0_ENABLE_READ;
  7211. enable_e0();
  7212. break;
  7213. #if E_STEPPERS > 1
  7214. case 1:
  7215. oldstatus = E1_ENABLE_READ;
  7216. enable_e1();
  7217. break;
  7218. #if E_STEPPERS > 2
  7219. case 2:
  7220. oldstatus = E2_ENABLE_READ;
  7221. enable_e2();
  7222. break;
  7223. #if E_STEPPERS > 3
  7224. case 3:
  7225. oldstatus = E3_ENABLE_READ;
  7226. enable_e3();
  7227. break;
  7228. #endif
  7229. #endif
  7230. #endif
  7231. }
  7232. #endif // !SWITCHING_EXTRUDER
  7233. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7234. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7235. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7236. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7237. current_position[E_AXIS] = oldepos;
  7238. destination[E_AXIS] = oldedes;
  7239. planner.set_e_position_mm(oldepos);
  7240. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7241. stepper.synchronize();
  7242. #if ENABLED(SWITCHING_EXTRUDER)
  7243. E0_ENABLE_WRITE(oldstatus);
  7244. #else
  7245. switch (active_extruder) {
  7246. case 0:
  7247. E0_ENABLE_WRITE(oldstatus);
  7248. break;
  7249. #if E_STEPPERS > 1
  7250. case 1:
  7251. E1_ENABLE_WRITE(oldstatus);
  7252. break;
  7253. #if E_STEPPERS > 2
  7254. case 2:
  7255. E2_ENABLE_WRITE(oldstatus);
  7256. break;
  7257. #if E_STEPPERS > 3
  7258. case 3:
  7259. E3_ENABLE_WRITE(oldstatus);
  7260. break;
  7261. #endif
  7262. #endif
  7263. #endif
  7264. }
  7265. #endif // !SWITCHING_EXTRUDER
  7266. }
  7267. #endif // EXTRUDER_RUNOUT_PREVENT
  7268. #if ENABLED(DUAL_X_CARRIAGE)
  7269. // handle delayed move timeout
  7270. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7271. // travel moves have been received so enact them
  7272. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7273. set_destination_to_current();
  7274. prepare_move_to_destination();
  7275. }
  7276. #endif
  7277. #if ENABLED(TEMP_STAT_LEDS)
  7278. handle_status_leds();
  7279. #endif
  7280. planner.check_axes_activity();
  7281. }
  7282. void kill(const char* lcd_msg) {
  7283. SERIAL_ERROR_START;
  7284. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7285. #if ENABLED(ULTRA_LCD)
  7286. kill_screen(lcd_msg);
  7287. #else
  7288. UNUSED(lcd_msg);
  7289. #endif
  7290. for (int i = 5; i--;) delay(100); // Wait a short time
  7291. cli(); // Stop interrupts
  7292. thermalManager.disable_all_heaters();
  7293. disable_all_steppers();
  7294. #if HAS_POWER_SWITCH
  7295. pinMode(PS_ON_PIN, INPUT);
  7296. #endif
  7297. suicide();
  7298. while (1) {
  7299. #if ENABLED(USE_WATCHDOG)
  7300. watchdog_reset();
  7301. #endif
  7302. } // Wait for reset
  7303. }
  7304. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7305. void handle_filament_runout() {
  7306. if (!filament_ran_out) {
  7307. filament_ran_out = true;
  7308. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7309. stepper.synchronize();
  7310. }
  7311. }
  7312. #endif // FILAMENT_RUNOUT_SENSOR
  7313. #if ENABLED(FAST_PWM_FAN)
  7314. void setPwmFrequency(uint8_t pin, int val) {
  7315. val &= 0x07;
  7316. switch (digitalPinToTimer(pin)) {
  7317. #if defined(TCCR0A)
  7318. case TIMER0A:
  7319. case TIMER0B:
  7320. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7321. // TCCR0B |= val;
  7322. break;
  7323. #endif
  7324. #if defined(TCCR1A)
  7325. case TIMER1A:
  7326. case TIMER1B:
  7327. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7328. // TCCR1B |= val;
  7329. break;
  7330. #endif
  7331. #if defined(TCCR2)
  7332. case TIMER2:
  7333. case TIMER2:
  7334. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7335. TCCR2 |= val;
  7336. break;
  7337. #endif
  7338. #if defined(TCCR2A)
  7339. case TIMER2A:
  7340. case TIMER2B:
  7341. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7342. TCCR2B |= val;
  7343. break;
  7344. #endif
  7345. #if defined(TCCR3A)
  7346. case TIMER3A:
  7347. case TIMER3B:
  7348. case TIMER3C:
  7349. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7350. TCCR3B |= val;
  7351. break;
  7352. #endif
  7353. #if defined(TCCR4A)
  7354. case TIMER4A:
  7355. case TIMER4B:
  7356. case TIMER4C:
  7357. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7358. TCCR4B |= val;
  7359. break;
  7360. #endif
  7361. #if defined(TCCR5A)
  7362. case TIMER5A:
  7363. case TIMER5B:
  7364. case TIMER5C:
  7365. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7366. TCCR5B |= val;
  7367. break;
  7368. #endif
  7369. }
  7370. }
  7371. #endif // FAST_PWM_FAN
  7372. void stop() {
  7373. thermalManager.disable_all_heaters();
  7374. if (IsRunning()) {
  7375. Running = false;
  7376. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7377. SERIAL_ERROR_START;
  7378. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7379. LCD_MESSAGEPGM(MSG_STOPPED);
  7380. }
  7381. }
  7382. float calculate_volumetric_multiplier(float diameter) {
  7383. if (!volumetric_enabled || diameter == 0) return 1.0;
  7384. float d2 = diameter * 0.5;
  7385. return 1.0 / (M_PI * d2 * d2);
  7386. }
  7387. void calculate_volumetric_multipliers() {
  7388. for (int i = 0; i < COUNT(filament_size); i++)
  7389. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7390. }