My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl.h 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "../bedlevel.h"
  25. #include "../../../module/planner.h"
  26. #include "../../../module/motion.h"
  27. #include "../../../Marlin.h"
  28. #define UBL_VERSION "1.01"
  29. #define UBL_OK false
  30. #define UBL_ERR true
  31. #define USE_NOZZLE_AS_REFERENCE 0
  32. #define USE_PROBE_AS_REFERENCE 1
  33. // ubl_motion.cpp
  34. void debug_current_and_destination(const char * const title);
  35. // ubl_G29.cpp
  36. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  37. // External references
  38. char *ftostr43sign(const float&, char);
  39. extern uint8_t ubl_cnt;
  40. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  41. #if ENABLED(ULTRA_LCD)
  42. extern char lcd_status_message[];
  43. void lcd_quick_feedback();
  44. #endif
  45. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  46. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  47. class unified_bed_leveling {
  48. private:
  49. static int g29_verbose_level,
  50. g29_phase_value,
  51. g29_repetition_cnt,
  52. g29_storage_slot,
  53. g29_map_type;
  54. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  55. static float g29_x_pos, g29_y_pos,
  56. g29_card_thickness,
  57. g29_constant;
  58. #if HAS_BED_PROBE
  59. static int g29_grid_size;
  60. #endif
  61. #if ENABLED(NEWPANEL)
  62. static void move_z_with_encoder(const float &multiplier);
  63. static float measure_point_with_encoder();
  64. static float measure_business_card_thickness(const float&);
  65. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  66. static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map);
  67. #endif
  68. static bool g29_parameter_parsing();
  69. static void find_mean_mesh_height();
  70. static void shift_mesh_height();
  71. static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  72. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  73. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  74. static void g29_what_command();
  75. static void g29_eeprom_dump();
  76. static void g29_compare_current_mesh_to_stored_mesh();
  77. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  78. static void smart_fill_mesh();
  79. public:
  80. static void echo_name();
  81. static void report_state();
  82. static void save_ubl_active_state_and_disable();
  83. static void restore_ubl_active_state_and_leave();
  84. static void display_map(const int);
  85. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]);
  86. static mesh_index_pair find_furthest_invalid_mesh_point();
  87. static void reset();
  88. static void invalidate();
  89. static void set_all_mesh_points_to_value(const float);
  90. static bool sanity_check();
  91. static void G29() _O0; // O0 for no optimization
  92. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  93. static int8_t storage_slot;
  94. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  95. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  96. // until determinism prevails
  97. constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
  98. MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
  99. MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
  100. MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
  101. MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
  102. MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
  103. MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
  104. MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
  105. MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
  106. };
  107. constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
  108. MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
  109. MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
  110. MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
  111. MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
  112. MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
  113. MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
  114. MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
  115. MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
  116. };
  117. #if ENABLED(ULTIPANEL)
  118. static bool lcd_map_control;
  119. #endif
  120. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  121. unified_bed_leveling();
  122. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  123. static int8_t get_cell_index_x(const float &x) {
  124. const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  125. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  126. } // position. But with this defined this way, it is possible
  127. // to extrapolate off of this point even further out. Probably
  128. // that is OK because something else should be keeping that from
  129. // happening and should not be worried about at this level.
  130. static int8_t get_cell_index_y(const float &y) {
  131. const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  132. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  133. } // position. But with this defined this way, it is possible
  134. // to extrapolate off of this point even further out. Probably
  135. // that is OK because something else should be keeping that from
  136. // happening and should not be worried about at this level.
  137. static int8_t find_closest_x_index(const float &x) {
  138. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  139. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  140. }
  141. static int8_t find_closest_y_index(const float &y) {
  142. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  143. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  144. }
  145. /**
  146. * z2 --|
  147. * z0 | |
  148. * | | + (z2-z1)
  149. * z1 | | |
  150. * ---+-------------+--------+-- --|
  151. * a1 a0 a2
  152. * |<---delta_a---------->|
  153. *
  154. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  155. * find the expected Z Height at a position between two known Z-Height locations.
  156. *
  157. * It is fairly expensive with its 4 floating point additions and 2 floating point
  158. * multiplications.
  159. */
  160. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  161. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  162. }
  163. /**
  164. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  165. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  166. */
  167. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  168. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  170. if (DEBUGGING(LEVELING)) {
  171. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
  172. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
  173. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  174. SERIAL_ECHOPAIR(",yi=", yi);
  175. SERIAL_CHAR(')');
  176. SERIAL_EOL();
  177. }
  178. #endif
  179. return NAN;
  180. }
  181. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  182. z1 = z_values[x1_i][yi];
  183. return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  184. // If it is, it is clamped to the last element of the
  185. // z_values[][] array and no correction is applied.
  186. }
  187. //
  188. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  189. //
  190. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  191. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  193. if (DEBUGGING(LEVELING)) {
  194. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
  195. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
  196. SERIAL_ECHOPAIR(", xi=", xi);
  197. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  198. SERIAL_CHAR(')');
  199. SERIAL_EOL();
  200. }
  201. #endif
  202. return NAN;
  203. }
  204. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  205. z1 = z_values[xi][y1_i];
  206. return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  207. // If it is, it is clamped to the last element of the
  208. // z_values[][] array and no correction is applied.
  209. }
  210. /**
  211. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  212. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  213. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  214. * on the Y position within the cell.
  215. */
  216. static float get_z_correction(const float &rx0, const float &ry0) {
  217. const int8_t cx = get_cell_index_x(rx0),
  218. cy = get_cell_index_y(ry0); // return values are clamped
  219. const float z1 = calc_z0(rx0,
  220. mesh_index_to_xpos(cx), z_values[cx][cy],
  221. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  222. const float z2 = calc_z0(rx0,
  223. mesh_index_to_xpos(cx), z_values[cx][min(cy, GRID_MAX_POINTS_Y - 2) + 1],
  224. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][min(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  225. float z0 = calc_z0(ry0,
  226. mesh_index_to_ypos(cy), z1,
  227. mesh_index_to_ypos(cy + 1), z2);
  228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  229. if (DEBUGGING(MESH_ADJUST)) {
  230. SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
  231. SERIAL_CHAR(',');
  232. SERIAL_ECHO(ry0);
  233. SERIAL_ECHOPGM(") = ");
  234. SERIAL_ECHO_F(z0, 6);
  235. }
  236. #endif
  237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  238. if (DEBUGGING(MESH_ADJUST)) {
  239. SERIAL_ECHOPGM(" >>>---> ");
  240. SERIAL_ECHO_F(z0, 6);
  241. SERIAL_EOL();
  242. }
  243. #endif
  244. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  245. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  246. // calculations. If our correction is NAN, we throw it out
  247. // because part of the Mesh is undefined and we don't have the
  248. // information we need to complete the height correction.
  249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  250. if (DEBUGGING(MESH_ADJUST)) {
  251. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  252. SERIAL_CHAR(',');
  253. SERIAL_ECHO(ry0);
  254. SERIAL_CHAR(')');
  255. SERIAL_EOL();
  256. }
  257. #endif
  258. }
  259. return z0;
  260. }
  261. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  262. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  263. }
  264. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  265. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  266. }
  267. static bool prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate);
  268. static void line_to_destination_cartesian(const float &fr, uint8_t e);
  269. #define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
  270. #define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1))
  271. #define ZZER(a) (z_values[a][0] == 0)
  272. FORCE_INLINE bool mesh_is_valid() {
  273. return !(
  274. ( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal?
  275. && ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge?
  276. )
  277. || isnan(z_values[0][0])
  278. );
  279. }
  280. }; // class unified_bed_leveling
  281. extern unified_bed_leveling ubl;
  282. #endif // UNIFIED_BED_LEVELING_H