My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "ubl.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if HAS_RESUME_CONTINUE
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // settings.load(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. int bilinear_grid_spacing[2], bilinear_start[2];
  523. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  524. #endif
  525. #if IS_SCARA
  526. // Float constants for SCARA calculations
  527. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  528. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  529. L2_2 = sq(float(L2));
  530. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  531. delta[ABC];
  532. #endif
  533. float cartes[XYZ] = { 0 };
  534. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  535. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  536. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  537. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  538. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  539. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  540. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  541. #endif
  542. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  543. static bool filament_ran_out = false;
  544. #endif
  545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  546. FilamentChangeMenuResponse filament_change_menu_response;
  547. #endif
  548. #if ENABLED(MIXING_EXTRUDER)
  549. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  550. #if MIXING_VIRTUAL_TOOLS > 1
  551. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  552. #endif
  553. #endif
  554. static bool send_ok[BUFSIZE];
  555. #if HAS_SERVOS
  556. Servo servo[NUM_SERVOS];
  557. #define MOVE_SERVO(I, P) servo[I].move(P)
  558. #if HAS_Z_SERVO_ENDSTOP
  559. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  560. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  561. #endif
  562. #endif
  563. #ifdef CHDK
  564. millis_t chdkHigh = 0;
  565. bool chdkActive = false;
  566. #endif
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len = 20;
  569. #endif
  570. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  571. MarlinBusyState busy_state = NOT_BUSY;
  572. static millis_t next_busy_signal_ms = 0;
  573. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  574. #else
  575. #define host_keepalive() NOOP
  576. #endif
  577. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  578. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  579. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  580. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  581. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  582. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  583. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  586. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  587. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  588. /**
  589. * ***************************************************************************
  590. * ******************************** FUNCTIONS ********************************
  591. * ***************************************************************************
  592. */
  593. void stop();
  594. void get_available_commands();
  595. void process_next_command();
  596. void prepare_move_to_destination();
  597. void get_cartesian_from_steppers();
  598. void set_current_from_steppers_for_axis(const AxisEnum axis);
  599. #if ENABLED(ARC_SUPPORT)
  600. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  601. #endif
  602. #if ENABLED(BEZIER_CURVE_SUPPORT)
  603. void plan_cubic_move(const float offset[4]);
  604. #endif
  605. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  606. static void report_current_position();
  607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  608. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  609. serialprintPGM(prefix);
  610. SERIAL_ECHOPAIR("(", x);
  611. SERIAL_ECHOPAIR(", ", y);
  612. SERIAL_ECHOPAIR(", ", z);
  613. SERIAL_CHAR(')');
  614. if (suffix) serialprintPGM(suffix);
  615. else SERIAL_EOL;
  616. }
  617. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  618. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  619. }
  620. #if HAS_ABL
  621. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  622. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  623. }
  624. #endif
  625. #define DEBUG_POS(SUFFIX,VAR) do { \
  626. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  627. #endif
  628. /**
  629. * sync_plan_position
  630. *
  631. * Set the planner/stepper positions directly from current_position with
  632. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  633. */
  634. inline void sync_plan_position() {
  635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  636. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  637. #endif
  638. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  639. }
  640. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  641. #if IS_KINEMATIC
  642. inline void sync_plan_position_kinematic() {
  643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  644. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  645. #endif
  646. planner.set_position_mm_kinematic(current_position);
  647. }
  648. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  649. #else
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  651. #endif
  652. #if ENABLED(SDSUPPORT)
  653. #include "SdFatUtil.h"
  654. int freeMemory() { return SdFatUtil::FreeRam(); }
  655. #else
  656. extern "C" {
  657. extern char __bss_end;
  658. extern char __heap_start;
  659. extern void* __brkval;
  660. int freeMemory() {
  661. int free_memory;
  662. if ((int)__brkval == 0)
  663. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  664. else
  665. free_memory = ((int)&free_memory) - ((int)__brkval);
  666. return free_memory;
  667. }
  668. }
  669. #endif //!SDSUPPORT
  670. #if ENABLED(DIGIPOT_I2C)
  671. extern void digipot_i2c_set_current(int channel, float current);
  672. extern void digipot_i2c_init();
  673. #endif
  674. /**
  675. * Inject the next "immediate" command, when possible, onto the front of the queue.
  676. * Return true if any immediate commands remain to inject.
  677. */
  678. static bool drain_injected_commands_P() {
  679. if (injected_commands_P != NULL) {
  680. size_t i = 0;
  681. char c, cmd[30];
  682. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  683. cmd[sizeof(cmd) - 1] = '\0';
  684. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  685. cmd[i] = '\0';
  686. if (enqueue_and_echo_command(cmd)) // success?
  687. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  688. }
  689. return (injected_commands_P != NULL); // return whether any more remain
  690. }
  691. /**
  692. * Record one or many commands to run from program memory.
  693. * Aborts the current queue, if any.
  694. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  695. */
  696. void enqueue_and_echo_commands_P(const char* pgcode) {
  697. injected_commands_P = pgcode;
  698. drain_injected_commands_P(); // first command executed asap (when possible)
  699. }
  700. /**
  701. * Clear the Marlin command queue
  702. */
  703. void clear_command_queue() {
  704. cmd_queue_index_r = cmd_queue_index_w;
  705. commands_in_queue = 0;
  706. }
  707. /**
  708. * Once a new command is in the ring buffer, call this to commit it
  709. */
  710. inline void _commit_command(bool say_ok) {
  711. send_ok[cmd_queue_index_w] = say_ok;
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue++;
  714. }
  715. /**
  716. * Copy a command from RAM into the main command buffer.
  717. * Return true if the command was successfully added.
  718. * Return false for a full buffer, or if the 'command' is a comment.
  719. */
  720. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  721. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  722. strcpy(command_queue[cmd_queue_index_w], cmd);
  723. _commit_command(say_ok);
  724. return true;
  725. }
  726. /**
  727. * Enqueue with Serial Echo
  728. */
  729. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  730. if (_enqueuecommand(cmd, say_ok)) {
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  733. SERIAL_CHAR('"');
  734. SERIAL_EOL;
  735. return true;
  736. }
  737. return false;
  738. }
  739. void setup_killpin() {
  740. #if HAS_KILL
  741. SET_INPUT_PULLUP(KILL_PIN);
  742. #endif
  743. }
  744. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  745. void setup_filrunoutpin() {
  746. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  747. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  748. #else
  749. SET_INPUT(FIL_RUNOUT_PIN);
  750. #endif
  751. }
  752. #endif
  753. void setup_homepin(void) {
  754. #if HAS_HOME
  755. SET_INPUT_PULLUP(HOME_PIN);
  756. #endif
  757. }
  758. void setup_powerhold() {
  759. #if HAS_SUICIDE
  760. OUT_WRITE(SUICIDE_PIN, HIGH);
  761. #endif
  762. #if HAS_POWER_SWITCH
  763. #if ENABLED(PS_DEFAULT_OFF)
  764. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  765. #else
  766. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  767. #endif
  768. #endif
  769. }
  770. void suicide() {
  771. #if HAS_SUICIDE
  772. OUT_WRITE(SUICIDE_PIN, LOW);
  773. #endif
  774. }
  775. void servo_init() {
  776. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  777. servo[0].attach(SERVO0_PIN);
  778. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  779. #endif
  780. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  781. servo[1].attach(SERVO1_PIN);
  782. servo[1].detach();
  783. #endif
  784. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  785. servo[2].attach(SERVO2_PIN);
  786. servo[2].detach();
  787. #endif
  788. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  789. servo[3].attach(SERVO3_PIN);
  790. servo[3].detach();
  791. #endif
  792. #if HAS_Z_SERVO_ENDSTOP
  793. /**
  794. * Set position of Z Servo Endstop
  795. *
  796. * The servo might be deployed and positioned too low to stow
  797. * when starting up the machine or rebooting the board.
  798. * There's no way to know where the nozzle is positioned until
  799. * homing has been done - no homing with z-probe without init!
  800. *
  801. */
  802. STOW_Z_SERVO();
  803. #endif
  804. }
  805. /**
  806. * Stepper Reset (RigidBoard, et.al.)
  807. */
  808. #if HAS_STEPPER_RESET
  809. void disableStepperDrivers() {
  810. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  811. }
  812. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  813. #endif
  814. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  815. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  816. i2c.receive(bytes);
  817. }
  818. void i2c_on_request() { // just send dummy data for now
  819. i2c.reply("Hello World!\n");
  820. }
  821. #endif
  822. #if HAS_COLOR_LEDS
  823. void set_led_color(
  824. const uint8_t r, const uint8_t g, const uint8_t b
  825. #if ENABLED(RGBW_LED)
  826. , const uint8_t w=0
  827. #endif
  828. ) {
  829. #if ENABLED(BLINKM)
  830. // This variant uses i2c to send the RGB components to the device.
  831. SendColors(r, g, b);
  832. #else
  833. // This variant uses 3 separate pins for the RGB components.
  834. // If the pins can do PWM then their intensity will be set.
  835. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  836. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  837. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  838. analogWrite(RGB_LED_R_PIN, r);
  839. analogWrite(RGB_LED_G_PIN, g);
  840. analogWrite(RGB_LED_B_PIN, b);
  841. #if ENABLED(RGBW_LED)
  842. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  843. analogWrite(RGB_LED_W_PIN, w);
  844. #endif
  845. #endif
  846. }
  847. #endif // HAS_COLOR_LEDS
  848. void gcode_line_error(const char* err, bool doFlush = true) {
  849. SERIAL_ERROR_START;
  850. serialprintPGM(err);
  851. SERIAL_ERRORLN(gcode_LastN);
  852. //Serial.println(gcode_N);
  853. if (doFlush) FlushSerialRequestResend();
  854. serial_count = 0;
  855. }
  856. /**
  857. * Get all commands waiting on the serial port and queue them.
  858. * Exit when the buffer is full or when no more characters are
  859. * left on the serial port.
  860. */
  861. inline void get_serial_commands() {
  862. static char serial_line_buffer[MAX_CMD_SIZE];
  863. static bool serial_comment_mode = false;
  864. // If the command buffer is empty for too long,
  865. // send "wait" to indicate Marlin is still waiting.
  866. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  867. static millis_t last_command_time = 0;
  868. const millis_t ms = millis();
  869. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  870. SERIAL_ECHOLNPGM(MSG_WAIT);
  871. last_command_time = ms;
  872. }
  873. #endif
  874. /**
  875. * Loop while serial characters are incoming and the queue is not full
  876. */
  877. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  878. char serial_char = MYSERIAL.read();
  879. /**
  880. * If the character ends the line
  881. */
  882. if (serial_char == '\n' || serial_char == '\r') {
  883. serial_comment_mode = false; // end of line == end of comment
  884. if (!serial_count) continue; // skip empty lines
  885. serial_line_buffer[serial_count] = 0; // terminate string
  886. serial_count = 0; //reset buffer
  887. char* command = serial_line_buffer;
  888. while (*command == ' ') command++; // skip any leading spaces
  889. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  890. char* apos = strchr(command, '*');
  891. if (npos) {
  892. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  893. if (M110) {
  894. char* n2pos = strchr(command + 4, 'N');
  895. if (n2pos) npos = n2pos;
  896. }
  897. gcode_N = strtol(npos + 1, NULL, 10);
  898. if (gcode_N != gcode_LastN + 1 && !M110) {
  899. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  900. return;
  901. }
  902. if (apos) {
  903. byte checksum = 0, count = 0;
  904. while (command[count] != '*') checksum ^= command[count++];
  905. if (strtol(apos + 1, NULL, 10) != checksum) {
  906. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  907. return;
  908. }
  909. // if no errors, continue parsing
  910. }
  911. else {
  912. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  913. return;
  914. }
  915. gcode_LastN = gcode_N;
  916. // if no errors, continue parsing
  917. }
  918. else if (apos) { // No '*' without 'N'
  919. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  920. return;
  921. }
  922. // Movement commands alert when stopped
  923. if (IsStopped()) {
  924. char* gpos = strchr(command, 'G');
  925. if (gpos) {
  926. int codenum = strtol(gpos + 1, NULL, 10);
  927. switch (codenum) {
  928. case 0:
  929. case 1:
  930. case 2:
  931. case 3:
  932. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  933. LCD_MESSAGEPGM(MSG_STOPPED);
  934. break;
  935. }
  936. }
  937. }
  938. #if DISABLED(EMERGENCY_PARSER)
  939. // If command was e-stop process now
  940. if (strcmp(command, "M108") == 0) {
  941. wait_for_heatup = false;
  942. #if ENABLED(ULTIPANEL)
  943. wait_for_user = false;
  944. #endif
  945. }
  946. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  947. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  948. #endif
  949. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  950. last_command_time = ms;
  951. #endif
  952. // Add the command to the queue
  953. _enqueuecommand(serial_line_buffer, true);
  954. }
  955. else if (serial_count >= MAX_CMD_SIZE - 1) {
  956. // Keep fetching, but ignore normal characters beyond the max length
  957. // The command will be injected when EOL is reached
  958. }
  959. else if (serial_char == '\\') { // Handle escapes
  960. if (MYSERIAL.available() > 0) {
  961. // if we have one more character, copy it over
  962. serial_char = MYSERIAL.read();
  963. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  964. }
  965. // otherwise do nothing
  966. }
  967. else { // it's not a newline, carriage return or escape char
  968. if (serial_char == ';') serial_comment_mode = true;
  969. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  970. }
  971. } // queue has space, serial has data
  972. }
  973. #if ENABLED(SDSUPPORT)
  974. /**
  975. * Get commands from the SD Card until the command buffer is full
  976. * or until the end of the file is reached. The special character '#'
  977. * can also interrupt buffering.
  978. */
  979. inline void get_sdcard_commands() {
  980. static bool stop_buffering = false,
  981. sd_comment_mode = false;
  982. if (!card.sdprinting) return;
  983. /**
  984. * '#' stops reading from SD to the buffer prematurely, so procedural
  985. * macro calls are possible. If it occurs, stop_buffering is triggered
  986. * and the buffer is run dry; this character _can_ occur in serial com
  987. * due to checksums, however, no checksums are used in SD printing.
  988. */
  989. if (commands_in_queue == 0) stop_buffering = false;
  990. uint16_t sd_count = 0;
  991. bool card_eof = card.eof();
  992. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  993. const int16_t n = card.get();
  994. char sd_char = (char)n;
  995. card_eof = card.eof();
  996. if (card_eof || n == -1
  997. || sd_char == '\n' || sd_char == '\r'
  998. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  999. ) {
  1000. if (card_eof) {
  1001. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1002. card.printingHasFinished();
  1003. #if ENABLED(PRINTER_EVENT_LEDS)
  1004. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1005. set_led_color(0, 255, 0); // Green
  1006. #if HAS_RESUME_CONTINUE
  1007. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1008. wait_for_user = true;
  1009. while (wait_for_user) idle();
  1010. KEEPALIVE_STATE(IN_HANDLER);
  1011. #else
  1012. safe_delay(1000);
  1013. #endif
  1014. set_led_color(0, 0, 0); // OFF
  1015. #endif
  1016. card.checkautostart(true);
  1017. }
  1018. else if (n == -1) {
  1019. SERIAL_ERROR_START;
  1020. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1021. }
  1022. if (sd_char == '#') stop_buffering = true;
  1023. sd_comment_mode = false; // for new command
  1024. if (!sd_count) continue; // skip empty lines (and comment lines)
  1025. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1026. sd_count = 0; // clear sd line buffer
  1027. _commit_command(false);
  1028. }
  1029. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1030. /**
  1031. * Keep fetching, but ignore normal characters beyond the max length
  1032. * The command will be injected when EOL is reached
  1033. */
  1034. }
  1035. else {
  1036. if (sd_char == ';') sd_comment_mode = true;
  1037. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1038. }
  1039. }
  1040. }
  1041. #endif // SDSUPPORT
  1042. /**
  1043. * Add to the circular command queue the next command from:
  1044. * - The command-injection queue (injected_commands_P)
  1045. * - The active serial input (usually USB)
  1046. * - The SD card file being actively printed
  1047. */
  1048. void get_available_commands() {
  1049. // if any immediate commands remain, don't get other commands yet
  1050. if (drain_injected_commands_P()) return;
  1051. get_serial_commands();
  1052. #if ENABLED(SDSUPPORT)
  1053. get_sdcard_commands();
  1054. #endif
  1055. }
  1056. inline bool code_has_value() {
  1057. int i = 1;
  1058. char c = seen_pointer[i];
  1059. while (c == ' ') c = seen_pointer[++i];
  1060. if (c == '-' || c == '+') c = seen_pointer[++i];
  1061. if (c == '.') c = seen_pointer[++i];
  1062. return NUMERIC(c);
  1063. }
  1064. inline float code_value_float() {
  1065. char* e = strchr(seen_pointer, 'E');
  1066. if (!e) return strtod(seen_pointer + 1, NULL);
  1067. *e = 0;
  1068. float ret = strtod(seen_pointer + 1, NULL);
  1069. *e = 'E';
  1070. return ret;
  1071. }
  1072. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1073. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1074. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1075. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1077. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1078. #if ENABLED(INCH_MODE_SUPPORT)
  1079. inline void set_input_linear_units(LinearUnit units) {
  1080. switch (units) {
  1081. case LINEARUNIT_INCH:
  1082. linear_unit_factor = 25.4;
  1083. break;
  1084. case LINEARUNIT_MM:
  1085. default:
  1086. linear_unit_factor = 1.0;
  1087. break;
  1088. }
  1089. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1090. }
  1091. inline float axis_unit_factor(int axis) {
  1092. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1093. }
  1094. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1095. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1096. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1097. #else
  1098. inline float code_value_linear_units() { return code_value_float(); }
  1099. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1100. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1101. #endif
  1102. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1103. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1104. float code_value_temp_abs() {
  1105. switch (input_temp_units) {
  1106. case TEMPUNIT_C:
  1107. return code_value_float();
  1108. case TEMPUNIT_F:
  1109. return (code_value_float() - 32) * 0.5555555556;
  1110. case TEMPUNIT_K:
  1111. return code_value_float() - 273.15;
  1112. default:
  1113. return code_value_float();
  1114. }
  1115. }
  1116. float code_value_temp_diff() {
  1117. switch (input_temp_units) {
  1118. case TEMPUNIT_C:
  1119. case TEMPUNIT_K:
  1120. return code_value_float();
  1121. case TEMPUNIT_F:
  1122. return code_value_float() * 0.5555555556;
  1123. default:
  1124. return code_value_float();
  1125. }
  1126. }
  1127. #else
  1128. float code_value_temp_abs() { return code_value_float(); }
  1129. float code_value_temp_diff() { return code_value_float(); }
  1130. #endif
  1131. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1132. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1133. bool code_seen(char code) {
  1134. seen_pointer = strchr(current_command_args, code);
  1135. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1136. }
  1137. /**
  1138. * Set target_extruder from the T parameter or the active_extruder
  1139. *
  1140. * Returns TRUE if the target is invalid
  1141. */
  1142. bool get_target_extruder_from_command(int code) {
  1143. if (code_seen('T')) {
  1144. if (code_value_byte() >= EXTRUDERS) {
  1145. SERIAL_ECHO_START;
  1146. SERIAL_CHAR('M');
  1147. SERIAL_ECHO(code);
  1148. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1149. return true;
  1150. }
  1151. target_extruder = code_value_byte();
  1152. }
  1153. else
  1154. target_extruder = active_extruder;
  1155. return false;
  1156. }
  1157. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1158. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1159. #endif
  1160. #if ENABLED(DUAL_X_CARRIAGE)
  1161. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1162. static float x_home_pos(const int extruder) {
  1163. if (extruder == 0)
  1164. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1165. else
  1166. /**
  1167. * In dual carriage mode the extruder offset provides an override of the
  1168. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1169. * This allows soft recalibration of the second extruder home position
  1170. * without firmware reflash (through the M218 command).
  1171. */
  1172. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1173. }
  1174. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1175. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1176. static bool active_extruder_parked = false; // used in mode 1 & 2
  1177. static float raised_parked_position[XYZE]; // used in mode 1
  1178. static millis_t delayed_move_time = 0; // used in mode 1
  1179. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1180. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1181. #endif // DUAL_X_CARRIAGE
  1182. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1183. /**
  1184. * Software endstops can be used to monitor the open end of
  1185. * an axis that has a hardware endstop on the other end. Or
  1186. * they can prevent axes from moving past endstops and grinding.
  1187. *
  1188. * To keep doing their job as the coordinate system changes,
  1189. * the software endstop positions must be refreshed to remain
  1190. * at the same positions relative to the machine.
  1191. */
  1192. void update_software_endstops(const AxisEnum axis) {
  1193. const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1194. #if ENABLED(DUAL_X_CARRIAGE)
  1195. if (axis == X_AXIS) {
  1196. // In Dual X mode hotend_offset[X] is T1's home position
  1197. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1198. if (active_extruder != 0) {
  1199. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1200. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1201. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1202. }
  1203. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1204. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1205. // but not so far to the right that T1 would move past the end
  1206. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1207. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1208. }
  1209. else {
  1210. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1211. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1212. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1213. }
  1214. }
  1215. #else
  1216. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1217. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1218. #endif
  1219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1220. if (DEBUGGING(LEVELING)) {
  1221. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1222. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1223. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1224. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1225. #endif
  1226. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1227. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1228. }
  1229. #endif
  1230. #if ENABLED(DELTA)
  1231. if (axis == Z_AXIS)
  1232. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1233. #endif
  1234. }
  1235. #endif // NO_WORKSPACE_OFFSETS
  1236. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1237. /**
  1238. * Change the home offset for an axis, update the current
  1239. * position and the software endstops to retain the same
  1240. * relative distance to the new home.
  1241. *
  1242. * Since this changes the current_position, code should
  1243. * call sync_plan_position soon after this.
  1244. */
  1245. static void set_home_offset(const AxisEnum axis, const float v) {
  1246. current_position[axis] += v - home_offset[axis];
  1247. home_offset[axis] = v;
  1248. update_software_endstops(axis);
  1249. }
  1250. #endif // NO_WORKSPACE_OFFSETS
  1251. /**
  1252. * Set an axis' current position to its home position (after homing).
  1253. *
  1254. * For Core and Cartesian robots this applies one-to-one when an
  1255. * individual axis has been homed.
  1256. *
  1257. * DELTA should wait until all homing is done before setting the XYZ
  1258. * current_position to home, because homing is a single operation.
  1259. * In the case where the axis positions are already known and previously
  1260. * homed, DELTA could home to X or Y individually by moving either one
  1261. * to the center. However, homing Z always homes XY and Z.
  1262. *
  1263. * SCARA should wait until all XY homing is done before setting the XY
  1264. * current_position to home, because neither X nor Y is at home until
  1265. * both are at home. Z can however be homed individually.
  1266. *
  1267. * Callers must sync the planner position after calling this!
  1268. */
  1269. static void set_axis_is_at_home(AxisEnum axis) {
  1270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1271. if (DEBUGGING(LEVELING)) {
  1272. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1273. SERIAL_CHAR(')');
  1274. SERIAL_EOL;
  1275. }
  1276. #endif
  1277. axis_known_position[axis] = axis_homed[axis] = true;
  1278. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1279. position_shift[axis] = 0;
  1280. update_software_endstops(axis);
  1281. #endif
  1282. #if ENABLED(DUAL_X_CARRIAGE)
  1283. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1284. current_position[X_AXIS] = x_home_pos(active_extruder);
  1285. return;
  1286. }
  1287. #endif
  1288. #if ENABLED(MORGAN_SCARA)
  1289. /**
  1290. * Morgan SCARA homes XY at the same time
  1291. */
  1292. if (axis == X_AXIS || axis == Y_AXIS) {
  1293. float homeposition[XYZ];
  1294. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1295. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1296. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1297. /**
  1298. * Get Home position SCARA arm angles using inverse kinematics,
  1299. * and calculate homing offset using forward kinematics
  1300. */
  1301. inverse_kinematics(homeposition);
  1302. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1303. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1304. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1305. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1306. /**
  1307. * SCARA home positions are based on configuration since the actual
  1308. * limits are determined by the inverse kinematic transform.
  1309. */
  1310. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1311. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1312. }
  1313. else
  1314. #endif
  1315. {
  1316. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1317. }
  1318. /**
  1319. * Z Probe Z Homing? Account for the probe's Z offset.
  1320. */
  1321. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1322. if (axis == Z_AXIS) {
  1323. #if HOMING_Z_WITH_PROBE
  1324. current_position[Z_AXIS] -= zprobe_zoffset;
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) {
  1327. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1328. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1329. }
  1330. #endif
  1331. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1332. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1333. #endif
  1334. }
  1335. #endif
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) {
  1338. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1339. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1340. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1341. #endif
  1342. DEBUG_POS("", current_position);
  1343. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1344. SERIAL_CHAR(')');
  1345. SERIAL_EOL;
  1346. }
  1347. #endif
  1348. }
  1349. /**
  1350. * Some planner shorthand inline functions
  1351. */
  1352. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1353. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1354. int hbd = homing_bump_divisor[axis];
  1355. if (hbd < 1) {
  1356. hbd = 10;
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1359. }
  1360. return homing_feedrate_mm_s[axis] / hbd;
  1361. }
  1362. //
  1363. // line_to_current_position
  1364. // Move the planner to the current position from wherever it last moved
  1365. // (or from wherever it has been told it is located).
  1366. //
  1367. inline void line_to_current_position() {
  1368. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1369. }
  1370. //
  1371. // line_to_destination
  1372. // Move the planner, not necessarily synced with current_position
  1373. //
  1374. inline void line_to_destination(float fr_mm_s) {
  1375. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1376. }
  1377. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1378. inline void set_current_to_destination() { COPY(current_position, destination); }
  1379. inline void set_destination_to_current() { COPY(destination, current_position); }
  1380. #if IS_KINEMATIC
  1381. /**
  1382. * Calculate delta, start a line, and set current_position to destination
  1383. */
  1384. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1387. #endif
  1388. if ( current_position[X_AXIS] == destination[X_AXIS]
  1389. && current_position[Y_AXIS] == destination[Y_AXIS]
  1390. && current_position[Z_AXIS] == destination[Z_AXIS]
  1391. && current_position[E_AXIS] == destination[E_AXIS]
  1392. ) return;
  1393. refresh_cmd_timeout();
  1394. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1395. set_current_to_destination();
  1396. }
  1397. #endif // IS_KINEMATIC
  1398. /**
  1399. * Plan a move to (X, Y, Z) and set the current_position
  1400. * The final current_position may not be the one that was requested
  1401. */
  1402. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1403. const float old_feedrate_mm_s = feedrate_mm_s;
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1406. #endif
  1407. #if ENABLED(DELTA)
  1408. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1409. set_destination_to_current(); // sync destination at the start
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1412. #endif
  1413. // when in the danger zone
  1414. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1415. if (z > delta_clip_start_height) { // staying in the danger zone
  1416. destination[X_AXIS] = x; // move directly (uninterpolated)
  1417. destination[Y_AXIS] = y;
  1418. destination[Z_AXIS] = z;
  1419. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1421. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1422. #endif
  1423. return;
  1424. }
  1425. else {
  1426. destination[Z_AXIS] = delta_clip_start_height;
  1427. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1430. #endif
  1431. }
  1432. }
  1433. if (z > current_position[Z_AXIS]) { // raising?
  1434. destination[Z_AXIS] = z;
  1435. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1437. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1438. #endif
  1439. }
  1440. destination[X_AXIS] = x;
  1441. destination[Y_AXIS] = y;
  1442. prepare_move_to_destination(); // set_current_to_destination
  1443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1444. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1445. #endif
  1446. if (z < current_position[Z_AXIS]) { // lowering?
  1447. destination[Z_AXIS] = z;
  1448. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1451. #endif
  1452. }
  1453. #elif IS_SCARA
  1454. set_destination_to_current();
  1455. // If Z needs to raise, do it before moving XY
  1456. if (destination[Z_AXIS] < z) {
  1457. destination[Z_AXIS] = z;
  1458. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1459. }
  1460. destination[X_AXIS] = x;
  1461. destination[Y_AXIS] = y;
  1462. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1463. // If Z needs to lower, do it after moving XY
  1464. if (destination[Z_AXIS] > z) {
  1465. destination[Z_AXIS] = z;
  1466. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1467. }
  1468. #else
  1469. // If Z needs to raise, do it before moving XY
  1470. if (current_position[Z_AXIS] < z) {
  1471. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1472. current_position[Z_AXIS] = z;
  1473. line_to_current_position();
  1474. }
  1475. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1476. current_position[X_AXIS] = x;
  1477. current_position[Y_AXIS] = y;
  1478. line_to_current_position();
  1479. // If Z needs to lower, do it after moving XY
  1480. if (current_position[Z_AXIS] > z) {
  1481. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1482. current_position[Z_AXIS] = z;
  1483. line_to_current_position();
  1484. }
  1485. #endif
  1486. stepper.synchronize();
  1487. feedrate_mm_s = old_feedrate_mm_s;
  1488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1489. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1490. #endif
  1491. }
  1492. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1493. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1494. }
  1495. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1496. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1497. }
  1498. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1499. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1500. }
  1501. //
  1502. // Prepare to do endstop or probe moves
  1503. // with custom feedrates.
  1504. //
  1505. // - Save current feedrates
  1506. // - Reset the rate multiplier
  1507. // - Reset the command timeout
  1508. // - Enable the endstops (for endstop moves)
  1509. //
  1510. static void setup_for_endstop_or_probe_move() {
  1511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1512. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1513. #endif
  1514. saved_feedrate_mm_s = feedrate_mm_s;
  1515. saved_feedrate_percentage = feedrate_percentage;
  1516. feedrate_percentage = 100;
  1517. refresh_cmd_timeout();
  1518. }
  1519. static void clean_up_after_endstop_or_probe_move() {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1522. #endif
  1523. feedrate_mm_s = saved_feedrate_mm_s;
  1524. feedrate_percentage = saved_feedrate_percentage;
  1525. refresh_cmd_timeout();
  1526. }
  1527. #if HAS_BED_PROBE
  1528. /**
  1529. * Raise Z to a minimum height to make room for a probe to move
  1530. */
  1531. inline void do_probe_raise(float z_raise) {
  1532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1533. if (DEBUGGING(LEVELING)) {
  1534. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1535. SERIAL_CHAR(')');
  1536. SERIAL_EOL;
  1537. }
  1538. #endif
  1539. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1540. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1541. if (z_dest > current_position[Z_AXIS])
  1542. do_blocking_move_to_z(z_dest);
  1543. }
  1544. #endif //HAS_BED_PROBE
  1545. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1546. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1547. const bool xx = x && !axis_homed[X_AXIS],
  1548. yy = y && !axis_homed[Y_AXIS],
  1549. zz = z && !axis_homed[Z_AXIS];
  1550. if (xx || yy || zz) {
  1551. SERIAL_ECHO_START;
  1552. SERIAL_ECHOPGM(MSG_HOME " ");
  1553. if (xx) SERIAL_ECHOPGM(MSG_X);
  1554. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1555. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1556. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1557. #if ENABLED(ULTRA_LCD)
  1558. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1559. #endif
  1560. return true;
  1561. }
  1562. return false;
  1563. }
  1564. #endif
  1565. #if ENABLED(Z_PROBE_SLED)
  1566. #ifndef SLED_DOCKING_OFFSET
  1567. #define SLED_DOCKING_OFFSET 0
  1568. #endif
  1569. /**
  1570. * Method to dock/undock a sled designed by Charles Bell.
  1571. *
  1572. * stow[in] If false, move to MAX_X and engage the solenoid
  1573. * If true, move to MAX_X and release the solenoid
  1574. */
  1575. static void dock_sled(bool stow) {
  1576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1577. if (DEBUGGING(LEVELING)) {
  1578. SERIAL_ECHOPAIR("dock_sled(", stow);
  1579. SERIAL_CHAR(')');
  1580. SERIAL_EOL;
  1581. }
  1582. #endif
  1583. // Dock sled a bit closer to ensure proper capturing
  1584. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1585. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1586. WRITE(SOL1_PIN, !stow); // switch solenoid
  1587. #endif
  1588. }
  1589. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1590. void run_deploy_moves_script() {
  1591. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1603. #endif
  1604. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1605. #endif
  1606. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1620. #endif
  1621. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1633. #endif
  1634. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1635. #endif
  1636. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1648. #endif
  1649. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1650. #endif
  1651. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1663. #endif
  1664. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1665. #endif
  1666. }
  1667. void run_stow_moves_script() {
  1668. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1670. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1673. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1676. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1679. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1680. #endif
  1681. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1695. #endif
  1696. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1697. #endif
  1698. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1700. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1703. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1706. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1709. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1710. #endif
  1711. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1712. #endif
  1713. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1714. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1715. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1716. #endif
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1718. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1721. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1724. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1725. #endif
  1726. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1727. #endif
  1728. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1729. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1730. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1731. #endif
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1733. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1736. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1739. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1740. #endif
  1741. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1742. #endif
  1743. }
  1744. #endif
  1745. #if HAS_BED_PROBE
  1746. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1747. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1748. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1749. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1750. #else
  1751. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1752. #endif
  1753. #endif
  1754. #if ENABLED(BLTOUCH)
  1755. void bltouch_command(int angle) {
  1756. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1757. safe_delay(BLTOUCH_DELAY);
  1758. }
  1759. void set_bltouch_deployed(const bool deploy) {
  1760. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1761. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1762. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1763. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1764. safe_delay(1500); // wait for internal self test to complete
  1765. // measured completion time was 0.65 seconds
  1766. // after reset, deploy & stow sequence
  1767. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1768. SERIAL_ERROR_START;
  1769. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1770. stop(); // punt!
  1771. }
  1772. }
  1773. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1775. if (DEBUGGING(LEVELING)) {
  1776. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1777. SERIAL_CHAR(')');
  1778. SERIAL_EOL;
  1779. }
  1780. #endif
  1781. }
  1782. #endif
  1783. // returns false for ok and true for failure
  1784. bool set_probe_deployed(bool deploy) {
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) {
  1787. DEBUG_POS("set_probe_deployed", current_position);
  1788. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1789. }
  1790. #endif
  1791. if (endstops.z_probe_enabled == deploy) return false;
  1792. // Make room for probe
  1793. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1794. // When deploying make sure BLTOUCH is not already triggered
  1795. #if ENABLED(BLTOUCH)
  1796. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1797. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1798. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1799. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1800. safe_delay(1500); // wait for internal self test to complete
  1801. // measured completion time was 0.65 seconds
  1802. // after reset, deploy & stow sequence
  1803. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1804. SERIAL_ERROR_START;
  1805. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1806. stop(); // punt!
  1807. return true;
  1808. }
  1809. }
  1810. #elif ENABLED(Z_PROBE_SLED)
  1811. if (axis_unhomed_error(true, false, false)) {
  1812. SERIAL_ERROR_START;
  1813. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1814. stop();
  1815. return true;
  1816. }
  1817. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1818. if (axis_unhomed_error(true, true, true )) {
  1819. SERIAL_ERROR_START;
  1820. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1821. stop();
  1822. return true;
  1823. }
  1824. #endif
  1825. const float oldXpos = current_position[X_AXIS],
  1826. oldYpos = current_position[Y_AXIS];
  1827. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1828. // If endstop is already false, the Z probe is deployed
  1829. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1830. // Would a goto be less ugly?
  1831. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1832. // for a triggered when stowed manual probe.
  1833. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1834. // otherwise an Allen-Key probe can't be stowed.
  1835. #endif
  1836. #if ENABLED(SOLENOID_PROBE)
  1837. #if HAS_SOLENOID_1
  1838. WRITE(SOL1_PIN, deploy);
  1839. #endif
  1840. #elif ENABLED(Z_PROBE_SLED)
  1841. dock_sled(!deploy);
  1842. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1843. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1844. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1845. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1846. #endif
  1847. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1848. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1849. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1850. if (IsRunning()) {
  1851. SERIAL_ERROR_START;
  1852. SERIAL_ERRORLNPGM("Z-Probe failed");
  1853. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1854. }
  1855. stop();
  1856. return true;
  1857. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1858. #endif
  1859. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1860. endstops.enable_z_probe(deploy);
  1861. return false;
  1862. }
  1863. static void do_probe_move(float z, float fr_mm_m) {
  1864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1865. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1866. #endif
  1867. // Deploy BLTouch at the start of any probe
  1868. #if ENABLED(BLTOUCH)
  1869. set_bltouch_deployed(true);
  1870. #endif
  1871. // Move down until probe triggered
  1872. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1873. // Retract BLTouch immediately after a probe
  1874. #if ENABLED(BLTOUCH)
  1875. set_bltouch_deployed(false);
  1876. #endif
  1877. // Clear endstop flags
  1878. endstops.hit_on_purpose();
  1879. // Get Z where the steppers were interrupted
  1880. set_current_from_steppers_for_axis(Z_AXIS);
  1881. // Tell the planner where we actually are
  1882. SYNC_PLAN_POSITION_KINEMATIC();
  1883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1884. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1885. #endif
  1886. }
  1887. // Do a single Z probe and return with current_position[Z_AXIS]
  1888. // at the height where the probe triggered.
  1889. static float run_z_probe() {
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1892. #endif
  1893. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1894. refresh_cmd_timeout();
  1895. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1896. // Do a first probe at the fast speed
  1897. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1899. float first_probe_z = current_position[Z_AXIS];
  1900. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1901. #endif
  1902. // move up by the bump distance
  1903. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1904. #else
  1905. // If the nozzle is above the travel height then
  1906. // move down quickly before doing the slow probe
  1907. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1908. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1909. if (z < current_position[Z_AXIS])
  1910. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1911. #endif
  1912. // move down slowly to find bed
  1913. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1916. #endif
  1917. // Debug: compare probe heights
  1918. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1919. if (DEBUGGING(LEVELING)) {
  1920. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1921. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1922. }
  1923. #endif
  1924. return current_position[Z_AXIS] + zprobe_zoffset;
  1925. }
  1926. //
  1927. // - Move to the given XY
  1928. // - Deploy the probe, if not already deployed
  1929. // - Probe the bed, get the Z position
  1930. // - Depending on the 'stow' flag
  1931. // - Stow the probe, or
  1932. // - Raise to the BETWEEN height
  1933. // - Return the probed Z position
  1934. //
  1935. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1937. if (DEBUGGING(LEVELING)) {
  1938. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1939. SERIAL_ECHOPAIR(", ", y);
  1940. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1941. SERIAL_ECHOLNPGM("stow)");
  1942. DEBUG_POS("", current_position);
  1943. }
  1944. #endif
  1945. const float old_feedrate_mm_s = feedrate_mm_s;
  1946. #if ENABLED(DELTA)
  1947. if (current_position[Z_AXIS] > delta_clip_start_height)
  1948. do_blocking_move_to_z(delta_clip_start_height);
  1949. #endif
  1950. // Ensure a minimum height before moving the probe
  1951. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1952. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1953. // Move the probe to the given XY
  1954. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1955. if (DEPLOY_PROBE()) return NAN;
  1956. const float measured_z = run_z_probe();
  1957. if (!stow)
  1958. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1959. else
  1960. if (STOW_PROBE()) return NAN;
  1961. if (verbose_level > 2) {
  1962. SERIAL_PROTOCOLPGM("Bed X: ");
  1963. SERIAL_PROTOCOL_F(x, 3);
  1964. SERIAL_PROTOCOLPGM(" Y: ");
  1965. SERIAL_PROTOCOL_F(y, 3);
  1966. SERIAL_PROTOCOLPGM(" Z: ");
  1967. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1968. SERIAL_EOL;
  1969. }
  1970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1971. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1972. #endif
  1973. feedrate_mm_s = old_feedrate_mm_s;
  1974. return measured_z;
  1975. }
  1976. #endif // HAS_BED_PROBE
  1977. #if PLANNER_LEVELING
  1978. /**
  1979. * Turn bed leveling on or off, fixing the current
  1980. * position as-needed.
  1981. *
  1982. * Disable: Current position = physical position
  1983. * Enable: Current position = "unleveled" physical position
  1984. */
  1985. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1986. #if ENABLED(MESH_BED_LEVELING)
  1987. if (enable != mbl.active()) {
  1988. if (!enable)
  1989. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1990. mbl.set_active(enable && mbl.has_mesh());
  1991. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1992. }
  1993. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1994. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1995. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1996. #else
  1997. constexpr bool can_change = true;
  1998. #endif
  1999. if (can_change && enable != planner.abl_enabled) {
  2000. planner.abl_enabled = enable;
  2001. if (!enable)
  2002. set_current_from_steppers_for_axis(
  2003. #if ABL_PLANAR
  2004. ALL_AXES
  2005. #else
  2006. Z_AXIS
  2007. #endif
  2008. );
  2009. else
  2010. planner.unapply_leveling(current_position);
  2011. }
  2012. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2013. ubl.state.active = enable;
  2014. //set_current_from_steppers_for_axis(Z_AXIS);
  2015. #endif
  2016. }
  2017. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2018. void set_z_fade_height(const float zfh) {
  2019. planner.z_fade_height = zfh;
  2020. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2021. if (
  2022. #if ENABLED(MESH_BED_LEVELING)
  2023. mbl.active()
  2024. #else
  2025. planner.abl_enabled
  2026. #endif
  2027. ) {
  2028. set_current_from_steppers_for_axis(
  2029. #if ABL_PLANAR
  2030. ALL_AXES
  2031. #else
  2032. Z_AXIS
  2033. #endif
  2034. );
  2035. }
  2036. }
  2037. #endif // LEVELING_FADE_HEIGHT
  2038. /**
  2039. * Reset calibration results to zero.
  2040. */
  2041. void reset_bed_level() {
  2042. set_bed_leveling_enabled(false);
  2043. #if ENABLED(MESH_BED_LEVELING)
  2044. if (mbl.has_mesh()) {
  2045. mbl.reset();
  2046. mbl.set_has_mesh(false);
  2047. }
  2048. #else
  2049. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2050. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2051. #endif
  2052. #if ABL_PLANAR
  2053. planner.bed_level_matrix.set_to_identity();
  2054. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2055. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2056. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2057. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2058. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2059. bed_level_grid[x][y] = NAN;
  2060. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2061. ubl.reset();
  2062. #endif
  2063. #endif
  2064. }
  2065. #endif // PLANNER_LEVELING
  2066. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2067. //
  2068. // Enable if you prefer your output in JSON format
  2069. // suitable for SCAD or JavaScript mesh visualizers.
  2070. //
  2071. // Visualize meshes in OpenSCAD using the included script.
  2072. //
  2073. // buildroot/shared/scripts/MarlinMesh.scad
  2074. //
  2075. //#define SCAD_MESH_OUTPUT
  2076. /**
  2077. * Print calibration results for plotting or manual frame adjustment.
  2078. */
  2079. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2080. #ifndef SCAD_MESH_OUTPUT
  2081. for (uint8_t x = 0; x < sx; x++) {
  2082. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2083. SERIAL_PROTOCOLCHAR(' ');
  2084. SERIAL_PROTOCOL((int)x);
  2085. }
  2086. SERIAL_EOL;
  2087. #endif
  2088. #ifdef SCAD_MESH_OUTPUT
  2089. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2090. #endif
  2091. for (uint8_t y = 0; y < sy; y++) {
  2092. #ifdef SCAD_MESH_OUTPUT
  2093. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2094. #else
  2095. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2096. SERIAL_PROTOCOL((int)y);
  2097. #endif
  2098. for (uint8_t x = 0; x < sx; x++) {
  2099. SERIAL_PROTOCOLCHAR(' ');
  2100. const float offset = fn(x, y);
  2101. if (!isnan(offset)) {
  2102. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2103. SERIAL_PROTOCOL_F(offset, precision);
  2104. }
  2105. else {
  2106. #ifdef SCAD_MESH_OUTPUT
  2107. for (uint8_t i = 3; i < precision + 3; i++)
  2108. SERIAL_PROTOCOLCHAR(' ');
  2109. SERIAL_PROTOCOLPGM("NAN");
  2110. #else
  2111. for (uint8_t i = 0; i < precision + 3; i++)
  2112. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2113. #endif
  2114. }
  2115. #ifdef SCAD_MESH_OUTPUT
  2116. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2117. #endif
  2118. }
  2119. #ifdef SCAD_MESH_OUTPUT
  2120. SERIAL_PROTOCOLCHAR(' ');
  2121. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2122. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2123. #endif
  2124. SERIAL_EOL;
  2125. }
  2126. #ifdef SCAD_MESH_OUTPUT
  2127. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2128. #endif
  2129. SERIAL_EOL;
  2130. }
  2131. #endif
  2132. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2133. /**
  2134. * Extrapolate a single point from its neighbors
  2135. */
  2136. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2138. if (DEBUGGING(LEVELING)) {
  2139. SERIAL_ECHOPGM("Extrapolate [");
  2140. if (x < 10) SERIAL_CHAR(' ');
  2141. SERIAL_ECHO((int)x);
  2142. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2143. SERIAL_CHAR(' ');
  2144. if (y < 10) SERIAL_CHAR(' ');
  2145. SERIAL_ECHO((int)y);
  2146. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2147. SERIAL_CHAR(']');
  2148. }
  2149. #endif
  2150. if (!isnan(bed_level_grid[x][y])) {
  2151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2152. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2153. #endif
  2154. return; // Don't overwrite good values.
  2155. }
  2156. SERIAL_EOL;
  2157. // Get X neighbors, Y neighbors, and XY neighbors
  2158. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2159. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2160. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2161. // Treat far unprobed points as zero, near as equal to far
  2162. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2163. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2164. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2165. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2166. // Take the average instead of the median
  2167. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2168. // Median is robust (ignores outliers).
  2169. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2170. // : ((c < b) ? b : (a < c) ? a : c);
  2171. }
  2172. //Enable this if your SCARA uses 180° of total area
  2173. //#define EXTRAPOLATE_FROM_EDGE
  2174. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2175. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2176. #define HALF_IN_X
  2177. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2178. #define HALF_IN_Y
  2179. #endif
  2180. #endif
  2181. /**
  2182. * Fill in the unprobed points (corners of circular print surface)
  2183. * using linear extrapolation, away from the center.
  2184. */
  2185. static void extrapolate_unprobed_bed_level() {
  2186. #ifdef HALF_IN_X
  2187. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2188. #else
  2189. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2190. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2191. xlen = ctrx1;
  2192. #endif
  2193. #ifdef HALF_IN_Y
  2194. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2195. #else
  2196. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2197. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2198. ylen = ctry1;
  2199. #endif
  2200. for (uint8_t xo = 0; xo <= xlen; xo++)
  2201. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2202. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2203. #ifndef HALF_IN_X
  2204. const uint8_t x1 = ctrx1 - xo;
  2205. #endif
  2206. #ifndef HALF_IN_Y
  2207. const uint8_t y1 = ctry1 - yo;
  2208. #ifndef HALF_IN_X
  2209. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2210. #endif
  2211. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2212. #endif
  2213. #ifndef HALF_IN_X
  2214. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2215. #endif
  2216. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2217. }
  2218. }
  2219. static void print_bilinear_leveling_grid() {
  2220. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2221. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2222. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2223. );
  2224. }
  2225. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2226. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2227. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2228. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2229. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2230. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2231. int bilinear_grid_spacing_virt[2] = { 0 };
  2232. static void bed_level_virt_print() {
  2233. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2234. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2235. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2236. );
  2237. }
  2238. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2239. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2240. uint8_t ep = 0, ip = 1;
  2241. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2242. if (x) {
  2243. ep = GRID_MAX_POINTS_X - 1;
  2244. ip = GRID_MAX_POINTS_X - 2;
  2245. }
  2246. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2247. return LINEAR_EXTRAPOLATION(
  2248. bed_level_grid[ep][y - 1],
  2249. bed_level_grid[ip][y - 1]
  2250. );
  2251. else
  2252. return LINEAR_EXTRAPOLATION(
  2253. bed_level_virt_coord(ep + 1, y),
  2254. bed_level_virt_coord(ip + 1, y)
  2255. );
  2256. }
  2257. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2258. if (y) {
  2259. ep = GRID_MAX_POINTS_Y - 1;
  2260. ip = GRID_MAX_POINTS_Y - 2;
  2261. }
  2262. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2263. return LINEAR_EXTRAPOLATION(
  2264. bed_level_grid[x - 1][ep],
  2265. bed_level_grid[x - 1][ip]
  2266. );
  2267. else
  2268. return LINEAR_EXTRAPOLATION(
  2269. bed_level_virt_coord(x, ep + 1),
  2270. bed_level_virt_coord(x, ip + 1)
  2271. );
  2272. }
  2273. return bed_level_grid[x - 1][y - 1];
  2274. }
  2275. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2276. return (
  2277. p[i-1] * -t * sq(1 - t)
  2278. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2279. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2280. - p[i+2] * sq(t) * (1 - t)
  2281. ) * 0.5;
  2282. }
  2283. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2284. float row[4], column[4];
  2285. for (uint8_t i = 0; i < 4; i++) {
  2286. for (uint8_t j = 0; j < 4; j++) {
  2287. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2288. }
  2289. row[i] = bed_level_virt_cmr(column, 1, ty);
  2290. }
  2291. return bed_level_virt_cmr(row, 1, tx);
  2292. }
  2293. void bed_level_virt_interpolate() {
  2294. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2295. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2296. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2297. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2298. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2299. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2300. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2301. continue;
  2302. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2303. bed_level_virt_2cmr(
  2304. x + 1,
  2305. y + 1,
  2306. (float)tx / (BILINEAR_SUBDIVISIONS),
  2307. (float)ty / (BILINEAR_SUBDIVISIONS)
  2308. );
  2309. }
  2310. }
  2311. #endif // ABL_BILINEAR_SUBDIVISION
  2312. #endif // AUTO_BED_LEVELING_BILINEAR
  2313. /**
  2314. * Home an individual linear axis
  2315. */
  2316. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2318. if (DEBUGGING(LEVELING)) {
  2319. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2320. SERIAL_ECHOPAIR(", ", distance);
  2321. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2322. SERIAL_CHAR(')');
  2323. SERIAL_EOL;
  2324. }
  2325. #endif
  2326. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2327. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2328. if (deploy_bltouch) set_bltouch_deployed(true);
  2329. #endif
  2330. // Tell the planner we're at Z=0
  2331. current_position[axis] = 0;
  2332. #if IS_SCARA
  2333. SYNC_PLAN_POSITION_KINEMATIC();
  2334. current_position[axis] = distance;
  2335. inverse_kinematics(current_position);
  2336. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2337. #else
  2338. sync_plan_position();
  2339. current_position[axis] = distance;
  2340. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2341. #endif
  2342. stepper.synchronize();
  2343. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2344. if (deploy_bltouch) set_bltouch_deployed(false);
  2345. #endif
  2346. endstops.hit_on_purpose();
  2347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2348. if (DEBUGGING(LEVELING)) {
  2349. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2350. SERIAL_CHAR(')');
  2351. SERIAL_EOL;
  2352. }
  2353. #endif
  2354. }
  2355. /**
  2356. * Home an individual "raw axis" to its endstop.
  2357. * This applies to XYZ on Cartesian and Core robots, and
  2358. * to the individual ABC steppers on DELTA and SCARA.
  2359. *
  2360. * At the end of the procedure the axis is marked as
  2361. * homed and the current position of that axis is updated.
  2362. * Kinematic robots should wait till all axes are homed
  2363. * before updating the current position.
  2364. */
  2365. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2366. static void homeaxis(const AxisEnum axis) {
  2367. #if IS_SCARA
  2368. // Only Z homing (with probe) is permitted
  2369. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2370. #else
  2371. #define CAN_HOME(A) \
  2372. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2373. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2374. #endif
  2375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2376. if (DEBUGGING(LEVELING)) {
  2377. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2378. SERIAL_CHAR(')');
  2379. SERIAL_EOL;
  2380. }
  2381. #endif
  2382. const int axis_home_dir =
  2383. #if ENABLED(DUAL_X_CARRIAGE)
  2384. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2385. #endif
  2386. home_dir(axis);
  2387. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2388. #if HOMING_Z_WITH_PROBE
  2389. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2390. #endif
  2391. // Set a flag for Z motor locking
  2392. #if ENABLED(Z_DUAL_ENDSTOPS)
  2393. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2394. #endif
  2395. // Fast move towards endstop until triggered
  2396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2397. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2398. #endif
  2399. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2400. // When homing Z with probe respect probe clearance
  2401. const float bump = axis_home_dir * (
  2402. #if HOMING_Z_WITH_PROBE
  2403. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2404. #endif
  2405. home_bump_mm(axis)
  2406. );
  2407. // If a second homing move is configured...
  2408. if (bump) {
  2409. // Move away from the endstop by the axis HOME_BUMP_MM
  2410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2411. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2412. #endif
  2413. do_homing_move(axis, -bump);
  2414. // Slow move towards endstop until triggered
  2415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2416. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2417. #endif
  2418. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2419. }
  2420. #if ENABLED(Z_DUAL_ENDSTOPS)
  2421. if (axis == Z_AXIS) {
  2422. float adj = fabs(z_endstop_adj);
  2423. bool lockZ1;
  2424. if (axis_home_dir > 0) {
  2425. adj = -adj;
  2426. lockZ1 = (z_endstop_adj > 0);
  2427. }
  2428. else
  2429. lockZ1 = (z_endstop_adj < 0);
  2430. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2431. // Move to the adjusted endstop height
  2432. do_homing_move(axis, adj);
  2433. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2434. stepper.set_homing_flag(false);
  2435. } // Z_AXIS
  2436. #endif
  2437. #if IS_SCARA
  2438. set_axis_is_at_home(axis);
  2439. SYNC_PLAN_POSITION_KINEMATIC();
  2440. #elif ENABLED(DELTA)
  2441. // Delta has already moved all three towers up in G28
  2442. // so here it re-homes each tower in turn.
  2443. // Delta homing treats the axes as normal linear axes.
  2444. // retrace by the amount specified in endstop_adj
  2445. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2448. #endif
  2449. do_homing_move(axis, endstop_adj[axis]);
  2450. }
  2451. #else
  2452. // For cartesian/core machines,
  2453. // set the axis to its home position
  2454. set_axis_is_at_home(axis);
  2455. sync_plan_position();
  2456. destination[axis] = current_position[axis];
  2457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2458. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2459. #endif
  2460. #endif
  2461. // Put away the Z probe
  2462. #if HOMING_Z_WITH_PROBE
  2463. if (axis == Z_AXIS && STOW_PROBE()) return;
  2464. #endif
  2465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2466. if (DEBUGGING(LEVELING)) {
  2467. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2468. SERIAL_CHAR(')');
  2469. SERIAL_EOL;
  2470. }
  2471. #endif
  2472. } // homeaxis()
  2473. #if ENABLED(FWRETRACT)
  2474. void retract(const bool retracting, const bool swapping = false) {
  2475. static float hop_height;
  2476. if (retracting == retracted[active_extruder]) return;
  2477. const float old_feedrate_mm_s = feedrate_mm_s;
  2478. set_destination_to_current();
  2479. if (retracting) {
  2480. feedrate_mm_s = retract_feedrate_mm_s;
  2481. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2482. sync_plan_position_e();
  2483. prepare_move_to_destination();
  2484. if (retract_zlift > 0.01) {
  2485. hop_height = current_position[Z_AXIS];
  2486. // Pretend current position is lower
  2487. current_position[Z_AXIS] -= retract_zlift;
  2488. SYNC_PLAN_POSITION_KINEMATIC();
  2489. // Raise up to the old current_position
  2490. prepare_move_to_destination();
  2491. }
  2492. }
  2493. else {
  2494. // If the height hasn't been altered, undo the Z hop
  2495. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2496. // Pretend current position is higher. Z will lower on the next move
  2497. current_position[Z_AXIS] += retract_zlift;
  2498. SYNC_PLAN_POSITION_KINEMATIC();
  2499. }
  2500. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2501. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2502. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2503. sync_plan_position_e();
  2504. // Lower Z and recover E
  2505. prepare_move_to_destination();
  2506. }
  2507. feedrate_mm_s = old_feedrate_mm_s;
  2508. retracted[active_extruder] = retracting;
  2509. } // retract()
  2510. #endif // FWRETRACT
  2511. #if ENABLED(MIXING_EXTRUDER)
  2512. void normalize_mix() {
  2513. float mix_total = 0.0;
  2514. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2515. // Scale all values if they don't add up to ~1.0
  2516. if (!NEAR(mix_total, 1.0)) {
  2517. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2518. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2519. }
  2520. }
  2521. #if ENABLED(DIRECT_MIXING_IN_G1)
  2522. // Get mixing parameters from the GCode
  2523. // The total "must" be 1.0 (but it will be normalized)
  2524. // If no mix factors are given, the old mix is preserved
  2525. void gcode_get_mix() {
  2526. const char* mixing_codes = "ABCDHI";
  2527. byte mix_bits = 0;
  2528. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2529. if (code_seen(mixing_codes[i])) {
  2530. SBI(mix_bits, i);
  2531. float v = code_value_float();
  2532. NOLESS(v, 0.0);
  2533. mixing_factor[i] = RECIPROCAL(v);
  2534. }
  2535. }
  2536. // If any mixing factors were included, clear the rest
  2537. // If none were included, preserve the last mix
  2538. if (mix_bits) {
  2539. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2540. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2541. normalize_mix();
  2542. }
  2543. }
  2544. #endif
  2545. #endif
  2546. /**
  2547. * ***************************************************************************
  2548. * ***************************** G-CODE HANDLING *****************************
  2549. * ***************************************************************************
  2550. */
  2551. /**
  2552. * Set XYZE destination and feedrate from the current GCode command
  2553. *
  2554. * - Set destination from included axis codes
  2555. * - Set to current for missing axis codes
  2556. * - Set the feedrate, if included
  2557. */
  2558. void gcode_get_destination() {
  2559. LOOP_XYZE(i) {
  2560. if (code_seen(axis_codes[i]))
  2561. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2562. else
  2563. destination[i] = current_position[i];
  2564. }
  2565. if (code_seen('F') && code_value_linear_units() > 0.0)
  2566. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2567. #if ENABLED(PRINTCOUNTER)
  2568. if (!DEBUGGING(DRYRUN))
  2569. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2570. #endif
  2571. // Get ABCDHI mixing factors
  2572. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2573. gcode_get_mix();
  2574. #endif
  2575. }
  2576. void unknown_command_error() {
  2577. SERIAL_ECHO_START;
  2578. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2579. SERIAL_CHAR('"');
  2580. SERIAL_EOL;
  2581. }
  2582. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2583. /**
  2584. * Output a "busy" message at regular intervals
  2585. * while the machine is not accepting commands.
  2586. */
  2587. void host_keepalive() {
  2588. const millis_t ms = millis();
  2589. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2590. if (PENDING(ms, next_busy_signal_ms)) return;
  2591. switch (busy_state) {
  2592. case IN_HANDLER:
  2593. case IN_PROCESS:
  2594. SERIAL_ECHO_START;
  2595. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2596. break;
  2597. case PAUSED_FOR_USER:
  2598. SERIAL_ECHO_START;
  2599. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2600. break;
  2601. case PAUSED_FOR_INPUT:
  2602. SERIAL_ECHO_START;
  2603. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2604. break;
  2605. default:
  2606. break;
  2607. }
  2608. }
  2609. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2610. }
  2611. #endif //HOST_KEEPALIVE_FEATURE
  2612. bool position_is_reachable(float target[XYZ]
  2613. #if HAS_BED_PROBE
  2614. , bool by_probe=false
  2615. #endif
  2616. ) {
  2617. float dx = RAW_X_POSITION(target[X_AXIS]),
  2618. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2619. #if HAS_BED_PROBE
  2620. if (by_probe) {
  2621. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2622. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2623. }
  2624. #endif
  2625. #if IS_SCARA
  2626. #if MIDDLE_DEAD_ZONE_R > 0
  2627. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2628. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2629. #else
  2630. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2631. #endif
  2632. #elif ENABLED(DELTA)
  2633. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2634. #else
  2635. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2636. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2637. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2638. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2639. #endif
  2640. }
  2641. /**************************************************
  2642. ***************** GCode Handlers *****************
  2643. **************************************************/
  2644. /**
  2645. * G0, G1: Coordinated movement of X Y Z E axes
  2646. */
  2647. inline void gcode_G0_G1(
  2648. #if IS_SCARA
  2649. bool fast_move=false
  2650. #endif
  2651. ) {
  2652. if (IsRunning()) {
  2653. gcode_get_destination(); // For X Y Z E F
  2654. #if ENABLED(FWRETRACT)
  2655. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2656. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2657. // Is this move an attempt to retract or recover?
  2658. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2659. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2660. sync_plan_position_e(); // AND from the planner
  2661. retract(!retracted[active_extruder]);
  2662. return;
  2663. }
  2664. }
  2665. #endif //FWRETRACT
  2666. #if IS_SCARA
  2667. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2668. #else
  2669. prepare_move_to_destination();
  2670. #endif
  2671. }
  2672. }
  2673. /**
  2674. * G2: Clockwise Arc
  2675. * G3: Counterclockwise Arc
  2676. *
  2677. * This command has two forms: IJ-form and R-form.
  2678. *
  2679. * - I specifies an X offset. J specifies a Y offset.
  2680. * At least one of the IJ parameters is required.
  2681. * X and Y can be omitted to do a complete circle.
  2682. * The given XY is not error-checked. The arc ends
  2683. * based on the angle of the destination.
  2684. * Mixing I or J with R will throw an error.
  2685. *
  2686. * - R specifies the radius. X or Y is required.
  2687. * Omitting both X and Y will throw an error.
  2688. * X or Y must differ from the current XY.
  2689. * Mixing R with I or J will throw an error.
  2690. *
  2691. * Examples:
  2692. *
  2693. * G2 I10 ; CW circle centered at X+10
  2694. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2695. */
  2696. #if ENABLED(ARC_SUPPORT)
  2697. inline void gcode_G2_G3(bool clockwise) {
  2698. if (IsRunning()) {
  2699. #if ENABLED(SF_ARC_FIX)
  2700. const bool relative_mode_backup = relative_mode;
  2701. relative_mode = true;
  2702. #endif
  2703. gcode_get_destination();
  2704. #if ENABLED(SF_ARC_FIX)
  2705. relative_mode = relative_mode_backup;
  2706. #endif
  2707. float arc_offset[2] = { 0.0, 0.0 };
  2708. if (code_seen('R')) {
  2709. const float r = code_value_axis_units(X_AXIS),
  2710. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2711. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2712. if (r && (x2 != x1 || y2 != y1)) {
  2713. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2714. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2715. d = HYPOT(dx, dy), // Linear distance between the points
  2716. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2717. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2718. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2719. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2720. arc_offset[X_AXIS] = cx - x1;
  2721. arc_offset[Y_AXIS] = cy - y1;
  2722. }
  2723. }
  2724. else {
  2725. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2726. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2727. }
  2728. if (arc_offset[0] || arc_offset[1]) {
  2729. // Send an arc to the planner
  2730. plan_arc(destination, arc_offset, clockwise);
  2731. refresh_cmd_timeout();
  2732. }
  2733. else {
  2734. // Bad arguments
  2735. SERIAL_ERROR_START;
  2736. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2737. }
  2738. }
  2739. }
  2740. #endif
  2741. /**
  2742. * G4: Dwell S<seconds> or P<milliseconds>
  2743. */
  2744. inline void gcode_G4() {
  2745. millis_t dwell_ms = 0;
  2746. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2747. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2748. stepper.synchronize();
  2749. refresh_cmd_timeout();
  2750. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2751. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2752. while (PENDING(millis(), dwell_ms)) idle();
  2753. }
  2754. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2755. /**
  2756. * Parameters interpreted according to:
  2757. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2758. * However I, J omission is not supported at this point; all
  2759. * parameters can be omitted and default to zero.
  2760. */
  2761. /**
  2762. * G5: Cubic B-spline
  2763. */
  2764. inline void gcode_G5() {
  2765. if (IsRunning()) {
  2766. gcode_get_destination();
  2767. const float offset[] = {
  2768. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2769. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2770. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2771. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2772. };
  2773. plan_cubic_move(offset);
  2774. }
  2775. }
  2776. #endif // BEZIER_CURVE_SUPPORT
  2777. #if ENABLED(FWRETRACT)
  2778. /**
  2779. * G10 - Retract filament according to settings of M207
  2780. * G11 - Recover filament according to settings of M208
  2781. */
  2782. inline void gcode_G10_G11(bool doRetract=false) {
  2783. #if EXTRUDERS > 1
  2784. if (doRetract) {
  2785. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2786. }
  2787. #endif
  2788. retract(doRetract
  2789. #if EXTRUDERS > 1
  2790. , retracted_swap[active_extruder]
  2791. #endif
  2792. );
  2793. }
  2794. #endif //FWRETRACT
  2795. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2796. /**
  2797. * G12: Clean the nozzle
  2798. */
  2799. inline void gcode_G12() {
  2800. // Don't allow nozzle cleaning without homing first
  2801. if (axis_unhomed_error(true, true, true)) return;
  2802. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2803. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2804. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2805. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2806. Nozzle::clean(pattern, strokes, radius, objects);
  2807. }
  2808. #endif
  2809. #if ENABLED(INCH_MODE_SUPPORT)
  2810. /**
  2811. * G20: Set input mode to inches
  2812. */
  2813. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2814. /**
  2815. * G21: Set input mode to millimeters
  2816. */
  2817. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2818. #endif
  2819. #if ENABLED(NOZZLE_PARK_FEATURE)
  2820. /**
  2821. * G27: Park the nozzle
  2822. */
  2823. inline void gcode_G27() {
  2824. // Don't allow nozzle parking without homing first
  2825. if (axis_unhomed_error(true, true, true)) return;
  2826. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2827. }
  2828. #endif // NOZZLE_PARK_FEATURE
  2829. #if ENABLED(QUICK_HOME)
  2830. static void quick_home_xy() {
  2831. // Pretend the current position is 0,0
  2832. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2833. sync_plan_position();
  2834. const int x_axis_home_dir =
  2835. #if ENABLED(DUAL_X_CARRIAGE)
  2836. x_home_dir(active_extruder)
  2837. #else
  2838. home_dir(X_AXIS)
  2839. #endif
  2840. ;
  2841. const float mlx = max_length(X_AXIS),
  2842. mly = max_length(Y_AXIS),
  2843. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2844. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2845. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2846. endstops.hit_on_purpose(); // clear endstop hit flags
  2847. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2848. }
  2849. #endif // QUICK_HOME
  2850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2851. void log_machine_info() {
  2852. SERIAL_ECHOPGM("Machine Type: ");
  2853. #if ENABLED(DELTA)
  2854. SERIAL_ECHOLNPGM("Delta");
  2855. #elif IS_SCARA
  2856. SERIAL_ECHOLNPGM("SCARA");
  2857. #elif IS_CORE
  2858. SERIAL_ECHOLNPGM("Core");
  2859. #else
  2860. SERIAL_ECHOLNPGM("Cartesian");
  2861. #endif
  2862. SERIAL_ECHOPGM("Probe: ");
  2863. #if ENABLED(PROBE_MANUALLY)
  2864. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2865. #elif ENABLED(FIX_MOUNTED_PROBE)
  2866. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2867. #elif ENABLED(BLTOUCH)
  2868. SERIAL_ECHOLNPGM("BLTOUCH");
  2869. #elif HAS_Z_SERVO_ENDSTOP
  2870. SERIAL_ECHOLNPGM("SERVO PROBE");
  2871. #elif ENABLED(Z_PROBE_SLED)
  2872. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2873. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2874. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2875. #else
  2876. SERIAL_ECHOLNPGM("NONE");
  2877. #endif
  2878. #if HAS_BED_PROBE
  2879. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2880. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2881. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2882. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2883. SERIAL_ECHOPGM(" (Right");
  2884. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2885. SERIAL_ECHOPGM(" (Left");
  2886. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2887. SERIAL_ECHOPGM(" (Middle");
  2888. #else
  2889. SERIAL_ECHOPGM(" (Aligned With");
  2890. #endif
  2891. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2892. SERIAL_ECHOPGM("-Back");
  2893. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2894. SERIAL_ECHOPGM("-Front");
  2895. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2896. SERIAL_ECHOPGM("-Center");
  2897. #endif
  2898. if (zprobe_zoffset < 0)
  2899. SERIAL_ECHOPGM(" & Below");
  2900. else if (zprobe_zoffset > 0)
  2901. SERIAL_ECHOPGM(" & Above");
  2902. else
  2903. SERIAL_ECHOPGM(" & Same Z as");
  2904. SERIAL_ECHOLNPGM(" Nozzle)");
  2905. #endif
  2906. #if HAS_ABL
  2907. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2908. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2909. SERIAL_ECHOPGM("LINEAR");
  2910. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2911. SERIAL_ECHOPGM("BILINEAR");
  2912. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2913. SERIAL_ECHOPGM("3POINT");
  2914. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2915. SERIAL_ECHOPGM("UBL");
  2916. #endif
  2917. if (planner.abl_enabled) {
  2918. SERIAL_ECHOLNPGM(" (enabled)");
  2919. #if ABL_PLANAR
  2920. float diff[XYZ] = {
  2921. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2922. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2923. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2924. };
  2925. SERIAL_ECHOPGM("ABL Adjustment X");
  2926. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2927. SERIAL_ECHO(diff[X_AXIS]);
  2928. SERIAL_ECHOPGM(" Y");
  2929. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2930. SERIAL_ECHO(diff[Y_AXIS]);
  2931. SERIAL_ECHOPGM(" Z");
  2932. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2933. SERIAL_ECHO(diff[Z_AXIS]);
  2934. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2935. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2936. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2937. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2938. #endif
  2939. }
  2940. else
  2941. SERIAL_ECHOLNPGM(" (disabled)");
  2942. SERIAL_EOL;
  2943. #elif ENABLED(MESH_BED_LEVELING)
  2944. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2945. if (mbl.active()) {
  2946. float lz = current_position[Z_AXIS];
  2947. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2948. SERIAL_ECHOLNPGM(" (enabled)");
  2949. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2950. }
  2951. else
  2952. SERIAL_ECHOPGM(" (disabled)");
  2953. SERIAL_EOL;
  2954. #endif // MESH_BED_LEVELING
  2955. }
  2956. #endif // DEBUG_LEVELING_FEATURE
  2957. #if ENABLED(DELTA)
  2958. /**
  2959. * A delta can only safely home all axes at the same time
  2960. * This is like quick_home_xy() but for 3 towers.
  2961. */
  2962. inline void home_delta() {
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2965. #endif
  2966. // Init the current position of all carriages to 0,0,0
  2967. ZERO(current_position);
  2968. sync_plan_position();
  2969. // Move all carriages together linearly until an endstop is hit.
  2970. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2971. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2972. line_to_current_position();
  2973. stepper.synchronize();
  2974. endstops.hit_on_purpose(); // clear endstop hit flags
  2975. // At least one carriage has reached the top.
  2976. // Now re-home each carriage separately.
  2977. HOMEAXIS(A);
  2978. HOMEAXIS(B);
  2979. HOMEAXIS(C);
  2980. // Set all carriages to their home positions
  2981. // Do this here all at once for Delta, because
  2982. // XYZ isn't ABC. Applying this per-tower would
  2983. // give the impression that they are the same.
  2984. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2985. SYNC_PLAN_POSITION_KINEMATIC();
  2986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2987. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2988. #endif
  2989. }
  2990. #endif // DELTA
  2991. #if ENABLED(Z_SAFE_HOMING)
  2992. inline void home_z_safely() {
  2993. // Disallow Z homing if X or Y are unknown
  2994. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2995. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2996. SERIAL_ECHO_START;
  2997. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2998. return;
  2999. }
  3000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3001. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3002. #endif
  3003. SYNC_PLAN_POSITION_KINEMATIC();
  3004. /**
  3005. * Move the Z probe (or just the nozzle) to the safe homing point
  3006. */
  3007. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3008. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3009. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3010. if (position_is_reachable(
  3011. destination
  3012. #if HOMING_Z_WITH_PROBE
  3013. , true
  3014. #endif
  3015. )
  3016. ) {
  3017. #if HOMING_Z_WITH_PROBE
  3018. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3019. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3020. #endif
  3021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3022. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3023. #endif
  3024. // This causes the carriage on Dual X to unpark
  3025. #if ENABLED(DUAL_X_CARRIAGE)
  3026. active_extruder_parked = false;
  3027. #endif
  3028. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3029. HOMEAXIS(Z);
  3030. }
  3031. else {
  3032. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3033. SERIAL_ECHO_START;
  3034. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3035. }
  3036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3037. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3038. #endif
  3039. }
  3040. #endif // Z_SAFE_HOMING
  3041. #if ENABLED(PROBE_MANUALLY)
  3042. bool g29_in_progress = false;
  3043. #else
  3044. constexpr bool g29_in_progress = false;
  3045. #endif
  3046. /**
  3047. * G28: Home all axes according to settings
  3048. *
  3049. * Parameters
  3050. *
  3051. * None Home to all axes with no parameters.
  3052. * With QUICK_HOME enabled XY will home together, then Z.
  3053. *
  3054. * Cartesian parameters
  3055. *
  3056. * X Home to the X endstop
  3057. * Y Home to the Y endstop
  3058. * Z Home to the Z endstop
  3059. *
  3060. */
  3061. inline void gcode_G28() {
  3062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3063. if (DEBUGGING(LEVELING)) {
  3064. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3065. log_machine_info();
  3066. }
  3067. #endif
  3068. // Wait for planner moves to finish!
  3069. stepper.synchronize();
  3070. // Cancel the active G29 session
  3071. #if ENABLED(PROBE_MANUALLY)
  3072. g29_in_progress = false;
  3073. #endif
  3074. // Disable the leveling matrix before homing
  3075. #if PLANNER_LEVELING
  3076. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3077. const bool bed_leveling_state_at_entry = ubl.state.active;
  3078. #endif
  3079. set_bed_leveling_enabled(false);
  3080. #endif
  3081. // Always home with tool 0 active
  3082. #if HOTENDS > 1
  3083. const uint8_t old_tool_index = active_extruder;
  3084. tool_change(0, 0, true);
  3085. #endif
  3086. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3087. extruder_duplication_enabled = false;
  3088. #endif
  3089. setup_for_endstop_or_probe_move();
  3090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3091. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3092. #endif
  3093. endstops.enable(true); // Enable endstops for next homing move
  3094. #if ENABLED(DELTA)
  3095. home_delta();
  3096. #else // NOT DELTA
  3097. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3098. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3099. set_destination_to_current();
  3100. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3101. if (home_all_axis || homeZ) {
  3102. HOMEAXIS(Z);
  3103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3104. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3105. #endif
  3106. }
  3107. #else
  3108. if (home_all_axis || homeX || homeY) {
  3109. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3110. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3111. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3113. if (DEBUGGING(LEVELING))
  3114. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3115. #endif
  3116. do_blocking_move_to_z(destination[Z_AXIS]);
  3117. }
  3118. }
  3119. #endif
  3120. #if ENABLED(QUICK_HOME)
  3121. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3122. #endif
  3123. #if ENABLED(HOME_Y_BEFORE_X)
  3124. // Home Y
  3125. if (home_all_axis || homeY) {
  3126. HOMEAXIS(Y);
  3127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3128. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3129. #endif
  3130. }
  3131. #endif
  3132. // Home X
  3133. if (home_all_axis || homeX) {
  3134. #if ENABLED(DUAL_X_CARRIAGE)
  3135. // Always home the 2nd (right) extruder first
  3136. active_extruder = 1;
  3137. HOMEAXIS(X);
  3138. // Remember this extruder's position for later tool change
  3139. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3140. // Home the 1st (left) extruder
  3141. active_extruder = 0;
  3142. HOMEAXIS(X);
  3143. // Consider the active extruder to be parked
  3144. COPY(raised_parked_position, current_position);
  3145. delayed_move_time = 0;
  3146. active_extruder_parked = true;
  3147. #else
  3148. HOMEAXIS(X);
  3149. #endif
  3150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3151. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3152. #endif
  3153. }
  3154. #if DISABLED(HOME_Y_BEFORE_X)
  3155. // Home Y
  3156. if (home_all_axis || homeY) {
  3157. HOMEAXIS(Y);
  3158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3159. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3160. #endif
  3161. }
  3162. #endif
  3163. // Home Z last if homing towards the bed
  3164. #if Z_HOME_DIR < 0
  3165. if (home_all_axis || homeZ) {
  3166. #if ENABLED(Z_SAFE_HOMING)
  3167. home_z_safely();
  3168. #else
  3169. HOMEAXIS(Z);
  3170. #endif
  3171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3172. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3173. #endif
  3174. } // home_all_axis || homeZ
  3175. #endif // Z_HOME_DIR < 0
  3176. SYNC_PLAN_POSITION_KINEMATIC();
  3177. #endif // !DELTA (gcode_G28)
  3178. endstops.not_homing();
  3179. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3180. // move to a height where we can use the full xy-area
  3181. do_blocking_move_to_z(delta_clip_start_height);
  3182. #endif
  3183. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3184. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3185. #endif
  3186. // Enable mesh leveling again
  3187. #if ENABLED(MESH_BED_LEVELING)
  3188. if (mbl.reactivate()) {
  3189. set_bed_leveling_enabled(true);
  3190. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3191. #if ENABLED(MESH_G28_REST_ORIGIN)
  3192. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3193. set_destination_to_current();
  3194. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3195. stepper.synchronize();
  3196. #endif
  3197. }
  3198. }
  3199. #endif
  3200. clean_up_after_endstop_or_probe_move();
  3201. // Restore the active tool after homing
  3202. #if HOTENDS > 1
  3203. tool_change(old_tool_index, 0, true);
  3204. #endif
  3205. report_current_position();
  3206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3207. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3208. #endif
  3209. }
  3210. #if HAS_PROBING_PROCEDURE
  3211. void out_of_range_error(const char* p_edge) {
  3212. SERIAL_PROTOCOLPGM("?Probe ");
  3213. serialprintPGM(p_edge);
  3214. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3215. }
  3216. #endif
  3217. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3218. inline void _manual_goto_xy(const float &x, const float &y) {
  3219. const float old_feedrate_mm_s = feedrate_mm_s;
  3220. #if MANUAL_PROBE_HEIGHT > 0
  3221. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3222. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3223. line_to_current_position();
  3224. #endif
  3225. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3226. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3227. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3228. line_to_current_position();
  3229. #if MANUAL_PROBE_HEIGHT > 0
  3230. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3231. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3232. line_to_current_position();
  3233. #endif
  3234. feedrate_mm_s = old_feedrate_mm_s;
  3235. stepper.synchronize();
  3236. }
  3237. #endif
  3238. #if ENABLED(MESH_BED_LEVELING)
  3239. // Save 130 bytes with non-duplication of PSTR
  3240. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3241. void mbl_mesh_report() {
  3242. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3243. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3244. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3245. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3246. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3247. );
  3248. }
  3249. /**
  3250. * G29: Mesh-based Z probe, probes a grid and produces a
  3251. * mesh to compensate for variable bed height
  3252. *
  3253. * Parameters With MESH_BED_LEVELING:
  3254. *
  3255. * S0 Produce a mesh report
  3256. * S1 Start probing mesh points
  3257. * S2 Probe the next mesh point
  3258. * S3 Xn Yn Zn.nn Manually modify a single point
  3259. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3260. * S5 Reset and disable mesh
  3261. *
  3262. * The S0 report the points as below
  3263. *
  3264. * +----> X-axis 1-n
  3265. * |
  3266. * |
  3267. * v Y-axis 1-n
  3268. *
  3269. */
  3270. inline void gcode_G29() {
  3271. static int mbl_probe_index = -1;
  3272. #if HAS_SOFTWARE_ENDSTOPS
  3273. static bool enable_soft_endstops;
  3274. #endif
  3275. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3276. if (!WITHIN(state, 0, 5)) {
  3277. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3278. return;
  3279. }
  3280. int8_t px, py;
  3281. switch (state) {
  3282. case MeshReport:
  3283. if (mbl.has_mesh()) {
  3284. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3285. mbl_mesh_report();
  3286. }
  3287. else
  3288. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3289. break;
  3290. case MeshStart:
  3291. mbl.reset();
  3292. mbl_probe_index = 0;
  3293. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3294. break;
  3295. case MeshNext:
  3296. if (mbl_probe_index < 0) {
  3297. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3298. return;
  3299. }
  3300. // For each G29 S2...
  3301. if (mbl_probe_index == 0) {
  3302. #if HAS_SOFTWARE_ENDSTOPS
  3303. // For the initial G29 S2 save software endstop state
  3304. enable_soft_endstops = soft_endstops_enabled;
  3305. #endif
  3306. }
  3307. else {
  3308. // For G29 S2 after adjusting Z.
  3309. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3310. #if HAS_SOFTWARE_ENDSTOPS
  3311. soft_endstops_enabled = enable_soft_endstops;
  3312. #endif
  3313. }
  3314. // If there's another point to sample, move there with optional lift.
  3315. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3316. mbl.zigzag(mbl_probe_index, px, py);
  3317. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3318. #if HAS_SOFTWARE_ENDSTOPS
  3319. // Disable software endstops to allow manual adjustment
  3320. // If G29 is not completed, they will not be re-enabled
  3321. soft_endstops_enabled = false;
  3322. #endif
  3323. mbl_probe_index++;
  3324. }
  3325. else {
  3326. // One last "return to the bed" (as originally coded) at completion
  3327. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3328. line_to_current_position();
  3329. stepper.synchronize();
  3330. // After recording the last point, activate the mbl and home
  3331. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3332. mbl_probe_index = -1;
  3333. mbl.set_has_mesh(true);
  3334. mbl.set_reactivate(true);
  3335. enqueue_and_echo_commands_P(PSTR("G28"));
  3336. BUZZ(100, 659);
  3337. BUZZ(100, 698);
  3338. }
  3339. break;
  3340. case MeshSet:
  3341. if (code_seen('X')) {
  3342. px = code_value_int() - 1;
  3343. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3344. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3345. return;
  3346. }
  3347. }
  3348. else {
  3349. SERIAL_CHAR('X'); say_not_entered();
  3350. return;
  3351. }
  3352. if (code_seen('Y')) {
  3353. py = code_value_int() - 1;
  3354. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3355. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3356. return;
  3357. }
  3358. }
  3359. else {
  3360. SERIAL_CHAR('Y'); say_not_entered();
  3361. return;
  3362. }
  3363. if (code_seen('Z')) {
  3364. mbl.z_values[px][py] = code_value_axis_units(Z_AXIS);
  3365. }
  3366. else {
  3367. SERIAL_CHAR('Z'); say_not_entered();
  3368. return;
  3369. }
  3370. break;
  3371. case MeshSetZOffset:
  3372. if (code_seen('Z')) {
  3373. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3374. }
  3375. else {
  3376. SERIAL_CHAR('Z'); say_not_entered();
  3377. return;
  3378. }
  3379. break;
  3380. case MeshReset:
  3381. reset_bed_level();
  3382. break;
  3383. } // switch(state)
  3384. report_current_position();
  3385. }
  3386. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3387. #if ABL_GRID
  3388. #if ENABLED(PROBE_Y_FIRST)
  3389. #define PR_OUTER_VAR xCount
  3390. #define PR_OUTER_END abl_grid_points_x
  3391. #define PR_INNER_VAR yCount
  3392. #define PR_INNER_END abl_grid_points_y
  3393. #else
  3394. #define PR_OUTER_VAR yCount
  3395. #define PR_OUTER_END abl_grid_points_y
  3396. #define PR_INNER_VAR xCount
  3397. #define PR_INNER_END abl_grid_points_x
  3398. #endif
  3399. #endif
  3400. /**
  3401. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3402. * Will fail if the printer has not been homed with G28.
  3403. *
  3404. * Enhanced G29 Auto Bed Leveling Probe Routine
  3405. *
  3406. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3407. * or alter the bed level data. Useful to check the topology
  3408. * after a first run of G29.
  3409. *
  3410. * J Jettison current bed leveling data
  3411. *
  3412. * V Set the verbose level (0-4). Example: "G29 V3"
  3413. *
  3414. * Parameters With LINEAR leveling only:
  3415. *
  3416. * P Set the size of the grid that will be probed (P x P points).
  3417. * Example: "G29 P4"
  3418. *
  3419. * X Set the X size of the grid that will be probed (X x Y points).
  3420. * Example: "G29 X7 Y5"
  3421. *
  3422. * Y Set the Y size of the grid that will be probed (X x Y points).
  3423. *
  3424. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3425. * This is useful for manual bed leveling and finding flaws in the bed (to
  3426. * assist with part placement).
  3427. * Not supported by non-linear delta printer bed leveling.
  3428. *
  3429. * Parameters With LINEAR and BILINEAR leveling only:
  3430. *
  3431. * S Set the XY travel speed between probe points (in units/min)
  3432. *
  3433. * F Set the Front limit of the probing grid
  3434. * B Set the Back limit of the probing grid
  3435. * L Set the Left limit of the probing grid
  3436. * R Set the Right limit of the probing grid
  3437. *
  3438. * Parameters with DEBUG_LEVELING_FEATURE only:
  3439. *
  3440. * C Make a totally fake grid with no actual probing.
  3441. * For use in testing when no probing is possible.
  3442. *
  3443. * Parameters with BILINEAR leveling only:
  3444. *
  3445. * Z Supply an additional Z probe offset
  3446. *
  3447. * Extra parameters with PROBE_MANUALLY:
  3448. *
  3449. * To do manual probing simply repeat G29 until the procedure is complete.
  3450. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3451. *
  3452. * Q Query leveling and G29 state
  3453. *
  3454. * A Abort current leveling procedure
  3455. *
  3456. * W Write a mesh point. (Ignored during leveling.)
  3457. * X Required X for mesh point
  3458. * Y Required Y for mesh point
  3459. * Z Required Z for mesh point
  3460. *
  3461. * Without PROBE_MANUALLY:
  3462. *
  3463. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3464. * Include "E" to engage/disengage the Z probe for each sample.
  3465. * There's no extra effect if you have a fixed Z probe.
  3466. *
  3467. */
  3468. inline void gcode_G29() {
  3469. // G29 Q is also available if debugging
  3470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3471. const bool query = code_seen('Q');
  3472. const uint8_t old_debug_flags = marlin_debug_flags;
  3473. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3474. if (DEBUGGING(LEVELING)) {
  3475. DEBUG_POS(">>> gcode_G29", current_position);
  3476. log_machine_info();
  3477. }
  3478. marlin_debug_flags = old_debug_flags;
  3479. #if DISABLED(PROBE_MANUALLY)
  3480. if (query) return;
  3481. #endif
  3482. #endif
  3483. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3484. const bool faux = code_seen('C') && code_value_bool();
  3485. #else
  3486. bool constexpr faux = false;
  3487. #endif
  3488. // Don't allow auto-leveling without homing first
  3489. if (axis_unhomed_error(true, true, true)) return;
  3490. // Define local vars 'static' for manual probing, 'auto' otherwise
  3491. #if ENABLED(PROBE_MANUALLY)
  3492. #define ABL_VAR static
  3493. #else
  3494. #define ABL_VAR
  3495. #endif
  3496. ABL_VAR int verbose_level, abl_probe_index;
  3497. ABL_VAR float xProbe, yProbe, measured_z;
  3498. ABL_VAR bool dryrun, abl_should_enable;
  3499. #if HAS_SOFTWARE_ENDSTOPS
  3500. ABL_VAR bool enable_soft_endstops = true;
  3501. #endif
  3502. #if ABL_GRID
  3503. ABL_VAR uint8_t PR_OUTER_VAR;
  3504. ABL_VAR int8_t PR_INNER_VAR;
  3505. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3506. ABL_VAR float xGridSpacing, yGridSpacing;
  3507. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3508. #if ABL_PLANAR
  3509. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3510. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3511. ABL_VAR int abl2;
  3512. ABL_VAR bool do_topography_map;
  3513. #else // 3-point
  3514. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3515. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3516. int constexpr abl2 = ABL_GRID_MAX;
  3517. #endif
  3518. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3519. ABL_VAR float zoffset;
  3520. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3521. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3522. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3523. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3524. mean;
  3525. #endif
  3526. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3527. // Probe at 3 arbitrary points
  3528. ABL_VAR vector_3 points[3] = {
  3529. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3530. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3531. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3532. };
  3533. #endif // AUTO_BED_LEVELING_3POINT
  3534. /**
  3535. * On the initial G29 fetch command parameters.
  3536. */
  3537. if (!g29_in_progress) {
  3538. abl_probe_index = 0;
  3539. abl_should_enable = planner.abl_enabled;
  3540. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3541. if (code_seen('W')) {
  3542. if (!bilinear_grid_spacing[X_AXIS]) {
  3543. SERIAL_ERROR_START;
  3544. SERIAL_ERRORLNPGM("No bilinear grid");
  3545. return;
  3546. }
  3547. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3548. if (!WITHIN(z, -10, 10)) {
  3549. SERIAL_ERROR_START;
  3550. SERIAL_ERRORLNPGM("Bad Z value");
  3551. return;
  3552. }
  3553. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3554. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3555. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3556. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3557. if (x < 99998 && y < 99998) {
  3558. // Get nearest i / j from x / y
  3559. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3560. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3561. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3562. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3563. }
  3564. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3565. set_bed_leveling_enabled(false);
  3566. bed_level_grid[i][j] = z;
  3567. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3568. bed_level_virt_interpolate();
  3569. #endif
  3570. set_bed_leveling_enabled(abl_should_enable);
  3571. }
  3572. return;
  3573. } // code_seen('W')
  3574. #endif
  3575. #if PLANNER_LEVELING
  3576. // Jettison bed leveling data
  3577. if (code_seen('J')) {
  3578. reset_bed_level();
  3579. return;
  3580. }
  3581. #endif
  3582. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3583. if (!WITHIN(verbose_level, 0, 4)) {
  3584. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3585. return;
  3586. }
  3587. dryrun = code_seen('D') ? code_value_bool() : false;
  3588. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3589. do_topography_map = verbose_level > 2 || code_seen('T');
  3590. // X and Y specify points in each direction, overriding the default
  3591. // These values may be saved with the completed mesh
  3592. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3593. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3594. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3595. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3596. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3597. return;
  3598. }
  3599. abl2 = abl_grid_points_x * abl_grid_points_y;
  3600. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3601. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3602. #endif
  3603. #if ABL_GRID
  3604. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3605. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3606. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3607. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3608. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3609. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3610. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3611. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3612. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3613. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3614. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3615. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3616. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3617. if (left_out || right_out || front_out || back_out) {
  3618. if (left_out) {
  3619. out_of_range_error(PSTR("(L)eft"));
  3620. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3621. }
  3622. if (right_out) {
  3623. out_of_range_error(PSTR("(R)ight"));
  3624. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3625. }
  3626. if (front_out) {
  3627. out_of_range_error(PSTR("(F)ront"));
  3628. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3629. }
  3630. if (back_out) {
  3631. out_of_range_error(PSTR("(B)ack"));
  3632. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3633. }
  3634. return;
  3635. }
  3636. // probe at the points of a lattice grid
  3637. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3638. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3639. #endif // ABL_GRID
  3640. if (verbose_level > 0) {
  3641. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3642. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3643. }
  3644. stepper.synchronize();
  3645. // Disable auto bed leveling during G29
  3646. planner.abl_enabled = false;
  3647. if (!dryrun) {
  3648. // Re-orient the current position without leveling
  3649. // based on where the steppers are positioned.
  3650. set_current_from_steppers_for_axis(ALL_AXES);
  3651. // Sync the planner to where the steppers stopped
  3652. SYNC_PLAN_POSITION_KINEMATIC();
  3653. }
  3654. if (!faux) setup_for_endstop_or_probe_move();
  3655. //xProbe = yProbe = measured_z = 0;
  3656. #if HAS_BED_PROBE
  3657. // Deploy the probe. Probe will raise if needed.
  3658. if (DEPLOY_PROBE()) {
  3659. planner.abl_enabled = abl_should_enable;
  3660. return;
  3661. }
  3662. #endif
  3663. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3664. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3665. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3666. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3667. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3668. ) {
  3669. if (dryrun) {
  3670. // Before reset bed level, re-enable to correct the position
  3671. planner.abl_enabled = abl_should_enable;
  3672. }
  3673. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3674. reset_bed_level();
  3675. // Initialize a grid with the given dimensions
  3676. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3677. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3678. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3679. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3680. // Can't re-enable (on error) until the new grid is written
  3681. abl_should_enable = false;
  3682. }
  3683. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3684. mean = 0.0;
  3685. #endif // AUTO_BED_LEVELING_LINEAR
  3686. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3687. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3688. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3689. #endif
  3690. // Probe at 3 arbitrary points
  3691. points[0].z = points[1].z = points[2].z = 0;
  3692. #endif // AUTO_BED_LEVELING_3POINT
  3693. } // !g29_in_progress
  3694. #if ENABLED(PROBE_MANUALLY)
  3695. // Abort current G29 procedure, go back to ABLStart
  3696. if (code_seen('A') && g29_in_progress) {
  3697. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3698. #if HAS_SOFTWARE_ENDSTOPS
  3699. soft_endstops_enabled = enable_soft_endstops;
  3700. #endif
  3701. planner.abl_enabled = abl_should_enable;
  3702. g29_in_progress = false;
  3703. }
  3704. // Query G29 status
  3705. if (code_seen('Q')) {
  3706. if (!g29_in_progress)
  3707. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3708. else {
  3709. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3710. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3711. }
  3712. }
  3713. if (code_seen('A') || code_seen('Q')) return;
  3714. // Fall through to probe the first point
  3715. g29_in_progress = true;
  3716. if (abl_probe_index == 0) {
  3717. // For the initial G29 S2 save software endstop state
  3718. #if HAS_SOFTWARE_ENDSTOPS
  3719. enable_soft_endstops = soft_endstops_enabled;
  3720. #endif
  3721. }
  3722. else {
  3723. // For G29 after adjusting Z.
  3724. // Save the previous Z before going to the next point
  3725. measured_z = current_position[Z_AXIS];
  3726. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3727. mean += measured_z;
  3728. eqnBVector[abl_probe_index] = measured_z;
  3729. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3730. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3731. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3732. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3733. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3734. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3735. points[i].z = measured_z;
  3736. #endif
  3737. }
  3738. //
  3739. // If there's another point to sample, move there with optional lift.
  3740. //
  3741. #if ABL_GRID
  3742. // Find a next point to probe
  3743. // On the first G29 this will be the first probe point
  3744. while (abl_probe_index < abl2) {
  3745. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3746. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3747. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3748. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3749. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3750. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3751. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3752. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3753. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3754. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3755. indexIntoAB[xCount][yCount] = abl_probe_index;
  3756. #endif
  3757. float pos[XYZ] = { xProbe, yProbe, 0 };
  3758. if (position_is_reachable(pos)) break;
  3759. ++abl_probe_index;
  3760. }
  3761. // Is there a next point to move to?
  3762. if (abl_probe_index < abl2) {
  3763. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3764. ++abl_probe_index;
  3765. #if HAS_SOFTWARE_ENDSTOPS
  3766. // Disable software endstops to allow manual adjustment
  3767. // If G29 is not completed, they will not be re-enabled
  3768. soft_endstops_enabled = false;
  3769. #endif
  3770. return;
  3771. }
  3772. else {
  3773. // Then leveling is done!
  3774. // G29 finishing code goes here
  3775. // After recording the last point, activate abl
  3776. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3777. g29_in_progress = false;
  3778. // Re-enable software endstops, if needed
  3779. #if HAS_SOFTWARE_ENDSTOPS
  3780. soft_endstops_enabled = enable_soft_endstops;
  3781. #endif
  3782. }
  3783. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3784. // Probe at 3 arbitrary points
  3785. if (abl_probe_index < 3) {
  3786. xProbe = LOGICAL_X_POSITION(points[i].x);
  3787. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3788. ++abl_probe_index;
  3789. #if HAS_SOFTWARE_ENDSTOPS
  3790. // Disable software endstops to allow manual adjustment
  3791. // If G29 is not completed, they will not be re-enabled
  3792. soft_endstops_enabled = false;
  3793. #endif
  3794. return;
  3795. }
  3796. else {
  3797. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3798. g29_in_progress = false;
  3799. // Re-enable software endstops, if needed
  3800. #if HAS_SOFTWARE_ENDSTOPS
  3801. soft_endstops_enabled = enable_soft_endstops;
  3802. #endif
  3803. if (!dryrun) {
  3804. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3805. if (planeNormal.z < 0) {
  3806. planeNormal.x *= -1;
  3807. planeNormal.y *= -1;
  3808. planeNormal.z *= -1;
  3809. }
  3810. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3811. // Can't re-enable (on error) until the new grid is written
  3812. abl_should_enable = false;
  3813. }
  3814. }
  3815. #endif // AUTO_BED_LEVELING_3POINT
  3816. #else // !PROBE_MANUALLY
  3817. bool stow_probe_after_each = code_seen('E');
  3818. #if ABL_GRID
  3819. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3820. // Outer loop is Y with PROBE_Y_FIRST disabled
  3821. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3822. int8_t inStart, inStop, inInc;
  3823. if (zig) { // away from origin
  3824. inStart = 0;
  3825. inStop = PR_INNER_END;
  3826. inInc = 1;
  3827. }
  3828. else { // towards origin
  3829. inStart = PR_INNER_END - 1;
  3830. inStop = -1;
  3831. inInc = -1;
  3832. }
  3833. zig ^= true; // zag
  3834. // Inner loop is Y with PROBE_Y_FIRST enabled
  3835. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3836. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3837. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3838. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3839. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3840. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3841. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3842. #endif
  3843. #if IS_KINEMATIC
  3844. // Avoid probing outside the round or hexagonal area
  3845. float pos[XYZ] = { xProbe, yProbe, 0 };
  3846. if (!position_is_reachable(pos, true)) continue;
  3847. #endif
  3848. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3849. if (isnan(measured_z)) {
  3850. planner.abl_enabled = abl_should_enable;
  3851. return;
  3852. }
  3853. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3854. mean += measured_z;
  3855. eqnBVector[abl_probe_index] = measured_z;
  3856. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3857. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3858. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3859. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3860. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3861. #endif
  3862. abl_should_enable = false;
  3863. idle();
  3864. } // inner
  3865. } // outer
  3866. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3867. // Probe at 3 arbitrary points
  3868. for (uint8_t i = 0; i < 3; ++i) {
  3869. // Retain the last probe position
  3870. xProbe = LOGICAL_X_POSITION(points[i].x);
  3871. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3872. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3873. }
  3874. if (isnan(measured_z)) {
  3875. planner.abl_enabled = abl_should_enable;
  3876. return;
  3877. }
  3878. if (!dryrun) {
  3879. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3880. if (planeNormal.z < 0) {
  3881. planeNormal.x *= -1;
  3882. planeNormal.y *= -1;
  3883. planeNormal.z *= -1;
  3884. }
  3885. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3886. // Can't re-enable (on error) until the new grid is written
  3887. abl_should_enable = false;
  3888. }
  3889. #endif // AUTO_BED_LEVELING_3POINT
  3890. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3891. if (STOW_PROBE()) {
  3892. planner.abl_enabled = abl_should_enable;
  3893. return;
  3894. }
  3895. #endif // !PROBE_MANUALLY
  3896. //
  3897. // G29 Finishing Code
  3898. //
  3899. // Unless this is a dry run, auto bed leveling will
  3900. // definitely be enabled after this point
  3901. //
  3902. // Restore state after probing
  3903. if (!faux) clean_up_after_endstop_or_probe_move();
  3904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3905. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3906. #endif
  3907. // Calculate leveling, print reports, correct the position
  3908. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3909. if (!dryrun) extrapolate_unprobed_bed_level();
  3910. print_bilinear_leveling_grid();
  3911. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3912. bed_level_virt_interpolate();
  3913. bed_level_virt_print();
  3914. #endif
  3915. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3916. // For LINEAR leveling calculate matrix, print reports, correct the position
  3917. /**
  3918. * solve the plane equation ax + by + d = z
  3919. * A is the matrix with rows [x y 1] for all the probed points
  3920. * B is the vector of the Z positions
  3921. * the normal vector to the plane is formed by the coefficients of the
  3922. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3923. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3924. */
  3925. float plane_equation_coefficients[3];
  3926. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3927. mean /= abl2;
  3928. if (verbose_level) {
  3929. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3930. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3931. SERIAL_PROTOCOLPGM(" b: ");
  3932. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3933. SERIAL_PROTOCOLPGM(" d: ");
  3934. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3935. SERIAL_EOL;
  3936. if (verbose_level > 2) {
  3937. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3938. SERIAL_PROTOCOL_F(mean, 8);
  3939. SERIAL_EOL;
  3940. }
  3941. }
  3942. // Create the matrix but don't correct the position yet
  3943. if (!dryrun) {
  3944. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3945. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3946. );
  3947. }
  3948. // Show the Topography map if enabled
  3949. if (do_topography_map) {
  3950. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3951. " +--- BACK --+\n"
  3952. " | |\n"
  3953. " L | (+) | R\n"
  3954. " E | | I\n"
  3955. " F | (-) N (+) | G\n"
  3956. " T | | H\n"
  3957. " | (-) | T\n"
  3958. " | |\n"
  3959. " O-- FRONT --+\n"
  3960. " (0,0)");
  3961. float min_diff = 999;
  3962. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3963. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3964. int ind = indexIntoAB[xx][yy];
  3965. float diff = eqnBVector[ind] - mean,
  3966. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3967. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3968. z_tmp = 0;
  3969. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3970. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3971. if (diff >= 0.0)
  3972. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3973. else
  3974. SERIAL_PROTOCOLCHAR(' ');
  3975. SERIAL_PROTOCOL_F(diff, 5);
  3976. } // xx
  3977. SERIAL_EOL;
  3978. } // yy
  3979. SERIAL_EOL;
  3980. if (verbose_level > 3) {
  3981. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3982. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3983. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3984. int ind = indexIntoAB[xx][yy];
  3985. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3986. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3987. z_tmp = 0;
  3988. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3989. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3990. if (diff >= 0.0)
  3991. SERIAL_PROTOCOLPGM(" +");
  3992. // Include + for column alignment
  3993. else
  3994. SERIAL_PROTOCOLCHAR(' ');
  3995. SERIAL_PROTOCOL_F(diff, 5);
  3996. } // xx
  3997. SERIAL_EOL;
  3998. } // yy
  3999. SERIAL_EOL;
  4000. }
  4001. } //do_topography_map
  4002. #endif // AUTO_BED_LEVELING_LINEAR
  4003. #if ABL_PLANAR
  4004. // For LINEAR and 3POINT leveling correct the current position
  4005. if (verbose_level > 0)
  4006. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4007. if (!dryrun) {
  4008. //
  4009. // Correct the current XYZ position based on the tilted plane.
  4010. //
  4011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4012. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4013. #endif
  4014. float converted[XYZ];
  4015. COPY(converted, current_position);
  4016. planner.abl_enabled = true;
  4017. planner.unapply_leveling(converted); // use conversion machinery
  4018. planner.abl_enabled = false;
  4019. // Use the last measured distance to the bed, if possible
  4020. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4021. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4022. ) {
  4023. float simple_z = current_position[Z_AXIS] - measured_z;
  4024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4025. if (DEBUGGING(LEVELING)) {
  4026. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4027. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4028. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4029. }
  4030. #endif
  4031. converted[Z_AXIS] = simple_z;
  4032. }
  4033. // The rotated XY and corrected Z are now current_position
  4034. COPY(current_position, converted);
  4035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4036. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4037. #endif
  4038. }
  4039. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4040. if (!dryrun) {
  4041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4042. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4043. #endif
  4044. // Unapply the offset because it is going to be immediately applied
  4045. // and cause compensation movement in Z
  4046. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4048. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4049. #endif
  4050. }
  4051. #endif // ABL_PLANAR
  4052. #ifdef Z_PROBE_END_SCRIPT
  4053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4054. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4055. #endif
  4056. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4057. stepper.synchronize();
  4058. #endif
  4059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4060. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4061. #endif
  4062. report_current_position();
  4063. KEEPALIVE_STATE(IN_HANDLER);
  4064. // Auto Bed Leveling is complete! Enable if possible.
  4065. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4066. if (planner.abl_enabled)
  4067. SYNC_PLAN_POSITION_KINEMATIC();
  4068. }
  4069. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4070. #if HAS_BED_PROBE
  4071. /**
  4072. * G30: Do a single Z probe at the current XY
  4073. * Usage:
  4074. * G30 <X#> <Y#> <S#>
  4075. * X = Probe X position (default=current probe position)
  4076. * Y = Probe Y position (default=current probe position)
  4077. * S = Stows the probe if 1 (default=1)
  4078. */
  4079. inline void gcode_G30() {
  4080. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4081. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4082. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4083. if (!position_is_reachable(pos, true)) return;
  4084. bool stow = code_seen('S') ? code_value_bool() : true;
  4085. // Disable leveling so the planner won't mess with us
  4086. #if PLANNER_LEVELING
  4087. set_bed_leveling_enabled(false);
  4088. #endif
  4089. setup_for_endstop_or_probe_move();
  4090. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4091. SERIAL_PROTOCOLPGM("Bed X: ");
  4092. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4093. SERIAL_PROTOCOLPGM(" Y: ");
  4094. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4095. SERIAL_PROTOCOLPGM(" Z: ");
  4096. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4097. clean_up_after_endstop_or_probe_move();
  4098. report_current_position();
  4099. }
  4100. #if ENABLED(Z_PROBE_SLED)
  4101. /**
  4102. * G31: Deploy the Z probe
  4103. */
  4104. inline void gcode_G31() { DEPLOY_PROBE(); }
  4105. /**
  4106. * G32: Stow the Z probe
  4107. */
  4108. inline void gcode_G32() { STOW_PROBE(); }
  4109. #endif // Z_PROBE_SLED
  4110. #endif // HAS_BED_PROBE
  4111. #if ENABLED(G38_PROBE_TARGET)
  4112. static bool G38_run_probe() {
  4113. bool G38_pass_fail = false;
  4114. // Get direction of move and retract
  4115. float retract_mm[XYZ];
  4116. LOOP_XYZ(i) {
  4117. float dist = destination[i] - current_position[i];
  4118. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4119. }
  4120. stepper.synchronize(); // wait until the machine is idle
  4121. // Move until destination reached or target hit
  4122. endstops.enable(true);
  4123. G38_move = true;
  4124. G38_endstop_hit = false;
  4125. prepare_move_to_destination();
  4126. stepper.synchronize();
  4127. G38_move = false;
  4128. endstops.hit_on_purpose();
  4129. set_current_from_steppers_for_axis(ALL_AXES);
  4130. SYNC_PLAN_POSITION_KINEMATIC();
  4131. if (G38_endstop_hit) {
  4132. G38_pass_fail = true;
  4133. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4134. // Move away by the retract distance
  4135. set_destination_to_current();
  4136. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4137. endstops.enable(false);
  4138. prepare_move_to_destination();
  4139. stepper.synchronize();
  4140. feedrate_mm_s /= 4;
  4141. // Bump the target more slowly
  4142. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4143. endstops.enable(true);
  4144. G38_move = true;
  4145. prepare_move_to_destination();
  4146. stepper.synchronize();
  4147. G38_move = false;
  4148. set_current_from_steppers_for_axis(ALL_AXES);
  4149. SYNC_PLAN_POSITION_KINEMATIC();
  4150. #endif
  4151. }
  4152. endstops.hit_on_purpose();
  4153. endstops.not_homing();
  4154. return G38_pass_fail;
  4155. }
  4156. /**
  4157. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4158. * G38.3 - probe toward workpiece, stop on contact
  4159. *
  4160. * Like G28 except uses Z min probe for all axes
  4161. */
  4162. inline void gcode_G38(bool is_38_2) {
  4163. // Get X Y Z E F
  4164. gcode_get_destination();
  4165. setup_for_endstop_or_probe_move();
  4166. // If any axis has enough movement, do the move
  4167. LOOP_XYZ(i)
  4168. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4169. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4170. // If G38.2 fails throw an error
  4171. if (!G38_run_probe() && is_38_2) {
  4172. SERIAL_ERROR_START;
  4173. SERIAL_ERRORLNPGM("Failed to reach target");
  4174. }
  4175. break;
  4176. }
  4177. clean_up_after_endstop_or_probe_move();
  4178. }
  4179. #endif // G38_PROBE_TARGET
  4180. /**
  4181. * G92: Set current position to given X Y Z E
  4182. */
  4183. inline void gcode_G92() {
  4184. bool didXYZ = false,
  4185. didE = code_seen('E');
  4186. if (!didE) stepper.synchronize();
  4187. LOOP_XYZE(i) {
  4188. if (code_seen(axis_codes[i])) {
  4189. #if IS_SCARA
  4190. current_position[i] = code_value_axis_units(i);
  4191. if (i != E_AXIS) didXYZ = true;
  4192. #else
  4193. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4194. float p = current_position[i];
  4195. #endif
  4196. float v = code_value_axis_units(i);
  4197. current_position[i] = v;
  4198. if (i != E_AXIS) {
  4199. didXYZ = true;
  4200. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4201. position_shift[i] += v - p; // Offset the coordinate space
  4202. update_software_endstops((AxisEnum)i);
  4203. #endif
  4204. }
  4205. #endif
  4206. }
  4207. }
  4208. if (didXYZ)
  4209. SYNC_PLAN_POSITION_KINEMATIC();
  4210. else if (didE)
  4211. sync_plan_position_e();
  4212. report_current_position();
  4213. }
  4214. #if HAS_RESUME_CONTINUE
  4215. /**
  4216. * M0: Unconditional stop - Wait for user button press on LCD
  4217. * M1: Conditional stop - Wait for user button press on LCD
  4218. */
  4219. inline void gcode_M0_M1() {
  4220. char* args = current_command_args;
  4221. millis_t codenum = 0;
  4222. bool hasP = false, hasS = false;
  4223. if (code_seen('P')) {
  4224. codenum = code_value_millis(); // milliseconds to wait
  4225. hasP = codenum > 0;
  4226. }
  4227. if (code_seen('S')) {
  4228. codenum = code_value_millis_from_seconds(); // seconds to wait
  4229. hasS = codenum > 0;
  4230. }
  4231. #if ENABLED(ULTIPANEL)
  4232. if (!hasP && !hasS && *args != '\0')
  4233. lcd_setstatus(args, true);
  4234. else {
  4235. LCD_MESSAGEPGM(MSG_USERWAIT);
  4236. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4237. dontExpireStatus();
  4238. #endif
  4239. }
  4240. #else
  4241. if (!hasP && !hasS && *args != '\0') {
  4242. SERIAL_ECHO_START;
  4243. SERIAL_ECHOLN(args);
  4244. }
  4245. #endif
  4246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4247. wait_for_user = true;
  4248. stepper.synchronize();
  4249. refresh_cmd_timeout();
  4250. if (codenum > 0) {
  4251. codenum += previous_cmd_ms; // wait until this time for a click
  4252. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4253. }
  4254. else {
  4255. #if ENABLED(ULTIPANEL)
  4256. if (lcd_detected()) {
  4257. while (wait_for_user) idle();
  4258. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4259. }
  4260. #else
  4261. while (wait_for_user) idle();
  4262. #endif
  4263. }
  4264. wait_for_user = false;
  4265. KEEPALIVE_STATE(IN_HANDLER);
  4266. }
  4267. #endif // EMERGENCY_PARSER || ULTIPANEL
  4268. /**
  4269. * M17: Enable power on all stepper motors
  4270. */
  4271. inline void gcode_M17() {
  4272. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4273. enable_all_steppers();
  4274. }
  4275. #if IS_KINEMATIC
  4276. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4277. #else
  4278. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4279. #endif
  4280. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4281. float resume_position[XYZE];
  4282. bool move_away_flag = false;
  4283. inline void move_back_on_resume() {
  4284. if (!move_away_flag) return;
  4285. move_away_flag = false;
  4286. // Set extruder to saved position
  4287. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4288. planner.set_e_position_mm(current_position[E_AXIS]);
  4289. #if IS_KINEMATIC
  4290. // Move XYZ to starting position
  4291. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4292. #else
  4293. // Move XY to starting position, then Z
  4294. destination[X_AXIS] = resume_position[X_AXIS];
  4295. destination[Y_AXIS] = resume_position[Y_AXIS];
  4296. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4297. destination[Z_AXIS] = resume_position[Z_AXIS];
  4298. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4299. #endif
  4300. stepper.synchronize();
  4301. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4302. filament_ran_out = false;
  4303. #endif
  4304. set_current_to_destination();
  4305. }
  4306. #endif // PARK_HEAD_ON_PAUSE
  4307. #if ENABLED(SDSUPPORT)
  4308. /**
  4309. * M20: List SD card to serial output
  4310. */
  4311. inline void gcode_M20() {
  4312. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4313. card.ls();
  4314. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4315. }
  4316. /**
  4317. * M21: Init SD Card
  4318. */
  4319. inline void gcode_M21() { card.initsd(); }
  4320. /**
  4321. * M22: Release SD Card
  4322. */
  4323. inline void gcode_M22() { card.release(); }
  4324. /**
  4325. * M23: Open a file
  4326. */
  4327. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4328. /**
  4329. * M24: Start or Resume SD Print
  4330. */
  4331. inline void gcode_M24() {
  4332. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4333. move_back_on_resume();
  4334. #endif
  4335. card.startFileprint();
  4336. print_job_timer.start();
  4337. }
  4338. /**
  4339. * M25: Pause SD Print
  4340. */
  4341. inline void gcode_M25() {
  4342. card.pauseSDPrint();
  4343. print_job_timer.pause();
  4344. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4345. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4346. #endif
  4347. }
  4348. /**
  4349. * M26: Set SD Card file index
  4350. */
  4351. inline void gcode_M26() {
  4352. if (card.cardOK && code_seen('S'))
  4353. card.setIndex(code_value_long());
  4354. }
  4355. /**
  4356. * M27: Get SD Card status
  4357. */
  4358. inline void gcode_M27() { card.getStatus(); }
  4359. /**
  4360. * M28: Start SD Write
  4361. */
  4362. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4363. /**
  4364. * M29: Stop SD Write
  4365. * Processed in write to file routine above
  4366. */
  4367. inline void gcode_M29() {
  4368. // card.saving = false;
  4369. }
  4370. /**
  4371. * M30 <filename>: Delete SD Card file
  4372. */
  4373. inline void gcode_M30() {
  4374. if (card.cardOK) {
  4375. card.closefile();
  4376. card.removeFile(current_command_args);
  4377. }
  4378. }
  4379. #endif // SDSUPPORT
  4380. /**
  4381. * M31: Get the time since the start of SD Print (or last M109)
  4382. */
  4383. inline void gcode_M31() {
  4384. char buffer[21];
  4385. duration_t elapsed = print_job_timer.duration();
  4386. elapsed.toString(buffer);
  4387. lcd_setstatus(buffer);
  4388. SERIAL_ECHO_START;
  4389. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4390. #if ENABLED(AUTOTEMP)
  4391. thermalManager.autotempShutdown();
  4392. #endif
  4393. }
  4394. #if ENABLED(SDSUPPORT)
  4395. /**
  4396. * M32: Select file and start SD Print
  4397. */
  4398. inline void gcode_M32() {
  4399. if (card.sdprinting)
  4400. stepper.synchronize();
  4401. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4402. if (!namestartpos)
  4403. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4404. else
  4405. namestartpos++; //to skip the '!'
  4406. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4407. if (card.cardOK) {
  4408. card.openFile(namestartpos, true, call_procedure);
  4409. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4410. card.setIndex(code_value_long());
  4411. card.startFileprint();
  4412. // Procedure calls count as normal print time.
  4413. if (!call_procedure) print_job_timer.start();
  4414. }
  4415. }
  4416. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4417. /**
  4418. * M33: Get the long full path of a file or folder
  4419. *
  4420. * Parameters:
  4421. * <dospath> Case-insensitive DOS-style path to a file or folder
  4422. *
  4423. * Example:
  4424. * M33 miscel~1/armchair/armcha~1.gco
  4425. *
  4426. * Output:
  4427. * /Miscellaneous/Armchair/Armchair.gcode
  4428. */
  4429. inline void gcode_M33() {
  4430. card.printLongPath(current_command_args);
  4431. }
  4432. #endif
  4433. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4434. /**
  4435. * M34: Set SD Card Sorting Options
  4436. */
  4437. inline void gcode_M34() {
  4438. if (code_seen('S')) card.setSortOn(code_value_bool());
  4439. if (code_seen('F')) {
  4440. int v = code_value_long();
  4441. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4442. }
  4443. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4444. }
  4445. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4446. /**
  4447. * M928: Start SD Write
  4448. */
  4449. inline void gcode_M928() {
  4450. card.openLogFile(current_command_args);
  4451. }
  4452. #endif // SDSUPPORT
  4453. /**
  4454. * Sensitive pin test for M42, M226
  4455. */
  4456. static bool pin_is_protected(uint8_t pin) {
  4457. static const int sensitive_pins[] = SENSITIVE_PINS;
  4458. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4459. if (sensitive_pins[i] == pin) return true;
  4460. return false;
  4461. }
  4462. /**
  4463. * M42: Change pin status via GCode
  4464. *
  4465. * P<pin> Pin number (LED if omitted)
  4466. * S<byte> Pin status from 0 - 255
  4467. */
  4468. inline void gcode_M42() {
  4469. if (!code_seen('S')) return;
  4470. int pin_status = code_value_int();
  4471. if (!WITHIN(pin_status, 0, 255)) return;
  4472. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4473. if (pin_number < 0) return;
  4474. if (pin_is_protected(pin_number)) {
  4475. SERIAL_ERROR_START;
  4476. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4477. return;
  4478. }
  4479. pinMode(pin_number, OUTPUT);
  4480. digitalWrite(pin_number, pin_status);
  4481. analogWrite(pin_number, pin_status);
  4482. #if FAN_COUNT > 0
  4483. switch (pin_number) {
  4484. #if HAS_FAN0
  4485. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4486. #endif
  4487. #if HAS_FAN1
  4488. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4489. #endif
  4490. #if HAS_FAN2
  4491. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4492. #endif
  4493. }
  4494. #endif
  4495. }
  4496. #if ENABLED(PINS_DEBUGGING)
  4497. #include "pinsDebug.h"
  4498. inline void toggle_pins() {
  4499. int pin, j;
  4500. bool I_flag = code_seen('I') ? code_value_bool() : false;
  4501. int repeat = code_seen('R') ? code_value_int() : 1,
  4502. start = code_seen('S') ? code_value_int() : 0,
  4503. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4504. wait = code_seen('W') ? code_value_int() : 500;
  4505. for (pin = start; pin <= end; pin++) {
  4506. if (!I_flag && pin_is_protected(pin)) {
  4507. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4508. SERIAL_ECHOPGM(" untouched.\n");
  4509. }
  4510. else {
  4511. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4512. pinMode(pin, OUTPUT);
  4513. for(j = 0; j < repeat; j++) {
  4514. digitalWrite(pin, 0);
  4515. safe_delay(wait);
  4516. digitalWrite(pin, 1);
  4517. safe_delay(wait);
  4518. digitalWrite(pin, 0);
  4519. safe_delay(wait);
  4520. }
  4521. }
  4522. SERIAL_ECHOPGM("\n");
  4523. }
  4524. SERIAL_ECHOPGM("Done\n");
  4525. } // toggle_pins
  4526. inline void servo_probe_test(){
  4527. #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
  4528. SERIAL_ERROR_START;
  4529. SERIAL_ERRORLNPGM("SERVO not setup");
  4530. #else
  4531. #if !defined(z_servo_angle)
  4532. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4533. #endif
  4534. uint8_t probe_index = code_seen('P') ? code_value_byte() : 0;
  4535. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4536. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4537. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4538. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4539. bool probe_inverting;
  4540. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4541. #define PROBE_TEST_PIN Z_MIN_PIN
  4542. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4543. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4544. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4545. if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4546. else SERIAL_PROTOCOLLNPGM("false");
  4547. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4548. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4549. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4550. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4551. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4552. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4553. if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4554. else SERIAL_PROTOCOLLNPGM("false");
  4555. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4556. #else
  4557. #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
  4558. #endif
  4559. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4560. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4561. bool deploy_state;
  4562. bool stow_state;
  4563. for (uint8_t i = 0; i < 4; i++) {
  4564. servo[probe_index].move(z_servo_angle[0]); //deploy
  4565. safe_delay(500);
  4566. deploy_state = digitalRead(PROBE_TEST_PIN);
  4567. servo[probe_index].move(z_servo_angle[1]); //stow
  4568. safe_delay(500);
  4569. stow_state = digitalRead(PROBE_TEST_PIN);
  4570. }
  4571. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4572. refresh_cmd_timeout();
  4573. if (deploy_state != stow_state) {
  4574. SERIAL_PROTOCOLLNPGM("TLTouch detected"); // BLTouch clone?
  4575. if (deploy_state) {
  4576. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4577. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4578. }
  4579. else {
  4580. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4581. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4582. }
  4583. }
  4584. else { // measure active signal length
  4585. servo[probe_index].move(z_servo_angle[0]); //deploy
  4586. safe_delay(500);
  4587. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4588. uint16_t probe_counter = 0;
  4589. for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
  4590. safe_delay(2);
  4591. if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
  4592. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4593. for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
  4594. safe_delay(2);
  4595. }
  4596. if (probe_counter == 50) {
  4597. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4598. }
  4599. else if (probe_counter >= 2 ) {
  4600. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
  4601. }
  4602. else {
  4603. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4604. }
  4605. servo[probe_index].move(z_servo_angle[1]); //stow
  4606. } // pulse detected
  4607. } // for loop waiting for trigger
  4608. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4609. } // measure active signal length
  4610. #endif
  4611. } // servo_probe_test
  4612. /**
  4613. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  4614. *
  4615. * M43 - report name and state of pin(s)
  4616. * P<pin> Pin to read or watch. If omitted, reads all pins.
  4617. * I Flag to ignore Marlin's pin protection.
  4618. *
  4619. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  4620. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4621. * I Flag to ignore Marlin's pin protection.
  4622. *
  4623. * M43 E<bool> - Enable / disable background endstop monitoring
  4624. * - Machine continues to operate
  4625. * - Reports changes to endstops
  4626. * - Toggles LED when an endstop changes
  4627. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  4628. *
  4629. * M43 T - Toggle pin(s) and report which pin is being toggled
  4630. * S<pin> - Start Pin number. If not given, will default to 0
  4631. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  4632. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  4633. * R - Repeat pulses on each pin this number of times before continueing to next pin
  4634. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  4635. *
  4636. * M43 S - Servo probe test
  4637. * P<index> - Probe index (optional - defaults to 0
  4638. */
  4639. inline void gcode_M43() {
  4640. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  4641. toggle_pins();
  4642. return;
  4643. }
  4644. // Enable or disable endstop monitoring
  4645. if (code_seen('E')) {
  4646. endstop_monitor_flag = code_value_bool();
  4647. SERIAL_PROTOCOLPGM("endstop monitor ");
  4648. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4649. SERIAL_PROTOCOLLNPGM("abled");
  4650. return;
  4651. }
  4652. if (code_seen('S')) {
  4653. servo_probe_test();
  4654. return;
  4655. }
  4656. // Get the range of pins to test or watch
  4657. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4658. if (code_seen('P')) {
  4659. first_pin = last_pin = code_value_byte();
  4660. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4661. }
  4662. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4663. // Watch until click, M108, or reset
  4664. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4665. SERIAL_PROTOCOLLNPGM("Watching pins");
  4666. byte pin_state[last_pin - first_pin + 1];
  4667. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4668. if (pin_is_protected(pin) && !ignore_protection) continue;
  4669. pinMode(pin, INPUT_PULLUP);
  4670. // if (IS_ANALOG(pin))
  4671. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4672. // else
  4673. pin_state[pin - first_pin] = digitalRead(pin);
  4674. }
  4675. #if HAS_RESUME_CONTINUE
  4676. wait_for_user = true;
  4677. #endif
  4678. for(;;) {
  4679. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4680. if (pin_is_protected(pin)) continue;
  4681. byte val;
  4682. // if (IS_ANALOG(pin))
  4683. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4684. // else
  4685. val = digitalRead(pin);
  4686. if (val != pin_state[pin - first_pin]) {
  4687. report_pin_state(pin);
  4688. pin_state[pin - first_pin] = val;
  4689. }
  4690. }
  4691. #if HAS_RESUME_CONTINUE
  4692. if (!wait_for_user) break;
  4693. #endif
  4694. safe_delay(500);
  4695. }
  4696. return;
  4697. }
  4698. // Report current state of selected pin(s)
  4699. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4700. report_pin_state_extended(pin, ignore_protection);
  4701. }
  4702. #endif // PINS_DEBUGGING
  4703. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4704. /**
  4705. * M48: Z probe repeatability measurement function.
  4706. *
  4707. * Usage:
  4708. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4709. * P = Number of sampled points (4-50, default 10)
  4710. * X = Sample X position
  4711. * Y = Sample Y position
  4712. * V = Verbose level (0-4, default=1)
  4713. * E = Engage Z probe for each reading
  4714. * L = Number of legs of movement before probe
  4715. * S = Schizoid (Or Star if you prefer)
  4716. *
  4717. * This function assumes the bed has been homed. Specifically, that a G28 command
  4718. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4719. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4720. * regenerated.
  4721. */
  4722. inline void gcode_M48() {
  4723. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4724. bool bed_leveling_state_at_entry=0;
  4725. bed_leveling_state_at_entry = ubl.state.active;
  4726. #endif
  4727. if (axis_unhomed_error(true, true, true)) return;
  4728. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4729. if (!WITHIN(verbose_level, 0, 4)) {
  4730. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4731. return;
  4732. }
  4733. if (verbose_level > 0)
  4734. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4735. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4736. if (!WITHIN(n_samples, 4, 50)) {
  4737. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4738. return;
  4739. }
  4740. float X_current = current_position[X_AXIS],
  4741. Y_current = current_position[Y_AXIS];
  4742. bool stow_probe_after_each = code_seen('E');
  4743. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4744. #if DISABLED(DELTA)
  4745. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4746. out_of_range_error(PSTR("X"));
  4747. return;
  4748. }
  4749. #endif
  4750. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4751. #if DISABLED(DELTA)
  4752. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4753. out_of_range_error(PSTR("Y"));
  4754. return;
  4755. }
  4756. #else
  4757. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4758. if (!position_is_reachable(pos, true)) {
  4759. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4760. return;
  4761. }
  4762. #endif
  4763. bool seen_L = code_seen('L');
  4764. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4765. if (n_legs > 15) {
  4766. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4767. return;
  4768. }
  4769. if (n_legs == 1) n_legs = 2;
  4770. bool schizoid_flag = code_seen('S');
  4771. if (schizoid_flag && !seen_L) n_legs = 7;
  4772. /**
  4773. * Now get everything to the specified probe point So we can safely do a
  4774. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4775. * we don't want to use that as a starting point for each probe.
  4776. */
  4777. if (verbose_level > 2)
  4778. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4779. // Disable bed level correction in M48 because we want the raw data when we probe
  4780. #if HAS_ABL
  4781. const bool abl_was_enabled = planner.abl_enabled;
  4782. set_bed_leveling_enabled(false);
  4783. #endif
  4784. setup_for_endstop_or_probe_move();
  4785. // Move to the first point, deploy, and probe
  4786. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4787. randomSeed(millis());
  4788. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4789. for (uint8_t n = 0; n < n_samples; n++) {
  4790. if (n_legs) {
  4791. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4792. float angle = random(0.0, 360.0),
  4793. radius = random(
  4794. #if ENABLED(DELTA)
  4795. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4796. #else
  4797. 5, X_MAX_LENGTH / 8
  4798. #endif
  4799. );
  4800. if (verbose_level > 3) {
  4801. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4802. SERIAL_ECHOPAIR(" angle: ", angle);
  4803. SERIAL_ECHOPGM(" Direction: ");
  4804. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4805. SERIAL_ECHOLNPGM("Clockwise");
  4806. }
  4807. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4808. double delta_angle;
  4809. if (schizoid_flag)
  4810. // The points of a 5 point star are 72 degrees apart. We need to
  4811. // skip a point and go to the next one on the star.
  4812. delta_angle = dir * 2.0 * 72.0;
  4813. else
  4814. // If we do this line, we are just trying to move further
  4815. // around the circle.
  4816. delta_angle = dir * (float) random(25, 45);
  4817. angle += delta_angle;
  4818. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4819. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4820. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4821. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4822. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4823. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4824. #if DISABLED(DELTA)
  4825. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4826. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4827. #else
  4828. // If we have gone out too far, we can do a simple fix and scale the numbers
  4829. // back in closer to the origin.
  4830. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4831. X_current *= 0.8;
  4832. Y_current *= 0.8;
  4833. if (verbose_level > 3) {
  4834. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4835. SERIAL_ECHOLNPAIR(", ", Y_current);
  4836. }
  4837. }
  4838. #endif
  4839. if (verbose_level > 3) {
  4840. SERIAL_PROTOCOLPGM("Going to:");
  4841. SERIAL_ECHOPAIR(" X", X_current);
  4842. SERIAL_ECHOPAIR(" Y", Y_current);
  4843. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4844. }
  4845. do_blocking_move_to_xy(X_current, Y_current);
  4846. } // n_legs loop
  4847. } // n_legs
  4848. // Probe a single point
  4849. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4850. /**
  4851. * Get the current mean for the data points we have so far
  4852. */
  4853. double sum = 0.0;
  4854. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4855. mean = sum / (n + 1);
  4856. NOMORE(min, sample_set[n]);
  4857. NOLESS(max, sample_set[n]);
  4858. /**
  4859. * Now, use that mean to calculate the standard deviation for the
  4860. * data points we have so far
  4861. */
  4862. sum = 0.0;
  4863. for (uint8_t j = 0; j <= n; j++)
  4864. sum += sq(sample_set[j] - mean);
  4865. sigma = sqrt(sum / (n + 1));
  4866. if (verbose_level > 0) {
  4867. if (verbose_level > 1) {
  4868. SERIAL_PROTOCOL(n + 1);
  4869. SERIAL_PROTOCOLPGM(" of ");
  4870. SERIAL_PROTOCOL((int)n_samples);
  4871. SERIAL_PROTOCOLPGM(": z: ");
  4872. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4873. if (verbose_level > 2) {
  4874. SERIAL_PROTOCOLPGM(" mean: ");
  4875. SERIAL_PROTOCOL_F(mean, 4);
  4876. SERIAL_PROTOCOLPGM(" sigma: ");
  4877. SERIAL_PROTOCOL_F(sigma, 6);
  4878. SERIAL_PROTOCOLPGM(" min: ");
  4879. SERIAL_PROTOCOL_F(min, 3);
  4880. SERIAL_PROTOCOLPGM(" max: ");
  4881. SERIAL_PROTOCOL_F(max, 3);
  4882. SERIAL_PROTOCOLPGM(" range: ");
  4883. SERIAL_PROTOCOL_F(max-min, 3);
  4884. }
  4885. SERIAL_EOL;
  4886. }
  4887. }
  4888. } // End of probe loop
  4889. if (STOW_PROBE()) return;
  4890. SERIAL_PROTOCOLPGM("Finished!");
  4891. SERIAL_EOL;
  4892. if (verbose_level > 0) {
  4893. SERIAL_PROTOCOLPGM("Mean: ");
  4894. SERIAL_PROTOCOL_F(mean, 6);
  4895. SERIAL_PROTOCOLPGM(" Min: ");
  4896. SERIAL_PROTOCOL_F(min, 3);
  4897. SERIAL_PROTOCOLPGM(" Max: ");
  4898. SERIAL_PROTOCOL_F(max, 3);
  4899. SERIAL_PROTOCOLPGM(" Range: ");
  4900. SERIAL_PROTOCOL_F(max-min, 3);
  4901. SERIAL_EOL;
  4902. }
  4903. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4904. SERIAL_PROTOCOL_F(sigma, 6);
  4905. SERIAL_EOL;
  4906. SERIAL_EOL;
  4907. clean_up_after_endstop_or_probe_move();
  4908. // Re-enable bed level correction if it has been on
  4909. #if HAS_ABL
  4910. set_bed_leveling_enabled(abl_was_enabled);
  4911. #endif
  4912. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4913. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4914. ubl.state.active = bed_leveling_state_at_entry;
  4915. #endif
  4916. report_current_position();
  4917. }
  4918. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4919. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4920. inline void gcode_M49() {
  4921. ubl.g26_debug_flag ^= true;
  4922. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4923. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4924. }
  4925. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4926. /**
  4927. * M75: Start print timer
  4928. */
  4929. inline void gcode_M75() { print_job_timer.start(); }
  4930. /**
  4931. * M76: Pause print timer
  4932. */
  4933. inline void gcode_M76() { print_job_timer.pause(); }
  4934. /**
  4935. * M77: Stop print timer
  4936. */
  4937. inline void gcode_M77() { print_job_timer.stop(); }
  4938. #if ENABLED(PRINTCOUNTER)
  4939. /**
  4940. * M78: Show print statistics
  4941. */
  4942. inline void gcode_M78() {
  4943. // "M78 S78" will reset the statistics
  4944. if (code_seen('S') && code_value_int() == 78)
  4945. print_job_timer.initStats();
  4946. else
  4947. print_job_timer.showStats();
  4948. }
  4949. #endif
  4950. /**
  4951. * M104: Set hot end temperature
  4952. */
  4953. inline void gcode_M104() {
  4954. if (get_target_extruder_from_command(104)) return;
  4955. if (DEBUGGING(DRYRUN)) return;
  4956. #if ENABLED(SINGLENOZZLE)
  4957. if (target_extruder != active_extruder) return;
  4958. #endif
  4959. if (code_seen('S')) {
  4960. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4961. #if ENABLED(DUAL_X_CARRIAGE)
  4962. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4963. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4964. #endif
  4965. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4966. /**
  4967. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  4968. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4969. * standby mode, for instance in a dual extruder setup, without affecting
  4970. * the running print timer.
  4971. */
  4972. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4973. print_job_timer.stop();
  4974. LCD_MESSAGEPGM(WELCOME_MSG);
  4975. }
  4976. #endif
  4977. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4978. }
  4979. #if ENABLED(AUTOTEMP)
  4980. planner.autotemp_M104_M109();
  4981. #endif
  4982. }
  4983. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4984. void print_heaterstates() {
  4985. #if HAS_TEMP_HOTEND
  4986. SERIAL_PROTOCOLPGM(" T:");
  4987. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4988. SERIAL_PROTOCOLPGM(" /");
  4989. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4990. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4991. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4992. SERIAL_PROTOCOLCHAR(')');
  4993. #endif
  4994. #endif
  4995. #if HAS_TEMP_BED
  4996. SERIAL_PROTOCOLPGM(" B:");
  4997. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4998. SERIAL_PROTOCOLPGM(" /");
  4999. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5000. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5001. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5002. SERIAL_PROTOCOLCHAR(')');
  5003. #endif
  5004. #endif
  5005. #if HOTENDS > 1
  5006. HOTEND_LOOP() {
  5007. SERIAL_PROTOCOLPAIR(" T", e);
  5008. SERIAL_PROTOCOLCHAR(':');
  5009. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5010. SERIAL_PROTOCOLPGM(" /");
  5011. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5012. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5013. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5014. SERIAL_PROTOCOLCHAR(')');
  5015. #endif
  5016. }
  5017. #endif
  5018. SERIAL_PROTOCOLPGM(" @:");
  5019. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5020. #if HAS_TEMP_BED
  5021. SERIAL_PROTOCOLPGM(" B@:");
  5022. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5023. #endif
  5024. #if HOTENDS > 1
  5025. HOTEND_LOOP() {
  5026. SERIAL_PROTOCOLPAIR(" @", e);
  5027. SERIAL_PROTOCOLCHAR(':');
  5028. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5029. }
  5030. #endif
  5031. }
  5032. #endif
  5033. /**
  5034. * M105: Read hot end and bed temperature
  5035. */
  5036. inline void gcode_M105() {
  5037. if (get_target_extruder_from_command(105)) return;
  5038. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5039. SERIAL_PROTOCOLPGM(MSG_OK);
  5040. print_heaterstates();
  5041. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5042. SERIAL_ERROR_START;
  5043. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5044. #endif
  5045. SERIAL_EOL;
  5046. }
  5047. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5048. static uint8_t auto_report_temp_interval;
  5049. static millis_t next_temp_report_ms;
  5050. /**
  5051. * M155: Set temperature auto-report interval. M155 S<seconds>
  5052. */
  5053. inline void gcode_M155() {
  5054. if (code_seen('S')) {
  5055. auto_report_temp_interval = code_value_byte();
  5056. NOMORE(auto_report_temp_interval, 60);
  5057. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5058. }
  5059. }
  5060. inline void auto_report_temperatures() {
  5061. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5062. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5063. print_heaterstates();
  5064. SERIAL_EOL;
  5065. }
  5066. }
  5067. #endif // AUTO_REPORT_TEMPERATURES
  5068. #if FAN_COUNT > 0
  5069. /**
  5070. * M106: Set Fan Speed
  5071. *
  5072. * S<int> Speed between 0-255
  5073. * P<index> Fan index, if more than one fan
  5074. */
  5075. inline void gcode_M106() {
  5076. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5077. p = code_seen('P') ? code_value_ushort() : 0;
  5078. NOMORE(s, 255);
  5079. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5080. }
  5081. /**
  5082. * M107: Fan Off
  5083. */
  5084. inline void gcode_M107() {
  5085. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5086. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5087. }
  5088. #endif // FAN_COUNT > 0
  5089. #if DISABLED(EMERGENCY_PARSER)
  5090. /**
  5091. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5092. */
  5093. inline void gcode_M108() { wait_for_heatup = false; }
  5094. /**
  5095. * M112: Emergency Stop
  5096. */
  5097. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5098. /**
  5099. * M410: Quickstop - Abort all planned moves
  5100. *
  5101. * This will stop the carriages mid-move, so most likely they
  5102. * will be out of sync with the stepper position after this.
  5103. */
  5104. inline void gcode_M410() { quickstop_stepper(); }
  5105. #endif
  5106. /**
  5107. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5108. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5109. */
  5110. #ifndef MIN_COOLING_SLOPE_DEG
  5111. #define MIN_COOLING_SLOPE_DEG 1.50
  5112. #endif
  5113. #ifndef MIN_COOLING_SLOPE_TIME
  5114. #define MIN_COOLING_SLOPE_TIME 60
  5115. #endif
  5116. inline void gcode_M109() {
  5117. if (get_target_extruder_from_command(109)) return;
  5118. if (DEBUGGING(DRYRUN)) return;
  5119. #if ENABLED(SINGLENOZZLE)
  5120. if (target_extruder != active_extruder) return;
  5121. #endif
  5122. const bool no_wait_for_cooling = code_seen('S');
  5123. if (no_wait_for_cooling || code_seen('R')) {
  5124. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5125. #if ENABLED(DUAL_X_CARRIAGE)
  5126. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5127. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5128. #endif
  5129. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5130. /**
  5131. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5132. * standby mode, (e.g., in a dual extruder setup) without affecting
  5133. * the running print timer.
  5134. */
  5135. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5136. print_job_timer.stop();
  5137. LCD_MESSAGEPGM(WELCOME_MSG);
  5138. }
  5139. else
  5140. print_job_timer.start();
  5141. #endif
  5142. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5143. }
  5144. else return;
  5145. #if ENABLED(AUTOTEMP)
  5146. planner.autotemp_M104_M109();
  5147. #endif
  5148. #if TEMP_RESIDENCY_TIME > 0
  5149. millis_t residency_start_ms = 0;
  5150. // Loop until the temperature has stabilized
  5151. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5152. #else
  5153. // Loop until the temperature is very close target
  5154. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5155. #endif
  5156. float target_temp = -1.0, old_temp = 9999.0;
  5157. bool wants_to_cool = false;
  5158. wait_for_heatup = true;
  5159. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5160. KEEPALIVE_STATE(NOT_BUSY);
  5161. #if ENABLED(PRINTER_EVENT_LEDS)
  5162. const float start_temp = thermalManager.degHotend(target_extruder);
  5163. uint8_t old_blue = 0;
  5164. #endif
  5165. do {
  5166. // Target temperature might be changed during the loop
  5167. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5168. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5169. target_temp = thermalManager.degTargetHotend(target_extruder);
  5170. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5171. if (no_wait_for_cooling && wants_to_cool) break;
  5172. }
  5173. now = millis();
  5174. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5175. next_temp_ms = now + 1000UL;
  5176. print_heaterstates();
  5177. #if TEMP_RESIDENCY_TIME > 0
  5178. SERIAL_PROTOCOLPGM(" W:");
  5179. if (residency_start_ms) {
  5180. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5181. SERIAL_PROTOCOLLN(rem);
  5182. }
  5183. else {
  5184. SERIAL_PROTOCOLLNPGM("?");
  5185. }
  5186. #else
  5187. SERIAL_EOL;
  5188. #endif
  5189. }
  5190. idle();
  5191. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5192. const float temp = thermalManager.degHotend(target_extruder);
  5193. #if ENABLED(PRINTER_EVENT_LEDS)
  5194. // Gradually change LED strip from violet to red as nozzle heats up
  5195. if (!wants_to_cool) {
  5196. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5197. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5198. }
  5199. #endif
  5200. #if TEMP_RESIDENCY_TIME > 0
  5201. const float temp_diff = fabs(target_temp - temp);
  5202. if (!residency_start_ms) {
  5203. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5204. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5205. }
  5206. else if (temp_diff > TEMP_HYSTERESIS) {
  5207. // Restart the timer whenever the temperature falls outside the hysteresis.
  5208. residency_start_ms = now;
  5209. }
  5210. #endif
  5211. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5212. if (wants_to_cool) {
  5213. // break after MIN_COOLING_SLOPE_TIME seconds
  5214. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5215. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5216. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5217. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5218. old_temp = temp;
  5219. }
  5220. }
  5221. } while (wait_for_heatup && TEMP_CONDITIONS);
  5222. if (wait_for_heatup) {
  5223. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5224. #if ENABLED(PRINTER_EVENT_LEDS)
  5225. #if ENABLED(RGBW_LED)
  5226. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5227. #else
  5228. set_led_color(255, 255, 255); // Set LEDs All On
  5229. #endif
  5230. #endif
  5231. }
  5232. KEEPALIVE_STATE(IN_HANDLER);
  5233. }
  5234. #if HAS_TEMP_BED
  5235. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5236. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5237. #endif
  5238. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5239. #define MIN_COOLING_SLOPE_TIME_BED 60
  5240. #endif
  5241. /**
  5242. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5243. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5244. */
  5245. inline void gcode_M190() {
  5246. if (DEBUGGING(DRYRUN)) return;
  5247. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5248. const bool no_wait_for_cooling = code_seen('S');
  5249. if (no_wait_for_cooling || code_seen('R')) {
  5250. thermalManager.setTargetBed(code_value_temp_abs());
  5251. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5252. if (code_value_temp_abs() > BED_MINTEMP)
  5253. print_job_timer.start();
  5254. #endif
  5255. }
  5256. else return;
  5257. #if TEMP_BED_RESIDENCY_TIME > 0
  5258. millis_t residency_start_ms = 0;
  5259. // Loop until the temperature has stabilized
  5260. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5261. #else
  5262. // Loop until the temperature is very close target
  5263. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5264. #endif
  5265. float target_temp = -1.0, old_temp = 9999.0;
  5266. bool wants_to_cool = false;
  5267. wait_for_heatup = true;
  5268. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5269. KEEPALIVE_STATE(NOT_BUSY);
  5270. target_extruder = active_extruder; // for print_heaterstates
  5271. #if ENABLED(PRINTER_EVENT_LEDS)
  5272. const float start_temp = thermalManager.degBed();
  5273. uint8_t old_red = 255;
  5274. #endif
  5275. do {
  5276. // Target temperature might be changed during the loop
  5277. if (target_temp != thermalManager.degTargetBed()) {
  5278. wants_to_cool = thermalManager.isCoolingBed();
  5279. target_temp = thermalManager.degTargetBed();
  5280. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5281. if (no_wait_for_cooling && wants_to_cool) break;
  5282. }
  5283. now = millis();
  5284. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5285. next_temp_ms = now + 1000UL;
  5286. print_heaterstates();
  5287. #if TEMP_BED_RESIDENCY_TIME > 0
  5288. SERIAL_PROTOCOLPGM(" W:");
  5289. if (residency_start_ms) {
  5290. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5291. SERIAL_PROTOCOLLN(rem);
  5292. }
  5293. else {
  5294. SERIAL_PROTOCOLLNPGM("?");
  5295. }
  5296. #else
  5297. SERIAL_EOL;
  5298. #endif
  5299. }
  5300. idle();
  5301. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5302. const float temp = thermalManager.degBed();
  5303. #if ENABLED(PRINTER_EVENT_LEDS)
  5304. // Gradually change LED strip from blue to violet as bed heats up
  5305. if (!wants_to_cool) {
  5306. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5307. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5308. }
  5309. }
  5310. #endif
  5311. #if TEMP_BED_RESIDENCY_TIME > 0
  5312. const float temp_diff = fabs(target_temp - temp);
  5313. if (!residency_start_ms) {
  5314. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5315. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5316. }
  5317. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5318. // Restart the timer whenever the temperature falls outside the hysteresis.
  5319. residency_start_ms = now;
  5320. }
  5321. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5322. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5323. if (wants_to_cool) {
  5324. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5325. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5326. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5327. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5328. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5329. old_temp = temp;
  5330. }
  5331. }
  5332. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5333. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5334. KEEPALIVE_STATE(IN_HANDLER);
  5335. }
  5336. #endif // HAS_TEMP_BED
  5337. /**
  5338. * M110: Set Current Line Number
  5339. */
  5340. inline void gcode_M110() {
  5341. if (code_seen('N')) gcode_LastN = code_value_long();
  5342. }
  5343. /**
  5344. * M111: Set the debug level
  5345. */
  5346. inline void gcode_M111() {
  5347. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5348. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5349. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5350. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5351. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5352. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5354. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5355. #endif
  5356. const static char* const debug_strings[] PROGMEM = {
  5357. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5359. str_debug_32
  5360. #endif
  5361. };
  5362. SERIAL_ECHO_START;
  5363. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5364. if (marlin_debug_flags) {
  5365. uint8_t comma = 0;
  5366. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5367. if (TEST(marlin_debug_flags, i)) {
  5368. if (comma++) SERIAL_CHAR(',');
  5369. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5370. }
  5371. }
  5372. }
  5373. else {
  5374. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5375. }
  5376. SERIAL_EOL;
  5377. }
  5378. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5379. /**
  5380. * M113: Get or set Host Keepalive interval (0 to disable)
  5381. *
  5382. * S<seconds> Optional. Set the keepalive interval.
  5383. */
  5384. inline void gcode_M113() {
  5385. if (code_seen('S')) {
  5386. host_keepalive_interval = code_value_byte();
  5387. NOMORE(host_keepalive_interval, 60);
  5388. }
  5389. else {
  5390. SERIAL_ECHO_START;
  5391. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5392. }
  5393. }
  5394. #endif
  5395. #if ENABLED(BARICUDA)
  5396. #if HAS_HEATER_1
  5397. /**
  5398. * M126: Heater 1 valve open
  5399. */
  5400. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5401. /**
  5402. * M127: Heater 1 valve close
  5403. */
  5404. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5405. #endif
  5406. #if HAS_HEATER_2
  5407. /**
  5408. * M128: Heater 2 valve open
  5409. */
  5410. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5411. /**
  5412. * M129: Heater 2 valve close
  5413. */
  5414. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5415. #endif
  5416. #endif //BARICUDA
  5417. /**
  5418. * M140: Set bed temperature
  5419. */
  5420. inline void gcode_M140() {
  5421. if (DEBUGGING(DRYRUN)) return;
  5422. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5423. }
  5424. #if ENABLED(ULTIPANEL)
  5425. /**
  5426. * M145: Set the heatup state for a material in the LCD menu
  5427. *
  5428. * S<material> (0=PLA, 1=ABS)
  5429. * H<hotend temp>
  5430. * B<bed temp>
  5431. * F<fan speed>
  5432. */
  5433. inline void gcode_M145() {
  5434. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5435. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5436. SERIAL_ERROR_START;
  5437. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5438. }
  5439. else {
  5440. int v;
  5441. if (code_seen('H')) {
  5442. v = code_value_int();
  5443. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5444. }
  5445. if (code_seen('F')) {
  5446. v = code_value_int();
  5447. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5448. }
  5449. #if TEMP_SENSOR_BED != 0
  5450. if (code_seen('B')) {
  5451. v = code_value_int();
  5452. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5453. }
  5454. #endif
  5455. }
  5456. }
  5457. #endif // ULTIPANEL
  5458. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5459. /**
  5460. * M149: Set temperature units
  5461. */
  5462. inline void gcode_M149() {
  5463. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5464. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5465. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5466. }
  5467. #endif
  5468. #if HAS_POWER_SWITCH
  5469. /**
  5470. * M80: Turn on Power Supply
  5471. */
  5472. inline void gcode_M80() {
  5473. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5474. /**
  5475. * If you have a switch on suicide pin, this is useful
  5476. * if you want to start another print with suicide feature after
  5477. * a print without suicide...
  5478. */
  5479. #if HAS_SUICIDE
  5480. OUT_WRITE(SUICIDE_PIN, HIGH);
  5481. #endif
  5482. #if ENABLED(ULTIPANEL)
  5483. powersupply = true;
  5484. LCD_MESSAGEPGM(WELCOME_MSG);
  5485. #endif
  5486. }
  5487. #endif // HAS_POWER_SWITCH
  5488. /**
  5489. * M81: Turn off Power, including Power Supply, if there is one.
  5490. *
  5491. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5492. */
  5493. inline void gcode_M81() {
  5494. thermalManager.disable_all_heaters();
  5495. stepper.finish_and_disable();
  5496. #if FAN_COUNT > 0
  5497. #if FAN_COUNT > 1
  5498. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5499. #else
  5500. fanSpeeds[0] = 0;
  5501. #endif
  5502. #endif
  5503. safe_delay(1000); // Wait 1 second before switching off
  5504. #if HAS_SUICIDE
  5505. stepper.synchronize();
  5506. suicide();
  5507. #elif HAS_POWER_SWITCH
  5508. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5509. #endif
  5510. #if ENABLED(ULTIPANEL)
  5511. #if HAS_POWER_SWITCH
  5512. powersupply = false;
  5513. #endif
  5514. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5515. #endif
  5516. }
  5517. /**
  5518. * M82: Set E codes absolute (default)
  5519. */
  5520. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5521. /**
  5522. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5523. */
  5524. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5525. /**
  5526. * M18, M84: Disable all stepper motors
  5527. */
  5528. inline void gcode_M18_M84() {
  5529. if (code_seen('S')) {
  5530. stepper_inactive_time = code_value_millis_from_seconds();
  5531. }
  5532. else {
  5533. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5534. if (all_axis) {
  5535. stepper.finish_and_disable();
  5536. }
  5537. else {
  5538. stepper.synchronize();
  5539. if (code_seen('X')) disable_X();
  5540. if (code_seen('Y')) disable_Y();
  5541. if (code_seen('Z')) disable_Z();
  5542. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5543. if (code_seen('E')) disable_e_steppers();
  5544. #endif
  5545. }
  5546. }
  5547. }
  5548. /**
  5549. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5550. */
  5551. inline void gcode_M85() {
  5552. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5553. }
  5554. /**
  5555. * Multi-stepper support for M92, M201, M203
  5556. */
  5557. #if ENABLED(DISTINCT_E_FACTORS)
  5558. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5559. #define TARGET_EXTRUDER target_extruder
  5560. #else
  5561. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5562. #define TARGET_EXTRUDER 0
  5563. #endif
  5564. /**
  5565. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5566. * (Follows the same syntax as G92)
  5567. *
  5568. * With multiple extruders use T to specify which one.
  5569. */
  5570. inline void gcode_M92() {
  5571. GET_TARGET_EXTRUDER(92);
  5572. LOOP_XYZE(i) {
  5573. if (code_seen(axis_codes[i])) {
  5574. if (i == E_AXIS) {
  5575. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5576. if (value < 20.0) {
  5577. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5578. planner.max_jerk[E_AXIS] *= factor;
  5579. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5580. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5581. }
  5582. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5583. }
  5584. else {
  5585. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5586. }
  5587. }
  5588. }
  5589. planner.refresh_positioning();
  5590. }
  5591. /**
  5592. * Output the current position to serial
  5593. */
  5594. static void report_current_position() {
  5595. SERIAL_PROTOCOLPGM("X:");
  5596. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5597. SERIAL_PROTOCOLPGM(" Y:");
  5598. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5599. SERIAL_PROTOCOLPGM(" Z:");
  5600. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5601. SERIAL_PROTOCOLPGM(" E:");
  5602. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5603. stepper.report_positions();
  5604. #if IS_SCARA
  5605. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5606. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5607. SERIAL_EOL;
  5608. #endif
  5609. }
  5610. /**
  5611. * M114: Output current position to serial port
  5612. */
  5613. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5614. /**
  5615. * M115: Capabilities string
  5616. */
  5617. inline void gcode_M115() {
  5618. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5619. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5620. // EEPROM (M500, M501)
  5621. #if ENABLED(EEPROM_SETTINGS)
  5622. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5623. #else
  5624. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5625. #endif
  5626. // AUTOREPORT_TEMP (M155)
  5627. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5628. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5629. #else
  5630. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5631. #endif
  5632. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5633. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5634. // AUTOLEVEL (G29)
  5635. #if HAS_ABL
  5636. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5637. #else
  5638. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5639. #endif
  5640. // Z_PROBE (G30)
  5641. #if HAS_BED_PROBE
  5642. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5643. #else
  5644. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5645. #endif
  5646. // MESH_REPORT (M420 V)
  5647. #if PLANNER_LEVELING
  5648. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  5649. #else
  5650. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  5651. #endif
  5652. // SOFTWARE_POWER (G30)
  5653. #if HAS_POWER_SWITCH
  5654. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5655. #else
  5656. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5657. #endif
  5658. // TOGGLE_LIGHTS (M355)
  5659. #if HAS_CASE_LIGHT
  5660. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5661. #else
  5662. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5663. #endif
  5664. // EMERGENCY_PARSER (M108, M112, M410)
  5665. #if ENABLED(EMERGENCY_PARSER)
  5666. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5667. #else
  5668. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5669. #endif
  5670. #endif // EXTENDED_CAPABILITIES_REPORT
  5671. }
  5672. /**
  5673. * M117: Set LCD Status Message
  5674. */
  5675. inline void gcode_M117() {
  5676. lcd_setstatus(current_command_args);
  5677. }
  5678. /**
  5679. * M119: Output endstop states to serial output
  5680. */
  5681. inline void gcode_M119() { endstops.M119(); }
  5682. /**
  5683. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5684. */
  5685. inline void gcode_M120() { endstops.enable_globally(true); }
  5686. /**
  5687. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5688. */
  5689. inline void gcode_M121() { endstops.enable_globally(false); }
  5690. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5691. /**
  5692. * M125: Store current position and move to filament change position.
  5693. * Called on pause (by M25) to prevent material leaking onto the
  5694. * object. On resume (M24) the head will be moved back and the
  5695. * print will resume.
  5696. *
  5697. * If Marlin is compiled without SD Card support, M125 can be
  5698. * used directly to pause the print and move to park position,
  5699. * resuming with a button click or M108.
  5700. *
  5701. * L = override retract length
  5702. * X = override X
  5703. * Y = override Y
  5704. * Z = override Z raise
  5705. */
  5706. inline void gcode_M125() {
  5707. if (move_away_flag) return; // already paused
  5708. const bool job_running = print_job_timer.isRunning();
  5709. // there are blocks after this one, or sd printing
  5710. move_away_flag = job_running || planner.blocks_queued()
  5711. #if ENABLED(SDSUPPORT)
  5712. || card.sdprinting
  5713. #endif
  5714. ;
  5715. if (!move_away_flag) return; // nothing to pause
  5716. // M125 can be used to pause a print too
  5717. #if ENABLED(SDSUPPORT)
  5718. card.pauseSDPrint();
  5719. #endif
  5720. print_job_timer.pause();
  5721. // Save current position
  5722. COPY(resume_position, current_position);
  5723. set_destination_to_current();
  5724. // Initial retract before move to filament change position
  5725. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5726. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5727. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5728. #endif
  5729. ;
  5730. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5731. // Lift Z axis
  5732. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5733. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5734. FILAMENT_CHANGE_Z_ADD
  5735. #else
  5736. 0
  5737. #endif
  5738. ;
  5739. if (z_lift > 0) {
  5740. destination[Z_AXIS] += z_lift;
  5741. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5742. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5743. }
  5744. // Move XY axes to filament change position or given position
  5745. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5746. #ifdef FILAMENT_CHANGE_X_POS
  5747. + FILAMENT_CHANGE_X_POS
  5748. #endif
  5749. ;
  5750. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5751. #ifdef FILAMENT_CHANGE_Y_POS
  5752. + FILAMENT_CHANGE_Y_POS
  5753. #endif
  5754. ;
  5755. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5756. if (active_extruder > 0) {
  5757. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5758. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5759. }
  5760. #endif
  5761. clamp_to_software_endstops(destination);
  5762. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5763. set_current_to_destination();
  5764. stepper.synchronize();
  5765. disable_e_steppers();
  5766. #if DISABLED(SDSUPPORT)
  5767. // Wait for lcd click or M108
  5768. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5769. wait_for_user = true;
  5770. while (wait_for_user) idle();
  5771. KEEPALIVE_STATE(IN_HANDLER);
  5772. // Return to print position and continue
  5773. move_back_on_resume();
  5774. if (job_running) print_job_timer.start();
  5775. move_away_flag = false;
  5776. #endif
  5777. }
  5778. #endif // PARK_HEAD_ON_PAUSE
  5779. #if HAS_COLOR_LEDS
  5780. /**
  5781. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  5782. *
  5783. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  5784. *
  5785. * Examples:
  5786. *
  5787. * M150 R255 ; Turn LED red
  5788. * M150 R255 U127 ; Turn LED orange (PWM only)
  5789. * M150 ; Turn LED off
  5790. * M150 R U B ; Turn LED white
  5791. * M150 W ; Turn LED white using a white LED
  5792. *
  5793. */
  5794. inline void gcode_M150() {
  5795. set_led_color(
  5796. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5797. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5798. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5799. #if ENABLED(RGBW_LED)
  5800. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  5801. #endif
  5802. );
  5803. }
  5804. #endif // BLINKM || RGB_LED
  5805. /**
  5806. * M200: Set filament diameter and set E axis units to cubic units
  5807. *
  5808. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5809. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5810. */
  5811. inline void gcode_M200() {
  5812. if (get_target_extruder_from_command(200)) return;
  5813. if (code_seen('D')) {
  5814. // setting any extruder filament size disables volumetric on the assumption that
  5815. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5816. // for all extruders
  5817. volumetric_enabled = (code_value_linear_units() != 0.0);
  5818. if (volumetric_enabled) {
  5819. filament_size[target_extruder] = code_value_linear_units();
  5820. // make sure all extruders have some sane value for the filament size
  5821. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5822. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5823. }
  5824. }
  5825. else {
  5826. //reserved for setting filament diameter via UFID or filament measuring device
  5827. return;
  5828. }
  5829. calculate_volumetric_multipliers();
  5830. }
  5831. /**
  5832. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5833. *
  5834. * With multiple extruders use T to specify which one.
  5835. */
  5836. inline void gcode_M201() {
  5837. GET_TARGET_EXTRUDER(201);
  5838. LOOP_XYZE(i) {
  5839. if (code_seen(axis_codes[i])) {
  5840. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5841. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5842. }
  5843. }
  5844. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5845. planner.reset_acceleration_rates();
  5846. }
  5847. #if 0 // Not used for Sprinter/grbl gen6
  5848. inline void gcode_M202() {
  5849. LOOP_XYZE(i) {
  5850. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5851. }
  5852. }
  5853. #endif
  5854. /**
  5855. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5856. *
  5857. * With multiple extruders use T to specify which one.
  5858. */
  5859. inline void gcode_M203() {
  5860. GET_TARGET_EXTRUDER(203);
  5861. LOOP_XYZE(i)
  5862. if (code_seen(axis_codes[i])) {
  5863. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5864. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5865. }
  5866. }
  5867. /**
  5868. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5869. *
  5870. * P = Printing moves
  5871. * R = Retract only (no X, Y, Z) moves
  5872. * T = Travel (non printing) moves
  5873. *
  5874. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5875. */
  5876. inline void gcode_M204() {
  5877. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5878. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5879. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5880. }
  5881. if (code_seen('P')) {
  5882. planner.acceleration = code_value_linear_units();
  5883. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5884. }
  5885. if (code_seen('R')) {
  5886. planner.retract_acceleration = code_value_linear_units();
  5887. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5888. }
  5889. if (code_seen('T')) {
  5890. planner.travel_acceleration = code_value_linear_units();
  5891. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5892. }
  5893. }
  5894. /**
  5895. * M205: Set Advanced Settings
  5896. *
  5897. * S = Min Feed Rate (units/s)
  5898. * T = Min Travel Feed Rate (units/s)
  5899. * B = Min Segment Time (µs)
  5900. * X = Max X Jerk (units/sec^2)
  5901. * Y = Max Y Jerk (units/sec^2)
  5902. * Z = Max Z Jerk (units/sec^2)
  5903. * E = Max E Jerk (units/sec^2)
  5904. */
  5905. inline void gcode_M205() {
  5906. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5907. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5908. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5909. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5910. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5911. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5912. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5913. }
  5914. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5915. /**
  5916. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5917. */
  5918. inline void gcode_M206() {
  5919. LOOP_XYZ(i)
  5920. if (code_seen(axis_codes[i]))
  5921. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5922. #if ENABLED(MORGAN_SCARA)
  5923. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5924. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5925. #endif
  5926. SYNC_PLAN_POSITION_KINEMATIC();
  5927. report_current_position();
  5928. }
  5929. #endif // NO_WORKSPACE_OFFSETS
  5930. #if ENABLED(DELTA)
  5931. /**
  5932. * M665: Set delta configurations
  5933. *
  5934. * L = diagonal rod
  5935. * R = delta radius
  5936. * S = segments per second
  5937. * A = Alpha (Tower 1) diagonal rod trim
  5938. * B = Beta (Tower 2) diagonal rod trim
  5939. * C = Gamma (Tower 3) diagonal rod trim
  5940. */
  5941. inline void gcode_M665() {
  5942. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5943. if (code_seen('R')) delta_radius = code_value_linear_units();
  5944. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5945. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5946. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5947. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5948. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5949. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5950. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5951. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5952. }
  5953. /**
  5954. * M666: Set delta endstop adjustment
  5955. */
  5956. inline void gcode_M666() {
  5957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5958. if (DEBUGGING(LEVELING)) {
  5959. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5960. }
  5961. #endif
  5962. LOOP_XYZ(i) {
  5963. if (code_seen(axis_codes[i])) {
  5964. endstop_adj[i] = code_value_axis_units(i);
  5965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5966. if (DEBUGGING(LEVELING)) {
  5967. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5968. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5969. }
  5970. #endif
  5971. }
  5972. }
  5973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5974. if (DEBUGGING(LEVELING)) {
  5975. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5976. }
  5977. #endif
  5978. }
  5979. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5980. /**
  5981. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5982. */
  5983. inline void gcode_M666() {
  5984. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5985. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5986. }
  5987. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5988. #if ENABLED(FWRETRACT)
  5989. /**
  5990. * M207: Set firmware retraction values
  5991. *
  5992. * S[+units] retract_length
  5993. * W[+units] retract_length_swap (multi-extruder)
  5994. * F[units/min] retract_feedrate_mm_s
  5995. * Z[units] retract_zlift
  5996. */
  5997. inline void gcode_M207() {
  5998. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5999. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6000. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  6001. #if EXTRUDERS > 1
  6002. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6003. #endif
  6004. }
  6005. /**
  6006. * M208: Set firmware un-retraction values
  6007. *
  6008. * S[+units] retract_recover_length (in addition to M207 S*)
  6009. * W[+units] retract_recover_length_swap (multi-extruder)
  6010. * F[units/min] retract_recover_feedrate_mm_s
  6011. */
  6012. inline void gcode_M208() {
  6013. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6014. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6015. #if EXTRUDERS > 1
  6016. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6017. #endif
  6018. }
  6019. /**
  6020. * M209: Enable automatic retract (M209 S1)
  6021. * For slicers that don't support G10/11, reversed extrude-only
  6022. * moves will be classified as retraction.
  6023. */
  6024. inline void gcode_M209() {
  6025. if (code_seen('S')) {
  6026. autoretract_enabled = code_value_bool();
  6027. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6028. }
  6029. }
  6030. #endif // FWRETRACT
  6031. /**
  6032. * M211: Enable, Disable, and/or Report software endstops
  6033. *
  6034. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6035. */
  6036. inline void gcode_M211() {
  6037. SERIAL_ECHO_START;
  6038. #if HAS_SOFTWARE_ENDSTOPS
  6039. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6040. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6041. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6042. #else
  6043. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6044. SERIAL_ECHOPGM(MSG_OFF);
  6045. #endif
  6046. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6047. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6048. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6049. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6050. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6051. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6052. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6053. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6054. }
  6055. #if HOTENDS > 1
  6056. /**
  6057. * M218 - set hotend offset (in linear units)
  6058. *
  6059. * T<tool>
  6060. * X<xoffset>
  6061. * Y<yoffset>
  6062. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6063. */
  6064. inline void gcode_M218() {
  6065. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6066. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  6067. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  6068. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6069. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  6070. #endif
  6071. SERIAL_ECHO_START;
  6072. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6073. HOTEND_LOOP() {
  6074. SERIAL_CHAR(' ');
  6075. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6076. SERIAL_CHAR(',');
  6077. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6078. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6079. SERIAL_CHAR(',');
  6080. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6081. #endif
  6082. }
  6083. SERIAL_EOL;
  6084. }
  6085. #endif // HOTENDS > 1
  6086. /**
  6087. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6088. */
  6089. inline void gcode_M220() {
  6090. if (code_seen('S')) feedrate_percentage = code_value_int();
  6091. }
  6092. /**
  6093. * M221: Set extrusion percentage (M221 T0 S95)
  6094. */
  6095. inline void gcode_M221() {
  6096. if (get_target_extruder_from_command(221)) return;
  6097. if (code_seen('S'))
  6098. flow_percentage[target_extruder] = code_value_int();
  6099. }
  6100. /**
  6101. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6102. */
  6103. inline void gcode_M226() {
  6104. if (code_seen('P')) {
  6105. int pin_number = code_value_int(),
  6106. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6107. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6108. int target = LOW;
  6109. stepper.synchronize();
  6110. pinMode(pin_number, INPUT);
  6111. switch (pin_state) {
  6112. case 1:
  6113. target = HIGH;
  6114. break;
  6115. case 0:
  6116. target = LOW;
  6117. break;
  6118. case -1:
  6119. target = !digitalRead(pin_number);
  6120. break;
  6121. }
  6122. while (digitalRead(pin_number) != target) idle();
  6123. } // pin_state -1 0 1 && pin_number > -1
  6124. } // code_seen('P')
  6125. }
  6126. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6127. /**
  6128. * M260: Send data to a I2C slave device
  6129. *
  6130. * This is a PoC, the formating and arguments for the GCODE will
  6131. * change to be more compatible, the current proposal is:
  6132. *
  6133. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6134. *
  6135. * M260 B<byte-1 value in base 10>
  6136. * M260 B<byte-2 value in base 10>
  6137. * M260 B<byte-3 value in base 10>
  6138. *
  6139. * M260 S1 ; Send the buffered data and reset the buffer
  6140. * M260 R1 ; Reset the buffer without sending data
  6141. *
  6142. */
  6143. inline void gcode_M260() {
  6144. // Set the target address
  6145. if (code_seen('A')) i2c.address(code_value_byte());
  6146. // Add a new byte to the buffer
  6147. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6148. // Flush the buffer to the bus
  6149. if (code_seen('S')) i2c.send();
  6150. // Reset and rewind the buffer
  6151. else if (code_seen('R')) i2c.reset();
  6152. }
  6153. /**
  6154. * M261: Request X bytes from I2C slave device
  6155. *
  6156. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6157. */
  6158. inline void gcode_M261() {
  6159. if (code_seen('A')) i2c.address(code_value_byte());
  6160. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6161. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6162. i2c.relay(bytes);
  6163. }
  6164. else {
  6165. SERIAL_ERROR_START;
  6166. SERIAL_ERRORLN("Bad i2c request");
  6167. }
  6168. }
  6169. #endif // EXPERIMENTAL_I2CBUS
  6170. #if HAS_SERVOS
  6171. /**
  6172. * M280: Get or set servo position. P<index> [S<angle>]
  6173. */
  6174. inline void gcode_M280() {
  6175. if (!code_seen('P')) return;
  6176. int servo_index = code_value_int();
  6177. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6178. if (code_seen('S'))
  6179. MOVE_SERVO(servo_index, code_value_int());
  6180. else {
  6181. SERIAL_ECHO_START;
  6182. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6183. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6184. }
  6185. }
  6186. else {
  6187. SERIAL_ERROR_START;
  6188. SERIAL_ECHOPAIR("Servo ", servo_index);
  6189. SERIAL_ECHOLNPGM(" out of range");
  6190. }
  6191. }
  6192. #endif // HAS_SERVOS
  6193. #if HAS_BUZZER
  6194. /**
  6195. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6196. */
  6197. inline void gcode_M300() {
  6198. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6199. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6200. // Limits the tone duration to 0-5 seconds.
  6201. NOMORE(duration, 5000);
  6202. BUZZ(duration, frequency);
  6203. }
  6204. #endif // HAS_BUZZER
  6205. #if ENABLED(PIDTEMP)
  6206. /**
  6207. * M301: Set PID parameters P I D (and optionally C, L)
  6208. *
  6209. * P[float] Kp term
  6210. * I[float] Ki term (unscaled)
  6211. * D[float] Kd term (unscaled)
  6212. *
  6213. * With PID_EXTRUSION_SCALING:
  6214. *
  6215. * C[float] Kc term
  6216. * L[float] LPQ length
  6217. */
  6218. inline void gcode_M301() {
  6219. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6220. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6221. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6222. if (e < HOTENDS) { // catch bad input value
  6223. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6224. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6225. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6226. #if ENABLED(PID_EXTRUSION_SCALING)
  6227. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6228. if (code_seen('L')) lpq_len = code_value_float();
  6229. NOMORE(lpq_len, LPQ_MAX_LEN);
  6230. #endif
  6231. thermalManager.updatePID();
  6232. SERIAL_ECHO_START;
  6233. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6234. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6235. #endif // PID_PARAMS_PER_HOTEND
  6236. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6237. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6238. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6239. #if ENABLED(PID_EXTRUSION_SCALING)
  6240. //Kc does not have scaling applied above, or in resetting defaults
  6241. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6242. #endif
  6243. SERIAL_EOL;
  6244. }
  6245. else {
  6246. SERIAL_ERROR_START;
  6247. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6248. }
  6249. }
  6250. #endif // PIDTEMP
  6251. #if ENABLED(PIDTEMPBED)
  6252. inline void gcode_M304() {
  6253. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6254. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6255. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6256. thermalManager.updatePID();
  6257. SERIAL_ECHO_START;
  6258. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6259. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6260. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6261. }
  6262. #endif // PIDTEMPBED
  6263. #if defined(CHDK) || HAS_PHOTOGRAPH
  6264. /**
  6265. * M240: Trigger a camera by emulating a Canon RC-1
  6266. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6267. */
  6268. inline void gcode_M240() {
  6269. #ifdef CHDK
  6270. OUT_WRITE(CHDK, HIGH);
  6271. chdkHigh = millis();
  6272. chdkActive = true;
  6273. #elif HAS_PHOTOGRAPH
  6274. const uint8_t NUM_PULSES = 16;
  6275. const float PULSE_LENGTH = 0.01524;
  6276. for (int i = 0; i < NUM_PULSES; i++) {
  6277. WRITE(PHOTOGRAPH_PIN, HIGH);
  6278. _delay_ms(PULSE_LENGTH);
  6279. WRITE(PHOTOGRAPH_PIN, LOW);
  6280. _delay_ms(PULSE_LENGTH);
  6281. }
  6282. delay(7.33);
  6283. for (int i = 0; i < NUM_PULSES; i++) {
  6284. WRITE(PHOTOGRAPH_PIN, HIGH);
  6285. _delay_ms(PULSE_LENGTH);
  6286. WRITE(PHOTOGRAPH_PIN, LOW);
  6287. _delay_ms(PULSE_LENGTH);
  6288. }
  6289. #endif // !CHDK && HAS_PHOTOGRAPH
  6290. }
  6291. #endif // CHDK || PHOTOGRAPH_PIN
  6292. #if HAS_LCD_CONTRAST
  6293. /**
  6294. * M250: Read and optionally set the LCD contrast
  6295. */
  6296. inline void gcode_M250() {
  6297. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6298. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6299. SERIAL_PROTOCOL(lcd_contrast);
  6300. SERIAL_EOL;
  6301. }
  6302. #endif // HAS_LCD_CONTRAST
  6303. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6304. /**
  6305. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6306. *
  6307. * S<temperature> sets the minimum extrude temperature
  6308. * P<bool> enables (1) or disables (0) cold extrusion
  6309. *
  6310. * Examples:
  6311. *
  6312. * M302 ; report current cold extrusion state
  6313. * M302 P0 ; enable cold extrusion checking
  6314. * M302 P1 ; disables cold extrusion checking
  6315. * M302 S0 ; always allow extrusion (disables checking)
  6316. * M302 S170 ; only allow extrusion above 170
  6317. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6318. */
  6319. inline void gcode_M302() {
  6320. bool seen_S = code_seen('S');
  6321. if (seen_S) {
  6322. thermalManager.extrude_min_temp = code_value_temp_abs();
  6323. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6324. }
  6325. if (code_seen('P'))
  6326. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6327. else if (!seen_S) {
  6328. // Report current state
  6329. SERIAL_ECHO_START;
  6330. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6331. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6332. SERIAL_ECHOLNPGM("C)");
  6333. }
  6334. }
  6335. #endif // PREVENT_COLD_EXTRUSION
  6336. /**
  6337. * M303: PID relay autotune
  6338. *
  6339. * S<temperature> sets the target temperature. (default 150C)
  6340. * E<extruder> (-1 for the bed) (default 0)
  6341. * C<cycles>
  6342. * U<bool> with a non-zero value will apply the result to current settings
  6343. */
  6344. inline void gcode_M303() {
  6345. #if HAS_PID_HEATING
  6346. int e = code_seen('E') ? code_value_int() : 0;
  6347. int c = code_seen('C') ? code_value_int() : 5;
  6348. bool u = code_seen('U') && code_value_bool();
  6349. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6350. if (WITHIN(e, 0, HOTENDS - 1))
  6351. target_extruder = e;
  6352. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6353. thermalManager.PID_autotune(temp, e, c, u);
  6354. KEEPALIVE_STATE(IN_HANDLER);
  6355. #else
  6356. SERIAL_ERROR_START;
  6357. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6358. #endif
  6359. }
  6360. #if ENABLED(MORGAN_SCARA)
  6361. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6362. if (IsRunning()) {
  6363. forward_kinematics_SCARA(delta_a, delta_b);
  6364. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6365. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6366. destination[Z_AXIS] = current_position[Z_AXIS];
  6367. prepare_move_to_destination();
  6368. return true;
  6369. }
  6370. return false;
  6371. }
  6372. /**
  6373. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6374. */
  6375. inline bool gcode_M360() {
  6376. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6377. return SCARA_move_to_cal(0, 120);
  6378. }
  6379. /**
  6380. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6381. */
  6382. inline bool gcode_M361() {
  6383. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6384. return SCARA_move_to_cal(90, 130);
  6385. }
  6386. /**
  6387. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6388. */
  6389. inline bool gcode_M362() {
  6390. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6391. return SCARA_move_to_cal(60, 180);
  6392. }
  6393. /**
  6394. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6395. */
  6396. inline bool gcode_M363() {
  6397. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6398. return SCARA_move_to_cal(50, 90);
  6399. }
  6400. /**
  6401. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6402. */
  6403. inline bool gcode_M364() {
  6404. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6405. return SCARA_move_to_cal(45, 135);
  6406. }
  6407. #endif // SCARA
  6408. #if ENABLED(EXT_SOLENOID)
  6409. void enable_solenoid(const uint8_t num) {
  6410. switch (num) {
  6411. case 0:
  6412. OUT_WRITE(SOL0_PIN, HIGH);
  6413. break;
  6414. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6415. case 1:
  6416. OUT_WRITE(SOL1_PIN, HIGH);
  6417. break;
  6418. #endif
  6419. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6420. case 2:
  6421. OUT_WRITE(SOL2_PIN, HIGH);
  6422. break;
  6423. #endif
  6424. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6425. case 3:
  6426. OUT_WRITE(SOL3_PIN, HIGH);
  6427. break;
  6428. #endif
  6429. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6430. case 4:
  6431. OUT_WRITE(SOL4_PIN, HIGH);
  6432. break;
  6433. #endif
  6434. default:
  6435. SERIAL_ECHO_START;
  6436. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6437. break;
  6438. }
  6439. }
  6440. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6441. void disable_all_solenoids() {
  6442. OUT_WRITE(SOL0_PIN, LOW);
  6443. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6444. OUT_WRITE(SOL1_PIN, LOW);
  6445. #endif
  6446. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6447. OUT_WRITE(SOL2_PIN, LOW);
  6448. #endif
  6449. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6450. OUT_WRITE(SOL3_PIN, LOW);
  6451. #endif
  6452. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6453. OUT_WRITE(SOL4_PIN, LOW);
  6454. #endif
  6455. }
  6456. /**
  6457. * M380: Enable solenoid on the active extruder
  6458. */
  6459. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6460. /**
  6461. * M381: Disable all solenoids
  6462. */
  6463. inline void gcode_M381() { disable_all_solenoids(); }
  6464. #endif // EXT_SOLENOID
  6465. /**
  6466. * M400: Finish all moves
  6467. */
  6468. inline void gcode_M400() { stepper.synchronize(); }
  6469. #if HAS_BED_PROBE
  6470. /**
  6471. * M401: Engage Z Servo endstop if available
  6472. */
  6473. inline void gcode_M401() { DEPLOY_PROBE(); }
  6474. /**
  6475. * M402: Retract Z Servo endstop if enabled
  6476. */
  6477. inline void gcode_M402() { STOW_PROBE(); }
  6478. #endif // HAS_BED_PROBE
  6479. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6480. /**
  6481. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6482. */
  6483. inline void gcode_M404() {
  6484. if (code_seen('W')) {
  6485. filament_width_nominal = code_value_linear_units();
  6486. }
  6487. else {
  6488. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6489. SERIAL_PROTOCOLLN(filament_width_nominal);
  6490. }
  6491. }
  6492. /**
  6493. * M405: Turn on filament sensor for control
  6494. */
  6495. inline void gcode_M405() {
  6496. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6497. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6498. if (code_seen('D')) meas_delay_cm = code_value_int();
  6499. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6500. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6501. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6502. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6503. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6504. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6505. }
  6506. filament_sensor = true;
  6507. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6508. //SERIAL_PROTOCOL(filament_width_meas);
  6509. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6510. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6511. }
  6512. /**
  6513. * M406: Turn off filament sensor for control
  6514. */
  6515. inline void gcode_M406() { filament_sensor = false; }
  6516. /**
  6517. * M407: Get measured filament diameter on serial output
  6518. */
  6519. inline void gcode_M407() {
  6520. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6521. SERIAL_PROTOCOLLN(filament_width_meas);
  6522. }
  6523. #endif // FILAMENT_WIDTH_SENSOR
  6524. void quickstop_stepper() {
  6525. stepper.quick_stop();
  6526. stepper.synchronize();
  6527. set_current_from_steppers_for_axis(ALL_AXES);
  6528. SYNC_PLAN_POSITION_KINEMATIC();
  6529. }
  6530. #if PLANNER_LEVELING
  6531. /**
  6532. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6533. *
  6534. * S[bool] Turns leveling on or off
  6535. * Z[height] Sets the Z fade height (0 or none to disable)
  6536. * V[bool] Verbose - Print the leveling grid
  6537. *
  6538. * With AUTO_BED_LEVELING_UBL only:
  6539. *
  6540. * L[index] Load UBL mesh from index (0 is default)
  6541. */
  6542. inline void gcode_M420() {
  6543. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6544. // L to load a mesh from the EEPROM
  6545. if (code_seen('L')) {
  6546. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6547. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6548. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6549. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6550. return;
  6551. }
  6552. ubl.load_mesh(storage_slot);
  6553. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6554. ubl.state.eeprom_storage_slot = storage_slot;
  6555. }
  6556. #endif // AUTO_BED_LEVELING_UBL
  6557. // V to print the matrix or mesh
  6558. if (code_seen('V')) {
  6559. #if ABL_PLANAR
  6560. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6561. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6562. if (bilinear_grid_spacing[X_AXIS]) {
  6563. print_bilinear_leveling_grid();
  6564. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6565. bed_level_virt_print();
  6566. #endif
  6567. }
  6568. #elif ENABLED(MESH_BED_LEVELING)
  6569. if (mbl.has_mesh()) {
  6570. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6571. mbl_mesh_report();
  6572. }
  6573. #endif
  6574. }
  6575. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6576. // L to load a mesh from the EEPROM
  6577. if (code_seen('L') || code_seen('V')) {
  6578. ubl.display_map(0); // Currently only supports one map type
  6579. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6580. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6581. }
  6582. #endif
  6583. bool to_enable = false;
  6584. if (code_seen('S')) {
  6585. to_enable = code_value_bool();
  6586. set_bed_leveling_enabled(to_enable);
  6587. }
  6588. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6589. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6590. #endif
  6591. const bool new_status =
  6592. #if ENABLED(MESH_BED_LEVELING)
  6593. mbl.active()
  6594. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6595. ubl.state.active
  6596. #else
  6597. planner.abl_enabled
  6598. #endif
  6599. ;
  6600. if (to_enable && !new_status) {
  6601. SERIAL_ERROR_START;
  6602. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6603. }
  6604. SERIAL_ECHO_START;
  6605. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6606. }
  6607. #endif
  6608. #if ENABLED(MESH_BED_LEVELING)
  6609. /**
  6610. * M421: Set a single Mesh Bed Leveling Z coordinate
  6611. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6612. */
  6613. inline void gcode_M421() {
  6614. int8_t px = 0, py = 0;
  6615. float z = 0;
  6616. bool hasX, hasY, hasZ, hasI, hasJ;
  6617. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6618. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6619. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6620. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6621. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6622. if (hasX && hasY && hasZ) {
  6623. if (px >= 0 && py >= 0)
  6624. mbl.set_z(px, py, z);
  6625. else {
  6626. SERIAL_ERROR_START;
  6627. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6628. }
  6629. }
  6630. else if (hasI && hasJ && hasZ) {
  6631. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  6632. mbl.set_z(px, py, z);
  6633. else {
  6634. SERIAL_ERROR_START;
  6635. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6636. }
  6637. }
  6638. else {
  6639. SERIAL_ERROR_START;
  6640. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6641. }
  6642. }
  6643. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  6644. /**
  6645. * M421: Set a single Mesh Bed Leveling Z coordinate
  6646. *
  6647. * M421 I<xindex> J<yindex> Z<linear>
  6648. */
  6649. inline void gcode_M421() {
  6650. int8_t px = 0, py = 0;
  6651. float z = 0;
  6652. bool hasI, hasJ, hasZ;
  6653. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6654. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6655. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6656. if (hasI && hasJ && hasZ) {
  6657. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  6658. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6659. ubl.z_values[px][py] = z;
  6660. #else
  6661. bed_level_grid[px][py] = z;
  6662. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6663. bed_level_virt_interpolate();
  6664. #endif
  6665. #endif
  6666. }
  6667. else {
  6668. SERIAL_ERROR_START;
  6669. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6670. }
  6671. }
  6672. else {
  6673. SERIAL_ERROR_START;
  6674. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6675. }
  6676. }
  6677. #endif
  6678. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6679. /**
  6680. * M428: Set home_offset based on the distance between the
  6681. * current_position and the nearest "reference point."
  6682. * If an axis is past center its endstop position
  6683. * is the reference-point. Otherwise it uses 0. This allows
  6684. * the Z offset to be set near the bed when using a max endstop.
  6685. *
  6686. * M428 can't be used more than 2cm away from 0 or an endstop.
  6687. *
  6688. * Use M206 to set these values directly.
  6689. */
  6690. inline void gcode_M428() {
  6691. bool err = false;
  6692. LOOP_XYZ(i) {
  6693. if (axis_homed[i]) {
  6694. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6695. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6696. if (WITHIN(diff, -20, 20)) {
  6697. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6698. }
  6699. else {
  6700. SERIAL_ERROR_START;
  6701. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6702. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6703. BUZZ(200, 40);
  6704. err = true;
  6705. break;
  6706. }
  6707. }
  6708. }
  6709. if (!err) {
  6710. SYNC_PLAN_POSITION_KINEMATIC();
  6711. report_current_position();
  6712. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6713. BUZZ(100, 659);
  6714. BUZZ(100, 698);
  6715. }
  6716. }
  6717. #endif // NO_WORKSPACE_OFFSETS
  6718. /**
  6719. * M500: Store settings in EEPROM
  6720. */
  6721. inline void gcode_M500() {
  6722. (void)settings.save();
  6723. }
  6724. /**
  6725. * M501: Read settings from EEPROM
  6726. */
  6727. inline void gcode_M501() {
  6728. (void)settings.load();
  6729. }
  6730. /**
  6731. * M502: Revert to default settings
  6732. */
  6733. inline void gcode_M502() {
  6734. (void)settings.reset();
  6735. }
  6736. /**
  6737. * M503: print settings currently in memory
  6738. */
  6739. inline void gcode_M503() {
  6740. (void)settings.report(code_seen('S') && !code_value_bool());
  6741. }
  6742. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6743. /**
  6744. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6745. */
  6746. inline void gcode_M540() {
  6747. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6748. }
  6749. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6750. #if HAS_BED_PROBE
  6751. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  6752. static float last_zoffset = NAN;
  6753. if (!isnan(last_zoffset)) {
  6754. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  6755. const float diff = zprobe_zoffset - last_zoffset;
  6756. #endif
  6757. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6758. // Correct bilinear grid for new probe offset
  6759. if (diff) {
  6760. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  6761. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  6762. bed_level_grid[x][y] -= diff;
  6763. }
  6764. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6765. bed_level_virt_interpolate();
  6766. #endif
  6767. #endif
  6768. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  6769. if (!no_babystep && planner.abl_enabled)
  6770. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  6771. #else
  6772. UNUSED(no_babystep);
  6773. #endif
  6774. }
  6775. last_zoffset = zprobe_zoffset;
  6776. }
  6777. inline void gcode_M851() {
  6778. SERIAL_ECHO_START;
  6779. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  6780. if (code_seen('Z')) {
  6781. const float value = code_value_axis_units(Z_AXIS);
  6782. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6783. zprobe_zoffset = value;
  6784. refresh_zprobe_zoffset();
  6785. SERIAL_ECHO(zprobe_zoffset);
  6786. }
  6787. else
  6788. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  6789. }
  6790. else
  6791. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6792. SERIAL_EOL;
  6793. }
  6794. #endif // HAS_BED_PROBE
  6795. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6796. void filament_change_beep(const bool init=false) {
  6797. static millis_t next_buzz = 0;
  6798. static uint16_t runout_beep = 0;
  6799. if (init) next_buzz = runout_beep = 0;
  6800. const millis_t ms = millis();
  6801. if (ELAPSED(ms, next_buzz)) {
  6802. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6803. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6804. BUZZ(300, 2000);
  6805. runout_beep++;
  6806. }
  6807. }
  6808. }
  6809. static bool busy_doing_M600 = false;
  6810. /**
  6811. * M600: Pause for filament change
  6812. *
  6813. * E[distance] - Retract the filament this far (negative value)
  6814. * Z[distance] - Move the Z axis by this distance
  6815. * X[position] - Move to this X position, with Y
  6816. * Y[position] - Move to this Y position, with X
  6817. * L[distance] - Retract distance for removal (manual reload)
  6818. *
  6819. * Default values are used for omitted arguments.
  6820. *
  6821. */
  6822. inline void gcode_M600() {
  6823. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6824. SERIAL_ERROR_START;
  6825. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6826. return;
  6827. }
  6828. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6829. // Pause the print job timer
  6830. const bool job_running = print_job_timer.isRunning();
  6831. print_job_timer.pause();
  6832. // Show initial message and wait for synchronize steppers
  6833. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6834. stepper.synchronize();
  6835. // Save current position of all axes
  6836. float lastpos[XYZE];
  6837. COPY(lastpos, current_position);
  6838. set_destination_to_current();
  6839. // Initial retract before move to filament change position
  6840. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6841. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6842. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6843. #endif
  6844. ;
  6845. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6846. // Lift Z axis
  6847. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6848. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6849. FILAMENT_CHANGE_Z_ADD
  6850. #else
  6851. 0
  6852. #endif
  6853. ;
  6854. if (z_lift > 0) {
  6855. destination[Z_AXIS] += z_lift;
  6856. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6857. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6858. }
  6859. // Move XY axes to filament exchange position
  6860. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6861. #ifdef FILAMENT_CHANGE_X_POS
  6862. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6863. #endif
  6864. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6865. #ifdef FILAMENT_CHANGE_Y_POS
  6866. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6867. #endif
  6868. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6869. stepper.synchronize();
  6870. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6871. idle();
  6872. // Unload filament
  6873. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6874. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6875. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6876. #endif
  6877. ;
  6878. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6879. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6880. stepper.synchronize();
  6881. disable_e_steppers();
  6882. safe_delay(100);
  6883. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6884. bool nozzle_timed_out = false;
  6885. float temps[4];
  6886. // Wait for filament insert by user and press button
  6887. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6888. #if HAS_BUZZER
  6889. filament_change_beep(true);
  6890. #endif
  6891. idle();
  6892. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6893. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6894. wait_for_user = true; // LCD click or M108 will clear this
  6895. while (wait_for_user) {
  6896. if (nozzle_timed_out)
  6897. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6898. #if HAS_BUZZER
  6899. filament_change_beep();
  6900. #endif
  6901. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6902. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6903. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6904. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6905. }
  6906. idle(true);
  6907. }
  6908. KEEPALIVE_STATE(IN_HANDLER);
  6909. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6910. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6911. // Show "wait for heating"
  6912. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6913. wait_for_heatup = true;
  6914. while (wait_for_heatup) {
  6915. idle();
  6916. wait_for_heatup = false;
  6917. HOTEND_LOOP() {
  6918. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6919. wait_for_heatup = true;
  6920. break;
  6921. }
  6922. }
  6923. }
  6924. // Show "insert filament"
  6925. if (nozzle_timed_out)
  6926. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6927. #if HAS_BUZZER
  6928. filament_change_beep(true);
  6929. #endif
  6930. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6931. wait_for_user = true; // LCD click or M108 will clear this
  6932. while (wait_for_user && nozzle_timed_out) {
  6933. #if HAS_BUZZER
  6934. filament_change_beep();
  6935. #endif
  6936. idle(true);
  6937. }
  6938. KEEPALIVE_STATE(IN_HANDLER);
  6939. // Show "load" message
  6940. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6941. // Load filament
  6942. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6943. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6944. + FILAMENT_CHANGE_LOAD_LENGTH
  6945. #endif
  6946. ;
  6947. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6948. stepper.synchronize();
  6949. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6950. do {
  6951. // "Wait for filament extrude"
  6952. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6953. // Extrude filament to get into hotend
  6954. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6955. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6956. stepper.synchronize();
  6957. // Show "Extrude More" / "Resume" menu and wait for reply
  6958. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6959. wait_for_user = false;
  6960. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6961. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6962. KEEPALIVE_STATE(IN_HANDLER);
  6963. // Keep looping if "Extrude More" was selected
  6964. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6965. #endif
  6966. // "Wait for print to resume"
  6967. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6968. // Set extruder to saved position
  6969. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6970. planner.set_e_position_mm(current_position[E_AXIS]);
  6971. #if IS_KINEMATIC
  6972. // Move XYZ to starting position
  6973. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6974. #else
  6975. // Move XY to starting position, then Z
  6976. destination[X_AXIS] = lastpos[X_AXIS];
  6977. destination[Y_AXIS] = lastpos[Y_AXIS];
  6978. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6979. destination[Z_AXIS] = lastpos[Z_AXIS];
  6980. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6981. #endif
  6982. stepper.synchronize();
  6983. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6984. filament_ran_out = false;
  6985. #endif
  6986. // Show status screen
  6987. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6988. // Resume the print job timer if it was running
  6989. if (job_running) print_job_timer.start();
  6990. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6991. }
  6992. #endif // FILAMENT_CHANGE_FEATURE
  6993. #if ENABLED(DUAL_X_CARRIAGE)
  6994. /**
  6995. * M605: Set dual x-carriage movement mode
  6996. *
  6997. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6998. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6999. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7000. * units x-offset and an optional differential hotend temperature of
  7001. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7002. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7003. *
  7004. * Note: the X axis should be homed after changing dual x-carriage mode.
  7005. */
  7006. inline void gcode_M605() {
  7007. stepper.synchronize();
  7008. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7009. switch (dual_x_carriage_mode) {
  7010. case DXC_FULL_CONTROL_MODE:
  7011. case DXC_AUTO_PARK_MODE:
  7012. break;
  7013. case DXC_DUPLICATION_MODE:
  7014. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  7015. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7016. SERIAL_ECHO_START;
  7017. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7018. SERIAL_CHAR(' ');
  7019. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7020. SERIAL_CHAR(',');
  7021. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7022. SERIAL_CHAR(' ');
  7023. SERIAL_ECHO(duplicate_extruder_x_offset);
  7024. SERIAL_CHAR(',');
  7025. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7026. break;
  7027. default:
  7028. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7029. break;
  7030. }
  7031. active_extruder_parked = false;
  7032. extruder_duplication_enabled = false;
  7033. delayed_move_time = 0;
  7034. }
  7035. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7036. inline void gcode_M605() {
  7037. stepper.synchronize();
  7038. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7039. SERIAL_ECHO_START;
  7040. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7041. }
  7042. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7043. #if ENABLED(LIN_ADVANCE)
  7044. /**
  7045. * M905: Set advance factor
  7046. */
  7047. inline void gcode_M905() {
  7048. stepper.synchronize();
  7049. const float newK = code_seen('K') ? code_value_float() : -1,
  7050. newD = code_seen('D') ? code_value_float() : -1,
  7051. newW = code_seen('W') ? code_value_float() : -1,
  7052. newH = code_seen('H') ? code_value_float() : -1;
  7053. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  7054. SERIAL_ECHO_START;
  7055. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  7056. if (newD >= 0 || newW >= 0 || newH >= 0) {
  7057. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  7058. planner.set_advance_ed_ratio(ratio);
  7059. SERIAL_ECHO_START;
  7060. SERIAL_ECHOPGM("E/D ratio: ");
  7061. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  7062. }
  7063. }
  7064. #endif // LIN_ADVANCE
  7065. #if ENABLED(HAVE_TMC2130)
  7066. static void tmc2130_print_current(const int mA, const char name) {
  7067. SERIAL_CHAR(name);
  7068. SERIAL_ECHOPGM(" axis driver current: ");
  7069. SERIAL_ECHOLN(mA);
  7070. }
  7071. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  7072. tmc2130_print_current(mA, name);
  7073. st.setCurrent(mA, 0.11, 0.5);
  7074. }
  7075. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7076. tmc2130_print_current(st.getCurrent(), name);
  7077. }
  7078. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7079. SERIAL_CHAR(name);
  7080. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7081. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7082. }
  7083. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7084. st.clear_otpw();
  7085. SERIAL_CHAR(name);
  7086. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7087. }
  7088. /**
  7089. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7090. *
  7091. * Report driver currents when no axis specified
  7092. */
  7093. inline void gcode_M906() {
  7094. uint16_t values[XYZE];
  7095. LOOP_XYZE(i)
  7096. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7097. #if ENABLED(X_IS_TMC2130)
  7098. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  7099. else tmc2130_get_current(stepperX, 'X');
  7100. #endif
  7101. #if ENABLED(Y_IS_TMC2130)
  7102. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  7103. else tmc2130_get_current(stepperY, 'Y');
  7104. #endif
  7105. #if ENABLED(Z_IS_TMC2130)
  7106. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  7107. else tmc2130_get_current(stepperZ, 'Z');
  7108. #endif
  7109. #if ENABLED(E0_IS_TMC2130)
  7110. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  7111. else tmc2130_get_current(stepperE0, 'E');
  7112. #endif
  7113. }
  7114. /**
  7115. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7116. * The flag is held by the library and persist until manually cleared by M912
  7117. */
  7118. inline void gcode_M911() {
  7119. #if ENABLED(X_IS_TMC2130)
  7120. tmc2130_report_otpw(stepperX, 'X');
  7121. #endif
  7122. #if ENABLED(Y_IS_TMC2130)
  7123. tmc2130_report_otpw(stepperY, 'Y');
  7124. #endif
  7125. #if ENABLED(Z_IS_TMC2130)
  7126. tmc2130_report_otpw(stepperZ, 'Z');
  7127. #endif
  7128. #if ENABLED(E0_IS_TMC2130)
  7129. tmc2130_report_otpw(stepperE0, 'E');
  7130. #endif
  7131. }
  7132. /**
  7133. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7134. */
  7135. inline void gcode_M912() {
  7136. #if ENABLED(X_IS_TMC2130)
  7137. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  7138. #endif
  7139. #if ENABLED(Y_IS_TMC2130)
  7140. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  7141. #endif
  7142. #if ENABLED(Z_IS_TMC2130)
  7143. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  7144. #endif
  7145. #if ENABLED(E0_IS_TMC2130)
  7146. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  7147. #endif
  7148. }
  7149. #endif // HAVE_TMC2130
  7150. /**
  7151. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7152. */
  7153. inline void gcode_M907() {
  7154. #if HAS_DIGIPOTSS
  7155. LOOP_XYZE(i)
  7156. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7157. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7158. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7159. #elif HAS_MOTOR_CURRENT_PWM
  7160. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7161. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7162. #endif
  7163. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7164. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7165. #endif
  7166. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7167. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7168. #endif
  7169. #endif
  7170. #if ENABLED(DIGIPOT_I2C)
  7171. // this one uses actual amps in floating point
  7172. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7173. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7174. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7175. #endif
  7176. #if ENABLED(DAC_STEPPER_CURRENT)
  7177. if (code_seen('S')) {
  7178. float dac_percent = code_value_float();
  7179. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7180. }
  7181. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7182. #endif
  7183. }
  7184. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7185. /**
  7186. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7187. */
  7188. inline void gcode_M908() {
  7189. #if HAS_DIGIPOTSS
  7190. stepper.digitalPotWrite(
  7191. code_seen('P') ? code_value_int() : 0,
  7192. code_seen('S') ? code_value_int() : 0
  7193. );
  7194. #endif
  7195. #ifdef DAC_STEPPER_CURRENT
  7196. dac_current_raw(
  7197. code_seen('P') ? code_value_byte() : -1,
  7198. code_seen('S') ? code_value_ushort() : 0
  7199. );
  7200. #endif
  7201. }
  7202. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7203. inline void gcode_M909() { dac_print_values(); }
  7204. inline void gcode_M910() { dac_commit_eeprom(); }
  7205. #endif
  7206. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7207. #if HAS_MICROSTEPS
  7208. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7209. inline void gcode_M350() {
  7210. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7211. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7212. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7213. stepper.microstep_readings();
  7214. }
  7215. /**
  7216. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7217. * S# determines MS1 or MS2, X# sets the pin high/low.
  7218. */
  7219. inline void gcode_M351() {
  7220. if (code_seen('S')) switch (code_value_byte()) {
  7221. case 1:
  7222. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7223. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7224. break;
  7225. case 2:
  7226. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7227. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7228. break;
  7229. }
  7230. stepper.microstep_readings();
  7231. }
  7232. #endif // HAS_MICROSTEPS
  7233. #if HAS_CASE_LIGHT
  7234. uint8_t case_light_brightness = 255;
  7235. void update_case_light() {
  7236. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7237. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7238. }
  7239. #endif // HAS_CASE_LIGHT
  7240. /**
  7241. * M355: Turn case lights on/off and set brightness
  7242. *
  7243. * S<bool> Turn case light on or off
  7244. * P<byte> Set case light brightness (PWM pin required)
  7245. */
  7246. inline void gcode_M355() {
  7247. #if HAS_CASE_LIGHT
  7248. if (code_seen('P')) case_light_brightness = code_value_byte();
  7249. if (code_seen('S')) case_light_on = code_value_bool();
  7250. update_case_light();
  7251. SERIAL_ECHO_START;
  7252. SERIAL_ECHOPGM("Case lights ");
  7253. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7254. #else
  7255. SERIAL_ERROR_START;
  7256. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7257. #endif // HAS_CASE_LIGHT
  7258. }
  7259. #if ENABLED(MIXING_EXTRUDER)
  7260. /**
  7261. * M163: Set a single mix factor for a mixing extruder
  7262. * This is called "weight" by some systems.
  7263. *
  7264. * S[index] The channel index to set
  7265. * P[float] The mix value
  7266. *
  7267. */
  7268. inline void gcode_M163() {
  7269. int mix_index = code_seen('S') ? code_value_int() : 0;
  7270. if (mix_index < MIXING_STEPPERS) {
  7271. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7272. NOLESS(mix_value, 0.0);
  7273. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7274. }
  7275. }
  7276. #if MIXING_VIRTUAL_TOOLS > 1
  7277. /**
  7278. * M164: Store the current mix factors as a virtual tool.
  7279. *
  7280. * S[index] The virtual tool to store
  7281. *
  7282. */
  7283. inline void gcode_M164() {
  7284. int tool_index = code_seen('S') ? code_value_int() : 0;
  7285. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7286. normalize_mix();
  7287. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7288. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7289. }
  7290. }
  7291. #endif
  7292. #if ENABLED(DIRECT_MIXING_IN_G1)
  7293. /**
  7294. * M165: Set multiple mix factors for a mixing extruder.
  7295. * Factors that are left out will be set to 0.
  7296. * All factors together must add up to 1.0.
  7297. *
  7298. * A[factor] Mix factor for extruder stepper 1
  7299. * B[factor] Mix factor for extruder stepper 2
  7300. * C[factor] Mix factor for extruder stepper 3
  7301. * D[factor] Mix factor for extruder stepper 4
  7302. * H[factor] Mix factor for extruder stepper 5
  7303. * I[factor] Mix factor for extruder stepper 6
  7304. *
  7305. */
  7306. inline void gcode_M165() { gcode_get_mix(); }
  7307. #endif
  7308. #endif // MIXING_EXTRUDER
  7309. /**
  7310. * M999: Restart after being stopped
  7311. *
  7312. * Default behaviour is to flush the serial buffer and request
  7313. * a resend to the host starting on the last N line received.
  7314. *
  7315. * Sending "M999 S1" will resume printing without flushing the
  7316. * existing command buffer.
  7317. *
  7318. */
  7319. inline void gcode_M999() {
  7320. Running = true;
  7321. lcd_reset_alert_level();
  7322. if (code_seen('S') && code_value_bool()) return;
  7323. // gcode_LastN = Stopped_gcode_LastN;
  7324. FlushSerialRequestResend();
  7325. }
  7326. #if ENABLED(SWITCHING_EXTRUDER)
  7327. inline void move_extruder_servo(uint8_t e) {
  7328. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7329. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7330. safe_delay(500);
  7331. }
  7332. #endif
  7333. inline void invalid_extruder_error(const uint8_t &e) {
  7334. SERIAL_ECHO_START;
  7335. SERIAL_CHAR('T');
  7336. SERIAL_ECHO_F(e, DEC);
  7337. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7338. }
  7339. /**
  7340. * Perform a tool-change, which may result in moving the
  7341. * previous tool out of the way and the new tool into place.
  7342. */
  7343. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7344. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7345. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7346. return invalid_extruder_error(tmp_extruder);
  7347. // T0-Tnnn: Switch virtual tool by changing the mix
  7348. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7349. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7350. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7351. #if HOTENDS > 1
  7352. if (tmp_extruder >= EXTRUDERS)
  7353. return invalid_extruder_error(tmp_extruder);
  7354. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7355. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7356. if (tmp_extruder != active_extruder) {
  7357. if (!no_move && axis_unhomed_error(true, true, true)) {
  7358. SERIAL_ECHOLNPGM("No move on toolchange");
  7359. no_move = true;
  7360. }
  7361. // Save current position to destination, for use later
  7362. set_destination_to_current();
  7363. #if ENABLED(DUAL_X_CARRIAGE)
  7364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7365. if (DEBUGGING(LEVELING)) {
  7366. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7367. switch (dual_x_carriage_mode) {
  7368. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7369. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7370. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7371. }
  7372. }
  7373. #endif
  7374. const float xhome = x_home_pos(active_extruder);
  7375. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7376. && IsRunning()
  7377. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7378. ) {
  7379. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7380. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7381. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7382. #endif
  7383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7384. if (DEBUGGING(LEVELING)) {
  7385. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7386. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7387. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7388. }
  7389. #endif
  7390. // Park old head: 1) raise 2) move to park position 3) lower
  7391. for (uint8_t i = 0; i < 3; i++)
  7392. planner.buffer_line(
  7393. i == 0 ? current_position[X_AXIS] : xhome,
  7394. current_position[Y_AXIS],
  7395. i == 2 ? current_position[Z_AXIS] : raised_z,
  7396. current_position[E_AXIS],
  7397. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7398. active_extruder
  7399. );
  7400. stepper.synchronize();
  7401. }
  7402. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7403. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7404. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7405. // Activate the new extruder
  7406. active_extruder = tmp_extruder;
  7407. // This function resets the max/min values - the current position may be overwritten below.
  7408. set_axis_is_at_home(X_AXIS);
  7409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7410. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7411. #endif
  7412. // Only when auto-parking are carriages safe to move
  7413. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7414. switch (dual_x_carriage_mode) {
  7415. case DXC_FULL_CONTROL_MODE:
  7416. // New current position is the position of the activated extruder
  7417. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7418. // Save the inactive extruder's position (from the old current_position)
  7419. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7420. break;
  7421. case DXC_AUTO_PARK_MODE:
  7422. // record raised toolhead position for use by unpark
  7423. COPY(raised_parked_position, current_position);
  7424. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7425. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7426. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7427. #endif
  7428. active_extruder_parked = true;
  7429. delayed_move_time = 0;
  7430. break;
  7431. case DXC_DUPLICATION_MODE:
  7432. // If the new extruder is the left one, set it "parked"
  7433. // This triggers the second extruder to move into the duplication position
  7434. active_extruder_parked = (active_extruder == 0);
  7435. if (active_extruder_parked)
  7436. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7437. else
  7438. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7439. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7440. extruder_duplication_enabled = false;
  7441. break;
  7442. }
  7443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7444. if (DEBUGGING(LEVELING)) {
  7445. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7446. DEBUG_POS("New extruder (parked)", current_position);
  7447. }
  7448. #endif
  7449. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7450. #else // !DUAL_X_CARRIAGE
  7451. #if ENABLED(SWITCHING_EXTRUDER)
  7452. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7453. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7454. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7455. // Always raise by some amount (destination copied from current_position earlier)
  7456. current_position[Z_AXIS] += z_raise;
  7457. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7458. stepper.synchronize();
  7459. move_extruder_servo(active_extruder);
  7460. #endif
  7461. /**
  7462. * Set current_position to the position of the new nozzle.
  7463. * Offsets are based on linear distance, so we need to get
  7464. * the resulting position in coordinate space.
  7465. *
  7466. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7467. * - With mesh leveling, update Z for the new position
  7468. * - Otherwise, just use the raw linear distance
  7469. *
  7470. * Software endstops are altered here too. Consider a case where:
  7471. * E0 at X=0 ... E1 at X=10
  7472. * When we switch to E1 now X=10, but E1 can't move left.
  7473. * To express this we apply the change in XY to the software endstops.
  7474. * E1 can move farther right than E0, so the right limit is extended.
  7475. *
  7476. * Note that we don't adjust the Z software endstops. Why not?
  7477. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7478. * because the bed is 1mm lower at the new position. As long as
  7479. * the first nozzle is out of the way, the carriage should be
  7480. * allowed to move 1mm lower. This technically "breaks" the
  7481. * Z software endstop. But this is technically correct (and
  7482. * there is no viable alternative).
  7483. */
  7484. #if ABL_PLANAR
  7485. // Offset extruder, make sure to apply the bed level rotation matrix
  7486. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7487. hotend_offset[Y_AXIS][tmp_extruder],
  7488. 0),
  7489. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7490. hotend_offset[Y_AXIS][active_extruder],
  7491. 0),
  7492. offset_vec = tmp_offset_vec - act_offset_vec;
  7493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7494. if (DEBUGGING(LEVELING)) {
  7495. tmp_offset_vec.debug("tmp_offset_vec");
  7496. act_offset_vec.debug("act_offset_vec");
  7497. offset_vec.debug("offset_vec (BEFORE)");
  7498. }
  7499. #endif
  7500. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7502. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7503. #endif
  7504. // Adjustments to the current position
  7505. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7506. current_position[Z_AXIS] += offset_vec.z;
  7507. #else // !ABL_PLANAR
  7508. const float xydiff[2] = {
  7509. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7510. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7511. };
  7512. #if ENABLED(MESH_BED_LEVELING)
  7513. if (mbl.active()) {
  7514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7515. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7516. #endif
  7517. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7518. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7519. z1 = current_position[Z_AXIS], z2 = z1;
  7520. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7521. planner.apply_leveling(x2, y2, z2);
  7522. current_position[Z_AXIS] += z2 - z1;
  7523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7524. if (DEBUGGING(LEVELING))
  7525. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7526. #endif
  7527. }
  7528. #endif // MESH_BED_LEVELING
  7529. #endif // !HAS_ABL
  7530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7531. if (DEBUGGING(LEVELING)) {
  7532. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7533. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7534. SERIAL_ECHOLNPGM(" }");
  7535. }
  7536. #endif
  7537. // The newly-selected extruder XY is actually at...
  7538. current_position[X_AXIS] += xydiff[X_AXIS];
  7539. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7540. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7541. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7542. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7543. position_shift[i] += xydiff[i];
  7544. #endif
  7545. update_software_endstops((AxisEnum)i);
  7546. }
  7547. #endif
  7548. // Set the new active extruder
  7549. active_extruder = tmp_extruder;
  7550. #endif // !DUAL_X_CARRIAGE
  7551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7552. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7553. #endif
  7554. // Tell the planner the new "current position"
  7555. SYNC_PLAN_POSITION_KINEMATIC();
  7556. // Move to the "old position" (move the extruder into place)
  7557. if (!no_move && IsRunning()) {
  7558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7559. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7560. #endif
  7561. prepare_move_to_destination();
  7562. }
  7563. #if ENABLED(SWITCHING_EXTRUDER)
  7564. // Move back down, if needed. (Including when the new tool is higher.)
  7565. if (z_raise != z_diff) {
  7566. destination[Z_AXIS] += z_diff;
  7567. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7568. prepare_move_to_destination();
  7569. }
  7570. #endif
  7571. } // (tmp_extruder != active_extruder)
  7572. stepper.synchronize();
  7573. #if ENABLED(EXT_SOLENOID)
  7574. disable_all_solenoids();
  7575. enable_solenoid_on_active_extruder();
  7576. #endif // EXT_SOLENOID
  7577. feedrate_mm_s = old_feedrate_mm_s;
  7578. #else // HOTENDS <= 1
  7579. // Set the new active extruder
  7580. active_extruder = tmp_extruder;
  7581. UNUSED(fr_mm_s);
  7582. UNUSED(no_move);
  7583. #endif // HOTENDS <= 1
  7584. SERIAL_ECHO_START;
  7585. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7586. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7587. }
  7588. /**
  7589. * T0-T3: Switch tool, usually switching extruders
  7590. *
  7591. * F[units/min] Set the movement feedrate
  7592. * S1 Don't move the tool in XY after change
  7593. */
  7594. inline void gcode_T(uint8_t tmp_extruder) {
  7595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7596. if (DEBUGGING(LEVELING)) {
  7597. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7598. SERIAL_CHAR(')');
  7599. SERIAL_EOL;
  7600. DEBUG_POS("BEFORE", current_position);
  7601. }
  7602. #endif
  7603. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7604. tool_change(tmp_extruder);
  7605. #elif HOTENDS > 1
  7606. tool_change(
  7607. tmp_extruder,
  7608. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7609. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7610. );
  7611. #endif
  7612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7613. if (DEBUGGING(LEVELING)) {
  7614. DEBUG_POS("AFTER", current_position);
  7615. SERIAL_ECHOLNPGM("<<< gcode_T");
  7616. }
  7617. #endif
  7618. }
  7619. /**
  7620. * Process a single command and dispatch it to its handler
  7621. * This is called from the main loop()
  7622. */
  7623. void process_next_command() {
  7624. current_command = command_queue[cmd_queue_index_r];
  7625. if (DEBUGGING(ECHO)) {
  7626. SERIAL_ECHO_START;
  7627. SERIAL_ECHOLN(current_command);
  7628. }
  7629. // Sanitize the current command:
  7630. // - Skip leading spaces
  7631. // - Bypass N[-0-9][0-9]*[ ]*
  7632. // - Overwrite * with nul to mark the end
  7633. while (*current_command == ' ') ++current_command;
  7634. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7635. current_command += 2; // skip N[-0-9]
  7636. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7637. while (*current_command == ' ') ++current_command; // skip [ ]*
  7638. }
  7639. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7640. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7641. char *cmd_ptr = current_command;
  7642. // Get the command code, which must be G, M, or T
  7643. char command_code = *cmd_ptr++;
  7644. // Skip spaces to get the numeric part
  7645. while (*cmd_ptr == ' ') cmd_ptr++;
  7646. // Allow for decimal point in command
  7647. #if ENABLED(G38_PROBE_TARGET)
  7648. uint8_t subcode = 0;
  7649. #endif
  7650. uint16_t codenum = 0; // define ahead of goto
  7651. // Bail early if there's no code
  7652. bool code_is_good = NUMERIC(*cmd_ptr);
  7653. if (!code_is_good) goto ExitUnknownCommand;
  7654. // Get and skip the code number
  7655. do {
  7656. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7657. cmd_ptr++;
  7658. } while (NUMERIC(*cmd_ptr));
  7659. // Allow for decimal point in command
  7660. #if ENABLED(G38_PROBE_TARGET)
  7661. if (*cmd_ptr == '.') {
  7662. cmd_ptr++;
  7663. while (NUMERIC(*cmd_ptr))
  7664. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7665. }
  7666. #endif
  7667. // Skip all spaces to get to the first argument, or nul
  7668. while (*cmd_ptr == ' ') cmd_ptr++;
  7669. // The command's arguments (if any) start here, for sure!
  7670. current_command_args = cmd_ptr;
  7671. KEEPALIVE_STATE(IN_HANDLER);
  7672. // Handle a known G, M, or T
  7673. switch (command_code) {
  7674. case 'G': switch (codenum) {
  7675. // G0, G1
  7676. case 0:
  7677. case 1:
  7678. #if IS_SCARA
  7679. gcode_G0_G1(codenum == 0);
  7680. #else
  7681. gcode_G0_G1();
  7682. #endif
  7683. break;
  7684. // G2, G3
  7685. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7686. case 2: // G2 - CW ARC
  7687. case 3: // G3 - CCW ARC
  7688. gcode_G2_G3(codenum == 2);
  7689. break;
  7690. #endif
  7691. // G4 Dwell
  7692. case 4:
  7693. gcode_G4();
  7694. break;
  7695. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7696. // G5
  7697. case 5: // G5 - Cubic B_spline
  7698. gcode_G5();
  7699. break;
  7700. #endif // BEZIER_CURVE_SUPPORT
  7701. #if ENABLED(FWRETRACT)
  7702. case 10: // G10: retract
  7703. case 11: // G11: retract_recover
  7704. gcode_G10_G11(codenum == 10);
  7705. break;
  7706. #endif // FWRETRACT
  7707. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7708. case 12:
  7709. gcode_G12(); // G12: Nozzle Clean
  7710. break;
  7711. #endif // NOZZLE_CLEAN_FEATURE
  7712. #if ENABLED(INCH_MODE_SUPPORT)
  7713. case 20: //G20: Inch Mode
  7714. gcode_G20();
  7715. break;
  7716. case 21: //G21: MM Mode
  7717. gcode_G21();
  7718. break;
  7719. #endif // INCH_MODE_SUPPORT
  7720. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7721. case 26: // G26: Mesh Validation Pattern generation
  7722. gcode_G26();
  7723. break;
  7724. #endif // AUTO_BED_LEVELING_UBL
  7725. #if ENABLED(NOZZLE_PARK_FEATURE)
  7726. case 27: // G27: Nozzle Park
  7727. gcode_G27();
  7728. break;
  7729. #endif // NOZZLE_PARK_FEATURE
  7730. case 28: // G28: Home all axes, one at a time
  7731. gcode_G28();
  7732. break;
  7733. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7734. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7735. // or provides access to the UBL System if enabled.
  7736. gcode_G29();
  7737. break;
  7738. #endif // PLANNER_LEVELING
  7739. #if HAS_BED_PROBE
  7740. case 30: // G30 Single Z probe
  7741. gcode_G30();
  7742. break;
  7743. #if ENABLED(Z_PROBE_SLED)
  7744. case 31: // G31: dock the sled
  7745. gcode_G31();
  7746. break;
  7747. case 32: // G32: undock the sled
  7748. gcode_G32();
  7749. break;
  7750. #endif // Z_PROBE_SLED
  7751. #endif // HAS_BED_PROBE
  7752. #if ENABLED(G38_PROBE_TARGET)
  7753. case 38: // G38.2 & G38.3
  7754. if (subcode == 2 || subcode == 3)
  7755. gcode_G38(subcode == 2);
  7756. break;
  7757. #endif
  7758. case 90: // G90
  7759. relative_mode = false;
  7760. break;
  7761. case 91: // G91
  7762. relative_mode = true;
  7763. break;
  7764. case 92: // G92
  7765. gcode_G92();
  7766. break;
  7767. }
  7768. break;
  7769. case 'M': switch (codenum) {
  7770. #if HAS_RESUME_CONTINUE
  7771. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7772. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7773. gcode_M0_M1();
  7774. break;
  7775. #endif // ULTIPANEL
  7776. case 17: // M17: Enable all stepper motors
  7777. gcode_M17();
  7778. break;
  7779. #if ENABLED(SDSUPPORT)
  7780. case 20: // M20: list SD card
  7781. gcode_M20(); break;
  7782. case 21: // M21: init SD card
  7783. gcode_M21(); break;
  7784. case 22: // M22: release SD card
  7785. gcode_M22(); break;
  7786. case 23: // M23: Select file
  7787. gcode_M23(); break;
  7788. case 24: // M24: Start SD print
  7789. gcode_M24(); break;
  7790. case 25: // M25: Pause SD print
  7791. gcode_M25(); break;
  7792. case 26: // M26: Set SD index
  7793. gcode_M26(); break;
  7794. case 27: // M27: Get SD status
  7795. gcode_M27(); break;
  7796. case 28: // M28: Start SD write
  7797. gcode_M28(); break;
  7798. case 29: // M29: Stop SD write
  7799. gcode_M29(); break;
  7800. case 30: // M30 <filename> Delete File
  7801. gcode_M30(); break;
  7802. case 32: // M32: Select file and start SD print
  7803. gcode_M32(); break;
  7804. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7805. case 33: // M33: Get the long full path to a file or folder
  7806. gcode_M33(); break;
  7807. #endif
  7808. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7809. case 34: //M34 - Set SD card sorting options
  7810. gcode_M34(); break;
  7811. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7812. case 928: // M928: Start SD write
  7813. gcode_M928(); break;
  7814. #endif //SDSUPPORT
  7815. case 31: // M31: Report time since the start of SD print or last M109
  7816. gcode_M31(); break;
  7817. case 42: // M42: Change pin state
  7818. gcode_M42(); break;
  7819. #if ENABLED(PINS_DEBUGGING)
  7820. case 43: // M43: Read pin state
  7821. gcode_M43(); break;
  7822. #endif
  7823. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7824. case 48: // M48: Z probe repeatability test
  7825. gcode_M48();
  7826. break;
  7827. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7828. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7829. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7830. gcode_M49();
  7831. break;
  7832. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7833. case 75: // M75: Start print timer
  7834. gcode_M75(); break;
  7835. case 76: // M76: Pause print timer
  7836. gcode_M76(); break;
  7837. case 77: // M77: Stop print timer
  7838. gcode_M77(); break;
  7839. #if ENABLED(PRINTCOUNTER)
  7840. case 78: // M78: Show print statistics
  7841. gcode_M78(); break;
  7842. #endif
  7843. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7844. case 100: // M100: Free Memory Report
  7845. gcode_M100();
  7846. break;
  7847. #endif
  7848. case 104: // M104: Set hot end temperature
  7849. gcode_M104();
  7850. break;
  7851. case 110: // M110: Set Current Line Number
  7852. gcode_M110();
  7853. break;
  7854. case 111: // M111: Set debug level
  7855. gcode_M111();
  7856. break;
  7857. #if DISABLED(EMERGENCY_PARSER)
  7858. case 108: // M108: Cancel Waiting
  7859. gcode_M108();
  7860. break;
  7861. case 112: // M112: Emergency Stop
  7862. gcode_M112();
  7863. break;
  7864. case 410: // M410 quickstop - Abort all the planned moves.
  7865. gcode_M410();
  7866. break;
  7867. #endif
  7868. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7869. case 113: // M113: Set Host Keepalive interval
  7870. gcode_M113();
  7871. break;
  7872. #endif
  7873. case 140: // M140: Set bed temperature
  7874. gcode_M140();
  7875. break;
  7876. case 105: // M105: Report current temperature
  7877. gcode_M105();
  7878. KEEPALIVE_STATE(NOT_BUSY);
  7879. return; // "ok" already printed
  7880. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7881. case 155: // M155: Set temperature auto-report interval
  7882. gcode_M155();
  7883. break;
  7884. #endif
  7885. case 109: // M109: Wait for hotend temperature to reach target
  7886. gcode_M109();
  7887. break;
  7888. #if HAS_TEMP_BED
  7889. case 190: // M190: Wait for bed temperature to reach target
  7890. gcode_M190();
  7891. break;
  7892. #endif // HAS_TEMP_BED
  7893. #if FAN_COUNT > 0
  7894. case 106: // M106: Fan On
  7895. gcode_M106();
  7896. break;
  7897. case 107: // M107: Fan Off
  7898. gcode_M107();
  7899. break;
  7900. #endif // FAN_COUNT > 0
  7901. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7902. case 125: // M125: Store current position and move to filament change position
  7903. gcode_M125(); break;
  7904. #endif
  7905. #if ENABLED(BARICUDA)
  7906. // PWM for HEATER_1_PIN
  7907. #if HAS_HEATER_1
  7908. case 126: // M126: valve open
  7909. gcode_M126();
  7910. break;
  7911. case 127: // M127: valve closed
  7912. gcode_M127();
  7913. break;
  7914. #endif // HAS_HEATER_1
  7915. // PWM for HEATER_2_PIN
  7916. #if HAS_HEATER_2
  7917. case 128: // M128: valve open
  7918. gcode_M128();
  7919. break;
  7920. case 129: // M129: valve closed
  7921. gcode_M129();
  7922. break;
  7923. #endif // HAS_HEATER_2
  7924. #endif // BARICUDA
  7925. #if HAS_POWER_SWITCH
  7926. case 80: // M80: Turn on Power Supply
  7927. gcode_M80();
  7928. break;
  7929. #endif // HAS_POWER_SWITCH
  7930. case 81: // M81: Turn off Power, including Power Supply, if possible
  7931. gcode_M81();
  7932. break;
  7933. case 82: // M83: Set E axis normal mode (same as other axes)
  7934. gcode_M82();
  7935. break;
  7936. case 83: // M83: Set E axis relative mode
  7937. gcode_M83();
  7938. break;
  7939. case 18: // M18 => M84
  7940. case 84: // M84: Disable all steppers or set timeout
  7941. gcode_M18_M84();
  7942. break;
  7943. case 85: // M85: Set inactivity stepper shutdown timeout
  7944. gcode_M85();
  7945. break;
  7946. case 92: // M92: Set the steps-per-unit for one or more axes
  7947. gcode_M92();
  7948. break;
  7949. case 114: // M114: Report current position
  7950. gcode_M114();
  7951. break;
  7952. case 115: // M115: Report capabilities
  7953. gcode_M115();
  7954. break;
  7955. case 117: // M117: Set LCD message text, if possible
  7956. gcode_M117();
  7957. break;
  7958. case 119: // M119: Report endstop states
  7959. gcode_M119();
  7960. break;
  7961. case 120: // M120: Enable endstops
  7962. gcode_M120();
  7963. break;
  7964. case 121: // M121: Disable endstops
  7965. gcode_M121();
  7966. break;
  7967. #if ENABLED(ULTIPANEL)
  7968. case 145: // M145: Set material heatup parameters
  7969. gcode_M145();
  7970. break;
  7971. #endif
  7972. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7973. case 149: // M149: Set temperature units
  7974. gcode_M149();
  7975. break;
  7976. #endif
  7977. #if HAS_COLOR_LEDS
  7978. case 150: // M150: Set Status LED Color
  7979. gcode_M150();
  7980. break;
  7981. #endif // BLINKM
  7982. #if ENABLED(MIXING_EXTRUDER)
  7983. case 163: // M163: Set a component weight for mixing extruder
  7984. gcode_M163();
  7985. break;
  7986. #if MIXING_VIRTUAL_TOOLS > 1
  7987. case 164: // M164: Save current mix as a virtual extruder
  7988. gcode_M164();
  7989. break;
  7990. #endif
  7991. #if ENABLED(DIRECT_MIXING_IN_G1)
  7992. case 165: // M165: Set multiple mix weights
  7993. gcode_M165();
  7994. break;
  7995. #endif
  7996. #endif
  7997. case 200: // M200: Set filament diameter, E to cubic units
  7998. gcode_M200();
  7999. break;
  8000. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8001. gcode_M201();
  8002. break;
  8003. #if 0 // Not used for Sprinter/grbl gen6
  8004. case 202: // M202
  8005. gcode_M202();
  8006. break;
  8007. #endif
  8008. case 203: // M203: Set max feedrate (units/sec)
  8009. gcode_M203();
  8010. break;
  8011. case 204: // M204: Set acceleration
  8012. gcode_M204();
  8013. break;
  8014. case 205: //M205: Set advanced settings
  8015. gcode_M205();
  8016. break;
  8017. #if DISABLED(NO_WORKSPACE_OFFSETS)
  8018. case 206: // M206: Set home offsets
  8019. gcode_M206();
  8020. break;
  8021. #endif
  8022. #if ENABLED(DELTA)
  8023. case 665: // M665: Set delta configurations
  8024. gcode_M665();
  8025. break;
  8026. #endif
  8027. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8028. case 666: // M666: Set delta or dual endstop adjustment
  8029. gcode_M666();
  8030. break;
  8031. #endif
  8032. #if ENABLED(FWRETRACT)
  8033. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8034. gcode_M207();
  8035. break;
  8036. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8037. gcode_M208();
  8038. break;
  8039. case 209: // M209: Turn Automatic Retract Detection on/off
  8040. gcode_M209();
  8041. break;
  8042. #endif // FWRETRACT
  8043. case 211: // M211: Enable, Disable, and/or Report software endstops
  8044. gcode_M211();
  8045. break;
  8046. #if HOTENDS > 1
  8047. case 218: // M218: Set a tool offset
  8048. gcode_M218();
  8049. break;
  8050. #endif
  8051. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8052. gcode_M220();
  8053. break;
  8054. case 221: // M221: Set Flow Percentage
  8055. gcode_M221();
  8056. break;
  8057. case 226: // M226: Wait until a pin reaches a state
  8058. gcode_M226();
  8059. break;
  8060. #if HAS_SERVOS
  8061. case 280: // M280: Set servo position absolute
  8062. gcode_M280();
  8063. break;
  8064. #endif // HAS_SERVOS
  8065. #if HAS_BUZZER
  8066. case 300: // M300: Play beep tone
  8067. gcode_M300();
  8068. break;
  8069. #endif // HAS_BUZZER
  8070. #if ENABLED(PIDTEMP)
  8071. case 301: // M301: Set hotend PID parameters
  8072. gcode_M301();
  8073. break;
  8074. #endif // PIDTEMP
  8075. #if ENABLED(PIDTEMPBED)
  8076. case 304: // M304: Set bed PID parameters
  8077. gcode_M304();
  8078. break;
  8079. #endif // PIDTEMPBED
  8080. #if defined(CHDK) || HAS_PHOTOGRAPH
  8081. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8082. gcode_M240();
  8083. break;
  8084. #endif // CHDK || PHOTOGRAPH_PIN
  8085. #if HAS_LCD_CONTRAST
  8086. case 250: // M250: Set LCD contrast
  8087. gcode_M250();
  8088. break;
  8089. #endif // HAS_LCD_CONTRAST
  8090. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8091. case 260: // M260: Send data to an i2c slave
  8092. gcode_M260();
  8093. break;
  8094. case 261: // M261: Request data from an i2c slave
  8095. gcode_M261();
  8096. break;
  8097. #endif // EXPERIMENTAL_I2CBUS
  8098. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8099. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8100. gcode_M302();
  8101. break;
  8102. #endif // PREVENT_COLD_EXTRUSION
  8103. case 303: // M303: PID autotune
  8104. gcode_M303();
  8105. break;
  8106. #if ENABLED(MORGAN_SCARA)
  8107. case 360: // M360: SCARA Theta pos1
  8108. if (gcode_M360()) return;
  8109. break;
  8110. case 361: // M361: SCARA Theta pos2
  8111. if (gcode_M361()) return;
  8112. break;
  8113. case 362: // M362: SCARA Psi pos1
  8114. if (gcode_M362()) return;
  8115. break;
  8116. case 363: // M363: SCARA Psi pos2
  8117. if (gcode_M363()) return;
  8118. break;
  8119. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8120. if (gcode_M364()) return;
  8121. break;
  8122. #endif // SCARA
  8123. case 400: // M400: Finish all moves
  8124. gcode_M400();
  8125. break;
  8126. #if HAS_BED_PROBE
  8127. case 401: // M401: Deploy probe
  8128. gcode_M401();
  8129. break;
  8130. case 402: // M402: Stow probe
  8131. gcode_M402();
  8132. break;
  8133. #endif // HAS_BED_PROBE
  8134. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8135. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8136. gcode_M404();
  8137. break;
  8138. case 405: // M405: Turn on filament sensor for control
  8139. gcode_M405();
  8140. break;
  8141. case 406: // M406: Turn off filament sensor for control
  8142. gcode_M406();
  8143. break;
  8144. case 407: // M407: Display measured filament diameter
  8145. gcode_M407();
  8146. break;
  8147. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8148. #if PLANNER_LEVELING
  8149. case 420: // M420: Enable/Disable Bed Leveling
  8150. gcode_M420();
  8151. break;
  8152. #endif
  8153. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8154. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8155. gcode_M421();
  8156. break;
  8157. #endif
  8158. #if DISABLED(NO_WORKSPACE_OFFSETS)
  8159. case 428: // M428: Apply current_position to home_offset
  8160. gcode_M428();
  8161. break;
  8162. #endif
  8163. case 500: // M500: Store settings in EEPROM
  8164. gcode_M500();
  8165. break;
  8166. case 501: // M501: Read settings from EEPROM
  8167. gcode_M501();
  8168. break;
  8169. case 502: // M502: Revert to default settings
  8170. gcode_M502();
  8171. break;
  8172. case 503: // M503: print settings currently in memory
  8173. gcode_M503();
  8174. break;
  8175. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8176. case 540: // M540: Set abort on endstop hit for SD printing
  8177. gcode_M540();
  8178. break;
  8179. #endif
  8180. #if HAS_BED_PROBE
  8181. case 851: // M851: Set Z Probe Z Offset
  8182. gcode_M851();
  8183. break;
  8184. #endif // HAS_BED_PROBE
  8185. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8186. case 600: // M600: Pause for filament change
  8187. gcode_M600();
  8188. break;
  8189. #endif // FILAMENT_CHANGE_FEATURE
  8190. #if ENABLED(DUAL_X_CARRIAGE)
  8191. case 605: // M605: Set Dual X Carriage movement mode
  8192. gcode_M605();
  8193. break;
  8194. #endif // DUAL_X_CARRIAGE
  8195. #if ENABLED(LIN_ADVANCE)
  8196. case 905: // M905: Set advance K factor.
  8197. gcode_M905();
  8198. break;
  8199. #endif
  8200. #if ENABLED(HAVE_TMC2130)
  8201. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8202. gcode_M906();
  8203. break;
  8204. #endif
  8205. case 907: // M907: Set digital trimpot motor current using axis codes.
  8206. gcode_M907();
  8207. break;
  8208. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8209. case 908: // M908: Control digital trimpot directly.
  8210. gcode_M908();
  8211. break;
  8212. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8213. case 909: // M909: Print digipot/DAC current value
  8214. gcode_M909();
  8215. break;
  8216. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8217. gcode_M910();
  8218. break;
  8219. #endif
  8220. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8221. #if ENABLED(HAVE_TMC2130)
  8222. case 911: // M911: Report TMC2130 prewarn triggered flags
  8223. gcode_M911();
  8224. break;
  8225. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8226. gcode_M912();
  8227. break;
  8228. #endif
  8229. #if HAS_MICROSTEPS
  8230. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8231. gcode_M350();
  8232. break;
  8233. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8234. gcode_M351();
  8235. break;
  8236. #endif // HAS_MICROSTEPS
  8237. case 355: // M355 Turn case lights on/off
  8238. gcode_M355();
  8239. break;
  8240. case 999: // M999: Restart after being Stopped
  8241. gcode_M999();
  8242. break;
  8243. }
  8244. break;
  8245. case 'T':
  8246. gcode_T(codenum);
  8247. break;
  8248. default: code_is_good = false;
  8249. }
  8250. KEEPALIVE_STATE(NOT_BUSY);
  8251. ExitUnknownCommand:
  8252. // Still unknown command? Throw an error
  8253. if (!code_is_good) unknown_command_error();
  8254. ok_to_send();
  8255. }
  8256. /**
  8257. * Send a "Resend: nnn" message to the host to
  8258. * indicate that a command needs to be re-sent.
  8259. */
  8260. void FlushSerialRequestResend() {
  8261. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8262. MYSERIAL.flush();
  8263. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8264. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8265. ok_to_send();
  8266. }
  8267. /**
  8268. * Send an "ok" message to the host, indicating
  8269. * that a command was successfully processed.
  8270. *
  8271. * If ADVANCED_OK is enabled also include:
  8272. * N<int> Line number of the command, if any
  8273. * P<int> Planner space remaining
  8274. * B<int> Block queue space remaining
  8275. */
  8276. void ok_to_send() {
  8277. refresh_cmd_timeout();
  8278. if (!send_ok[cmd_queue_index_r]) return;
  8279. SERIAL_PROTOCOLPGM(MSG_OK);
  8280. #if ENABLED(ADVANCED_OK)
  8281. char* p = command_queue[cmd_queue_index_r];
  8282. if (*p == 'N') {
  8283. SERIAL_PROTOCOL(' ');
  8284. SERIAL_ECHO(*p++);
  8285. while (NUMERIC_SIGNED(*p))
  8286. SERIAL_ECHO(*p++);
  8287. }
  8288. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8289. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8290. #endif
  8291. SERIAL_EOL;
  8292. }
  8293. #if HAS_SOFTWARE_ENDSTOPS
  8294. /**
  8295. * Constrain the given coordinates to the software endstops.
  8296. */
  8297. void clamp_to_software_endstops(float target[XYZ]) {
  8298. if (!soft_endstops_enabled) return;
  8299. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8300. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8301. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8302. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8303. #endif
  8304. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8305. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8306. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8307. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8308. #endif
  8309. }
  8310. #endif
  8311. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8312. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8313. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8314. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8315. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8316. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8317. #else
  8318. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8319. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8320. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8321. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8322. #endif
  8323. // Get the Z adjustment for non-linear bed leveling
  8324. float bilinear_z_offset(float cartesian[XYZ]) {
  8325. // XY relative to the probed area
  8326. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8327. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8328. // Convert to grid box units
  8329. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8330. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8331. // Whole units for the grid line indices. Constrained within bounds.
  8332. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8333. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8334. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8335. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8336. // Subtract whole to get the ratio within the grid box
  8337. ratio_x -= gridx; ratio_y -= gridy;
  8338. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8339. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8340. // Z at the box corners
  8341. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8342. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8343. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8344. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8345. // Bilinear interpolate
  8346. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8347. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8348. offset = L + ratio_x * (R - L);
  8349. /*
  8350. static float last_offset = 0;
  8351. if (fabs(last_offset - offset) > 0.2) {
  8352. SERIAL_ECHOPGM("Sudden Shift at ");
  8353. SERIAL_ECHOPAIR("x=", x);
  8354. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8355. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8356. SERIAL_ECHOPAIR(" y=", y);
  8357. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8358. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8359. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8360. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8361. SERIAL_ECHOPAIR(" z1=", z1);
  8362. SERIAL_ECHOPAIR(" z2=", z2);
  8363. SERIAL_ECHOPAIR(" z3=", z3);
  8364. SERIAL_ECHOLNPAIR(" z4=", z4);
  8365. SERIAL_ECHOPAIR(" L=", L);
  8366. SERIAL_ECHOPAIR(" R=", R);
  8367. SERIAL_ECHOLNPAIR(" offset=", offset);
  8368. }
  8369. last_offset = offset;
  8370. */
  8371. return offset;
  8372. }
  8373. #endif // AUTO_BED_LEVELING_BILINEAR
  8374. #if ENABLED(DELTA)
  8375. /**
  8376. * Recalculate factors used for delta kinematics whenever
  8377. * settings have been changed (e.g., by M665).
  8378. */
  8379. void recalc_delta_settings(float radius, float diagonal_rod) {
  8380. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8381. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8382. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8383. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8384. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8385. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8386. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8387. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8388. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8389. }
  8390. #if ENABLED(DELTA_FAST_SQRT)
  8391. /**
  8392. * Fast inverse sqrt from Quake III Arena
  8393. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8394. */
  8395. float Q_rsqrt(float number) {
  8396. long i;
  8397. float x2, y;
  8398. const float threehalfs = 1.5f;
  8399. x2 = number * 0.5f;
  8400. y = number;
  8401. i = * ( long * ) &y; // evil floating point bit level hacking
  8402. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8403. y = * ( float * ) &i;
  8404. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8405. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8406. return y;
  8407. }
  8408. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8409. #else
  8410. #define _SQRT(n) sqrt(n)
  8411. #endif
  8412. /**
  8413. * Delta Inverse Kinematics
  8414. *
  8415. * Calculate the tower positions for a given logical
  8416. * position, storing the result in the delta[] array.
  8417. *
  8418. * This is an expensive calculation, requiring 3 square
  8419. * roots per segmented linear move, and strains the limits
  8420. * of a Mega2560 with a Graphical Display.
  8421. *
  8422. * Suggested optimizations include:
  8423. *
  8424. * - Disable the home_offset (M206) and/or position_shift (G92)
  8425. * features to remove up to 12 float additions.
  8426. *
  8427. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8428. * (see above)
  8429. */
  8430. // Macro to obtain the Z position of an individual tower
  8431. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8432. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8433. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8434. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8435. ) \
  8436. )
  8437. #define DELTA_RAW_IK() do { \
  8438. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8439. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8440. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8441. } while(0)
  8442. #define DELTA_LOGICAL_IK() do { \
  8443. const float raw[XYZ] = { \
  8444. RAW_X_POSITION(logical[X_AXIS]), \
  8445. RAW_Y_POSITION(logical[Y_AXIS]), \
  8446. RAW_Z_POSITION(logical[Z_AXIS]) \
  8447. }; \
  8448. DELTA_RAW_IK(); \
  8449. } while(0)
  8450. #define DELTA_DEBUG() do { \
  8451. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8452. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8453. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8454. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8455. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8456. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8457. } while(0)
  8458. void inverse_kinematics(const float logical[XYZ]) {
  8459. DELTA_LOGICAL_IK();
  8460. // DELTA_DEBUG();
  8461. }
  8462. /**
  8463. * Calculate the highest Z position where the
  8464. * effector has the full range of XY motion.
  8465. */
  8466. float delta_safe_distance_from_top() {
  8467. float cartesian[XYZ] = {
  8468. LOGICAL_X_POSITION(0),
  8469. LOGICAL_Y_POSITION(0),
  8470. LOGICAL_Z_POSITION(0)
  8471. };
  8472. inverse_kinematics(cartesian);
  8473. float distance = delta[A_AXIS];
  8474. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8475. inverse_kinematics(cartesian);
  8476. return abs(distance - delta[A_AXIS]);
  8477. }
  8478. /**
  8479. * Delta Forward Kinematics
  8480. *
  8481. * See the Wikipedia article "Trilateration"
  8482. * https://en.wikipedia.org/wiki/Trilateration
  8483. *
  8484. * Establish a new coordinate system in the plane of the
  8485. * three carriage points. This system has its origin at
  8486. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8487. * plane with a Z component of zero.
  8488. * We will define unit vectors in this coordinate system
  8489. * in our original coordinate system. Then when we calculate
  8490. * the Xnew, Ynew and Znew values, we can translate back into
  8491. * the original system by moving along those unit vectors
  8492. * by the corresponding values.
  8493. *
  8494. * Variable names matched to Marlin, c-version, and avoid the
  8495. * use of any vector library.
  8496. *
  8497. * by Andreas Hardtung 2016-06-07
  8498. * based on a Java function from "Delta Robot Kinematics V3"
  8499. * by Steve Graves
  8500. *
  8501. * The result is stored in the cartes[] array.
  8502. */
  8503. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8504. // Create a vector in old coordinates along x axis of new coordinate
  8505. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8506. // Get the Magnitude of vector.
  8507. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8508. // Create unit vector by dividing by magnitude.
  8509. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8510. // Get the vector from the origin of the new system to the third point.
  8511. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8512. // Use the dot product to find the component of this vector on the X axis.
  8513. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8514. // Create a vector along the x axis that represents the x component of p13.
  8515. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8516. // Subtract the X component from the original vector leaving only Y. We use the
  8517. // variable that will be the unit vector after we scale it.
  8518. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8519. // The magnitude of Y component
  8520. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8521. // Convert to a unit vector
  8522. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8523. // The cross product of the unit x and y is the unit z
  8524. // float[] ez = vectorCrossProd(ex, ey);
  8525. float ez[3] = {
  8526. ex[1] * ey[2] - ex[2] * ey[1],
  8527. ex[2] * ey[0] - ex[0] * ey[2],
  8528. ex[0] * ey[1] - ex[1] * ey[0]
  8529. };
  8530. // We now have the d, i and j values defined in Wikipedia.
  8531. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8532. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8533. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8534. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8535. // Start from the origin of the old coordinates and add vectors in the
  8536. // old coords that represent the Xnew, Ynew and Znew to find the point
  8537. // in the old system.
  8538. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8539. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8540. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8541. }
  8542. void forward_kinematics_DELTA(float point[ABC]) {
  8543. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8544. }
  8545. #endif // DELTA
  8546. /**
  8547. * Get the stepper positions in the cartes[] array.
  8548. * Forward kinematics are applied for DELTA and SCARA.
  8549. *
  8550. * The result is in the current coordinate space with
  8551. * leveling applied. The coordinates need to be run through
  8552. * unapply_leveling to obtain the "ideal" coordinates
  8553. * suitable for current_position, etc.
  8554. */
  8555. void get_cartesian_from_steppers() {
  8556. #if ENABLED(DELTA)
  8557. forward_kinematics_DELTA(
  8558. stepper.get_axis_position_mm(A_AXIS),
  8559. stepper.get_axis_position_mm(B_AXIS),
  8560. stepper.get_axis_position_mm(C_AXIS)
  8561. );
  8562. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8563. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8564. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8565. #elif IS_SCARA
  8566. forward_kinematics_SCARA(
  8567. stepper.get_axis_position_degrees(A_AXIS),
  8568. stepper.get_axis_position_degrees(B_AXIS)
  8569. );
  8570. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8571. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8572. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8573. #else
  8574. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8575. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8576. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8577. #endif
  8578. }
  8579. /**
  8580. * Set the current_position for an axis based on
  8581. * the stepper positions, removing any leveling that
  8582. * may have been applied.
  8583. */
  8584. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8585. get_cartesian_from_steppers();
  8586. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8587. planner.unapply_leveling(cartes);
  8588. #endif
  8589. if (axis == ALL_AXES)
  8590. COPY(current_position, cartes);
  8591. else
  8592. current_position[axis] = cartes[axis];
  8593. }
  8594. #if ENABLED(MESH_BED_LEVELING)
  8595. /**
  8596. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8597. * splitting the move where it crosses mesh borders.
  8598. */
  8599. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8600. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8601. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8602. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8603. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8604. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  8605. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  8606. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  8607. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  8608. if (cx1 == cx2 && cy1 == cy2) {
  8609. // Start and end on same mesh square
  8610. line_to_destination(fr_mm_s);
  8611. set_current_to_destination();
  8612. return;
  8613. }
  8614. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8615. float normalized_dist, end[XYZE];
  8616. // Split at the left/front border of the right/top square
  8617. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8618. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8619. COPY(end, destination);
  8620. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8621. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8622. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8623. CBI(x_splits, gcx);
  8624. }
  8625. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8626. COPY(end, destination);
  8627. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8628. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8629. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8630. CBI(y_splits, gcy);
  8631. }
  8632. else {
  8633. // Already split on a border
  8634. line_to_destination(fr_mm_s);
  8635. set_current_to_destination();
  8636. return;
  8637. }
  8638. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8639. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8640. // Do the split and look for more borders
  8641. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8642. // Restore destination from stack
  8643. COPY(destination, end);
  8644. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8645. }
  8646. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8647. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8648. /**
  8649. * Prepare a bilinear-leveled linear move on Cartesian,
  8650. * splitting the move where it crosses grid borders.
  8651. */
  8652. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8653. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8654. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8655. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8656. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8657. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8658. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8659. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8660. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8661. if (cx1 == cx2 && cy1 == cy2) {
  8662. // Start and end on same mesh square
  8663. line_to_destination(fr_mm_s);
  8664. set_current_to_destination();
  8665. return;
  8666. }
  8667. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8668. float normalized_dist, end[XYZE];
  8669. // Split at the left/front border of the right/top square
  8670. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8671. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8672. COPY(end, destination);
  8673. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8674. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8675. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8676. CBI(x_splits, gcx);
  8677. }
  8678. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8679. COPY(end, destination);
  8680. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8681. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8682. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8683. CBI(y_splits, gcy);
  8684. }
  8685. else {
  8686. // Already split on a border
  8687. line_to_destination(fr_mm_s);
  8688. set_current_to_destination();
  8689. return;
  8690. }
  8691. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8692. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8693. // Do the split and look for more borders
  8694. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8695. // Restore destination from stack
  8696. COPY(destination, end);
  8697. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8698. }
  8699. #endif // AUTO_BED_LEVELING_BILINEAR
  8700. #if IS_KINEMATIC
  8701. /**
  8702. * Prepare a linear move in a DELTA or SCARA setup.
  8703. *
  8704. * This calls planner.buffer_line several times, adding
  8705. * small incremental moves for DELTA or SCARA.
  8706. */
  8707. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8708. // Get the top feedrate of the move in the XY plane
  8709. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8710. // If the move is only in Z/E don't split up the move
  8711. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8712. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8713. return true;
  8714. }
  8715. // Get the cartesian distances moved in XYZE
  8716. float difference[XYZE];
  8717. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8718. // Get the linear distance in XYZ
  8719. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8720. // If the move is very short, check the E move distance
  8721. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8722. // No E move either? Game over.
  8723. if (UNEAR_ZERO(cartesian_mm)) return false;
  8724. // Minimum number of seconds to move the given distance
  8725. float seconds = cartesian_mm / _feedrate_mm_s;
  8726. // The number of segments-per-second times the duration
  8727. // gives the number of segments
  8728. uint16_t segments = delta_segments_per_second * seconds;
  8729. // For SCARA minimum segment size is 0.25mm
  8730. #if IS_SCARA
  8731. NOMORE(segments, cartesian_mm * 4);
  8732. #endif
  8733. // At least one segment is required
  8734. NOLESS(segments, 1);
  8735. // The approximate length of each segment
  8736. const float inv_segments = 1.0 / float(segments),
  8737. segment_distance[XYZE] = {
  8738. difference[X_AXIS] * inv_segments,
  8739. difference[Y_AXIS] * inv_segments,
  8740. difference[Z_AXIS] * inv_segments,
  8741. difference[E_AXIS] * inv_segments
  8742. };
  8743. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8744. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8745. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8746. #if IS_SCARA
  8747. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8748. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8749. feed_factor = inv_segment_length * _feedrate_mm_s;
  8750. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8751. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8752. #endif
  8753. // Get the logical current position as starting point
  8754. float logical[XYZE];
  8755. COPY(logical, current_position);
  8756. // Drop one segment so the last move is to the exact target.
  8757. // If there's only 1 segment, loops will be skipped entirely.
  8758. --segments;
  8759. // Calculate and execute the segments
  8760. for (uint16_t s = segments + 1; --s;) {
  8761. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8762. #if ENABLED(DELTA)
  8763. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8764. #else
  8765. inverse_kinematics(logical);
  8766. #endif
  8767. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8768. #if IS_SCARA
  8769. // For SCARA scale the feed rate from mm/s to degrees/s
  8770. // Use ratio between the length of the move and the larger angle change
  8771. const float adiff = abs(delta[A_AXIS] - oldA),
  8772. bdiff = abs(delta[B_AXIS] - oldB);
  8773. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8774. oldA = delta[A_AXIS];
  8775. oldB = delta[B_AXIS];
  8776. #else
  8777. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8778. #endif
  8779. }
  8780. // Since segment_distance is only approximate,
  8781. // the final move must be to the exact destination.
  8782. #if IS_SCARA
  8783. // For SCARA scale the feed rate from mm/s to degrees/s
  8784. // With segments > 1 length is 1 segment, otherwise total length
  8785. inverse_kinematics(ltarget);
  8786. ADJUST_DELTA(logical);
  8787. const float adiff = abs(delta[A_AXIS] - oldA),
  8788. bdiff = abs(delta[B_AXIS] - oldB);
  8789. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8790. #else
  8791. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8792. #endif
  8793. return true;
  8794. }
  8795. #else // !IS_KINEMATIC
  8796. /**
  8797. * Prepare a linear move in a Cartesian setup.
  8798. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8799. *
  8800. * Returns true if the caller didn't update current_position.
  8801. */
  8802. inline bool prepare_move_to_destination_cartesian() {
  8803. // Do not use feedrate_percentage for E or Z only moves
  8804. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8805. line_to_destination();
  8806. }
  8807. else {
  8808. #if ENABLED(MESH_BED_LEVELING)
  8809. if (mbl.active()) {
  8810. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8811. return false;
  8812. }
  8813. else
  8814. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8815. if (ubl.state.active) {
  8816. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8817. return false;
  8818. }
  8819. else
  8820. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8821. if (planner.abl_enabled) {
  8822. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8823. return false;
  8824. }
  8825. else
  8826. #endif
  8827. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8828. }
  8829. return true;
  8830. }
  8831. #endif // !IS_KINEMATIC
  8832. #if ENABLED(DUAL_X_CARRIAGE)
  8833. /**
  8834. * Prepare a linear move in a dual X axis setup
  8835. */
  8836. inline bool prepare_move_to_destination_dualx() {
  8837. if (active_extruder_parked) {
  8838. switch (dual_x_carriage_mode) {
  8839. case DXC_FULL_CONTROL_MODE:
  8840. break;
  8841. case DXC_AUTO_PARK_MODE:
  8842. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8843. // This is a travel move (with no extrusion)
  8844. // Skip it, but keep track of the current position
  8845. // (so it can be used as the start of the next non-travel move)
  8846. if (delayed_move_time != 0xFFFFFFFFUL) {
  8847. set_current_to_destination();
  8848. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8849. delayed_move_time = millis();
  8850. return false;
  8851. }
  8852. }
  8853. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8854. for (uint8_t i = 0; i < 3; i++)
  8855. planner.buffer_line(
  8856. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8857. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8858. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8859. current_position[E_AXIS],
  8860. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8861. active_extruder
  8862. );
  8863. delayed_move_time = 0;
  8864. active_extruder_parked = false;
  8865. break;
  8866. case DXC_DUPLICATION_MODE:
  8867. if (active_extruder == 0) {
  8868. // move duplicate extruder into correct duplication position.
  8869. planner.set_position_mm(
  8870. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8871. current_position[Y_AXIS],
  8872. current_position[Z_AXIS],
  8873. current_position[E_AXIS]
  8874. );
  8875. planner.buffer_line(
  8876. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8877. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8878. planner.max_feedrate_mm_s[X_AXIS], 1
  8879. );
  8880. SYNC_PLAN_POSITION_KINEMATIC();
  8881. stepper.synchronize();
  8882. extruder_duplication_enabled = true;
  8883. active_extruder_parked = false;
  8884. }
  8885. break;
  8886. }
  8887. }
  8888. return true;
  8889. }
  8890. #endif // DUAL_X_CARRIAGE
  8891. /**
  8892. * Prepare a single move and get ready for the next one
  8893. *
  8894. * This may result in several calls to planner.buffer_line to
  8895. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8896. */
  8897. void prepare_move_to_destination() {
  8898. clamp_to_software_endstops(destination);
  8899. refresh_cmd_timeout();
  8900. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8901. if (!DEBUGGING(DRYRUN)) {
  8902. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8903. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8904. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8905. SERIAL_ECHO_START;
  8906. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8907. }
  8908. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8909. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8910. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8911. SERIAL_ECHO_START;
  8912. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8913. }
  8914. #endif
  8915. }
  8916. }
  8917. #endif
  8918. #if IS_KINEMATIC
  8919. if (!prepare_kinematic_move_to(destination)) return;
  8920. #else
  8921. #if ENABLED(DUAL_X_CARRIAGE)
  8922. if (!prepare_move_to_destination_dualx()) return;
  8923. #endif
  8924. if (!prepare_move_to_destination_cartesian()) return;
  8925. #endif
  8926. set_current_to_destination();
  8927. }
  8928. #if ENABLED(ARC_SUPPORT)
  8929. /**
  8930. * Plan an arc in 2 dimensions
  8931. *
  8932. * The arc is approximated by generating many small linear segments.
  8933. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8934. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8935. * larger segments will tend to be more efficient. Your slicer should have
  8936. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8937. */
  8938. void plan_arc(
  8939. float logical[XYZE], // Destination position
  8940. float* offset, // Center of rotation relative to current_position
  8941. uint8_t clockwise // Clockwise?
  8942. ) {
  8943. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8944. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8945. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8946. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8947. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8948. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8949. r_Y = -offset[Y_AXIS],
  8950. rt_X = logical[X_AXIS] - center_X,
  8951. rt_Y = logical[Y_AXIS] - center_Y;
  8952. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8953. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8954. if (angular_travel < 0) angular_travel += RADIANS(360);
  8955. if (clockwise) angular_travel -= RADIANS(360);
  8956. // Make a circle if the angular rotation is 0
  8957. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8958. angular_travel += RADIANS(360);
  8959. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8960. if (mm_of_travel < 0.001) return;
  8961. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8962. if (segments == 0) segments = 1;
  8963. /**
  8964. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8965. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8966. * r_T = [cos(phi) -sin(phi);
  8967. * sin(phi) cos(phi)] * r ;
  8968. *
  8969. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8970. * defined from the circle center to the initial position. Each line segment is formed by successive
  8971. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8972. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8973. * all double numbers are single precision on the Arduino. (True double precision will not have
  8974. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8975. * tool precision in some cases. Therefore, arc path correction is implemented.
  8976. *
  8977. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8978. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8979. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8980. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8981. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8982. * issue for CNC machines with the single precision Arduino calculations.
  8983. *
  8984. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8985. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8986. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8987. * This is important when there are successive arc motions.
  8988. */
  8989. // Vector rotation matrix values
  8990. float arc_target[XYZE],
  8991. theta_per_segment = angular_travel / segments,
  8992. linear_per_segment = linear_travel / segments,
  8993. extruder_per_segment = extruder_travel / segments,
  8994. sin_T = theta_per_segment,
  8995. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8996. // Initialize the linear axis
  8997. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8998. // Initialize the extruder axis
  8999. arc_target[E_AXIS] = current_position[E_AXIS];
  9000. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9001. millis_t next_idle_ms = millis() + 200UL;
  9002. int8_t count = 0;
  9003. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9004. thermalManager.manage_heater();
  9005. if (ELAPSED(millis(), next_idle_ms)) {
  9006. next_idle_ms = millis() + 200UL;
  9007. idle();
  9008. }
  9009. if (++count < N_ARC_CORRECTION) {
  9010. // Apply vector rotation matrix to previous r_X / 1
  9011. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9012. r_X = r_X * cos_T - r_Y * sin_T;
  9013. r_Y = r_new_Y;
  9014. }
  9015. else {
  9016. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9017. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9018. // To reduce stuttering, the sin and cos could be computed at different times.
  9019. // For now, compute both at the same time.
  9020. float cos_Ti = cos(i * theta_per_segment),
  9021. sin_Ti = sin(i * theta_per_segment);
  9022. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9023. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9024. count = 0;
  9025. }
  9026. // Update arc_target location
  9027. arc_target[X_AXIS] = center_X + r_X;
  9028. arc_target[Y_AXIS] = center_Y + r_Y;
  9029. arc_target[Z_AXIS] += linear_per_segment;
  9030. arc_target[E_AXIS] += extruder_per_segment;
  9031. clamp_to_software_endstops(arc_target);
  9032. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9033. }
  9034. // Ensure last segment arrives at target location.
  9035. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9036. // As far as the parser is concerned, the position is now == target. In reality the
  9037. // motion control system might still be processing the action and the real tool position
  9038. // in any intermediate location.
  9039. set_current_to_destination();
  9040. }
  9041. #endif
  9042. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9043. void plan_cubic_move(const float offset[4]) {
  9044. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9045. // As far as the parser is concerned, the position is now == destination. In reality the
  9046. // motion control system might still be processing the action and the real tool position
  9047. // in any intermediate location.
  9048. set_current_to_destination();
  9049. }
  9050. #endif // BEZIER_CURVE_SUPPORT
  9051. #if HAS_CONTROLLERFAN
  9052. void controllerFan() {
  9053. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9054. nextMotorCheck = 0; // Last time the state was checked
  9055. const millis_t ms = millis();
  9056. if (ELAPSED(ms, nextMotorCheck)) {
  9057. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9058. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9059. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9060. #if E_STEPPERS > 1
  9061. || E1_ENABLE_READ == E_ENABLE_ON
  9062. #if HAS_X2_ENABLE
  9063. || X2_ENABLE_READ == X_ENABLE_ON
  9064. #endif
  9065. #if E_STEPPERS > 2
  9066. || E2_ENABLE_READ == E_ENABLE_ON
  9067. #if E_STEPPERS > 3
  9068. || E3_ENABLE_READ == E_ENABLE_ON
  9069. #if E_STEPPERS > 4
  9070. || E4_ENABLE_READ == E_ENABLE_ON
  9071. #endif // E_STEPPERS > 4
  9072. #endif // E_STEPPERS > 3
  9073. #endif // E_STEPPERS > 2
  9074. #endif // E_STEPPERS > 1
  9075. ) {
  9076. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9077. }
  9078. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9079. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9080. // allows digital or PWM fan output to be used (see M42 handling)
  9081. WRITE(CONTROLLERFAN_PIN, speed);
  9082. analogWrite(CONTROLLERFAN_PIN, speed);
  9083. }
  9084. }
  9085. #endif // HAS_CONTROLLERFAN
  9086. #if ENABLED(MORGAN_SCARA)
  9087. /**
  9088. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9089. * Maths and first version by QHARLEY.
  9090. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9091. */
  9092. void forward_kinematics_SCARA(const float &a, const float &b) {
  9093. float a_sin = sin(RADIANS(a)) * L1,
  9094. a_cos = cos(RADIANS(a)) * L1,
  9095. b_sin = sin(RADIANS(b)) * L2,
  9096. b_cos = cos(RADIANS(b)) * L2;
  9097. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9098. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9099. /*
  9100. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9101. SERIAL_ECHOPAIR(" b=", b);
  9102. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9103. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9104. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9105. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9106. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9107. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9108. //*/
  9109. }
  9110. /**
  9111. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9112. *
  9113. * See http://forums.reprap.org/read.php?185,283327
  9114. *
  9115. * Maths and first version by QHARLEY.
  9116. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9117. */
  9118. void inverse_kinematics(const float logical[XYZ]) {
  9119. static float C2, S2, SK1, SK2, THETA, PSI;
  9120. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9121. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9122. if (L1 == L2)
  9123. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9124. else
  9125. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9126. S2 = sqrt(sq(C2) - 1);
  9127. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9128. SK1 = L1 + L2 * C2;
  9129. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9130. SK2 = L2 * S2;
  9131. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9132. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9133. // Angle of Arm2
  9134. PSI = atan2(S2, C2);
  9135. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9136. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9137. delta[C_AXIS] = logical[Z_AXIS];
  9138. /*
  9139. DEBUG_POS("SCARA IK", logical);
  9140. DEBUG_POS("SCARA IK", delta);
  9141. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9142. SERIAL_ECHOPAIR(",", sy);
  9143. SERIAL_ECHOPAIR(" C2=", C2);
  9144. SERIAL_ECHOPAIR(" S2=", S2);
  9145. SERIAL_ECHOPAIR(" Theta=", THETA);
  9146. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9147. //*/
  9148. }
  9149. #endif // MORGAN_SCARA
  9150. #if ENABLED(TEMP_STAT_LEDS)
  9151. static bool red_led = false;
  9152. static millis_t next_status_led_update_ms = 0;
  9153. void handle_status_leds(void) {
  9154. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9155. next_status_led_update_ms += 500; // Update every 0.5s
  9156. float max_temp = 0.0;
  9157. #if HAS_TEMP_BED
  9158. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9159. #endif
  9160. HOTEND_LOOP() {
  9161. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9162. }
  9163. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9164. if (new_led != red_led) {
  9165. red_led = new_led;
  9166. #if PIN_EXISTS(STAT_LED_RED)
  9167. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9168. #if PIN_EXISTS(STAT_LED_BLUE)
  9169. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9170. #endif
  9171. #else
  9172. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9173. #endif
  9174. }
  9175. }
  9176. }
  9177. #endif
  9178. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9179. void handle_filament_runout() {
  9180. if (!filament_ran_out) {
  9181. filament_ran_out = true;
  9182. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9183. stepper.synchronize();
  9184. }
  9185. }
  9186. #endif // FILAMENT_RUNOUT_SENSOR
  9187. #if ENABLED(FAST_PWM_FAN)
  9188. void setPwmFrequency(uint8_t pin, int val) {
  9189. val &= 0x07;
  9190. switch (digitalPinToTimer(pin)) {
  9191. #ifdef TCCR0A
  9192. case TIMER0A:
  9193. case TIMER0B:
  9194. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9195. // TCCR0B |= val;
  9196. break;
  9197. #endif
  9198. #ifdef TCCR1A
  9199. case TIMER1A:
  9200. case TIMER1B:
  9201. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9202. // TCCR1B |= val;
  9203. break;
  9204. #endif
  9205. #ifdef TCCR2
  9206. case TIMER2:
  9207. case TIMER2:
  9208. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9209. TCCR2 |= val;
  9210. break;
  9211. #endif
  9212. #ifdef TCCR2A
  9213. case TIMER2A:
  9214. case TIMER2B:
  9215. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9216. TCCR2B |= val;
  9217. break;
  9218. #endif
  9219. #ifdef TCCR3A
  9220. case TIMER3A:
  9221. case TIMER3B:
  9222. case TIMER3C:
  9223. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9224. TCCR3B |= val;
  9225. break;
  9226. #endif
  9227. #ifdef TCCR4A
  9228. case TIMER4A:
  9229. case TIMER4B:
  9230. case TIMER4C:
  9231. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9232. TCCR4B |= val;
  9233. break;
  9234. #endif
  9235. #ifdef TCCR5A
  9236. case TIMER5A:
  9237. case TIMER5B:
  9238. case TIMER5C:
  9239. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9240. TCCR5B |= val;
  9241. break;
  9242. #endif
  9243. }
  9244. }
  9245. #endif // FAST_PWM_FAN
  9246. float calculate_volumetric_multiplier(float diameter) {
  9247. if (!volumetric_enabled || diameter == 0) return 1.0;
  9248. return 1.0 / (M_PI * sq(diameter * 0.5));
  9249. }
  9250. void calculate_volumetric_multipliers() {
  9251. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9252. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9253. }
  9254. void enable_all_steppers() {
  9255. enable_X();
  9256. enable_Y();
  9257. enable_Z();
  9258. enable_E0();
  9259. enable_E1();
  9260. enable_E2();
  9261. enable_E3();
  9262. enable_E4();
  9263. }
  9264. void disable_e_steppers() {
  9265. disable_E0();
  9266. disable_E1();
  9267. disable_E2();
  9268. disable_E3();
  9269. disable_E4();
  9270. }
  9271. void disable_all_steppers() {
  9272. disable_X();
  9273. disable_Y();
  9274. disable_Z();
  9275. disable_e_steppers();
  9276. }
  9277. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9278. void automatic_current_control(const TMC2130Stepper &st) {
  9279. #if CURRENT_STEP > 0
  9280. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9281. is_otpw_triggered = st.getOTPW();
  9282. if (!is_otpw && !is_otpw_triggered) {
  9283. // OTPW bit not triggered yet -> Increase current
  9284. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9285. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9286. }
  9287. else if (is_otpw && is_otpw_triggered) {
  9288. // OTPW bit triggered, triggered flag raised -> Decrease current
  9289. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9290. }
  9291. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9292. #endif
  9293. }
  9294. void checkOverTemp() {
  9295. static millis_t next_cOT = 0;
  9296. if (ELAPSED(millis(), next_cOT)) {
  9297. next_cOT = millis() + 5000;
  9298. #if ENABLED(X_IS_TMC2130)
  9299. automatic_current_control(stepperX);
  9300. #endif
  9301. #if ENABLED(Y_IS_TMC2130)
  9302. automatic_current_control(stepperY);
  9303. #endif
  9304. #if ENABLED(Z_IS_TMC2130)
  9305. automatic_current_control(stepperZ);
  9306. #endif
  9307. #if ENABLED(X2_IS_TMC2130)
  9308. automatic_current_control(stepperX2);
  9309. #endif
  9310. #if ENABLED(Y2_IS_TMC2130)
  9311. automatic_current_control(stepperY2);
  9312. #endif
  9313. #if ENABLED(Z2_IS_TMC2130)
  9314. automatic_current_control(stepperZ2);
  9315. #endif
  9316. #if ENABLED(E0_IS_TMC2130)
  9317. automatic_current_control(stepperE0);
  9318. #endif
  9319. #if ENABLED(E1_IS_TMC2130)
  9320. automatic_current_control(stepperE1);
  9321. #endif
  9322. #if ENABLED(E2_IS_TMC2130)
  9323. automatic_current_control(stepperE2);
  9324. #endif
  9325. #if ENABLED(E3_IS_TMC2130)
  9326. automatic_current_control(stepperE3);
  9327. #endif
  9328. }
  9329. }
  9330. #endif // AUTOMATIC_CURRENT_CONTROL
  9331. /**
  9332. * Manage several activities:
  9333. * - Check for Filament Runout
  9334. * - Keep the command buffer full
  9335. * - Check for maximum inactive time between commands
  9336. * - Check for maximum inactive time between stepper commands
  9337. * - Check if pin CHDK needs to go LOW
  9338. * - Check for KILL button held down
  9339. * - Check for HOME button held down
  9340. * - Check if cooling fan needs to be switched on
  9341. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9342. */
  9343. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9344. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9345. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9346. handle_filament_runout();
  9347. #endif
  9348. if (commands_in_queue < BUFSIZE) get_available_commands();
  9349. const millis_t ms = millis();
  9350. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9351. SERIAL_ERROR_START;
  9352. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9353. kill(PSTR(MSG_KILLED));
  9354. }
  9355. // Prevent steppers timing-out in the middle of M600
  9356. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9357. #define M600_TEST !busy_doing_M600
  9358. #else
  9359. #define M600_TEST true
  9360. #endif
  9361. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9362. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9363. #if ENABLED(DISABLE_INACTIVE_X)
  9364. disable_X();
  9365. #endif
  9366. #if ENABLED(DISABLE_INACTIVE_Y)
  9367. disable_Y();
  9368. #endif
  9369. #if ENABLED(DISABLE_INACTIVE_Z)
  9370. disable_Z();
  9371. #endif
  9372. #if ENABLED(DISABLE_INACTIVE_E)
  9373. disable_e_steppers();
  9374. #endif
  9375. }
  9376. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9377. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9378. chdkActive = false;
  9379. WRITE(CHDK, LOW);
  9380. }
  9381. #endif
  9382. #if HAS_KILL
  9383. // Check if the kill button was pressed and wait just in case it was an accidental
  9384. // key kill key press
  9385. // -------------------------------------------------------------------------------
  9386. static int killCount = 0; // make the inactivity button a bit less responsive
  9387. const int KILL_DELAY = 750;
  9388. if (!READ(KILL_PIN))
  9389. killCount++;
  9390. else if (killCount > 0)
  9391. killCount--;
  9392. // Exceeded threshold and we can confirm that it was not accidental
  9393. // KILL the machine
  9394. // ----------------------------------------------------------------
  9395. if (killCount >= KILL_DELAY) {
  9396. SERIAL_ERROR_START;
  9397. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9398. kill(PSTR(MSG_KILLED));
  9399. }
  9400. #endif
  9401. #if HAS_HOME
  9402. // Check to see if we have to home, use poor man's debouncer
  9403. // ---------------------------------------------------------
  9404. static int homeDebounceCount = 0; // poor man's debouncing count
  9405. const int HOME_DEBOUNCE_DELAY = 2500;
  9406. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9407. if (!homeDebounceCount) {
  9408. enqueue_and_echo_commands_P(PSTR("G28"));
  9409. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9410. }
  9411. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9412. homeDebounceCount++;
  9413. else
  9414. homeDebounceCount = 0;
  9415. }
  9416. #endif
  9417. #if HAS_CONTROLLERFAN
  9418. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9419. #endif
  9420. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9421. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9422. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9423. bool oldstatus;
  9424. #if ENABLED(SWITCHING_EXTRUDER)
  9425. oldstatus = E0_ENABLE_READ;
  9426. enable_E0();
  9427. #else // !SWITCHING_EXTRUDER
  9428. switch (active_extruder) {
  9429. case 0:
  9430. oldstatus = E0_ENABLE_READ;
  9431. enable_E0();
  9432. break;
  9433. #if E_STEPPERS > 1
  9434. case 1:
  9435. oldstatus = E1_ENABLE_READ;
  9436. enable_E1();
  9437. break;
  9438. #if E_STEPPERS > 2
  9439. case 2:
  9440. oldstatus = E2_ENABLE_READ;
  9441. enable_E2();
  9442. break;
  9443. #if E_STEPPERS > 3
  9444. case 3:
  9445. oldstatus = E3_ENABLE_READ;
  9446. enable_E3();
  9447. break;
  9448. #if E_STEPPERS > 4
  9449. case 4:
  9450. oldstatus = E4_ENABLE_READ;
  9451. enable_E4();
  9452. break;
  9453. #endif // E_STEPPERS > 4
  9454. #endif // E_STEPPERS > 3
  9455. #endif // E_STEPPERS > 2
  9456. #endif // E_STEPPERS > 1
  9457. }
  9458. #endif // !SWITCHING_EXTRUDER
  9459. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9460. const float olde = current_position[E_AXIS];
  9461. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9462. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9463. current_position[E_AXIS] = olde;
  9464. planner.set_e_position_mm(olde);
  9465. stepper.synchronize();
  9466. #if ENABLED(SWITCHING_EXTRUDER)
  9467. E0_ENABLE_WRITE(oldstatus);
  9468. #else
  9469. switch (active_extruder) {
  9470. case 0:
  9471. E0_ENABLE_WRITE(oldstatus);
  9472. break;
  9473. #if E_STEPPERS > 1
  9474. case 1:
  9475. E1_ENABLE_WRITE(oldstatus);
  9476. break;
  9477. #if E_STEPPERS > 2
  9478. case 2:
  9479. E2_ENABLE_WRITE(oldstatus);
  9480. break;
  9481. #if E_STEPPERS > 3
  9482. case 3:
  9483. E3_ENABLE_WRITE(oldstatus);
  9484. break;
  9485. #if E_STEPPERS > 4
  9486. case 4:
  9487. E4_ENABLE_WRITE(oldstatus);
  9488. break;
  9489. #endif // E_STEPPERS > 4
  9490. #endif // E_STEPPERS > 3
  9491. #endif // E_STEPPERS > 2
  9492. #endif // E_STEPPERS > 1
  9493. }
  9494. #endif // !SWITCHING_EXTRUDER
  9495. }
  9496. #endif // EXTRUDER_RUNOUT_PREVENT
  9497. #if ENABLED(DUAL_X_CARRIAGE)
  9498. // handle delayed move timeout
  9499. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9500. // travel moves have been received so enact them
  9501. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9502. set_destination_to_current();
  9503. prepare_move_to_destination();
  9504. }
  9505. #endif
  9506. #if ENABLED(TEMP_STAT_LEDS)
  9507. handle_status_leds();
  9508. #endif
  9509. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9510. checkOverTemp();
  9511. #endif
  9512. planner.check_axes_activity();
  9513. }
  9514. /**
  9515. * Standard idle routine keeps the machine alive
  9516. */
  9517. void idle(
  9518. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9519. bool no_stepper_sleep/*=false*/
  9520. #endif
  9521. ) {
  9522. lcd_update();
  9523. host_keepalive();
  9524. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9525. auto_report_temperatures();
  9526. #endif
  9527. manage_inactivity(
  9528. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9529. no_stepper_sleep
  9530. #endif
  9531. );
  9532. thermalManager.manage_heater();
  9533. #if ENABLED(PRINTCOUNTER)
  9534. print_job_timer.tick();
  9535. #endif
  9536. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9537. buzzer.tick();
  9538. #endif
  9539. }
  9540. /**
  9541. * Kill all activity and lock the machine.
  9542. * After this the machine will need to be reset.
  9543. */
  9544. void kill(const char* lcd_msg) {
  9545. SERIAL_ERROR_START;
  9546. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9547. thermalManager.disable_all_heaters();
  9548. disable_all_steppers();
  9549. #if ENABLED(ULTRA_LCD)
  9550. kill_screen(lcd_msg);
  9551. #else
  9552. UNUSED(lcd_msg);
  9553. #endif
  9554. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  9555. cli(); // Stop interrupts
  9556. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9557. thermalManager.disable_all_heaters(); //turn off heaters again
  9558. #if HAS_POWER_SWITCH
  9559. SET_INPUT(PS_ON_PIN);
  9560. #endif
  9561. suicide();
  9562. while (1) {
  9563. #if ENABLED(USE_WATCHDOG)
  9564. watchdog_reset();
  9565. #endif
  9566. } // Wait for reset
  9567. }
  9568. /**
  9569. * Turn off heaters and stop the print in progress
  9570. * After a stop the machine may be resumed with M999
  9571. */
  9572. void stop() {
  9573. thermalManager.disable_all_heaters();
  9574. if (IsRunning()) {
  9575. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9576. SERIAL_ERROR_START;
  9577. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9578. LCD_MESSAGEPGM(MSG_STOPPED);
  9579. safe_delay(350); // allow enough time for messages to get out before stopping
  9580. Running = false;
  9581. }
  9582. }
  9583. /**
  9584. * Marlin entry-point: Set up before the program loop
  9585. * - Set up the kill pin, filament runout, power hold
  9586. * - Start the serial port
  9587. * - Print startup messages and diagnostics
  9588. * - Get EEPROM or default settings
  9589. * - Initialize managers for:
  9590. * • temperature
  9591. * • planner
  9592. * • watchdog
  9593. * • stepper
  9594. * • photo pin
  9595. * • servos
  9596. * • LCD controller
  9597. * • Digipot I2C
  9598. * • Z probe sled
  9599. * • status LEDs
  9600. */
  9601. void setup() {
  9602. #ifdef DISABLE_JTAG
  9603. // Disable JTAG on AT90USB chips to free up pins for IO
  9604. MCUCR = 0x80;
  9605. MCUCR = 0x80;
  9606. #endif
  9607. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9608. setup_filrunoutpin();
  9609. #endif
  9610. setup_killpin();
  9611. setup_powerhold();
  9612. #if HAS_STEPPER_RESET
  9613. disableStepperDrivers();
  9614. #endif
  9615. MYSERIAL.begin(BAUDRATE);
  9616. SERIAL_PROTOCOLLNPGM("start");
  9617. SERIAL_ECHO_START;
  9618. // Check startup - does nothing if bootloader sets MCUSR to 0
  9619. byte mcu = MCUSR;
  9620. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9621. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9622. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9623. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9624. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9625. MCUSR = 0;
  9626. SERIAL_ECHOPGM(MSG_MARLIN);
  9627. SERIAL_CHAR(' ');
  9628. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9629. SERIAL_EOL;
  9630. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9631. SERIAL_ECHO_START;
  9632. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9633. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9634. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9635. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9636. #endif
  9637. SERIAL_ECHO_START;
  9638. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9639. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9640. // Send "ok" after commands by default
  9641. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9642. // Load data from EEPROM if available (or use defaults)
  9643. // This also updates variables in the planner, elsewhere
  9644. (void)settings.load();
  9645. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9646. // Initialize current position based on home_offset
  9647. COPY(current_position, home_offset);
  9648. #else
  9649. ZERO(current_position);
  9650. #endif
  9651. // Vital to init stepper/planner equivalent for current_position
  9652. SYNC_PLAN_POSITION_KINEMATIC();
  9653. thermalManager.init(); // Initialize temperature loop
  9654. #if ENABLED(USE_WATCHDOG)
  9655. watchdog_init();
  9656. #endif
  9657. stepper.init(); // Initialize stepper, this enables interrupts!
  9658. servo_init();
  9659. #if HAS_PHOTOGRAPH
  9660. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9661. #endif
  9662. #if HAS_CASE_LIGHT
  9663. update_case_light();
  9664. #endif
  9665. #if HAS_BED_PROBE
  9666. endstops.enable_z_probe(false);
  9667. #endif
  9668. #if HAS_CONTROLLERFAN
  9669. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9670. #endif
  9671. #if HAS_STEPPER_RESET
  9672. enableStepperDrivers();
  9673. #endif
  9674. #if ENABLED(DIGIPOT_I2C)
  9675. digipot_i2c_init();
  9676. #endif
  9677. #if ENABLED(DAC_STEPPER_CURRENT)
  9678. dac_init();
  9679. #endif
  9680. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  9681. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  9682. #endif
  9683. setup_homepin();
  9684. #if PIN_EXISTS(STAT_LED_RED)
  9685. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9686. #endif
  9687. #if PIN_EXISTS(STAT_LED_BLUE)
  9688. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9689. #endif
  9690. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  9691. SET_OUTPUT(RGB_LED_R_PIN);
  9692. SET_OUTPUT(RGB_LED_G_PIN);
  9693. SET_OUTPUT(RGB_LED_B_PIN);
  9694. #if ENABLED(RGBW_LED)
  9695. SET_OUTPUT(RGB_LED_W_PIN);
  9696. #endif
  9697. #endif
  9698. lcd_init();
  9699. #if ENABLED(SHOW_BOOTSCREEN)
  9700. #if ENABLED(DOGLCD)
  9701. safe_delay(BOOTSCREEN_TIMEOUT);
  9702. #elif ENABLED(ULTRA_LCD)
  9703. bootscreen();
  9704. #if DISABLED(SDSUPPORT)
  9705. lcd_init();
  9706. #endif
  9707. #endif
  9708. #endif
  9709. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9710. // Initialize mixing to 100% color 1
  9711. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9712. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9713. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9714. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9715. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9716. #endif
  9717. #if ENABLED(BLTOUCH)
  9718. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9719. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9720. set_bltouch_deployed(false); // error condition.
  9721. #endif
  9722. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9723. i2c.onReceive(i2c_on_receive);
  9724. i2c.onRequest(i2c_on_request);
  9725. #endif
  9726. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9727. setup_endstop_interrupts();
  9728. #endif
  9729. }
  9730. /**
  9731. * The main Marlin program loop
  9732. *
  9733. * - Save or log commands to SD
  9734. * - Process available commands (if not saving)
  9735. * - Call heater manager
  9736. * - Call inactivity manager
  9737. * - Call endstop manager
  9738. * - Call LCD update
  9739. */
  9740. void loop() {
  9741. if (commands_in_queue < BUFSIZE) get_available_commands();
  9742. #if ENABLED(SDSUPPORT)
  9743. card.checkautostart(false);
  9744. #endif
  9745. if (commands_in_queue) {
  9746. #if ENABLED(SDSUPPORT)
  9747. if (card.saving) {
  9748. char* command = command_queue[cmd_queue_index_r];
  9749. if (strstr_P(command, PSTR("M29"))) {
  9750. // M29 closes the file
  9751. card.closefile();
  9752. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9753. ok_to_send();
  9754. }
  9755. else {
  9756. // Write the string from the read buffer to SD
  9757. card.write_command(command);
  9758. if (card.logging)
  9759. process_next_command(); // The card is saving because it's logging
  9760. else
  9761. ok_to_send();
  9762. }
  9763. }
  9764. else
  9765. process_next_command();
  9766. #else
  9767. process_next_command();
  9768. #endif // SDSUPPORT
  9769. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9770. if (commands_in_queue) {
  9771. --commands_in_queue;
  9772. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9773. }
  9774. }
  9775. endstops.report_state();
  9776. idle();
  9777. }