My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 36KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. // Counter variables for the bresenham line tracer
  41. static long counter_x, counter_y, counter_z, counter_e;
  42. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  43. #ifdef ADVANCE
  44. static long advance_rate, advance, final_advance = 0;
  45. static long old_advance = 0;
  46. static long e_steps[4];
  47. #endif
  48. static long acceleration_time, deceleration_time;
  49. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  50. static unsigned short acc_step_rate; // needed for deccelaration start point
  51. static char step_loops;
  52. static unsigned short OCR1A_nominal;
  53. static unsigned short step_loops_nominal;
  54. volatile long endstops_trigsteps[3] = { 0 };
  55. volatile long endstops_stepsTotal, endstops_stepsDone;
  56. static volatile bool endstop_x_hit = false;
  57. static volatile bool endstop_y_hit = false;
  58. static volatile bool endstop_z_hit = false;
  59. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  60. bool abort_on_endstop_hit = false;
  61. #endif
  62. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  63. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  64. #endif
  65. static bool old_x_min_endstop = false,
  66. old_x_max_endstop = false,
  67. old_y_min_endstop = false,
  68. old_y_max_endstop = false,
  69. old_z_min_endstop = false,
  70. old_z_max_endstop = false;
  71. static bool check_endstops = true;
  72. volatile long count_position[NUM_AXIS] = { 0 };
  73. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  74. //===========================================================================
  75. //================================ functions ================================
  76. //===========================================================================
  77. #ifdef DUAL_X_CARRIAGE
  78. #define X_APPLY_DIR(v,ALWAYS) \
  79. if (extruder_duplication_enabled || ALWAYS) { \
  80. X_DIR_WRITE(v); \
  81. X2_DIR_WRITE(v); \
  82. } \
  83. else { \
  84. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  85. }
  86. #define X_APPLY_STEP(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_STEP_WRITE(v); \
  89. X2_STEP_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  93. }
  94. #else
  95. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  96. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  97. #endif
  98. #ifdef Y_DUAL_STEPPER_DRIVERS
  99. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  100. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  101. #else
  102. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  103. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  104. #endif
  105. #ifdef Z_DUAL_STEPPER_DRIVERS
  106. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  107. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  108. #else
  109. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  110. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  111. #endif
  112. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  113. // intRes = intIn1 * intIn2 >> 16
  114. // uses:
  115. // r26 to store 0
  116. // r27 to store the byte 1 of the 24 bit result
  117. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  118. asm volatile ( \
  119. "clr r26 \n\t" \
  120. "mul %A1, %B2 \n\t" \
  121. "movw %A0, r0 \n\t" \
  122. "mul %A1, %A2 \n\t" \
  123. "add %A0, r1 \n\t" \
  124. "adc %B0, r26 \n\t" \
  125. "lsr r0 \n\t" \
  126. "adc %A0, r26 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "clr r1 \n\t" \
  129. : \
  130. "=&r" (intRes) \
  131. : \
  132. "d" (charIn1), \
  133. "d" (intIn2) \
  134. : \
  135. "r26" \
  136. )
  137. // intRes = longIn1 * longIn2 >> 24
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 48bit result
  141. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "mov r27, r1 \n\t" \
  146. "mul %B1, %C2 \n\t" \
  147. "movw %A0, r0 \n\t" \
  148. "mul %C1, %C2 \n\t" \
  149. "add %B0, r0 \n\t" \
  150. "mul %C1, %B2 \n\t" \
  151. "add %A0, r0 \n\t" \
  152. "adc %B0, r1 \n\t" \
  153. "mul %A1, %C2 \n\t" \
  154. "add r27, r0 \n\t" \
  155. "adc %A0, r1 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "mul %B1, %B2 \n\t" \
  158. "add r27, r0 \n\t" \
  159. "adc %A0, r1 \n\t" \
  160. "adc %B0, r26 \n\t" \
  161. "mul %C1, %A2 \n\t" \
  162. "add r27, r0 \n\t" \
  163. "adc %A0, r1 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "mul %B1, %A2 \n\t" \
  166. "add r27, r1 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "lsr r27 \n\t" \
  170. "adc %A0, r26 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "clr r1 \n\t" \
  173. : \
  174. "=&r" (intRes) \
  175. : \
  176. "d" (longIn1), \
  177. "d" (longIn2) \
  178. : \
  179. "r26" , "r27" \
  180. )
  181. // Some useful constants
  182. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  183. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  184. void endstops_hit_on_purpose() {
  185. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  186. }
  187. void checkHitEndstops() {
  188. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  189. SERIAL_ECHO_START;
  190. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  191. if (endstop_x_hit) {
  192. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  193. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  194. }
  195. if (endstop_y_hit) {
  196. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  197. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  198. }
  199. if (endstop_z_hit) {
  200. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  201. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  202. }
  203. SERIAL_EOL;
  204. endstops_hit_on_purpose();
  205. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  206. if (abort_on_endstop_hit) {
  207. card.sdprinting = false;
  208. card.closefile();
  209. quickStop();
  210. setTargetHotend0(0);
  211. setTargetHotend1(0);
  212. setTargetHotend2(0);
  213. setTargetHotend3(0);
  214. setTargetBed(0);
  215. }
  216. #endif
  217. }
  218. }
  219. void enable_endstops(bool check) { check_endstops = check; }
  220. // __________________________
  221. // /| |\ _________________ ^
  222. // / | | \ /| |\ |
  223. // / | | \ / | | \ s
  224. // / | | | | | \ p
  225. // / | | | | | \ e
  226. // +-----+------------------------+---+--+---------------+----+ e
  227. // | BLOCK 1 | BLOCK 2 | d
  228. //
  229. // time ----->
  230. //
  231. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  232. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  233. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  234. // The slope of acceleration is calculated with the leib ramp alghorithm.
  235. void st_wake_up() {
  236. // TCNT1 = 0;
  237. ENABLE_STEPPER_DRIVER_INTERRUPT();
  238. }
  239. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  240. unsigned short timer;
  241. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  242. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  243. step_rate = (step_rate >> 2) & 0x3fff;
  244. step_loops = 4;
  245. }
  246. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  247. step_rate = (step_rate >> 1) & 0x7fff;
  248. step_loops = 2;
  249. }
  250. else {
  251. step_loops = 1;
  252. }
  253. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  254. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  255. if (step_rate >= (8 * 256)) { // higher step rate
  256. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  257. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  258. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  259. MultiU16X8toH16(timer, tmp_step_rate, gain);
  260. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  261. }
  262. else { // lower step rates
  263. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  264. table_address += ((step_rate)>>1) & 0xfffc;
  265. timer = (unsigned short)pgm_read_word_near(table_address);
  266. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  267. }
  268. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  269. return timer;
  270. }
  271. // Initializes the trapezoid generator from the current block. Called whenever a new
  272. // block begins.
  273. FORCE_INLINE void trapezoid_generator_reset() {
  274. #ifdef ADVANCE
  275. advance = current_block->initial_advance;
  276. final_advance = current_block->final_advance;
  277. // Do E steps + advance steps
  278. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  279. old_advance = advance >>8;
  280. #endif
  281. deceleration_time = 0;
  282. // step_rate to timer interval
  283. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  284. // make a note of the number of step loops required at nominal speed
  285. step_loops_nominal = step_loops;
  286. acc_step_rate = current_block->initial_rate;
  287. acceleration_time = calc_timer(acc_step_rate);
  288. OCR1A = acceleration_time;
  289. // SERIAL_ECHO_START;
  290. // SERIAL_ECHOPGM("advance :");
  291. // SERIAL_ECHO(current_block->advance/256.0);
  292. // SERIAL_ECHOPGM("advance rate :");
  293. // SERIAL_ECHO(current_block->advance_rate/256.0);
  294. // SERIAL_ECHOPGM("initial advance :");
  295. // SERIAL_ECHO(current_block->initial_advance/256.0);
  296. // SERIAL_ECHOPGM("final advance :");
  297. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  298. }
  299. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  300. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  301. ISR(TIMER1_COMPA_vect) {
  302. if(cleaning_buffer_counter)
  303. {
  304. current_block = NULL;
  305. plan_discard_current_block();
  306. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  307. cleaning_buffer_counter--;
  308. OCR1A = 200;
  309. return;
  310. }
  311. // If there is no current block, attempt to pop one from the buffer
  312. if (!current_block) {
  313. // Anything in the buffer?
  314. current_block = plan_get_current_block();
  315. if (current_block) {
  316. current_block->busy = true;
  317. trapezoid_generator_reset();
  318. counter_x = -(current_block->step_event_count >> 1);
  319. counter_y = counter_z = counter_e = counter_x;
  320. step_events_completed = 0;
  321. #ifdef Z_LATE_ENABLE
  322. if (current_block->steps_z > 0) {
  323. enable_z();
  324. OCR1A = 2000; //1ms wait
  325. return;
  326. }
  327. #endif
  328. // #ifdef ADVANCE
  329. // e_steps[current_block->active_extruder] = 0;
  330. // #endif
  331. }
  332. else {
  333. OCR1A = 2000; // 1kHz.
  334. }
  335. }
  336. if (current_block != NULL) {
  337. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  338. out_bits = current_block->direction_bits;
  339. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  340. if (TEST(out_bits, X_AXIS)) {
  341. X_APPLY_DIR(INVERT_X_DIR,0);
  342. count_direction[X_AXIS] = -1;
  343. }
  344. else {
  345. X_APPLY_DIR(!INVERT_X_DIR,0);
  346. count_direction[X_AXIS] = 1;
  347. }
  348. if (TEST(out_bits, Y_AXIS)) {
  349. Y_APPLY_DIR(INVERT_Y_DIR,0);
  350. count_direction[Y_AXIS] = -1;
  351. }
  352. else {
  353. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  354. count_direction[Y_AXIS] = 1;
  355. }
  356. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  357. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  358. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
  359. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  360. endstop_## axis ##_hit = true; \
  361. step_events_completed = current_block->step_event_count; \
  362. } \
  363. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  364. // Check X and Y endstops
  365. if (check_endstops) {
  366. #ifndef COREXY
  367. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  368. #else
  369. // Head direction in -X axis for CoreXY bots.
  370. // If DeltaX == -DeltaY, the movement is only in Y axis
  371. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
  372. if (TEST(out_bits, X_HEAD))
  373. #endif
  374. { // -direction
  375. #ifdef DUAL_X_CARRIAGE
  376. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  377. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  378. #endif
  379. {
  380. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  381. UPDATE_ENDSTOP(x, X, min, MIN);
  382. #endif
  383. }
  384. }
  385. else { // +direction
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  392. UPDATE_ENDSTOP(x, X, max, MAX);
  393. #endif
  394. }
  395. }
  396. #ifndef COREXY
  397. if (TEST(out_bits, Y_AXIS)) // -direction
  398. #else
  399. // Head direction in -Y axis for CoreXY bots.
  400. // If DeltaX == DeltaY, the movement is only in X axis
  401. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
  402. if (TEST(out_bits, Y_HEAD))
  403. #endif
  404. { // -direction
  405. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  406. UPDATE_ENDSTOP(y, Y, min, MIN);
  407. #endif
  408. }
  409. else { // +direction
  410. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  411. UPDATE_ENDSTOP(y, Y, max, MAX);
  412. #endif
  413. }
  414. }
  415. if (TEST(out_bits, Z_AXIS)) { // -direction
  416. Z_DIR_WRITE(INVERT_Z_DIR);
  417. #ifdef Z_DUAL_STEPPER_DRIVERS
  418. Z2_DIR_WRITE(INVERT_Z_DIR);
  419. #endif
  420. count_direction[Z_AXIS] = -1;
  421. if (check_endstops) {
  422. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  423. UPDATE_ENDSTOP(z, Z, min, MIN);
  424. #endif
  425. }
  426. }
  427. else { // +direction
  428. Z_DIR_WRITE(!INVERT_Z_DIR);
  429. #ifdef Z_DUAL_STEPPER_DRIVERS
  430. Z2_DIR_WRITE(!INVERT_Z_DIR);
  431. #endif
  432. count_direction[Z_AXIS] = 1;
  433. if (check_endstops) {
  434. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  435. UPDATE_ENDSTOP(z, Z, max, MAX);
  436. #endif
  437. }
  438. }
  439. #ifndef ADVANCE
  440. if (TEST(out_bits, E_AXIS)) { // -direction
  441. REV_E_DIR();
  442. count_direction[E_AXIS]=-1;
  443. }
  444. else { // +direction
  445. NORM_E_DIR();
  446. count_direction[E_AXIS]=1;
  447. }
  448. #endif //!ADVANCE
  449. // Take multiple steps per interrupt (For high speed moves)
  450. for (int8_t i=0; i < step_loops; i++) {
  451. #ifndef AT90USB
  452. MSerial.checkRx(); // Check for serial chars.
  453. #endif
  454. #ifdef ADVANCE
  455. counter_e += current_block->steps_e;
  456. if (counter_e > 0) {
  457. counter_e -= current_block->step_event_count;
  458. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  459. }
  460. #endif //ADVANCE
  461. #ifdef CONFIG_STEPPERS_TOSHIBA
  462. /**
  463. * The Toshiba stepper controller require much longer pulses.
  464. * So we 'stage' decompose the pulses between high and low
  465. * instead of doing each in turn. The extra tests add enough
  466. * lag to allow it work with without needing NOPs
  467. */
  468. counter_x += current_block->steps_x;
  469. if (counter_x > 0) X_STEP_WRITE(HIGH);
  470. counter_y += current_block->steps_y;
  471. if (counter_y > 0) Y_STEP_WRITE(HIGH);
  472. counter_z += current_block->steps_z;
  473. if (counter_z > 0) Z_STEP_WRITE(HIGH);
  474. #ifndef ADVANCE
  475. counter_e += current_block->steps_e;
  476. if (counter_e > 0) E_STEP_WRITE(HIGH);
  477. #endif
  478. #define STEP_IF_COUNTER(axis, AXIS) \
  479. if (counter_## axis > 0) { \
  480. counter_## axis -= current_block->step_event_count; \
  481. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  482. AXIS ##_STEP_WRITE(LOW); \
  483. }
  484. STEP_IF_COUNTER(x, X);
  485. STEP_IF_COUNTER(y, Y);
  486. STEP_IF_COUNTER(z, Z);
  487. #ifndef ADVANCE
  488. STEP_IF_COUNTER(e, E);
  489. #endif
  490. #else // !CONFIG_STEPPERS_TOSHIBA
  491. #define APPLY_MOVEMENT(axis, AXIS) \
  492. counter_## axis += current_block->steps_## axis; \
  493. if (counter_## axis > 0) { \
  494. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  495. counter_## axis -= current_block->step_event_count; \
  496. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  497. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  498. }
  499. APPLY_MOVEMENT(x, X);
  500. APPLY_MOVEMENT(y, Y);
  501. APPLY_MOVEMENT(z, Z);
  502. #ifndef ADVANCE
  503. APPLY_MOVEMENT(e, E);
  504. #endif
  505. #endif // CONFIG_STEPPERS_TOSHIBA
  506. step_events_completed++;
  507. if (step_events_completed >= current_block->step_event_count) break;
  508. }
  509. // Calculare new timer value
  510. unsigned short timer;
  511. unsigned short step_rate;
  512. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  513. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  514. acc_step_rate += current_block->initial_rate;
  515. // upper limit
  516. if (acc_step_rate > current_block->nominal_rate)
  517. acc_step_rate = current_block->nominal_rate;
  518. // step_rate to timer interval
  519. timer = calc_timer(acc_step_rate);
  520. OCR1A = timer;
  521. acceleration_time += timer;
  522. #ifdef ADVANCE
  523. for(int8_t i=0; i < step_loops; i++) {
  524. advance += advance_rate;
  525. }
  526. //if (advance > current_block->advance) advance = current_block->advance;
  527. // Do E steps + advance steps
  528. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  529. old_advance = advance >>8;
  530. #endif
  531. }
  532. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  533. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  534. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  535. step_rate = current_block->final_rate;
  536. }
  537. else {
  538. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  539. }
  540. // lower limit
  541. if (step_rate < current_block->final_rate)
  542. step_rate = current_block->final_rate;
  543. // step_rate to timer interval
  544. timer = calc_timer(step_rate);
  545. OCR1A = timer;
  546. deceleration_time += timer;
  547. #ifdef ADVANCE
  548. for(int8_t i=0; i < step_loops; i++) {
  549. advance -= advance_rate;
  550. }
  551. if (advance < final_advance) advance = final_advance;
  552. // Do E steps + advance steps
  553. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  554. old_advance = advance >>8;
  555. #endif //ADVANCE
  556. }
  557. else {
  558. OCR1A = OCR1A_nominal;
  559. // ensure we're running at the correct step rate, even if we just came off an acceleration
  560. step_loops = step_loops_nominal;
  561. }
  562. // If current block is finished, reset pointer
  563. if (step_events_completed >= current_block->step_event_count) {
  564. current_block = NULL;
  565. plan_discard_current_block();
  566. }
  567. }
  568. }
  569. #ifdef ADVANCE
  570. unsigned char old_OCR0A;
  571. // Timer interrupt for E. e_steps is set in the main routine;
  572. // Timer 0 is shared with millies
  573. ISR(TIMER0_COMPA_vect)
  574. {
  575. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  576. OCR0A = old_OCR0A;
  577. // Set E direction (Depends on E direction + advance)
  578. for(unsigned char i=0; i<4;i++) {
  579. if (e_steps[0] != 0) {
  580. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  581. if (e_steps[0] < 0) {
  582. E0_DIR_WRITE(INVERT_E0_DIR);
  583. e_steps[0]++;
  584. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  585. }
  586. else if (e_steps[0] > 0) {
  587. E0_DIR_WRITE(!INVERT_E0_DIR);
  588. e_steps[0]--;
  589. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  590. }
  591. }
  592. #if EXTRUDERS > 1
  593. if (e_steps[1] != 0) {
  594. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  595. if (e_steps[1] < 0) {
  596. E1_DIR_WRITE(INVERT_E1_DIR);
  597. e_steps[1]++;
  598. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  599. }
  600. else if (e_steps[1] > 0) {
  601. E1_DIR_WRITE(!INVERT_E1_DIR);
  602. e_steps[1]--;
  603. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  604. }
  605. }
  606. #endif
  607. #if EXTRUDERS > 2
  608. if (e_steps[2] != 0) {
  609. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  610. if (e_steps[2] < 0) {
  611. E2_DIR_WRITE(INVERT_E2_DIR);
  612. e_steps[2]++;
  613. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  614. }
  615. else if (e_steps[2] > 0) {
  616. E2_DIR_WRITE(!INVERT_E2_DIR);
  617. e_steps[2]--;
  618. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  619. }
  620. }
  621. #endif
  622. #if EXTRUDERS > 3
  623. if (e_steps[3] != 0) {
  624. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  625. if (e_steps[3] < 0) {
  626. E3_DIR_WRITE(INVERT_E3_DIR);
  627. e_steps[3]++;
  628. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  629. }
  630. else if (e_steps[3] > 0) {
  631. E3_DIR_WRITE(!INVERT_E3_DIR);
  632. e_steps[3]--;
  633. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  634. }
  635. }
  636. #endif
  637. }
  638. }
  639. #endif // ADVANCE
  640. void st_init() {
  641. digipot_init(); //Initialize Digipot Motor Current
  642. microstep_init(); //Initialize Microstepping Pins
  643. // initialise TMC Steppers
  644. #ifdef HAVE_TMCDRIVER
  645. tmc_init();
  646. #endif
  647. // initialise L6470 Steppers
  648. #ifdef HAVE_L6470DRIVER
  649. L6470_init();
  650. #endif
  651. // Initialize Dir Pins
  652. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  653. X_DIR_INIT;
  654. #endif
  655. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  656. X2_DIR_INIT;
  657. #endif
  658. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  659. Y_DIR_INIT;
  660. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  661. Y2_DIR_INIT;
  662. #endif
  663. #endif
  664. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  665. Z_DIR_INIT;
  666. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  667. Z2_DIR_INIT;
  668. #endif
  669. #endif
  670. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  671. E0_DIR_INIT;
  672. #endif
  673. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  674. E1_DIR_INIT;
  675. #endif
  676. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  677. E2_DIR_INIT;
  678. #endif
  679. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  680. E3_DIR_INIT;
  681. #endif
  682. //Initialize Enable Pins - steppers default to disabled.
  683. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  684. X_ENABLE_INIT;
  685. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  686. #endif
  687. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  688. X2_ENABLE_INIT;
  689. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  690. #endif
  691. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  692. Y_ENABLE_INIT;
  693. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  694. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  695. Y2_ENABLE_INIT;
  696. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  697. #endif
  698. #endif
  699. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  700. Z_ENABLE_INIT;
  701. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  702. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  703. Z2_ENABLE_INIT;
  704. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  705. #endif
  706. #endif
  707. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  708. E0_ENABLE_INIT;
  709. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  710. #endif
  711. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  712. E1_ENABLE_INIT;
  713. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  714. #endif
  715. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  716. E2_ENABLE_INIT;
  717. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  718. #endif
  719. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  720. E3_ENABLE_INIT;
  721. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  722. #endif
  723. //endstops and pullups
  724. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  725. SET_INPUT(X_MIN_PIN);
  726. #ifdef ENDSTOPPULLUP_XMIN
  727. WRITE(X_MIN_PIN,HIGH);
  728. #endif
  729. #endif
  730. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  731. SET_INPUT(Y_MIN_PIN);
  732. #ifdef ENDSTOPPULLUP_YMIN
  733. WRITE(Y_MIN_PIN,HIGH);
  734. #endif
  735. #endif
  736. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  737. SET_INPUT(Z_MIN_PIN);
  738. #ifdef ENDSTOPPULLUP_ZMIN
  739. WRITE(Z_MIN_PIN,HIGH);
  740. #endif
  741. #endif
  742. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  743. SET_INPUT(X_MAX_PIN);
  744. #ifdef ENDSTOPPULLUP_XMAX
  745. WRITE(X_MAX_PIN,HIGH);
  746. #endif
  747. #endif
  748. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  749. SET_INPUT(Y_MAX_PIN);
  750. #ifdef ENDSTOPPULLUP_YMAX
  751. WRITE(Y_MAX_PIN,HIGH);
  752. #endif
  753. #endif
  754. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  755. SET_INPUT(Z_MAX_PIN);
  756. #ifdef ENDSTOPPULLUP_ZMAX
  757. WRITE(Z_MAX_PIN,HIGH);
  758. #endif
  759. #endif
  760. #define AXIS_INIT(axis, AXIS, PIN) \
  761. AXIS ##_STEP_INIT; \
  762. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  763. disable_## axis()
  764. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  765. // Initialize Step Pins
  766. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  767. AXIS_INIT(x, X, X);
  768. #endif
  769. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  770. AXIS_INIT(x, X2, X);
  771. #endif
  772. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  773. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  774. Y2_STEP_INIT;
  775. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  776. #endif
  777. AXIS_INIT(y, Y, Y);
  778. #endif
  779. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  780. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  781. Z2_STEP_INIT;
  782. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  783. #endif
  784. AXIS_INIT(z, Z, Z);
  785. #endif
  786. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  787. E_AXIS_INIT(0);
  788. #endif
  789. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  790. E_AXIS_INIT(1);
  791. #endif
  792. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  793. E_AXIS_INIT(2);
  794. #endif
  795. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  796. E_AXIS_INIT(3);
  797. #endif
  798. // waveform generation = 0100 = CTC
  799. TCCR1B &= ~BIT(WGM13);
  800. TCCR1B |= BIT(WGM12);
  801. TCCR1A &= ~BIT(WGM11);
  802. TCCR1A &= ~BIT(WGM10);
  803. // output mode = 00 (disconnected)
  804. TCCR1A &= ~(3<<COM1A0);
  805. TCCR1A &= ~(3<<COM1B0);
  806. // Set the timer pre-scaler
  807. // Generally we use a divider of 8, resulting in a 2MHz timer
  808. // frequency on a 16MHz MCU. If you are going to change this, be
  809. // sure to regenerate speed_lookuptable.h with
  810. // create_speed_lookuptable.py
  811. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  812. OCR1A = 0x4000;
  813. TCNT1 = 0;
  814. ENABLE_STEPPER_DRIVER_INTERRUPT();
  815. #ifdef ADVANCE
  816. #if defined(TCCR0A) && defined(WGM01)
  817. TCCR0A &= ~BIT(WGM01);
  818. TCCR0A &= ~BIT(WGM00);
  819. #endif
  820. e_steps[0] = 0;
  821. e_steps[1] = 0;
  822. e_steps[2] = 0;
  823. e_steps[3] = 0;
  824. TIMSK0 |= BIT(OCIE0A);
  825. #endif //ADVANCE
  826. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  827. sei();
  828. }
  829. // Block until all buffered steps are executed
  830. void st_synchronize() {
  831. while (blocks_queued()) {
  832. manage_heater();
  833. manage_inactivity();
  834. lcd_update();
  835. }
  836. }
  837. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  838. CRITICAL_SECTION_START;
  839. count_position[X_AXIS] = x;
  840. count_position[Y_AXIS] = y;
  841. count_position[Z_AXIS] = z;
  842. count_position[E_AXIS] = e;
  843. CRITICAL_SECTION_END;
  844. }
  845. void st_set_e_position(const long &e) {
  846. CRITICAL_SECTION_START;
  847. count_position[E_AXIS] = e;
  848. CRITICAL_SECTION_END;
  849. }
  850. long st_get_position(uint8_t axis) {
  851. long count_pos;
  852. CRITICAL_SECTION_START;
  853. count_pos = count_position[axis];
  854. CRITICAL_SECTION_END;
  855. return count_pos;
  856. }
  857. #ifdef ENABLE_AUTO_BED_LEVELING
  858. float st_get_position_mm(uint8_t axis) {
  859. float steper_position_in_steps = st_get_position(axis);
  860. return steper_position_in_steps / axis_steps_per_unit[axis];
  861. }
  862. #endif // ENABLE_AUTO_BED_LEVELING
  863. void finishAndDisableSteppers() {
  864. st_synchronize();
  865. disable_x();
  866. disable_y();
  867. disable_z();
  868. disable_e0();
  869. disable_e1();
  870. disable_e2();
  871. disable_e3();
  872. }
  873. void quickStop() {
  874. cleaning_buffer_counter = 5000;
  875. DISABLE_STEPPER_DRIVER_INTERRUPT();
  876. while (blocks_queued()) plan_discard_current_block();
  877. current_block = NULL;
  878. ENABLE_STEPPER_DRIVER_INTERRUPT();
  879. }
  880. #ifdef BABYSTEPPING
  881. // MUST ONLY BE CALLED BY AN ISR,
  882. // No other ISR should ever interrupt this!
  883. void babystep(const uint8_t axis, const bool direction) {
  884. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  885. enable_## axis(); \
  886. uint8_t old_pin = AXIS ##_DIR_READ; \
  887. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  888. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  889. _delay_us(1U); \
  890. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  891. AXIS ##_APPLY_DIR(old_pin, true); \
  892. }
  893. switch(axis) {
  894. case X_AXIS:
  895. BABYSTEP_AXIS(x, X, false);
  896. break;
  897. case Y_AXIS:
  898. BABYSTEP_AXIS(y, Y, false);
  899. break;
  900. case Z_AXIS: {
  901. #ifndef DELTA
  902. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  903. #else // DELTA
  904. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  905. enable_x();
  906. enable_y();
  907. enable_z();
  908. uint8_t old_x_dir_pin = X_DIR_READ,
  909. old_y_dir_pin = Y_DIR_READ,
  910. old_z_dir_pin = Z_DIR_READ;
  911. //setup new step
  912. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  913. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  914. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  915. //perform step
  916. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  917. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  918. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  919. _delay_us(1U);
  920. X_STEP_WRITE(INVERT_X_STEP_PIN);
  921. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  922. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  923. //get old pin state back.
  924. X_DIR_WRITE(old_x_dir_pin);
  925. Y_DIR_WRITE(old_y_dir_pin);
  926. Z_DIR_WRITE(old_z_dir_pin);
  927. #endif
  928. } break;
  929. default: break;
  930. }
  931. }
  932. #endif //BABYSTEPPING
  933. // From Arduino DigitalPotControl example
  934. void digitalPotWrite(int address, int value) {
  935. #if HAS_DIGIPOTSS
  936. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  937. SPI.transfer(address); // send in the address and value via SPI:
  938. SPI.transfer(value);
  939. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  940. //delay(10);
  941. #endif
  942. }
  943. // Initialize Digipot Motor Current
  944. void digipot_init() {
  945. #if HAS_DIGIPOTSS
  946. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  947. SPI.begin();
  948. pinMode(DIGIPOTSS_PIN, OUTPUT);
  949. for (int i = 0; i <= 4; i++) {
  950. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  951. digipot_current(i,digipot_motor_current[i]);
  952. }
  953. #endif
  954. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  955. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  956. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  957. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  958. digipot_current(0, motor_current_setting[0]);
  959. digipot_current(1, motor_current_setting[1]);
  960. digipot_current(2, motor_current_setting[2]);
  961. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  962. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  963. #endif
  964. }
  965. void digipot_current(uint8_t driver, int current) {
  966. #if HAS_DIGIPOTSS
  967. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  968. digitalPotWrite(digipot_ch[driver], current);
  969. #endif
  970. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  971. switch(driver) {
  972. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  973. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  974. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  975. }
  976. #endif
  977. }
  978. void microstep_init() {
  979. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  980. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  981. pinMode(E1_MS1_PIN,OUTPUT);
  982. pinMode(E1_MS2_PIN,OUTPUT);
  983. #endif
  984. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  985. pinMode(X_MS1_PIN,OUTPUT);
  986. pinMode(X_MS2_PIN,OUTPUT);
  987. pinMode(Y_MS1_PIN,OUTPUT);
  988. pinMode(Y_MS2_PIN,OUTPUT);
  989. pinMode(Z_MS1_PIN,OUTPUT);
  990. pinMode(Z_MS2_PIN,OUTPUT);
  991. pinMode(E0_MS1_PIN,OUTPUT);
  992. pinMode(E0_MS2_PIN,OUTPUT);
  993. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  994. #endif
  995. }
  996. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  997. if (ms1 >= 0) switch(driver) {
  998. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  999. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1000. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1001. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1002. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1003. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1004. #endif
  1005. }
  1006. if (ms2 >= 0) switch(driver) {
  1007. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1008. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1009. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1010. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1011. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1012. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1013. #endif
  1014. }
  1015. }
  1016. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1017. switch(stepping_mode) {
  1018. case 1: microstep_ms(driver,MICROSTEP1); break;
  1019. case 2: microstep_ms(driver,MICROSTEP2); break;
  1020. case 4: microstep_ms(driver,MICROSTEP4); break;
  1021. case 8: microstep_ms(driver,MICROSTEP8); break;
  1022. case 16: microstep_ms(driver,MICROSTEP16); break;
  1023. }
  1024. }
  1025. void microstep_readings() {
  1026. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1027. SERIAL_PROTOCOLPGM("X: ");
  1028. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1029. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1030. SERIAL_PROTOCOLPGM("Y: ");
  1031. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1032. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1033. SERIAL_PROTOCOLPGM("Z: ");
  1034. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1035. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1036. SERIAL_PROTOCOLPGM("E0: ");
  1037. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1038. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1039. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1040. SERIAL_PROTOCOLPGM("E1: ");
  1041. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1042. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1043. #endif
  1044. }