My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 246KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float home_offset[3] = { 0 };
  264. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  265. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  266. #if FAN_COUNT > 0
  267. int fanSpeeds[FAN_COUNT] = { 0 };
  268. #endif
  269. uint8_t active_extruder = 0;
  270. bool cancel_heatup = false;
  271. const char errormagic[] PROGMEM = "Error:";
  272. const char echomagic[] PROGMEM = "echo:";
  273. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  274. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  275. static int serial_count = 0;
  276. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  277. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  278. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  279. // Inactivity shutdown
  280. millis_t previous_cmd_ms = 0;
  281. static millis_t max_inactive_time = 0;
  282. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  283. Stopwatch print_job_timer = Stopwatch();
  284. static uint8_t target_extruder;
  285. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  286. int xy_travel_speed = XY_TRAVEL_SPEED;
  287. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  288. #endif
  289. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  290. float z_endstop_adj = 0;
  291. #endif
  292. // Extruder offsets
  293. #if EXTRUDERS > 1
  294. #ifndef EXTRUDER_OFFSET_X
  295. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  296. #endif
  297. #ifndef EXTRUDER_OFFSET_Y
  298. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  299. #endif
  300. float extruder_offset[][EXTRUDERS] = {
  301. EXTRUDER_OFFSET_X,
  302. EXTRUDER_OFFSET_Y
  303. #if ENABLED(DUAL_X_CARRIAGE)
  304. , { 0 } // Z offsets for each extruder
  305. #endif
  306. };
  307. #endif
  308. #if HAS_SERVO_ENDSTOPS
  309. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  310. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  311. #endif
  312. #if ENABLED(BARICUDA)
  313. int ValvePressure = 0;
  314. int EtoPPressure = 0;
  315. #endif
  316. #if ENABLED(FWRETRACT)
  317. bool autoretract_enabled = false;
  318. bool retracted[EXTRUDERS] = { false };
  319. bool retracted_swap[EXTRUDERS] = { false };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif // FWRETRACT
  328. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  329. bool powersupply =
  330. #if ENABLED(PS_DEFAULT_OFF)
  331. false
  332. #else
  333. true
  334. #endif
  335. ;
  336. #endif
  337. #if ENABLED(DELTA)
  338. #define TOWER_1 X_AXIS
  339. #define TOWER_2 Y_AXIS
  340. #define TOWER_3 Z_AXIS
  341. float delta[3] = { 0 };
  342. #define SIN_60 0.8660254037844386
  343. #define COS_60 0.5
  344. float endstop_adj[3] = { 0 };
  345. // these are the default values, can be overriden with M665
  346. float delta_radius = DELTA_RADIUS;
  347. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  348. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  349. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  350. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  351. float delta_tower3_x = 0; // back middle tower
  352. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  353. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  354. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  355. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  356. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  357. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  358. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  359. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  360. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  361. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  362. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  363. int delta_grid_spacing[2] = { 0, 0 };
  364. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  365. #endif
  366. #else
  367. static bool home_all_axis = true;
  368. #endif
  369. #if ENABLED(SCARA)
  370. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  371. static float delta[3] = { 0 };
  372. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  373. #endif
  374. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  375. //Variables for Filament Sensor input
  376. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  377. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  378. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  379. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  380. int filwidth_delay_index1 = 0; //index into ring buffer
  381. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  382. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  383. #endif
  384. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  385. static bool filrunoutEnqueued = false;
  386. #endif
  387. static bool send_ok[BUFSIZE];
  388. #if HAS_SERVOS
  389. Servo servo[NUM_SERVOS];
  390. #endif
  391. #ifdef CHDK
  392. millis_t chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  396. int lpq_len = 20;
  397. #endif
  398. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  399. // States for managing Marlin and host communication
  400. // Marlin sends messages if blocked or busy
  401. enum MarlinBusyState {
  402. NOT_BUSY, // Not in a handler
  403. IN_HANDLER, // Processing a GCode
  404. IN_PROCESS, // Known to be blocking command input (as in G29)
  405. PAUSED_FOR_USER, // Blocking pending any input
  406. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  407. };
  408. static MarlinBusyState busy_state = NOT_BUSY;
  409. static millis_t next_busy_signal_ms = 0;
  410. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  411. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  412. #else
  413. #define host_keepalive() ;
  414. #define KEEPALIVE_STATE(n) ;
  415. #endif // HOST_KEEPALIVE_FEATURE
  416. /**
  417. * ***************************************************************************
  418. * ******************************** FUNCTIONS ********************************
  419. * ***************************************************************************
  420. */
  421. void get_available_commands();
  422. void process_next_command();
  423. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  424. bool setTargetedHotend(int code);
  425. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void gcode_M114();
  431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  432. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  433. SERIAL_ECHO(prefix);
  434. SERIAL_ECHOPAIR(": (", x);
  435. SERIAL_ECHOPAIR(", ", y);
  436. SERIAL_ECHOPAIR(", ", z);
  437. SERIAL_ECHOLNPGM(")");
  438. }
  439. void print_xyz(const char* prefix, const float xyz[]) {
  440. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  441. }
  442. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  443. #endif
  444. #if ENABLED(DELTA) || ENABLED(SCARA)
  445. inline void sync_plan_position_delta() {
  446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  447. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  448. #endif
  449. calculate_delta(current_position);
  450. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  451. }
  452. #endif
  453. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  454. float extrude_min_temp = EXTRUDE_MINTEMP;
  455. #endif
  456. #if ENABLED(HAS_Z_MIN_PROBE)
  457. extern volatile bool z_probe_is_active;
  458. #endif
  459. #if ENABLED(SDSUPPORT)
  460. #include "SdFatUtil.h"
  461. int freeMemory() { return SdFatUtil::FreeRam(); }
  462. #else
  463. extern "C" {
  464. extern unsigned int __bss_end;
  465. extern unsigned int __heap_start;
  466. extern void* __brkval;
  467. int freeMemory() {
  468. int free_memory;
  469. if ((int)__brkval == 0)
  470. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  471. else
  472. free_memory = ((int)&free_memory) - ((int)__brkval);
  473. return free_memory;
  474. }
  475. }
  476. #endif //!SDSUPPORT
  477. /**
  478. * Inject the next "immediate" command, when possible.
  479. * Return true if any immediate commands remain to inject.
  480. */
  481. static bool drain_queued_commands_P() {
  482. if (queued_commands_P != NULL) {
  483. size_t i = 0;
  484. char c, cmd[30];
  485. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  486. cmd[sizeof(cmd) - 1] = '\0';
  487. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  488. cmd[i] = '\0';
  489. if (enqueue_and_echo_command(cmd)) { // success?
  490. if (c) // newline char?
  491. queued_commands_P += i + 1; // advance to the next command
  492. else
  493. queued_commands_P = NULL; // nul char? no more commands
  494. }
  495. }
  496. return (queued_commands_P != NULL); // return whether any more remain
  497. }
  498. /**
  499. * Record one or many commands to run from program memory.
  500. * Aborts the current queue, if any.
  501. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  502. */
  503. void enqueue_and_echo_commands_P(const char* pgcode) {
  504. queued_commands_P = pgcode;
  505. drain_queued_commands_P(); // first command executed asap (when possible)
  506. }
  507. /**
  508. * Once a new command is in the ring buffer, call this to commit it
  509. */
  510. inline void _commit_command(bool say_ok) {
  511. send_ok[cmd_queue_index_w] = say_ok;
  512. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  513. commands_in_queue++;
  514. }
  515. /**
  516. * Copy a command directly into the main command buffer, from RAM.
  517. * Returns true if successfully adds the command
  518. */
  519. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  520. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  521. strcpy(command_queue[cmd_queue_index_w], cmd);
  522. _commit_command(say_ok);
  523. return true;
  524. }
  525. void enqueue_and_echo_command_now(const char* cmd) {
  526. while (!enqueue_and_echo_command(cmd)) idle();
  527. }
  528. /**
  529. * Enqueue with Serial Echo
  530. */
  531. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  532. if (_enqueuecommand(cmd, say_ok)) {
  533. SERIAL_ECHO_START;
  534. SERIAL_ECHOPGM(MSG_Enqueueing);
  535. SERIAL_ECHO(cmd);
  536. SERIAL_ECHOLNPGM("\"");
  537. return true;
  538. }
  539. return false;
  540. }
  541. void setup_killpin() {
  542. #if HAS_KILL
  543. SET_INPUT(KILL_PIN);
  544. WRITE(KILL_PIN, HIGH);
  545. #endif
  546. }
  547. void setup_filrunoutpin() {
  548. #if HAS_FILRUNOUT
  549. pinMode(FILRUNOUT_PIN, INPUT);
  550. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  551. WRITE(FILRUNOUT_PIN, HIGH);
  552. #endif
  553. #endif
  554. }
  555. // Set home pin
  556. void setup_homepin(void) {
  557. #if HAS_HOME
  558. SET_INPUT(HOME_PIN);
  559. WRITE(HOME_PIN, HIGH);
  560. #endif
  561. }
  562. void setup_photpin() {
  563. #if HAS_PHOTOGRAPH
  564. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  565. #endif
  566. }
  567. void setup_powerhold() {
  568. #if HAS_SUICIDE
  569. OUT_WRITE(SUICIDE_PIN, HIGH);
  570. #endif
  571. #if HAS_POWER_SWITCH
  572. #if ENABLED(PS_DEFAULT_OFF)
  573. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  574. #else
  575. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  576. #endif
  577. #endif
  578. }
  579. void suicide() {
  580. #if HAS_SUICIDE
  581. OUT_WRITE(SUICIDE_PIN, LOW);
  582. #endif
  583. }
  584. void servo_init() {
  585. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  586. servo[0].attach(SERVO0_PIN);
  587. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  588. #endif
  589. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  590. servo[1].attach(SERVO1_PIN);
  591. servo[1].detach();
  592. #endif
  593. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  594. servo[2].attach(SERVO2_PIN);
  595. servo[2].detach();
  596. #endif
  597. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  598. servo[3].attach(SERVO3_PIN);
  599. servo[3].detach();
  600. #endif
  601. #if HAS_SERVO_ENDSTOPS
  602. z_probe_is_active = false;
  603. /**
  604. * Set position of all defined Servo Endstops
  605. *
  606. * ** UNSAFE! - NEEDS UPDATE! **
  607. *
  608. * The servo might be deployed and positioned too low to stow
  609. * when starting up the machine or rebooting the board.
  610. * There's no way to know where the nozzle is positioned until
  611. * homing has been done - no homing with z-probe without init!
  612. *
  613. */
  614. for (int i = 0; i < 3; i++)
  615. if (servo_endstop_id[i] >= 0)
  616. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  617. #endif // HAS_SERVO_ENDSTOPS
  618. }
  619. /**
  620. * Stepper Reset (RigidBoard, et.al.)
  621. */
  622. #if HAS_STEPPER_RESET
  623. void disableStepperDrivers() {
  624. pinMode(STEPPER_RESET_PIN, OUTPUT);
  625. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  626. }
  627. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  628. #endif
  629. /**
  630. * Marlin entry-point: Set up before the program loop
  631. * - Set up the kill pin, filament runout, power hold
  632. * - Start the serial port
  633. * - Print startup messages and diagnostics
  634. * - Get EEPROM or default settings
  635. * - Initialize managers for:
  636. * • temperature
  637. * • planner
  638. * • watchdog
  639. * • stepper
  640. * • photo pin
  641. * • servos
  642. * • LCD controller
  643. * • Digipot I2C
  644. * • Z probe sled
  645. * • status LEDs
  646. */
  647. void setup() {
  648. #ifdef DISABLE_JTAG
  649. // Disable JTAG on AT90USB chips to free up pins for IO
  650. MCUCR = 0x80;
  651. MCUCR = 0x80;
  652. #endif
  653. setup_killpin();
  654. setup_filrunoutpin();
  655. setup_powerhold();
  656. #if HAS_STEPPER_RESET
  657. disableStepperDrivers();
  658. #endif
  659. MYSERIAL.begin(BAUDRATE);
  660. SERIAL_PROTOCOLLNPGM("start");
  661. SERIAL_ECHO_START;
  662. // Check startup - does nothing if bootloader sets MCUSR to 0
  663. byte mcu = MCUSR;
  664. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  665. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  666. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  667. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  668. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  669. MCUSR = 0;
  670. SERIAL_ECHOPGM(MSG_MARLIN);
  671. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  672. #ifdef STRING_DISTRIBUTION_DATE
  673. #ifdef STRING_CONFIG_H_AUTHOR
  674. SERIAL_ECHO_START;
  675. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  676. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  677. SERIAL_ECHOPGM(MSG_AUTHOR);
  678. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  679. SERIAL_ECHOPGM("Compiled: ");
  680. SERIAL_ECHOLNPGM(__DATE__);
  681. #endif // STRING_CONFIG_H_AUTHOR
  682. #endif // STRING_DISTRIBUTION_DATE
  683. SERIAL_ECHO_START;
  684. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  685. SERIAL_ECHO(freeMemory());
  686. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  687. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  688. // Send "ok" after commands by default
  689. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  690. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  691. Config_RetrieveSettings();
  692. lcd_init();
  693. tp_init(); // Initialize temperature loop
  694. plan_init(); // Initialize planner;
  695. #if ENABLED(DELTA) || ENABLED(SCARA)
  696. // Vital to init kinematic equivalent for X0 Y0 Z0
  697. sync_plan_position_delta();
  698. #endif
  699. #if ENABLED(USE_WATCHDOG)
  700. watchdog_init();
  701. #endif
  702. st_init(); // Initialize stepper, this enables interrupts!
  703. setup_photpin();
  704. servo_init();
  705. #if HAS_CONTROLLERFAN
  706. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  707. #endif
  708. #if HAS_STEPPER_RESET
  709. enableStepperDrivers();
  710. #endif
  711. #if ENABLED(DIGIPOT_I2C)
  712. digipot_i2c_init();
  713. #endif
  714. #if ENABLED(Z_PROBE_SLED)
  715. pinMode(SLED_PIN, OUTPUT);
  716. digitalWrite(SLED_PIN, LOW); // turn it off
  717. #endif // Z_PROBE_SLED
  718. setup_homepin();
  719. #ifdef STAT_LED_RED
  720. pinMode(STAT_LED_RED, OUTPUT);
  721. digitalWrite(STAT_LED_RED, LOW); // turn it off
  722. #endif
  723. #ifdef STAT_LED_BLUE
  724. pinMode(STAT_LED_BLUE, OUTPUT);
  725. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  726. #endif
  727. }
  728. /**
  729. * The main Marlin program loop
  730. *
  731. * - Save or log commands to SD
  732. * - Process available commands (if not saving)
  733. * - Call heater manager
  734. * - Call inactivity manager
  735. * - Call endstop manager
  736. * - Call LCD update
  737. */
  738. void loop() {
  739. if (commands_in_queue < BUFSIZE) get_available_commands();
  740. #if ENABLED(SDSUPPORT)
  741. card.checkautostart(false);
  742. #endif
  743. if (commands_in_queue) {
  744. #if ENABLED(SDSUPPORT)
  745. if (card.saving) {
  746. char* command = command_queue[cmd_queue_index_r];
  747. if (strstr_P(command, PSTR("M29"))) {
  748. // M29 closes the file
  749. card.closefile();
  750. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  751. ok_to_send();
  752. }
  753. else {
  754. // Write the string from the read buffer to SD
  755. card.write_command(command);
  756. if (card.logging)
  757. process_next_command(); // The card is saving because it's logging
  758. else
  759. ok_to_send();
  760. }
  761. }
  762. else
  763. process_next_command();
  764. #else
  765. process_next_command();
  766. #endif // SDSUPPORT
  767. commands_in_queue--;
  768. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  769. }
  770. checkHitEndstops();
  771. idle();
  772. }
  773. void gcode_line_error(const char* err, bool doFlush = true) {
  774. SERIAL_ERROR_START;
  775. serialprintPGM(err);
  776. SERIAL_ERRORLN(gcode_LastN);
  777. //Serial.println(gcode_N);
  778. if (doFlush) FlushSerialRequestResend();
  779. serial_count = 0;
  780. }
  781. inline void get_serial_commands() {
  782. static char serial_line_buffer[MAX_CMD_SIZE];
  783. static boolean serial_comment_mode = false;
  784. // If the command buffer is empty for too long,
  785. // send "wait" to indicate Marlin is still waiting.
  786. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  787. static millis_t last_command_time = 0;
  788. millis_t ms = millis();
  789. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  790. SERIAL_ECHOLNPGM(MSG_WAIT);
  791. last_command_time = ms;
  792. }
  793. #endif
  794. /**
  795. * Loop while serial characters are incoming and the queue is not full
  796. */
  797. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  798. char serial_char = MYSERIAL.read();
  799. /**
  800. * If the character ends the line
  801. */
  802. if (serial_char == '\n' || serial_char == '\r') {
  803. serial_comment_mode = false; // end of line == end of comment
  804. if (!serial_count) continue; // skip empty lines
  805. serial_line_buffer[serial_count] = 0; // terminate string
  806. serial_count = 0; //reset buffer
  807. char* command = serial_line_buffer;
  808. while (*command == ' ') command++; // skip any leading spaces
  809. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  810. char* apos = strchr(command, '*');
  811. if (npos) {
  812. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  813. if (M110) {
  814. char* n2pos = strchr(command + 4, 'N');
  815. if (n2pos) npos = n2pos;
  816. }
  817. gcode_N = strtol(npos + 1, NULL, 10);
  818. if (gcode_N != gcode_LastN + 1 && !M110) {
  819. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  820. return;
  821. }
  822. if (apos) {
  823. byte checksum = 0, count = 0;
  824. while (command[count] != '*') checksum ^= command[count++];
  825. if (strtol(apos + 1, NULL, 10) != checksum) {
  826. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  827. return;
  828. }
  829. // if no errors, continue parsing
  830. }
  831. else {
  832. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  833. return;
  834. }
  835. gcode_LastN = gcode_N;
  836. // if no errors, continue parsing
  837. }
  838. else if (apos) { // No '*' without 'N'
  839. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  840. return;
  841. }
  842. // Movement commands alert when stopped
  843. if (IsStopped()) {
  844. char* gpos = strchr(command, 'G');
  845. if (gpos) {
  846. int codenum = strtol(gpos + 1, NULL, 10);
  847. switch (codenum) {
  848. case 0:
  849. case 1:
  850. case 2:
  851. case 3:
  852. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  853. LCD_MESSAGEPGM(MSG_STOPPED);
  854. break;
  855. }
  856. }
  857. }
  858. // If command was e-stop process now
  859. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  860. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  861. last_command_time = ms;
  862. #endif
  863. // Add the command to the queue
  864. _enqueuecommand(serial_line_buffer, true);
  865. }
  866. else if (serial_count >= MAX_CMD_SIZE - 1) {
  867. // Keep fetching, but ignore normal characters beyond the max length
  868. // The command will be injected when EOL is reached
  869. }
  870. else if (serial_char == '\\') { // Handle escapes
  871. if (MYSERIAL.available() > 0) {
  872. // if we have one more character, copy it over
  873. serial_char = MYSERIAL.read();
  874. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  875. }
  876. // otherwise do nothing
  877. }
  878. else { // it's not a newline, carriage return or escape char
  879. if (serial_char == ';') serial_comment_mode = true;
  880. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  881. }
  882. } // queue has space, serial has data
  883. }
  884. #if ENABLED(SDSUPPORT)
  885. inline void get_sdcard_commands() {
  886. static bool stop_buffering = false,
  887. sd_comment_mode = false;
  888. if (!card.sdprinting) return;
  889. /**
  890. * '#' stops reading from SD to the buffer prematurely, so procedural
  891. * macro calls are possible. If it occurs, stop_buffering is triggered
  892. * and the buffer is run dry; this character _can_ occur in serial com
  893. * due to checksums, however, no checksums are used in SD printing.
  894. */
  895. if (commands_in_queue == 0) stop_buffering = false;
  896. uint16_t sd_count = 0;
  897. bool card_eof = card.eof();
  898. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  899. int16_t n = card.get();
  900. char sd_char = (char)n;
  901. card_eof = card.eof();
  902. if (card_eof || n == -1
  903. || sd_char == '\n' || sd_char == '\r'
  904. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  905. ) {
  906. if (card_eof) {
  907. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  908. print_job_timer.stop();
  909. char time[30];
  910. millis_t t = print_job_timer.duration();
  911. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  912. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  913. SERIAL_ECHO_START;
  914. SERIAL_ECHOLN(time);
  915. lcd_setstatus(time, true);
  916. card.printingHasFinished();
  917. card.checkautostart(true);
  918. }
  919. if (sd_char == '#') stop_buffering = true;
  920. sd_comment_mode = false; //for new command
  921. if (!sd_count) continue; //skip empty lines
  922. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  923. sd_count = 0; //clear buffer
  924. _commit_command(false);
  925. }
  926. else if (sd_count >= MAX_CMD_SIZE - 1) {
  927. /**
  928. * Keep fetching, but ignore normal characters beyond the max length
  929. * The command will be injected when EOL is reached
  930. */
  931. }
  932. else {
  933. if (sd_char == ';') sd_comment_mode = true;
  934. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  935. }
  936. }
  937. }
  938. #endif // SDSUPPORT
  939. /**
  940. * Add to the circular command queue the next command from:
  941. * - The command-injection queue (queued_commands_P)
  942. * - The active serial input (usually USB)
  943. * - The SD card file being actively printed
  944. */
  945. void get_available_commands() {
  946. // if any immediate commands remain, don't get other commands yet
  947. if (drain_queued_commands_P()) return;
  948. get_serial_commands();
  949. #if ENABLED(SDSUPPORT)
  950. get_sdcard_commands();
  951. #endif
  952. }
  953. bool code_has_value() {
  954. int i = 1;
  955. char c = seen_pointer[i];
  956. while (c == ' ') c = seen_pointer[++i];
  957. if (c == '-' || c == '+') c = seen_pointer[++i];
  958. if (c == '.') c = seen_pointer[++i];
  959. return NUMERIC(c);
  960. }
  961. float code_value() {
  962. float ret;
  963. char* e = strchr(seen_pointer, 'E');
  964. if (e) {
  965. *e = 0;
  966. ret = strtod(seen_pointer + 1, NULL);
  967. *e = 'E';
  968. }
  969. else
  970. ret = strtod(seen_pointer + 1, NULL);
  971. return ret;
  972. }
  973. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  974. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  975. bool code_seen(char code) {
  976. seen_pointer = strchr(current_command_args, code);
  977. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  978. }
  979. #define DEFINE_PGM_READ_ANY(type, reader) \
  980. static inline type pgm_read_any(const type *p) \
  981. { return pgm_read_##reader##_near(p); }
  982. DEFINE_PGM_READ_ANY(float, float);
  983. DEFINE_PGM_READ_ANY(signed char, byte);
  984. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  985. static const PROGMEM type array##_P[3] = \
  986. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  987. static inline type array(int axis) \
  988. { return pgm_read_any(&array##_P[axis]); }
  989. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  990. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  991. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  992. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  993. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  994. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  995. #if ENABLED(DUAL_X_CARRIAGE)
  996. #define DXC_FULL_CONTROL_MODE 0
  997. #define DXC_AUTO_PARK_MODE 1
  998. #define DXC_DUPLICATION_MODE 2
  999. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1000. static float x_home_pos(int extruder) {
  1001. if (extruder == 0)
  1002. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1003. else
  1004. /**
  1005. * In dual carriage mode the extruder offset provides an override of the
  1006. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1007. * This allow soft recalibration of the second extruder offset position
  1008. * without firmware reflash (through the M218 command).
  1009. */
  1010. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1011. }
  1012. static int x_home_dir(int extruder) {
  1013. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1014. }
  1015. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1016. static bool active_extruder_parked = false; // used in mode 1 & 2
  1017. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1018. static millis_t delayed_move_time = 0; // used in mode 1
  1019. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1020. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1021. bool extruder_duplication_enabled = false; // used in mode 2
  1022. #endif //DUAL_X_CARRIAGE
  1023. static void set_axis_is_at_home(AxisEnum axis) {
  1024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1025. if (DEBUGGING(LEVELING)) {
  1026. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1027. SERIAL_ECHOLNPGM(") >>>");
  1028. }
  1029. #endif
  1030. #if ENABLED(DUAL_X_CARRIAGE)
  1031. if (axis == X_AXIS) {
  1032. if (active_extruder != 0) {
  1033. current_position[X_AXIS] = x_home_pos(active_extruder);
  1034. min_pos[X_AXIS] = X2_MIN_POS;
  1035. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1036. return;
  1037. }
  1038. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1039. float xoff = home_offset[X_AXIS];
  1040. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1041. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1042. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1043. return;
  1044. }
  1045. }
  1046. #endif
  1047. #if ENABLED(SCARA)
  1048. if (axis == X_AXIS || axis == Y_AXIS) {
  1049. float homeposition[3];
  1050. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1051. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1052. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1053. /**
  1054. * Works out real Homeposition angles using inverse kinematics,
  1055. * and calculates homing offset using forward kinematics
  1056. */
  1057. calculate_delta(homeposition);
  1058. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1059. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1060. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1061. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1062. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1063. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1064. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1065. calculate_SCARA_forward_Transform(delta);
  1066. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1067. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1068. current_position[axis] = delta[axis];
  1069. /**
  1070. * SCARA home positions are based on configuration since the actual
  1071. * limits are determined by the inverse kinematic transform.
  1072. */
  1073. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1074. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1075. }
  1076. else
  1077. #endif
  1078. {
  1079. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1080. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1081. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1082. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1083. if (axis == Z_AXIS) {
  1084. current_position[Z_AXIS] -= zprobe_zoffset;
  1085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1086. if (DEBUGGING(LEVELING)) {
  1087. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1088. SERIAL_EOL;
  1089. }
  1090. #endif
  1091. }
  1092. #endif
  1093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1094. if (DEBUGGING(LEVELING)) {
  1095. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1096. DEBUG_POS("", current_position);
  1097. }
  1098. #endif
  1099. }
  1100. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1101. if (DEBUGGING(LEVELING)) {
  1102. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1103. SERIAL_ECHOLNPGM(")");
  1104. }
  1105. #endif
  1106. }
  1107. /**
  1108. * Some planner shorthand inline functions
  1109. */
  1110. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1111. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1112. int hbd = homing_bump_divisor[axis];
  1113. if (hbd < 1) {
  1114. hbd = 10;
  1115. SERIAL_ECHO_START;
  1116. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1117. }
  1118. feedrate = homing_feedrate[axis] / hbd;
  1119. }
  1120. //
  1121. // line_to_current_position
  1122. // Move the planner to the current position from wherever it last moved
  1123. // (or from wherever it has been told it is located).
  1124. //
  1125. inline void line_to_current_position() {
  1126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1127. }
  1128. inline void line_to_z(float zPosition) {
  1129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1130. }
  1131. //
  1132. // line_to_destination
  1133. // Move the planner, not necessarily synced with current_position
  1134. //
  1135. inline void line_to_destination(float mm_m) {
  1136. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1137. }
  1138. inline void line_to_destination() {
  1139. line_to_destination(feedrate);
  1140. }
  1141. /**
  1142. * sync_plan_position
  1143. * Set planner / stepper positions to the cartesian current_position.
  1144. * The stepper code translates these coordinates into step units.
  1145. * Allows translation between steps and units (mm) for cartesian & core robots
  1146. */
  1147. inline void sync_plan_position() {
  1148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1149. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1150. #endif
  1151. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1152. }
  1153. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1154. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1155. static void setup_for_endstop_move() {
  1156. saved_feedrate = feedrate;
  1157. saved_feedrate_multiplier = feedrate_multiplier;
  1158. feedrate_multiplier = 100;
  1159. refresh_cmd_timeout();
  1160. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1161. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1162. #endif
  1163. enable_endstops(true);
  1164. }
  1165. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1166. #if ENABLED(DELTA)
  1167. /**
  1168. * Calculate delta, start a line, and set current_position to destination
  1169. */
  1170. void prepare_move_raw() {
  1171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1172. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1173. #endif
  1174. refresh_cmd_timeout();
  1175. calculate_delta(destination);
  1176. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1177. set_current_to_destination();
  1178. }
  1179. #endif
  1180. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1181. #if DISABLED(DELTA)
  1182. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1184. plan_bed_level_matrix.set_to_identity();
  1185. if (DEBUGGING(LEVELING)) {
  1186. vector_3 uncorrected_position = plan_get_position();
  1187. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1188. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1189. }
  1190. #endif
  1191. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1192. // planeNormal.debug("planeNormal");
  1193. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1194. //bedLevel.debug("bedLevel");
  1195. //plan_bed_level_matrix.debug("bed level before");
  1196. //vector_3 uncorrected_position = plan_get_position();
  1197. //uncorrected_position.debug("position before");
  1198. vector_3 corrected_position = plan_get_position();
  1199. //corrected_position.debug("position after");
  1200. current_position[X_AXIS] = corrected_position.x;
  1201. current_position[Y_AXIS] = corrected_position.y;
  1202. current_position[Z_AXIS] = corrected_position.z;
  1203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", current_position);
  1205. #endif
  1206. sync_plan_position();
  1207. }
  1208. #endif // !DELTA
  1209. #else // !AUTO_BED_LEVELING_GRID
  1210. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1211. plan_bed_level_matrix.set_to_identity();
  1212. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1213. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1214. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1215. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1216. if (planeNormal.z < 0) {
  1217. planeNormal.x = -planeNormal.x;
  1218. planeNormal.y = -planeNormal.y;
  1219. planeNormal.z = -planeNormal.z;
  1220. }
  1221. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1222. vector_3 corrected_position = plan_get_position();
  1223. current_position[X_AXIS] = corrected_position.x;
  1224. current_position[Y_AXIS] = corrected_position.y;
  1225. current_position[Z_AXIS] = corrected_position.z;
  1226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1227. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1228. #endif
  1229. sync_plan_position();
  1230. }
  1231. #endif // !AUTO_BED_LEVELING_GRID
  1232. static void run_z_probe() {
  1233. /**
  1234. * To prevent stepper_inactive_time from running out and
  1235. * EXTRUDER_RUNOUT_PREVENT from extruding
  1236. */
  1237. refresh_cmd_timeout();
  1238. #if ENABLED(DELTA)
  1239. float start_z = current_position[Z_AXIS];
  1240. long start_steps = st_get_position(Z_AXIS);
  1241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1242. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1243. #endif
  1244. // move down slowly until you find the bed
  1245. feedrate = homing_feedrate[Z_AXIS] / 4;
  1246. destination[Z_AXIS] = -10;
  1247. prepare_move_raw(); // this will also set_current_to_destination
  1248. st_synchronize();
  1249. endstops_hit_on_purpose(); // clear endstop hit flags
  1250. /**
  1251. * We have to let the planner know where we are right now as it
  1252. * is not where we said to go.
  1253. */
  1254. long stop_steps = st_get_position(Z_AXIS);
  1255. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1256. current_position[Z_AXIS] = mm;
  1257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1258. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1259. #endif
  1260. sync_plan_position_delta();
  1261. #else // !DELTA
  1262. plan_bed_level_matrix.set_to_identity();
  1263. feedrate = homing_feedrate[Z_AXIS];
  1264. // Move down until the Z probe (or endstop?) is triggered
  1265. float zPosition = -(Z_MAX_LENGTH + 10);
  1266. line_to_z(zPosition);
  1267. st_synchronize();
  1268. // Tell the planner where we ended up - Get this from the stepper handler
  1269. zPosition = st_get_axis_position_mm(Z_AXIS);
  1270. plan_set_position(
  1271. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1272. current_position[E_AXIS]
  1273. );
  1274. // move up the retract distance
  1275. zPosition += home_bump_mm(Z_AXIS);
  1276. line_to_z(zPosition);
  1277. st_synchronize();
  1278. endstops_hit_on_purpose(); // clear endstop hit flags
  1279. // move back down slowly to find bed
  1280. set_homing_bump_feedrate(Z_AXIS);
  1281. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1282. line_to_z(zPosition);
  1283. st_synchronize();
  1284. endstops_hit_on_purpose(); // clear endstop hit flags
  1285. // Get the current stepper position after bumping an endstop
  1286. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1287. sync_plan_position();
  1288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1289. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1290. #endif
  1291. #endif // !DELTA
  1292. }
  1293. /**
  1294. * Plan a move to (X, Y, Z) and set the current_position
  1295. * The final current_position may not be the one that was requested
  1296. */
  1297. static void do_blocking_move_to(float x, float y, float z) {
  1298. float oldFeedRate = feedrate;
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1301. #endif
  1302. #if ENABLED(DELTA)
  1303. feedrate = XY_TRAVEL_SPEED;
  1304. destination[X_AXIS] = x;
  1305. destination[Y_AXIS] = y;
  1306. destination[Z_AXIS] = z;
  1307. prepare_move_raw(); // this will also set_current_to_destination
  1308. st_synchronize();
  1309. #else
  1310. feedrate = homing_feedrate[Z_AXIS];
  1311. current_position[Z_AXIS] = z;
  1312. line_to_current_position();
  1313. st_synchronize();
  1314. feedrate = xy_travel_speed;
  1315. current_position[X_AXIS] = x;
  1316. current_position[Y_AXIS] = y;
  1317. line_to_current_position();
  1318. st_synchronize();
  1319. #endif
  1320. feedrate = oldFeedRate;
  1321. }
  1322. inline void do_blocking_move_to_xy(float x, float y) {
  1323. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1324. }
  1325. inline void do_blocking_move_to_x(float x) {
  1326. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1327. }
  1328. inline void do_blocking_move_to_z(float z) {
  1329. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1330. }
  1331. inline void raise_z_after_probing() {
  1332. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1333. }
  1334. static void clean_up_after_endstop_move() {
  1335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1336. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1337. #endif
  1338. endstops_not_homing();
  1339. feedrate = saved_feedrate;
  1340. feedrate_multiplier = saved_feedrate_multiplier;
  1341. refresh_cmd_timeout();
  1342. }
  1343. #if ENABLED(HAS_Z_MIN_PROBE)
  1344. static void deploy_z_probe() {
  1345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1346. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1347. #endif
  1348. if (z_probe_is_active) return;
  1349. #if HAS_SERVO_ENDSTOPS
  1350. // Engage Z Servo endstop if enabled
  1351. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1352. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1353. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1354. // If endstop is already false, the Z probe is deployed
  1355. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1356. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1357. if (z_probe_endstop)
  1358. #else
  1359. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1360. if (z_min_endstop)
  1361. #endif
  1362. {
  1363. // Move to the start position to initiate deployment
  1364. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1365. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1366. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1367. prepare_move_raw(); // this will also set_current_to_destination
  1368. // Move to engage deployment
  1369. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1370. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1371. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1372. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1373. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1374. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1375. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1376. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1377. prepare_move_raw();
  1378. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1379. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1380. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1381. // Move to trigger deployment
  1382. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1383. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1384. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1385. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1386. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1387. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1388. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1389. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1390. prepare_move_raw();
  1391. #endif
  1392. }
  1393. // Partially Home X,Y for safety
  1394. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1395. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1396. prepare_move_raw(); // this will also set_current_to_destination
  1397. st_synchronize();
  1398. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1399. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1400. if (z_probe_endstop)
  1401. #else
  1402. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1403. if (z_min_endstop)
  1404. #endif
  1405. {
  1406. if (IsRunning()) {
  1407. SERIAL_ERROR_START;
  1408. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1409. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1410. }
  1411. Stop();
  1412. }
  1413. #endif // Z_PROBE_ALLEN_KEY
  1414. #if ENABLED(FIX_MOUNTED_PROBE)
  1415. // Noting to be done. Just set z_probe_is_active
  1416. #endif
  1417. z_probe_is_active = true;
  1418. }
  1419. static void stow_z_probe(bool doRaise = true) {
  1420. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1421. UNUSED(doRaise);
  1422. #endif
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1425. #endif
  1426. if (!z_probe_is_active) return;
  1427. #if HAS_SERVO_ENDSTOPS
  1428. // Retract Z Servo endstop if enabled
  1429. if (servo_endstop_id[Z_AXIS] >= 0) {
  1430. #if Z_RAISE_AFTER_PROBING > 0
  1431. if (doRaise) {
  1432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1433. if (DEBUGGING(LEVELING)) {
  1434. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1435. SERIAL_EOL;
  1436. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1437. SERIAL_EOL;
  1438. }
  1439. #endif
  1440. raise_z_after_probing(); // this also updates current_position
  1441. st_synchronize();
  1442. }
  1443. #endif
  1444. // Change the Z servo angle
  1445. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1446. }
  1447. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1448. // Move up for safety
  1449. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1450. #if Z_RAISE_AFTER_PROBING > 0
  1451. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1452. prepare_move_raw(); // this will also set_current_to_destination
  1453. #endif
  1454. // Move to the start position to initiate retraction
  1455. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1456. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1457. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1458. prepare_move_raw();
  1459. // Move the nozzle down to push the Z probe into retracted position
  1460. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1461. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1462. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1463. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1464. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1465. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1466. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1467. prepare_move_raw();
  1468. // Move up for safety
  1469. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1470. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1471. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1472. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1473. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1474. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1475. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1476. prepare_move_raw();
  1477. // Home XY for safety
  1478. feedrate = homing_feedrate[X_AXIS] / 2;
  1479. destination[X_AXIS] = 0;
  1480. destination[Y_AXIS] = 0;
  1481. prepare_move_raw(); // this will also set_current_to_destination
  1482. st_synchronize();
  1483. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1484. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1485. if (!z_probe_endstop)
  1486. #else
  1487. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1488. if (!z_min_endstop)
  1489. #endif
  1490. {
  1491. if (IsRunning()) {
  1492. SERIAL_ERROR_START;
  1493. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1494. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1495. }
  1496. Stop();
  1497. }
  1498. #endif // Z_PROBE_ALLEN_KEY
  1499. #if ENABLED(FIX_MOUNTED_PROBE)
  1500. // Nothing to do here. Just clear z_probe_is_active
  1501. #endif
  1502. z_probe_is_active = false;
  1503. }
  1504. #endif // HAS_Z_MIN_PROBE
  1505. enum ProbeAction {
  1506. ProbeStay = 0,
  1507. ProbeDeploy = _BV(0),
  1508. ProbeStow = _BV(1),
  1509. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1510. };
  1511. // Probe bed height at position (x,y), returns the measured z value
  1512. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1514. if (DEBUGGING(LEVELING)) {
  1515. SERIAL_ECHOLNPGM("probe_pt >>>");
  1516. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1517. SERIAL_EOL;
  1518. DEBUG_POS("", current_position);
  1519. }
  1520. #endif
  1521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1522. if (DEBUGGING(LEVELING)) {
  1523. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1524. SERIAL_EOL;
  1525. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1526. SERIAL_EOL;
  1527. }
  1528. #endif
  1529. // Move Z up to the z_before height, then move the Z probe to the given XY
  1530. do_blocking_move_to_z(z_before); // this also updates current_position
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1534. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1535. SERIAL_EOL;
  1536. }
  1537. #endif
  1538. // this also updates current_position
  1539. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1540. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1541. if (probe_action & ProbeDeploy) {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1544. #endif
  1545. deploy_z_probe();
  1546. }
  1547. #endif
  1548. run_z_probe();
  1549. float measured_z = current_position[Z_AXIS];
  1550. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1551. if (probe_action & ProbeStow) {
  1552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1553. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1554. #endif
  1555. stow_z_probe();
  1556. }
  1557. #endif
  1558. if (verbose_level > 2) {
  1559. SERIAL_PROTOCOLPGM("Bed X: ");
  1560. SERIAL_PROTOCOL_F(x, 3);
  1561. SERIAL_PROTOCOLPGM(" Y: ");
  1562. SERIAL_PROTOCOL_F(y, 3);
  1563. SERIAL_PROTOCOLPGM(" Z: ");
  1564. SERIAL_PROTOCOL_F(measured_z, 3);
  1565. SERIAL_EOL;
  1566. }
  1567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1568. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1569. #endif
  1570. return measured_z;
  1571. }
  1572. #if ENABLED(DELTA)
  1573. /**
  1574. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1575. */
  1576. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1577. if (bed_level[x][y] != 0.0) {
  1578. return; // Don't overwrite good values.
  1579. }
  1580. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1581. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1582. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1583. float median = c; // Median is robust (ignores outliers).
  1584. if (a < b) {
  1585. if (b < c) median = b;
  1586. if (c < a) median = a;
  1587. }
  1588. else { // b <= a
  1589. if (c < b) median = b;
  1590. if (a < c) median = a;
  1591. }
  1592. bed_level[x][y] = median;
  1593. }
  1594. /**
  1595. * Fill in the unprobed points (corners of circular print surface)
  1596. * using linear extrapolation, away from the center.
  1597. */
  1598. static void extrapolate_unprobed_bed_level() {
  1599. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1600. for (int y = 0; y <= half; y++) {
  1601. for (int x = 0; x <= half; x++) {
  1602. if (x + y < 3) continue;
  1603. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1604. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1605. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1606. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1607. }
  1608. }
  1609. }
  1610. /**
  1611. * Print calibration results for plotting or manual frame adjustment.
  1612. */
  1613. static void print_bed_level() {
  1614. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1615. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1616. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1617. SERIAL_PROTOCOLCHAR(' ');
  1618. }
  1619. SERIAL_EOL;
  1620. }
  1621. }
  1622. /**
  1623. * Reset calibration results to zero.
  1624. */
  1625. void reset_bed_level() {
  1626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1627. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1628. #endif
  1629. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1630. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1631. bed_level[x][y] = 0.0;
  1632. }
  1633. }
  1634. }
  1635. #endif // DELTA
  1636. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1637. void raise_z_for_servo() {
  1638. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1639. /**
  1640. * The zprobe_zoffset is negative any switch below the nozzle, so
  1641. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1642. */
  1643. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1644. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1645. }
  1646. #endif
  1647. #endif // AUTO_BED_LEVELING_FEATURE
  1648. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1649. static void axis_unhomed_error() {
  1650. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1651. SERIAL_ECHO_START;
  1652. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1653. }
  1654. #endif
  1655. #if ENABLED(Z_PROBE_SLED)
  1656. #ifndef SLED_DOCKING_OFFSET
  1657. #define SLED_DOCKING_OFFSET 0
  1658. #endif
  1659. /**
  1660. * Method to dock/undock a sled designed by Charles Bell.
  1661. *
  1662. * dock[in] If true, move to MAX_X and engage the electromagnet
  1663. * offset[in] The additional distance to move to adjust docking location
  1664. */
  1665. static void dock_sled(bool dock, int offset = 0) {
  1666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1667. if (DEBUGGING(LEVELING)) {
  1668. SERIAL_ECHOPAIR("dock_sled(", dock);
  1669. SERIAL_ECHOLNPGM(")");
  1670. }
  1671. #endif
  1672. if (z_probe_is_active == dock) return;
  1673. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1674. axis_unhomed_error();
  1675. return;
  1676. }
  1677. float oldXpos = current_position[X_AXIS]; // save x position
  1678. if (dock) {
  1679. #if Z_RAISE_AFTER_PROBING > 0
  1680. raise_z_after_probing(); // raise Z
  1681. #endif
  1682. // Dock sled a bit closer to ensure proper capturing
  1683. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1684. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1685. }
  1686. else {
  1687. float z_loc = current_position[Z_AXIS];
  1688. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1689. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1690. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1691. }
  1692. do_blocking_move_to_x(oldXpos); // return to position before docking
  1693. z_probe_is_active = dock;
  1694. }
  1695. #endif // Z_PROBE_SLED
  1696. /**
  1697. * Home an individual axis
  1698. */
  1699. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1700. static void homeaxis(AxisEnum axis) {
  1701. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1702. if (DEBUGGING(LEVELING)) {
  1703. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1704. SERIAL_ECHOLNPGM(")");
  1705. }
  1706. #endif
  1707. #define HOMEAXIS_DO(LETTER) \
  1708. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1709. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1710. int axis_home_dir =
  1711. #if ENABLED(DUAL_X_CARRIAGE)
  1712. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1713. #endif
  1714. home_dir(axis);
  1715. // Set the axis position as setup for the move
  1716. current_position[axis] = 0;
  1717. sync_plan_position();
  1718. #if ENABLED(Z_PROBE_SLED)
  1719. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1720. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1721. #define _Z_DEPLOY (dock_sled(false))
  1722. #define _Z_STOW (dock_sled(true))
  1723. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1724. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1725. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1726. #define _Z_DEPLOY (deploy_z_probe())
  1727. #define _Z_STOW (stow_z_probe())
  1728. #elif HAS_SERVO_ENDSTOPS
  1729. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1730. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1731. #endif
  1732. if (axis == Z_AXIS) {
  1733. // If there's a Z probe that needs deployment...
  1734. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1735. // ...and homing Z towards the bed? Deploy it.
  1736. if (axis_home_dir < 0) _Z_DEPLOY;
  1737. #endif
  1738. }
  1739. #if HAS_SERVO_ENDSTOPS
  1740. // Engage an X or Y Servo endstop if enabled
  1741. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1742. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1743. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1744. }
  1745. #endif
  1746. // Set a flag for Z motor locking
  1747. #if ENABLED(Z_DUAL_ENDSTOPS)
  1748. if (axis == Z_AXIS) In_Homing_Process(true);
  1749. #endif
  1750. // Move towards the endstop until an endstop is triggered
  1751. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1752. feedrate = homing_feedrate[axis];
  1753. line_to_destination();
  1754. st_synchronize();
  1755. // Set the axis position as setup for the move
  1756. current_position[axis] = 0;
  1757. sync_plan_position();
  1758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1759. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1760. #endif
  1761. enable_endstops(false); // Disable endstops while moving away
  1762. // Move away from the endstop by the axis HOME_BUMP_MM
  1763. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1764. line_to_destination();
  1765. st_synchronize();
  1766. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1767. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1768. #endif
  1769. enable_endstops(true); // Enable endstops for next homing move
  1770. // Slow down the feedrate for the next move
  1771. set_homing_bump_feedrate(axis);
  1772. // Move slowly towards the endstop until triggered
  1773. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1774. line_to_destination();
  1775. st_synchronize();
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1778. #endif
  1779. #if ENABLED(Z_DUAL_ENDSTOPS)
  1780. if (axis == Z_AXIS) {
  1781. float adj = fabs(z_endstop_adj);
  1782. bool lockZ1;
  1783. if (axis_home_dir > 0) {
  1784. adj = -adj;
  1785. lockZ1 = (z_endstop_adj > 0);
  1786. }
  1787. else
  1788. lockZ1 = (z_endstop_adj < 0);
  1789. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1790. sync_plan_position();
  1791. // Move to the adjusted endstop height
  1792. feedrate = homing_feedrate[axis];
  1793. destination[Z_AXIS] = adj;
  1794. line_to_destination();
  1795. st_synchronize();
  1796. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1797. In_Homing_Process(false);
  1798. } // Z_AXIS
  1799. #endif
  1800. #if ENABLED(DELTA)
  1801. // retrace by the amount specified in endstop_adj
  1802. if (endstop_adj[axis] * axis_home_dir < 0) {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1805. #endif
  1806. enable_endstops(false); // Disable endstops while moving away
  1807. sync_plan_position();
  1808. destination[axis] = endstop_adj[axis];
  1809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1810. if (DEBUGGING(LEVELING)) {
  1811. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1812. DEBUG_POS("", destination);
  1813. }
  1814. #endif
  1815. line_to_destination();
  1816. st_synchronize();
  1817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1818. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1819. #endif
  1820. enable_endstops(true); // Enable endstops for next homing move
  1821. }
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. else {
  1824. if (DEBUGGING(LEVELING)) {
  1825. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1826. SERIAL_EOL;
  1827. }
  1828. }
  1829. #endif
  1830. #endif
  1831. // Set the axis position to its home position (plus home offsets)
  1832. set_axis_is_at_home(axis);
  1833. sync_plan_position();
  1834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1836. #endif
  1837. destination[axis] = current_position[axis];
  1838. feedrate = 0.0;
  1839. endstops_hit_on_purpose(); // clear endstop hit flags
  1840. axis_known_position[axis] = true;
  1841. axis_homed[axis] = true;
  1842. // Put away the Z probe
  1843. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1844. if (axis == Z_AXIS && axis_home_dir < 0) {
  1845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1846. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1847. #endif
  1848. _Z_STOW;
  1849. }
  1850. #endif
  1851. // Retract Servo endstop if enabled
  1852. #if HAS_SERVO_ENDSTOPS
  1853. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1856. #endif
  1857. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1858. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1859. }
  1860. #endif
  1861. }
  1862. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1863. if (DEBUGGING(LEVELING)) {
  1864. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1865. SERIAL_ECHOLNPGM(")");
  1866. }
  1867. #endif
  1868. }
  1869. #if ENABLED(FWRETRACT)
  1870. void retract(bool retracting, bool swapping = false) {
  1871. if (retracting == retracted[active_extruder]) return;
  1872. float oldFeedrate = feedrate;
  1873. set_destination_to_current();
  1874. if (retracting) {
  1875. feedrate = retract_feedrate * 60;
  1876. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1877. plan_set_e_position(current_position[E_AXIS]);
  1878. prepare_move();
  1879. if (retract_zlift > 0.01) {
  1880. current_position[Z_AXIS] -= retract_zlift;
  1881. #if ENABLED(DELTA)
  1882. sync_plan_position_delta();
  1883. #else
  1884. sync_plan_position();
  1885. #endif
  1886. prepare_move();
  1887. }
  1888. }
  1889. else {
  1890. if (retract_zlift > 0.01) {
  1891. current_position[Z_AXIS] += retract_zlift;
  1892. #if ENABLED(DELTA)
  1893. sync_plan_position_delta();
  1894. #else
  1895. sync_plan_position();
  1896. #endif
  1897. //prepare_move();
  1898. }
  1899. feedrate = retract_recover_feedrate * 60;
  1900. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1901. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1902. plan_set_e_position(current_position[E_AXIS]);
  1903. prepare_move();
  1904. }
  1905. feedrate = oldFeedrate;
  1906. retracted[active_extruder] = retracting;
  1907. } // retract()
  1908. #endif // FWRETRACT
  1909. /**
  1910. * ***************************************************************************
  1911. * ***************************** G-CODE HANDLING *****************************
  1912. * ***************************************************************************
  1913. */
  1914. /**
  1915. * Set XYZE destination and feedrate from the current GCode command
  1916. *
  1917. * - Set destination from included axis codes
  1918. * - Set to current for missing axis codes
  1919. * - Set the feedrate, if included
  1920. */
  1921. void gcode_get_destination() {
  1922. for (int i = 0; i < NUM_AXIS; i++) {
  1923. if (code_seen(axis_codes[i]))
  1924. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1925. else
  1926. destination[i] = current_position[i];
  1927. }
  1928. if (code_seen('F')) {
  1929. float next_feedrate = code_value();
  1930. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1931. }
  1932. }
  1933. void unknown_command_error() {
  1934. SERIAL_ECHO_START;
  1935. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1936. SERIAL_ECHO(current_command);
  1937. SERIAL_ECHOPGM("\"\n");
  1938. }
  1939. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1940. /**
  1941. * Output a "busy" message at regular intervals
  1942. * while the machine is not accepting commands.
  1943. */
  1944. void host_keepalive() {
  1945. millis_t ms = millis();
  1946. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1947. if (PENDING(ms, next_busy_signal_ms)) return;
  1948. switch (busy_state) {
  1949. case IN_HANDLER:
  1950. case IN_PROCESS:
  1951. SERIAL_ECHO_START;
  1952. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1953. break;
  1954. case PAUSED_FOR_USER:
  1955. SERIAL_ECHO_START;
  1956. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1957. break;
  1958. case PAUSED_FOR_INPUT:
  1959. SERIAL_ECHO_START;
  1960. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1961. break;
  1962. default:
  1963. break;
  1964. }
  1965. }
  1966. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  1967. }
  1968. #endif //HOST_KEEPALIVE_FEATURE
  1969. /**
  1970. * G0, G1: Coordinated movement of X Y Z E axes
  1971. */
  1972. inline void gcode_G0_G1() {
  1973. if (IsRunning()) {
  1974. gcode_get_destination(); // For X Y Z E F
  1975. #if ENABLED(FWRETRACT)
  1976. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1977. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1978. // Is this move an attempt to retract or recover?
  1979. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1980. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1981. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1982. retract(!retracted[active_extruder]);
  1983. return;
  1984. }
  1985. }
  1986. #endif //FWRETRACT
  1987. prepare_move();
  1988. }
  1989. }
  1990. /**
  1991. * G2: Clockwise Arc
  1992. * G3: Counterclockwise Arc
  1993. */
  1994. inline void gcode_G2_G3(bool clockwise) {
  1995. if (IsRunning()) {
  1996. #if ENABLED(SF_ARC_FIX)
  1997. bool relative_mode_backup = relative_mode;
  1998. relative_mode = true;
  1999. #endif
  2000. gcode_get_destination();
  2001. #if ENABLED(SF_ARC_FIX)
  2002. relative_mode = relative_mode_backup;
  2003. #endif
  2004. // Center of arc as offset from current_position
  2005. float arc_offset[2] = {
  2006. code_seen('I') ? code_value() : 0,
  2007. code_seen('J') ? code_value() : 0
  2008. };
  2009. // Send an arc to the planner
  2010. plan_arc(destination, arc_offset, clockwise);
  2011. refresh_cmd_timeout();
  2012. }
  2013. }
  2014. /**
  2015. * G4: Dwell S<seconds> or P<milliseconds>
  2016. */
  2017. inline void gcode_G4() {
  2018. millis_t codenum = 0;
  2019. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2020. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2021. st_synchronize();
  2022. refresh_cmd_timeout();
  2023. codenum += previous_cmd_ms; // keep track of when we started waiting
  2024. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2025. while (PENDING(millis(), codenum)) idle();
  2026. }
  2027. #if ENABLED(FWRETRACT)
  2028. /**
  2029. * G10 - Retract filament according to settings of M207
  2030. * G11 - Recover filament according to settings of M208
  2031. */
  2032. inline void gcode_G10_G11(bool doRetract=false) {
  2033. #if EXTRUDERS > 1
  2034. if (doRetract) {
  2035. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2036. }
  2037. #endif
  2038. retract(doRetract
  2039. #if EXTRUDERS > 1
  2040. , retracted_swap[active_extruder]
  2041. #endif
  2042. );
  2043. }
  2044. #endif //FWRETRACT
  2045. /**
  2046. * G28: Home all axes according to settings
  2047. *
  2048. * Parameters
  2049. *
  2050. * None Home to all axes with no parameters.
  2051. * With QUICK_HOME enabled XY will home together, then Z.
  2052. *
  2053. * Cartesian parameters
  2054. *
  2055. * X Home to the X endstop
  2056. * Y Home to the Y endstop
  2057. * Z Home to the Z endstop
  2058. *
  2059. */
  2060. inline void gcode_G28() {
  2061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2062. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2063. #endif
  2064. // Wait for planner moves to finish!
  2065. st_synchronize();
  2066. // For auto bed leveling, clear the level matrix
  2067. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2068. plan_bed_level_matrix.set_to_identity();
  2069. #if ENABLED(DELTA)
  2070. reset_bed_level();
  2071. #endif
  2072. #endif
  2073. /**
  2074. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2075. * on again when homing all axis
  2076. */
  2077. #if ENABLED(MESH_BED_LEVELING)
  2078. uint8_t mbl_was_active = mbl.active;
  2079. mbl.active = false;
  2080. #endif
  2081. setup_for_endstop_move();
  2082. /**
  2083. * Directly after a reset this is all 0. Later we get a hint if we have
  2084. * to raise z or not.
  2085. */
  2086. set_destination_to_current();
  2087. feedrate = 0.0;
  2088. #if ENABLED(DELTA)
  2089. /**
  2090. * A delta can only safely home all axis at the same time
  2091. * all axis have to home at the same time
  2092. */
  2093. // Pretend the current position is 0,0,0
  2094. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2095. sync_plan_position();
  2096. // Move all carriages up together until the first endstop is hit.
  2097. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2098. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2099. line_to_destination();
  2100. st_synchronize();
  2101. endstops_hit_on_purpose(); // clear endstop hit flags
  2102. // Destination reached
  2103. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2104. // take care of back off and rehome now we are all at the top
  2105. HOMEAXIS(X);
  2106. HOMEAXIS(Y);
  2107. HOMEAXIS(Z);
  2108. sync_plan_position_delta();
  2109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2110. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2111. #endif
  2112. #else // NOT DELTA
  2113. bool homeX = code_seen(axis_codes[X_AXIS]),
  2114. homeY = code_seen(axis_codes[Y_AXIS]),
  2115. homeZ = code_seen(axis_codes[Z_AXIS]);
  2116. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2117. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2118. if (home_all_axis || homeZ) {
  2119. HOMEAXIS(Z);
  2120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2121. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2122. #endif
  2123. }
  2124. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2125. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2126. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2127. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2128. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2130. if (DEBUGGING(LEVELING)) {
  2131. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2132. SERIAL_EOL;
  2133. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2134. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2135. }
  2136. #endif
  2137. line_to_destination();
  2138. st_synchronize();
  2139. /**
  2140. * Update the current Z position even if it currently not real from
  2141. * Z-home otherwise each call to line_to_destination() will want to
  2142. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2143. */
  2144. current_position[Z_AXIS] = destination[Z_AXIS];
  2145. }
  2146. #endif
  2147. #if ENABLED(QUICK_HOME)
  2148. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2149. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2150. #if ENABLED(DUAL_X_CARRIAGE)
  2151. int x_axis_home_dir = x_home_dir(active_extruder);
  2152. extruder_duplication_enabled = false;
  2153. #else
  2154. int x_axis_home_dir = home_dir(X_AXIS);
  2155. #endif
  2156. sync_plan_position();
  2157. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2158. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2159. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2160. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2161. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2162. line_to_destination();
  2163. st_synchronize();
  2164. set_axis_is_at_home(X_AXIS);
  2165. set_axis_is_at_home(Y_AXIS);
  2166. sync_plan_position();
  2167. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2168. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2169. #endif
  2170. destination[X_AXIS] = current_position[X_AXIS];
  2171. destination[Y_AXIS] = current_position[Y_AXIS];
  2172. line_to_destination();
  2173. feedrate = 0.0;
  2174. st_synchronize();
  2175. endstops_hit_on_purpose(); // clear endstop hit flags
  2176. current_position[X_AXIS] = destination[X_AXIS];
  2177. current_position[Y_AXIS] = destination[Y_AXIS];
  2178. #if DISABLED(SCARA)
  2179. current_position[Z_AXIS] = destination[Z_AXIS];
  2180. #endif
  2181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2182. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2183. #endif
  2184. }
  2185. #endif // QUICK_HOME
  2186. #if ENABLED(HOME_Y_BEFORE_X)
  2187. // Home Y
  2188. if (home_all_axis || homeY) HOMEAXIS(Y);
  2189. #endif
  2190. // Home X
  2191. if (home_all_axis || homeX) {
  2192. #if ENABLED(DUAL_X_CARRIAGE)
  2193. int tmp_extruder = active_extruder;
  2194. extruder_duplication_enabled = false;
  2195. active_extruder = !active_extruder;
  2196. HOMEAXIS(X);
  2197. inactive_extruder_x_pos = current_position[X_AXIS];
  2198. active_extruder = tmp_extruder;
  2199. HOMEAXIS(X);
  2200. // reset state used by the different modes
  2201. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2202. delayed_move_time = 0;
  2203. active_extruder_parked = true;
  2204. #else
  2205. HOMEAXIS(X);
  2206. #endif
  2207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2208. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2209. #endif
  2210. }
  2211. #if DISABLED(HOME_Y_BEFORE_X)
  2212. // Home Y
  2213. if (home_all_axis || homeY) {
  2214. HOMEAXIS(Y);
  2215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2216. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2217. #endif
  2218. }
  2219. #endif
  2220. // Home Z last if homing towards the bed
  2221. #if Z_HOME_DIR < 0
  2222. if (home_all_axis || homeZ) {
  2223. #if ENABLED(Z_SAFE_HOMING)
  2224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2225. if (DEBUGGING(LEVELING)) {
  2226. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2227. }
  2228. #endif
  2229. if (home_all_axis) {
  2230. /**
  2231. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2232. * No need to move Z any more as this height should already be safe
  2233. * enough to reach Z_SAFE_HOMING XY positions.
  2234. * Just make sure the planner is in sync.
  2235. */
  2236. sync_plan_position();
  2237. /**
  2238. * Set the Z probe (or just the nozzle) destination to the safe
  2239. * homing point
  2240. */
  2241. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2242. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2243. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2244. feedrate = XY_TRAVEL_SPEED;
  2245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2246. if (DEBUGGING(LEVELING)) {
  2247. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2248. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2249. }
  2250. #endif
  2251. // Move in the XY plane
  2252. line_to_destination();
  2253. st_synchronize();
  2254. /**
  2255. * Update the current positions for XY, Z is still at least at
  2256. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2257. */
  2258. current_position[X_AXIS] = destination[X_AXIS];
  2259. current_position[Y_AXIS] = destination[Y_AXIS];
  2260. // Home the Z axis
  2261. HOMEAXIS(Z);
  2262. }
  2263. else if (homeZ) { // Don't need to Home Z twice
  2264. // Let's see if X and Y are homed
  2265. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2266. /**
  2267. * Make sure the Z probe is within the physical limits
  2268. * NOTE: This doesn't necessarily ensure the Z probe is also
  2269. * within the bed!
  2270. */
  2271. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2272. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2273. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2274. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2275. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2276. // Home the Z axis
  2277. HOMEAXIS(Z);
  2278. }
  2279. else {
  2280. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2281. SERIAL_ECHO_START;
  2282. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2283. }
  2284. }
  2285. else {
  2286. axis_unhomed_error();
  2287. }
  2288. } // !home_all_axes && homeZ
  2289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2290. if (DEBUGGING(LEVELING)) {
  2291. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2292. }
  2293. #endif
  2294. #else // !Z_SAFE_HOMING
  2295. HOMEAXIS(Z);
  2296. #endif // !Z_SAFE_HOMING
  2297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2298. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2299. #endif
  2300. } // home_all_axis || homeZ
  2301. #endif // Z_HOME_DIR < 0
  2302. sync_plan_position();
  2303. #endif // else DELTA
  2304. #if ENABLED(SCARA)
  2305. sync_plan_position_delta();
  2306. #endif
  2307. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2308. enable_endstops(false);
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) {
  2311. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2312. }
  2313. #endif
  2314. #endif
  2315. // For mesh leveling move back to Z=0
  2316. #if ENABLED(MESH_BED_LEVELING)
  2317. if (mbl_was_active && home_all_axis) {
  2318. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2319. sync_plan_position();
  2320. mbl.active = 1;
  2321. current_position[Z_AXIS] = 0.0;
  2322. set_destination_to_current();
  2323. feedrate = homing_feedrate[Z_AXIS];
  2324. line_to_destination();
  2325. st_synchronize();
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2328. #endif
  2329. }
  2330. #endif
  2331. feedrate = saved_feedrate;
  2332. feedrate_multiplier = saved_feedrate_multiplier;
  2333. refresh_cmd_timeout();
  2334. endstops_hit_on_purpose(); // clear endstop hit flags
  2335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2336. if (DEBUGGING(LEVELING)) {
  2337. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2338. }
  2339. #endif
  2340. gcode_M114(); // Send end position to RepetierHost
  2341. }
  2342. #if ENABLED(MESH_BED_LEVELING)
  2343. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2344. /**
  2345. * G29: Mesh-based Z probe, probes a grid and produces a
  2346. * mesh to compensate for variable bed height
  2347. *
  2348. * Parameters With MESH_BED_LEVELING:
  2349. *
  2350. * S0 Produce a mesh report
  2351. * S1 Start probing mesh points
  2352. * S2 Probe the next mesh point
  2353. * S3 Xn Yn Zn.nn Manually modify a single point
  2354. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2355. *
  2356. * The S0 report the points as below
  2357. *
  2358. * +----> X-axis 1-n
  2359. * |
  2360. * |
  2361. * v Y-axis 1-n
  2362. *
  2363. */
  2364. inline void gcode_G29() {
  2365. static int probe_point = -1;
  2366. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2367. if (state < 0 || state > 4) {
  2368. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2369. return;
  2370. }
  2371. int ix, iy;
  2372. float z;
  2373. switch (state) {
  2374. case MeshReport:
  2375. if (mbl.active) {
  2376. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2377. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2378. SERIAL_PROTOCOLCHAR(',');
  2379. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2380. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2381. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2382. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2383. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2384. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2385. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2386. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2387. SERIAL_PROTOCOLPGM(" ");
  2388. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2389. }
  2390. SERIAL_EOL;
  2391. }
  2392. }
  2393. else
  2394. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2395. break;
  2396. case MeshStart:
  2397. mbl.reset();
  2398. probe_point = 0;
  2399. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2400. break;
  2401. case MeshNext:
  2402. if (probe_point < 0) {
  2403. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2404. return;
  2405. }
  2406. if (probe_point == 0) {
  2407. // Set Z to a positive value before recording the first Z.
  2408. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2409. sync_plan_position();
  2410. }
  2411. else {
  2412. // For others, save the Z of the previous point, then raise Z again.
  2413. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2414. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2415. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2416. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2417. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2419. st_synchronize();
  2420. }
  2421. // Is there another point to sample? Move there.
  2422. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2423. ix = probe_point % (MESH_NUM_X_POINTS);
  2424. iy = probe_point / (MESH_NUM_X_POINTS);
  2425. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2426. current_position[X_AXIS] = mbl.get_x(ix) + home_offset[X_AXIS];
  2427. current_position[Y_AXIS] = mbl.get_y(iy) + home_offset[Y_AXIS];
  2428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2429. st_synchronize();
  2430. probe_point++;
  2431. }
  2432. else {
  2433. // After recording the last point, activate the mbl and home
  2434. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2435. probe_point = -1;
  2436. mbl.active = true;
  2437. enqueue_and_echo_commands_P(PSTR("G28"));
  2438. }
  2439. break;
  2440. case MeshSet:
  2441. if (code_seen('X')) {
  2442. ix = code_value_long() - 1;
  2443. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2444. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2445. return;
  2446. }
  2447. }
  2448. else {
  2449. SERIAL_PROTOCOLPGM("X not entered.\n");
  2450. return;
  2451. }
  2452. if (code_seen('Y')) {
  2453. iy = code_value_long() - 1;
  2454. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2455. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2456. return;
  2457. }
  2458. }
  2459. else {
  2460. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2461. return;
  2462. }
  2463. if (code_seen('Z')) {
  2464. z = code_value();
  2465. }
  2466. else {
  2467. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2468. return;
  2469. }
  2470. mbl.z_values[iy][ix] = z;
  2471. break;
  2472. case MeshSetZOffset:
  2473. if (code_seen('Z')) {
  2474. z = code_value();
  2475. }
  2476. else {
  2477. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2478. return;
  2479. }
  2480. mbl.z_offset = z;
  2481. } // switch(state)
  2482. }
  2483. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2484. void out_of_range_error(const char* p_edge) {
  2485. SERIAL_PROTOCOLPGM("?Probe ");
  2486. serialprintPGM(p_edge);
  2487. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2488. }
  2489. /**
  2490. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2491. * Will fail if the printer has not been homed with G28.
  2492. *
  2493. * Enhanced G29 Auto Bed Leveling Probe Routine
  2494. *
  2495. * Parameters With AUTO_BED_LEVELING_GRID:
  2496. *
  2497. * P Set the size of the grid that will be probed (P x P points).
  2498. * Not supported by non-linear delta printer bed leveling.
  2499. * Example: "G29 P4"
  2500. *
  2501. * S Set the XY travel speed between probe points (in mm/min)
  2502. *
  2503. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2504. * or clean the rotation Matrix. Useful to check the topology
  2505. * after a first run of G29.
  2506. *
  2507. * V Set the verbose level (0-4). Example: "G29 V3"
  2508. *
  2509. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2510. * This is useful for manual bed leveling and finding flaws in the bed (to
  2511. * assist with part placement).
  2512. * Not supported by non-linear delta printer bed leveling.
  2513. *
  2514. * F Set the Front limit of the probing grid
  2515. * B Set the Back limit of the probing grid
  2516. * L Set the Left limit of the probing grid
  2517. * R Set the Right limit of the probing grid
  2518. *
  2519. * Global Parameters:
  2520. *
  2521. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2522. * Include "E" to engage/disengage the Z probe for each sample.
  2523. * There's no extra effect if you have a fixed Z probe.
  2524. * Usage: "G29 E" or "G29 e"
  2525. *
  2526. */
  2527. inline void gcode_G29() {
  2528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2529. if (DEBUGGING(LEVELING)) {
  2530. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2531. DEBUG_POS("", current_position);
  2532. }
  2533. #endif
  2534. // Don't allow auto-leveling without homing first
  2535. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2536. axis_unhomed_error();
  2537. return;
  2538. }
  2539. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2540. if (verbose_level < 0 || verbose_level > 4) {
  2541. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2542. return;
  2543. }
  2544. bool dryrun = code_seen('D'),
  2545. deploy_probe_for_each_reading = code_seen('E');
  2546. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2547. #if DISABLED(DELTA)
  2548. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2549. #endif
  2550. if (verbose_level > 0) {
  2551. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2552. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2553. }
  2554. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2555. #if DISABLED(DELTA)
  2556. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2557. if (auto_bed_leveling_grid_points < 2) {
  2558. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2559. return;
  2560. }
  2561. #endif
  2562. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2563. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2564. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2565. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2566. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2567. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2568. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2569. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2570. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2571. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2572. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2573. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2574. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2575. if (left_out || right_out || front_out || back_out) {
  2576. if (left_out) {
  2577. out_of_range_error(PSTR("(L)eft"));
  2578. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2579. }
  2580. if (right_out) {
  2581. out_of_range_error(PSTR("(R)ight"));
  2582. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2583. }
  2584. if (front_out) {
  2585. out_of_range_error(PSTR("(F)ront"));
  2586. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2587. }
  2588. if (back_out) {
  2589. out_of_range_error(PSTR("(B)ack"));
  2590. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2591. }
  2592. return;
  2593. }
  2594. #endif // AUTO_BED_LEVELING_GRID
  2595. if (!dryrun) {
  2596. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2597. plan_bed_level_matrix.set_to_identity();
  2598. #if ENABLED(DELTA)
  2599. reset_bed_level();
  2600. #else //!DELTA
  2601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2602. if (DEBUGGING(LEVELING)) {
  2603. vector_3 corrected_position = plan_get_position();
  2604. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2605. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2606. }
  2607. #endif
  2608. //vector_3 corrected_position = plan_get_position();
  2609. //corrected_position.debug("position before G29");
  2610. vector_3 uncorrected_position = plan_get_position();
  2611. //uncorrected_position.debug("position during G29");
  2612. current_position[X_AXIS] = uncorrected_position.x;
  2613. current_position[Y_AXIS] = uncorrected_position.y;
  2614. current_position[Z_AXIS] = uncorrected_position.z;
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2617. #endif
  2618. sync_plan_position();
  2619. #endif // !DELTA
  2620. }
  2621. #if ENABLED(Z_PROBE_SLED)
  2622. dock_sled(false); // engage (un-dock) the Z probe
  2623. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2624. deploy_z_probe();
  2625. #endif
  2626. st_synchronize();
  2627. setup_for_endstop_move();
  2628. feedrate = homing_feedrate[Z_AXIS];
  2629. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2630. // probe at the points of a lattice grid
  2631. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2632. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2633. #if ENABLED(DELTA)
  2634. delta_grid_spacing[0] = xGridSpacing;
  2635. delta_grid_spacing[1] = yGridSpacing;
  2636. float zoffset = zprobe_zoffset;
  2637. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2638. #else // !DELTA
  2639. /**
  2640. * solve the plane equation ax + by + d = z
  2641. * A is the matrix with rows [x y 1] for all the probed points
  2642. * B is the vector of the Z positions
  2643. * the normal vector to the plane is formed by the coefficients of the
  2644. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2645. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2646. */
  2647. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2648. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2649. eqnBVector[abl2], // "B" vector of Z points
  2650. mean = 0.0;
  2651. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2652. #endif // !DELTA
  2653. int probePointCounter = 0;
  2654. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2655. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2656. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2657. int xStart, xStop, xInc;
  2658. if (zig) {
  2659. xStart = 0;
  2660. xStop = auto_bed_leveling_grid_points;
  2661. xInc = 1;
  2662. }
  2663. else {
  2664. xStart = auto_bed_leveling_grid_points - 1;
  2665. xStop = -1;
  2666. xInc = -1;
  2667. }
  2668. zig = !zig;
  2669. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2670. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2671. // raise extruder
  2672. float measured_z,
  2673. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2674. if (probePointCounter) {
  2675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2676. if (DEBUGGING(LEVELING)) {
  2677. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2678. SERIAL_EOL;
  2679. }
  2680. #endif
  2681. }
  2682. else {
  2683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2684. if (DEBUGGING(LEVELING)) {
  2685. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2686. SERIAL_EOL;
  2687. }
  2688. #endif
  2689. }
  2690. #if ENABLED(DELTA)
  2691. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2692. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2693. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2694. #endif //DELTA
  2695. ProbeAction act;
  2696. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2697. act = ProbeDeployAndStow;
  2698. else if (yCount == 0 && xCount == xStart)
  2699. act = ProbeDeploy;
  2700. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2701. act = ProbeStow;
  2702. else
  2703. act = ProbeStay;
  2704. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2705. #if DISABLED(DELTA)
  2706. mean += measured_z;
  2707. eqnBVector[probePointCounter] = measured_z;
  2708. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2709. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2710. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2711. indexIntoAB[xCount][yCount] = probePointCounter;
  2712. #else
  2713. bed_level[xCount][yCount] = measured_z + zoffset;
  2714. #endif
  2715. probePointCounter++;
  2716. idle();
  2717. } //xProbe
  2718. } //yProbe
  2719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2720. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2721. #endif
  2722. clean_up_after_endstop_move();
  2723. #if ENABLED(DELTA)
  2724. if (!dryrun) extrapolate_unprobed_bed_level();
  2725. print_bed_level();
  2726. #else // !DELTA
  2727. // solve lsq problem
  2728. double plane_equation_coefficients[3];
  2729. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2730. mean /= abl2;
  2731. if (verbose_level) {
  2732. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2733. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2734. SERIAL_PROTOCOLPGM(" b: ");
  2735. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2736. SERIAL_PROTOCOLPGM(" d: ");
  2737. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2738. SERIAL_EOL;
  2739. if (verbose_level > 2) {
  2740. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2741. SERIAL_PROTOCOL_F(mean, 8);
  2742. SERIAL_EOL;
  2743. }
  2744. }
  2745. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2746. // Show the Topography map if enabled
  2747. if (do_topography_map) {
  2748. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2749. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2750. SERIAL_PROTOCOLPGM(" | |\n");
  2751. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2752. SERIAL_PROTOCOLPGM(" E | | I\n");
  2753. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2754. SERIAL_PROTOCOLPGM(" T | | H\n");
  2755. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2756. SERIAL_PROTOCOLPGM(" | |\n");
  2757. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2758. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2759. float min_diff = 999;
  2760. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2761. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2762. int ind = indexIntoAB[xx][yy];
  2763. float diff = eqnBVector[ind] - mean;
  2764. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2765. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2766. z_tmp = 0;
  2767. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2768. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2769. if (diff >= 0.0)
  2770. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2771. else
  2772. SERIAL_PROTOCOLCHAR(' ');
  2773. SERIAL_PROTOCOL_F(diff, 5);
  2774. } // xx
  2775. SERIAL_EOL;
  2776. } // yy
  2777. SERIAL_EOL;
  2778. if (verbose_level > 3) {
  2779. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2780. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2781. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2782. int ind = indexIntoAB[xx][yy];
  2783. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2784. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2785. z_tmp = 0;
  2786. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2787. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2788. if (diff >= 0.0)
  2789. SERIAL_PROTOCOLPGM(" +");
  2790. // Include + for column alignment
  2791. else
  2792. SERIAL_PROTOCOLCHAR(' ');
  2793. SERIAL_PROTOCOL_F(diff, 5);
  2794. } // xx
  2795. SERIAL_EOL;
  2796. } // yy
  2797. SERIAL_EOL;
  2798. }
  2799. } //do_topography_map
  2800. #endif //!DELTA
  2801. #else // !AUTO_BED_LEVELING_GRID
  2802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2803. if (DEBUGGING(LEVELING)) {
  2804. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2805. }
  2806. #endif
  2807. // Actions for each probe
  2808. ProbeAction p1, p2, p3;
  2809. if (deploy_probe_for_each_reading)
  2810. p1 = p2 = p3 = ProbeDeployAndStow;
  2811. else
  2812. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2813. // Probe at 3 arbitrary points
  2814. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2815. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2816. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2817. p1, verbose_level),
  2818. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2819. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2820. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2821. p2, verbose_level),
  2822. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2823. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2824. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2825. p3, verbose_level);
  2826. clean_up_after_endstop_move();
  2827. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2828. #endif // !AUTO_BED_LEVELING_GRID
  2829. #if ENABLED(DELTA)
  2830. // Allen Key Probe for Delta
  2831. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2832. stow_z_probe();
  2833. #elif Z_RAISE_AFTER_PROBING > 0
  2834. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2835. #endif
  2836. #else // !DELTA
  2837. if (verbose_level > 0)
  2838. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2839. if (!dryrun) {
  2840. /**
  2841. * Correct the Z height difference from Z probe position and nozzle tip position.
  2842. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2843. * from the nozzle. When the bed is uneven, this height must be corrected.
  2844. */
  2845. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2846. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2847. z_tmp = current_position[Z_AXIS],
  2848. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2850. if (DEBUGGING(LEVELING)) {
  2851. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2852. SERIAL_EOL;
  2853. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2854. SERIAL_EOL;
  2855. }
  2856. #endif
  2857. // Apply the correction sending the Z probe offset
  2858. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2859. /*
  2860. * Get the current Z position and send it to the planner.
  2861. *
  2862. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2863. * (most recent plan_set_position/sync_plan_position)
  2864. *
  2865. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2866. * (set by default, M851, EEPROM, or Menu)
  2867. *
  2868. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2869. * after the last probe
  2870. *
  2871. * >> Should home_offset[Z_AXIS] be included?
  2872. *
  2873. *
  2874. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2875. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2876. * not actually "homing" Z... then perhaps it should not be included
  2877. * here. The purpose of home_offset[] is to adjust for inaccurate
  2878. * endstops, not for reasonably accurate probes. If it were added
  2879. * here, it could be seen as a compensating factor for the Z probe.
  2880. */
  2881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2882. if (DEBUGGING(LEVELING)) {
  2883. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2884. SERIAL_EOL;
  2885. }
  2886. #endif
  2887. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2888. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2889. + Z_RAISE_AFTER_PROBING
  2890. #endif
  2891. ;
  2892. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2893. sync_plan_position();
  2894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2895. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2896. #endif
  2897. }
  2898. // Sled assembly for Cartesian bots
  2899. #if ENABLED(Z_PROBE_SLED)
  2900. dock_sled(true); // dock the sled
  2901. #elif Z_RAISE_AFTER_PROBING > 0
  2902. // Raise Z axis for non-delta and non servo based probes
  2903. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2904. raise_z_after_probing();
  2905. #endif
  2906. #endif
  2907. #endif // !DELTA
  2908. #ifdef Z_PROBE_END_SCRIPT
  2909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2910. if (DEBUGGING(LEVELING)) {
  2911. SERIAL_ECHO("Z Probe End Script: ");
  2912. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2913. }
  2914. #endif
  2915. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2916. #if ENABLED(HAS_Z_MIN_PROBE)
  2917. z_probe_is_active = false;
  2918. #endif
  2919. st_synchronize();
  2920. #endif
  2921. KEEPALIVE_STATE(IN_HANDLER);
  2922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2923. if (DEBUGGING(LEVELING)) {
  2924. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2925. }
  2926. #endif
  2927. gcode_M114(); // Send end position to RepetierHost
  2928. }
  2929. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2930. /**
  2931. * G30: Do a single Z probe at the current XY
  2932. */
  2933. inline void gcode_G30() {
  2934. #if HAS_SERVO_ENDSTOPS
  2935. raise_z_for_servo();
  2936. #endif
  2937. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2938. st_synchronize();
  2939. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2940. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2941. feedrate = homing_feedrate[Z_AXIS];
  2942. run_z_probe();
  2943. SERIAL_PROTOCOLPGM("Bed X: ");
  2944. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2945. SERIAL_PROTOCOLPGM(" Y: ");
  2946. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2947. SERIAL_PROTOCOLPGM(" Z: ");
  2948. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2949. SERIAL_EOL;
  2950. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2951. #if HAS_SERVO_ENDSTOPS
  2952. raise_z_for_servo();
  2953. #endif
  2954. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2955. gcode_M114(); // Send end position to RepetierHost
  2956. }
  2957. #endif //!Z_PROBE_SLED
  2958. #endif //AUTO_BED_LEVELING_FEATURE
  2959. /**
  2960. * G92: Set current position to given X Y Z E
  2961. */
  2962. inline void gcode_G92() {
  2963. if (!code_seen(axis_codes[E_AXIS]))
  2964. st_synchronize();
  2965. bool didXYZ = false;
  2966. for (int i = 0; i < NUM_AXIS; i++) {
  2967. if (code_seen(axis_codes[i])) {
  2968. float v = current_position[i] = code_value();
  2969. if (i == E_AXIS)
  2970. plan_set_e_position(v);
  2971. else
  2972. didXYZ = true;
  2973. }
  2974. }
  2975. if (didXYZ) {
  2976. #if ENABLED(DELTA) || ENABLED(SCARA)
  2977. sync_plan_position_delta();
  2978. #else
  2979. sync_plan_position();
  2980. #endif
  2981. }
  2982. }
  2983. #if ENABLED(ULTIPANEL)
  2984. /**
  2985. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2986. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2987. */
  2988. inline void gcode_M0_M1() {
  2989. char* args = current_command_args;
  2990. uint8_t test_value = 12;
  2991. SERIAL_ECHOPAIR("TEST", test_value);
  2992. millis_t codenum = 0;
  2993. bool hasP = false, hasS = false;
  2994. if (code_seen('P')) {
  2995. codenum = code_value_short(); // milliseconds to wait
  2996. hasP = codenum > 0;
  2997. }
  2998. if (code_seen('S')) {
  2999. codenum = code_value() * 1000UL; // seconds to wait
  3000. hasS = codenum > 0;
  3001. }
  3002. if (!hasP && !hasS && *args != '\0')
  3003. lcd_setstatus(args, true);
  3004. else {
  3005. LCD_MESSAGEPGM(MSG_USERWAIT);
  3006. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3007. dontExpireStatus();
  3008. #endif
  3009. }
  3010. lcd_ignore_click();
  3011. st_synchronize();
  3012. refresh_cmd_timeout();
  3013. if (codenum > 0) {
  3014. codenum += previous_cmd_ms; // wait until this time for a click
  3015. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3016. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3017. KEEPALIVE_STATE(IN_HANDLER);
  3018. lcd_ignore_click(false);
  3019. }
  3020. else {
  3021. if (!lcd_detected()) return;
  3022. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3023. while (!lcd_clicked()) idle();
  3024. KEEPALIVE_STATE(IN_HANDLER);
  3025. }
  3026. if (IS_SD_PRINTING)
  3027. LCD_MESSAGEPGM(MSG_RESUMING);
  3028. else
  3029. LCD_MESSAGEPGM(WELCOME_MSG);
  3030. }
  3031. #endif // ULTIPANEL
  3032. /**
  3033. * M17: Enable power on all stepper motors
  3034. */
  3035. inline void gcode_M17() {
  3036. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3037. enable_all_steppers();
  3038. }
  3039. #if ENABLED(SDSUPPORT)
  3040. /**
  3041. * M20: List SD card to serial output
  3042. */
  3043. inline void gcode_M20() {
  3044. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3045. card.ls();
  3046. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3047. }
  3048. /**
  3049. * M21: Init SD Card
  3050. */
  3051. inline void gcode_M21() {
  3052. card.initsd();
  3053. }
  3054. /**
  3055. * M22: Release SD Card
  3056. */
  3057. inline void gcode_M22() {
  3058. card.release();
  3059. }
  3060. /**
  3061. * M23: Open a file
  3062. */
  3063. inline void gcode_M23() {
  3064. card.openFile(current_command_args, true);
  3065. }
  3066. /**
  3067. * M24: Start SD Print
  3068. */
  3069. inline void gcode_M24() {
  3070. card.startFileprint();
  3071. print_job_timer.start();
  3072. }
  3073. /**
  3074. * M25: Pause SD Print
  3075. */
  3076. inline void gcode_M25() {
  3077. card.pauseSDPrint();
  3078. }
  3079. /**
  3080. * M26: Set SD Card file index
  3081. */
  3082. inline void gcode_M26() {
  3083. if (card.cardOK && code_seen('S'))
  3084. card.setIndex(code_value_short());
  3085. }
  3086. /**
  3087. * M27: Get SD Card status
  3088. */
  3089. inline void gcode_M27() {
  3090. card.getStatus();
  3091. }
  3092. /**
  3093. * M28: Start SD Write
  3094. */
  3095. inline void gcode_M28() {
  3096. card.openFile(current_command_args, false);
  3097. }
  3098. /**
  3099. * M29: Stop SD Write
  3100. * Processed in write to file routine above
  3101. */
  3102. inline void gcode_M29() {
  3103. // card.saving = false;
  3104. }
  3105. /**
  3106. * M30 <filename>: Delete SD Card file
  3107. */
  3108. inline void gcode_M30() {
  3109. if (card.cardOK) {
  3110. card.closefile();
  3111. card.removeFile(current_command_args);
  3112. }
  3113. }
  3114. #endif //SDSUPPORT
  3115. /**
  3116. * M31: Get the time since the start of SD Print (or last M109)
  3117. */
  3118. inline void gcode_M31() {
  3119. millis_t t = print_job_timer.duration();
  3120. int min = t / 60, sec = t % 60;
  3121. char time[30];
  3122. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3123. SERIAL_ECHO_START;
  3124. SERIAL_ECHOLN(time);
  3125. lcd_setstatus(time);
  3126. autotempShutdown();
  3127. }
  3128. #if ENABLED(SDSUPPORT)
  3129. /**
  3130. * M32: Select file and start SD Print
  3131. */
  3132. inline void gcode_M32() {
  3133. if (card.sdprinting)
  3134. st_synchronize();
  3135. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3136. if (!namestartpos)
  3137. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3138. else
  3139. namestartpos++; //to skip the '!'
  3140. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3141. if (card.cardOK) {
  3142. card.openFile(namestartpos, true, call_procedure);
  3143. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3144. card.setIndex(code_value_short());
  3145. card.startFileprint();
  3146. // Procedure calls count as normal print time.
  3147. if (!call_procedure) print_job_timer.start();
  3148. }
  3149. }
  3150. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3151. /**
  3152. * M33: Get the long full path of a file or folder
  3153. *
  3154. * Parameters:
  3155. * <dospath> Case-insensitive DOS-style path to a file or folder
  3156. *
  3157. * Example:
  3158. * M33 miscel~1/armchair/armcha~1.gco
  3159. *
  3160. * Output:
  3161. * /Miscellaneous/Armchair/Armchair.gcode
  3162. */
  3163. inline void gcode_M33() {
  3164. card.printLongPath(current_command_args);
  3165. }
  3166. #endif
  3167. /**
  3168. * M928: Start SD Write
  3169. */
  3170. inline void gcode_M928() {
  3171. card.openLogFile(current_command_args);
  3172. }
  3173. #endif // SDSUPPORT
  3174. /**
  3175. * M42: Change pin status via GCode
  3176. *
  3177. * P<pin> Pin number (LED if omitted)
  3178. * S<byte> Pin status from 0 - 255
  3179. */
  3180. inline void gcode_M42() {
  3181. if (code_seen('S')) {
  3182. int pin_status = code_value_short();
  3183. if (pin_status < 0 || pin_status > 255) return;
  3184. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3185. if (pin_number < 0) return;
  3186. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3187. if (pin_number == sensitive_pins[i]) return;
  3188. pinMode(pin_number, OUTPUT);
  3189. digitalWrite(pin_number, pin_status);
  3190. analogWrite(pin_number, pin_status);
  3191. #if FAN_COUNT > 0
  3192. switch (pin_number) {
  3193. #if HAS_FAN0
  3194. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3195. #endif
  3196. #if HAS_FAN1
  3197. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3198. #endif
  3199. #if HAS_FAN2
  3200. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3201. #endif
  3202. }
  3203. #endif
  3204. } // code_seen('S')
  3205. }
  3206. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3207. /**
  3208. * This is redundant since the SanityCheck.h already checks for a valid
  3209. * Z_MIN_PROBE_PIN, but here for clarity.
  3210. */
  3211. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3212. #if !HAS_Z_PROBE
  3213. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3214. #endif
  3215. #elif !HAS_Z_MIN
  3216. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3217. #endif
  3218. /**
  3219. * M48: Z probe repeatability measurement function.
  3220. *
  3221. * Usage:
  3222. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3223. * P = Number of sampled points (4-50, default 10)
  3224. * X = Sample X position
  3225. * Y = Sample Y position
  3226. * V = Verbose level (0-4, default=1)
  3227. * E = Engage Z probe for each reading
  3228. * L = Number of legs of movement before probe
  3229. * S = Schizoid (Or Star if you prefer)
  3230. *
  3231. * This function assumes the bed has been homed. Specifically, that a G28 command
  3232. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3233. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3234. * regenerated.
  3235. */
  3236. inline void gcode_M48() {
  3237. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3238. axis_unhomed_error();
  3239. return;
  3240. }
  3241. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3242. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3243. if (code_seen('V')) {
  3244. verbose_level = code_value_short();
  3245. if (verbose_level < 0 || verbose_level > 4) {
  3246. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3247. return;
  3248. }
  3249. }
  3250. if (verbose_level > 0)
  3251. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3252. if (code_seen('P')) {
  3253. n_samples = code_value_short();
  3254. if (n_samples < 4 || n_samples > 50) {
  3255. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3256. return;
  3257. }
  3258. }
  3259. float X_current = current_position[X_AXIS],
  3260. Y_current = current_position[Y_AXIS],
  3261. Z_current = current_position[Z_AXIS],
  3262. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3263. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3264. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3265. bool deploy_probe_for_each_reading = code_seen('E');
  3266. if (code_seen('X')) {
  3267. X_probe_location = code_value();
  3268. #if DISABLED(DELTA)
  3269. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3270. out_of_range_error(PSTR("X"));
  3271. return;
  3272. }
  3273. #endif
  3274. }
  3275. if (code_seen('Y')) {
  3276. Y_probe_location = code_value();
  3277. #if DISABLED(DELTA)
  3278. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3279. out_of_range_error(PSTR("Y"));
  3280. return;
  3281. }
  3282. #endif
  3283. }
  3284. #if ENABLED(DELTA)
  3285. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3286. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3287. return;
  3288. }
  3289. #endif
  3290. bool seen_L = code_seen('L');
  3291. if (seen_L) {
  3292. n_legs = code_value_short();
  3293. if (n_legs < 0 || n_legs > 15) {
  3294. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3295. return;
  3296. }
  3297. if (n_legs == 1) n_legs = 2;
  3298. }
  3299. if (code_seen('S')) {
  3300. schizoid_flag++;
  3301. if (!seen_L) n_legs = 7;
  3302. }
  3303. /**
  3304. * Now get everything to the specified probe point So we can safely do a
  3305. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3306. * we don't want to use that as a starting point for each probe.
  3307. */
  3308. if (verbose_level > 2)
  3309. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3310. #if ENABLED(DELTA)
  3311. // we don't do bed level correction in M48 because we want the raw data when we probe
  3312. reset_bed_level();
  3313. #else
  3314. // we don't do bed level correction in M48 because we want the raw data when we probe
  3315. plan_bed_level_matrix.set_to_identity();
  3316. #endif
  3317. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3318. do_blocking_move_to_z(Z_start_location);
  3319. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3320. /**
  3321. * OK, do the initial probe to get us close to the bed.
  3322. * Then retrace the right amount and use that in subsequent probes
  3323. */
  3324. setup_for_endstop_move();
  3325. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3326. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3327. verbose_level);
  3328. raise_z_after_probing();
  3329. for (uint8_t n = 0; n < n_samples; n++) {
  3330. randomSeed(millis());
  3331. delay(500);
  3332. if (n_legs) {
  3333. float radius, angle = random(0.0, 360.0);
  3334. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3335. radius = random(
  3336. #if ENABLED(DELTA)
  3337. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3338. #else
  3339. 5, X_MAX_LENGTH / 8
  3340. #endif
  3341. );
  3342. if (verbose_level > 3) {
  3343. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3344. SERIAL_ECHOPAIR(" angle: ", angle);
  3345. delay(100);
  3346. if (dir > 0)
  3347. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3348. else
  3349. SERIAL_ECHO(" Direction: Clockwise \n");
  3350. delay(100);
  3351. }
  3352. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3353. double delta_angle;
  3354. if (schizoid_flag)
  3355. // The points of a 5 point star are 72 degrees apart. We need to
  3356. // skip a point and go to the next one on the star.
  3357. delta_angle = dir * 2.0 * 72.0;
  3358. else
  3359. // If we do this line, we are just trying to move further
  3360. // around the circle.
  3361. delta_angle = dir * (float) random(25, 45);
  3362. angle += delta_angle;
  3363. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3364. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3365. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3366. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3367. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3368. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3369. #if DISABLED(DELTA)
  3370. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3371. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3372. #else
  3373. // If we have gone out too far, we can do a simple fix and scale the numbers
  3374. // back in closer to the origin.
  3375. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3376. X_current /= 1.25;
  3377. Y_current /= 1.25;
  3378. if (verbose_level > 3) {
  3379. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3380. SERIAL_ECHOPAIR(", ", Y_current);
  3381. SERIAL_EOL;
  3382. delay(50);
  3383. }
  3384. }
  3385. #endif
  3386. if (verbose_level > 3) {
  3387. SERIAL_PROTOCOL("Going to:");
  3388. SERIAL_ECHOPAIR("x: ", X_current);
  3389. SERIAL_ECHOPAIR("y: ", Y_current);
  3390. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3391. SERIAL_EOL;
  3392. delay(55);
  3393. }
  3394. do_blocking_move_to_xy(X_current, Y_current);
  3395. } // n_legs loop
  3396. } // n_legs
  3397. /**
  3398. * We don't really have to do this move, but if we don't we can see a
  3399. * funny shift in the Z Height because the user might not have the
  3400. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3401. * height. This gets us back to the probe location at the same height that
  3402. * we have been running around the circle at.
  3403. */
  3404. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3405. if (deploy_probe_for_each_reading)
  3406. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3407. else {
  3408. if (n == n_samples - 1)
  3409. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3410. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3411. }
  3412. /**
  3413. * Get the current mean for the data points we have so far
  3414. */
  3415. sum = 0.0;
  3416. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3417. mean = sum / (n + 1);
  3418. /**
  3419. * Now, use that mean to calculate the standard deviation for the
  3420. * data points we have so far
  3421. */
  3422. sum = 0.0;
  3423. for (uint8_t j = 0; j <= n; j++) {
  3424. float ss = sample_set[j] - mean;
  3425. sum += ss * ss;
  3426. }
  3427. sigma = sqrt(sum / (n + 1));
  3428. if (verbose_level > 1) {
  3429. SERIAL_PROTOCOL(n + 1);
  3430. SERIAL_PROTOCOLPGM(" of ");
  3431. SERIAL_PROTOCOL((int)n_samples);
  3432. SERIAL_PROTOCOLPGM(" z: ");
  3433. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3434. delay(50);
  3435. if (verbose_level > 2) {
  3436. SERIAL_PROTOCOLPGM(" mean: ");
  3437. SERIAL_PROTOCOL_F(mean, 6);
  3438. SERIAL_PROTOCOLPGM(" sigma: ");
  3439. SERIAL_PROTOCOL_F(sigma, 6);
  3440. }
  3441. }
  3442. if (verbose_level > 0) SERIAL_EOL;
  3443. delay(50);
  3444. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3445. } // End of probe loop code
  3446. // raise_z_after_probing();
  3447. if (verbose_level > 0) {
  3448. SERIAL_PROTOCOLPGM("Mean: ");
  3449. SERIAL_PROTOCOL_F(mean, 6);
  3450. SERIAL_EOL;
  3451. delay(25);
  3452. }
  3453. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3454. SERIAL_PROTOCOL_F(sigma, 6);
  3455. SERIAL_EOL; SERIAL_EOL;
  3456. delay(25);
  3457. clean_up_after_endstop_move();
  3458. gcode_M114(); // Send end position to RepetierHost
  3459. }
  3460. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3461. /**
  3462. * M75: Start print timer
  3463. */
  3464. inline void gcode_M75() {
  3465. print_job_timer.start();
  3466. }
  3467. /**
  3468. * M76: Pause print timer
  3469. */
  3470. inline void gcode_M76() {
  3471. print_job_timer.pause();
  3472. }
  3473. /**
  3474. * M77: Stop print timer
  3475. */
  3476. inline void gcode_M77() {
  3477. print_job_timer.stop();
  3478. }
  3479. /**
  3480. * M104: Set hot end temperature
  3481. */
  3482. inline void gcode_M104() {
  3483. if (setTargetedHotend(104)) return;
  3484. if (DEBUGGING(DRYRUN)) return;
  3485. if (code_seen('S')) {
  3486. float temp = code_value();
  3487. setTargetHotend(temp, target_extruder);
  3488. #if ENABLED(DUAL_X_CARRIAGE)
  3489. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3490. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3491. #endif
  3492. /**
  3493. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3494. * stand by mode, for instance in a dual extruder setup, without affecting
  3495. * the running print timer.
  3496. */
  3497. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3498. print_job_timer.stop();
  3499. LCD_MESSAGEPGM(WELCOME_MSG);
  3500. }
  3501. /**
  3502. * We do not check if the timer is already running because this check will
  3503. * be done for us inside the Stopwatch::start() method thus a running timer
  3504. * will not restart.
  3505. */
  3506. else print_job_timer.start();
  3507. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3508. }
  3509. }
  3510. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3511. void print_heaterstates() {
  3512. #if HAS_TEMP_HOTEND
  3513. SERIAL_PROTOCOLPGM(" T:");
  3514. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3515. SERIAL_PROTOCOLPGM(" /");
  3516. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3517. #endif
  3518. #if HAS_TEMP_BED
  3519. SERIAL_PROTOCOLPGM(" B:");
  3520. SERIAL_PROTOCOL_F(degBed(), 1);
  3521. SERIAL_PROTOCOLPGM(" /");
  3522. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3523. #endif
  3524. #if EXTRUDERS > 1
  3525. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3526. SERIAL_PROTOCOLPGM(" T");
  3527. SERIAL_PROTOCOL(e);
  3528. SERIAL_PROTOCOLCHAR(':');
  3529. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3530. SERIAL_PROTOCOLPGM(" /");
  3531. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3532. }
  3533. #endif
  3534. #if HAS_TEMP_BED
  3535. SERIAL_PROTOCOLPGM(" B@:");
  3536. #ifdef BED_WATTS
  3537. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3538. SERIAL_PROTOCOLCHAR('W');
  3539. #else
  3540. SERIAL_PROTOCOL(getHeaterPower(-1));
  3541. #endif
  3542. #endif
  3543. SERIAL_PROTOCOLPGM(" @:");
  3544. #ifdef EXTRUDER_WATTS
  3545. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3546. SERIAL_PROTOCOLCHAR('W');
  3547. #else
  3548. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3549. #endif
  3550. #if EXTRUDERS > 1
  3551. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3552. SERIAL_PROTOCOLPGM(" @");
  3553. SERIAL_PROTOCOL(e);
  3554. SERIAL_PROTOCOLCHAR(':');
  3555. #ifdef EXTRUDER_WATTS
  3556. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3557. SERIAL_PROTOCOLCHAR('W');
  3558. #else
  3559. SERIAL_PROTOCOL(getHeaterPower(e));
  3560. #endif
  3561. }
  3562. #endif
  3563. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3564. #if HAS_TEMP_BED
  3565. SERIAL_PROTOCOLPGM(" ADC B:");
  3566. SERIAL_PROTOCOL_F(degBed(), 1);
  3567. SERIAL_PROTOCOLPGM("C->");
  3568. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3569. #endif
  3570. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3571. SERIAL_PROTOCOLPGM(" T");
  3572. SERIAL_PROTOCOL(cur_extruder);
  3573. SERIAL_PROTOCOLCHAR(':');
  3574. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3575. SERIAL_PROTOCOLPGM("C->");
  3576. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3577. }
  3578. #endif
  3579. }
  3580. #endif
  3581. /**
  3582. * M105: Read hot end and bed temperature
  3583. */
  3584. inline void gcode_M105() {
  3585. if (setTargetedHotend(105)) return;
  3586. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3587. SERIAL_PROTOCOLPGM(MSG_OK);
  3588. print_heaterstates();
  3589. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3590. SERIAL_ERROR_START;
  3591. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3592. #endif
  3593. SERIAL_EOL;
  3594. }
  3595. #if FAN_COUNT > 0
  3596. /**
  3597. * M106: Set Fan Speed
  3598. *
  3599. * S<int> Speed between 0-255
  3600. * P<index> Fan index, if more than one fan
  3601. */
  3602. inline void gcode_M106() {
  3603. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3604. p = code_seen('P') ? code_value_short() : 0;
  3605. NOMORE(s, 255);
  3606. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3607. }
  3608. /**
  3609. * M107: Fan Off
  3610. */
  3611. inline void gcode_M107() {
  3612. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3613. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3614. }
  3615. #endif // FAN_COUNT > 0
  3616. /**
  3617. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3618. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3619. */
  3620. inline void gcode_M109() {
  3621. if (setTargetedHotend(109)) return;
  3622. if (DEBUGGING(DRYRUN)) return;
  3623. bool no_wait_for_cooling = code_seen('S');
  3624. if (no_wait_for_cooling || code_seen('R')) {
  3625. float temp = code_value();
  3626. setTargetHotend(temp, target_extruder);
  3627. #if ENABLED(DUAL_X_CARRIAGE)
  3628. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3629. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3630. #endif
  3631. /**
  3632. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3633. * stand by mode, for instance in a dual extruder setup, without affecting
  3634. * the running print timer.
  3635. */
  3636. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3637. print_job_timer.stop();
  3638. LCD_MESSAGEPGM(WELCOME_MSG);
  3639. }
  3640. /**
  3641. * We do not check if the timer is already running because this check will
  3642. * be done for us inside the Stopwatch::start() method thus a running timer
  3643. * will not restart.
  3644. */
  3645. else print_job_timer.start();
  3646. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3647. }
  3648. #if ENABLED(AUTOTEMP)
  3649. autotemp_enabled = code_seen('F');
  3650. if (autotemp_enabled) autotemp_factor = code_value();
  3651. if (code_seen('S')) autotemp_min = code_value();
  3652. if (code_seen('B')) autotemp_max = code_value();
  3653. #endif
  3654. bool wants_to_cool = isCoolingHotend(target_extruder);
  3655. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3656. if (no_wait_for_cooling && wants_to_cool) return;
  3657. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3658. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3659. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3660. #ifdef TEMP_RESIDENCY_TIME
  3661. millis_t residency_start_ms = 0;
  3662. // Loop until the temperature has stabilized
  3663. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3664. #else
  3665. // Loop until the temperature is very close target
  3666. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3667. #endif //TEMP_RESIDENCY_TIME
  3668. cancel_heatup = false;
  3669. millis_t now, next_temp_ms = 0;
  3670. do {
  3671. now = millis();
  3672. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3673. next_temp_ms = now + 1000UL;
  3674. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3675. print_heaterstates();
  3676. #endif
  3677. #ifdef TEMP_RESIDENCY_TIME
  3678. SERIAL_PROTOCOLPGM(" W:");
  3679. if (residency_start_ms) {
  3680. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3681. SERIAL_PROTOCOLLN(rem);
  3682. }
  3683. else {
  3684. SERIAL_PROTOCOLLNPGM("?");
  3685. }
  3686. #else
  3687. SERIAL_EOL;
  3688. #endif
  3689. }
  3690. idle();
  3691. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3692. #ifdef TEMP_RESIDENCY_TIME
  3693. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3694. if (!residency_start_ms) {
  3695. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3696. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3697. }
  3698. else if (temp_diff > TEMP_HYSTERESIS) {
  3699. // Restart the timer whenever the temperature falls outside the hysteresis.
  3700. residency_start_ms = millis();
  3701. }
  3702. #endif //TEMP_RESIDENCY_TIME
  3703. } while (!cancel_heatup && TEMP_CONDITIONS);
  3704. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3705. }
  3706. #if HAS_TEMP_BED
  3707. /**
  3708. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3709. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3710. */
  3711. inline void gcode_M190() {
  3712. if (DEBUGGING(DRYRUN)) return;
  3713. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3714. bool no_wait_for_cooling = code_seen('S');
  3715. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3716. bool wants_to_cool = isCoolingBed();
  3717. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3718. if (no_wait_for_cooling && wants_to_cool) return;
  3719. cancel_heatup = false;
  3720. millis_t next_temp_ms = 0;
  3721. // Wait for temperature to come close enough
  3722. do {
  3723. millis_t now = millis();
  3724. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3725. next_temp_ms = now + 1000UL;
  3726. print_heaterstates();
  3727. SERIAL_EOL;
  3728. }
  3729. idle();
  3730. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3731. } while (!cancel_heatup && (wants_to_cool ? isCoolingBed() : isHeatingBed()));
  3732. LCD_MESSAGEPGM(MSG_BED_DONE);
  3733. }
  3734. #endif // HAS_TEMP_BED
  3735. /**
  3736. * M110: Set Current Line Number
  3737. */
  3738. inline void gcode_M110() {
  3739. if (code_seen('N')) gcode_N = code_value_long();
  3740. }
  3741. /**
  3742. * M111: Set the debug level
  3743. */
  3744. inline void gcode_M111() {
  3745. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3746. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3747. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3748. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3749. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3750. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3752. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3753. #endif
  3754. const static char* const debug_strings[] PROGMEM = {
  3755. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3757. str_debug_32
  3758. #endif
  3759. };
  3760. SERIAL_ECHO_START;
  3761. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3762. if (marlin_debug_flags) {
  3763. uint8_t comma = 0;
  3764. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3765. if (TEST(marlin_debug_flags, i)) {
  3766. if (comma++) SERIAL_CHAR(',');
  3767. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3768. }
  3769. }
  3770. }
  3771. else {
  3772. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3773. }
  3774. SERIAL_EOL;
  3775. }
  3776. /**
  3777. * M112: Emergency Stop
  3778. */
  3779. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3780. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3781. /**
  3782. * M113: Get or set Host Keepalive interval (0 to disable)
  3783. *
  3784. * S<seconds> Optional. Set the keepalive interval.
  3785. */
  3786. inline void gcode_M113() {
  3787. if (code_seen('S')) {
  3788. host_keepalive_interval = (uint8_t)code_value_short();
  3789. NOMORE(host_keepalive_interval, 60);
  3790. }
  3791. else {
  3792. SERIAL_ECHO_START;
  3793. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3794. SERIAL_EOL;
  3795. }
  3796. }
  3797. #endif
  3798. #if ENABLED(BARICUDA)
  3799. #if HAS_HEATER_1
  3800. /**
  3801. * M126: Heater 1 valve open
  3802. */
  3803. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3804. /**
  3805. * M127: Heater 1 valve close
  3806. */
  3807. inline void gcode_M127() { ValvePressure = 0; }
  3808. #endif
  3809. #if HAS_HEATER_2
  3810. /**
  3811. * M128: Heater 2 valve open
  3812. */
  3813. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3814. /**
  3815. * M129: Heater 2 valve close
  3816. */
  3817. inline void gcode_M129() { EtoPPressure = 0; }
  3818. #endif
  3819. #endif //BARICUDA
  3820. /**
  3821. * M140: Set bed temperature
  3822. */
  3823. inline void gcode_M140() {
  3824. if (DEBUGGING(DRYRUN)) return;
  3825. if (code_seen('S')) setTargetBed(code_value());
  3826. }
  3827. #if ENABLED(ULTIPANEL)
  3828. /**
  3829. * M145: Set the heatup state for a material in the LCD menu
  3830. * S<material> (0=PLA, 1=ABS)
  3831. * H<hotend temp>
  3832. * B<bed temp>
  3833. * F<fan speed>
  3834. */
  3835. inline void gcode_M145() {
  3836. int8_t material = code_seen('S') ? code_value_short() : 0;
  3837. if (material < 0 || material > 1) {
  3838. SERIAL_ERROR_START;
  3839. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3840. }
  3841. else {
  3842. int v;
  3843. switch (material) {
  3844. case 0:
  3845. if (code_seen('H')) {
  3846. v = code_value_short();
  3847. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3848. }
  3849. if (code_seen('F')) {
  3850. v = code_value_short();
  3851. plaPreheatFanSpeed = constrain(v, 0, 255);
  3852. }
  3853. #if TEMP_SENSOR_BED != 0
  3854. if (code_seen('B')) {
  3855. v = code_value_short();
  3856. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3857. }
  3858. #endif
  3859. break;
  3860. case 1:
  3861. if (code_seen('H')) {
  3862. v = code_value_short();
  3863. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3864. }
  3865. if (code_seen('F')) {
  3866. v = code_value_short();
  3867. absPreheatFanSpeed = constrain(v, 0, 255);
  3868. }
  3869. #if TEMP_SENSOR_BED != 0
  3870. if (code_seen('B')) {
  3871. v = code_value_short();
  3872. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3873. }
  3874. #endif
  3875. break;
  3876. }
  3877. }
  3878. }
  3879. #endif
  3880. #if HAS_POWER_SWITCH
  3881. /**
  3882. * M80: Turn on Power Supply
  3883. */
  3884. inline void gcode_M80() {
  3885. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3886. /**
  3887. * If you have a switch on suicide pin, this is useful
  3888. * if you want to start another print with suicide feature after
  3889. * a print without suicide...
  3890. */
  3891. #if HAS_SUICIDE
  3892. OUT_WRITE(SUICIDE_PIN, HIGH);
  3893. #endif
  3894. #if ENABLED(ULTIPANEL)
  3895. powersupply = true;
  3896. LCD_MESSAGEPGM(WELCOME_MSG);
  3897. lcd_update();
  3898. #endif
  3899. }
  3900. #endif // HAS_POWER_SWITCH
  3901. /**
  3902. * M81: Turn off Power, including Power Supply, if there is one.
  3903. *
  3904. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3905. */
  3906. inline void gcode_M81() {
  3907. disable_all_heaters();
  3908. finishAndDisableSteppers();
  3909. #if FAN_COUNT > 0
  3910. #if FAN_COUNT > 1
  3911. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3912. #else
  3913. fanSpeeds[0] = 0;
  3914. #endif
  3915. #endif
  3916. delay(1000); // Wait 1 second before switching off
  3917. #if HAS_SUICIDE
  3918. st_synchronize();
  3919. suicide();
  3920. #elif HAS_POWER_SWITCH
  3921. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3922. #endif
  3923. #if ENABLED(ULTIPANEL)
  3924. #if HAS_POWER_SWITCH
  3925. powersupply = false;
  3926. #endif
  3927. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3928. lcd_update();
  3929. #endif
  3930. }
  3931. /**
  3932. * M82: Set E codes absolute (default)
  3933. */
  3934. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3935. /**
  3936. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3937. */
  3938. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3939. /**
  3940. * M18, M84: Disable all stepper motors
  3941. */
  3942. inline void gcode_M18_M84() {
  3943. if (code_seen('S')) {
  3944. stepper_inactive_time = code_value() * 1000UL;
  3945. }
  3946. else {
  3947. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3948. if (all_axis) {
  3949. finishAndDisableSteppers();
  3950. }
  3951. else {
  3952. st_synchronize();
  3953. if (code_seen('X')) disable_x();
  3954. if (code_seen('Y')) disable_y();
  3955. if (code_seen('Z')) disable_z();
  3956. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3957. if (code_seen('E')) {
  3958. disable_e0();
  3959. disable_e1();
  3960. disable_e2();
  3961. disable_e3();
  3962. }
  3963. #endif
  3964. }
  3965. }
  3966. }
  3967. /**
  3968. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3969. */
  3970. inline void gcode_M85() {
  3971. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  3972. }
  3973. /**
  3974. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3975. * (Follows the same syntax as G92)
  3976. */
  3977. inline void gcode_M92() {
  3978. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3979. if (code_seen(axis_codes[i])) {
  3980. if (i == E_AXIS) {
  3981. float value = code_value();
  3982. if (value < 20.0) {
  3983. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3984. max_e_jerk *= factor;
  3985. max_feedrate[i] *= factor;
  3986. axis_steps_per_sqr_second[i] *= factor;
  3987. }
  3988. axis_steps_per_unit[i] = value;
  3989. }
  3990. else {
  3991. axis_steps_per_unit[i] = code_value();
  3992. }
  3993. }
  3994. }
  3995. }
  3996. /**
  3997. * M114: Output current position to serial port
  3998. */
  3999. inline void gcode_M114() {
  4000. SERIAL_PROTOCOLPGM("X:");
  4001. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4002. SERIAL_PROTOCOLPGM(" Y:");
  4003. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4004. SERIAL_PROTOCOLPGM(" Z:");
  4005. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4006. SERIAL_PROTOCOLPGM(" E:");
  4007. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4008. CRITICAL_SECTION_START;
  4009. extern volatile long count_position[NUM_AXIS];
  4010. long xpos = count_position[X_AXIS],
  4011. ypos = count_position[Y_AXIS],
  4012. zpos = count_position[Z_AXIS];
  4013. CRITICAL_SECTION_END;
  4014. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4015. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4016. #else
  4017. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4018. #endif
  4019. SERIAL_PROTOCOL(xpos);
  4020. #if ENABLED(COREXY)
  4021. SERIAL_PROTOCOLPGM(" B:");
  4022. #else
  4023. SERIAL_PROTOCOLPGM(" Y:");
  4024. #endif
  4025. SERIAL_PROTOCOL(ypos);
  4026. #if ENABLED(COREXZ)
  4027. SERIAL_PROTOCOLPGM(" C:");
  4028. #else
  4029. SERIAL_PROTOCOLPGM(" Z:");
  4030. #endif
  4031. SERIAL_PROTOCOL(zpos);
  4032. SERIAL_EOL;
  4033. #if ENABLED(SCARA)
  4034. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4035. SERIAL_PROTOCOL(delta[X_AXIS]);
  4036. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4037. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4038. SERIAL_EOL;
  4039. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4040. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4041. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4042. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4043. SERIAL_EOL;
  4044. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4045. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4046. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4047. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4048. SERIAL_EOL; SERIAL_EOL;
  4049. #endif
  4050. }
  4051. /**
  4052. * M115: Capabilities string
  4053. */
  4054. inline void gcode_M115() {
  4055. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4056. }
  4057. /**
  4058. * M117: Set LCD Status Message
  4059. */
  4060. inline void gcode_M117() {
  4061. lcd_setstatus(current_command_args);
  4062. }
  4063. /**
  4064. * M119: Output endstop states to serial output
  4065. */
  4066. inline void gcode_M119() {
  4067. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4068. #if HAS_X_MIN
  4069. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4070. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4071. #endif
  4072. #if HAS_X_MAX
  4073. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4074. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4075. #endif
  4076. #if HAS_Y_MIN
  4077. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4078. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4079. #endif
  4080. #if HAS_Y_MAX
  4081. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4082. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4083. #endif
  4084. #if HAS_Z_MIN
  4085. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4086. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4087. #endif
  4088. #if HAS_Z_MAX
  4089. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4090. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4091. #endif
  4092. #if HAS_Z2_MAX
  4093. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4094. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4095. #endif
  4096. #if HAS_Z_PROBE
  4097. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4098. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4099. #endif
  4100. }
  4101. /**
  4102. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4103. */
  4104. inline void gcode_M120() { enable_endstops_globally(true); }
  4105. /**
  4106. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4107. */
  4108. inline void gcode_M121() { enable_endstops_globally(false); }
  4109. #if ENABLED(BLINKM)
  4110. /**
  4111. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4112. */
  4113. inline void gcode_M150() {
  4114. SendColors(
  4115. code_seen('R') ? (byte)code_value_short() : 0,
  4116. code_seen('U') ? (byte)code_value_short() : 0,
  4117. code_seen('B') ? (byte)code_value_short() : 0
  4118. );
  4119. }
  4120. #endif // BLINKM
  4121. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4122. /**
  4123. * M155: Send data to a I2C slave device
  4124. *
  4125. * This is a PoC, the formating and arguments for the GCODE will
  4126. * change to be more compatible, the current proposal is:
  4127. *
  4128. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4129. *
  4130. * M155 B<byte-1 value in base 10>
  4131. * M155 B<byte-2 value in base 10>
  4132. * M155 B<byte-3 value in base 10>
  4133. *
  4134. * M155 S1 ; Send the buffered data and reset the buffer
  4135. * M155 R1 ; Reset the buffer without sending data
  4136. *
  4137. */
  4138. inline void gcode_M155() {
  4139. // Set the target address
  4140. if (code_seen('A'))
  4141. i2c.address((uint8_t) code_value_short());
  4142. // Add a new byte to the buffer
  4143. else if (code_seen('B'))
  4144. i2c.addbyte((int) code_value_short());
  4145. // Flush the buffer to the bus
  4146. else if (code_seen('S')) i2c.send();
  4147. // Reset and rewind the buffer
  4148. else if (code_seen('R')) i2c.reset();
  4149. }
  4150. /**
  4151. * M156: Request X bytes from I2C slave device
  4152. *
  4153. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4154. */
  4155. inline void gcode_M156() {
  4156. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4157. int bytes = code_seen('B') ? code_value_short() : 0;
  4158. if (addr && bytes) {
  4159. i2c.address(addr);
  4160. i2c.reqbytes(bytes);
  4161. }
  4162. }
  4163. #endif //EXPERIMENTAL_I2CBUS
  4164. /**
  4165. * M200: Set filament diameter and set E axis units to cubic millimeters
  4166. *
  4167. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4168. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4169. */
  4170. inline void gcode_M200() {
  4171. if (setTargetedHotend(200)) return;
  4172. if (code_seen('D')) {
  4173. float diameter = code_value();
  4174. // setting any extruder filament size disables volumetric on the assumption that
  4175. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4176. // for all extruders
  4177. volumetric_enabled = (diameter != 0.0);
  4178. if (volumetric_enabled) {
  4179. filament_size[target_extruder] = diameter;
  4180. // make sure all extruders have some sane value for the filament size
  4181. for (int i = 0; i < EXTRUDERS; i++)
  4182. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4183. }
  4184. }
  4185. else {
  4186. //reserved for setting filament diameter via UFID or filament measuring device
  4187. return;
  4188. }
  4189. calculate_volumetric_multipliers();
  4190. }
  4191. /**
  4192. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4193. */
  4194. inline void gcode_M201() {
  4195. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4196. if (code_seen(axis_codes[i])) {
  4197. max_acceleration_units_per_sq_second[i] = code_value();
  4198. }
  4199. }
  4200. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4201. reset_acceleration_rates();
  4202. }
  4203. #if 0 // Not used for Sprinter/grbl gen6
  4204. inline void gcode_M202() {
  4205. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4206. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4207. }
  4208. }
  4209. #endif
  4210. /**
  4211. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4212. */
  4213. inline void gcode_M203() {
  4214. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4215. if (code_seen(axis_codes[i])) {
  4216. max_feedrate[i] = code_value();
  4217. }
  4218. }
  4219. }
  4220. /**
  4221. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4222. *
  4223. * P = Printing moves
  4224. * R = Retract only (no X, Y, Z) moves
  4225. * T = Travel (non printing) moves
  4226. *
  4227. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4228. */
  4229. inline void gcode_M204() {
  4230. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4231. travel_acceleration = acceleration = code_value();
  4232. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4233. SERIAL_EOL;
  4234. }
  4235. if (code_seen('P')) {
  4236. acceleration = code_value();
  4237. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4238. SERIAL_EOL;
  4239. }
  4240. if (code_seen('R')) {
  4241. retract_acceleration = code_value();
  4242. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4243. SERIAL_EOL;
  4244. }
  4245. if (code_seen('T')) {
  4246. travel_acceleration = code_value();
  4247. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4248. SERIAL_EOL;
  4249. }
  4250. }
  4251. /**
  4252. * M205: Set Advanced Settings
  4253. *
  4254. * S = Min Feed Rate (mm/s)
  4255. * T = Min Travel Feed Rate (mm/s)
  4256. * B = Min Segment Time (µs)
  4257. * X = Max XY Jerk (mm/s/s)
  4258. * Z = Max Z Jerk (mm/s/s)
  4259. * E = Max E Jerk (mm/s/s)
  4260. */
  4261. inline void gcode_M205() {
  4262. if (code_seen('S')) minimumfeedrate = code_value();
  4263. if (code_seen('T')) mintravelfeedrate = code_value();
  4264. if (code_seen('B')) minsegmenttime = code_value();
  4265. if (code_seen('X')) max_xy_jerk = code_value();
  4266. if (code_seen('Z')) max_z_jerk = code_value();
  4267. if (code_seen('E')) max_e_jerk = code_value();
  4268. }
  4269. static void set_home_offset(AxisEnum axis, float v) {
  4270. min_pos[axis] = base_min_pos(axis) + v;
  4271. max_pos[axis] = base_max_pos(axis) + v;
  4272. current_position[axis] += v - home_offset[axis];
  4273. home_offset[axis] = v;
  4274. }
  4275. /**
  4276. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4277. */
  4278. inline void gcode_M206() {
  4279. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4280. if (code_seen(axis_codes[i]))
  4281. set_home_offset((AxisEnum)i, code_value());
  4282. #if ENABLED(SCARA)
  4283. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4284. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4285. #endif
  4286. sync_plan_position();
  4287. }
  4288. #if ENABLED(DELTA)
  4289. /**
  4290. * M665: Set delta configurations
  4291. *
  4292. * L = diagonal rod
  4293. * R = delta radius
  4294. * S = segments per second
  4295. * A = Alpha (Tower 1) diagonal rod trim
  4296. * B = Beta (Tower 2) diagonal rod trim
  4297. * C = Gamma (Tower 3) diagonal rod trim
  4298. */
  4299. inline void gcode_M665() {
  4300. if (code_seen('L')) delta_diagonal_rod = code_value();
  4301. if (code_seen('R')) delta_radius = code_value();
  4302. if (code_seen('S')) delta_segments_per_second = code_value();
  4303. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4304. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4305. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4306. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4307. }
  4308. /**
  4309. * M666: Set delta endstop adjustment
  4310. */
  4311. inline void gcode_M666() {
  4312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4313. if (DEBUGGING(LEVELING)) {
  4314. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4315. }
  4316. #endif
  4317. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4318. if (code_seen(axis_codes[i])) {
  4319. endstop_adj[i] = code_value();
  4320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4321. if (DEBUGGING(LEVELING)) {
  4322. SERIAL_ECHOPGM("endstop_adj[");
  4323. SERIAL_ECHO(axis_codes[i]);
  4324. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4325. SERIAL_EOL;
  4326. }
  4327. #endif
  4328. }
  4329. }
  4330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4331. if (DEBUGGING(LEVELING)) {
  4332. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4333. }
  4334. #endif
  4335. }
  4336. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4337. /**
  4338. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4339. */
  4340. inline void gcode_M666() {
  4341. if (code_seen('Z')) z_endstop_adj = code_value();
  4342. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4343. SERIAL_EOL;
  4344. }
  4345. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4346. #if ENABLED(FWRETRACT)
  4347. /**
  4348. * M207: Set firmware retraction values
  4349. *
  4350. * S[+mm] retract_length
  4351. * W[+mm] retract_length_swap (multi-extruder)
  4352. * F[mm/min] retract_feedrate
  4353. * Z[mm] retract_zlift
  4354. */
  4355. inline void gcode_M207() {
  4356. if (code_seen('S')) retract_length = code_value();
  4357. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4358. if (code_seen('Z')) retract_zlift = code_value();
  4359. #if EXTRUDERS > 1
  4360. if (code_seen('W')) retract_length_swap = code_value();
  4361. #endif
  4362. }
  4363. /**
  4364. * M208: Set firmware un-retraction values
  4365. *
  4366. * S[+mm] retract_recover_length (in addition to M207 S*)
  4367. * W[+mm] retract_recover_length_swap (multi-extruder)
  4368. * F[mm/min] retract_recover_feedrate
  4369. */
  4370. inline void gcode_M208() {
  4371. if (code_seen('S')) retract_recover_length = code_value();
  4372. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4373. #if EXTRUDERS > 1
  4374. if (code_seen('W')) retract_recover_length_swap = code_value();
  4375. #endif
  4376. }
  4377. /**
  4378. * M209: Enable automatic retract (M209 S1)
  4379. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4380. */
  4381. inline void gcode_M209() {
  4382. if (code_seen('S')) {
  4383. int t = code_value_short();
  4384. switch (t) {
  4385. case 0:
  4386. autoretract_enabled = false;
  4387. break;
  4388. case 1:
  4389. autoretract_enabled = true;
  4390. break;
  4391. default:
  4392. unknown_command_error();
  4393. return;
  4394. }
  4395. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4396. }
  4397. }
  4398. #endif // FWRETRACT
  4399. #if EXTRUDERS > 1
  4400. /**
  4401. * M218 - set hotend offset (in mm)
  4402. *
  4403. * T<tool>
  4404. * X<xoffset>
  4405. * Y<yoffset>
  4406. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4407. */
  4408. inline void gcode_M218() {
  4409. if (setTargetedHotend(218)) return;
  4410. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4411. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4412. #if ENABLED(DUAL_X_CARRIAGE)
  4413. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4414. #endif
  4415. SERIAL_ECHO_START;
  4416. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4417. for (int e = 0; e < EXTRUDERS; e++) {
  4418. SERIAL_CHAR(' ');
  4419. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4420. SERIAL_CHAR(',');
  4421. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4422. #if ENABLED(DUAL_X_CARRIAGE)
  4423. SERIAL_CHAR(',');
  4424. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4425. #endif
  4426. }
  4427. SERIAL_EOL;
  4428. }
  4429. #endif // EXTRUDERS > 1
  4430. /**
  4431. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4432. */
  4433. inline void gcode_M220() {
  4434. if (code_seen('S')) feedrate_multiplier = code_value();
  4435. }
  4436. /**
  4437. * M221: Set extrusion percentage (M221 T0 S95)
  4438. */
  4439. inline void gcode_M221() {
  4440. if (code_seen('S')) {
  4441. int sval = code_value();
  4442. if (setTargetedHotend(221)) return;
  4443. extruder_multiplier[target_extruder] = sval;
  4444. }
  4445. }
  4446. /**
  4447. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4448. */
  4449. inline void gcode_M226() {
  4450. if (code_seen('P')) {
  4451. int pin_number = code_value();
  4452. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4453. if (pin_state >= -1 && pin_state <= 1) {
  4454. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4455. if (sensitive_pins[i] == pin_number) {
  4456. pin_number = -1;
  4457. break;
  4458. }
  4459. }
  4460. if (pin_number > -1) {
  4461. int target = LOW;
  4462. st_synchronize();
  4463. pinMode(pin_number, INPUT);
  4464. switch (pin_state) {
  4465. case 1:
  4466. target = HIGH;
  4467. break;
  4468. case 0:
  4469. target = LOW;
  4470. break;
  4471. case -1:
  4472. target = !digitalRead(pin_number);
  4473. break;
  4474. }
  4475. while (digitalRead(pin_number) != target) idle();
  4476. } // pin_number > -1
  4477. } // pin_state -1 0 1
  4478. } // code_seen('P')
  4479. }
  4480. #if HAS_SERVOS
  4481. /**
  4482. * M280: Get or set servo position. P<index> S<angle>
  4483. */
  4484. inline void gcode_M280() {
  4485. int servo_index = code_seen('P') ? code_value_short() : -1;
  4486. int servo_position = 0;
  4487. if (code_seen('S')) {
  4488. servo_position = code_value_short();
  4489. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4490. servo[servo_index].move(servo_position);
  4491. else {
  4492. SERIAL_ERROR_START;
  4493. SERIAL_ERROR("Servo ");
  4494. SERIAL_ERROR(servo_index);
  4495. SERIAL_ERRORLN(" out of range");
  4496. }
  4497. }
  4498. else if (servo_index >= 0) {
  4499. SERIAL_ECHO_START;
  4500. SERIAL_ECHO(" Servo ");
  4501. SERIAL_ECHO(servo_index);
  4502. SERIAL_ECHO(": ");
  4503. SERIAL_ECHOLN(servo[servo_index].read());
  4504. }
  4505. }
  4506. #endif // HAS_SERVOS
  4507. #if HAS_BUZZER
  4508. /**
  4509. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4510. */
  4511. inline void gcode_M300() {
  4512. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4513. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4514. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4515. buzz(beepP, beepS);
  4516. }
  4517. #endif // HAS_BUZZER
  4518. #if ENABLED(PIDTEMP)
  4519. /**
  4520. * M301: Set PID parameters P I D (and optionally C, L)
  4521. *
  4522. * P[float] Kp term
  4523. * I[float] Ki term (unscaled)
  4524. * D[float] Kd term (unscaled)
  4525. *
  4526. * With PID_ADD_EXTRUSION_RATE:
  4527. *
  4528. * C[float] Kc term
  4529. * L[float] LPQ length
  4530. */
  4531. inline void gcode_M301() {
  4532. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4533. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4534. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4535. if (e < EXTRUDERS) { // catch bad input value
  4536. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4537. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4538. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4539. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4540. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4541. if (code_seen('L')) lpq_len = code_value();
  4542. NOMORE(lpq_len, LPQ_MAX_LEN);
  4543. #endif
  4544. updatePID();
  4545. SERIAL_ECHO_START;
  4546. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4547. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4548. SERIAL_ECHO(e);
  4549. #endif // PID_PARAMS_PER_EXTRUDER
  4550. SERIAL_ECHO(" p:");
  4551. SERIAL_ECHO(PID_PARAM(Kp, e));
  4552. SERIAL_ECHO(" i:");
  4553. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4554. SERIAL_ECHO(" d:");
  4555. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4556. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4557. SERIAL_ECHO(" c:");
  4558. //Kc does not have scaling applied above, or in resetting defaults
  4559. SERIAL_ECHO(PID_PARAM(Kc, e));
  4560. #endif
  4561. SERIAL_EOL;
  4562. }
  4563. else {
  4564. SERIAL_ERROR_START;
  4565. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4566. }
  4567. }
  4568. #endif // PIDTEMP
  4569. #if ENABLED(PIDTEMPBED)
  4570. inline void gcode_M304() {
  4571. if (code_seen('P')) bedKp = code_value();
  4572. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4573. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4574. updatePID();
  4575. SERIAL_ECHO_START;
  4576. SERIAL_ECHO(" p:");
  4577. SERIAL_ECHO(bedKp);
  4578. SERIAL_ECHO(" i:");
  4579. SERIAL_ECHO(unscalePID_i(bedKi));
  4580. SERIAL_ECHO(" d:");
  4581. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4582. }
  4583. #endif // PIDTEMPBED
  4584. #if defined(CHDK) || HAS_PHOTOGRAPH
  4585. /**
  4586. * M240: Trigger a camera by emulating a Canon RC-1
  4587. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4588. */
  4589. inline void gcode_M240() {
  4590. #ifdef CHDK
  4591. OUT_WRITE(CHDK, HIGH);
  4592. chdkHigh = millis();
  4593. chdkActive = true;
  4594. #elif HAS_PHOTOGRAPH
  4595. const uint8_t NUM_PULSES = 16;
  4596. const float PULSE_LENGTH = 0.01524;
  4597. for (int i = 0; i < NUM_PULSES; i++) {
  4598. WRITE(PHOTOGRAPH_PIN, HIGH);
  4599. _delay_ms(PULSE_LENGTH);
  4600. WRITE(PHOTOGRAPH_PIN, LOW);
  4601. _delay_ms(PULSE_LENGTH);
  4602. }
  4603. delay(7.33);
  4604. for (int i = 0; i < NUM_PULSES; i++) {
  4605. WRITE(PHOTOGRAPH_PIN, HIGH);
  4606. _delay_ms(PULSE_LENGTH);
  4607. WRITE(PHOTOGRAPH_PIN, LOW);
  4608. _delay_ms(PULSE_LENGTH);
  4609. }
  4610. #endif // !CHDK && HAS_PHOTOGRAPH
  4611. }
  4612. #endif // CHDK || PHOTOGRAPH_PIN
  4613. #if ENABLED(HAS_LCD_CONTRAST)
  4614. /**
  4615. * M250: Read and optionally set the LCD contrast
  4616. */
  4617. inline void gcode_M250() {
  4618. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4619. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4620. SERIAL_PROTOCOL(lcd_contrast);
  4621. SERIAL_EOL;
  4622. }
  4623. #endif // HAS_LCD_CONTRAST
  4624. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4625. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4626. /**
  4627. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4628. */
  4629. inline void gcode_M302() {
  4630. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4631. }
  4632. #endif // PREVENT_DANGEROUS_EXTRUDE
  4633. /**
  4634. * M303: PID relay autotune
  4635. *
  4636. * S<temperature> sets the target temperature. (default 150C)
  4637. * E<extruder> (-1 for the bed) (default 0)
  4638. * C<cycles>
  4639. * U<bool> with a non-zero value will apply the result to current settings
  4640. */
  4641. inline void gcode_M303() {
  4642. int e = code_seen('E') ? code_value_short() : 0;
  4643. int c = code_seen('C') ? code_value_short() : 5;
  4644. bool u = code_seen('U') && code_value_short() != 0;
  4645. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4646. if (e >= 0 && e < EXTRUDERS)
  4647. target_extruder = e;
  4648. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4649. PID_autotune(temp, e, c, u);
  4650. KEEPALIVE_STATE(IN_HANDLER);
  4651. }
  4652. #if ENABLED(SCARA)
  4653. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4654. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4655. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4656. if (IsRunning()) {
  4657. //gcode_get_destination(); // For X Y Z E F
  4658. delta[X_AXIS] = delta_x;
  4659. delta[Y_AXIS] = delta_y;
  4660. calculate_SCARA_forward_Transform(delta);
  4661. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4662. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4663. prepare_move();
  4664. //ok_to_send();
  4665. return true;
  4666. }
  4667. return false;
  4668. }
  4669. /**
  4670. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4671. */
  4672. inline bool gcode_M360() {
  4673. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4674. return SCARA_move_to_cal(0, 120);
  4675. }
  4676. /**
  4677. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4678. */
  4679. inline bool gcode_M361() {
  4680. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4681. return SCARA_move_to_cal(90, 130);
  4682. }
  4683. /**
  4684. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4685. */
  4686. inline bool gcode_M362() {
  4687. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4688. return SCARA_move_to_cal(60, 180);
  4689. }
  4690. /**
  4691. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4692. */
  4693. inline bool gcode_M363() {
  4694. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4695. return SCARA_move_to_cal(50, 90);
  4696. }
  4697. /**
  4698. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4699. */
  4700. inline bool gcode_M364() {
  4701. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4702. return SCARA_move_to_cal(45, 135);
  4703. }
  4704. /**
  4705. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4706. */
  4707. inline void gcode_M365() {
  4708. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4709. if (code_seen(axis_codes[i])) {
  4710. axis_scaling[i] = code_value();
  4711. }
  4712. }
  4713. }
  4714. #endif // SCARA
  4715. #if ENABLED(EXT_SOLENOID)
  4716. void enable_solenoid(uint8_t num) {
  4717. switch (num) {
  4718. case 0:
  4719. OUT_WRITE(SOL0_PIN, HIGH);
  4720. break;
  4721. #if HAS_SOLENOID_1
  4722. case 1:
  4723. OUT_WRITE(SOL1_PIN, HIGH);
  4724. break;
  4725. #endif
  4726. #if HAS_SOLENOID_2
  4727. case 2:
  4728. OUT_WRITE(SOL2_PIN, HIGH);
  4729. break;
  4730. #endif
  4731. #if HAS_SOLENOID_3
  4732. case 3:
  4733. OUT_WRITE(SOL3_PIN, HIGH);
  4734. break;
  4735. #endif
  4736. default:
  4737. SERIAL_ECHO_START;
  4738. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4739. break;
  4740. }
  4741. }
  4742. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4743. void disable_all_solenoids() {
  4744. OUT_WRITE(SOL0_PIN, LOW);
  4745. OUT_WRITE(SOL1_PIN, LOW);
  4746. OUT_WRITE(SOL2_PIN, LOW);
  4747. OUT_WRITE(SOL3_PIN, LOW);
  4748. }
  4749. /**
  4750. * M380: Enable solenoid on the active extruder
  4751. */
  4752. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4753. /**
  4754. * M381: Disable all solenoids
  4755. */
  4756. inline void gcode_M381() { disable_all_solenoids(); }
  4757. #endif // EXT_SOLENOID
  4758. /**
  4759. * M400: Finish all moves
  4760. */
  4761. inline void gcode_M400() { st_synchronize(); }
  4762. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4763. /**
  4764. * M401: Engage Z Servo endstop if available
  4765. */
  4766. inline void gcode_M401() {
  4767. #if HAS_SERVO_ENDSTOPS
  4768. raise_z_for_servo();
  4769. #endif
  4770. deploy_z_probe();
  4771. }
  4772. /**
  4773. * M402: Retract Z Servo endstop if enabled
  4774. */
  4775. inline void gcode_M402() {
  4776. #if HAS_SERVO_ENDSTOPS
  4777. raise_z_for_servo();
  4778. #endif
  4779. stow_z_probe(false);
  4780. }
  4781. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4782. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4783. /**
  4784. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4785. */
  4786. inline void gcode_M404() {
  4787. if (code_seen('W')) {
  4788. filament_width_nominal = code_value();
  4789. }
  4790. else {
  4791. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4792. SERIAL_PROTOCOLLN(filament_width_nominal);
  4793. }
  4794. }
  4795. /**
  4796. * M405: Turn on filament sensor for control
  4797. */
  4798. inline void gcode_M405() {
  4799. if (code_seen('D')) meas_delay_cm = code_value();
  4800. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4801. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4802. int temp_ratio = widthFil_to_size_ratio();
  4803. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4804. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4805. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4806. }
  4807. filament_sensor = true;
  4808. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4809. //SERIAL_PROTOCOL(filament_width_meas);
  4810. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4811. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4812. }
  4813. /**
  4814. * M406: Turn off filament sensor for control
  4815. */
  4816. inline void gcode_M406() { filament_sensor = false; }
  4817. /**
  4818. * M407: Get measured filament diameter on serial output
  4819. */
  4820. inline void gcode_M407() {
  4821. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4822. SERIAL_PROTOCOLLN(filament_width_meas);
  4823. }
  4824. #endif // FILAMENT_WIDTH_SENSOR
  4825. /**
  4826. * M410: Quickstop - Abort all planned moves
  4827. *
  4828. * This will stop the carriages mid-move, so most likely they
  4829. * will be out of sync with the stepper position after this.
  4830. */
  4831. inline void gcode_M410() { quickStop(); }
  4832. #if ENABLED(MESH_BED_LEVELING)
  4833. /**
  4834. * M420: Enable/Disable Mesh Bed Leveling
  4835. */
  4836. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4837. /**
  4838. * M421: Set a single Mesh Bed Leveling Z coordinate
  4839. */
  4840. inline void gcode_M421() {
  4841. float x = 0, y = 0, z = 0;
  4842. bool err = false, hasX, hasY, hasZ;
  4843. if ((hasX = code_seen('X'))) x = code_value();
  4844. if ((hasY = code_seen('Y'))) y = code_value();
  4845. if ((hasZ = code_seen('Z'))) z = code_value();
  4846. if (!hasX || !hasY || !hasZ) {
  4847. SERIAL_ERROR_START;
  4848. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4849. err = true;
  4850. }
  4851. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4852. SERIAL_ERROR_START;
  4853. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4854. err = true;
  4855. }
  4856. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4857. }
  4858. #endif
  4859. /**
  4860. * M428: Set home_offset based on the distance between the
  4861. * current_position and the nearest "reference point."
  4862. * If an axis is past center its endstop position
  4863. * is the reference-point. Otherwise it uses 0. This allows
  4864. * the Z offset to be set near the bed when using a max endstop.
  4865. *
  4866. * M428 can't be used more than 2cm away from 0 or an endstop.
  4867. *
  4868. * Use M206 to set these values directly.
  4869. */
  4870. inline void gcode_M428() {
  4871. bool err = false;
  4872. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4873. if (axis_homed[i]) {
  4874. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4875. diff = current_position[i] - base;
  4876. if (diff > -20 && diff < 20) {
  4877. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4878. }
  4879. else {
  4880. SERIAL_ERROR_START;
  4881. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4882. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4883. #if HAS_BUZZER
  4884. buzz(200, 40);
  4885. #endif
  4886. err = true;
  4887. break;
  4888. }
  4889. }
  4890. }
  4891. if (!err) {
  4892. sync_plan_position();
  4893. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4894. #if HAS_BUZZER
  4895. buzz(200, 659);
  4896. buzz(200, 698);
  4897. #endif
  4898. }
  4899. }
  4900. /**
  4901. * M500: Store settings in EEPROM
  4902. */
  4903. inline void gcode_M500() {
  4904. Config_StoreSettings();
  4905. }
  4906. /**
  4907. * M501: Read settings from EEPROM
  4908. */
  4909. inline void gcode_M501() {
  4910. Config_RetrieveSettings();
  4911. }
  4912. /**
  4913. * M502: Revert to default settings
  4914. */
  4915. inline void gcode_M502() {
  4916. Config_ResetDefault();
  4917. }
  4918. /**
  4919. * M503: print settings currently in memory
  4920. */
  4921. inline void gcode_M503() {
  4922. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4923. }
  4924. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4925. /**
  4926. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4927. */
  4928. inline void gcode_M540() {
  4929. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4930. }
  4931. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4932. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4933. inline void gcode_SET_Z_PROBE_OFFSET() {
  4934. SERIAL_ECHO_START;
  4935. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4936. SERIAL_CHAR(' ');
  4937. if (code_seen('Z')) {
  4938. float value = code_value();
  4939. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4940. zprobe_zoffset = value;
  4941. SERIAL_ECHO(zprobe_zoffset);
  4942. }
  4943. else {
  4944. SERIAL_ECHOPGM(MSG_Z_MIN);
  4945. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4946. SERIAL_ECHOPGM(MSG_Z_MAX);
  4947. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4948. }
  4949. }
  4950. else {
  4951. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4952. }
  4953. SERIAL_EOL;
  4954. }
  4955. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4956. #if ENABLED(FILAMENTCHANGEENABLE)
  4957. /**
  4958. * M600: Pause for filament change
  4959. *
  4960. * E[distance] - Retract the filament this far (negative value)
  4961. * Z[distance] - Move the Z axis by this distance
  4962. * X[position] - Move to this X position, with Y
  4963. * Y[position] - Move to this Y position, with X
  4964. * L[distance] - Retract distance for removal (manual reload)
  4965. *
  4966. * Default values are used for omitted arguments.
  4967. *
  4968. */
  4969. inline void gcode_M600() {
  4970. if (degHotend(active_extruder) < extrude_min_temp) {
  4971. SERIAL_ERROR_START;
  4972. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4973. return;
  4974. }
  4975. float lastpos[NUM_AXIS];
  4976. #if ENABLED(DELTA)
  4977. float fr60 = feedrate / 60;
  4978. #endif
  4979. for (int i = 0; i < NUM_AXIS; i++)
  4980. lastpos[i] = destination[i] = current_position[i];
  4981. #if ENABLED(DELTA)
  4982. #define RUNPLAN calculate_delta(destination); \
  4983. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4984. #else
  4985. #define RUNPLAN line_to_destination();
  4986. #endif
  4987. //retract by E
  4988. if (code_seen('E')) destination[E_AXIS] += code_value();
  4989. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4990. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4991. #endif
  4992. RUNPLAN;
  4993. //lift Z
  4994. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4995. #ifdef FILAMENTCHANGE_ZADD
  4996. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4997. #endif
  4998. RUNPLAN;
  4999. //move xy
  5000. if (code_seen('X')) destination[X_AXIS] = code_value();
  5001. #ifdef FILAMENTCHANGE_XPOS
  5002. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5003. #endif
  5004. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5005. #ifdef FILAMENTCHANGE_YPOS
  5006. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5007. #endif
  5008. RUNPLAN;
  5009. if (code_seen('L')) destination[E_AXIS] += code_value();
  5010. #ifdef FILAMENTCHANGE_FINALRETRACT
  5011. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5012. #endif
  5013. RUNPLAN;
  5014. //finish moves
  5015. st_synchronize();
  5016. //disable extruder steppers so filament can be removed
  5017. disable_e0();
  5018. disable_e1();
  5019. disable_e2();
  5020. disable_e3();
  5021. delay(100);
  5022. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5023. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5024. millis_t next_tick = 0;
  5025. #endif
  5026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5027. while (!lcd_clicked()) {
  5028. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5029. millis_t ms = millis();
  5030. if (ELAPSED(ms, next_tick)) {
  5031. lcd_quick_feedback();
  5032. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5033. }
  5034. idle(true);
  5035. #else
  5036. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5037. destination[E_AXIS] = current_position[E_AXIS];
  5038. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5039. st_synchronize();
  5040. #endif
  5041. } // while(!lcd_clicked)
  5042. KEEPALIVE_STATE(IN_HANDLER);
  5043. lcd_quick_feedback(); // click sound feedback
  5044. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5045. current_position[E_AXIS] = 0;
  5046. st_synchronize();
  5047. #endif
  5048. //return to normal
  5049. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5050. #ifdef FILAMENTCHANGE_FINALRETRACT
  5051. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5052. #endif
  5053. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5054. plan_set_e_position(current_position[E_AXIS]);
  5055. RUNPLAN; //should do nothing
  5056. lcd_reset_alert_level();
  5057. #if ENABLED(DELTA)
  5058. // Move XYZ to starting position, then E
  5059. calculate_delta(lastpos);
  5060. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5061. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5062. #else
  5063. // Move XY to starting position, then Z, then E
  5064. destination[X_AXIS] = lastpos[X_AXIS];
  5065. destination[Y_AXIS] = lastpos[Y_AXIS];
  5066. line_to_destination();
  5067. destination[Z_AXIS] = lastpos[Z_AXIS];
  5068. line_to_destination();
  5069. destination[E_AXIS] = lastpos[E_AXIS];
  5070. line_to_destination();
  5071. #endif
  5072. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5073. filrunoutEnqueued = false;
  5074. #endif
  5075. }
  5076. #endif // FILAMENTCHANGEENABLE
  5077. #if ENABLED(DUAL_X_CARRIAGE)
  5078. /**
  5079. * M605: Set dual x-carriage movement mode
  5080. *
  5081. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5082. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5083. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5084. * millimeters x-offset and an optional differential hotend temperature of
  5085. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5086. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5087. *
  5088. * Note: the X axis should be homed after changing dual x-carriage mode.
  5089. */
  5090. inline void gcode_M605() {
  5091. st_synchronize();
  5092. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5093. switch (dual_x_carriage_mode) {
  5094. case DXC_DUPLICATION_MODE:
  5095. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5096. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5097. SERIAL_ECHO_START;
  5098. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5099. SERIAL_CHAR(' ');
  5100. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5101. SERIAL_CHAR(',');
  5102. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5103. SERIAL_CHAR(' ');
  5104. SERIAL_ECHO(duplicate_extruder_x_offset);
  5105. SERIAL_CHAR(',');
  5106. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5107. break;
  5108. case DXC_FULL_CONTROL_MODE:
  5109. case DXC_AUTO_PARK_MODE:
  5110. break;
  5111. default:
  5112. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5113. break;
  5114. }
  5115. active_extruder_parked = false;
  5116. extruder_duplication_enabled = false;
  5117. delayed_move_time = 0;
  5118. }
  5119. #endif // DUAL_X_CARRIAGE
  5120. /**
  5121. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5122. */
  5123. inline void gcode_M907() {
  5124. #if HAS_DIGIPOTSS
  5125. for (int i = 0; i < NUM_AXIS; i++)
  5126. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5127. if (code_seen('B')) digipot_current(4, code_value());
  5128. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5129. #endif
  5130. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5131. if (code_seen('X')) digipot_current(0, code_value());
  5132. #endif
  5133. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5134. if (code_seen('Z')) digipot_current(1, code_value());
  5135. #endif
  5136. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5137. if (code_seen('E')) digipot_current(2, code_value());
  5138. #endif
  5139. #if ENABLED(DIGIPOT_I2C)
  5140. // this one uses actual amps in floating point
  5141. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5142. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5143. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5144. #endif
  5145. #if ENABLED(DAC_STEPPER_CURRENT)
  5146. if (code_seen('S')) {
  5147. float dac_percent = code_value();
  5148. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5149. }
  5150. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5151. #endif
  5152. }
  5153. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5154. /**
  5155. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5156. */
  5157. inline void gcode_M908() {
  5158. #if HAS_DIGIPOTSS
  5159. digitalPotWrite(
  5160. code_seen('P') ? code_value() : 0,
  5161. code_seen('S') ? code_value() : 0
  5162. );
  5163. #endif
  5164. #ifdef DAC_STEPPER_CURRENT
  5165. dac_current_raw(
  5166. code_seen('P') ? code_value_long() : -1,
  5167. code_seen('S') ? code_value_short() : 0
  5168. );
  5169. #endif
  5170. }
  5171. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5172. inline void gcode_M909() { dac_print_values(); }
  5173. inline void gcode_M910() { dac_commit_eeprom(); }
  5174. #endif
  5175. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5176. #if HAS_MICROSTEPS
  5177. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5178. inline void gcode_M350() {
  5179. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5180. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5181. if (code_seen('B')) microstep_mode(4, code_value());
  5182. microstep_readings();
  5183. }
  5184. /**
  5185. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5186. * S# determines MS1 or MS2, X# sets the pin high/low.
  5187. */
  5188. inline void gcode_M351() {
  5189. if (code_seen('S')) switch (code_value_short()) {
  5190. case 1:
  5191. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5192. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5193. break;
  5194. case 2:
  5195. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5196. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5197. break;
  5198. }
  5199. microstep_readings();
  5200. }
  5201. #endif // HAS_MICROSTEPS
  5202. /**
  5203. * M999: Restart after being stopped
  5204. */
  5205. inline void gcode_M999() {
  5206. Running = true;
  5207. lcd_reset_alert_level();
  5208. // gcode_LastN = Stopped_gcode_LastN;
  5209. FlushSerialRequestResend();
  5210. }
  5211. /**
  5212. * T0-T3: Switch tool, usually switching extruders
  5213. *
  5214. * F[mm/min] Set the movement feedrate
  5215. */
  5216. inline void gcode_T(uint8_t tmp_extruder) {
  5217. if (tmp_extruder >= EXTRUDERS) {
  5218. SERIAL_ECHO_START;
  5219. SERIAL_CHAR('T');
  5220. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5221. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5222. }
  5223. else {
  5224. target_extruder = tmp_extruder;
  5225. #if EXTRUDERS > 1
  5226. bool make_move = false;
  5227. #endif
  5228. if (code_seen('F')) {
  5229. #if EXTRUDERS > 1
  5230. make_move = true;
  5231. #endif
  5232. float next_feedrate = code_value();
  5233. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5234. }
  5235. #if EXTRUDERS > 1
  5236. if (tmp_extruder != active_extruder) {
  5237. // Save current position to return to after applying extruder offset
  5238. set_destination_to_current();
  5239. #if ENABLED(DUAL_X_CARRIAGE)
  5240. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5241. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5242. // Park old head: 1) raise 2) move to park position 3) lower
  5243. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5244. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5245. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5246. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5247. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5248. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5249. st_synchronize();
  5250. }
  5251. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5252. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5253. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5254. active_extruder = tmp_extruder;
  5255. // This function resets the max/min values - the current position may be overwritten below.
  5256. set_axis_is_at_home(X_AXIS);
  5257. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5258. current_position[X_AXIS] = inactive_extruder_x_pos;
  5259. inactive_extruder_x_pos = destination[X_AXIS];
  5260. }
  5261. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5262. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5263. if (active_extruder == 0 || active_extruder_parked)
  5264. current_position[X_AXIS] = inactive_extruder_x_pos;
  5265. else
  5266. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5267. inactive_extruder_x_pos = destination[X_AXIS];
  5268. extruder_duplication_enabled = false;
  5269. }
  5270. else {
  5271. // record raised toolhead position for use by unpark
  5272. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5273. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5274. active_extruder_parked = true;
  5275. delayed_move_time = 0;
  5276. }
  5277. #else // !DUAL_X_CARRIAGE
  5278. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5279. // Offset extruder, make sure to apply the bed level rotation matrix
  5280. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5281. extruder_offset[Y_AXIS][tmp_extruder],
  5282. 0),
  5283. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5284. extruder_offset[Y_AXIS][active_extruder],
  5285. 0),
  5286. offset_vec = tmp_offset_vec - act_offset_vec;
  5287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5288. if (DEBUGGING(LEVELING)) {
  5289. SERIAL_ECHOLNPGM(">>> gcode_T");
  5290. tmp_offset_vec.debug("tmp_offset_vec");
  5291. act_offset_vec.debug("act_offset_vec");
  5292. offset_vec.debug("offset_vec (BEFORE)");
  5293. DEBUG_POS("BEFORE rotation", current_position);
  5294. }
  5295. #endif
  5296. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5297. current_position[X_AXIS] += offset_vec.x;
  5298. current_position[Y_AXIS] += offset_vec.y;
  5299. current_position[Z_AXIS] += offset_vec.z;
  5300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5301. if (DEBUGGING(LEVELING)) {
  5302. offset_vec.debug("offset_vec (AFTER)");
  5303. DEBUG_POS("AFTER rotation", current_position);
  5304. SERIAL_ECHOLNPGM("<<< gcode_T");
  5305. }
  5306. #endif
  5307. #else // !AUTO_BED_LEVELING_FEATURE
  5308. // Offset extruder (only by XY)
  5309. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5310. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5311. #endif // !AUTO_BED_LEVELING_FEATURE
  5312. // Set the new active extruder and position
  5313. active_extruder = tmp_extruder;
  5314. #endif // !DUAL_X_CARRIAGE
  5315. #if ENABLED(DELTA)
  5316. sync_plan_position_delta();
  5317. #else
  5318. sync_plan_position();
  5319. #endif
  5320. // Move to the old position if 'F' was in the parameters
  5321. if (make_move && IsRunning()) prepare_move();
  5322. }
  5323. #if ENABLED(EXT_SOLENOID)
  5324. st_synchronize();
  5325. disable_all_solenoids();
  5326. enable_solenoid_on_active_extruder();
  5327. #endif // EXT_SOLENOID
  5328. #endif // EXTRUDERS > 1
  5329. SERIAL_ECHO_START;
  5330. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5331. SERIAL_PROTOCOLLN((int)active_extruder);
  5332. }
  5333. }
  5334. /**
  5335. * Process a single command and dispatch it to its handler
  5336. * This is called from the main loop()
  5337. */
  5338. void process_next_command() {
  5339. current_command = command_queue[cmd_queue_index_r];
  5340. if (DEBUGGING(ECHO)) {
  5341. SERIAL_ECHO_START;
  5342. SERIAL_ECHOLN(current_command);
  5343. }
  5344. // Sanitize the current command:
  5345. // - Skip leading spaces
  5346. // - Bypass N[-0-9][0-9]*[ ]*
  5347. // - Overwrite * with nul to mark the end
  5348. while (*current_command == ' ') ++current_command;
  5349. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5350. current_command += 2; // skip N[-0-9]
  5351. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5352. while (*current_command == ' ') ++current_command; // skip [ ]*
  5353. }
  5354. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5355. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5356. char *cmd_ptr = current_command;
  5357. // Get the command code, which must be G, M, or T
  5358. char command_code = *cmd_ptr++;
  5359. // Skip spaces to get the numeric part
  5360. while (*cmd_ptr == ' ') cmd_ptr++;
  5361. uint16_t codenum = 0; // define ahead of goto
  5362. // Bail early if there's no code
  5363. bool code_is_good = NUMERIC(*cmd_ptr);
  5364. if (!code_is_good) goto ExitUnknownCommand;
  5365. // Get and skip the code number
  5366. do {
  5367. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5368. cmd_ptr++;
  5369. } while (NUMERIC(*cmd_ptr));
  5370. // Skip all spaces to get to the first argument, or nul
  5371. while (*cmd_ptr == ' ') cmd_ptr++;
  5372. // The command's arguments (if any) start here, for sure!
  5373. current_command_args = cmd_ptr;
  5374. KEEPALIVE_STATE(IN_HANDLER);
  5375. // Handle a known G, M, or T
  5376. switch (command_code) {
  5377. case 'G': switch (codenum) {
  5378. // G0, G1
  5379. case 0:
  5380. case 1:
  5381. gcode_G0_G1();
  5382. break;
  5383. // G2, G3
  5384. #if DISABLED(SCARA)
  5385. case 2: // G2 - CW ARC
  5386. case 3: // G3 - CCW ARC
  5387. gcode_G2_G3(codenum == 2);
  5388. break;
  5389. #endif
  5390. // G4 Dwell
  5391. case 4:
  5392. gcode_G4();
  5393. break;
  5394. #if ENABLED(FWRETRACT)
  5395. case 10: // G10: retract
  5396. case 11: // G11: retract_recover
  5397. gcode_G10_G11(codenum == 10);
  5398. break;
  5399. #endif //FWRETRACT
  5400. case 28: // G28: Home all axes, one at a time
  5401. gcode_G28();
  5402. break;
  5403. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5404. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5405. gcode_G29();
  5406. break;
  5407. #endif
  5408. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5409. #if DISABLED(Z_PROBE_SLED)
  5410. case 30: // G30 Single Z probe
  5411. gcode_G30();
  5412. break;
  5413. #else // Z_PROBE_SLED
  5414. case 31: // G31: dock the sled
  5415. case 32: // G32: undock the sled
  5416. dock_sled(codenum == 31);
  5417. break;
  5418. #endif // Z_PROBE_SLED
  5419. #endif // AUTO_BED_LEVELING_FEATURE
  5420. case 90: // G90
  5421. relative_mode = false;
  5422. break;
  5423. case 91: // G91
  5424. relative_mode = true;
  5425. break;
  5426. case 92: // G92
  5427. gcode_G92();
  5428. break;
  5429. }
  5430. break;
  5431. case 'M': switch (codenum) {
  5432. #if ENABLED(ULTIPANEL)
  5433. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5434. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5435. gcode_M0_M1();
  5436. break;
  5437. #endif // ULTIPANEL
  5438. case 17:
  5439. gcode_M17();
  5440. break;
  5441. #if ENABLED(SDSUPPORT)
  5442. case 20: // M20 - list SD card
  5443. gcode_M20(); break;
  5444. case 21: // M21 - init SD card
  5445. gcode_M21(); break;
  5446. case 22: //M22 - release SD card
  5447. gcode_M22(); break;
  5448. case 23: //M23 - Select file
  5449. gcode_M23(); break;
  5450. case 24: //M24 - Start SD print
  5451. gcode_M24(); break;
  5452. case 25: //M25 - Pause SD print
  5453. gcode_M25(); break;
  5454. case 26: //M26 - Set SD index
  5455. gcode_M26(); break;
  5456. case 27: //M27 - Get SD status
  5457. gcode_M27(); break;
  5458. case 28: //M28 - Start SD write
  5459. gcode_M28(); break;
  5460. case 29: //M29 - Stop SD write
  5461. gcode_M29(); break;
  5462. case 30: //M30 <filename> Delete File
  5463. gcode_M30(); break;
  5464. case 32: //M32 - Select file and start SD print
  5465. gcode_M32(); break;
  5466. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5467. case 33: //M33 - Get the long full path to a file or folder
  5468. gcode_M33(); break;
  5469. #endif // LONG_FILENAME_HOST_SUPPORT
  5470. case 928: //M928 - Start SD write
  5471. gcode_M928(); break;
  5472. #endif //SDSUPPORT
  5473. case 31: //M31 take time since the start of the SD print or an M109 command
  5474. gcode_M31();
  5475. break;
  5476. case 42: //M42 -Change pin status via gcode
  5477. gcode_M42();
  5478. break;
  5479. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5480. case 48: // M48 Z probe repeatability
  5481. gcode_M48();
  5482. break;
  5483. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5484. case 75: // Start print timer
  5485. gcode_M75();
  5486. break;
  5487. case 76: // Pause print timer
  5488. gcode_M76();
  5489. break;
  5490. case 77: // Stop print timer
  5491. gcode_M77();
  5492. break;
  5493. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5494. case 100:
  5495. gcode_M100();
  5496. break;
  5497. #endif
  5498. case 104: // M104
  5499. gcode_M104();
  5500. break;
  5501. case 110: // M110: Set Current Line Number
  5502. gcode_M110();
  5503. break;
  5504. case 111: // M111: Set debug level
  5505. gcode_M111();
  5506. break;
  5507. case 112: // M112: Emergency Stop
  5508. gcode_M112();
  5509. break;
  5510. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5511. case 113: // M113: Set Host Keepalive interval
  5512. gcode_M113();
  5513. break;
  5514. #endif
  5515. case 140: // M140: Set bed temp
  5516. gcode_M140();
  5517. break;
  5518. case 105: // M105: Read current temperature
  5519. gcode_M105();
  5520. KEEPALIVE_STATE(NOT_BUSY);
  5521. return; // "ok" already printed
  5522. case 109: // M109: Wait for temperature
  5523. gcode_M109();
  5524. break;
  5525. #if HAS_TEMP_BED
  5526. case 190: // M190: Wait for bed heater to reach target
  5527. gcode_M190();
  5528. break;
  5529. #endif // HAS_TEMP_BED
  5530. #if FAN_COUNT > 0
  5531. case 106: // M106: Fan On
  5532. gcode_M106();
  5533. break;
  5534. case 107: // M107: Fan Off
  5535. gcode_M107();
  5536. break;
  5537. #endif // FAN_COUNT > 0
  5538. #if ENABLED(BARICUDA)
  5539. // PWM for HEATER_1_PIN
  5540. #if HAS_HEATER_1
  5541. case 126: // M126: valve open
  5542. gcode_M126();
  5543. break;
  5544. case 127: // M127: valve closed
  5545. gcode_M127();
  5546. break;
  5547. #endif // HAS_HEATER_1
  5548. // PWM for HEATER_2_PIN
  5549. #if HAS_HEATER_2
  5550. case 128: // M128: valve open
  5551. gcode_M128();
  5552. break;
  5553. case 129: // M129: valve closed
  5554. gcode_M129();
  5555. break;
  5556. #endif // HAS_HEATER_2
  5557. #endif // BARICUDA
  5558. #if HAS_POWER_SWITCH
  5559. case 80: // M80: Turn on Power Supply
  5560. gcode_M80();
  5561. break;
  5562. #endif // HAS_POWER_SWITCH
  5563. case 81: // M81: Turn off Power, including Power Supply, if possible
  5564. gcode_M81();
  5565. break;
  5566. case 82:
  5567. gcode_M82();
  5568. break;
  5569. case 83:
  5570. gcode_M83();
  5571. break;
  5572. case 18: // (for compatibility)
  5573. case 84: // M84
  5574. gcode_M18_M84();
  5575. break;
  5576. case 85: // M85
  5577. gcode_M85();
  5578. break;
  5579. case 92: // M92: Set the steps-per-unit for one or more axes
  5580. gcode_M92();
  5581. break;
  5582. case 115: // M115: Report capabilities
  5583. gcode_M115();
  5584. break;
  5585. case 117: // M117: Set LCD message text, if possible
  5586. gcode_M117();
  5587. break;
  5588. case 114: // M114: Report current position
  5589. gcode_M114();
  5590. break;
  5591. case 120: // M120: Enable endstops
  5592. gcode_M120();
  5593. break;
  5594. case 121: // M121: Disable endstops
  5595. gcode_M121();
  5596. break;
  5597. case 119: // M119: Report endstop states
  5598. gcode_M119();
  5599. break;
  5600. #if ENABLED(ULTIPANEL)
  5601. case 145: // M145: Set material heatup parameters
  5602. gcode_M145();
  5603. break;
  5604. #endif
  5605. #if ENABLED(BLINKM)
  5606. case 150: // M150
  5607. gcode_M150();
  5608. break;
  5609. #endif //BLINKM
  5610. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5611. case 155:
  5612. gcode_M155();
  5613. break;
  5614. case 156:
  5615. gcode_M156();
  5616. break;
  5617. #endif //EXPERIMENTAL_I2CBUS
  5618. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5619. gcode_M200();
  5620. break;
  5621. case 201: // M201
  5622. gcode_M201();
  5623. break;
  5624. #if 0 // Not used for Sprinter/grbl gen6
  5625. case 202: // M202
  5626. gcode_M202();
  5627. break;
  5628. #endif
  5629. case 203: // M203 max feedrate mm/sec
  5630. gcode_M203();
  5631. break;
  5632. case 204: // M204 acclereration S normal moves T filmanent only moves
  5633. gcode_M204();
  5634. break;
  5635. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5636. gcode_M205();
  5637. break;
  5638. case 206: // M206 additional homing offset
  5639. gcode_M206();
  5640. break;
  5641. #if ENABLED(DELTA)
  5642. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5643. gcode_M665();
  5644. break;
  5645. #endif
  5646. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5647. case 666: // M666 set delta / dual endstop adjustment
  5648. gcode_M666();
  5649. break;
  5650. #endif
  5651. #if ENABLED(FWRETRACT)
  5652. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5653. gcode_M207();
  5654. break;
  5655. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5656. gcode_M208();
  5657. break;
  5658. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5659. gcode_M209();
  5660. break;
  5661. #endif // FWRETRACT
  5662. #if EXTRUDERS > 1
  5663. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5664. gcode_M218();
  5665. break;
  5666. #endif
  5667. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5668. gcode_M220();
  5669. break;
  5670. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5671. gcode_M221();
  5672. break;
  5673. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5674. gcode_M226();
  5675. break;
  5676. #if HAS_SERVOS
  5677. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5678. gcode_M280();
  5679. break;
  5680. #endif // HAS_SERVOS
  5681. #if HAS_BUZZER
  5682. case 300: // M300 - Play beep tone
  5683. gcode_M300();
  5684. break;
  5685. #endif // HAS_BUZZER
  5686. #if ENABLED(PIDTEMP)
  5687. case 301: // M301
  5688. gcode_M301();
  5689. break;
  5690. #endif // PIDTEMP
  5691. #if ENABLED(PIDTEMPBED)
  5692. case 304: // M304
  5693. gcode_M304();
  5694. break;
  5695. #endif // PIDTEMPBED
  5696. #if defined(CHDK) || HAS_PHOTOGRAPH
  5697. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5698. gcode_M240();
  5699. break;
  5700. #endif // CHDK || PHOTOGRAPH_PIN
  5701. #if ENABLED(HAS_LCD_CONTRAST)
  5702. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5703. gcode_M250();
  5704. break;
  5705. #endif // HAS_LCD_CONTRAST
  5706. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5707. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5708. gcode_M302();
  5709. break;
  5710. #endif // PREVENT_DANGEROUS_EXTRUDE
  5711. case 303: // M303 PID autotune
  5712. gcode_M303();
  5713. break;
  5714. #if ENABLED(SCARA)
  5715. case 360: // M360 SCARA Theta pos1
  5716. if (gcode_M360()) return;
  5717. break;
  5718. case 361: // M361 SCARA Theta pos2
  5719. if (gcode_M361()) return;
  5720. break;
  5721. case 362: // M362 SCARA Psi pos1
  5722. if (gcode_M362()) return;
  5723. break;
  5724. case 363: // M363 SCARA Psi pos2
  5725. if (gcode_M363()) return;
  5726. break;
  5727. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5728. if (gcode_M364()) return;
  5729. break;
  5730. case 365: // M365 Set SCARA scaling for X Y Z
  5731. gcode_M365();
  5732. break;
  5733. #endif // SCARA
  5734. case 400: // M400 finish all moves
  5735. gcode_M400();
  5736. break;
  5737. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5738. case 401:
  5739. gcode_M401();
  5740. break;
  5741. case 402:
  5742. gcode_M402();
  5743. break;
  5744. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5745. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5746. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5747. gcode_M404();
  5748. break;
  5749. case 405: //M405 Turn on filament sensor for control
  5750. gcode_M405();
  5751. break;
  5752. case 406: //M406 Turn off filament sensor for control
  5753. gcode_M406();
  5754. break;
  5755. case 407: //M407 Display measured filament diameter
  5756. gcode_M407();
  5757. break;
  5758. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5759. case 410: // M410 quickstop - Abort all the planned moves.
  5760. gcode_M410();
  5761. break;
  5762. #if ENABLED(MESH_BED_LEVELING)
  5763. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5764. gcode_M420();
  5765. break;
  5766. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5767. gcode_M421();
  5768. break;
  5769. #endif
  5770. case 428: // M428 Apply current_position to home_offset
  5771. gcode_M428();
  5772. break;
  5773. case 500: // M500 Store settings in EEPROM
  5774. gcode_M500();
  5775. break;
  5776. case 501: // M501 Read settings from EEPROM
  5777. gcode_M501();
  5778. break;
  5779. case 502: // M502 Revert to default settings
  5780. gcode_M502();
  5781. break;
  5782. case 503: // M503 print settings currently in memory
  5783. gcode_M503();
  5784. break;
  5785. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5786. case 540:
  5787. gcode_M540();
  5788. break;
  5789. #endif
  5790. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5791. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5792. gcode_SET_Z_PROBE_OFFSET();
  5793. break;
  5794. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5795. #if ENABLED(FILAMENTCHANGEENABLE)
  5796. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5797. gcode_M600();
  5798. break;
  5799. #endif // FILAMENTCHANGEENABLE
  5800. #if ENABLED(DUAL_X_CARRIAGE)
  5801. case 605:
  5802. gcode_M605();
  5803. break;
  5804. #endif // DUAL_X_CARRIAGE
  5805. case 907: // M907 Set digital trimpot motor current using axis codes.
  5806. gcode_M907();
  5807. break;
  5808. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5809. case 908: // M908 Control digital trimpot directly.
  5810. gcode_M908();
  5811. break;
  5812. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5813. case 909: // M909 Print digipot/DAC current value
  5814. gcode_M909();
  5815. break;
  5816. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5817. gcode_M910();
  5818. break;
  5819. #endif
  5820. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5821. #if HAS_MICROSTEPS
  5822. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5823. gcode_M350();
  5824. break;
  5825. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5826. gcode_M351();
  5827. break;
  5828. #endif // HAS_MICROSTEPS
  5829. case 999: // M999: Restart after being Stopped
  5830. gcode_M999();
  5831. break;
  5832. }
  5833. break;
  5834. case 'T':
  5835. gcode_T(codenum);
  5836. break;
  5837. default: code_is_good = false;
  5838. }
  5839. KEEPALIVE_STATE(NOT_BUSY);
  5840. ExitUnknownCommand:
  5841. // Still unknown command? Throw an error
  5842. if (!code_is_good) unknown_command_error();
  5843. ok_to_send();
  5844. }
  5845. void FlushSerialRequestResend() {
  5846. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5847. MYSERIAL.flush();
  5848. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5849. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5850. ok_to_send();
  5851. }
  5852. void ok_to_send() {
  5853. refresh_cmd_timeout();
  5854. if (!send_ok[cmd_queue_index_r]) return;
  5855. SERIAL_PROTOCOLPGM(MSG_OK);
  5856. #if ENABLED(ADVANCED_OK)
  5857. char* p = command_queue[cmd_queue_index_r];
  5858. if (*p == 'N') {
  5859. SERIAL_PROTOCOL(' ');
  5860. SERIAL_ECHO(*p++);
  5861. while (NUMERIC_SIGNED(*p))
  5862. SERIAL_ECHO(*p++);
  5863. }
  5864. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5865. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5866. #endif
  5867. SERIAL_EOL;
  5868. }
  5869. void clamp_to_software_endstops(float target[3]) {
  5870. if (min_software_endstops) {
  5871. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5872. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5873. float negative_z_offset = 0;
  5874. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5875. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5876. if (home_offset[Z_AXIS] < 0) {
  5877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5878. if (DEBUGGING(LEVELING)) {
  5879. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5880. SERIAL_EOL;
  5881. }
  5882. #endif
  5883. negative_z_offset += home_offset[Z_AXIS];
  5884. }
  5885. #endif
  5886. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5887. }
  5888. if (max_software_endstops) {
  5889. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5890. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5891. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5892. }
  5893. }
  5894. #if ENABLED(DELTA)
  5895. void recalc_delta_settings(float radius, float diagonal_rod) {
  5896. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5897. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5898. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5899. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5900. delta_tower3_x = 0.0; // back middle tower
  5901. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5902. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5903. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5904. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5905. }
  5906. void calculate_delta(float cartesian[3]) {
  5907. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5908. - sq(delta_tower1_x - cartesian[X_AXIS])
  5909. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5910. ) + cartesian[Z_AXIS];
  5911. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5912. - sq(delta_tower2_x - cartesian[X_AXIS])
  5913. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5914. ) + cartesian[Z_AXIS];
  5915. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5916. - sq(delta_tower3_x - cartesian[X_AXIS])
  5917. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5918. ) + cartesian[Z_AXIS];
  5919. /**
  5920. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5921. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5922. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5923. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5924. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5925. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5926. */
  5927. }
  5928. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5929. // Adjust print surface height by linear interpolation over the bed_level array.
  5930. void adjust_delta(float cartesian[3]) {
  5931. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5932. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5933. float h1 = 0.001 - half, h2 = half - 0.001,
  5934. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5935. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5936. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5937. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5938. z1 = bed_level[floor_x + half][floor_y + half],
  5939. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5940. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5941. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5942. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5943. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5944. offset = (1 - ratio_x) * left + ratio_x * right;
  5945. delta[X_AXIS] += offset;
  5946. delta[Y_AXIS] += offset;
  5947. delta[Z_AXIS] += offset;
  5948. /**
  5949. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5950. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5951. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5952. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5953. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5954. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5955. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5956. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5957. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5958. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5959. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5960. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5961. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5962. */
  5963. }
  5964. #endif // AUTO_BED_LEVELING_FEATURE
  5965. #endif // DELTA
  5966. #if ENABLED(MESH_BED_LEVELING)
  5967. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5968. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5969. if (!mbl.active) {
  5970. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5971. set_current_to_destination();
  5972. return;
  5973. }
  5974. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  5975. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  5976. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  5977. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  5978. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5979. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5980. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5981. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5982. if (pix == ix && piy == iy) {
  5983. // Start and end on same mesh square
  5984. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5985. set_current_to_destination();
  5986. return;
  5987. }
  5988. float nx, ny, nz, ne, normalized_dist;
  5989. if (ix > pix && TEST(x_splits, ix)) {
  5990. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  5991. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5992. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5993. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5994. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5995. CBI(x_splits, ix);
  5996. }
  5997. else if (ix < pix && TEST(x_splits, pix)) {
  5998. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  5999. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6000. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6001. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6002. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6003. CBI(x_splits, pix);
  6004. }
  6005. else if (iy > piy && TEST(y_splits, iy)) {
  6006. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6007. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6008. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6009. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6010. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6011. CBI(y_splits, iy);
  6012. }
  6013. else if (iy < piy && TEST(y_splits, piy)) {
  6014. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6015. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6016. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6017. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6018. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6019. CBI(y_splits, piy);
  6020. }
  6021. else {
  6022. // Already split on a border
  6023. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6024. set_current_to_destination();
  6025. return;
  6026. }
  6027. // Do the split and look for more borders
  6028. destination[X_AXIS] = nx;
  6029. destination[Y_AXIS] = ny;
  6030. destination[Z_AXIS] = nz;
  6031. destination[E_AXIS] = ne;
  6032. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6033. destination[X_AXIS] = x;
  6034. destination[Y_AXIS] = y;
  6035. destination[Z_AXIS] = z;
  6036. destination[E_AXIS] = e;
  6037. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6038. }
  6039. #endif // MESH_BED_LEVELING
  6040. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6041. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6042. if (DEBUGGING(DRYRUN)) return;
  6043. float de = dest_e - curr_e;
  6044. if (de) {
  6045. if (degHotend(active_extruder) < extrude_min_temp) {
  6046. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6047. SERIAL_ECHO_START;
  6048. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6049. }
  6050. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6051. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6052. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6053. SERIAL_ECHO_START;
  6054. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6055. }
  6056. #endif
  6057. }
  6058. }
  6059. #endif // PREVENT_DANGEROUS_EXTRUDE
  6060. #if ENABLED(DELTA) || ENABLED(SCARA)
  6061. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6062. float difference[NUM_AXIS];
  6063. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6064. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6065. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6066. if (cartesian_mm < 0.000001) return false;
  6067. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6068. int steps = max(1, int(delta_segments_per_second * seconds));
  6069. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6070. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6071. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6072. for (int s = 1; s <= steps; s++) {
  6073. float fraction = float(s) / float(steps);
  6074. for (int8_t i = 0; i < NUM_AXIS; i++)
  6075. target[i] = current_position[i] + difference[i] * fraction;
  6076. calculate_delta(target);
  6077. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6078. adjust_delta(target);
  6079. #endif
  6080. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6081. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6082. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6083. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6084. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6085. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6086. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6087. }
  6088. return true;
  6089. }
  6090. #endif // DELTA || SCARA
  6091. #if ENABLED(SCARA)
  6092. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6093. #endif
  6094. #if ENABLED(DUAL_X_CARRIAGE)
  6095. inline bool prepare_move_dual_x_carriage() {
  6096. if (active_extruder_parked) {
  6097. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6098. // move duplicate extruder into correct duplication position.
  6099. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6100. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6101. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6102. sync_plan_position();
  6103. st_synchronize();
  6104. extruder_duplication_enabled = true;
  6105. active_extruder_parked = false;
  6106. }
  6107. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6108. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6109. // This is a travel move (with no extrusion)
  6110. // Skip it, but keep track of the current position
  6111. // (so it can be used as the start of the next non-travel move)
  6112. if (delayed_move_time != 0xFFFFFFFFUL) {
  6113. set_current_to_destination();
  6114. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6115. delayed_move_time = millis();
  6116. return false;
  6117. }
  6118. }
  6119. delayed_move_time = 0;
  6120. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6121. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6124. active_extruder_parked = false;
  6125. }
  6126. }
  6127. return true;
  6128. }
  6129. #endif // DUAL_X_CARRIAGE
  6130. #if DISABLED(DELTA) && DISABLED(SCARA)
  6131. inline bool prepare_move_cartesian() {
  6132. // Do not use feedrate_multiplier for E or Z only moves
  6133. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6134. line_to_destination();
  6135. }
  6136. else {
  6137. #if ENABLED(MESH_BED_LEVELING)
  6138. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6139. return false;
  6140. #else
  6141. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6142. #endif
  6143. }
  6144. return true;
  6145. }
  6146. #endif // !DELTA && !SCARA
  6147. /**
  6148. * Prepare a single move and get ready for the next one
  6149. *
  6150. * (This may call plan_buffer_line several times to put
  6151. * smaller moves into the planner for DELTA or SCARA.)
  6152. */
  6153. void prepare_move() {
  6154. clamp_to_software_endstops(destination);
  6155. refresh_cmd_timeout();
  6156. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6157. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6158. #endif
  6159. #if ENABLED(SCARA)
  6160. if (!prepare_move_scara(destination)) return;
  6161. #elif ENABLED(DELTA)
  6162. if (!prepare_move_delta(destination)) return;
  6163. #endif
  6164. #if ENABLED(DUAL_X_CARRIAGE)
  6165. if (!prepare_move_dual_x_carriage()) return;
  6166. #endif
  6167. #if DISABLED(DELTA) && DISABLED(SCARA)
  6168. if (!prepare_move_cartesian()) return;
  6169. #endif
  6170. set_current_to_destination();
  6171. }
  6172. /**
  6173. * Plan an arc in 2 dimensions
  6174. *
  6175. * The arc is approximated by generating many small linear segments.
  6176. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6177. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6178. * larger segments will tend to be more efficient. Your slicer should have
  6179. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6180. */
  6181. void plan_arc(
  6182. float target[NUM_AXIS], // Destination position
  6183. float* offset, // Center of rotation relative to current_position
  6184. uint8_t clockwise // Clockwise?
  6185. ) {
  6186. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6187. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6188. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6189. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6190. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6191. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6192. r_axis1 = -offset[Y_AXIS],
  6193. rt_axis0 = target[X_AXIS] - center_axis0,
  6194. rt_axis1 = target[Y_AXIS] - center_axis1;
  6195. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6196. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6197. if (angular_travel < 0) angular_travel += RADIANS(360);
  6198. if (clockwise) angular_travel -= RADIANS(360);
  6199. // Make a circle if the angular rotation is 0
  6200. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6201. angular_travel += RADIANS(360);
  6202. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6203. if (mm_of_travel < 0.001) return;
  6204. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6205. if (segments == 0) segments = 1;
  6206. float theta_per_segment = angular_travel / segments;
  6207. float linear_per_segment = linear_travel / segments;
  6208. float extruder_per_segment = extruder_travel / segments;
  6209. /**
  6210. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6211. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6212. * r_T = [cos(phi) -sin(phi);
  6213. * sin(phi) cos(phi] * r ;
  6214. *
  6215. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6216. * defined from the circle center to the initial position. Each line segment is formed by successive
  6217. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6218. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6219. * all double numbers are single precision on the Arduino. (True double precision will not have
  6220. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6221. * tool precision in some cases. Therefore, arc path correction is implemented.
  6222. *
  6223. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6224. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6225. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6226. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6227. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6228. * issue for CNC machines with the single precision Arduino calculations.
  6229. *
  6230. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6231. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6232. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6233. * This is important when there are successive arc motions.
  6234. */
  6235. // Vector rotation matrix values
  6236. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6237. float sin_T = theta_per_segment;
  6238. float arc_target[NUM_AXIS];
  6239. float sin_Ti;
  6240. float cos_Ti;
  6241. float r_axisi;
  6242. uint16_t i;
  6243. int8_t count = 0;
  6244. // Initialize the linear axis
  6245. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6246. // Initialize the extruder axis
  6247. arc_target[E_AXIS] = current_position[E_AXIS];
  6248. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6249. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6250. if (count < N_ARC_CORRECTION) {
  6251. // Apply vector rotation matrix to previous r_axis0 / 1
  6252. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6253. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6254. r_axis1 = r_axisi;
  6255. count++;
  6256. }
  6257. else {
  6258. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6259. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6260. cos_Ti = cos(i * theta_per_segment);
  6261. sin_Ti = sin(i * theta_per_segment);
  6262. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6263. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6264. count = 0;
  6265. }
  6266. // Update arc_target location
  6267. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6268. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6269. arc_target[Z_AXIS] += linear_per_segment;
  6270. arc_target[E_AXIS] += extruder_per_segment;
  6271. clamp_to_software_endstops(arc_target);
  6272. #if ENABLED(DELTA) || ENABLED(SCARA)
  6273. calculate_delta(arc_target);
  6274. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6275. adjust_delta(arc_target);
  6276. #endif
  6277. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6278. #else
  6279. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6280. #endif
  6281. }
  6282. // Ensure last segment arrives at target location.
  6283. #if ENABLED(DELTA) || ENABLED(SCARA)
  6284. calculate_delta(target);
  6285. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6286. adjust_delta(target);
  6287. #endif
  6288. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6289. #else
  6290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6291. #endif
  6292. // As far as the parser is concerned, the position is now == target. In reality the
  6293. // motion control system might still be processing the action and the real tool position
  6294. // in any intermediate location.
  6295. set_current_to_destination();
  6296. }
  6297. #if HAS_CONTROLLERFAN
  6298. void controllerFan() {
  6299. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6300. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6301. millis_t ms = millis();
  6302. if (ELAPSED(ms, nextMotorCheck)) {
  6303. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6304. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6305. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6306. #if EXTRUDERS > 1
  6307. || E1_ENABLE_READ == E_ENABLE_ON
  6308. #if HAS_X2_ENABLE
  6309. || X2_ENABLE_READ == X_ENABLE_ON
  6310. #endif
  6311. #if EXTRUDERS > 2
  6312. || E2_ENABLE_READ == E_ENABLE_ON
  6313. #if EXTRUDERS > 3
  6314. || E3_ENABLE_READ == E_ENABLE_ON
  6315. #endif
  6316. #endif
  6317. #endif
  6318. ) {
  6319. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6320. }
  6321. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6322. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6323. // allows digital or PWM fan output to be used (see M42 handling)
  6324. digitalWrite(CONTROLLERFAN_PIN, speed);
  6325. analogWrite(CONTROLLERFAN_PIN, speed);
  6326. }
  6327. }
  6328. #endif // HAS_CONTROLLERFAN
  6329. #if ENABLED(SCARA)
  6330. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6331. // Perform forward kinematics, and place results in delta[3]
  6332. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6333. float x_sin, x_cos, y_sin, y_cos;
  6334. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6335. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6336. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6337. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6338. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6339. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6340. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6341. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6342. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6343. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6344. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6345. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6346. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6347. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6348. }
  6349. void calculate_delta(float cartesian[3]) {
  6350. //reverse kinematics.
  6351. // Perform reversed kinematics, and place results in delta[3]
  6352. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6353. float SCARA_pos[2];
  6354. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6355. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6356. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6357. #if (Linkage_1 == Linkage_2)
  6358. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6359. #else
  6360. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6361. #endif
  6362. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6363. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6364. SCARA_K2 = Linkage_2 * SCARA_S2;
  6365. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6366. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6367. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6368. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6369. delta[Z_AXIS] = cartesian[Z_AXIS];
  6370. /**
  6371. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6372. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6373. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6374. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6375. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6376. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6377. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6378. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6379. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6380. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6381. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6382. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6383. SERIAL_EOL;
  6384. */
  6385. }
  6386. #endif // SCARA
  6387. #if ENABLED(TEMP_STAT_LEDS)
  6388. static bool red_led = false;
  6389. static millis_t next_status_led_update_ms = 0;
  6390. void handle_status_leds(void) {
  6391. float max_temp = 0.0;
  6392. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6393. next_status_led_update_ms += 500; // Update every 0.5s
  6394. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6395. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6396. #if HAS_TEMP_BED
  6397. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6398. #endif
  6399. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6400. if (new_led != red_led) {
  6401. red_led = new_led;
  6402. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6403. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6404. }
  6405. }
  6406. }
  6407. #endif
  6408. void enable_all_steppers() {
  6409. enable_x();
  6410. enable_y();
  6411. enable_z();
  6412. enable_e0();
  6413. enable_e1();
  6414. enable_e2();
  6415. enable_e3();
  6416. }
  6417. void disable_all_steppers() {
  6418. disable_x();
  6419. disable_y();
  6420. disable_z();
  6421. disable_e0();
  6422. disable_e1();
  6423. disable_e2();
  6424. disable_e3();
  6425. }
  6426. /**
  6427. * Standard idle routine keeps the machine alive
  6428. */
  6429. void idle(
  6430. #if ENABLED(FILAMENTCHANGEENABLE)
  6431. bool no_stepper_sleep/*=false*/
  6432. #endif
  6433. ) {
  6434. manage_heater();
  6435. manage_inactivity(
  6436. #if ENABLED(FILAMENTCHANGEENABLE)
  6437. no_stepper_sleep
  6438. #endif
  6439. );
  6440. host_keepalive();
  6441. lcd_update();
  6442. }
  6443. /**
  6444. * Manage several activities:
  6445. * - Check for Filament Runout
  6446. * - Keep the command buffer full
  6447. * - Check for maximum inactive time between commands
  6448. * - Check for maximum inactive time between stepper commands
  6449. * - Check if pin CHDK needs to go LOW
  6450. * - Check for KILL button held down
  6451. * - Check for HOME button held down
  6452. * - Check if cooling fan needs to be switched on
  6453. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6454. */
  6455. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6456. #if HAS_FILRUNOUT
  6457. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6458. filrunout();
  6459. #endif
  6460. if (commands_in_queue < BUFSIZE) get_available_commands();
  6461. millis_t ms = millis();
  6462. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6463. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6464. && !ignore_stepper_queue && !blocks_queued()) {
  6465. #if ENABLED(DISABLE_INACTIVE_X)
  6466. disable_x();
  6467. #endif
  6468. #if ENABLED(DISABLE_INACTIVE_Y)
  6469. disable_y();
  6470. #endif
  6471. #if ENABLED(DISABLE_INACTIVE_Z)
  6472. disable_z();
  6473. #endif
  6474. #if ENABLED(DISABLE_INACTIVE_E)
  6475. disable_e0();
  6476. disable_e1();
  6477. disable_e2();
  6478. disable_e3();
  6479. #endif
  6480. }
  6481. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6482. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6483. chdkActive = false;
  6484. WRITE(CHDK, LOW);
  6485. }
  6486. #endif
  6487. #if HAS_KILL
  6488. // Check if the kill button was pressed and wait just in case it was an accidental
  6489. // key kill key press
  6490. // -------------------------------------------------------------------------------
  6491. static int killCount = 0; // make the inactivity button a bit less responsive
  6492. const int KILL_DELAY = 750;
  6493. if (!READ(KILL_PIN))
  6494. killCount++;
  6495. else if (killCount > 0)
  6496. killCount--;
  6497. // Exceeded threshold and we can confirm that it was not accidental
  6498. // KILL the machine
  6499. // ----------------------------------------------------------------
  6500. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6501. #endif
  6502. #if HAS_HOME
  6503. // Check to see if we have to home, use poor man's debouncer
  6504. // ---------------------------------------------------------
  6505. static int homeDebounceCount = 0; // poor man's debouncing count
  6506. const int HOME_DEBOUNCE_DELAY = 2500;
  6507. if (!READ(HOME_PIN)) {
  6508. if (!homeDebounceCount) {
  6509. enqueue_and_echo_commands_P(PSTR("G28"));
  6510. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6511. }
  6512. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6513. homeDebounceCount++;
  6514. else
  6515. homeDebounceCount = 0;
  6516. }
  6517. #endif
  6518. #if HAS_CONTROLLERFAN
  6519. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6520. #endif
  6521. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6522. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6523. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6524. bool oldstatus;
  6525. switch (active_extruder) {
  6526. case 0:
  6527. oldstatus = E0_ENABLE_READ;
  6528. enable_e0();
  6529. break;
  6530. #if EXTRUDERS > 1
  6531. case 1:
  6532. oldstatus = E1_ENABLE_READ;
  6533. enable_e1();
  6534. break;
  6535. #if EXTRUDERS > 2
  6536. case 2:
  6537. oldstatus = E2_ENABLE_READ;
  6538. enable_e2();
  6539. break;
  6540. #if EXTRUDERS > 3
  6541. case 3:
  6542. oldstatus = E3_ENABLE_READ;
  6543. enable_e3();
  6544. break;
  6545. #endif
  6546. #endif
  6547. #endif
  6548. }
  6549. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6550. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6551. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6552. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6553. current_position[E_AXIS] = oldepos;
  6554. destination[E_AXIS] = oldedes;
  6555. plan_set_e_position(oldepos);
  6556. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6557. st_synchronize();
  6558. switch (active_extruder) {
  6559. case 0:
  6560. E0_ENABLE_WRITE(oldstatus);
  6561. break;
  6562. #if EXTRUDERS > 1
  6563. case 1:
  6564. E1_ENABLE_WRITE(oldstatus);
  6565. break;
  6566. #if EXTRUDERS > 2
  6567. case 2:
  6568. E2_ENABLE_WRITE(oldstatus);
  6569. break;
  6570. #if EXTRUDERS > 3
  6571. case 3:
  6572. E3_ENABLE_WRITE(oldstatus);
  6573. break;
  6574. #endif
  6575. #endif
  6576. #endif
  6577. }
  6578. }
  6579. #endif
  6580. #if ENABLED(DUAL_X_CARRIAGE)
  6581. // handle delayed move timeout
  6582. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6583. // travel moves have been received so enact them
  6584. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6585. set_destination_to_current();
  6586. prepare_move();
  6587. }
  6588. #endif
  6589. #if ENABLED(TEMP_STAT_LEDS)
  6590. handle_status_leds();
  6591. #endif
  6592. check_axes_activity();
  6593. }
  6594. void kill(const char* lcd_msg) {
  6595. #if ENABLED(ULTRA_LCD)
  6596. lcd_setalertstatuspgm(lcd_msg);
  6597. #else
  6598. UNUSED(lcd_msg);
  6599. #endif
  6600. cli(); // Stop interrupts
  6601. disable_all_heaters();
  6602. disable_all_steppers();
  6603. #if HAS_POWER_SWITCH
  6604. pinMode(PS_ON_PIN, INPUT);
  6605. #endif
  6606. SERIAL_ERROR_START;
  6607. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6608. // FMC small patch to update the LCD before ending
  6609. sei(); // enable interrupts
  6610. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6611. cli(); // disable interrupts
  6612. suicide();
  6613. while (1) {
  6614. #if ENABLED(USE_WATCHDOG)
  6615. watchdog_reset();
  6616. #endif
  6617. } // Wait for reset
  6618. }
  6619. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6620. void filrunout() {
  6621. if (!filrunoutEnqueued) {
  6622. filrunoutEnqueued = true;
  6623. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6624. st_synchronize();
  6625. }
  6626. }
  6627. #endif // FILAMENT_RUNOUT_SENSOR
  6628. #if ENABLED(FAST_PWM_FAN)
  6629. void setPwmFrequency(uint8_t pin, int val) {
  6630. val &= 0x07;
  6631. switch (digitalPinToTimer(pin)) {
  6632. #if defined(TCCR0A)
  6633. case TIMER0A:
  6634. case TIMER0B:
  6635. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6636. // TCCR0B |= val;
  6637. break;
  6638. #endif
  6639. #if defined(TCCR1A)
  6640. case TIMER1A:
  6641. case TIMER1B:
  6642. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6643. // TCCR1B |= val;
  6644. break;
  6645. #endif
  6646. #if defined(TCCR2)
  6647. case TIMER2:
  6648. case TIMER2:
  6649. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6650. TCCR2 |= val;
  6651. break;
  6652. #endif
  6653. #if defined(TCCR2A)
  6654. case TIMER2A:
  6655. case TIMER2B:
  6656. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6657. TCCR2B |= val;
  6658. break;
  6659. #endif
  6660. #if defined(TCCR3A)
  6661. case TIMER3A:
  6662. case TIMER3B:
  6663. case TIMER3C:
  6664. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6665. TCCR3B |= val;
  6666. break;
  6667. #endif
  6668. #if defined(TCCR4A)
  6669. case TIMER4A:
  6670. case TIMER4B:
  6671. case TIMER4C:
  6672. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6673. TCCR4B |= val;
  6674. break;
  6675. #endif
  6676. #if defined(TCCR5A)
  6677. case TIMER5A:
  6678. case TIMER5B:
  6679. case TIMER5C:
  6680. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6681. TCCR5B |= val;
  6682. break;
  6683. #endif
  6684. }
  6685. }
  6686. #endif // FAST_PWM_FAN
  6687. void Stop() {
  6688. disable_all_heaters();
  6689. if (IsRunning()) {
  6690. Running = false;
  6691. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6692. SERIAL_ERROR_START;
  6693. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6694. LCD_MESSAGEPGM(MSG_STOPPED);
  6695. }
  6696. }
  6697. /**
  6698. * Set target_extruder from the T parameter or the active_extruder
  6699. *
  6700. * Returns TRUE if the target is invalid
  6701. */
  6702. bool setTargetedHotend(int code) {
  6703. target_extruder = active_extruder;
  6704. if (code_seen('T')) {
  6705. target_extruder = code_value_short();
  6706. if (target_extruder >= EXTRUDERS) {
  6707. SERIAL_ECHO_START;
  6708. SERIAL_CHAR('M');
  6709. SERIAL_ECHO(code);
  6710. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6711. SERIAL_ECHOLN((int)target_extruder);
  6712. return true;
  6713. }
  6714. }
  6715. return false;
  6716. }
  6717. float calculate_volumetric_multiplier(float diameter) {
  6718. if (!volumetric_enabled || diameter == 0) return 1.0;
  6719. float d2 = diameter * 0.5;
  6720. return 1.0 / (M_PI * d2 * d2);
  6721. }
  6722. void calculate_volumetric_multipliers() {
  6723. for (int i = 0; i < EXTRUDERS; i++)
  6724. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6725. }