My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 239KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // AUTO_BED_LEVELING_FEATURE
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "configuration_store.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #include "buzzer.h"
  49. #if ENABLED(USE_WATCHDOG)
  50. #include "watchdog.h"
  51. #endif
  52. #if ENABLED(BLINKM)
  53. #include "blinkm.h"
  54. #include "Wire.h"
  55. #endif
  56. #if HAS_SERVOS
  57. #include "servo.h"
  58. #endif
  59. #if HAS_DIGIPOTSS
  60. #include <SPI.h>
  61. #endif
  62. #if ENABLED(DAC_STEPPER_CURRENT)
  63. #include "stepper_dac.h"
  64. #endif
  65. /**
  66. * Look here for descriptions of G-codes:
  67. * - http://linuxcnc.org/handbook/gcode/g-code.html
  68. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. *
  70. * Help us document these G-codes online:
  71. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  72. * - http://reprap.org/wiki/G-code
  73. *
  74. * -----------------
  75. * Implemented Codes
  76. * -----------------
  77. *
  78. * "G" Codes
  79. *
  80. * G0 -> G1
  81. * G1 - Coordinated Movement X Y Z E
  82. * G2 - CW ARC
  83. * G3 - CCW ARC
  84. * G4 - Dwell S<seconds> or P<milliseconds>
  85. * G10 - retract filament according to settings of M207
  86. * G11 - retract recover filament according to settings of M208
  87. * G28 - Home one or more axes
  88. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  89. * G30 - Single Z probe, probes bed at current XY location.
  90. * G31 - Dock sled (Z_PROBE_SLED only)
  91. * G32 - Undock sled (Z_PROBE_SLED only)
  92. * G90 - Use Absolute Coordinates
  93. * G91 - Use Relative Coordinates
  94. * G92 - Set current position to coordinates given
  95. *
  96. * "M" Codes
  97. *
  98. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  99. * M1 - Same as M0
  100. * M17 - Enable/Power all stepper motors
  101. * M18 - Disable all stepper motors; same as M84
  102. * M20 - List SD card
  103. * M21 - Init SD card
  104. * M22 - Release SD card
  105. * M23 - Select SD file (M23 filename.g)
  106. * M24 - Start/resume SD print
  107. * M25 - Pause SD print
  108. * M26 - Set SD position in bytes (M26 S12345)
  109. * M27 - Report SD print status
  110. * M28 - Start SD write (M28 filename.g)
  111. * M29 - Stop SD write
  112. * M30 - Delete file from SD (M30 filename.g)
  113. * M31 - Output time since last M109 or SD card start to serial
  114. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  115. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  116. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  117. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  118. * M33 - Get the longname version of a path
  119. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  120. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  121. * M80 - Turn on Power Supply
  122. * M81 - Turn off Power Supply
  123. * M82 - Set E codes absolute (default)
  124. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  125. * M84 - Disable steppers until next move,
  126. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  127. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  128. * M92 - Set axis_steps_per_unit - same syntax as G92
  129. * M104 - Set extruder target temp
  130. * M105 - Read current temp
  131. * M106 - Fan on
  132. * M107 - Fan off
  133. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  134. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  135. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  136. * M110 - Set the current line number
  137. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  138. * M112 - Emergency stop
  139. * M114 - Output current position to serial port
  140. * M115 - Capabilities string
  141. * M117 - Display a message on the controller screen
  142. * M119 - Output Endstop status to serial port
  143. * M120 - Enable endstop detection
  144. * M121 - Disable endstop detection
  145. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  146. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  147. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  148. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  149. * M140 - Set bed target temp
  150. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  151. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  152. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  154. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  155. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  156. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  157. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  158. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  159. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  160. * M206 - Set additional homing offset
  161. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  162. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  163. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  164. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  165. * M220 - Set speed factor override percentage: S<factor in percent>
  166. * M221 - Set extrude factor override percentage: S<factor in percent>
  167. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  168. * M240 - Trigger a camera to take a photograph
  169. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  170. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  171. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  172. * M301 - Set PID parameters P I and D
  173. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  174. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  175. * M304 - Set bed PID parameters P I and D
  176. * M380 - Activate solenoid on active extruder
  177. * M381 - Disable all solenoids
  178. * M400 - Finish all moves
  179. * M401 - Lower Z probe if present
  180. * M402 - Raise Z probe if present
  181. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  182. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  183. * M406 - Turn off Filament Sensor extrusion control
  184. * M407 - Display measured filament diameter
  185. * M410 - Quickstop. Abort all the planned moves
  186. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  187. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  188. * M428 - Set the home_offset logically based on the current_position
  189. * M500 - Store parameters in EEPROM
  190. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  193. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  196. * M666 - Set delta endstop adjustment
  197. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  198. * M907 - Set digital trimpot motor current using axis codes.
  199. * M908 - Control digital trimpot directly.
  200. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  201. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  202. * M350 - Set microstepping mode.
  203. * M351 - Toggle MS1 MS2 pins directly.
  204. *
  205. * ************ SCARA Specific - This can change to suit future G-code regulations
  206. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  207. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  208. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  209. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  210. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  211. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  212. * ************* SCARA End ***************
  213. *
  214. * ************ Custom codes - This can change to suit future G-code regulations
  215. * M100 - Watch Free Memory (For Debugging Only)
  216. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  217. * M928 - Start SD logging (M928 filename.g) - ended by M29
  218. * M999 - Restart after being stopped by error
  219. *
  220. * "T" Codes
  221. *
  222. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  223. *
  224. */
  225. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  226. void gcode_M100();
  227. #endif
  228. #if ENABLED(SDSUPPORT)
  229. CardReader card;
  230. #endif
  231. bool Running = true;
  232. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  233. static float feedrate = 1500.0, saved_feedrate;
  234. float current_position[NUM_AXIS] = { 0.0 };
  235. static float destination[NUM_AXIS] = { 0.0 };
  236. bool axis_known_position[3] = { false };
  237. bool axis_homed[3] = { false };
  238. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  239. static char* current_command, *current_command_args;
  240. static int cmd_queue_index_r = 0;
  241. static int cmd_queue_index_w = 0;
  242. static int commands_in_queue = 0;
  243. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  244. const float homing_feedrate[] = HOMING_FEEDRATE;
  245. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  246. int feedrate_multiplier = 100; //100->1 200->2
  247. int saved_feedrate_multiplier;
  248. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  249. bool volumetric_enabled = false;
  250. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  251. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  252. float home_offset[3] = { 0 };
  253. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  254. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  255. #if FAN_COUNT > 0
  256. int fanSpeeds[FAN_COUNT] = { 0 };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. bool cancel_heatup = false;
  260. const char errormagic[] PROGMEM = "Error:";
  261. const char echomagic[] PROGMEM = "echo:";
  262. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  263. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  264. static int serial_count = 0;
  265. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  266. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  267. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  268. // Inactivity shutdown
  269. millis_t previous_cmd_ms = 0;
  270. static millis_t max_inactive_time = 0;
  271. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  272. millis_t print_job_start_ms = 0; ///< Print job start time
  273. millis_t print_job_stop_ms = 0; ///< Print job stop time
  274. static uint8_t target_extruder;
  275. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  276. int xy_travel_speed = XY_TRAVEL_SPEED;
  277. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  278. #endif
  279. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  280. float z_endstop_adj = 0;
  281. #endif
  282. // Extruder offsets
  283. #if EXTRUDERS > 1
  284. #ifndef EXTRUDER_OFFSET_X
  285. #define EXTRUDER_OFFSET_X { 0 }
  286. #endif
  287. #ifndef EXTRUDER_OFFSET_Y
  288. #define EXTRUDER_OFFSET_Y { 0 }
  289. #endif
  290. float extruder_offset[][EXTRUDERS] = {
  291. EXTRUDER_OFFSET_X,
  292. EXTRUDER_OFFSET_Y
  293. #if ENABLED(DUAL_X_CARRIAGE)
  294. , { 0 } // supports offsets in XYZ plane
  295. #endif
  296. };
  297. #endif
  298. #if HAS_SERVO_ENDSTOPS
  299. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  300. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  301. #endif
  302. #if ENABLED(BARICUDA)
  303. int ValvePressure = 0;
  304. int EtoPPressure = 0;
  305. #endif
  306. #if ENABLED(FWRETRACT)
  307. bool autoretract_enabled = false;
  308. bool retracted[EXTRUDERS] = { false };
  309. bool retracted_swap[EXTRUDERS] = { false };
  310. float retract_length = RETRACT_LENGTH;
  311. float retract_length_swap = RETRACT_LENGTH_SWAP;
  312. float retract_feedrate = RETRACT_FEEDRATE;
  313. float retract_zlift = RETRACT_ZLIFT;
  314. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  315. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  316. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  317. #endif // FWRETRACT
  318. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  319. bool powersupply =
  320. #if ENABLED(PS_DEFAULT_OFF)
  321. false
  322. #else
  323. true
  324. #endif
  325. ;
  326. #endif
  327. #if ENABLED(DELTA)
  328. #define TOWER_1 X_AXIS
  329. #define TOWER_2 Y_AXIS
  330. #define TOWER_3 Z_AXIS
  331. float delta[3] = { 0 };
  332. #define SIN_60 0.8660254037844386
  333. #define COS_60 0.5
  334. float endstop_adj[3] = { 0 };
  335. // these are the default values, can be overriden with M665
  336. float delta_radius = DELTA_RADIUS;
  337. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  338. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  339. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  340. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  341. float delta_tower3_x = 0; // back middle tower
  342. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  343. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  344. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  345. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  346. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  347. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  348. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  349. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  350. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  351. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  352. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  353. int delta_grid_spacing[2] = { 0, 0 };
  354. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  355. #endif
  356. #else
  357. static bool home_all_axis = true;
  358. #endif
  359. #if ENABLED(SCARA)
  360. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  361. static float delta[3] = { 0 };
  362. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  363. #endif
  364. #if ENABLED(FILAMENT_SENSOR)
  365. //Variables for Filament Sensor input
  366. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  367. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  368. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  369. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  370. int delay_index1 = 0; //index into ring buffer
  371. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  372. float delay_dist = 0; //delay distance counter
  373. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  374. #endif
  375. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  376. static bool filrunoutEnqueued = false;
  377. #endif
  378. static bool send_ok[BUFSIZE];
  379. #if HAS_SERVOS
  380. Servo servo[NUM_SERVOS];
  381. #endif
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  387. int lpq_len = 20;
  388. #endif
  389. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  390. // States for managing Marlin and host communication
  391. // Marlin sends messages if blocked or busy
  392. enum MarlinBusyState {
  393. NOT_BUSY, // Not in a handler
  394. IN_HANDLER, // Processing a GCode
  395. IN_PROCESS, // Known to be blocking command input (as in G29)
  396. PAUSED_FOR_USER, // Blocking pending any input
  397. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  398. };
  399. static MarlinBusyState busy_state = NOT_BUSY;
  400. static millis_t next_busy_signal_ms = -1;
  401. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  402. #else
  403. #define host_keepalive() ;
  404. #define KEEPALIVE_STATE(n) ;
  405. #endif // HOST_KEEPALIVE_FEATURE
  406. //===========================================================================
  407. //================================ Functions ================================
  408. //===========================================================================
  409. void process_next_command();
  410. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  411. bool setTargetedHotend(int code);
  412. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  415. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  416. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  417. void gcode_M114();
  418. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  419. float extrude_min_temp = EXTRUDE_MINTEMP;
  420. #endif
  421. #if ENABLED(HAS_Z_MIN_PROBE)
  422. extern volatile bool z_probe_is_active;
  423. #endif
  424. #if ENABLED(SDSUPPORT)
  425. #include "SdFatUtil.h"
  426. int freeMemory() { return SdFatUtil::FreeRam(); }
  427. #else
  428. extern "C" {
  429. extern unsigned int __bss_end;
  430. extern unsigned int __heap_start;
  431. extern void* __brkval;
  432. int freeMemory() {
  433. int free_memory;
  434. if ((int)__brkval == 0)
  435. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  436. else
  437. free_memory = ((int)&free_memory) - ((int)__brkval);
  438. return free_memory;
  439. }
  440. }
  441. #endif //!SDSUPPORT
  442. /**
  443. * Inject the next "immediate" command, when possible.
  444. * Return true if any immediate commands remain to inject.
  445. */
  446. static bool drain_queued_commands_P() {
  447. if (queued_commands_P != NULL) {
  448. size_t i = 0;
  449. char c, cmd[30];
  450. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  451. cmd[sizeof(cmd) - 1] = '\0';
  452. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  453. cmd[i] = '\0';
  454. if (enqueue_and_echo_command(cmd)) { // success?
  455. if (c) // newline char?
  456. queued_commands_P += i + 1; // advance to the next command
  457. else
  458. queued_commands_P = NULL; // nul char? no more commands
  459. }
  460. }
  461. return (queued_commands_P != NULL); // return whether any more remain
  462. }
  463. /**
  464. * Record one or many commands to run from program memory.
  465. * Aborts the current queue, if any.
  466. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  467. */
  468. void enqueue_and_echo_commands_P(const char* pgcode) {
  469. queued_commands_P = pgcode;
  470. drain_queued_commands_P(); // first command executed asap (when possible)
  471. }
  472. /**
  473. * Once a new command is in the ring buffer, call this to commit it
  474. */
  475. inline void _commit_command(bool say_ok) {
  476. send_ok[cmd_queue_index_w] = say_ok;
  477. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  478. commands_in_queue++;
  479. }
  480. /**
  481. * Copy a command directly into the main command buffer, from RAM.
  482. * Returns true if successfully adds the command
  483. */
  484. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  485. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  486. strcpy(command_queue[cmd_queue_index_w], cmd);
  487. _commit_command(say_ok);
  488. return true;
  489. }
  490. void enqueue_and_echo_command_now(const char* cmd) {
  491. while (!enqueue_and_echo_command(cmd)) idle();
  492. }
  493. /**
  494. * Enqueue with Serial Echo
  495. */
  496. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  497. if (_enqueuecommand(cmd, say_ok)) {
  498. SERIAL_ECHO_START;
  499. SERIAL_ECHOPGM(MSG_Enqueueing);
  500. SERIAL_ECHO(cmd);
  501. SERIAL_ECHOLNPGM("\"");
  502. return true;
  503. }
  504. return false;
  505. }
  506. void setup_killpin() {
  507. #if HAS_KILL
  508. SET_INPUT(KILL_PIN);
  509. WRITE(KILL_PIN, HIGH);
  510. #endif
  511. }
  512. void setup_filrunoutpin() {
  513. #if HAS_FILRUNOUT
  514. pinMode(FILRUNOUT_PIN, INPUT);
  515. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  516. WRITE(FILRUNOUT_PIN, HIGH);
  517. #endif
  518. #endif
  519. }
  520. // Set home pin
  521. void setup_homepin(void) {
  522. #if HAS_HOME
  523. SET_INPUT(HOME_PIN);
  524. WRITE(HOME_PIN, HIGH);
  525. #endif
  526. }
  527. void setup_photpin() {
  528. #if HAS_PHOTOGRAPH
  529. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  530. #endif
  531. }
  532. void setup_powerhold() {
  533. #if HAS_SUICIDE
  534. OUT_WRITE(SUICIDE_PIN, HIGH);
  535. #endif
  536. #if HAS_POWER_SWITCH
  537. #if ENABLED(PS_DEFAULT_OFF)
  538. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  539. #else
  540. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  541. #endif
  542. #endif
  543. }
  544. void suicide() {
  545. #if HAS_SUICIDE
  546. OUT_WRITE(SUICIDE_PIN, LOW);
  547. #endif
  548. }
  549. void servo_init() {
  550. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  551. servo[0].attach(SERVO0_PIN);
  552. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  553. #endif
  554. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  555. servo[1].attach(SERVO1_PIN);
  556. servo[1].detach();
  557. #endif
  558. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  559. servo[2].attach(SERVO2_PIN);
  560. servo[2].detach();
  561. #endif
  562. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  563. servo[3].attach(SERVO3_PIN);
  564. servo[3].detach();
  565. #endif
  566. #if HAS_SERVO_ENDSTOPS
  567. z_probe_is_active = false;
  568. /**
  569. * Set position of all defined Servo Endstops
  570. *
  571. * ** UNSAFE! - NEEDS UPDATE! **
  572. *
  573. * The servo might be deployed and positioned too low to stow
  574. * when starting up the machine or rebooting the board.
  575. * There's no way to know where the nozzle is positioned until
  576. * homing has been done - no homing with z-probe without init!
  577. *
  578. */
  579. for (int i = 0; i < 3; i++)
  580. if (servo_endstop_id[i] >= 0)
  581. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  582. #endif // HAS_SERVO_ENDSTOPS
  583. }
  584. /**
  585. * Stepper Reset (RigidBoard, et.al.)
  586. */
  587. #if HAS_STEPPER_RESET
  588. void disableStepperDrivers() {
  589. pinMode(STEPPER_RESET_PIN, OUTPUT);
  590. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  591. }
  592. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  593. #endif
  594. /**
  595. * Marlin entry-point: Set up before the program loop
  596. * - Set up the kill pin, filament runout, power hold
  597. * - Start the serial port
  598. * - Print startup messages and diagnostics
  599. * - Get EEPROM or default settings
  600. * - Initialize managers for:
  601. * • temperature
  602. * • planner
  603. * • watchdog
  604. * • stepper
  605. * • photo pin
  606. * • servos
  607. * • LCD controller
  608. * • Digipot I2C
  609. * • Z probe sled
  610. * • status LEDs
  611. */
  612. void setup() {
  613. #ifdef DISABLE_JTAG
  614. // Disable JTAG on AT90USB chips to free up pins for IO
  615. MCUCR = 0x80;
  616. MCUCR = 0x80;
  617. #endif
  618. setup_killpin();
  619. setup_filrunoutpin();
  620. setup_powerhold();
  621. #if HAS_STEPPER_RESET
  622. disableStepperDrivers();
  623. #endif
  624. MYSERIAL.begin(BAUDRATE);
  625. SERIAL_PROTOCOLLNPGM("start");
  626. SERIAL_ECHO_START;
  627. // Check startup - does nothing if bootloader sets MCUSR to 0
  628. byte mcu = MCUSR;
  629. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  630. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  631. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  632. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  633. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  634. MCUSR = 0;
  635. SERIAL_ECHOPGM(MSG_MARLIN);
  636. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  637. #ifdef STRING_DISTRIBUTION_DATE
  638. #ifdef STRING_CONFIG_H_AUTHOR
  639. SERIAL_ECHO_START;
  640. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  641. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  642. SERIAL_ECHOPGM(MSG_AUTHOR);
  643. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  644. SERIAL_ECHOPGM("Compiled: ");
  645. SERIAL_ECHOLNPGM(__DATE__);
  646. #endif // STRING_CONFIG_H_AUTHOR
  647. #endif // STRING_DISTRIBUTION_DATE
  648. SERIAL_ECHO_START;
  649. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  650. SERIAL_ECHO(freeMemory());
  651. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  652. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  653. // Send "ok" after commands by default
  654. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  655. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  656. Config_RetrieveSettings();
  657. lcd_init();
  658. tp_init(); // Initialize temperature loop
  659. plan_init(); // Initialize planner;
  660. #if ENABLED(USE_WATCHDOG)
  661. watchdog_init();
  662. #endif
  663. st_init(); // Initialize stepper, this enables interrupts!
  664. setup_photpin();
  665. servo_init();
  666. #if HAS_CONTROLLERFAN
  667. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  668. #endif
  669. #if HAS_STEPPER_RESET
  670. enableStepperDrivers();
  671. #endif
  672. #if ENABLED(DIGIPOT_I2C)
  673. digipot_i2c_init();
  674. #endif
  675. #if ENABLED(Z_PROBE_SLED)
  676. pinMode(SLED_PIN, OUTPUT);
  677. digitalWrite(SLED_PIN, LOW); // turn it off
  678. #endif // Z_PROBE_SLED
  679. setup_homepin();
  680. #ifdef STAT_LED_RED
  681. pinMode(STAT_LED_RED, OUTPUT);
  682. digitalWrite(STAT_LED_RED, LOW); // turn it off
  683. #endif
  684. #ifdef STAT_LED_BLUE
  685. pinMode(STAT_LED_BLUE, OUTPUT);
  686. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  687. #endif
  688. }
  689. /**
  690. * The main Marlin program loop
  691. *
  692. * - Save or log commands to SD
  693. * - Process available commands (if not saving)
  694. * - Call heater manager
  695. * - Call inactivity manager
  696. * - Call endstop manager
  697. * - Call LCD update
  698. */
  699. void loop() {
  700. if (commands_in_queue < BUFSIZE) get_command();
  701. #if ENABLED(SDSUPPORT)
  702. card.checkautostart(false);
  703. #endif
  704. if (commands_in_queue) {
  705. #if ENABLED(SDSUPPORT)
  706. if (card.saving) {
  707. char* command = command_queue[cmd_queue_index_r];
  708. if (strstr_P(command, PSTR("M29"))) {
  709. // M29 closes the file
  710. card.closefile();
  711. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  712. ok_to_send();
  713. }
  714. else {
  715. // Write the string from the read buffer to SD
  716. card.write_command(command);
  717. if (card.logging)
  718. process_next_command(); // The card is saving because it's logging
  719. else
  720. ok_to_send();
  721. }
  722. }
  723. else
  724. process_next_command();
  725. #else
  726. process_next_command();
  727. #endif // SDSUPPORT
  728. commands_in_queue--;
  729. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  730. }
  731. checkHitEndstops();
  732. idle();
  733. }
  734. void gcode_line_error(const char* err, bool doFlush = true) {
  735. SERIAL_ERROR_START;
  736. serialprintPGM(err);
  737. SERIAL_ERRORLN(gcode_LastN);
  738. //Serial.println(gcode_N);
  739. if (doFlush) FlushSerialRequestResend();
  740. serial_count = 0;
  741. }
  742. /**
  743. * Add to the circular command queue the next command from:
  744. * - The command-injection queue (queued_commands_P)
  745. * - The active serial input (usually USB)
  746. * - The SD card file being actively printed
  747. */
  748. void get_command() {
  749. static char serial_line_buffer[MAX_CMD_SIZE];
  750. static boolean serial_comment_mode = false;
  751. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  752. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  753. static millis_t last_command_time = 0;
  754. millis_t ms = millis();
  755. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  756. SERIAL_ECHOLNPGM(MSG_WAIT);
  757. last_command_time = ms;
  758. }
  759. #endif
  760. //
  761. // Loop while serial characters are incoming and the queue is not full
  762. //
  763. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  764. char serial_char = MYSERIAL.read();
  765. //
  766. // If the character ends the line
  767. //
  768. if (serial_char == '\n' || serial_char == '\r') {
  769. serial_comment_mode = false; // end of line == end of comment
  770. if (!serial_count) return; // empty lines just exit
  771. serial_line_buffer[serial_count] = 0; // terminate string
  772. serial_count = 0; //reset buffer
  773. char* command = serial_line_buffer;
  774. while (*command == ' ') command++; // skip any leading spaces
  775. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  776. char* apos = strchr(command, '*');
  777. if (npos) {
  778. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  779. if (M110) {
  780. char* n2pos = strchr(command + 4, 'N');
  781. if (n2pos) npos = n2pos;
  782. }
  783. gcode_N = strtol(npos + 1, NULL, 10);
  784. if (gcode_N != gcode_LastN + 1 && !M110) {
  785. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  786. return;
  787. }
  788. if (apos) {
  789. byte checksum = 0, count = 0;
  790. while (command[count] != '*') checksum ^= command[count++];
  791. if (strtol(apos + 1, NULL, 10) != checksum) {
  792. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  793. return;
  794. }
  795. // if no errors, continue parsing
  796. }
  797. else {
  798. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  799. return;
  800. }
  801. gcode_LastN = gcode_N;
  802. // if no errors, continue parsing
  803. }
  804. else if (apos) { // No '*' without 'N'
  805. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  806. return;
  807. }
  808. // Movement commands alert when stopped
  809. if (IsStopped()) {
  810. char* gpos = strchr(command, 'G');
  811. if (gpos) {
  812. int codenum = strtol(gpos + 1, NULL, 10);
  813. switch (codenum) {
  814. case 0:
  815. case 1:
  816. case 2:
  817. case 3:
  818. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  819. LCD_MESSAGEPGM(MSG_STOPPED);
  820. break;
  821. }
  822. }
  823. }
  824. // If command was e-stop process now
  825. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  826. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  827. last_command_time = ms;
  828. #endif
  829. // Add the command to the queue
  830. _enqueuecommand(serial_line_buffer, true);
  831. }
  832. else if (serial_count >= MAX_CMD_SIZE - 1) {
  833. // Keep fetching, but ignore normal characters beyond the max length
  834. // The command will be injected when EOL is reached
  835. }
  836. else if (serial_char == '\\') { // Handle escapes
  837. if (MYSERIAL.available() > 0) {
  838. // if we have one more character, copy it over
  839. serial_char = MYSERIAL.read();
  840. serial_line_buffer[serial_count++] = serial_char;
  841. }
  842. // otherwise do nothing
  843. }
  844. else { // it's not a newline, carriage return or escape char
  845. if (serial_char == ';') serial_comment_mode = true;
  846. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  847. }
  848. } // queue has space, serial has data
  849. #if ENABLED(SDSUPPORT)
  850. static bool stop_buffering = false,
  851. sd_comment_mode = false;
  852. if (!card.sdprinting) return;
  853. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  854. // if it occurs, stop_buffering is triggered and the buffer is run dry.
  855. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  856. if (commands_in_queue == 0) stop_buffering = false;
  857. uint16_t sd_count = 0;
  858. bool card_eof = card.eof();
  859. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  860. int16_t n = card.get();
  861. char sd_char = (char)n;
  862. card_eof = card.eof();
  863. if (card_eof || n == -1
  864. || sd_char == '\n' || sd_char == '\r'
  865. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  866. ) {
  867. if (card_eof) {
  868. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  869. print_job_stop(true);
  870. char time[30];
  871. millis_t t = print_job_timer();
  872. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  873. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  874. SERIAL_ECHO_START;
  875. SERIAL_ECHOLN(time);
  876. lcd_setstatus(time, true);
  877. card.printingHasFinished();
  878. card.checkautostart(true);
  879. }
  880. if (sd_char == '#') stop_buffering = true;
  881. sd_comment_mode = false; //for new command
  882. if (!sd_count) continue; //skip empty lines
  883. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  884. sd_count = 0; //clear buffer
  885. _commit_command(false);
  886. }
  887. else if (sd_count >= MAX_CMD_SIZE - 1) {
  888. // Keep fetching, but ignore normal characters beyond the max length
  889. // The command will be injected when EOL is reached
  890. }
  891. else {
  892. if (sd_char == ';') sd_comment_mode = true;
  893. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  894. }
  895. }
  896. #endif // SDSUPPORT
  897. }
  898. bool code_has_value() {
  899. int i = 1;
  900. char c = seen_pointer[i];
  901. while (c == ' ') c = seen_pointer[++i];
  902. if (c == '-' || c == '+') c = seen_pointer[++i];
  903. if (c == '.') c = seen_pointer[++i];
  904. return (c >= '0' && c <= '9');
  905. }
  906. float code_value() {
  907. float ret;
  908. char* e = strchr(seen_pointer, 'E');
  909. if (e) {
  910. *e = 0;
  911. ret = strtod(seen_pointer + 1, NULL);
  912. *e = 'E';
  913. }
  914. else
  915. ret = strtod(seen_pointer + 1, NULL);
  916. return ret;
  917. }
  918. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  919. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  920. bool code_seen(char code) {
  921. seen_pointer = strchr(current_command_args, code);
  922. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  923. }
  924. #define DEFINE_PGM_READ_ANY(type, reader) \
  925. static inline type pgm_read_any(const type *p) \
  926. { return pgm_read_##reader##_near(p); }
  927. DEFINE_PGM_READ_ANY(float, float);
  928. DEFINE_PGM_READ_ANY(signed char, byte);
  929. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  930. static const PROGMEM type array##_P[3] = \
  931. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  932. static inline type array(int axis) \
  933. { return pgm_read_any(&array##_P[axis]); }
  934. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  935. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  936. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  937. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  938. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  939. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  940. #if ENABLED(DUAL_X_CARRIAGE)
  941. #define DXC_FULL_CONTROL_MODE 0
  942. #define DXC_AUTO_PARK_MODE 1
  943. #define DXC_DUPLICATION_MODE 2
  944. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  945. static float x_home_pos(int extruder) {
  946. if (extruder == 0)
  947. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  948. else
  949. // In dual carriage mode the extruder offset provides an override of the
  950. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  951. // This allow soft recalibration of the second extruder offset position without firmware reflash
  952. // (through the M218 command).
  953. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  954. }
  955. static int x_home_dir(int extruder) {
  956. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  957. }
  958. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  959. static bool active_extruder_parked = false; // used in mode 1 & 2
  960. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  961. static millis_t delayed_move_time = 0; // used in mode 1
  962. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  963. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  964. bool extruder_duplication_enabled = false; // used in mode 2
  965. #endif //DUAL_X_CARRIAGE
  966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  967. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  968. SERIAL_ECHO(prefix);
  969. SERIAL_ECHOPAIR(": (", x);
  970. SERIAL_ECHOPAIR(", ", y);
  971. SERIAL_ECHOPAIR(", ", z);
  972. SERIAL_ECHOLNPGM(")");
  973. }
  974. void print_xyz(const char* prefix, const float xyz[]) {
  975. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  976. }
  977. #endif
  978. static void set_axis_is_at_home(AxisEnum axis) {
  979. #if ENABLED(DUAL_X_CARRIAGE)
  980. if (axis == X_AXIS) {
  981. if (active_extruder != 0) {
  982. current_position[X_AXIS] = x_home_pos(active_extruder);
  983. min_pos[X_AXIS] = X2_MIN_POS;
  984. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  985. return;
  986. }
  987. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  988. float xoff = home_offset[X_AXIS];
  989. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  990. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  991. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  992. return;
  993. }
  994. }
  995. #endif
  996. #if ENABLED(SCARA)
  997. if (axis == X_AXIS || axis == Y_AXIS) {
  998. float homeposition[3];
  999. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1000. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1001. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1002. // Works out real Homeposition angles using inverse kinematics,
  1003. // and calculates homing offset using forward kinematics
  1004. calculate_delta(homeposition);
  1005. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1006. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1007. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1008. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1009. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1010. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1011. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1012. calculate_SCARA_forward_Transform(delta);
  1013. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1014. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1015. current_position[axis] = delta[axis];
  1016. // SCARA home positions are based on configuration since the actual limits are determined by the
  1017. // inverse kinematic transform.
  1018. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1019. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1020. }
  1021. else
  1022. #endif
  1023. {
  1024. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1025. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1026. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1027. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1028. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  1029. #endif
  1030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1031. if (marlin_debug_flags & DEBUG_LEVELING) {
  1032. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  1033. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  1034. print_xyz(") > current_position", current_position);
  1035. }
  1036. #endif
  1037. }
  1038. }
  1039. /**
  1040. * Some planner shorthand inline functions
  1041. */
  1042. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1043. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1044. int hbd = homing_bump_divisor[axis];
  1045. if (hbd < 1) {
  1046. hbd = 10;
  1047. SERIAL_ECHO_START;
  1048. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1049. }
  1050. feedrate = homing_feedrate[axis] / hbd;
  1051. }
  1052. inline void line_to_current_position() {
  1053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1054. }
  1055. inline void line_to_z(float zPosition) {
  1056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1057. }
  1058. inline void line_to_destination(float mm_m) {
  1059. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1060. }
  1061. inline void line_to_destination() {
  1062. line_to_destination(feedrate);
  1063. }
  1064. inline void sync_plan_position() {
  1065. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1066. }
  1067. #if ENABLED(DELTA) || ENABLED(SCARA)
  1068. inline void sync_plan_position_delta() {
  1069. calculate_delta(current_position);
  1070. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1071. }
  1072. #endif
  1073. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1074. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1075. static void setup_for_endstop_move() {
  1076. saved_feedrate = feedrate;
  1077. saved_feedrate_multiplier = feedrate_multiplier;
  1078. feedrate_multiplier = 100;
  1079. refresh_cmd_timeout();
  1080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1081. if (marlin_debug_flags & DEBUG_LEVELING) {
  1082. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1083. }
  1084. #endif
  1085. enable_endstops(true);
  1086. }
  1087. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1088. #if ENABLED(DELTA)
  1089. /**
  1090. * Calculate delta, start a line, and set current_position to destination
  1091. */
  1092. void prepare_move_raw() {
  1093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1094. if (marlin_debug_flags & DEBUG_LEVELING) {
  1095. print_xyz("prepare_move_raw > destination", destination);
  1096. }
  1097. #endif
  1098. refresh_cmd_timeout();
  1099. calculate_delta(destination);
  1100. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1101. set_current_to_destination();
  1102. }
  1103. #endif
  1104. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1105. #if DISABLED(DELTA)
  1106. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1107. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1108. planeNormal.debug("planeNormal");
  1109. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1110. //bedLevel.debug("bedLevel");
  1111. //plan_bed_level_matrix.debug("bed level before");
  1112. //vector_3 uncorrected_position = plan_get_position_mm();
  1113. //uncorrected_position.debug("position before");
  1114. vector_3 corrected_position = plan_get_position();
  1115. //corrected_position.debug("position after");
  1116. current_position[X_AXIS] = corrected_position.x;
  1117. current_position[Y_AXIS] = corrected_position.y;
  1118. current_position[Z_AXIS] = corrected_position.z;
  1119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1120. if (marlin_debug_flags & DEBUG_LEVELING) {
  1121. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1122. }
  1123. #endif
  1124. sync_plan_position();
  1125. }
  1126. #endif // !DELTA
  1127. #else // !AUTO_BED_LEVELING_GRID
  1128. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1129. plan_bed_level_matrix.set_to_identity();
  1130. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1131. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1132. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1133. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1134. if (planeNormal.z < 0) {
  1135. planeNormal.x = -planeNormal.x;
  1136. planeNormal.y = -planeNormal.y;
  1137. planeNormal.z = -planeNormal.z;
  1138. }
  1139. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1140. vector_3 corrected_position = plan_get_position();
  1141. current_position[X_AXIS] = corrected_position.x;
  1142. current_position[Y_AXIS] = corrected_position.y;
  1143. current_position[Z_AXIS] = corrected_position.z;
  1144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1145. if (marlin_debug_flags & DEBUG_LEVELING) {
  1146. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1147. }
  1148. #endif
  1149. sync_plan_position();
  1150. }
  1151. #endif // !AUTO_BED_LEVELING_GRID
  1152. static void run_z_probe() {
  1153. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1154. #if ENABLED(DELTA)
  1155. float start_z = current_position[Z_AXIS];
  1156. long start_steps = st_get_position(Z_AXIS);
  1157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1158. if (marlin_debug_flags & DEBUG_LEVELING) {
  1159. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1160. }
  1161. #endif
  1162. // move down slowly until you find the bed
  1163. feedrate = homing_feedrate[Z_AXIS] / 4;
  1164. destination[Z_AXIS] = -10;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. st_synchronize();
  1167. endstops_hit_on_purpose(); // clear endstop hit flags
  1168. // we have to let the planner know where we are right now as it is not where we said to go.
  1169. long stop_steps = st_get_position(Z_AXIS);
  1170. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1171. current_position[Z_AXIS] = mm;
  1172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1173. if (marlin_debug_flags & DEBUG_LEVELING) {
  1174. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1175. }
  1176. #endif
  1177. sync_plan_position_delta();
  1178. #else // !DELTA
  1179. plan_bed_level_matrix.set_to_identity();
  1180. feedrate = homing_feedrate[Z_AXIS];
  1181. // Move down until the Z probe (or endstop?) is triggered
  1182. float zPosition = -(Z_MAX_LENGTH + 10);
  1183. line_to_z(zPosition);
  1184. st_synchronize();
  1185. // Tell the planner where we ended up - Get this from the stepper handler
  1186. zPosition = st_get_axis_position_mm(Z_AXIS);
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1188. // move up the retract distance
  1189. zPosition += home_bump_mm(Z_AXIS);
  1190. line_to_z(zPosition);
  1191. st_synchronize();
  1192. endstops_hit_on_purpose(); // clear endstop hit flags
  1193. // move back down slowly to find bed
  1194. set_homing_bump_feedrate(Z_AXIS);
  1195. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1196. line_to_z(zPosition);
  1197. st_synchronize();
  1198. endstops_hit_on_purpose(); // clear endstop hit flags
  1199. // Get the current stepper position after bumping an endstop
  1200. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1201. sync_plan_position();
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (marlin_debug_flags & DEBUG_LEVELING) {
  1204. print_xyz("run_z_probe > current_position", current_position);
  1205. }
  1206. #endif
  1207. #endif // !DELTA
  1208. }
  1209. /**
  1210. * Plan a move to (X, Y, Z) and set the current_position
  1211. * The final current_position may not be the one that was requested
  1212. */
  1213. static void do_blocking_move_to(float x, float y, float z) {
  1214. float oldFeedRate = feedrate;
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (marlin_debug_flags & DEBUG_LEVELING) {
  1217. print_xyz("do_blocking_move_to", x, y, z);
  1218. }
  1219. #endif
  1220. #if ENABLED(DELTA)
  1221. feedrate = XY_TRAVEL_SPEED;
  1222. destination[X_AXIS] = x;
  1223. destination[Y_AXIS] = y;
  1224. destination[Z_AXIS] = z;
  1225. prepare_move_raw(); // this will also set_current_to_destination
  1226. st_synchronize();
  1227. #else
  1228. feedrate = homing_feedrate[Z_AXIS];
  1229. current_position[Z_AXIS] = z;
  1230. line_to_current_position();
  1231. st_synchronize();
  1232. feedrate = xy_travel_speed;
  1233. current_position[X_AXIS] = x;
  1234. current_position[Y_AXIS] = y;
  1235. line_to_current_position();
  1236. st_synchronize();
  1237. #endif
  1238. feedrate = oldFeedRate;
  1239. }
  1240. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1241. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1242. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1243. inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
  1244. static void clean_up_after_endstop_move() {
  1245. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (marlin_debug_flags & DEBUG_LEVELING) {
  1248. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
  1249. }
  1250. #endif
  1251. enable_endstops(false);
  1252. #endif
  1253. feedrate = saved_feedrate;
  1254. feedrate_multiplier = saved_feedrate_multiplier;
  1255. refresh_cmd_timeout();
  1256. }
  1257. #if ENABLED(HAS_Z_MIN_PROBE)
  1258. static void deploy_z_probe() {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (marlin_debug_flags & DEBUG_LEVELING) {
  1261. print_xyz("deploy_z_probe > current_position", current_position);
  1262. }
  1263. #endif
  1264. if (z_probe_is_active) return;
  1265. #if HAS_SERVO_ENDSTOPS
  1266. // Engage Z Servo endstop if enabled
  1267. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1268. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1269. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1270. // If endstop is already false, the Z probe is deployed
  1271. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1272. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1273. if (z_probe_endstop)
  1274. #else
  1275. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1276. if (z_min_endstop)
  1277. #endif
  1278. {
  1279. // Move to the start position to initiate deployment
  1280. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1281. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1282. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1283. prepare_move_raw(); // this will also set_current_to_destination
  1284. // Move to engage deployment
  1285. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1286. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1287. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1288. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1289. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1290. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1291. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1292. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1293. prepare_move_raw();
  1294. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1295. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1296. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1297. // Move to trigger deployment
  1298. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1299. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1300. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1301. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1302. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1303. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1304. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1305. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1306. prepare_move_raw();
  1307. #endif
  1308. }
  1309. // Partially Home X,Y for safety
  1310. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1311. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1312. prepare_move_raw(); // this will also set_current_to_destination
  1313. st_synchronize();
  1314. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1315. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1316. if (z_probe_endstop)
  1317. #else
  1318. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1319. if (z_min_endstop)
  1320. #endif
  1321. {
  1322. if (IsRunning()) {
  1323. SERIAL_ERROR_START;
  1324. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1325. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1326. }
  1327. Stop();
  1328. }
  1329. #endif // Z_PROBE_ALLEN_KEY
  1330. #if ENABLED(FIX_MOUNTED_PROBE)
  1331. // Noting to be done. Just set z_probe_is_active
  1332. #endif
  1333. z_probe_is_active = true;
  1334. }
  1335. static void stow_z_probe(bool doRaise = true) {
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (marlin_debug_flags & DEBUG_LEVELING) {
  1338. print_xyz("stow_z_probe > current_position", current_position);
  1339. }
  1340. #endif
  1341. if (!z_probe_is_active) return;
  1342. #if HAS_SERVO_ENDSTOPS
  1343. // Retract Z Servo endstop if enabled
  1344. if (servo_endstop_id[Z_AXIS] >= 0) {
  1345. #if Z_RAISE_AFTER_PROBING > 0
  1346. if (doRaise) {
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (marlin_debug_flags & DEBUG_LEVELING) {
  1349. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1350. SERIAL_EOL;
  1351. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1352. SERIAL_EOL;
  1353. }
  1354. #endif
  1355. raise_z_after_probing(); // this also updates current_position
  1356. st_synchronize();
  1357. }
  1358. #endif
  1359. // Change the Z servo angle
  1360. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1361. }
  1362. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1363. // Move up for safety
  1364. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1365. #if Z_RAISE_AFTER_PROBING > 0
  1366. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1367. prepare_move_raw(); // this will also set_current_to_destination
  1368. #endif
  1369. // Move to the start position to initiate retraction
  1370. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1371. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1372. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1373. prepare_move_raw();
  1374. // Move the nozzle down to push the Z probe into retracted position
  1375. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1376. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1377. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1378. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1379. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1380. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1381. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1382. prepare_move_raw();
  1383. // Move up for safety
  1384. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1385. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1386. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1387. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1388. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1389. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1390. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1391. prepare_move_raw();
  1392. // Home XY for safety
  1393. feedrate = homing_feedrate[X_AXIS] / 2;
  1394. destination[X_AXIS] = 0;
  1395. destination[Y_AXIS] = 0;
  1396. prepare_move_raw(); // this will also set_current_to_destination
  1397. st_synchronize();
  1398. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1399. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1400. if (!z_probe_endstop)
  1401. #else
  1402. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1403. if (!z_min_endstop)
  1404. #endif
  1405. {
  1406. if (IsRunning()) {
  1407. SERIAL_ERROR_START;
  1408. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1409. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1410. }
  1411. Stop();
  1412. }
  1413. #endif // Z_PROBE_ALLEN_KEY
  1414. #if ENABLED(FIX_MOUNTED_PROBE)
  1415. // Noting to be done. Just set z_probe_is_active
  1416. #endif
  1417. z_probe_is_active = false;
  1418. }
  1419. #endif // HAS_Z_MIN_PROBE
  1420. enum ProbeAction {
  1421. ProbeStay = 0,
  1422. ProbeDeploy = _BV(0),
  1423. ProbeStow = _BV(1),
  1424. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1425. };
  1426. // Probe bed height at position (x,y), returns the measured z value
  1427. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (marlin_debug_flags & DEBUG_LEVELING) {
  1430. SERIAL_ECHOLNPGM("probe_pt >>>");
  1431. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1432. SERIAL_EOL;
  1433. print_xyz("> current_position", current_position);
  1434. }
  1435. #endif
  1436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1437. if (marlin_debug_flags & DEBUG_LEVELING) {
  1438. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1439. SERIAL_EOL;
  1440. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1441. SERIAL_EOL;
  1442. }
  1443. #endif
  1444. // Move Z up to the z_before height, then move the Z probe to the given XY
  1445. do_blocking_move_to_z(z_before); // this also updates current_position
  1446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1447. if (marlin_debug_flags & DEBUG_LEVELING) {
  1448. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1449. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1450. SERIAL_EOL;
  1451. }
  1452. #endif
  1453. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
  1454. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1455. if (probe_action & ProbeDeploy) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (marlin_debug_flags & DEBUG_LEVELING) {
  1458. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1459. }
  1460. #endif
  1461. deploy_z_probe();
  1462. }
  1463. #endif
  1464. run_z_probe();
  1465. float measured_z = current_position[Z_AXIS];
  1466. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1467. if (probe_action & ProbeStow) {
  1468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1469. if (marlin_debug_flags & DEBUG_LEVELING) {
  1470. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1471. }
  1472. #endif
  1473. stow_z_probe();
  1474. }
  1475. #endif
  1476. if (verbose_level > 2) {
  1477. SERIAL_PROTOCOLPGM("Bed X: ");
  1478. SERIAL_PROTOCOL_F(x, 3);
  1479. SERIAL_PROTOCOLPGM(" Y: ");
  1480. SERIAL_PROTOCOL_F(y, 3);
  1481. SERIAL_PROTOCOLPGM(" Z: ");
  1482. SERIAL_PROTOCOL_F(measured_z, 3);
  1483. SERIAL_EOL;
  1484. }
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (marlin_debug_flags & DEBUG_LEVELING) {
  1487. SERIAL_ECHOLNPGM("<<< probe_pt");
  1488. }
  1489. #endif
  1490. return measured_z;
  1491. }
  1492. #if ENABLED(DELTA)
  1493. /**
  1494. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1495. */
  1496. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1497. if (bed_level[x][y] != 0.0) {
  1498. return; // Don't overwrite good values.
  1499. }
  1500. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1501. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1502. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1503. float median = c; // Median is robust (ignores outliers).
  1504. if (a < b) {
  1505. if (b < c) median = b;
  1506. if (c < a) median = a;
  1507. }
  1508. else { // b <= a
  1509. if (c < b) median = b;
  1510. if (a < c) median = a;
  1511. }
  1512. bed_level[x][y] = median;
  1513. }
  1514. // Fill in the unprobed points (corners of circular print surface)
  1515. // using linear extrapolation, away from the center.
  1516. static void extrapolate_unprobed_bed_level() {
  1517. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1518. for (int y = 0; y <= half; y++) {
  1519. for (int x = 0; x <= half; x++) {
  1520. if (x + y < 3) continue;
  1521. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1522. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1523. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1524. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1525. }
  1526. }
  1527. }
  1528. // Print calibration results for plotting or manual frame adjustment.
  1529. static void print_bed_level() {
  1530. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1531. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1532. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1533. SERIAL_PROTOCOLCHAR(' ');
  1534. }
  1535. SERIAL_EOL;
  1536. }
  1537. }
  1538. // Reset calibration results to zero.
  1539. void reset_bed_level() {
  1540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1541. if (marlin_debug_flags & DEBUG_LEVELING) {
  1542. SERIAL_ECHOLNPGM("reset_bed_level");
  1543. }
  1544. #endif
  1545. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1546. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1547. bed_level[x][y] = 0.0;
  1548. }
  1549. }
  1550. }
  1551. #endif // DELTA
  1552. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1553. void raise_z_for_servo() {
  1554. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1555. // The zprobe_zoffset is negative any switch below the nozzle, so
  1556. // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1557. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1558. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1559. }
  1560. #endif
  1561. #endif // AUTO_BED_LEVELING_FEATURE
  1562. static void unknown_position_error() {
  1563. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1564. SERIAL_ECHO_START;
  1565. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1566. }
  1567. #if ENABLED(Z_PROBE_SLED)
  1568. #ifndef SLED_DOCKING_OFFSET
  1569. #define SLED_DOCKING_OFFSET 0
  1570. #endif
  1571. /**
  1572. * Method to dock/undock a sled designed by Charles Bell.
  1573. *
  1574. * dock[in] If true, move to MAX_X and engage the electromagnet
  1575. * offset[in] The additional distance to move to adjust docking location
  1576. */
  1577. static void dock_sled(bool dock, int offset = 0) {
  1578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1579. if (marlin_debug_flags & DEBUG_LEVELING) {
  1580. SERIAL_ECHOPAIR("dock_sled", dock);
  1581. SERIAL_EOL;
  1582. }
  1583. #endif
  1584. if (z_probe_is_active == dock) return;
  1585. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1586. unknown_position_error();
  1587. return;
  1588. }
  1589. float oldXpos = current_position[X_AXIS]; // save x position
  1590. if (dock) {
  1591. #if Z_RAISE_AFTER_PROBING > 0
  1592. raise_z_after_probing(); // raise Z
  1593. #endif
  1594. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1595. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1596. }
  1597. else {
  1598. float z_loc = current_position[Z_AXIS];
  1599. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1600. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1601. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1602. }
  1603. do_blocking_move_to_x(oldXpos); // return to position before docking
  1604. z_probe_is_active = dock;
  1605. }
  1606. #endif // Z_PROBE_SLED
  1607. /**
  1608. * Home an individual axis
  1609. */
  1610. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1611. static void homeaxis(AxisEnum axis) {
  1612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1613. if (marlin_debug_flags & DEBUG_LEVELING) {
  1614. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1615. SERIAL_CHAR(')');
  1616. SERIAL_EOL;
  1617. }
  1618. #endif
  1619. #define HOMEAXIS_DO(LETTER) \
  1620. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1621. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1622. int axis_home_dir =
  1623. #if ENABLED(DUAL_X_CARRIAGE)
  1624. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1625. #endif
  1626. home_dir(axis);
  1627. // Set the axis position as setup for the move
  1628. current_position[axis] = 0;
  1629. sync_plan_position();
  1630. #if ENABLED(Z_PROBE_SLED)
  1631. // Get Probe
  1632. if (axis == Z_AXIS) {
  1633. if (axis_home_dir < 0) dock_sled(false);
  1634. }
  1635. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1636. // Deploy a Z probe if there is one, and homing towards the bed
  1637. if (axis == Z_AXIS) {
  1638. if (axis_home_dir < 0) deploy_z_probe();
  1639. }
  1640. #endif
  1641. #if HAS_SERVO_ENDSTOPS
  1642. // Engage Servo endstop if enabled
  1643. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0) {
  1644. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1645. z_probe_is_active = true;
  1646. }
  1647. #endif
  1648. // Set a flag for Z motor locking
  1649. #if ENABLED(Z_DUAL_ENDSTOPS)
  1650. if (axis == Z_AXIS) In_Homing_Process(true);
  1651. #endif
  1652. // Move towards the endstop until an endstop is triggered
  1653. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1654. feedrate = homing_feedrate[axis];
  1655. line_to_destination();
  1656. st_synchronize();
  1657. // Set the axis position as setup for the move
  1658. current_position[axis] = 0;
  1659. sync_plan_position();
  1660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1661. if (marlin_debug_flags & DEBUG_LEVELING) {
  1662. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1663. }
  1664. #endif
  1665. enable_endstops(false); // Disable endstops while moving away
  1666. // Move away from the endstop by the axis HOME_BUMP_MM
  1667. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1668. line_to_destination();
  1669. st_synchronize();
  1670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1671. if (marlin_debug_flags & DEBUG_LEVELING) {
  1672. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1673. }
  1674. #endif
  1675. enable_endstops(true); // Enable endstops for next homing move
  1676. // Slow down the feedrate for the next move
  1677. set_homing_bump_feedrate(axis);
  1678. // Move slowly towards the endstop until triggered
  1679. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1680. line_to_destination();
  1681. st_synchronize();
  1682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1683. if (marlin_debug_flags & DEBUG_LEVELING) {
  1684. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1685. }
  1686. #endif
  1687. #if ENABLED(Z_DUAL_ENDSTOPS)
  1688. if (axis == Z_AXIS) {
  1689. float adj = fabs(z_endstop_adj);
  1690. bool lockZ1;
  1691. if (axis_home_dir > 0) {
  1692. adj = -adj;
  1693. lockZ1 = (z_endstop_adj > 0);
  1694. }
  1695. else
  1696. lockZ1 = (z_endstop_adj < 0);
  1697. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1698. sync_plan_position();
  1699. // Move to the adjusted endstop height
  1700. feedrate = homing_feedrate[axis];
  1701. destination[Z_AXIS] = adj;
  1702. line_to_destination();
  1703. st_synchronize();
  1704. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1705. In_Homing_Process(false);
  1706. } // Z_AXIS
  1707. #endif
  1708. #if ENABLED(DELTA)
  1709. // retrace by the amount specified in endstop_adj
  1710. if (endstop_adj[axis] * axis_home_dir < 0) {
  1711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1712. if (marlin_debug_flags & DEBUG_LEVELING) {
  1713. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1714. }
  1715. #endif
  1716. enable_endstops(false); // Disable endstops while moving away
  1717. sync_plan_position();
  1718. destination[axis] = endstop_adj[axis];
  1719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1720. if (marlin_debug_flags & DEBUG_LEVELING) {
  1721. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1722. print_xyz(" > destination", destination);
  1723. }
  1724. #endif
  1725. line_to_destination();
  1726. st_synchronize();
  1727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1728. if (marlin_debug_flags & DEBUG_LEVELING) {
  1729. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1730. }
  1731. #endif
  1732. enable_endstops(true); // Enable endstops for next homing move
  1733. }
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. else {
  1736. if (marlin_debug_flags & DEBUG_LEVELING) {
  1737. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1738. SERIAL_EOL;
  1739. }
  1740. }
  1741. #endif
  1742. #endif
  1743. // Set the axis position to its home position (plus home offsets)
  1744. set_axis_is_at_home(axis);
  1745. sync_plan_position();
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (marlin_debug_flags & DEBUG_LEVELING) {
  1748. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1749. }
  1750. #endif
  1751. destination[axis] = current_position[axis];
  1752. feedrate = 0.0;
  1753. endstops_hit_on_purpose(); // clear endstop hit flags
  1754. axis_known_position[axis] = true;
  1755. axis_homed[axis] = true;
  1756. #if ENABLED(Z_PROBE_SLED)
  1757. // bring Z probe back
  1758. if (axis == Z_AXIS) {
  1759. if (axis_home_dir < 0) dock_sled(true);
  1760. }
  1761. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1762. // Deploy a Z probe if there is one, and homing towards the bed
  1763. if (axis == Z_AXIS) {
  1764. if (axis_home_dir < 0) {
  1765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1766. if (marlin_debug_flags & DEBUG_LEVELING) {
  1767. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1768. }
  1769. #endif
  1770. stow_z_probe();
  1771. }
  1772. }
  1773. else
  1774. #endif
  1775. {
  1776. #if HAS_SERVO_ENDSTOPS
  1777. // Retract Servo endstop if enabled
  1778. if (servo_endstop_id[axis] >= 0) {
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. if (marlin_debug_flags & DEBUG_LEVELING) {
  1781. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1782. }
  1783. #endif
  1784. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1785. z_probe_is_active = false;
  1786. }
  1787. #endif
  1788. }
  1789. }
  1790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1791. if (marlin_debug_flags & DEBUG_LEVELING) {
  1792. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1793. SERIAL_CHAR(')');
  1794. SERIAL_EOL;
  1795. }
  1796. #endif
  1797. }
  1798. #if ENABLED(FWRETRACT)
  1799. void retract(bool retracting, bool swapping = false) {
  1800. if (retracting == retracted[active_extruder]) return;
  1801. float oldFeedrate = feedrate;
  1802. set_destination_to_current();
  1803. if (retracting) {
  1804. feedrate = retract_feedrate * 60;
  1805. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1806. plan_set_e_position(current_position[E_AXIS]);
  1807. prepare_move();
  1808. if (retract_zlift > 0.01) {
  1809. current_position[Z_AXIS] -= retract_zlift;
  1810. #if ENABLED(DELTA)
  1811. sync_plan_position_delta();
  1812. #else
  1813. sync_plan_position();
  1814. #endif
  1815. prepare_move();
  1816. }
  1817. }
  1818. else {
  1819. if (retract_zlift > 0.01) {
  1820. current_position[Z_AXIS] += retract_zlift;
  1821. #if ENABLED(DELTA)
  1822. sync_plan_position_delta();
  1823. #else
  1824. sync_plan_position();
  1825. #endif
  1826. //prepare_move();
  1827. }
  1828. feedrate = retract_recover_feedrate * 60;
  1829. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1830. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1831. plan_set_e_position(current_position[E_AXIS]);
  1832. prepare_move();
  1833. }
  1834. feedrate = oldFeedrate;
  1835. retracted[active_extruder] = retracting;
  1836. } // retract()
  1837. #endif // FWRETRACT
  1838. /**
  1839. *
  1840. * G-Code Handler functions
  1841. *
  1842. */
  1843. /**
  1844. * Set XYZE destination and feedrate from the current GCode command
  1845. *
  1846. * - Set destination from included axis codes
  1847. * - Set to current for missing axis codes
  1848. * - Set the feedrate, if included
  1849. */
  1850. void gcode_get_destination() {
  1851. for (int i = 0; i < NUM_AXIS; i++) {
  1852. if (code_seen(axis_codes[i]))
  1853. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1854. else
  1855. destination[i] = current_position[i];
  1856. }
  1857. if (code_seen('F')) {
  1858. float next_feedrate = code_value();
  1859. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1860. }
  1861. }
  1862. void unknown_command_error() {
  1863. SERIAL_ECHO_START;
  1864. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1865. SERIAL_ECHO(current_command);
  1866. SERIAL_ECHOPGM("\"\n");
  1867. }
  1868. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1869. void host_keepalive() {
  1870. millis_t ms = millis();
  1871. if (busy_state != NOT_BUSY) {
  1872. if (ms < next_busy_signal_ms) return;
  1873. switch (busy_state) {
  1874. case NOT_BUSY:
  1875. break;
  1876. case IN_HANDLER:
  1877. case IN_PROCESS:
  1878. SERIAL_ECHO_START;
  1879. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1880. break;
  1881. case PAUSED_FOR_USER:
  1882. SERIAL_ECHO_START;
  1883. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1884. break;
  1885. case PAUSED_FOR_INPUT:
  1886. SERIAL_ECHO_START;
  1887. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1888. break;
  1889. }
  1890. }
  1891. next_busy_signal_ms = ms + 2000UL;
  1892. }
  1893. #endif //HOST_KEEPALIVE_FEATURE
  1894. /**
  1895. * G0, G1: Coordinated movement of X Y Z E axes
  1896. */
  1897. inline void gcode_G0_G1() {
  1898. if (IsRunning()) {
  1899. gcode_get_destination(); // For X Y Z E F
  1900. #if ENABLED(FWRETRACT)
  1901. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1902. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1903. // Is this move an attempt to retract or recover?
  1904. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1905. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1906. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1907. retract(!retracted[active_extruder]);
  1908. return;
  1909. }
  1910. }
  1911. #endif //FWRETRACT
  1912. prepare_move();
  1913. }
  1914. }
  1915. /**
  1916. * G2: Clockwise Arc
  1917. * G3: Counterclockwise Arc
  1918. */
  1919. inline void gcode_G2_G3(bool clockwise) {
  1920. if (IsRunning()) {
  1921. #if ENABLED(SF_ARC_FIX)
  1922. bool relative_mode_backup = relative_mode;
  1923. relative_mode = true;
  1924. #endif
  1925. gcode_get_destination();
  1926. #if ENABLED(SF_ARC_FIX)
  1927. relative_mode = relative_mode_backup;
  1928. #endif
  1929. // Center of arc as offset from current_position
  1930. float arc_offset[2] = {
  1931. code_seen('I') ? code_value() : 0,
  1932. code_seen('J') ? code_value() : 0
  1933. };
  1934. // Send an arc to the planner
  1935. plan_arc(destination, arc_offset, clockwise);
  1936. refresh_cmd_timeout();
  1937. }
  1938. }
  1939. /**
  1940. * G4: Dwell S<seconds> or P<milliseconds>
  1941. */
  1942. inline void gcode_G4() {
  1943. millis_t codenum = 0;
  1944. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1945. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1946. st_synchronize();
  1947. refresh_cmd_timeout();
  1948. codenum += previous_cmd_ms; // keep track of when we started waiting
  1949. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1950. while (millis() < codenum) idle();
  1951. }
  1952. #if ENABLED(FWRETRACT)
  1953. /**
  1954. * G10 - Retract filament according to settings of M207
  1955. * G11 - Recover filament according to settings of M208
  1956. */
  1957. inline void gcode_G10_G11(bool doRetract=false) {
  1958. #if EXTRUDERS > 1
  1959. if (doRetract) {
  1960. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1961. }
  1962. #endif
  1963. retract(doRetract
  1964. #if EXTRUDERS > 1
  1965. , retracted_swap[active_extruder]
  1966. #endif
  1967. );
  1968. }
  1969. #endif //FWRETRACT
  1970. /**
  1971. * G28: Home all axes according to settings
  1972. *
  1973. * Parameters
  1974. *
  1975. * None Home to all axes with no parameters.
  1976. * With QUICK_HOME enabled XY will home together, then Z.
  1977. *
  1978. * Cartesian parameters
  1979. *
  1980. * X Home to the X endstop
  1981. * Y Home to the Y endstop
  1982. * Z Home to the Z endstop
  1983. *
  1984. */
  1985. inline void gcode_G28() {
  1986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1987. if (marlin_debug_flags & DEBUG_LEVELING) {
  1988. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1989. }
  1990. #endif
  1991. // Wait for planner moves to finish!
  1992. st_synchronize();
  1993. // For auto bed leveling, clear the level matrix
  1994. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1995. plan_bed_level_matrix.set_to_identity();
  1996. #if ENABLED(DELTA)
  1997. reset_bed_level();
  1998. #endif
  1999. #endif
  2000. // For manual bed leveling deactivate the matrix temporarily
  2001. #if ENABLED(MESH_BED_LEVELING)
  2002. uint8_t mbl_was_active = mbl.active;
  2003. mbl.active = 0;
  2004. #endif
  2005. setup_for_endstop_move();
  2006. set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
  2007. feedrate = 0.0;
  2008. #if ENABLED(DELTA)
  2009. // A delta can only safely home all axis at the same time
  2010. // all axis have to home at the same time
  2011. // Pretend the current position is 0,0,0
  2012. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2013. sync_plan_position();
  2014. // Move all carriages up together until the first endstop is hit.
  2015. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2016. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2017. line_to_destination();
  2018. st_synchronize();
  2019. endstops_hit_on_purpose(); // clear endstop hit flags
  2020. // Destination reached
  2021. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2022. // take care of back off and rehome now we are all at the top
  2023. HOMEAXIS(X);
  2024. HOMEAXIS(Y);
  2025. HOMEAXIS(Z);
  2026. sync_plan_position_delta();
  2027. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2028. if (marlin_debug_flags & DEBUG_LEVELING) {
  2029. print_xyz("(DELTA) > current_position", current_position);
  2030. }
  2031. #endif
  2032. #else // NOT DELTA
  2033. bool homeX = code_seen(axis_codes[X_AXIS]),
  2034. homeY = code_seen(axis_codes[Y_AXIS]),
  2035. homeZ = code_seen(axis_codes[Z_AXIS]);
  2036. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2037. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2038. if (home_all_axis || homeZ) {
  2039. HOMEAXIS(Z);
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (marlin_debug_flags & DEBUG_LEVELING) {
  2042. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  2043. }
  2044. #endif
  2045. }
  2046. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2047. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2048. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2049. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2050. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (marlin_debug_flags & DEBUG_LEVELING) {
  2053. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2054. SERIAL_EOL;
  2055. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  2056. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  2057. }
  2058. #endif
  2059. line_to_destination();
  2060. st_synchronize();
  2061. // Update the current Z position even if it currently not real from Z-home
  2062. // otherwise each call to line_to_destination() will want to move Z-axis
  2063. // by MIN_Z_HEIGHT_FOR_HOMING.
  2064. current_position[Z_AXIS] = destination[Z_AXIS];
  2065. }
  2066. #endif
  2067. #if ENABLED(QUICK_HOME)
  2068. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2069. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2070. #if ENABLED(DUAL_X_CARRIAGE)
  2071. int x_axis_home_dir = x_home_dir(active_extruder);
  2072. extruder_duplication_enabled = false;
  2073. #else
  2074. int x_axis_home_dir = home_dir(X_AXIS);
  2075. #endif
  2076. sync_plan_position();
  2077. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2078. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2079. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2080. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2081. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2082. line_to_destination();
  2083. st_synchronize();
  2084. set_axis_is_at_home(X_AXIS);
  2085. set_axis_is_at_home(Y_AXIS);
  2086. sync_plan_position();
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (marlin_debug_flags & DEBUG_LEVELING) {
  2089. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2090. }
  2091. #endif
  2092. destination[X_AXIS] = current_position[X_AXIS];
  2093. destination[Y_AXIS] = current_position[Y_AXIS];
  2094. line_to_destination();
  2095. feedrate = 0.0;
  2096. st_synchronize();
  2097. endstops_hit_on_purpose(); // clear endstop hit flags
  2098. current_position[X_AXIS] = destination[X_AXIS];
  2099. current_position[Y_AXIS] = destination[Y_AXIS];
  2100. #if DISABLED(SCARA)
  2101. current_position[Z_AXIS] = destination[Z_AXIS];
  2102. #endif
  2103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2104. if (marlin_debug_flags & DEBUG_LEVELING) {
  2105. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2106. }
  2107. #endif
  2108. }
  2109. #endif // QUICK_HOME
  2110. #if ENABLED(HOME_Y_BEFORE_X)
  2111. // Home Y
  2112. if (home_all_axis || homeY) HOMEAXIS(Y);
  2113. #endif
  2114. // Home X
  2115. if (home_all_axis || homeX) {
  2116. #if ENABLED(DUAL_X_CARRIAGE)
  2117. int tmp_extruder = active_extruder;
  2118. extruder_duplication_enabled = false;
  2119. active_extruder = !active_extruder;
  2120. HOMEAXIS(X);
  2121. inactive_extruder_x_pos = current_position[X_AXIS];
  2122. active_extruder = tmp_extruder;
  2123. HOMEAXIS(X);
  2124. // reset state used by the different modes
  2125. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2126. delayed_move_time = 0;
  2127. active_extruder_parked = true;
  2128. #else
  2129. HOMEAXIS(X);
  2130. #endif
  2131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2132. if (marlin_debug_flags & DEBUG_LEVELING) {
  2133. print_xyz("> homeX", current_position);
  2134. }
  2135. #endif
  2136. }
  2137. #if DISABLED(HOME_Y_BEFORE_X)
  2138. // Home Y
  2139. if (home_all_axis || homeY) {
  2140. HOMEAXIS(Y);
  2141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2142. if (marlin_debug_flags & DEBUG_LEVELING) {
  2143. print_xyz("> homeY", current_position);
  2144. }
  2145. #endif
  2146. }
  2147. #endif
  2148. // Home Z last if homing towards the bed
  2149. #if Z_HOME_DIR < 0
  2150. if (home_all_axis || homeZ) {
  2151. #if ENABLED(Z_SAFE_HOMING)
  2152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2153. if (marlin_debug_flags & DEBUG_LEVELING) {
  2154. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2155. }
  2156. #endif
  2157. if (home_all_axis) {
  2158. // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2159. // No need to move Z any more as this height should already be safe
  2160. // enough to reach Z_SAFE_HOMING XY positions.
  2161. // Just make sure the planner is in sync.
  2162. sync_plan_position();
  2163. //
  2164. // Set the Z probe (or just the nozzle) destination to the safe homing point
  2165. //
  2166. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2167. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2168. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2169. feedrate = XY_TRAVEL_SPEED;
  2170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2171. if (marlin_debug_flags & DEBUG_LEVELING) {
  2172. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2173. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2174. }
  2175. #endif
  2176. // Move in the XY plane
  2177. line_to_destination();
  2178. st_synchronize();
  2179. // Update the current positions for XY, Z is still at least at
  2180. // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2181. current_position[X_AXIS] = destination[X_AXIS];
  2182. current_position[Y_AXIS] = destination[Y_AXIS];
  2183. // Home the Z axis
  2184. HOMEAXIS(Z);
  2185. }
  2186. else if (homeZ) { // Don't need to Home Z twice
  2187. // Let's see if X and Y are homed
  2188. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  2189. // Make sure the Z probe is within the physical limits
  2190. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  2191. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2192. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2193. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2194. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2195. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2196. // Home the Z axis
  2197. HOMEAXIS(Z);
  2198. }
  2199. else {
  2200. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2201. SERIAL_ECHO_START;
  2202. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2203. }
  2204. }
  2205. else {
  2206. unknown_position_error();
  2207. }
  2208. } // !home_all_axes && homeZ
  2209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2210. if (marlin_debug_flags & DEBUG_LEVELING) {
  2211. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2212. }
  2213. #endif
  2214. #else // !Z_SAFE_HOMING
  2215. HOMEAXIS(Z);
  2216. #endif // !Z_SAFE_HOMING
  2217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2218. if (marlin_debug_flags & DEBUG_LEVELING) {
  2219. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2220. }
  2221. #endif
  2222. } // home_all_axis || homeZ
  2223. #endif // Z_HOME_DIR < 0
  2224. sync_plan_position();
  2225. #endif // else DELTA
  2226. #if ENABLED(SCARA)
  2227. sync_plan_position_delta();
  2228. #endif
  2229. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2230. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2231. if (marlin_debug_flags & DEBUG_LEVELING) {
  2232. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2233. }
  2234. #endif
  2235. enable_endstops(false);
  2236. #endif
  2237. // For manual leveling move back to 0,0
  2238. #if ENABLED(MESH_BED_LEVELING)
  2239. if (mbl_was_active) {
  2240. current_position[X_AXIS] = mbl.get_x(0);
  2241. current_position[Y_AXIS] = mbl.get_y(0);
  2242. set_destination_to_current();
  2243. feedrate = homing_feedrate[X_AXIS];
  2244. line_to_destination();
  2245. st_synchronize();
  2246. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2247. sync_plan_position();
  2248. mbl.active = 1;
  2249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2250. if (marlin_debug_flags & DEBUG_LEVELING) {
  2251. print_xyz("mbl_was_active > current_position", current_position);
  2252. }
  2253. #endif
  2254. }
  2255. #endif
  2256. feedrate = saved_feedrate;
  2257. feedrate_multiplier = saved_feedrate_multiplier;
  2258. refresh_cmd_timeout();
  2259. endstops_hit_on_purpose(); // clear endstop hit flags
  2260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2261. if (marlin_debug_flags & DEBUG_LEVELING) {
  2262. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2263. }
  2264. #endif
  2265. gcode_M114(); // Send end position to RepetierHost
  2266. }
  2267. #if ENABLED(MESH_BED_LEVELING)
  2268. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2269. /**
  2270. * G29: Mesh-based Z probe, probes a grid and produces a
  2271. * mesh to compensate for variable bed height
  2272. *
  2273. * Parameters With MESH_BED_LEVELING:
  2274. *
  2275. * S0 Produce a mesh report
  2276. * S1 Start probing mesh points
  2277. * S2 Probe the next mesh point
  2278. * S3 Xn Yn Zn.nn Manually modify a single point
  2279. *
  2280. * The S0 report the points as below
  2281. *
  2282. * +----> X-axis
  2283. * |
  2284. * |
  2285. * v Y-axis
  2286. *
  2287. */
  2288. inline void gcode_G29() {
  2289. static int probe_point = -1;
  2290. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2291. if (state < 0 || state > 3) {
  2292. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2293. return;
  2294. }
  2295. int ix, iy;
  2296. float z;
  2297. switch (state) {
  2298. case MeshReport:
  2299. if (mbl.active) {
  2300. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2301. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2302. SERIAL_PROTOCOLCHAR(',');
  2303. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2304. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2305. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2306. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2307. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2308. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2309. SERIAL_PROTOCOLPGM(" ");
  2310. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2311. }
  2312. SERIAL_EOL;
  2313. }
  2314. }
  2315. else
  2316. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2317. break;
  2318. case MeshStart:
  2319. mbl.reset();
  2320. probe_point = 0;
  2321. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2322. break;
  2323. case MeshNext:
  2324. if (probe_point < 0) {
  2325. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2326. return;
  2327. }
  2328. if (probe_point == 0) {
  2329. // Set Z to a positive value before recording the first Z.
  2330. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2331. sync_plan_position();
  2332. }
  2333. else {
  2334. // For others, save the Z of the previous point, then raise Z again.
  2335. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2336. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2337. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2338. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2339. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2341. st_synchronize();
  2342. }
  2343. // Is there another point to sample? Move there.
  2344. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2345. ix = probe_point % (MESH_NUM_X_POINTS);
  2346. iy = probe_point / (MESH_NUM_X_POINTS);
  2347. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2348. current_position[X_AXIS] = mbl.get_x(ix);
  2349. current_position[Y_AXIS] = mbl.get_y(iy);
  2350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2351. st_synchronize();
  2352. probe_point++;
  2353. }
  2354. else {
  2355. // After recording the last point, activate the mbl and home
  2356. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2357. probe_point = -1;
  2358. mbl.active = 1;
  2359. enqueue_and_echo_commands_P(PSTR("G28"));
  2360. }
  2361. break;
  2362. case MeshSet:
  2363. if (code_seen('X')) {
  2364. ix = code_value_long() - 1;
  2365. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2366. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2367. return;
  2368. }
  2369. }
  2370. else {
  2371. SERIAL_PROTOCOLPGM("X not entered.\n");
  2372. return;
  2373. }
  2374. if (code_seen('Y')) {
  2375. iy = code_value_long() - 1;
  2376. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2377. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2378. return;
  2379. }
  2380. }
  2381. else {
  2382. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2383. return;
  2384. }
  2385. if (code_seen('Z')) {
  2386. z = code_value();
  2387. }
  2388. else {
  2389. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2390. return;
  2391. }
  2392. mbl.z_values[iy][ix] = z;
  2393. } // switch(state)
  2394. }
  2395. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2396. void out_of_range_error(const char* p_edge) {
  2397. SERIAL_PROTOCOLPGM("?Probe ");
  2398. serialprintPGM(p_edge);
  2399. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2400. }
  2401. /**
  2402. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2403. * Will fail if the printer has not been homed with G28.
  2404. *
  2405. * Enhanced G29 Auto Bed Leveling Probe Routine
  2406. *
  2407. * Parameters With AUTO_BED_LEVELING_GRID:
  2408. *
  2409. * P Set the size of the grid that will be probed (P x P points).
  2410. * Not supported by non-linear delta printer bed leveling.
  2411. * Example: "G29 P4"
  2412. *
  2413. * S Set the XY travel speed between probe points (in mm/min)
  2414. *
  2415. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2416. * or clean the rotation Matrix. Useful to check the topology
  2417. * after a first run of G29.
  2418. *
  2419. * V Set the verbose level (0-4). Example: "G29 V3"
  2420. *
  2421. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2422. * This is useful for manual bed leveling and finding flaws in the bed (to
  2423. * assist with part placement).
  2424. * Not supported by non-linear delta printer bed leveling.
  2425. *
  2426. * F Set the Front limit of the probing grid
  2427. * B Set the Back limit of the probing grid
  2428. * L Set the Left limit of the probing grid
  2429. * R Set the Right limit of the probing grid
  2430. *
  2431. * Global Parameters:
  2432. *
  2433. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2434. * Include "E" to engage/disengage the Z probe for each sample.
  2435. * There's no extra effect if you have a fixed Z probe.
  2436. * Usage: "G29 E" or "G29 e"
  2437. *
  2438. */
  2439. inline void gcode_G29() {
  2440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2441. if (marlin_debug_flags & DEBUG_LEVELING) {
  2442. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2443. }
  2444. #endif
  2445. // Don't allow auto-leveling without homing first
  2446. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2447. unknown_position_error();
  2448. return;
  2449. }
  2450. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2451. if (verbose_level < 0 || verbose_level > 4) {
  2452. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2453. return;
  2454. }
  2455. bool dryrun = code_seen('D'),
  2456. deploy_probe_for_each_reading = code_seen('E');
  2457. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2458. #if DISABLED(DELTA)
  2459. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2460. #endif
  2461. if (verbose_level > 0) {
  2462. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2463. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2464. }
  2465. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2466. #if DISABLED(DELTA)
  2467. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2468. if (auto_bed_leveling_grid_points < 2) {
  2469. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2470. return;
  2471. }
  2472. #endif
  2473. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2474. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2475. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2476. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2477. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2478. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2479. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2480. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2481. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2482. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2483. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2484. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2485. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2486. if (left_out || right_out || front_out || back_out) {
  2487. if (left_out) {
  2488. out_of_range_error(PSTR("(L)eft"));
  2489. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2490. }
  2491. if (right_out) {
  2492. out_of_range_error(PSTR("(R)ight"));
  2493. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2494. }
  2495. if (front_out) {
  2496. out_of_range_error(PSTR("(F)ront"));
  2497. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2498. }
  2499. if (back_out) {
  2500. out_of_range_error(PSTR("(B)ack"));
  2501. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2502. }
  2503. return;
  2504. }
  2505. #endif // AUTO_BED_LEVELING_GRID
  2506. #if ENABLED(Z_PROBE_SLED)
  2507. dock_sled(false); // engage (un-dock) the Z probe
  2508. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2509. deploy_z_probe();
  2510. #endif
  2511. st_synchronize();
  2512. if (!dryrun) {
  2513. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2514. plan_bed_level_matrix.set_to_identity();
  2515. #if ENABLED(DELTA)
  2516. reset_bed_level();
  2517. #else //!DELTA
  2518. //vector_3 corrected_position = plan_get_position_mm();
  2519. //corrected_position.debug("position before G29");
  2520. vector_3 uncorrected_position = plan_get_position();
  2521. //uncorrected_position.debug("position during G29");
  2522. current_position[X_AXIS] = uncorrected_position.x;
  2523. current_position[Y_AXIS] = uncorrected_position.y;
  2524. current_position[Z_AXIS] = uncorrected_position.z;
  2525. sync_plan_position();
  2526. #endif // !DELTA
  2527. }
  2528. setup_for_endstop_move();
  2529. feedrate = homing_feedrate[Z_AXIS];
  2530. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2531. // probe at the points of a lattice grid
  2532. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2533. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2534. #if ENABLED(DELTA)
  2535. delta_grid_spacing[0] = xGridSpacing;
  2536. delta_grid_spacing[1] = yGridSpacing;
  2537. float z_offset = zprobe_zoffset;
  2538. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2539. #else // !DELTA
  2540. // solve the plane equation ax + by + d = z
  2541. // A is the matrix with rows [x y 1] for all the probed points
  2542. // B is the vector of the Z positions
  2543. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2544. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2545. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2546. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2547. eqnBVector[abl2], // "B" vector of Z points
  2548. mean = 0.0;
  2549. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2550. #endif // !DELTA
  2551. int probePointCounter = 0;
  2552. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2553. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2554. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2555. int xStart, xStop, xInc;
  2556. if (zig) {
  2557. xStart = 0;
  2558. xStop = auto_bed_leveling_grid_points;
  2559. xInc = 1;
  2560. }
  2561. else {
  2562. xStart = auto_bed_leveling_grid_points - 1;
  2563. xStop = -1;
  2564. xInc = -1;
  2565. }
  2566. zig = !zig;
  2567. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2568. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2569. // raise extruder
  2570. float measured_z,
  2571. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2572. if (probePointCounter) {
  2573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2574. if (marlin_debug_flags & DEBUG_LEVELING) {
  2575. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2576. SERIAL_EOL;
  2577. }
  2578. #endif
  2579. }
  2580. else {
  2581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2582. if (marlin_debug_flags & DEBUG_LEVELING) {
  2583. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2584. SERIAL_EOL;
  2585. }
  2586. #endif
  2587. }
  2588. #if ENABLED(DELTA)
  2589. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2590. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2591. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2592. #endif //DELTA
  2593. ProbeAction act;
  2594. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2595. act = ProbeDeployAndStow;
  2596. else if (yCount == 0 && xCount == xStart)
  2597. act = ProbeDeploy;
  2598. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2599. act = ProbeStow;
  2600. else
  2601. act = ProbeStay;
  2602. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2603. #if DISABLED(DELTA)
  2604. mean += measured_z;
  2605. eqnBVector[probePointCounter] = measured_z;
  2606. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2607. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2608. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2609. indexIntoAB[xCount][yCount] = probePointCounter;
  2610. #else
  2611. bed_level[xCount][yCount] = measured_z + z_offset;
  2612. #endif
  2613. probePointCounter++;
  2614. idle();
  2615. } //xProbe
  2616. } //yProbe
  2617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2618. if (marlin_debug_flags & DEBUG_LEVELING) {
  2619. print_xyz("> probing complete > current_position", current_position);
  2620. }
  2621. #endif
  2622. clean_up_after_endstop_move();
  2623. #if ENABLED(DELTA)
  2624. if (!dryrun) extrapolate_unprobed_bed_level();
  2625. print_bed_level();
  2626. #else // !DELTA
  2627. // solve lsq problem
  2628. double plane_equation_coefficients[3];
  2629. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2630. mean /= abl2;
  2631. if (verbose_level) {
  2632. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2633. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2634. SERIAL_PROTOCOLPGM(" b: ");
  2635. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2636. SERIAL_PROTOCOLPGM(" d: ");
  2637. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2638. SERIAL_EOL;
  2639. if (verbose_level > 2) {
  2640. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2641. SERIAL_PROTOCOL_F(mean, 8);
  2642. SERIAL_EOL;
  2643. }
  2644. }
  2645. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2646. // Show the Topography map if enabled
  2647. if (do_topography_map) {
  2648. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2649. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2650. SERIAL_PROTOCOLPGM(" | |\n");
  2651. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2652. SERIAL_PROTOCOLPGM(" E | | I\n");
  2653. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2654. SERIAL_PROTOCOLPGM(" T | | H\n");
  2655. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2656. SERIAL_PROTOCOLPGM(" | |\n");
  2657. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2658. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2659. float min_diff = 999;
  2660. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2661. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2662. int ind = indexIntoAB[xx][yy];
  2663. float diff = eqnBVector[ind] - mean;
  2664. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2665. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2666. z_tmp = 0;
  2667. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2668. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2669. if (diff >= 0.0)
  2670. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2671. else
  2672. SERIAL_PROTOCOLCHAR(' ');
  2673. SERIAL_PROTOCOL_F(diff, 5);
  2674. } // xx
  2675. SERIAL_EOL;
  2676. } // yy
  2677. SERIAL_EOL;
  2678. if (verbose_level > 3) {
  2679. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2680. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2681. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2682. int ind = indexIntoAB[xx][yy];
  2683. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2684. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2685. z_tmp = 0;
  2686. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2687. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2688. if (diff >= 0.0)
  2689. SERIAL_PROTOCOLPGM(" +");
  2690. // Include + for column alignment
  2691. else
  2692. SERIAL_PROTOCOLCHAR(' ');
  2693. SERIAL_PROTOCOL_F(diff, 5);
  2694. } // xx
  2695. SERIAL_EOL;
  2696. } // yy
  2697. SERIAL_EOL;
  2698. }
  2699. } //do_topography_map
  2700. #endif //!DELTA
  2701. #else // !AUTO_BED_LEVELING_GRID
  2702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2703. if (marlin_debug_flags & DEBUG_LEVELING) {
  2704. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2705. }
  2706. #endif
  2707. // Actions for each probe
  2708. ProbeAction p1, p2, p3;
  2709. if (deploy_probe_for_each_reading)
  2710. p1 = p2 = p3 = ProbeDeployAndStow;
  2711. else
  2712. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2713. // Probe at 3 arbitrary points
  2714. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2715. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2716. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2717. clean_up_after_endstop_move();
  2718. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2719. #endif // !AUTO_BED_LEVELING_GRID
  2720. #if ENABLED(DELTA)
  2721. // Allen Key Probe for Delta
  2722. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2723. stow_z_probe();
  2724. #elif Z_RAISE_AFTER_PROBING > 0
  2725. raise_z_after_probing(); // ???
  2726. #endif
  2727. #else // !DELTA
  2728. if (verbose_level > 0)
  2729. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2730. if (!dryrun) {
  2731. // Correct the Z height difference from Z probe position and nozzle tip position.
  2732. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2733. // When the bed is uneven, this height must be corrected.
  2734. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2735. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2736. z_tmp = current_position[Z_AXIS],
  2737. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2739. if (marlin_debug_flags & DEBUG_LEVELING) {
  2740. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2741. SERIAL_EOL;
  2742. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2743. SERIAL_EOL;
  2744. }
  2745. #endif
  2746. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2747. // Get the current Z position and send it to the planner.
  2748. //
  2749. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2750. //
  2751. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2752. //
  2753. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2754. //
  2755. // >> Should home_offset[Z_AXIS] be included?
  2756. //
  2757. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2758. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2759. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2760. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2761. // added here, it could be seen as a compensating factor for the Z probe.
  2762. //
  2763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2764. if (marlin_debug_flags & DEBUG_LEVELING) {
  2765. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2766. SERIAL_EOL;
  2767. }
  2768. #endif
  2769. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2770. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2771. + Z_RAISE_AFTER_PROBING
  2772. #endif
  2773. ;
  2774. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2775. sync_plan_position();
  2776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2777. if (marlin_debug_flags & DEBUG_LEVELING) {
  2778. print_xyz("> corrected Z in G29", current_position);
  2779. }
  2780. #endif
  2781. }
  2782. // Sled assembly for Cartesian bots
  2783. #if ENABLED(Z_PROBE_SLED)
  2784. dock_sled(true); // dock the sled
  2785. #elif Z_RAISE_AFTER_PROBING > 0
  2786. // Raise Z axis for non-delta and non servo based probes
  2787. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2788. raise_z_after_probing();
  2789. #endif
  2790. #endif
  2791. #endif // !DELTA
  2792. #ifdef Z_PROBE_END_SCRIPT
  2793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2794. if (marlin_debug_flags & DEBUG_LEVELING) {
  2795. SERIAL_ECHO("Z Probe End Script: ");
  2796. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2797. }
  2798. #endif
  2799. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2800. #if ENABLED(HAS_Z_MIN_PROBE)
  2801. z_probe_is_active = false;
  2802. #endif
  2803. st_synchronize();
  2804. #endif
  2805. KEEPALIVE_STATE(IN_HANDLER);
  2806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2807. if (marlin_debug_flags & DEBUG_LEVELING) {
  2808. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2809. }
  2810. #endif
  2811. gcode_M114(); // Send end position to RepetierHost
  2812. }
  2813. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2814. /**
  2815. * G30: Do a single Z probe at the current XY
  2816. */
  2817. inline void gcode_G30() {
  2818. #if HAS_SERVO_ENDSTOPS
  2819. raise_z_for_servo();
  2820. #endif
  2821. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed her.
  2822. st_synchronize();
  2823. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2824. setup_for_endstop_move(); // to late. Must be done before deploying.
  2825. feedrate = homing_feedrate[Z_AXIS];
  2826. run_z_probe();
  2827. SERIAL_PROTOCOLPGM("Bed X: ");
  2828. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2829. SERIAL_PROTOCOLPGM(" Y: ");
  2830. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2831. SERIAL_PROTOCOLPGM(" Z: ");
  2832. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2833. SERIAL_EOL;
  2834. clean_up_after_endstop_move(); // to early. must be done after the stowing.
  2835. #if HAS_SERVO_ENDSTOPS
  2836. raise_z_for_servo();
  2837. #endif
  2838. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed her.
  2839. gcode_M114(); // Send end position to RepetierHost
  2840. }
  2841. #endif //!Z_PROBE_SLED
  2842. #endif //AUTO_BED_LEVELING_FEATURE
  2843. /**
  2844. * G92: Set current position to given X Y Z E
  2845. */
  2846. inline void gcode_G92() {
  2847. if (!code_seen(axis_codes[E_AXIS]))
  2848. st_synchronize();
  2849. bool didXYZ = false;
  2850. for (int i = 0; i < NUM_AXIS; i++) {
  2851. if (code_seen(axis_codes[i])) {
  2852. float v = current_position[i] = code_value();
  2853. if (i == E_AXIS)
  2854. plan_set_e_position(v);
  2855. else
  2856. didXYZ = true;
  2857. }
  2858. }
  2859. if (didXYZ) {
  2860. #if ENABLED(DELTA) || ENABLED(SCARA)
  2861. sync_plan_position_delta();
  2862. #else
  2863. sync_plan_position();
  2864. #endif
  2865. }
  2866. }
  2867. #if ENABLED(ULTIPANEL)
  2868. /**
  2869. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2870. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2871. */
  2872. inline void gcode_M0_M1() {
  2873. char* args = current_command_args;
  2874. millis_t codenum = 0;
  2875. bool hasP = false, hasS = false;
  2876. if (code_seen('P')) {
  2877. codenum = code_value_short(); // milliseconds to wait
  2878. hasP = codenum > 0;
  2879. }
  2880. if (code_seen('S')) {
  2881. codenum = code_value() * 1000; // seconds to wait
  2882. hasS = codenum > 0;
  2883. }
  2884. if (!hasP && !hasS && *args != '\0')
  2885. lcd_setstatus(args, true);
  2886. else {
  2887. LCD_MESSAGEPGM(MSG_USERWAIT);
  2888. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2889. dontExpireStatus();
  2890. #endif
  2891. }
  2892. lcd_ignore_click();
  2893. st_synchronize();
  2894. refresh_cmd_timeout();
  2895. if (codenum > 0) {
  2896. codenum += previous_cmd_ms; // wait until this time for a click
  2897. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2898. while (millis() < codenum && !lcd_clicked()) idle();
  2899. KEEPALIVE_STATE(IN_HANDLER);
  2900. lcd_ignore_click(false);
  2901. }
  2902. else {
  2903. if (!lcd_detected()) return;
  2904. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2905. while (!lcd_clicked()) idle();
  2906. KEEPALIVE_STATE(IN_HANDLER);
  2907. }
  2908. if (IS_SD_PRINTING)
  2909. LCD_MESSAGEPGM(MSG_RESUMING);
  2910. else
  2911. LCD_MESSAGEPGM(WELCOME_MSG);
  2912. }
  2913. #endif // ULTIPANEL
  2914. /**
  2915. * M17: Enable power on all stepper motors
  2916. */
  2917. inline void gcode_M17() {
  2918. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2919. enable_all_steppers();
  2920. }
  2921. #if ENABLED(SDSUPPORT)
  2922. /**
  2923. * M20: List SD card to serial output
  2924. */
  2925. inline void gcode_M20() {
  2926. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2927. card.ls();
  2928. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2929. }
  2930. /**
  2931. * M21: Init SD Card
  2932. */
  2933. inline void gcode_M21() {
  2934. card.initsd();
  2935. }
  2936. /**
  2937. * M22: Release SD Card
  2938. */
  2939. inline void gcode_M22() {
  2940. card.release();
  2941. }
  2942. /**
  2943. * M23: Open a file
  2944. */
  2945. inline void gcode_M23() {
  2946. card.openFile(current_command_args, true);
  2947. }
  2948. /**
  2949. * M24: Start SD Print
  2950. */
  2951. inline void gcode_M24() {
  2952. card.startFileprint();
  2953. print_job_start();
  2954. }
  2955. /**
  2956. * M25: Pause SD Print
  2957. */
  2958. inline void gcode_M25() {
  2959. card.pauseSDPrint();
  2960. }
  2961. /**
  2962. * M26: Set SD Card file index
  2963. */
  2964. inline void gcode_M26() {
  2965. if (card.cardOK && code_seen('S'))
  2966. card.setIndex(code_value_short());
  2967. }
  2968. /**
  2969. * M27: Get SD Card status
  2970. */
  2971. inline void gcode_M27() {
  2972. card.getStatus();
  2973. }
  2974. /**
  2975. * M28: Start SD Write
  2976. */
  2977. inline void gcode_M28() {
  2978. card.openFile(current_command_args, false);
  2979. }
  2980. /**
  2981. * M29: Stop SD Write
  2982. * Processed in write to file routine above
  2983. */
  2984. inline void gcode_M29() {
  2985. // card.saving = false;
  2986. }
  2987. /**
  2988. * M30 <filename>: Delete SD Card file
  2989. */
  2990. inline void gcode_M30() {
  2991. if (card.cardOK) {
  2992. card.closefile();
  2993. card.removeFile(current_command_args);
  2994. }
  2995. }
  2996. #endif //SDSUPPORT
  2997. /**
  2998. * M31: Get the time since the start of SD Print (or last M109)
  2999. */
  3000. inline void gcode_M31() {
  3001. millis_t t = print_job_timer();
  3002. int min = t / 60, sec = t % 60;
  3003. char time[30];
  3004. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3005. SERIAL_ECHO_START;
  3006. SERIAL_ECHOLN(time);
  3007. lcd_setstatus(time);
  3008. autotempShutdown();
  3009. }
  3010. #if ENABLED(SDSUPPORT)
  3011. /**
  3012. * M32: Select file and start SD Print
  3013. */
  3014. inline void gcode_M32() {
  3015. if (card.sdprinting)
  3016. st_synchronize();
  3017. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3018. if (!namestartpos)
  3019. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3020. else
  3021. namestartpos++; //to skip the '!'
  3022. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3023. if (card.cardOK) {
  3024. card.openFile(namestartpos, true, !call_procedure);
  3025. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3026. card.setIndex(code_value_short());
  3027. card.startFileprint();
  3028. // Procedure calls count as normal print time.
  3029. if (!call_procedure) print_job_start();
  3030. }
  3031. }
  3032. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3033. /**
  3034. * M33: Get the long full path of a file or folder
  3035. *
  3036. * Parameters:
  3037. * <dospath> Case-insensitive DOS-style path to a file or folder
  3038. *
  3039. * Example:
  3040. * M33 miscel~1/armchair/armcha~1.gco
  3041. *
  3042. * Output:
  3043. * /Miscellaneous/Armchair/Armchair.gcode
  3044. */
  3045. inline void gcode_M33() {
  3046. card.printLongPath(current_command_args);
  3047. }
  3048. #endif
  3049. /**
  3050. * M928: Start SD Write
  3051. */
  3052. inline void gcode_M928() {
  3053. card.openLogFile(current_command_args);
  3054. }
  3055. #endif // SDSUPPORT
  3056. /**
  3057. * M42: Change pin status via GCode
  3058. *
  3059. * P<pin> Pin number (LED if omitted)
  3060. * S<byte> Pin status from 0 - 255
  3061. */
  3062. inline void gcode_M42() {
  3063. if (code_seen('S')) {
  3064. int pin_status = code_value_short();
  3065. if (pin_status < 0 || pin_status > 255) return;
  3066. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3067. if (pin_number < 0) return;
  3068. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3069. if (pin_number == sensitive_pins[i]) return;
  3070. pinMode(pin_number, OUTPUT);
  3071. digitalWrite(pin_number, pin_status);
  3072. analogWrite(pin_number, pin_status);
  3073. #if FAN_COUNT > 0
  3074. switch (pin_number) {
  3075. #if HAS_FAN0
  3076. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3077. #endif
  3078. #if HAS_FAN1
  3079. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3080. #endif
  3081. #if HAS_FAN2
  3082. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3083. #endif
  3084. }
  3085. #endif
  3086. } // code_seen('S')
  3087. }
  3088. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3089. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  3090. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3091. #if !HAS_Z_PROBE
  3092. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3093. #endif
  3094. #elif !HAS_Z_MIN
  3095. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3096. #endif
  3097. /**
  3098. * M48: Z probe repeatability measurement function.
  3099. *
  3100. * Usage:
  3101. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3102. * P = Number of sampled points (4-50, default 10)
  3103. * X = Sample X position
  3104. * Y = Sample Y position
  3105. * V = Verbose level (0-4, default=1)
  3106. * E = Engage Z probe for each reading
  3107. * L = Number of legs of movement before probe
  3108. * S = Schizoid (Or Star if you prefer)
  3109. *
  3110. * This function assumes the bed has been homed. Specifically, that a G28 command
  3111. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3112. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3113. * regenerated.
  3114. */
  3115. inline void gcode_M48() {
  3116. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS] || !axis_known_position[Z_AXIS]) {
  3117. unknown_position_error();
  3118. return;
  3119. }
  3120. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3121. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3122. if (code_seen('V')) {
  3123. verbose_level = code_value_short();
  3124. if (verbose_level < 0 || verbose_level > 4) {
  3125. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3126. return;
  3127. }
  3128. }
  3129. if (verbose_level > 0)
  3130. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3131. if (code_seen('P')) {
  3132. n_samples = code_value_short();
  3133. if (n_samples < 4 || n_samples > 50) {
  3134. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3135. return;
  3136. }
  3137. }
  3138. float X_current = current_position[X_AXIS],
  3139. Y_current = current_position[Y_AXIS],
  3140. Z_current = current_position[Z_AXIS],
  3141. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3142. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3143. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3144. bool deploy_probe_for_each_reading = code_seen('E');
  3145. if (code_seen('X')) {
  3146. X_probe_location = code_value();
  3147. #if DISABLED(DELTA)
  3148. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3149. out_of_range_error(PSTR("X"));
  3150. return;
  3151. }
  3152. #endif
  3153. }
  3154. if (code_seen('Y')) {
  3155. Y_probe_location = code_value();
  3156. #if DISABLED(DELTA)
  3157. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3158. out_of_range_error(PSTR("Y"));
  3159. return;
  3160. }
  3161. #endif
  3162. }
  3163. #if ENABLED(DELTA)
  3164. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3165. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3166. return;
  3167. }
  3168. #endif
  3169. bool seen_L = code_seen('L');
  3170. if (seen_L) {
  3171. n_legs = code_value_short();
  3172. if (n_legs < 0 || n_legs > 15) {
  3173. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3174. return;
  3175. }
  3176. if (n_legs == 1) n_legs = 2;
  3177. }
  3178. if (code_seen('S')) {
  3179. schizoid_flag++;
  3180. if (!seen_L) n_legs = 7;
  3181. }
  3182. // Now get everything to the specified probe point So we can safely do a probe to
  3183. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3184. // use that as a starting point for each probe.
  3185. //
  3186. if (verbose_level > 2)
  3187. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3188. #if ENABLED(DELTA)
  3189. reset_bed_level(); // we don't do bed level correction in M48 because we want the raw data when we probe
  3190. #else
  3191. plan_bed_level_matrix.set_to_identity(); // we don't do bed level correction in M48 because we wantthe raw data when we probe
  3192. #endif
  3193. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3194. do_blocking_move_to_z(Z_start_location);
  3195. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3196. //
  3197. // OK, do the initial probe to get us close to the bed.
  3198. // Then retrace the right amount and use that in subsequent probes
  3199. //
  3200. setup_for_endstop_move();
  3201. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3202. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3203. verbose_level);
  3204. raise_z_after_probing();
  3205. for (uint8_t n = 0; n < n_samples; n++) {
  3206. randomSeed(millis());
  3207. delay(500);
  3208. if (n_legs) {
  3209. float radius, angle = random(0.0, 360.0);
  3210. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3211. radius = random(
  3212. #if ENABLED(DELTA)
  3213. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3214. #else
  3215. 5, X_MAX_LENGTH / 8
  3216. #endif
  3217. );
  3218. if (verbose_level > 3) {
  3219. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3220. SERIAL_ECHOPAIR(" angle: ", angle);
  3221. delay(100);
  3222. if (dir > 0)
  3223. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3224. else
  3225. SERIAL_ECHO(" Direction: Clockwise \n");
  3226. delay(100);
  3227. }
  3228. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3229. double delta_angle;
  3230. if (schizoid_flag)
  3231. delta_angle = dir * 2.0 * 72.0; // The points of a 5 point star are 72 degrees apart. We need to
  3232. // skip a point and go to the next one on the star.
  3233. else
  3234. delta_angle = dir * (float) random(25, 45); // If we do this line, we are just trying to move further
  3235. // around the circle.
  3236. angle += delta_angle;
  3237. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3238. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3239. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3240. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3241. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3242. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3243. #if DISABLED(DELTA)
  3244. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3245. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3246. #else
  3247. // If we have gone out too far, we can do a simple fix and scale the numbers
  3248. // back in closer to the origin.
  3249. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3250. X_current /= 1.25;
  3251. Y_current /= 1.25;
  3252. if (verbose_level > 3) {
  3253. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3254. SERIAL_ECHOPAIR(", ", Y_current);
  3255. SERIAL_EOL;
  3256. delay(50);
  3257. }
  3258. }
  3259. #endif
  3260. if (verbose_level > 3) {
  3261. SERIAL_PROTOCOL("Going to:");
  3262. SERIAL_ECHOPAIR("x: ", X_current);
  3263. SERIAL_ECHOPAIR("y: ", Y_current);
  3264. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3265. SERIAL_EOL;
  3266. delay(55);
  3267. }
  3268. do_blocking_move_to_xy(X_current, Y_current);
  3269. } // n_legs loop
  3270. } // n_legs
  3271. // We don't really have to do this move, but if we don't we can see a funny shift in the Z Height
  3272. // Because the user might not have the Z_RAISE_BEFORE_PROBING height identical to the
  3273. // Z_RAISE_BETWEEN_PROBING height. This gets us back to the probe location at the same height that
  3274. // we have been running around the circle at.
  3275. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3276. if (deploy_probe_for_each_reading)
  3277. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3278. else {
  3279. if (n == n_samples - 1)
  3280. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3281. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3282. }
  3283. //
  3284. // Get the current mean for the data points we have so far
  3285. //
  3286. sum = 0.0;
  3287. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3288. mean = sum / (n + 1);
  3289. //
  3290. // Now, use that mean to calculate the standard deviation for the
  3291. // data points we have so far
  3292. //
  3293. sum = 0.0;
  3294. for (uint8_t j = 0; j <= n; j++) {
  3295. float ss = sample_set[j] - mean;
  3296. sum += ss * ss;
  3297. }
  3298. sigma = sqrt(sum / (n + 1));
  3299. if (verbose_level > 1) {
  3300. SERIAL_PROTOCOL(n + 1);
  3301. SERIAL_PROTOCOLPGM(" of ");
  3302. SERIAL_PROTOCOL((int)n_samples);
  3303. SERIAL_PROTOCOLPGM(" z: ");
  3304. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3305. delay(50);
  3306. if (verbose_level > 2) {
  3307. SERIAL_PROTOCOLPGM(" mean: ");
  3308. SERIAL_PROTOCOL_F(mean, 6);
  3309. SERIAL_PROTOCOLPGM(" sigma: ");
  3310. SERIAL_PROTOCOL_F(sigma, 6);
  3311. }
  3312. }
  3313. if (verbose_level > 0) SERIAL_EOL;
  3314. delay(50);
  3315. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3316. } // End of probe loop code
  3317. // raise_z_after_probing();
  3318. if (verbose_level > 0) {
  3319. SERIAL_PROTOCOLPGM("Mean: ");
  3320. SERIAL_PROTOCOL_F(mean, 6);
  3321. SERIAL_EOL;
  3322. delay(25);
  3323. }
  3324. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3325. SERIAL_PROTOCOL_F(sigma, 6);
  3326. SERIAL_EOL; SERIAL_EOL;
  3327. delay(25);
  3328. clean_up_after_endstop_move();
  3329. gcode_M114(); // Send end position to RepetierHost
  3330. }
  3331. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3332. /**
  3333. * M104: Set hot end temperature
  3334. */
  3335. inline void gcode_M104() {
  3336. if (setTargetedHotend(104)) return;
  3337. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3338. if (code_seen('S')) {
  3339. float temp = code_value();
  3340. setTargetHotend(temp, target_extruder);
  3341. #if ENABLED(DUAL_X_CARRIAGE)
  3342. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3343. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3344. #endif
  3345. }
  3346. print_job_stop();
  3347. }
  3348. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3349. void print_heaterstates() {
  3350. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3351. SERIAL_PROTOCOLPGM(" T:");
  3352. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3353. SERIAL_PROTOCOLPGM(" /");
  3354. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3355. #endif
  3356. #if HAS_TEMP_BED
  3357. SERIAL_PROTOCOLPGM(" B:");
  3358. SERIAL_PROTOCOL_F(degBed(), 1);
  3359. SERIAL_PROTOCOLPGM(" /");
  3360. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3361. #endif
  3362. #if EXTRUDERS > 1
  3363. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3364. SERIAL_PROTOCOLPGM(" T");
  3365. SERIAL_PROTOCOL(e);
  3366. SERIAL_PROTOCOLCHAR(':');
  3367. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3368. SERIAL_PROTOCOLPGM(" /");
  3369. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3370. }
  3371. #endif
  3372. #if HAS_TEMP_BED
  3373. SERIAL_PROTOCOLPGM(" B@:");
  3374. #ifdef BED_WATTS
  3375. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3376. SERIAL_PROTOCOLCHAR('W');
  3377. #else
  3378. SERIAL_PROTOCOL(getHeaterPower(-1));
  3379. #endif
  3380. #endif
  3381. SERIAL_PROTOCOLPGM(" @:");
  3382. #ifdef EXTRUDER_WATTS
  3383. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3384. SERIAL_PROTOCOLCHAR('W');
  3385. #else
  3386. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3387. #endif
  3388. #if EXTRUDERS > 1
  3389. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3390. SERIAL_PROTOCOLPGM(" @");
  3391. SERIAL_PROTOCOL(e);
  3392. SERIAL_PROTOCOLCHAR(':');
  3393. #ifdef EXTRUDER_WATTS
  3394. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3395. SERIAL_PROTOCOLCHAR('W');
  3396. #else
  3397. SERIAL_PROTOCOL(getHeaterPower(e));
  3398. #endif
  3399. }
  3400. #endif
  3401. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3402. #if HAS_TEMP_BED
  3403. SERIAL_PROTOCOLPGM(" ADC B:");
  3404. SERIAL_PROTOCOL_F(degBed(), 1);
  3405. SERIAL_PROTOCOLPGM("C->");
  3406. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3407. #endif
  3408. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3409. SERIAL_PROTOCOLPGM(" T");
  3410. SERIAL_PROTOCOL(cur_extruder);
  3411. SERIAL_PROTOCOLCHAR(':');
  3412. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3413. SERIAL_PROTOCOLPGM("C->");
  3414. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3415. }
  3416. #endif
  3417. }
  3418. #endif
  3419. /**
  3420. * M105: Read hot end and bed temperature
  3421. */
  3422. inline void gcode_M105() {
  3423. if (setTargetedHotend(105)) return;
  3424. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3425. SERIAL_PROTOCOLPGM(MSG_OK);
  3426. print_heaterstates();
  3427. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3428. SERIAL_ERROR_START;
  3429. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3430. #endif
  3431. SERIAL_EOL;
  3432. }
  3433. #if FAN_COUNT > 0
  3434. /**
  3435. * M106: Set Fan Speed
  3436. *
  3437. * S<int> Speed between 0-255
  3438. * P<index> Fan index, if more than one fan
  3439. */
  3440. inline void gcode_M106() {
  3441. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3442. p = code_seen('P') ? code_value_short() : 0;
  3443. NOMORE(s, 255);
  3444. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3445. }
  3446. /**
  3447. * M107: Fan Off
  3448. */
  3449. inline void gcode_M107() {
  3450. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3451. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3452. }
  3453. #endif // FAN_COUNT > 0
  3454. /**
  3455. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3456. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3457. */
  3458. inline void gcode_M109() {
  3459. bool no_wait_for_cooling = true;
  3460. // Start hook must happen before setTargetHotend()
  3461. print_job_start();
  3462. if (setTargetedHotend(109)) return;
  3463. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3464. no_wait_for_cooling = code_seen('S');
  3465. if (no_wait_for_cooling || code_seen('R')) {
  3466. float temp = code_value();
  3467. setTargetHotend(temp, target_extruder);
  3468. #if ENABLED(DUAL_X_CARRIAGE)
  3469. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3470. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3471. #endif
  3472. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3473. }
  3474. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3475. #if ENABLED(AUTOTEMP)
  3476. autotemp_enabled = code_seen('F');
  3477. if (autotemp_enabled) autotemp_factor = code_value();
  3478. if (code_seen('S')) autotemp_min = code_value();
  3479. if (code_seen('B')) autotemp_max = code_value();
  3480. #endif
  3481. // Exit if the temperature is above target and not waiting for cooling
  3482. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3483. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3484. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3485. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3486. #ifdef TEMP_RESIDENCY_TIME
  3487. long residency_start_ms = -1;
  3488. // Loop until the temperature has stabilized
  3489. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3490. #else
  3491. // Loop until the temperature is very close target
  3492. #define TEMP_CONDITIONS (fabs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < 0.75f)
  3493. #endif //TEMP_RESIDENCY_TIME
  3494. cancel_heatup = false;
  3495. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3496. while (!cancel_heatup && TEMP_CONDITIONS) {
  3497. now = millis();
  3498. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3499. next_temp_ms = now + 1000UL;
  3500. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3501. print_heaterstates();
  3502. #endif
  3503. #ifdef TEMP_RESIDENCY_TIME
  3504. SERIAL_PROTOCOLPGM(" W:");
  3505. if (residency_start_ms >= 0) {
  3506. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3507. SERIAL_PROTOCOLLN(rem);
  3508. }
  3509. else {
  3510. SERIAL_PROTOCOLLNPGM("?");
  3511. }
  3512. #else
  3513. SERIAL_EOL;
  3514. #endif
  3515. }
  3516. idle();
  3517. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3518. #ifdef TEMP_RESIDENCY_TIME
  3519. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3520. // Restart the timer whenever the temperature falls outside the hysteresis.
  3521. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3522. residency_start_ms = millis();
  3523. #endif //TEMP_RESIDENCY_TIME
  3524. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3525. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3526. }
  3527. #if HAS_TEMP_BED
  3528. /**
  3529. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3530. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3531. */
  3532. inline void gcode_M190() {
  3533. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3534. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3535. bool no_wait_for_cooling = code_seen('S');
  3536. if (no_wait_for_cooling || code_seen('R'))
  3537. setTargetBed(code_value());
  3538. // Exit if the temperature is above target and not waiting for cooling
  3539. if (no_wait_for_cooling && !isHeatingBed()) return;
  3540. cancel_heatup = false;
  3541. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3542. while (!cancel_heatup && degTargetBed() != degBed()) {
  3543. millis_t now = millis();
  3544. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3545. next_temp_ms = now + 1000UL;
  3546. print_heaterstates();
  3547. SERIAL_EOL;
  3548. }
  3549. idle();
  3550. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3551. }
  3552. LCD_MESSAGEPGM(MSG_BED_DONE);
  3553. }
  3554. #endif // HAS_TEMP_BED
  3555. /**
  3556. * M110: Set Current Line Number
  3557. */
  3558. inline void gcode_M110() {
  3559. if (code_seen('N')) gcode_N = code_value_long();
  3560. }
  3561. /**
  3562. * M111: Set the debug level
  3563. */
  3564. inline void gcode_M111() {
  3565. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3566. if (marlin_debug_flags & DEBUG_ECHO) {
  3567. SERIAL_ECHO_START;
  3568. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3569. }
  3570. // FOR MOMENT NOT ACTIVE
  3571. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3572. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3573. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3574. SERIAL_ECHO_START;
  3575. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3576. disable_all_heaters();
  3577. }
  3578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3579. if (marlin_debug_flags & DEBUG_LEVELING) {
  3580. SERIAL_ECHO_START;
  3581. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3582. }
  3583. #endif
  3584. }
  3585. /**
  3586. * M112: Emergency Stop
  3587. */
  3588. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3589. #if ENABLED(BARICUDA)
  3590. #if HAS_HEATER_1
  3591. /**
  3592. * M126: Heater 1 valve open
  3593. */
  3594. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3595. /**
  3596. * M127: Heater 1 valve close
  3597. */
  3598. inline void gcode_M127() { ValvePressure = 0; }
  3599. #endif
  3600. #if HAS_HEATER_2
  3601. /**
  3602. * M128: Heater 2 valve open
  3603. */
  3604. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3605. /**
  3606. * M129: Heater 2 valve close
  3607. */
  3608. inline void gcode_M129() { EtoPPressure = 0; }
  3609. #endif
  3610. #endif //BARICUDA
  3611. /**
  3612. * M140: Set bed temperature
  3613. */
  3614. inline void gcode_M140() {
  3615. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3616. if (code_seen('S')) setTargetBed(code_value());
  3617. }
  3618. #if ENABLED(ULTIPANEL)
  3619. /**
  3620. * M145: Set the heatup state for a material in the LCD menu
  3621. * S<material> (0=PLA, 1=ABS)
  3622. * H<hotend temp>
  3623. * B<bed temp>
  3624. * F<fan speed>
  3625. */
  3626. inline void gcode_M145() {
  3627. int8_t material = code_seen('S') ? code_value_short() : 0;
  3628. if (material < 0 || material > 1) {
  3629. SERIAL_ERROR_START;
  3630. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3631. }
  3632. else {
  3633. int v;
  3634. switch (material) {
  3635. case 0:
  3636. if (code_seen('H')) {
  3637. v = code_value_short();
  3638. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3639. }
  3640. if (code_seen('F')) {
  3641. v = code_value_short();
  3642. plaPreheatFanSpeed = constrain(v, 0, 255);
  3643. }
  3644. #if TEMP_SENSOR_BED != 0
  3645. if (code_seen('B')) {
  3646. v = code_value_short();
  3647. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3648. }
  3649. #endif
  3650. break;
  3651. case 1:
  3652. if (code_seen('H')) {
  3653. v = code_value_short();
  3654. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3655. }
  3656. if (code_seen('F')) {
  3657. v = code_value_short();
  3658. absPreheatFanSpeed = constrain(v, 0, 255);
  3659. }
  3660. #if TEMP_SENSOR_BED != 0
  3661. if (code_seen('B')) {
  3662. v = code_value_short();
  3663. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3664. }
  3665. #endif
  3666. break;
  3667. }
  3668. }
  3669. }
  3670. #endif
  3671. #if HAS_POWER_SWITCH
  3672. /**
  3673. * M80: Turn on Power Supply
  3674. */
  3675. inline void gcode_M80() {
  3676. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3677. // If you have a switch on suicide pin, this is useful
  3678. // if you want to start another print with suicide feature after
  3679. // a print without suicide...
  3680. #if HAS_SUICIDE
  3681. OUT_WRITE(SUICIDE_PIN, HIGH);
  3682. #endif
  3683. #if ENABLED(ULTIPANEL)
  3684. powersupply = true;
  3685. LCD_MESSAGEPGM(WELCOME_MSG);
  3686. lcd_update();
  3687. #endif
  3688. }
  3689. #endif // HAS_POWER_SWITCH
  3690. /**
  3691. * M81: Turn off Power, including Power Supply, if there is one.
  3692. *
  3693. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3694. */
  3695. inline void gcode_M81() {
  3696. disable_all_heaters();
  3697. finishAndDisableSteppers();
  3698. #if FAN_COUNT > 0
  3699. #if FAN_COUNT > 1
  3700. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3701. #else
  3702. fanSpeeds[0] = 0;
  3703. #endif
  3704. #endif
  3705. delay(1000); // Wait 1 second before switching off
  3706. #if HAS_SUICIDE
  3707. st_synchronize();
  3708. suicide();
  3709. #elif HAS_POWER_SWITCH
  3710. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3711. #endif
  3712. #if ENABLED(ULTIPANEL)
  3713. #if HAS_POWER_SWITCH
  3714. powersupply = false;
  3715. #endif
  3716. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3717. lcd_update();
  3718. #endif
  3719. }
  3720. /**
  3721. * M82: Set E codes absolute (default)
  3722. */
  3723. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3724. /**
  3725. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3726. */
  3727. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3728. /**
  3729. * M18, M84: Disable all stepper motors
  3730. */
  3731. inline void gcode_M18_M84() {
  3732. if (code_seen('S')) {
  3733. stepper_inactive_time = code_value() * 1000;
  3734. }
  3735. else {
  3736. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3737. if (all_axis) {
  3738. finishAndDisableSteppers();
  3739. }
  3740. else {
  3741. st_synchronize();
  3742. if (code_seen('X')) disable_x();
  3743. if (code_seen('Y')) disable_y();
  3744. if (code_seen('Z')) disable_z();
  3745. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3746. if (code_seen('E')) {
  3747. disable_e0();
  3748. disable_e1();
  3749. disable_e2();
  3750. disable_e3();
  3751. }
  3752. #endif
  3753. }
  3754. }
  3755. }
  3756. /**
  3757. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3758. */
  3759. inline void gcode_M85() {
  3760. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3761. }
  3762. /**
  3763. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3764. * (Follows the same syntax as G92)
  3765. */
  3766. inline void gcode_M92() {
  3767. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3768. if (code_seen(axis_codes[i])) {
  3769. if (i == E_AXIS) {
  3770. float value = code_value();
  3771. if (value < 20.0) {
  3772. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3773. max_e_jerk *= factor;
  3774. max_feedrate[i] *= factor;
  3775. axis_steps_per_sqr_second[i] *= factor;
  3776. }
  3777. axis_steps_per_unit[i] = value;
  3778. }
  3779. else {
  3780. axis_steps_per_unit[i] = code_value();
  3781. }
  3782. }
  3783. }
  3784. }
  3785. /**
  3786. * M114: Output current position to serial port
  3787. */
  3788. inline void gcode_M114() {
  3789. SERIAL_PROTOCOLPGM("X:");
  3790. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3791. SERIAL_PROTOCOLPGM(" Y:");
  3792. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3793. SERIAL_PROTOCOLPGM(" Z:");
  3794. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3795. SERIAL_PROTOCOLPGM(" E:");
  3796. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3797. CRITICAL_SECTION_START;
  3798. extern volatile long count_position[NUM_AXIS];
  3799. long xpos = count_position[X_AXIS],
  3800. ypos = count_position[Y_AXIS],
  3801. zpos = count_position[Z_AXIS];
  3802. CRITICAL_SECTION_END;
  3803. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3804. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3805. #else
  3806. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3807. #endif
  3808. SERIAL_PROTOCOL(xpos);
  3809. #if ENABLED(COREXY)
  3810. SERIAL_PROTOCOLPGM(" B:");
  3811. #else
  3812. SERIAL_PROTOCOLPGM(" Y:");
  3813. #endif
  3814. SERIAL_PROTOCOL(ypos);
  3815. #if ENABLED(COREXZ)
  3816. SERIAL_PROTOCOLPGM(" C:");
  3817. #else
  3818. SERIAL_PROTOCOLPGM(" Z:");
  3819. #endif
  3820. SERIAL_PROTOCOL(zpos);
  3821. SERIAL_EOL;
  3822. #if ENABLED(SCARA)
  3823. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3824. SERIAL_PROTOCOL(delta[X_AXIS]);
  3825. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3826. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3827. SERIAL_EOL;
  3828. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3829. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3830. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3831. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3832. SERIAL_EOL;
  3833. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3834. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3835. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3836. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3837. SERIAL_EOL; SERIAL_EOL;
  3838. #endif
  3839. }
  3840. /**
  3841. * M115: Capabilities string
  3842. */
  3843. inline void gcode_M115() {
  3844. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3845. }
  3846. /**
  3847. * M117: Set LCD Status Message
  3848. */
  3849. inline void gcode_M117() {
  3850. lcd_setstatus(current_command_args);
  3851. }
  3852. /**
  3853. * M119: Output endstop states to serial output
  3854. */
  3855. inline void gcode_M119() {
  3856. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3857. #if HAS_X_MIN
  3858. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3859. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3860. #endif
  3861. #if HAS_X_MAX
  3862. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3863. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3864. #endif
  3865. #if HAS_Y_MIN
  3866. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3867. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3868. #endif
  3869. #if HAS_Y_MAX
  3870. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3871. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3872. #endif
  3873. #if HAS_Z_MIN
  3874. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3875. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3876. #endif
  3877. #if HAS_Z_MAX
  3878. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3879. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3880. #endif
  3881. #if HAS_Z2_MAX
  3882. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3883. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3884. #endif
  3885. #if HAS_Z_PROBE
  3886. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3887. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3888. #endif
  3889. }
  3890. /**
  3891. * M120: Enable endstops
  3892. */
  3893. inline void gcode_M120() { enable_endstops(true); }
  3894. /**
  3895. * M121: Disable endstops
  3896. */
  3897. inline void gcode_M121() { enable_endstops(false); }
  3898. #if ENABLED(BLINKM)
  3899. /**
  3900. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3901. */
  3902. inline void gcode_M150() {
  3903. SendColors(
  3904. code_seen('R') ? (byte)code_value_short() : 0,
  3905. code_seen('U') ? (byte)code_value_short() : 0,
  3906. code_seen('B') ? (byte)code_value_short() : 0
  3907. );
  3908. }
  3909. #endif // BLINKM
  3910. /**
  3911. * M200: Set filament diameter and set E axis units to cubic millimeters
  3912. *
  3913. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3914. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3915. */
  3916. inline void gcode_M200() {
  3917. if (setTargetedHotend(200)) return;
  3918. if (code_seen('D')) {
  3919. float diameter = code_value();
  3920. // setting any extruder filament size disables volumetric on the assumption that
  3921. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3922. // for all extruders
  3923. volumetric_enabled = (diameter != 0.0);
  3924. if (volumetric_enabled) {
  3925. filament_size[target_extruder] = diameter;
  3926. // make sure all extruders have some sane value for the filament size
  3927. for (int i = 0; i < EXTRUDERS; i++)
  3928. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3929. }
  3930. }
  3931. else {
  3932. //reserved for setting filament diameter via UFID or filament measuring device
  3933. return;
  3934. }
  3935. calculate_volumetric_multipliers();
  3936. }
  3937. /**
  3938. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3939. */
  3940. inline void gcode_M201() {
  3941. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3942. if (code_seen(axis_codes[i])) {
  3943. max_acceleration_units_per_sq_second[i] = code_value();
  3944. }
  3945. }
  3946. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3947. reset_acceleration_rates();
  3948. }
  3949. #if 0 // Not used for Sprinter/grbl gen6
  3950. inline void gcode_M202() {
  3951. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3952. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3953. }
  3954. }
  3955. #endif
  3956. /**
  3957. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3958. */
  3959. inline void gcode_M203() {
  3960. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3961. if (code_seen(axis_codes[i])) {
  3962. max_feedrate[i] = code_value();
  3963. }
  3964. }
  3965. }
  3966. /**
  3967. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3968. *
  3969. * P = Printing moves
  3970. * R = Retract only (no X, Y, Z) moves
  3971. * T = Travel (non printing) moves
  3972. *
  3973. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3974. */
  3975. inline void gcode_M204() {
  3976. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3977. travel_acceleration = acceleration = code_value();
  3978. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3979. SERIAL_EOL;
  3980. }
  3981. if (code_seen('P')) {
  3982. acceleration = code_value();
  3983. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  3984. SERIAL_EOL;
  3985. }
  3986. if (code_seen('R')) {
  3987. retract_acceleration = code_value();
  3988. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  3989. SERIAL_EOL;
  3990. }
  3991. if (code_seen('T')) {
  3992. travel_acceleration = code_value();
  3993. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  3994. SERIAL_EOL;
  3995. }
  3996. }
  3997. /**
  3998. * M205: Set Advanced Settings
  3999. *
  4000. * S = Min Feed Rate (mm/s)
  4001. * T = Min Travel Feed Rate (mm/s)
  4002. * B = Min Segment Time (µs)
  4003. * X = Max XY Jerk (mm/s/s)
  4004. * Z = Max Z Jerk (mm/s/s)
  4005. * E = Max E Jerk (mm/s/s)
  4006. */
  4007. inline void gcode_M205() {
  4008. if (code_seen('S')) minimumfeedrate = code_value();
  4009. if (code_seen('T')) mintravelfeedrate = code_value();
  4010. if (code_seen('B')) minsegmenttime = code_value();
  4011. if (code_seen('X')) max_xy_jerk = code_value();
  4012. if (code_seen('Z')) max_z_jerk = code_value();
  4013. if (code_seen('E')) max_e_jerk = code_value();
  4014. }
  4015. /**
  4016. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4017. */
  4018. inline void gcode_M206() {
  4019. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4020. if (code_seen(axis_codes[i])) {
  4021. home_offset[i] = code_value();
  4022. }
  4023. }
  4024. #if ENABLED(SCARA)
  4025. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4026. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4027. #endif
  4028. }
  4029. #if ENABLED(DELTA)
  4030. /**
  4031. * M665: Set delta configurations
  4032. *
  4033. * L = diagonal rod
  4034. * R = delta radius
  4035. * S = segments per second
  4036. * A = Alpha (Tower 1) diagonal rod trim
  4037. * B = Beta (Tower 2) diagonal rod trim
  4038. * C = Gamma (Tower 3) diagonal rod trim
  4039. */
  4040. inline void gcode_M665() {
  4041. if (code_seen('L')) delta_diagonal_rod = code_value();
  4042. if (code_seen('R')) delta_radius = code_value();
  4043. if (code_seen('S')) delta_segments_per_second = code_value();
  4044. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4045. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4046. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4047. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4048. }
  4049. /**
  4050. * M666: Set delta endstop adjustment
  4051. */
  4052. inline void gcode_M666() {
  4053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4054. if (marlin_debug_flags & DEBUG_LEVELING) {
  4055. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4056. }
  4057. #endif
  4058. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4059. if (code_seen(axis_codes[i])) {
  4060. endstop_adj[i] = code_value();
  4061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4062. if (marlin_debug_flags & DEBUG_LEVELING) {
  4063. SERIAL_ECHOPGM("endstop_adj[");
  4064. SERIAL_ECHO(axis_codes[i]);
  4065. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4066. SERIAL_EOL;
  4067. }
  4068. #endif
  4069. }
  4070. }
  4071. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4072. if (marlin_debug_flags & DEBUG_LEVELING) {
  4073. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4074. }
  4075. #endif
  4076. }
  4077. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4078. /**
  4079. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4080. */
  4081. inline void gcode_M666() {
  4082. if (code_seen('Z')) z_endstop_adj = code_value();
  4083. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4084. SERIAL_EOL;
  4085. }
  4086. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4087. #if ENABLED(FWRETRACT)
  4088. /**
  4089. * M207: Set firmware retraction values
  4090. *
  4091. * S[+mm] retract_length
  4092. * W[+mm] retract_length_swap (multi-extruder)
  4093. * F[mm/min] retract_feedrate
  4094. * Z[mm] retract_zlift
  4095. */
  4096. inline void gcode_M207() {
  4097. if (code_seen('S')) retract_length = code_value();
  4098. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4099. if (code_seen('Z')) retract_zlift = code_value();
  4100. #if EXTRUDERS > 1
  4101. if (code_seen('W')) retract_length_swap = code_value();
  4102. #endif
  4103. }
  4104. /**
  4105. * M208: Set firmware un-retraction values
  4106. *
  4107. * S[+mm] retract_recover_length (in addition to M207 S*)
  4108. * W[+mm] retract_recover_length_swap (multi-extruder)
  4109. * F[mm/min] retract_recover_feedrate
  4110. */
  4111. inline void gcode_M208() {
  4112. if (code_seen('S')) retract_recover_length = code_value();
  4113. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4114. #if EXTRUDERS > 1
  4115. if (code_seen('W')) retract_recover_length_swap = code_value();
  4116. #endif
  4117. }
  4118. /**
  4119. * M209: Enable automatic retract (M209 S1)
  4120. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4121. */
  4122. inline void gcode_M209() {
  4123. if (code_seen('S')) {
  4124. int t = code_value_short();
  4125. switch (t) {
  4126. case 0:
  4127. autoretract_enabled = false;
  4128. break;
  4129. case 1:
  4130. autoretract_enabled = true;
  4131. break;
  4132. default:
  4133. unknown_command_error();
  4134. return;
  4135. }
  4136. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4137. }
  4138. }
  4139. #endif // FWRETRACT
  4140. #if EXTRUDERS > 1
  4141. /**
  4142. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4143. */
  4144. inline void gcode_M218() {
  4145. if (setTargetedHotend(218)) return;
  4146. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4147. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4148. #if ENABLED(DUAL_X_CARRIAGE)
  4149. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4150. #endif
  4151. SERIAL_ECHO_START;
  4152. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4153. for (int e = 0; e < EXTRUDERS; e++) {
  4154. SERIAL_CHAR(' ');
  4155. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4156. SERIAL_CHAR(',');
  4157. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4158. #if ENABLED(DUAL_X_CARRIAGE)
  4159. SERIAL_CHAR(',');
  4160. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4161. #endif
  4162. }
  4163. SERIAL_EOL;
  4164. }
  4165. #endif // EXTRUDERS > 1
  4166. /**
  4167. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4168. */
  4169. inline void gcode_M220() {
  4170. if (code_seen('S')) feedrate_multiplier = code_value();
  4171. }
  4172. /**
  4173. * M221: Set extrusion percentage (M221 T0 S95)
  4174. */
  4175. inline void gcode_M221() {
  4176. if (code_seen('S')) {
  4177. int sval = code_value();
  4178. if (setTargetedHotend(221)) return;
  4179. extruder_multiplier[target_extruder] = sval;
  4180. }
  4181. }
  4182. /**
  4183. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4184. */
  4185. inline void gcode_M226() {
  4186. if (code_seen('P')) {
  4187. int pin_number = code_value();
  4188. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4189. if (pin_state >= -1 && pin_state <= 1) {
  4190. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4191. if (sensitive_pins[i] == pin_number) {
  4192. pin_number = -1;
  4193. break;
  4194. }
  4195. }
  4196. if (pin_number > -1) {
  4197. int target = LOW;
  4198. st_synchronize();
  4199. pinMode(pin_number, INPUT);
  4200. switch (pin_state) {
  4201. case 1:
  4202. target = HIGH;
  4203. break;
  4204. case 0:
  4205. target = LOW;
  4206. break;
  4207. case -1:
  4208. target = !digitalRead(pin_number);
  4209. break;
  4210. }
  4211. while (digitalRead(pin_number) != target) idle();
  4212. } // pin_number > -1
  4213. } // pin_state -1 0 1
  4214. } // code_seen('P')
  4215. }
  4216. #if HAS_SERVOS
  4217. /**
  4218. * M280: Get or set servo position. P<index> S<angle>
  4219. */
  4220. inline void gcode_M280() {
  4221. int servo_index = code_seen('P') ? code_value_short() : -1;
  4222. int servo_position = 0;
  4223. if (code_seen('S')) {
  4224. servo_position = code_value_short();
  4225. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4226. servo[servo_index].move(servo_position);
  4227. else {
  4228. SERIAL_ERROR_START;
  4229. SERIAL_ERROR("Servo ");
  4230. SERIAL_ERROR(servo_index);
  4231. SERIAL_ERRORLN(" out of range");
  4232. }
  4233. }
  4234. else if (servo_index >= 0) {
  4235. SERIAL_ECHO_START;
  4236. SERIAL_ECHO(" Servo ");
  4237. SERIAL_ECHO(servo_index);
  4238. SERIAL_ECHO(": ");
  4239. SERIAL_ECHOLN(servo[servo_index].read());
  4240. }
  4241. }
  4242. #endif // HAS_SERVOS
  4243. #if HAS_BUZZER
  4244. /**
  4245. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4246. */
  4247. inline void gcode_M300() {
  4248. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4249. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4250. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4251. buzz(beepP, beepS);
  4252. }
  4253. #endif // HAS_BUZZER
  4254. #if ENABLED(PIDTEMP)
  4255. /**
  4256. * M301: Set PID parameters P I D (and optionally C, L)
  4257. *
  4258. * P[float] Kp term
  4259. * I[float] Ki term (unscaled)
  4260. * D[float] Kd term (unscaled)
  4261. *
  4262. * With PID_ADD_EXTRUSION_RATE:
  4263. *
  4264. * C[float] Kc term
  4265. * L[float] LPQ length
  4266. */
  4267. inline void gcode_M301() {
  4268. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4269. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4270. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4271. if (e < EXTRUDERS) { // catch bad input value
  4272. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4273. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4274. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4275. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4276. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4277. if (code_seen('L')) lpq_len = code_value();
  4278. NOMORE(lpq_len, LPQ_MAX_LEN);
  4279. #endif
  4280. updatePID();
  4281. SERIAL_ECHO_START;
  4282. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4283. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4284. SERIAL_ECHO(e);
  4285. #endif // PID_PARAMS_PER_EXTRUDER
  4286. SERIAL_ECHO(" p:");
  4287. SERIAL_ECHO(PID_PARAM(Kp, e));
  4288. SERIAL_ECHO(" i:");
  4289. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4290. SERIAL_ECHO(" d:");
  4291. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4292. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4293. SERIAL_ECHO(" c:");
  4294. //Kc does not have scaling applied above, or in resetting defaults
  4295. SERIAL_ECHO(PID_PARAM(Kc, e));
  4296. #endif
  4297. SERIAL_EOL;
  4298. }
  4299. else {
  4300. SERIAL_ERROR_START;
  4301. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4302. }
  4303. }
  4304. #endif // PIDTEMP
  4305. #if ENABLED(PIDTEMPBED)
  4306. inline void gcode_M304() {
  4307. if (code_seen('P')) bedKp = code_value();
  4308. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4309. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4310. updatePID();
  4311. SERIAL_ECHO_START;
  4312. SERIAL_ECHO(" p:");
  4313. SERIAL_ECHO(bedKp);
  4314. SERIAL_ECHO(" i:");
  4315. SERIAL_ECHO(unscalePID_i(bedKi));
  4316. SERIAL_ECHO(" d:");
  4317. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4318. }
  4319. #endif // PIDTEMPBED
  4320. #if defined(CHDK) || HAS_PHOTOGRAPH
  4321. /**
  4322. * M240: Trigger a camera by emulating a Canon RC-1
  4323. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4324. */
  4325. inline void gcode_M240() {
  4326. #ifdef CHDK
  4327. OUT_WRITE(CHDK, HIGH);
  4328. chdkHigh = millis();
  4329. chdkActive = true;
  4330. #elif HAS_PHOTOGRAPH
  4331. const uint8_t NUM_PULSES = 16;
  4332. const float PULSE_LENGTH = 0.01524;
  4333. for (int i = 0; i < NUM_PULSES; i++) {
  4334. WRITE(PHOTOGRAPH_PIN, HIGH);
  4335. _delay_ms(PULSE_LENGTH);
  4336. WRITE(PHOTOGRAPH_PIN, LOW);
  4337. _delay_ms(PULSE_LENGTH);
  4338. }
  4339. delay(7.33);
  4340. for (int i = 0; i < NUM_PULSES; i++) {
  4341. WRITE(PHOTOGRAPH_PIN, HIGH);
  4342. _delay_ms(PULSE_LENGTH);
  4343. WRITE(PHOTOGRAPH_PIN, LOW);
  4344. _delay_ms(PULSE_LENGTH);
  4345. }
  4346. #endif // !CHDK && HAS_PHOTOGRAPH
  4347. }
  4348. #endif // CHDK || PHOTOGRAPH_PIN
  4349. #if ENABLED(HAS_LCD_CONTRAST)
  4350. /**
  4351. * M250: Read and optionally set the LCD contrast
  4352. */
  4353. inline void gcode_M250() {
  4354. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4355. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4356. SERIAL_PROTOCOL(lcd_contrast);
  4357. SERIAL_EOL;
  4358. }
  4359. #endif // HAS_LCD_CONTRAST
  4360. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4361. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4362. /**
  4363. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4364. */
  4365. inline void gcode_M302() {
  4366. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4367. }
  4368. #endif // PREVENT_DANGEROUS_EXTRUDE
  4369. /**
  4370. * M303: PID relay autotune
  4371. *
  4372. * S<temperature> sets the target temperature. (default 150C)
  4373. * E<extruder> (-1 for the bed) (default 0)
  4374. * C<cycles>
  4375. * U<bool> with a non-zero value will apply the result to current settings
  4376. */
  4377. inline void gcode_M303() {
  4378. int e = code_seen('E') ? code_value_short() : 0;
  4379. int c = code_seen('C') ? code_value_short() : 5;
  4380. bool u = code_seen('U') && code_value_short() != 0;
  4381. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4382. if (e >= 0 && e < EXTRUDERS)
  4383. target_extruder = e;
  4384. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4385. PID_autotune(temp, e, c, u);
  4386. KEEPALIVE_STATE(IN_HANDLER);
  4387. }
  4388. #if ENABLED(SCARA)
  4389. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4390. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4391. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4392. if (IsRunning()) {
  4393. //gcode_get_destination(); // For X Y Z E F
  4394. delta[X_AXIS] = delta_x;
  4395. delta[Y_AXIS] = delta_y;
  4396. calculate_SCARA_forward_Transform(delta);
  4397. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4398. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4399. prepare_move();
  4400. //ok_to_send();
  4401. return true;
  4402. }
  4403. return false;
  4404. }
  4405. /**
  4406. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4407. */
  4408. inline bool gcode_M360() {
  4409. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4410. return SCARA_move_to_cal(0, 120);
  4411. }
  4412. /**
  4413. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4414. */
  4415. inline bool gcode_M361() {
  4416. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4417. return SCARA_move_to_cal(90, 130);
  4418. }
  4419. /**
  4420. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4421. */
  4422. inline bool gcode_M362() {
  4423. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4424. return SCARA_move_to_cal(60, 180);
  4425. }
  4426. /**
  4427. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4428. */
  4429. inline bool gcode_M363() {
  4430. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4431. return SCARA_move_to_cal(50, 90);
  4432. }
  4433. /**
  4434. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4435. */
  4436. inline bool gcode_M364() {
  4437. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4438. return SCARA_move_to_cal(45, 135);
  4439. }
  4440. /**
  4441. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4442. */
  4443. inline void gcode_M365() {
  4444. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4445. if (code_seen(axis_codes[i])) {
  4446. axis_scaling[i] = code_value();
  4447. }
  4448. }
  4449. }
  4450. #endif // SCARA
  4451. #if ENABLED(EXT_SOLENOID)
  4452. void enable_solenoid(uint8_t num) {
  4453. switch (num) {
  4454. case 0:
  4455. OUT_WRITE(SOL0_PIN, HIGH);
  4456. break;
  4457. #if HAS_SOLENOID_1
  4458. case 1:
  4459. OUT_WRITE(SOL1_PIN, HIGH);
  4460. break;
  4461. #endif
  4462. #if HAS_SOLENOID_2
  4463. case 2:
  4464. OUT_WRITE(SOL2_PIN, HIGH);
  4465. break;
  4466. #endif
  4467. #if HAS_SOLENOID_3
  4468. case 3:
  4469. OUT_WRITE(SOL3_PIN, HIGH);
  4470. break;
  4471. #endif
  4472. default:
  4473. SERIAL_ECHO_START;
  4474. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4475. break;
  4476. }
  4477. }
  4478. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4479. void disable_all_solenoids() {
  4480. OUT_WRITE(SOL0_PIN, LOW);
  4481. OUT_WRITE(SOL1_PIN, LOW);
  4482. OUT_WRITE(SOL2_PIN, LOW);
  4483. OUT_WRITE(SOL3_PIN, LOW);
  4484. }
  4485. /**
  4486. * M380: Enable solenoid on the active extruder
  4487. */
  4488. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4489. /**
  4490. * M381: Disable all solenoids
  4491. */
  4492. inline void gcode_M381() { disable_all_solenoids(); }
  4493. #endif // EXT_SOLENOID
  4494. /**
  4495. * M400: Finish all moves
  4496. */
  4497. inline void gcode_M400() { st_synchronize(); }
  4498. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4499. /**
  4500. * M401: Engage Z Servo endstop if available
  4501. */
  4502. inline void gcode_M401() {
  4503. #if HAS_SERVO_ENDSTOPS
  4504. raise_z_for_servo();
  4505. #endif
  4506. deploy_z_probe();
  4507. }
  4508. /**
  4509. * M402: Retract Z Servo endstop if enabled
  4510. */
  4511. inline void gcode_M402() {
  4512. #if HAS_SERVO_ENDSTOPS
  4513. raise_z_for_servo();
  4514. #endif
  4515. stow_z_probe(false);
  4516. }
  4517. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4518. #if ENABLED(FILAMENT_SENSOR)
  4519. /**
  4520. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4521. */
  4522. inline void gcode_M404() {
  4523. #if HAS_FILWIDTH
  4524. if (code_seen('W')) {
  4525. filament_width_nominal = code_value();
  4526. }
  4527. else {
  4528. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4529. SERIAL_PROTOCOLLN(filament_width_nominal);
  4530. }
  4531. #endif
  4532. }
  4533. /**
  4534. * M405: Turn on filament sensor for control
  4535. */
  4536. inline void gcode_M405() {
  4537. if (code_seen('D')) meas_delay_cm = code_value();
  4538. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4539. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4540. int temp_ratio = widthFil_to_size_ratio();
  4541. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4542. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4543. delay_index1 = delay_index2 = 0;
  4544. }
  4545. filament_sensor = true;
  4546. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4547. //SERIAL_PROTOCOL(filament_width_meas);
  4548. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4549. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4550. }
  4551. /**
  4552. * M406: Turn off filament sensor for control
  4553. */
  4554. inline void gcode_M406() { filament_sensor = false; }
  4555. /**
  4556. * M407: Get measured filament diameter on serial output
  4557. */
  4558. inline void gcode_M407() {
  4559. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4560. SERIAL_PROTOCOLLN(filament_width_meas);
  4561. }
  4562. #endif // FILAMENT_SENSOR
  4563. /**
  4564. * M410: Quickstop - Abort all planned moves
  4565. *
  4566. * This will stop the carriages mid-move, so most likely they
  4567. * will be out of sync with the stepper position after this.
  4568. */
  4569. inline void gcode_M410() { quickStop(); }
  4570. #if ENABLED(MESH_BED_LEVELING)
  4571. /**
  4572. * M420: Enable/Disable Mesh Bed Leveling
  4573. */
  4574. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4575. /**
  4576. * M421: Set a single Mesh Bed Leveling Z coordinate
  4577. */
  4578. inline void gcode_M421() {
  4579. float x, y, z;
  4580. bool err = false, hasX, hasY, hasZ;
  4581. if ((hasX = code_seen('X'))) x = code_value();
  4582. if ((hasY = code_seen('Y'))) y = code_value();
  4583. if ((hasZ = code_seen('Z'))) z = code_value();
  4584. if (!hasX || !hasY || !hasZ) {
  4585. SERIAL_ERROR_START;
  4586. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4587. err = true;
  4588. }
  4589. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4590. SERIAL_ERROR_START;
  4591. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4592. err = true;
  4593. }
  4594. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4595. }
  4596. #endif
  4597. /**
  4598. * M428: Set home_offset based on the distance between the
  4599. * current_position and the nearest "reference point."
  4600. * If an axis is past center its endstop position
  4601. * is the reference-point. Otherwise it uses 0. This allows
  4602. * the Z offset to be set near the bed when using a max endstop.
  4603. *
  4604. * M428 can't be used more than 2cm away from 0 or an endstop.
  4605. *
  4606. * Use M206 to set these values directly.
  4607. */
  4608. inline void gcode_M428() {
  4609. bool err = false;
  4610. float new_offs[3], new_pos[3];
  4611. memcpy(new_pos, current_position, sizeof(new_pos));
  4612. memcpy(new_offs, home_offset, sizeof(new_offs));
  4613. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4614. if (axis_known_position[i]) {
  4615. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4616. diff = new_pos[i] - base;
  4617. if (diff > -20 && diff < 20) {
  4618. new_offs[i] -= diff;
  4619. new_pos[i] = base;
  4620. }
  4621. else {
  4622. SERIAL_ERROR_START;
  4623. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4624. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4625. #if HAS_BUZZER
  4626. buzz(200, 40);
  4627. #endif
  4628. err = true;
  4629. break;
  4630. }
  4631. }
  4632. }
  4633. if (!err) {
  4634. memcpy(current_position, new_pos, sizeof(new_pos));
  4635. memcpy(home_offset, new_offs, sizeof(new_offs));
  4636. sync_plan_position();
  4637. LCD_ALERTMESSAGEPGM("Offset applied.");
  4638. #if HAS_BUZZER
  4639. buzz(200, 659);
  4640. buzz(200, 698);
  4641. #endif
  4642. }
  4643. }
  4644. /**
  4645. * M500: Store settings in EEPROM
  4646. */
  4647. inline void gcode_M500() {
  4648. Config_StoreSettings();
  4649. }
  4650. /**
  4651. * M501: Read settings from EEPROM
  4652. */
  4653. inline void gcode_M501() {
  4654. Config_RetrieveSettings();
  4655. }
  4656. /**
  4657. * M502: Revert to default settings
  4658. */
  4659. inline void gcode_M502() {
  4660. Config_ResetDefault();
  4661. }
  4662. /**
  4663. * M503: print settings currently in memory
  4664. */
  4665. inline void gcode_M503() {
  4666. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4667. }
  4668. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4669. /**
  4670. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4671. */
  4672. inline void gcode_M540() {
  4673. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4674. }
  4675. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4676. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4677. inline void gcode_SET_Z_PROBE_OFFSET() {
  4678. SERIAL_ECHO_START;
  4679. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4680. SERIAL_CHAR(' ');
  4681. if (code_seen('Z')) {
  4682. float value = code_value();
  4683. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4684. zprobe_zoffset = value;
  4685. SERIAL_ECHO(zprobe_zoffset);
  4686. }
  4687. else {
  4688. SERIAL_ECHOPGM(MSG_Z_MIN);
  4689. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4690. SERIAL_ECHOPGM(MSG_Z_MAX);
  4691. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4692. }
  4693. }
  4694. else {
  4695. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4696. }
  4697. SERIAL_EOL;
  4698. }
  4699. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4700. #if ENABLED(FILAMENTCHANGEENABLE)
  4701. /**
  4702. * M600: Pause for filament change
  4703. *
  4704. * E[distance] - Retract the filament this far (negative value)
  4705. * Z[distance] - Move the Z axis by this distance
  4706. * X[position] - Move to this X position, with Y
  4707. * Y[position] - Move to this Y position, with X
  4708. * L[distance] - Retract distance for removal (manual reload)
  4709. *
  4710. * Default values are used for omitted arguments.
  4711. *
  4712. */
  4713. inline void gcode_M600() {
  4714. if (degHotend(active_extruder) < extrude_min_temp) {
  4715. SERIAL_ERROR_START;
  4716. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4717. return;
  4718. }
  4719. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4720. for (int i = 0; i < NUM_AXIS; i++)
  4721. lastpos[i] = destination[i] = current_position[i];
  4722. #if ENABLED(DELTA)
  4723. #define RUNPLAN calculate_delta(destination); \
  4724. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4725. #else
  4726. #define RUNPLAN line_to_destination();
  4727. #endif
  4728. //retract by E
  4729. if (code_seen('E')) destination[E_AXIS] += code_value();
  4730. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4731. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4732. #endif
  4733. RUNPLAN;
  4734. //lift Z
  4735. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4736. #ifdef FILAMENTCHANGE_ZADD
  4737. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4738. #endif
  4739. RUNPLAN;
  4740. //move xy
  4741. if (code_seen('X')) destination[X_AXIS] = code_value();
  4742. #ifdef FILAMENTCHANGE_XPOS
  4743. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4744. #endif
  4745. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4746. #ifdef FILAMENTCHANGE_YPOS
  4747. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4748. #endif
  4749. RUNPLAN;
  4750. if (code_seen('L')) destination[E_AXIS] += code_value();
  4751. #ifdef FILAMENTCHANGE_FINALRETRACT
  4752. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4753. #endif
  4754. RUNPLAN;
  4755. //finish moves
  4756. st_synchronize();
  4757. //disable extruder steppers so filament can be removed
  4758. disable_e0();
  4759. disable_e1();
  4760. disable_e2();
  4761. disable_e3();
  4762. delay(100);
  4763. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4764. millis_t next_tick = 0;
  4765. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4766. while (!lcd_clicked()) {
  4767. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4768. millis_t ms = millis();
  4769. if (ms >= next_tick) {
  4770. lcd_quick_feedback();
  4771. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4772. }
  4773. idle(true);
  4774. #else
  4775. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4776. destination[E_AXIS] = current_position[E_AXIS];
  4777. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4778. st_synchronize();
  4779. #endif
  4780. } // while(!lcd_clicked)
  4781. KEEPALIVE_STATE(IN_HANDLER);
  4782. lcd_quick_feedback(); // click sound feedback
  4783. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4784. current_position[E_AXIS] = 0;
  4785. st_synchronize();
  4786. #endif
  4787. //return to normal
  4788. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4789. #ifdef FILAMENTCHANGE_FINALRETRACT
  4790. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4791. #endif
  4792. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4793. plan_set_e_position(current_position[E_AXIS]);
  4794. RUNPLAN; //should do nothing
  4795. lcd_reset_alert_level();
  4796. #if ENABLED(DELTA)
  4797. // Move XYZ to starting position, then E
  4798. calculate_delta(lastpos);
  4799. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4800. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4801. #else
  4802. // Move XY to starting position, then Z, then E
  4803. destination[X_AXIS] = lastpos[X_AXIS];
  4804. destination[Y_AXIS] = lastpos[Y_AXIS];
  4805. line_to_destination();
  4806. destination[Z_AXIS] = lastpos[Z_AXIS];
  4807. line_to_destination();
  4808. destination[E_AXIS] = lastpos[E_AXIS];
  4809. line_to_destination();
  4810. #endif
  4811. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4812. filrunoutEnqueued = false;
  4813. #endif
  4814. }
  4815. #endif // FILAMENTCHANGEENABLE
  4816. #if ENABLED(DUAL_X_CARRIAGE)
  4817. /**
  4818. * M605: Set dual x-carriage movement mode
  4819. *
  4820. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4821. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4822. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4823. * millimeters x-offset and an optional differential hotend temperature of
  4824. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4825. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4826. *
  4827. * Note: the X axis should be homed after changing dual x-carriage mode.
  4828. */
  4829. inline void gcode_M605() {
  4830. st_synchronize();
  4831. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4832. switch (dual_x_carriage_mode) {
  4833. case DXC_DUPLICATION_MODE:
  4834. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4835. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4836. SERIAL_ECHO_START;
  4837. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4838. SERIAL_CHAR(' ');
  4839. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4840. SERIAL_CHAR(',');
  4841. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4842. SERIAL_CHAR(' ');
  4843. SERIAL_ECHO(duplicate_extruder_x_offset);
  4844. SERIAL_CHAR(',');
  4845. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4846. break;
  4847. case DXC_FULL_CONTROL_MODE:
  4848. case DXC_AUTO_PARK_MODE:
  4849. break;
  4850. default:
  4851. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4852. break;
  4853. }
  4854. active_extruder_parked = false;
  4855. extruder_duplication_enabled = false;
  4856. delayed_move_time = 0;
  4857. }
  4858. #endif // DUAL_X_CARRIAGE
  4859. /**
  4860. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4861. */
  4862. inline void gcode_M907() {
  4863. #if HAS_DIGIPOTSS
  4864. for (int i = 0; i < NUM_AXIS; i++)
  4865. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4866. if (code_seen('B')) digipot_current(4, code_value());
  4867. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4868. #endif
  4869. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4870. if (code_seen('X')) digipot_current(0, code_value());
  4871. #endif
  4872. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4873. if (code_seen('Z')) digipot_current(1, code_value());
  4874. #endif
  4875. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4876. if (code_seen('E')) digipot_current(2, code_value());
  4877. #endif
  4878. #if ENABLED(DIGIPOT_I2C)
  4879. // this one uses actual amps in floating point
  4880. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4881. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4882. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4883. #endif
  4884. #if ENABLED(DAC_STEPPER_CURRENT)
  4885. if (code_seen('S')) {
  4886. float dac_percent = code_value();
  4887. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4888. }
  4889. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4890. #endif
  4891. }
  4892. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4893. /**
  4894. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4895. */
  4896. inline void gcode_M908() {
  4897. #if HAS_DIGIPOTSS
  4898. digitalPotWrite(
  4899. code_seen('P') ? code_value() : 0,
  4900. code_seen('S') ? code_value() : 0
  4901. );
  4902. #endif
  4903. #ifdef DAC_STEPPER_CURRENT
  4904. dac_current_raw(
  4905. code_seen('P') ? code_value_long() : -1,
  4906. code_seen('S') ? code_value_short() : 0
  4907. );
  4908. #endif
  4909. }
  4910. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  4911. inline void gcode_M909() { dac_print_values(); }
  4912. inline void gcode_M910() { dac_commit_eeprom(); }
  4913. #endif
  4914. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  4915. #if HAS_MICROSTEPS
  4916. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4917. inline void gcode_M350() {
  4918. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  4919. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  4920. if (code_seen('B')) microstep_mode(4, code_value());
  4921. microstep_readings();
  4922. }
  4923. /**
  4924. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4925. * S# determines MS1 or MS2, X# sets the pin high/low.
  4926. */
  4927. inline void gcode_M351() {
  4928. if (code_seen('S')) switch (code_value_short()) {
  4929. case 1:
  4930. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4931. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4932. break;
  4933. case 2:
  4934. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4935. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4936. break;
  4937. }
  4938. microstep_readings();
  4939. }
  4940. #endif // HAS_MICROSTEPS
  4941. /**
  4942. * M999: Restart after being stopped
  4943. */
  4944. inline void gcode_M999() {
  4945. Running = true;
  4946. lcd_reset_alert_level();
  4947. // gcode_LastN = Stopped_gcode_LastN;
  4948. FlushSerialRequestResend();
  4949. }
  4950. /**
  4951. * T0-T3: Switch tool, usually switching extruders
  4952. *
  4953. * F[mm/min] Set the movement feedrate
  4954. */
  4955. inline void gcode_T(uint8_t tmp_extruder) {
  4956. if (tmp_extruder >= EXTRUDERS) {
  4957. SERIAL_ECHO_START;
  4958. SERIAL_CHAR('T');
  4959. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  4960. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4961. }
  4962. else {
  4963. target_extruder = tmp_extruder;
  4964. #if EXTRUDERS > 1
  4965. bool make_move = false;
  4966. #endif
  4967. if (code_seen('F')) {
  4968. #if EXTRUDERS > 1
  4969. make_move = true;
  4970. #endif
  4971. float next_feedrate = code_value();
  4972. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4973. }
  4974. #if EXTRUDERS > 1
  4975. if (tmp_extruder != active_extruder) {
  4976. // Save current position to return to after applying extruder offset
  4977. set_destination_to_current();
  4978. #if ENABLED(DUAL_X_CARRIAGE)
  4979. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4980. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4981. // Park old head: 1) raise 2) move to park position 3) lower
  4982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4983. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4984. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4985. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4986. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4987. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4988. st_synchronize();
  4989. }
  4990. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4991. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  4992. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  4993. active_extruder = tmp_extruder;
  4994. // This function resets the max/min values - the current position may be overwritten below.
  4995. set_axis_is_at_home(X_AXIS);
  4996. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4997. current_position[X_AXIS] = inactive_extruder_x_pos;
  4998. inactive_extruder_x_pos = destination[X_AXIS];
  4999. }
  5000. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5001. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5002. if (active_extruder == 0 || active_extruder_parked)
  5003. current_position[X_AXIS] = inactive_extruder_x_pos;
  5004. else
  5005. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5006. inactive_extruder_x_pos = destination[X_AXIS];
  5007. extruder_duplication_enabled = false;
  5008. }
  5009. else {
  5010. // record raised toolhead position for use by unpark
  5011. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5012. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5013. active_extruder_parked = true;
  5014. delayed_move_time = 0;
  5015. }
  5016. #else // !DUAL_X_CARRIAGE
  5017. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5018. // Offset extruder, make sure to apply the bed level rotation matrix
  5019. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5020. extruder_offset[Y_AXIS][tmp_extruder],
  5021. extruder_offset[Z_AXIS][tmp_extruder]),
  5022. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5023. extruder_offset[Y_AXIS][active_extruder],
  5024. extruder_offset[Z_AXIS][active_extruder]),
  5025. offset_vec = tmp_offset_vec - act_offset_vec;
  5026. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5027. current_position[X_AXIS] += offset_vec.x;
  5028. current_position[Y_AXIS] += offset_vec.y;
  5029. current_position[Z_AXIS] += offset_vec.z;
  5030. #else // !AUTO_BED_LEVELING_FEATURE
  5031. // Offset extruder (only by XY)
  5032. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5033. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5034. #endif // !AUTO_BED_LEVELING_FEATURE
  5035. // Set the new active extruder and position
  5036. active_extruder = tmp_extruder;
  5037. #endif // !DUAL_X_CARRIAGE
  5038. #if ENABLED(DELTA)
  5039. sync_plan_position_delta();
  5040. #else
  5041. sync_plan_position();
  5042. #endif
  5043. // Move to the old position if 'F' was in the parameters
  5044. if (make_move && IsRunning()) prepare_move();
  5045. }
  5046. #if ENABLED(EXT_SOLENOID)
  5047. st_synchronize();
  5048. disable_all_solenoids();
  5049. enable_solenoid_on_active_extruder();
  5050. #endif // EXT_SOLENOID
  5051. #endif // EXTRUDERS > 1
  5052. SERIAL_ECHO_START;
  5053. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5054. SERIAL_PROTOCOLLN((int)active_extruder);
  5055. }
  5056. }
  5057. /**
  5058. * Process a single command and dispatch it to its handler
  5059. * This is called from the main loop()
  5060. */
  5061. void process_next_command() {
  5062. current_command = command_queue[cmd_queue_index_r];
  5063. if ((marlin_debug_flags & DEBUG_ECHO)) {
  5064. SERIAL_ECHO_START;
  5065. SERIAL_ECHOLN(current_command);
  5066. }
  5067. // Sanitize the current command:
  5068. // - Skip leading spaces
  5069. // - Bypass N[-0-9][0-9]*[ ]*
  5070. // - Overwrite * with nul to mark the end
  5071. while (*current_command == ' ') ++current_command;
  5072. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  5073. current_command += 2; // skip N[-0-9]
  5074. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  5075. while (*current_command == ' ') ++current_command; // skip [ ]*
  5076. }
  5077. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5078. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5079. // Get the command code, which must be G, M, or T
  5080. char command_code = *current_command;
  5081. // Skip the letter-code and spaces to get the numeric part
  5082. current_command_args = current_command + 1;
  5083. while (*current_command_args == ' ') ++current_command_args;
  5084. // The code must have a numeric value
  5085. bool code_is_good = (*current_command_args >= '0' && *current_command_args <= '9');
  5086. int codenum; // define ahead of goto
  5087. // Bail early if there's no code
  5088. if (!code_is_good) goto ExitUnknownCommand;
  5089. // Args pointer optimizes code_seen, especially those taking XYZEF
  5090. // This wastes a little cpu on commands that expect no arguments.
  5091. while (*current_command_args == ' ' || (*current_command_args >= '0' && *current_command_args <= '9')) ++current_command_args;
  5092. // Interpret the code int
  5093. seen_pointer = current_command;
  5094. codenum = code_value_short();
  5095. KEEPALIVE_STATE(IN_HANDLER);
  5096. // Handle a known G, M, or T
  5097. switch (command_code) {
  5098. case 'G': switch (codenum) {
  5099. // G0, G1
  5100. case 0:
  5101. case 1:
  5102. gcode_G0_G1();
  5103. break;
  5104. // G2, G3
  5105. #if DISABLED(SCARA)
  5106. case 2: // G2 - CW ARC
  5107. case 3: // G3 - CCW ARC
  5108. gcode_G2_G3(codenum == 2);
  5109. break;
  5110. #endif
  5111. // G4 Dwell
  5112. case 4:
  5113. gcode_G4();
  5114. break;
  5115. #if ENABLED(FWRETRACT)
  5116. case 10: // G10: retract
  5117. case 11: // G11: retract_recover
  5118. gcode_G10_G11(codenum == 10);
  5119. break;
  5120. #endif //FWRETRACT
  5121. case 28: // G28: Home all axes, one at a time
  5122. gcode_G28();
  5123. break;
  5124. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5125. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5126. gcode_G29();
  5127. break;
  5128. #endif
  5129. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5130. #if DISABLED(Z_PROBE_SLED)
  5131. case 30: // G30 Single Z probe
  5132. gcode_G30();
  5133. break;
  5134. #else // Z_PROBE_SLED
  5135. case 31: // G31: dock the sled
  5136. case 32: // G32: undock the sled
  5137. dock_sled(codenum == 31);
  5138. break;
  5139. #endif // Z_PROBE_SLED
  5140. #endif // AUTO_BED_LEVELING_FEATURE
  5141. case 90: // G90
  5142. relative_mode = false;
  5143. break;
  5144. case 91: // G91
  5145. relative_mode = true;
  5146. break;
  5147. case 92: // G92
  5148. gcode_G92();
  5149. break;
  5150. }
  5151. break;
  5152. case 'M': switch (codenum) {
  5153. #if ENABLED(ULTIPANEL)
  5154. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5155. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5156. gcode_M0_M1();
  5157. break;
  5158. #endif // ULTIPANEL
  5159. case 17:
  5160. gcode_M17();
  5161. break;
  5162. #if ENABLED(SDSUPPORT)
  5163. case 20: // M20 - list SD card
  5164. gcode_M20(); break;
  5165. case 21: // M21 - init SD card
  5166. gcode_M21(); break;
  5167. case 22: //M22 - release SD card
  5168. gcode_M22(); break;
  5169. case 23: //M23 - Select file
  5170. gcode_M23(); break;
  5171. case 24: //M24 - Start SD print
  5172. gcode_M24(); break;
  5173. case 25: //M25 - Pause SD print
  5174. gcode_M25(); break;
  5175. case 26: //M26 - Set SD index
  5176. gcode_M26(); break;
  5177. case 27: //M27 - Get SD status
  5178. gcode_M27(); break;
  5179. case 28: //M28 - Start SD write
  5180. gcode_M28(); break;
  5181. case 29: //M29 - Stop SD write
  5182. gcode_M29(); break;
  5183. case 30: //M30 <filename> Delete File
  5184. gcode_M30(); break;
  5185. case 32: //M32 - Select file and start SD print
  5186. gcode_M32(); break;
  5187. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5188. case 33: //M33 - Get the long full path to a file or folder
  5189. gcode_M33(); break;
  5190. #endif // LONG_FILENAME_HOST_SUPPORT
  5191. case 928: //M928 - Start SD write
  5192. gcode_M928(); break;
  5193. #endif //SDSUPPORT
  5194. case 31: //M31 take time since the start of the SD print or an M109 command
  5195. gcode_M31();
  5196. break;
  5197. case 42: //M42 -Change pin status via gcode
  5198. gcode_M42();
  5199. break;
  5200. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5201. case 48: // M48 Z probe repeatability
  5202. gcode_M48();
  5203. break;
  5204. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5205. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5206. case 100:
  5207. gcode_M100();
  5208. break;
  5209. #endif
  5210. case 104: // M104
  5211. gcode_M104();
  5212. break;
  5213. case 110: // M110: Set Current Line Number
  5214. gcode_M110();
  5215. break;
  5216. case 111: // M111: Set debug level
  5217. gcode_M111();
  5218. break;
  5219. case 112: // M112: Emergency Stop
  5220. gcode_M112();
  5221. break;
  5222. case 140: // M140: Set bed temp
  5223. gcode_M140();
  5224. break;
  5225. case 105: // M105: Read current temperature
  5226. gcode_M105();
  5227. KEEPALIVE_STATE(NOT_BUSY);
  5228. return; // "ok" already printed
  5229. case 109: // M109: Wait for temperature
  5230. gcode_M109();
  5231. break;
  5232. #if HAS_TEMP_BED
  5233. case 190: // M190: Wait for bed heater to reach target
  5234. gcode_M190();
  5235. break;
  5236. #endif // HAS_TEMP_BED
  5237. #if FAN_COUNT > 0
  5238. case 106: // M106: Fan On
  5239. gcode_M106();
  5240. break;
  5241. case 107: // M107: Fan Off
  5242. gcode_M107();
  5243. break;
  5244. #endif // FAN_COUNT > 0
  5245. #if ENABLED(BARICUDA)
  5246. // PWM for HEATER_1_PIN
  5247. #if HAS_HEATER_1
  5248. case 126: // M126: valve open
  5249. gcode_M126();
  5250. break;
  5251. case 127: // M127: valve closed
  5252. gcode_M127();
  5253. break;
  5254. #endif // HAS_HEATER_1
  5255. // PWM for HEATER_2_PIN
  5256. #if HAS_HEATER_2
  5257. case 128: // M128: valve open
  5258. gcode_M128();
  5259. break;
  5260. case 129: // M129: valve closed
  5261. gcode_M129();
  5262. break;
  5263. #endif // HAS_HEATER_2
  5264. #endif // BARICUDA
  5265. #if HAS_POWER_SWITCH
  5266. case 80: // M80: Turn on Power Supply
  5267. gcode_M80();
  5268. break;
  5269. #endif // HAS_POWER_SWITCH
  5270. case 81: // M81: Turn off Power, including Power Supply, if possible
  5271. gcode_M81();
  5272. break;
  5273. case 82:
  5274. gcode_M82();
  5275. break;
  5276. case 83:
  5277. gcode_M83();
  5278. break;
  5279. case 18: // (for compatibility)
  5280. case 84: // M84
  5281. gcode_M18_M84();
  5282. break;
  5283. case 85: // M85
  5284. gcode_M85();
  5285. break;
  5286. case 92: // M92: Set the steps-per-unit for one or more axes
  5287. gcode_M92();
  5288. break;
  5289. case 115: // M115: Report capabilities
  5290. gcode_M115();
  5291. break;
  5292. case 117: // M117: Set LCD message text, if possible
  5293. gcode_M117();
  5294. break;
  5295. case 114: // M114: Report current position
  5296. gcode_M114();
  5297. break;
  5298. case 120: // M120: Enable endstops
  5299. gcode_M120();
  5300. break;
  5301. case 121: // M121: Disable endstops
  5302. gcode_M121();
  5303. break;
  5304. case 119: // M119: Report endstop states
  5305. gcode_M119();
  5306. break;
  5307. #if ENABLED(ULTIPANEL)
  5308. case 145: // M145: Set material heatup parameters
  5309. gcode_M145();
  5310. break;
  5311. #endif
  5312. #if ENABLED(BLINKM)
  5313. case 150: // M150
  5314. gcode_M150();
  5315. break;
  5316. #endif //BLINKM
  5317. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5318. gcode_M200();
  5319. break;
  5320. case 201: // M201
  5321. gcode_M201();
  5322. break;
  5323. #if 0 // Not used for Sprinter/grbl gen6
  5324. case 202: // M202
  5325. gcode_M202();
  5326. break;
  5327. #endif
  5328. case 203: // M203 max feedrate mm/sec
  5329. gcode_M203();
  5330. break;
  5331. case 204: // M204 acclereration S normal moves T filmanent only moves
  5332. gcode_M204();
  5333. break;
  5334. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5335. gcode_M205();
  5336. break;
  5337. case 206: // M206 additional homing offset
  5338. gcode_M206();
  5339. break;
  5340. #if ENABLED(DELTA)
  5341. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5342. gcode_M665();
  5343. break;
  5344. #endif
  5345. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5346. case 666: // M666 set delta / dual endstop adjustment
  5347. gcode_M666();
  5348. break;
  5349. #endif
  5350. #if ENABLED(FWRETRACT)
  5351. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5352. gcode_M207();
  5353. break;
  5354. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5355. gcode_M208();
  5356. break;
  5357. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5358. gcode_M209();
  5359. break;
  5360. #endif // FWRETRACT
  5361. #if EXTRUDERS > 1
  5362. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5363. gcode_M218();
  5364. break;
  5365. #endif
  5366. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5367. gcode_M220();
  5368. break;
  5369. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5370. gcode_M221();
  5371. break;
  5372. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5373. gcode_M226();
  5374. break;
  5375. #if HAS_SERVOS
  5376. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5377. gcode_M280();
  5378. break;
  5379. #endif // HAS_SERVOS
  5380. #if HAS_BUZZER
  5381. case 300: // M300 - Play beep tone
  5382. gcode_M300();
  5383. break;
  5384. #endif // HAS_BUZZER
  5385. #if ENABLED(PIDTEMP)
  5386. case 301: // M301
  5387. gcode_M301();
  5388. break;
  5389. #endif // PIDTEMP
  5390. #if ENABLED(PIDTEMPBED)
  5391. case 304: // M304
  5392. gcode_M304();
  5393. break;
  5394. #endif // PIDTEMPBED
  5395. #if defined(CHDK) || HAS_PHOTOGRAPH
  5396. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5397. gcode_M240();
  5398. break;
  5399. #endif // CHDK || PHOTOGRAPH_PIN
  5400. #if ENABLED(HAS_LCD_CONTRAST)
  5401. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5402. gcode_M250();
  5403. break;
  5404. #endif // HAS_LCD_CONTRAST
  5405. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5406. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5407. gcode_M302();
  5408. break;
  5409. #endif // PREVENT_DANGEROUS_EXTRUDE
  5410. case 303: // M303 PID autotune
  5411. gcode_M303();
  5412. break;
  5413. #if ENABLED(SCARA)
  5414. case 360: // M360 SCARA Theta pos1
  5415. if (gcode_M360()) return;
  5416. break;
  5417. case 361: // M361 SCARA Theta pos2
  5418. if (gcode_M361()) return;
  5419. break;
  5420. case 362: // M362 SCARA Psi pos1
  5421. if (gcode_M362()) return;
  5422. break;
  5423. case 363: // M363 SCARA Psi pos2
  5424. if (gcode_M363()) return;
  5425. break;
  5426. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5427. if (gcode_M364()) return;
  5428. break;
  5429. case 365: // M365 Set SCARA scaling for X Y Z
  5430. gcode_M365();
  5431. break;
  5432. #endif // SCARA
  5433. case 400: // M400 finish all moves
  5434. gcode_M400();
  5435. break;
  5436. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5437. case 401:
  5438. gcode_M401();
  5439. break;
  5440. case 402:
  5441. gcode_M402();
  5442. break;
  5443. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5444. #if ENABLED(FILAMENT_SENSOR)
  5445. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5446. gcode_M404();
  5447. break;
  5448. case 405: //M405 Turn on filament sensor for control
  5449. gcode_M405();
  5450. break;
  5451. case 406: //M406 Turn off filament sensor for control
  5452. gcode_M406();
  5453. break;
  5454. case 407: //M407 Display measured filament diameter
  5455. gcode_M407();
  5456. break;
  5457. #endif // FILAMENT_SENSOR
  5458. case 410: // M410 quickstop - Abort all the planned moves.
  5459. gcode_M410();
  5460. break;
  5461. #if ENABLED(MESH_BED_LEVELING)
  5462. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5463. gcode_M420();
  5464. break;
  5465. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5466. gcode_M421();
  5467. break;
  5468. #endif
  5469. case 428: // M428 Apply current_position to home_offset
  5470. gcode_M428();
  5471. break;
  5472. case 500: // M500 Store settings in EEPROM
  5473. gcode_M500();
  5474. break;
  5475. case 501: // M501 Read settings from EEPROM
  5476. gcode_M501();
  5477. break;
  5478. case 502: // M502 Revert to default settings
  5479. gcode_M502();
  5480. break;
  5481. case 503: // M503 print settings currently in memory
  5482. gcode_M503();
  5483. break;
  5484. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5485. case 540:
  5486. gcode_M540();
  5487. break;
  5488. #endif
  5489. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5490. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5491. gcode_SET_Z_PROBE_OFFSET();
  5492. break;
  5493. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5494. #if ENABLED(FILAMENTCHANGEENABLE)
  5495. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5496. gcode_M600();
  5497. break;
  5498. #endif // FILAMENTCHANGEENABLE
  5499. #if ENABLED(DUAL_X_CARRIAGE)
  5500. case 605:
  5501. gcode_M605();
  5502. break;
  5503. #endif // DUAL_X_CARRIAGE
  5504. case 907: // M907 Set digital trimpot motor current using axis codes.
  5505. gcode_M907();
  5506. break;
  5507. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5508. case 908: // M908 Control digital trimpot directly.
  5509. gcode_M908();
  5510. break;
  5511. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5512. case 909: // M909 Print digipot/DAC current value
  5513. gcode_M909();
  5514. break;
  5515. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5516. gcode_M910();
  5517. break;
  5518. #endif
  5519. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5520. #if HAS_MICROSTEPS
  5521. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5522. gcode_M350();
  5523. break;
  5524. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5525. gcode_M351();
  5526. break;
  5527. #endif // HAS_MICROSTEPS
  5528. case 999: // M999: Restart after being Stopped
  5529. gcode_M999();
  5530. break;
  5531. }
  5532. break;
  5533. case 'T':
  5534. gcode_T(codenum);
  5535. break;
  5536. default: code_is_good = false;
  5537. }
  5538. KEEPALIVE_STATE(NOT_BUSY);
  5539. ExitUnknownCommand:
  5540. // Still unknown command? Throw an error
  5541. if (!code_is_good) unknown_command_error();
  5542. ok_to_send();
  5543. }
  5544. void FlushSerialRequestResend() {
  5545. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5546. MYSERIAL.flush();
  5547. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5548. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5549. ok_to_send();
  5550. }
  5551. void ok_to_send() {
  5552. refresh_cmd_timeout();
  5553. if (!send_ok[cmd_queue_index_r]) return;
  5554. SERIAL_PROTOCOLPGM(MSG_OK);
  5555. #if ENABLED(ADVANCED_OK)
  5556. char* p = command_queue[cmd_queue_index_r];
  5557. if (*p == 'N') {
  5558. SERIAL_PROTOCOL(' ');
  5559. SERIAL_ECHO(*p++);
  5560. while ((*p >= '0' && *p <= '9') || *p == '-')
  5561. SERIAL_ECHO(*p++);
  5562. }
  5563. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5564. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5565. #endif
  5566. SERIAL_EOL;
  5567. }
  5568. void clamp_to_software_endstops(float target[3]) {
  5569. if (min_software_endstops) {
  5570. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5571. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5572. float negative_z_offset = 0;
  5573. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5574. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5575. if (home_offset[Z_AXIS] < 0) {
  5576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5577. if (marlin_debug_flags & DEBUG_LEVELING) {
  5578. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5579. SERIAL_EOL;
  5580. }
  5581. #endif
  5582. negative_z_offset += home_offset[Z_AXIS];
  5583. }
  5584. #endif
  5585. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5586. }
  5587. if (max_software_endstops) {
  5588. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5589. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5590. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5591. }
  5592. }
  5593. #if ENABLED(DELTA)
  5594. void recalc_delta_settings(float radius, float diagonal_rod) {
  5595. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5596. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5597. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5598. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5599. delta_tower3_x = 0.0; // back middle tower
  5600. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5601. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5602. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5603. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5604. }
  5605. void calculate_delta(float cartesian[3]) {
  5606. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5607. - sq(delta_tower1_x - cartesian[X_AXIS])
  5608. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5609. ) + cartesian[Z_AXIS];
  5610. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5611. - sq(delta_tower2_x - cartesian[X_AXIS])
  5612. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5613. ) + cartesian[Z_AXIS];
  5614. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5615. - sq(delta_tower3_x - cartesian[X_AXIS])
  5616. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5617. ) + cartesian[Z_AXIS];
  5618. /*
  5619. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5620. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5621. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5622. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5623. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5624. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5625. */
  5626. }
  5627. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5628. // Adjust print surface height by linear interpolation over the bed_level array.
  5629. void adjust_delta(float cartesian[3]) {
  5630. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5631. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5632. float h1 = 0.001 - half, h2 = half - 0.001,
  5633. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5634. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5635. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5636. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5637. z1 = bed_level[floor_x + half][floor_y + half],
  5638. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5639. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5640. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5641. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5642. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5643. offset = (1 - ratio_x) * left + ratio_x * right;
  5644. delta[X_AXIS] += offset;
  5645. delta[Y_AXIS] += offset;
  5646. delta[Z_AXIS] += offset;
  5647. /*
  5648. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5649. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5650. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5651. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5652. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5653. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5654. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5655. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5656. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5657. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5658. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5659. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5660. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5661. */
  5662. }
  5663. #endif // AUTO_BED_LEVELING_FEATURE
  5664. #endif // DELTA
  5665. #if ENABLED(MESH_BED_LEVELING)
  5666. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5667. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5668. if (!mbl.active) {
  5669. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5670. set_current_to_destination();
  5671. return;
  5672. }
  5673. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5674. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5675. int ix = mbl.select_x_index(x);
  5676. int iy = mbl.select_y_index(y);
  5677. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5678. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5679. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5680. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5681. if (pix == ix && piy == iy) {
  5682. // Start and end on same mesh square
  5683. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5684. set_current_to_destination();
  5685. return;
  5686. }
  5687. float nx, ny, nz, ne, normalized_dist;
  5688. if (ix > pix && TEST(x_splits, ix)) {
  5689. nx = mbl.get_x(ix);
  5690. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5691. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5692. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5693. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5694. CBI(x_splits, ix);
  5695. }
  5696. else if (ix < pix && TEST(x_splits, pix)) {
  5697. nx = mbl.get_x(pix);
  5698. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5699. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5700. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5701. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5702. CBI(x_splits, pix);
  5703. }
  5704. else if (iy > piy && TEST(y_splits, iy)) {
  5705. ny = mbl.get_y(iy);
  5706. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5707. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5708. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5709. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5710. CBI(y_splits, iy);
  5711. }
  5712. else if (iy < piy && TEST(y_splits, piy)) {
  5713. ny = mbl.get_y(piy);
  5714. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5715. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5716. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5717. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5718. CBI(y_splits, piy);
  5719. }
  5720. else {
  5721. // Already split on a border
  5722. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5723. set_current_to_destination();
  5724. return;
  5725. }
  5726. // Do the split and look for more borders
  5727. destination[X_AXIS] = nx;
  5728. destination[Y_AXIS] = ny;
  5729. destination[Z_AXIS] = nz;
  5730. destination[E_AXIS] = ne;
  5731. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5732. destination[X_AXIS] = x;
  5733. destination[Y_AXIS] = y;
  5734. destination[Z_AXIS] = z;
  5735. destination[E_AXIS] = e;
  5736. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5737. }
  5738. #endif // MESH_BED_LEVELING
  5739. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5740. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5741. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5742. float de = dest_e - curr_e;
  5743. if (de) {
  5744. if (degHotend(active_extruder) < extrude_min_temp) {
  5745. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5746. SERIAL_ECHO_START;
  5747. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5748. }
  5749. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5750. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5751. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5752. SERIAL_ECHO_START;
  5753. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5754. }
  5755. #endif
  5756. }
  5757. }
  5758. #endif // PREVENT_DANGEROUS_EXTRUDE
  5759. #if ENABLED(DELTA) || ENABLED(SCARA)
  5760. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5761. float difference[NUM_AXIS];
  5762. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5763. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5764. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5765. if (cartesian_mm < 0.000001) return false;
  5766. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5767. int steps = max(1, int(delta_segments_per_second * seconds));
  5768. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5769. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5770. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5771. for (int s = 1; s <= steps; s++) {
  5772. float fraction = float(s) / float(steps);
  5773. for (int8_t i = 0; i < NUM_AXIS; i++)
  5774. target[i] = current_position[i] + difference[i] * fraction;
  5775. calculate_delta(target);
  5776. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5777. adjust_delta(target);
  5778. #endif
  5779. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5780. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5781. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5782. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5783. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5784. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5785. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5786. }
  5787. return true;
  5788. }
  5789. #endif // DELTA || SCARA
  5790. #if ENABLED(SCARA)
  5791. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5792. #endif
  5793. #if ENABLED(DUAL_X_CARRIAGE)
  5794. inline bool prepare_move_dual_x_carriage() {
  5795. if (active_extruder_parked) {
  5796. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5797. // move duplicate extruder into correct duplication position.
  5798. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5799. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5800. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5801. sync_plan_position();
  5802. st_synchronize();
  5803. extruder_duplication_enabled = true;
  5804. active_extruder_parked = false;
  5805. }
  5806. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5807. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5808. // This is a travel move (with no extrusion)
  5809. // Skip it, but keep track of the current position
  5810. // (so it can be used as the start of the next non-travel move)
  5811. if (delayed_move_time != 0xFFFFFFFFUL) {
  5812. set_current_to_destination();
  5813. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5814. delayed_move_time = millis();
  5815. return false;
  5816. }
  5817. }
  5818. delayed_move_time = 0;
  5819. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5820. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5823. active_extruder_parked = false;
  5824. }
  5825. }
  5826. return true;
  5827. }
  5828. #endif // DUAL_X_CARRIAGE
  5829. #if DISABLED(DELTA) && DISABLED(SCARA)
  5830. inline bool prepare_move_cartesian() {
  5831. // Do not use feedrate_multiplier for E or Z only moves
  5832. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5833. line_to_destination();
  5834. }
  5835. else {
  5836. #if ENABLED(MESH_BED_LEVELING)
  5837. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5838. return false;
  5839. #else
  5840. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5841. #endif
  5842. }
  5843. return true;
  5844. }
  5845. #endif // !DELTA && !SCARA
  5846. /**
  5847. * Prepare a single move and get ready for the next one
  5848. *
  5849. * (This may call plan_buffer_line several times to put
  5850. * smaller moves into the planner for DELTA or SCARA.)
  5851. */
  5852. void prepare_move() {
  5853. clamp_to_software_endstops(destination);
  5854. refresh_cmd_timeout();
  5855. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5856. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5857. #endif
  5858. #if ENABLED(SCARA)
  5859. if (!prepare_move_scara(destination)) return;
  5860. #elif ENABLED(DELTA)
  5861. if (!prepare_move_delta(destination)) return;
  5862. #endif
  5863. #if ENABLED(DUAL_X_CARRIAGE)
  5864. if (!prepare_move_dual_x_carriage()) return;
  5865. #endif
  5866. #if DISABLED(DELTA) && DISABLED(SCARA)
  5867. if (!prepare_move_cartesian()) return;
  5868. #endif
  5869. set_current_to_destination();
  5870. }
  5871. /**
  5872. * Plan an arc in 2 dimensions
  5873. *
  5874. * The arc is approximated by generating many small linear segments.
  5875. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5876. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5877. * larger segments will tend to be more efficient. Your slicer should have
  5878. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5879. */
  5880. void plan_arc(
  5881. float target[NUM_AXIS], // Destination position
  5882. float* offset, // Center of rotation relative to current_position
  5883. uint8_t clockwise // Clockwise?
  5884. ) {
  5885. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5886. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5887. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5888. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5889. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5890. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5891. r_axis1 = -offset[Y_AXIS],
  5892. rt_axis0 = target[X_AXIS] - center_axis0,
  5893. rt_axis1 = target[Y_AXIS] - center_axis1;
  5894. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5895. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5896. if (angular_travel < 0) angular_travel += RADIANS(360);
  5897. if (clockwise) angular_travel -= RADIANS(360);
  5898. // Make a circle if the angular rotation is 0
  5899. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5900. angular_travel += RADIANS(360);
  5901. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5902. if (mm_of_travel < 0.001) return;
  5903. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5904. if (segments == 0) segments = 1;
  5905. float theta_per_segment = angular_travel / segments;
  5906. float linear_per_segment = linear_travel / segments;
  5907. float extruder_per_segment = extruder_travel / segments;
  5908. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5909. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5910. r_T = [cos(phi) -sin(phi);
  5911. sin(phi) cos(phi] * r ;
  5912. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5913. defined from the circle center to the initial position. Each line segment is formed by successive
  5914. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5915. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5916. all double numbers are single precision on the Arduino. (True double precision will not have
  5917. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5918. tool precision in some cases. Therefore, arc path correction is implemented.
  5919. Small angle approximation may be used to reduce computation overhead further. This approximation
  5920. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5921. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5922. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5923. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5924. issue for CNC machines with the single precision Arduino calculations.
  5925. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5926. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5927. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5928. This is important when there are successive arc motions.
  5929. */
  5930. // Vector rotation matrix values
  5931. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  5932. float sin_T = theta_per_segment;
  5933. float arc_target[NUM_AXIS];
  5934. float sin_Ti;
  5935. float cos_Ti;
  5936. float r_axisi;
  5937. uint16_t i;
  5938. int8_t count = 0;
  5939. // Initialize the linear axis
  5940. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5941. // Initialize the extruder axis
  5942. arc_target[E_AXIS] = current_position[E_AXIS];
  5943. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  5944. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5945. if (count < N_ARC_CORRECTION) {
  5946. // Apply vector rotation matrix to previous r_axis0 / 1
  5947. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  5948. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  5949. r_axis1 = r_axisi;
  5950. count++;
  5951. }
  5952. else {
  5953. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5954. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5955. cos_Ti = cos(i * theta_per_segment);
  5956. sin_Ti = sin(i * theta_per_segment);
  5957. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  5958. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  5959. count = 0;
  5960. }
  5961. // Update arc_target location
  5962. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5963. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5964. arc_target[Z_AXIS] += linear_per_segment;
  5965. arc_target[E_AXIS] += extruder_per_segment;
  5966. clamp_to_software_endstops(arc_target);
  5967. #if ENABLED(DELTA) || ENABLED(SCARA)
  5968. calculate_delta(arc_target);
  5969. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5970. adjust_delta(arc_target);
  5971. #endif
  5972. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5973. #else
  5974. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5975. #endif
  5976. }
  5977. // Ensure last segment arrives at target location.
  5978. #if ENABLED(DELTA) || ENABLED(SCARA)
  5979. calculate_delta(target);
  5980. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5981. adjust_delta(target);
  5982. #endif
  5983. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5984. #else
  5985. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5986. #endif
  5987. // As far as the parser is concerned, the position is now == target. In reality the
  5988. // motion control system might still be processing the action and the real tool position
  5989. // in any intermediate location.
  5990. set_current_to_destination();
  5991. }
  5992. #if HAS_CONTROLLERFAN
  5993. void controllerFan() {
  5994. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  5995. static millis_t nextMotorCheck = 0; // Last time the state was checked
  5996. millis_t ms = millis();
  5997. if (ms >= nextMotorCheck) {
  5998. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  5999. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6000. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6001. #if EXTRUDERS > 1
  6002. || E1_ENABLE_READ == E_ENABLE_ON
  6003. #if HAS_X2_ENABLE
  6004. || X2_ENABLE_READ == X_ENABLE_ON
  6005. #endif
  6006. #if EXTRUDERS > 2
  6007. || E2_ENABLE_READ == E_ENABLE_ON
  6008. #if EXTRUDERS > 3
  6009. || E3_ENABLE_READ == E_ENABLE_ON
  6010. #endif
  6011. #endif
  6012. #endif
  6013. ) {
  6014. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6015. }
  6016. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6017. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6018. // allows digital or PWM fan output to be used (see M42 handling)
  6019. digitalWrite(CONTROLLERFAN_PIN, speed);
  6020. analogWrite(CONTROLLERFAN_PIN, speed);
  6021. }
  6022. }
  6023. #endif // HAS_CONTROLLERFAN
  6024. #if ENABLED(SCARA)
  6025. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6026. // Perform forward kinematics, and place results in delta[3]
  6027. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6028. float x_sin, x_cos, y_sin, y_cos;
  6029. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6030. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6031. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6032. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6033. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6034. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6035. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6036. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6037. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6038. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6039. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6040. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6041. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6042. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6043. }
  6044. void calculate_delta(float cartesian[3]) {
  6045. //reverse kinematics.
  6046. // Perform reversed kinematics, and place results in delta[3]
  6047. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6048. float SCARA_pos[2];
  6049. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6050. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6051. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6052. #if (Linkage_1 == Linkage_2)
  6053. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6054. #else
  6055. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6056. #endif
  6057. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6058. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6059. SCARA_K2 = Linkage_2 * SCARA_S2;
  6060. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6061. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6062. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6063. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6064. delta[Z_AXIS] = cartesian[Z_AXIS];
  6065. /*
  6066. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6067. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6068. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6069. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6070. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6071. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6072. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6073. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6074. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6075. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6076. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6077. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6078. SERIAL_EOL;
  6079. */
  6080. }
  6081. #endif // SCARA
  6082. #if ENABLED(TEMP_STAT_LEDS)
  6083. static bool red_led = false;
  6084. static millis_t next_status_led_update_ms = 0;
  6085. void handle_status_leds(void) {
  6086. float max_temp = 0.0;
  6087. if (millis() > next_status_led_update_ms) {
  6088. next_status_led_update_ms += 500; // Update every 0.5s
  6089. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6090. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6091. #if HAS_TEMP_BED
  6092. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6093. #endif
  6094. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6095. if (new_led != red_led) {
  6096. red_led = new_led;
  6097. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6098. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6099. }
  6100. }
  6101. }
  6102. #endif
  6103. void enable_all_steppers() {
  6104. enable_x();
  6105. enable_y();
  6106. enable_z();
  6107. enable_e0();
  6108. enable_e1();
  6109. enable_e2();
  6110. enable_e3();
  6111. }
  6112. void disable_all_steppers() {
  6113. disable_x();
  6114. disable_y();
  6115. disable_z();
  6116. disable_e0();
  6117. disable_e1();
  6118. disable_e2();
  6119. disable_e3();
  6120. }
  6121. /**
  6122. * Standard idle routine keeps the machine alive
  6123. */
  6124. void idle(
  6125. #if ENABLED(FILAMENTCHANGEENABLE)
  6126. bool no_stepper_sleep/*=false*/
  6127. #endif
  6128. ) {
  6129. manage_heater();
  6130. manage_inactivity(
  6131. #if ENABLED(FILAMENTCHANGEENABLE)
  6132. no_stepper_sleep
  6133. #endif
  6134. );
  6135. host_keepalive();
  6136. lcd_update();
  6137. }
  6138. /**
  6139. * Manage several activities:
  6140. * - Check for Filament Runout
  6141. * - Keep the command buffer full
  6142. * - Check for maximum inactive time between commands
  6143. * - Check for maximum inactive time between stepper commands
  6144. * - Check if pin CHDK needs to go LOW
  6145. * - Check for KILL button held down
  6146. * - Check for HOME button held down
  6147. * - Check if cooling fan needs to be switched on
  6148. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6149. */
  6150. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6151. #if HAS_FILRUNOUT
  6152. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6153. filrunout();
  6154. #endif
  6155. if (commands_in_queue < BUFSIZE) get_command();
  6156. millis_t ms = millis();
  6157. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6158. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6159. && !ignore_stepper_queue && !blocks_queued()) {
  6160. #if ENABLED(DISABLE_INACTIVE_X)
  6161. disable_x();
  6162. #endif
  6163. #if ENABLED(DISABLE_INACTIVE_Y)
  6164. disable_y();
  6165. #endif
  6166. #if ENABLED(DISABLE_INACTIVE_Z)
  6167. disable_z();
  6168. #endif
  6169. #if ENABLED(DISABLE_INACTIVE_E)
  6170. disable_e0();
  6171. disable_e1();
  6172. disable_e2();
  6173. disable_e3();
  6174. #endif
  6175. }
  6176. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6177. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6178. chdkActive = false;
  6179. WRITE(CHDK, LOW);
  6180. }
  6181. #endif
  6182. #if HAS_KILL
  6183. // Check if the kill button was pressed and wait just in case it was an accidental
  6184. // key kill key press
  6185. // -------------------------------------------------------------------------------
  6186. static int killCount = 0; // make the inactivity button a bit less responsive
  6187. const int KILL_DELAY = 750;
  6188. if (!READ(KILL_PIN))
  6189. killCount++;
  6190. else if (killCount > 0)
  6191. killCount--;
  6192. // Exceeded threshold and we can confirm that it was not accidental
  6193. // KILL the machine
  6194. // ----------------------------------------------------------------
  6195. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6196. #endif
  6197. #if HAS_HOME
  6198. // Check to see if we have to home, use poor man's debouncer
  6199. // ---------------------------------------------------------
  6200. static int homeDebounceCount = 0; // poor man's debouncing count
  6201. const int HOME_DEBOUNCE_DELAY = 2500;
  6202. if (!READ(HOME_PIN)) {
  6203. if (!homeDebounceCount) {
  6204. enqueue_and_echo_commands_P(PSTR("G28"));
  6205. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6206. }
  6207. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6208. homeDebounceCount++;
  6209. else
  6210. homeDebounceCount = 0;
  6211. }
  6212. #endif
  6213. #if HAS_CONTROLLERFAN
  6214. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6215. #endif
  6216. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6217. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6218. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6219. bool oldstatus;
  6220. switch (active_extruder) {
  6221. case 0:
  6222. oldstatus = E0_ENABLE_READ;
  6223. enable_e0();
  6224. break;
  6225. #if EXTRUDERS > 1
  6226. case 1:
  6227. oldstatus = E1_ENABLE_READ;
  6228. enable_e1();
  6229. break;
  6230. #if EXTRUDERS > 2
  6231. case 2:
  6232. oldstatus = E2_ENABLE_READ;
  6233. enable_e2();
  6234. break;
  6235. #if EXTRUDERS > 3
  6236. case 3:
  6237. oldstatus = E3_ENABLE_READ;
  6238. enable_e3();
  6239. break;
  6240. #endif
  6241. #endif
  6242. #endif
  6243. }
  6244. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6245. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6246. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6247. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6248. current_position[E_AXIS] = oldepos;
  6249. destination[E_AXIS] = oldedes;
  6250. plan_set_e_position(oldepos);
  6251. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6252. st_synchronize();
  6253. switch (active_extruder) {
  6254. case 0:
  6255. E0_ENABLE_WRITE(oldstatus);
  6256. break;
  6257. #if EXTRUDERS > 1
  6258. case 1:
  6259. E1_ENABLE_WRITE(oldstatus);
  6260. break;
  6261. #if EXTRUDERS > 2
  6262. case 2:
  6263. E2_ENABLE_WRITE(oldstatus);
  6264. break;
  6265. #if EXTRUDERS > 3
  6266. case 3:
  6267. E3_ENABLE_WRITE(oldstatus);
  6268. break;
  6269. #endif
  6270. #endif
  6271. #endif
  6272. }
  6273. }
  6274. #endif
  6275. #if ENABLED(DUAL_X_CARRIAGE)
  6276. // handle delayed move timeout
  6277. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6278. // travel moves have been received so enact them
  6279. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6280. set_destination_to_current();
  6281. prepare_move();
  6282. }
  6283. #endif
  6284. #if ENABLED(TEMP_STAT_LEDS)
  6285. handle_status_leds();
  6286. #endif
  6287. check_axes_activity();
  6288. }
  6289. void kill(const char* lcd_msg) {
  6290. #if ENABLED(ULTRA_LCD)
  6291. lcd_setalertstatuspgm(lcd_msg);
  6292. #else
  6293. UNUSED(lcd_msg);
  6294. #endif
  6295. cli(); // Stop interrupts
  6296. disable_all_heaters();
  6297. disable_all_steppers();
  6298. #if HAS_POWER_SWITCH
  6299. pinMode(PS_ON_PIN, INPUT);
  6300. #endif
  6301. SERIAL_ERROR_START;
  6302. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6303. // FMC small patch to update the LCD before ending
  6304. sei(); // enable interrupts
  6305. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6306. cli(); // disable interrupts
  6307. suicide();
  6308. while (1) {
  6309. #if ENABLED(USE_WATCHDOG)
  6310. watchdog_reset();
  6311. #endif
  6312. } // Wait for reset
  6313. }
  6314. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6315. void filrunout() {
  6316. if (!filrunoutEnqueued) {
  6317. filrunoutEnqueued = true;
  6318. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6319. st_synchronize();
  6320. }
  6321. }
  6322. #endif // FILAMENT_RUNOUT_SENSOR
  6323. #if ENABLED(FAST_PWM_FAN)
  6324. void setPwmFrequency(uint8_t pin, int val) {
  6325. val &= 0x07;
  6326. switch (digitalPinToTimer(pin)) {
  6327. #if defined(TCCR0A)
  6328. case TIMER0A:
  6329. case TIMER0B:
  6330. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6331. // TCCR0B |= val;
  6332. break;
  6333. #endif
  6334. #if defined(TCCR1A)
  6335. case TIMER1A:
  6336. case TIMER1B:
  6337. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6338. // TCCR1B |= val;
  6339. break;
  6340. #endif
  6341. #if defined(TCCR2)
  6342. case TIMER2:
  6343. case TIMER2:
  6344. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6345. TCCR2 |= val;
  6346. break;
  6347. #endif
  6348. #if defined(TCCR2A)
  6349. case TIMER2A:
  6350. case TIMER2B:
  6351. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6352. TCCR2B |= val;
  6353. break;
  6354. #endif
  6355. #if defined(TCCR3A)
  6356. case TIMER3A:
  6357. case TIMER3B:
  6358. case TIMER3C:
  6359. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6360. TCCR3B |= val;
  6361. break;
  6362. #endif
  6363. #if defined(TCCR4A)
  6364. case TIMER4A:
  6365. case TIMER4B:
  6366. case TIMER4C:
  6367. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6368. TCCR4B |= val;
  6369. break;
  6370. #endif
  6371. #if defined(TCCR5A)
  6372. case TIMER5A:
  6373. case TIMER5B:
  6374. case TIMER5C:
  6375. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6376. TCCR5B |= val;
  6377. break;
  6378. #endif
  6379. }
  6380. }
  6381. #endif // FAST_PWM_FAN
  6382. void Stop() {
  6383. disable_all_heaters();
  6384. if (IsRunning()) {
  6385. Running = false;
  6386. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6387. SERIAL_ERROR_START;
  6388. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6389. LCD_MESSAGEPGM(MSG_STOPPED);
  6390. }
  6391. }
  6392. /**
  6393. * Set target_extruder from the T parameter or the active_extruder
  6394. *
  6395. * Returns TRUE if the target is invalid
  6396. */
  6397. bool setTargetedHotend(int code) {
  6398. target_extruder = active_extruder;
  6399. if (code_seen('T')) {
  6400. target_extruder = code_value_short();
  6401. if (target_extruder >= EXTRUDERS) {
  6402. SERIAL_ECHO_START;
  6403. SERIAL_CHAR('M');
  6404. SERIAL_ECHO(code);
  6405. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6406. SERIAL_ECHOLN((int)target_extruder);
  6407. return true;
  6408. }
  6409. }
  6410. return false;
  6411. }
  6412. float calculate_volumetric_multiplier(float diameter) {
  6413. if (!volumetric_enabled || diameter == 0) return 1.0;
  6414. float d2 = diameter * 0.5;
  6415. return 1.0 / (M_PI * d2 * d2);
  6416. }
  6417. void calculate_volumetric_multipliers() {
  6418. for (int i = 0; i < EXTRUDERS; i++)
  6419. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6420. }
  6421. /**
  6422. * Start the print job timer
  6423. *
  6424. * The print job is only started if all extruders have their target temp at zero
  6425. * otherwise the print job timew would be reset everytime a M109 is received.
  6426. *
  6427. * @param t start timer timestamp
  6428. *
  6429. * @return true if the timer was started at function call
  6430. */
  6431. bool print_job_start(millis_t t /* = 0 */) {
  6432. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6433. print_job_start_ms = (t) ? t : millis();
  6434. print_job_stop_ms = 0;
  6435. return true;
  6436. }
  6437. /**
  6438. * Output the print job timer in seconds
  6439. *
  6440. * @return the number of seconds
  6441. */
  6442. millis_t print_job_timer() {
  6443. if (!print_job_start_ms) return 0;
  6444. return (((print_job_stop_ms > print_job_start_ms)
  6445. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6446. }
  6447. /**
  6448. * Check if the running print job has finished and stop the timer
  6449. *
  6450. * When the target temperature for all extruders is zero then we assume that the
  6451. * print job has finished printing. There are some special conditions under which
  6452. * this assumption may not be valid: If during a print job for some reason the
  6453. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6454. *
  6455. * @param force stops the timer ignoring all pre-checks
  6456. *
  6457. * @return boolean true if the print job has finished printing
  6458. */
  6459. bool print_job_stop(bool force /* = false */) {
  6460. if (!print_job_start_ms) return false;
  6461. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6462. print_job_stop_ms = millis();
  6463. return true;
  6464. }