My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 273KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - Retract filament according to settings of M207
  97. * G11 - Retract recover filament according to settings of M208
  98. * G12 - Clean tool
  99. * G20 - Set input units to inches
  100. * G21 - Set input units to millimeters
  101. * G28 - Home one or more axes
  102. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  103. * G30 - Single Z probe, probes bed at current XY location.
  104. * G31 - Dock sled (Z_PROBE_SLED only)
  105. * G32 - Undock sled (Z_PROBE_SLED only)
  106. * G90 - Use Absolute Coordinates
  107. * G91 - Use Relative Coordinates
  108. * G92 - Set current position to coordinates given
  109. *
  110. * "M" Codes
  111. *
  112. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  113. * M1 - Same as M0
  114. * M17 - Enable/Power all stepper motors
  115. * M18 - Disable all stepper motors; same as M84
  116. * M20 - List SD card
  117. * M21 - Init SD card
  118. * M22 - Release SD card
  119. * M23 - Select SD file (M23 filename.g)
  120. * M24 - Start/resume SD print
  121. * M25 - Pause SD print
  122. * M26 - Set SD position in bytes (M26 S12345)
  123. * M27 - Report SD print status
  124. * M28 - Start SD write (M28 filename.g)
  125. * M29 - Stop SD write
  126. * M30 - Delete file from SD (M30 filename.g)
  127. * M31 - Output time since last M109 or SD card start to serial
  128. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  129. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  130. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path
  133. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  134. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  135. * M75 - Start the print job timer
  136. * M76 - Pause the print job timer
  137. * M77 - Stop the print job timer
  138. * M78 - Show statistical information about the print jobs
  139. * M80 - Turn on Power Supply
  140. * M81 - Turn off Power Supply
  141. * M82 - Set E codes absolute (default)
  142. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  143. * M84 - Disable steppers until next move,
  144. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  147. * M104 - Set extruder target temp
  148. * M105 - Read current temp
  149. * M106 - Fan on
  150. * M107 - Fan off
  151. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number
  156. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  157. * M112 - Emergency stop
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  159. * M114 - Output current position to serial port
  160. * M115 - Capabilities string
  161. * M117 - Display a message on the controller screen
  162. * M119 - Output Endstop status to serial port
  163. * M120 - Enable endstop detection
  164. * M121 - Disable endstop detection
  165. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  166. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  167. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M140 - Set bed target temp
  170. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units
  172. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  173. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  174. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  177. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  180. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  181. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  182. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  190. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  193. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  194. * M221 - Set Flow Percentage: S<percent>
  195. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  196. * M240 - Trigger a camera to take a photograph
  197. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  198. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  199. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  200. * M301 - Set PID parameters P I and D
  201. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  202. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  203. * M304 - Set bed PID parameters P I and D
  204. * M380 - Activate solenoid on active extruder
  205. * M381 - Disable all solenoids
  206. * M400 - Finish all moves
  207. * M401 - Lower Z probe if present
  208. * M402 - Raise Z probe if present
  209. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  210. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  211. * M406 - Disable Filament Sensor extrusion control
  212. * M407 - Display measured filament diameter in millimeters
  213. * M410 - Quickstop. Abort all the planned moves
  214. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  215. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  216. * M428 - Set the home_offset logically based on the current_position
  217. * M500 - Store parameters in EEPROM
  218. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  219. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  220. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  221. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  222. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  223. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  224. * M666 - Set delta endstop adjustment
  225. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  227. * M907 - Set digital trimpot motor current using axis codes.
  228. * M908 - Control digital trimpot directly.
  229. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  230. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  231. * M350 - Set microstepping mode.
  232. * M351 - Toggle MS1 MS2 pins directly.
  233. *
  234. * ************ SCARA Specific - This can change to suit future G-code regulations
  235. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  236. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  237. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  238. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  239. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  240. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging Only)
  245. * M928 - Start SD logging (M928 filename.g) - ended by M29
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. static float feedrate = 1500.0, saved_feedrate;
  265. float current_position[NUM_AXIS] = { 0.0 };
  266. static float destination[NUM_AXIS] = { 0.0 };
  267. bool axis_known_position[3] = { false };
  268. bool axis_homed[3] = { false };
  269. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  270. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  271. static char* current_command, *current_command_args;
  272. static uint8_t cmd_queue_index_r = 0,
  273. cmd_queue_index_w = 0,
  274. commands_in_queue = 0;
  275. #if ENABLED(INCH_MODE_SUPPORT)
  276. float linear_unit_factor = 1.0;
  277. float volumetric_unit_factor = 1.0;
  278. #endif
  279. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  280. TempUnit input_temp_units = TEMPUNIT_C;
  281. #endif
  282. const float homing_feedrate[] = HOMING_FEEDRATE;
  283. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  284. int feedrate_multiplier = 100; //100->1 200->2
  285. int saved_feedrate_multiplier;
  286. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  287. bool volumetric_enabled = false;
  288. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  289. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  290. // The distance that XYZ has been offset by G92. Reset by G28.
  291. float position_shift[3] = { 0 };
  292. // This offset is added to the configured home position.
  293. // Set by M206, M428, or menu item. Saved to EEPROM.
  294. float home_offset[3] = { 0 };
  295. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  296. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  297. // Software Endstops. Default to configured limits.
  298. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  299. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  300. #if ENABLED(DELTA)
  301. float delta_clip_start_height = Z_MAX_POS;
  302. #endif
  303. #if FAN_COUNT > 0
  304. int fanSpeeds[FAN_COUNT] = { 0 };
  305. #endif
  306. // The active extruder (tool). Set with T<extruder> command.
  307. uint8_t active_extruder = 0;
  308. // Relative Mode. Enable with G91, disable with G90.
  309. static bool relative_mode = false;
  310. volatile bool wait_for_heatup = true;
  311. const char errormagic[] PROGMEM = "Error:";
  312. const char echomagic[] PROGMEM = "echo:";
  313. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  314. static int serial_count = 0;
  315. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  316. static char* seen_pointer;
  317. // Next Immediate GCode Command pointer. NULL if none.
  318. const char* queued_commands_P = NULL;
  319. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  320. // Inactivity shutdown
  321. millis_t previous_cmd_ms = 0;
  322. static millis_t max_inactive_time = 0;
  323. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  324. // Print Job Timer
  325. #if ENABLED(PRINTCOUNTER)
  326. PrintCounter print_job_timer = PrintCounter();
  327. #else
  328. Stopwatch print_job_timer = Stopwatch();
  329. #endif
  330. // Buzzer
  331. #if HAS_BUZZER
  332. #if ENABLED(SPEAKER)
  333. Speaker buzzer;
  334. #else
  335. Buzzer buzzer;
  336. #endif
  337. #endif
  338. static uint8_t target_extruder;
  339. #if HAS_BED_PROBE
  340. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  341. #endif
  342. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  343. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  344. int xy_probe_speed = XY_PROBE_SPEED;
  345. bool bed_leveling_in_progress = false;
  346. #define XY_PROBE_FEEDRATE xy_probe_speed
  347. #elif defined(XY_PROBE_SPEED)
  348. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  349. #else
  350. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  351. #endif
  352. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  353. float z_endstop_adj = 0;
  354. #endif
  355. // Extruder offsets
  356. #if HOTENDS > 1
  357. float hotend_offset[][HOTENDS] = {
  358. HOTEND_OFFSET_X,
  359. HOTEND_OFFSET_Y
  360. #ifdef HOTEND_OFFSET_Z
  361. , HOTEND_OFFSET_Z
  362. #endif
  363. };
  364. #endif
  365. #if HAS_Z_SERVO_ENDSTOP
  366. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  367. #endif
  368. #if ENABLED(BARICUDA)
  369. int baricuda_valve_pressure = 0;
  370. int baricuda_e_to_p_pressure = 0;
  371. #endif
  372. #if ENABLED(FWRETRACT)
  373. bool autoretract_enabled = false;
  374. bool retracted[EXTRUDERS] = { false };
  375. bool retracted_swap[EXTRUDERS] = { false };
  376. float retract_length = RETRACT_LENGTH;
  377. float retract_length_swap = RETRACT_LENGTH_SWAP;
  378. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  379. float retract_zlift = RETRACT_ZLIFT;
  380. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  381. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  382. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  383. #endif // FWRETRACT
  384. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  385. bool powersupply =
  386. #if ENABLED(PS_DEFAULT_OFF)
  387. false
  388. #else
  389. true
  390. #endif
  391. ;
  392. #endif
  393. #if ENABLED(DELTA)
  394. #define TOWER_1 X_AXIS
  395. #define TOWER_2 Y_AXIS
  396. #define TOWER_3 Z_AXIS
  397. float delta[3] = { 0 };
  398. #define SIN_60 0.8660254037844386
  399. #define COS_60 0.5
  400. float endstop_adj[3] = { 0 };
  401. // these are the default values, can be overriden with M665
  402. float delta_radius = DELTA_RADIUS;
  403. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  404. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  405. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  406. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  407. float delta_tower3_x = 0; // back middle tower
  408. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  409. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  410. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  411. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  412. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  413. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  414. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  415. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  416. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  417. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  418. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  419. int delta_grid_spacing[2] = { 0, 0 };
  420. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  421. #endif
  422. #else
  423. static bool home_all_axis = true;
  424. #endif
  425. #if ENABLED(SCARA)
  426. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  427. static float delta[3] = { 0 };
  428. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  429. #endif
  430. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  431. //Variables for Filament Sensor input
  432. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  433. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  434. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  435. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  436. int filwidth_delay_index1 = 0; //index into ring buffer
  437. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  438. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  439. #endif
  440. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  441. static bool filament_ran_out = false;
  442. #endif
  443. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  444. FilamentChangeMenuResponse filament_change_menu_response;
  445. #endif
  446. #if ENABLED(MIXING_EXTRUDER)
  447. float mixing_factor[MIXING_STEPPERS];
  448. #if MIXING_VIRTUAL_TOOLS > 1
  449. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  450. #endif
  451. #endif
  452. static bool send_ok[BUFSIZE];
  453. #if HAS_SERVOS
  454. Servo servo[NUM_SERVOS];
  455. #define MOVE_SERVO(I, P) servo[I].move(P)
  456. #if HAS_Z_SERVO_ENDSTOP
  457. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  458. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  459. #endif
  460. #endif
  461. #ifdef CHDK
  462. millis_t chdkHigh = 0;
  463. boolean chdkActive = false;
  464. #endif
  465. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  466. int lpq_len = 20;
  467. #endif
  468. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  469. // States for managing Marlin and host communication
  470. // Marlin sends messages if blocked or busy
  471. enum MarlinBusyState {
  472. NOT_BUSY, // Not in a handler
  473. IN_HANDLER, // Processing a GCode
  474. IN_PROCESS, // Known to be blocking command input (as in G29)
  475. PAUSED_FOR_USER, // Blocking pending any input
  476. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  477. };
  478. static MarlinBusyState busy_state = NOT_BUSY;
  479. static millis_t next_busy_signal_ms = 0;
  480. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  481. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  482. #else
  483. #define host_keepalive() ;
  484. #define KEEPALIVE_STATE(n) ;
  485. #endif // HOST_KEEPALIVE_FEATURE
  486. /**
  487. * ***************************************************************************
  488. * ******************************** FUNCTIONS ********************************
  489. * ***************************************************************************
  490. */
  491. void stop();
  492. void get_available_commands();
  493. void process_next_command();
  494. void prepare_move_to_destination();
  495. #if ENABLED(ARC_SUPPORT)
  496. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  497. #endif
  498. #if ENABLED(BEZIER_CURVE_SUPPORT)
  499. void plan_cubic_move(const float offset[4]);
  500. #endif
  501. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  502. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  503. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  504. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  505. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  506. static void report_current_position();
  507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  508. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  509. serialprintPGM(prefix);
  510. SERIAL_ECHOPAIR("(", x);
  511. SERIAL_ECHOPAIR(", ", y);
  512. SERIAL_ECHOPAIR(", ", z);
  513. SERIAL_ECHOPGM(")");
  514. if (suffix) serialprintPGM(suffix);
  515. else SERIAL_EOL;
  516. }
  517. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  518. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  519. }
  520. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  521. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  522. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  523. }
  524. #endif
  525. #define DEBUG_POS(SUFFIX,VAR) do { \
  526. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  527. #endif
  528. #if ENABLED(DELTA) || ENABLED(SCARA)
  529. inline void sync_plan_position_delta() {
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  532. #endif
  533. calculate_delta(current_position);
  534. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  535. }
  536. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  537. #else
  538. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  539. #endif
  540. #if ENABLED(SDSUPPORT)
  541. #include "SdFatUtil.h"
  542. int freeMemory() { return SdFatUtil::FreeRam(); }
  543. #else
  544. extern "C" {
  545. extern unsigned int __bss_end;
  546. extern unsigned int __heap_start;
  547. extern void* __brkval;
  548. int freeMemory() {
  549. int free_memory;
  550. if ((int)__brkval == 0)
  551. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  552. else
  553. free_memory = ((int)&free_memory) - ((int)__brkval);
  554. return free_memory;
  555. }
  556. }
  557. #endif //!SDSUPPORT
  558. #if ENABLED(DIGIPOT_I2C)
  559. extern void digipot_i2c_set_current(int channel, float current);
  560. extern void digipot_i2c_init();
  561. #endif
  562. /**
  563. * Inject the next "immediate" command, when possible.
  564. * Return true if any immediate commands remain to inject.
  565. */
  566. static bool drain_queued_commands_P() {
  567. if (queued_commands_P != NULL) {
  568. size_t i = 0;
  569. char c, cmd[30];
  570. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  571. cmd[sizeof(cmd) - 1] = '\0';
  572. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  573. cmd[i] = '\0';
  574. if (enqueue_and_echo_command(cmd)) { // success?
  575. if (c) // newline char?
  576. queued_commands_P += i + 1; // advance to the next command
  577. else
  578. queued_commands_P = NULL; // nul char? no more commands
  579. }
  580. }
  581. return (queued_commands_P != NULL); // return whether any more remain
  582. }
  583. /**
  584. * Record one or many commands to run from program memory.
  585. * Aborts the current queue, if any.
  586. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  587. */
  588. void enqueue_and_echo_commands_P(const char* pgcode) {
  589. queued_commands_P = pgcode;
  590. drain_queued_commands_P(); // first command executed asap (when possible)
  591. }
  592. void clear_command_queue() {
  593. cmd_queue_index_r = cmd_queue_index_w;
  594. commands_in_queue = 0;
  595. }
  596. /**
  597. * Once a new command is in the ring buffer, call this to commit it
  598. */
  599. inline void _commit_command(bool say_ok) {
  600. send_ok[cmd_queue_index_w] = say_ok;
  601. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  602. commands_in_queue++;
  603. }
  604. /**
  605. * Copy a command directly into the main command buffer, from RAM.
  606. * Returns true if successfully adds the command
  607. */
  608. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  609. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  610. strcpy(command_queue[cmd_queue_index_w], cmd);
  611. _commit_command(say_ok);
  612. return true;
  613. }
  614. void enqueue_and_echo_command_now(const char* cmd) {
  615. while (!enqueue_and_echo_command(cmd)) idle();
  616. }
  617. /**
  618. * Enqueue with Serial Echo
  619. */
  620. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  621. if (_enqueuecommand(cmd, say_ok)) {
  622. SERIAL_ECHO_START;
  623. SERIAL_ECHOPGM(MSG_Enqueueing);
  624. SERIAL_ECHO(cmd);
  625. SERIAL_ECHOLNPGM("\"");
  626. return true;
  627. }
  628. return false;
  629. }
  630. void setup_killpin() {
  631. #if HAS_KILL
  632. SET_INPUT(KILL_PIN);
  633. WRITE(KILL_PIN, HIGH);
  634. #endif
  635. }
  636. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  637. void setup_filrunoutpin() {
  638. pinMode(FIL_RUNOUT_PIN, INPUT);
  639. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  640. WRITE(FIL_RUNOUT_PIN, HIGH);
  641. #endif
  642. }
  643. #endif
  644. // Set home pin
  645. void setup_homepin(void) {
  646. #if HAS_HOME
  647. SET_INPUT(HOME_PIN);
  648. WRITE(HOME_PIN, HIGH);
  649. #endif
  650. }
  651. void setup_photpin() {
  652. #if HAS_PHOTOGRAPH
  653. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  654. #endif
  655. }
  656. void setup_powerhold() {
  657. #if HAS_SUICIDE
  658. OUT_WRITE(SUICIDE_PIN, HIGH);
  659. #endif
  660. #if HAS_POWER_SWITCH
  661. #if ENABLED(PS_DEFAULT_OFF)
  662. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  663. #else
  664. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  665. #endif
  666. #endif
  667. }
  668. void suicide() {
  669. #if HAS_SUICIDE
  670. OUT_WRITE(SUICIDE_PIN, LOW);
  671. #endif
  672. }
  673. void servo_init() {
  674. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  675. servo[0].attach(SERVO0_PIN);
  676. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  677. #endif
  678. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  679. servo[1].attach(SERVO1_PIN);
  680. servo[1].detach();
  681. #endif
  682. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  683. servo[2].attach(SERVO2_PIN);
  684. servo[2].detach();
  685. #endif
  686. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  687. servo[3].attach(SERVO3_PIN);
  688. servo[3].detach();
  689. #endif
  690. #if HAS_Z_SERVO_ENDSTOP
  691. /**
  692. * Set position of Z Servo Endstop
  693. *
  694. * The servo might be deployed and positioned too low to stow
  695. * when starting up the machine or rebooting the board.
  696. * There's no way to know where the nozzle is positioned until
  697. * homing has been done - no homing with z-probe without init!
  698. *
  699. */
  700. STOW_Z_SERVO();
  701. #endif
  702. #if HAS_BED_PROBE
  703. endstops.enable_z_probe(false);
  704. #endif
  705. }
  706. /**
  707. * Stepper Reset (RigidBoard, et.al.)
  708. */
  709. #if HAS_STEPPER_RESET
  710. void disableStepperDrivers() {
  711. pinMode(STEPPER_RESET_PIN, OUTPUT);
  712. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  713. }
  714. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  715. #endif
  716. /**
  717. * Marlin entry-point: Set up before the program loop
  718. * - Set up the kill pin, filament runout, power hold
  719. * - Start the serial port
  720. * - Print startup messages and diagnostics
  721. * - Get EEPROM or default settings
  722. * - Initialize managers for:
  723. * • temperature
  724. * • planner
  725. * • watchdog
  726. * • stepper
  727. * • photo pin
  728. * • servos
  729. * • LCD controller
  730. * • Digipot I2C
  731. * • Z probe sled
  732. * • status LEDs
  733. */
  734. void setup() {
  735. #ifdef DISABLE_JTAG
  736. // Disable JTAG on AT90USB chips to free up pins for IO
  737. MCUCR = 0x80;
  738. MCUCR = 0x80;
  739. #endif
  740. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  741. setup_filrunoutpin();
  742. #endif
  743. setup_killpin();
  744. setup_powerhold();
  745. #if HAS_STEPPER_RESET
  746. disableStepperDrivers();
  747. #endif
  748. MYSERIAL.begin(BAUDRATE);
  749. SERIAL_PROTOCOLLNPGM("start");
  750. SERIAL_ECHO_START;
  751. // Check startup - does nothing if bootloader sets MCUSR to 0
  752. byte mcu = MCUSR;
  753. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  754. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  755. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  756. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  757. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  758. MCUSR = 0;
  759. SERIAL_ECHOPGM(MSG_MARLIN);
  760. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  761. #ifdef STRING_DISTRIBUTION_DATE
  762. #ifdef STRING_CONFIG_H_AUTHOR
  763. SERIAL_ECHO_START;
  764. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  765. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  766. SERIAL_ECHOPGM(MSG_AUTHOR);
  767. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  768. SERIAL_ECHOPGM("Compiled: ");
  769. SERIAL_ECHOLNPGM(__DATE__);
  770. #endif // STRING_CONFIG_H_AUTHOR
  771. #endif // STRING_DISTRIBUTION_DATE
  772. SERIAL_ECHO_START;
  773. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  774. SERIAL_ECHO(freeMemory());
  775. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  776. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  777. // Send "ok" after commands by default
  778. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  779. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  780. Config_RetrieveSettings();
  781. // Initialize current position based on home_offset
  782. memcpy(current_position, home_offset, sizeof(home_offset));
  783. #if ENABLED(DELTA) || ENABLED(SCARA)
  784. // Vital to init kinematic equivalent for X0 Y0 Z0
  785. SYNC_PLAN_POSITION_KINEMATIC();
  786. #endif
  787. thermalManager.init(); // Initialize temperature loop
  788. #if ENABLED(USE_WATCHDOG)
  789. watchdog_init();
  790. #endif
  791. stepper.init(); // Initialize stepper, this enables interrupts!
  792. setup_photpin();
  793. servo_init();
  794. #if HAS_CONTROLLERFAN
  795. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  796. #endif
  797. #if HAS_STEPPER_RESET
  798. enableStepperDrivers();
  799. #endif
  800. #if ENABLED(DIGIPOT_I2C)
  801. digipot_i2c_init();
  802. #endif
  803. #if ENABLED(DAC_STEPPER_CURRENT)
  804. dac_init();
  805. #endif
  806. #if ENABLED(Z_PROBE_SLED)
  807. pinMode(SLED_PIN, OUTPUT);
  808. digitalWrite(SLED_PIN, LOW); // turn it off
  809. #endif // Z_PROBE_SLED
  810. setup_homepin();
  811. #ifdef STAT_LED_RED
  812. pinMode(STAT_LED_RED, OUTPUT);
  813. digitalWrite(STAT_LED_RED, LOW); // turn it off
  814. #endif
  815. #ifdef STAT_LED_BLUE
  816. pinMode(STAT_LED_BLUE, OUTPUT);
  817. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  818. #endif
  819. lcd_init();
  820. #if ENABLED(SHOW_BOOTSCREEN)
  821. #if ENABLED(DOGLCD)
  822. safe_delay(BOOTSCREEN_TIMEOUT);
  823. #elif ENABLED(ULTRA_LCD)
  824. bootscreen();
  825. lcd_init();
  826. #endif
  827. #endif
  828. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  829. // Initialize mixing to 100% color 1
  830. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  831. mixing_factor[i] = (i == 0) ? 1 : 0;
  832. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  833. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  834. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  835. #endif
  836. }
  837. /**
  838. * The main Marlin program loop
  839. *
  840. * - Save or log commands to SD
  841. * - Process available commands (if not saving)
  842. * - Call heater manager
  843. * - Call inactivity manager
  844. * - Call endstop manager
  845. * - Call LCD update
  846. */
  847. void loop() {
  848. if (commands_in_queue < BUFSIZE) get_available_commands();
  849. #if ENABLED(SDSUPPORT)
  850. card.checkautostart(false);
  851. #endif
  852. if (commands_in_queue) {
  853. #if ENABLED(SDSUPPORT)
  854. if (card.saving) {
  855. char* command = command_queue[cmd_queue_index_r];
  856. if (strstr_P(command, PSTR("M29"))) {
  857. // M29 closes the file
  858. card.closefile();
  859. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  860. ok_to_send();
  861. }
  862. else {
  863. // Write the string from the read buffer to SD
  864. card.write_command(command);
  865. if (card.logging)
  866. process_next_command(); // The card is saving because it's logging
  867. else
  868. ok_to_send();
  869. }
  870. }
  871. else
  872. process_next_command();
  873. #else
  874. process_next_command();
  875. #endif // SDSUPPORT
  876. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  877. if (commands_in_queue) {
  878. --commands_in_queue;
  879. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  880. }
  881. }
  882. endstops.report_state();
  883. idle();
  884. }
  885. void gcode_line_error(const char* err, bool doFlush = true) {
  886. SERIAL_ERROR_START;
  887. serialprintPGM(err);
  888. SERIAL_ERRORLN(gcode_LastN);
  889. //Serial.println(gcode_N);
  890. if (doFlush) FlushSerialRequestResend();
  891. serial_count = 0;
  892. }
  893. inline void get_serial_commands() {
  894. static char serial_line_buffer[MAX_CMD_SIZE];
  895. static boolean serial_comment_mode = false;
  896. // If the command buffer is empty for too long,
  897. // send "wait" to indicate Marlin is still waiting.
  898. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  899. static millis_t last_command_time = 0;
  900. millis_t ms = millis();
  901. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  902. SERIAL_ECHOLNPGM(MSG_WAIT);
  903. last_command_time = ms;
  904. }
  905. #endif
  906. /**
  907. * Loop while serial characters are incoming and the queue is not full
  908. */
  909. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  910. char serial_char = MYSERIAL.read();
  911. /**
  912. * If the character ends the line
  913. */
  914. if (serial_char == '\n' || serial_char == '\r') {
  915. serial_comment_mode = false; // end of line == end of comment
  916. if (!serial_count) continue; // skip empty lines
  917. serial_line_buffer[serial_count] = 0; // terminate string
  918. serial_count = 0; //reset buffer
  919. char* command = serial_line_buffer;
  920. while (*command == ' ') command++; // skip any leading spaces
  921. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  922. char* apos = strchr(command, '*');
  923. if (npos) {
  924. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  925. if (M110) {
  926. char* n2pos = strchr(command + 4, 'N');
  927. if (n2pos) npos = n2pos;
  928. }
  929. gcode_N = strtol(npos + 1, NULL, 10);
  930. if (gcode_N != gcode_LastN + 1 && !M110) {
  931. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  932. return;
  933. }
  934. if (apos) {
  935. byte checksum = 0, count = 0;
  936. while (command[count] != '*') checksum ^= command[count++];
  937. if (strtol(apos + 1, NULL, 10) != checksum) {
  938. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  939. return;
  940. }
  941. // if no errors, continue parsing
  942. }
  943. else {
  944. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  945. return;
  946. }
  947. gcode_LastN = gcode_N;
  948. // if no errors, continue parsing
  949. }
  950. else if (apos) { // No '*' without 'N'
  951. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  952. return;
  953. }
  954. // Movement commands alert when stopped
  955. if (IsStopped()) {
  956. char* gpos = strchr(command, 'G');
  957. if (gpos) {
  958. int codenum = strtol(gpos + 1, NULL, 10);
  959. switch (codenum) {
  960. case 0:
  961. case 1:
  962. case 2:
  963. case 3:
  964. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  965. LCD_MESSAGEPGM(MSG_STOPPED);
  966. break;
  967. }
  968. }
  969. }
  970. #if DISABLED(EMERGENCY_PARSER)
  971. // If command was e-stop process now
  972. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  973. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  974. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  975. #endif
  976. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  977. last_command_time = ms;
  978. #endif
  979. // Add the command to the queue
  980. _enqueuecommand(serial_line_buffer, true);
  981. }
  982. else if (serial_count >= MAX_CMD_SIZE - 1) {
  983. // Keep fetching, but ignore normal characters beyond the max length
  984. // The command will be injected when EOL is reached
  985. }
  986. else if (serial_char == '\\') { // Handle escapes
  987. if (MYSERIAL.available() > 0) {
  988. // if we have one more character, copy it over
  989. serial_char = MYSERIAL.read();
  990. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  991. }
  992. // otherwise do nothing
  993. }
  994. else { // it's not a newline, carriage return or escape char
  995. if (serial_char == ';') serial_comment_mode = true;
  996. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  997. }
  998. } // queue has space, serial has data
  999. }
  1000. #if ENABLED(SDSUPPORT)
  1001. inline void get_sdcard_commands() {
  1002. static bool stop_buffering = false,
  1003. sd_comment_mode = false;
  1004. if (!card.sdprinting) return;
  1005. /**
  1006. * '#' stops reading from SD to the buffer prematurely, so procedural
  1007. * macro calls are possible. If it occurs, stop_buffering is triggered
  1008. * and the buffer is run dry; this character _can_ occur in serial com
  1009. * due to checksums, however, no checksums are used in SD printing.
  1010. */
  1011. if (commands_in_queue == 0) stop_buffering = false;
  1012. uint16_t sd_count = 0;
  1013. bool card_eof = card.eof();
  1014. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1015. int16_t n = card.get();
  1016. char sd_char = (char)n;
  1017. card_eof = card.eof();
  1018. if (card_eof || n == -1
  1019. || sd_char == '\n' || sd_char == '\r'
  1020. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1021. ) {
  1022. if (card_eof) {
  1023. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1024. card.printingHasFinished();
  1025. card.checkautostart(true);
  1026. }
  1027. else if (n == -1) {
  1028. SERIAL_ERROR_START;
  1029. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1030. }
  1031. if (sd_char == '#') stop_buffering = true;
  1032. sd_comment_mode = false; //for new command
  1033. if (!sd_count) continue; //skip empty lines
  1034. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1035. sd_count = 0; //clear buffer
  1036. _commit_command(false);
  1037. }
  1038. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1039. /**
  1040. * Keep fetching, but ignore normal characters beyond the max length
  1041. * The command will be injected when EOL is reached
  1042. */
  1043. }
  1044. else {
  1045. if (sd_char == ';') sd_comment_mode = true;
  1046. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1047. }
  1048. }
  1049. }
  1050. #endif // SDSUPPORT
  1051. /**
  1052. * Add to the circular command queue the next command from:
  1053. * - The command-injection queue (queued_commands_P)
  1054. * - The active serial input (usually USB)
  1055. * - The SD card file being actively printed
  1056. */
  1057. void get_available_commands() {
  1058. // if any immediate commands remain, don't get other commands yet
  1059. if (drain_queued_commands_P()) return;
  1060. get_serial_commands();
  1061. #if ENABLED(SDSUPPORT)
  1062. get_sdcard_commands();
  1063. #endif
  1064. }
  1065. inline bool code_has_value() {
  1066. int i = 1;
  1067. char c = seen_pointer[i];
  1068. while (c == ' ') c = seen_pointer[++i];
  1069. if (c == '-' || c == '+') c = seen_pointer[++i];
  1070. if (c == '.') c = seen_pointer[++i];
  1071. return NUMERIC(c);
  1072. }
  1073. inline float code_value_float() {
  1074. float ret;
  1075. char* e = strchr(seen_pointer, 'E');
  1076. if (e) {
  1077. *e = 0;
  1078. ret = strtod(seen_pointer + 1, NULL);
  1079. *e = 'E';
  1080. }
  1081. else
  1082. ret = strtod(seen_pointer + 1, NULL);
  1083. return ret;
  1084. }
  1085. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1086. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1087. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1088. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1089. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1090. inline bool code_value_bool() { return code_value_byte() > 0; }
  1091. #if ENABLED(INCH_MODE_SUPPORT)
  1092. inline void set_input_linear_units(LinearUnit units) {
  1093. switch (units) {
  1094. case LINEARUNIT_INCH:
  1095. linear_unit_factor = 25.4;
  1096. break;
  1097. case LINEARUNIT_MM:
  1098. default:
  1099. linear_unit_factor = 1.0;
  1100. break;
  1101. }
  1102. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1103. }
  1104. inline float axis_unit_factor(int axis) {
  1105. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1106. }
  1107. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1108. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1109. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1110. #else
  1111. inline float code_value_linear_units() { return code_value_float(); }
  1112. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1113. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1114. #endif
  1115. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1116. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1117. float code_value_temp_abs() {
  1118. switch (input_temp_units) {
  1119. case TEMPUNIT_C:
  1120. return code_value_float();
  1121. case TEMPUNIT_F:
  1122. return (code_value_float() - 32) / 1.8;
  1123. case TEMPUNIT_K:
  1124. return code_value_float() - 272.15;
  1125. default:
  1126. return code_value_float();
  1127. }
  1128. }
  1129. float code_value_temp_diff() {
  1130. switch (input_temp_units) {
  1131. case TEMPUNIT_C:
  1132. case TEMPUNIT_K:
  1133. return code_value_float();
  1134. case TEMPUNIT_F:
  1135. return code_value_float() / 1.8;
  1136. default:
  1137. return code_value_float();
  1138. }
  1139. }
  1140. #else
  1141. float code_value_temp_abs() { return code_value_float(); }
  1142. float code_value_temp_diff() { return code_value_float(); }
  1143. #endif
  1144. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1145. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1146. bool code_seen(char code) {
  1147. seen_pointer = strchr(current_command_args, code);
  1148. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1149. }
  1150. /**
  1151. * Set target_extruder from the T parameter or the active_extruder
  1152. *
  1153. * Returns TRUE if the target is invalid
  1154. */
  1155. bool get_target_extruder_from_command(int code) {
  1156. if (code_seen('T')) {
  1157. if (code_value_byte() >= EXTRUDERS) {
  1158. SERIAL_ECHO_START;
  1159. SERIAL_CHAR('M');
  1160. SERIAL_ECHO(code);
  1161. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1162. SERIAL_EOL;
  1163. return true;
  1164. }
  1165. target_extruder = code_value_byte();
  1166. }
  1167. else
  1168. target_extruder = active_extruder;
  1169. return false;
  1170. }
  1171. #define DEFINE_PGM_READ_ANY(type, reader) \
  1172. static inline type pgm_read_any(const type *p) \
  1173. { return pgm_read_##reader##_near(p); }
  1174. DEFINE_PGM_READ_ANY(float, float);
  1175. DEFINE_PGM_READ_ANY(signed char, byte);
  1176. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1177. static const PROGMEM type array##_P[3] = \
  1178. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1179. static inline type array(int axis) \
  1180. { return pgm_read_any(&array##_P[axis]); }
  1181. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1182. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1183. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1184. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1185. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1186. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1187. #if ENABLED(DUAL_X_CARRIAGE)
  1188. #define DXC_FULL_CONTROL_MODE 0
  1189. #define DXC_AUTO_PARK_MODE 1
  1190. #define DXC_DUPLICATION_MODE 2
  1191. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1192. static float x_home_pos(int extruder) {
  1193. if (extruder == 0)
  1194. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1195. else
  1196. /**
  1197. * In dual carriage mode the extruder offset provides an override of the
  1198. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1199. * This allow soft recalibration of the second extruder offset position
  1200. * without firmware reflash (through the M218 command).
  1201. */
  1202. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1203. }
  1204. static int x_home_dir(int extruder) {
  1205. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1206. }
  1207. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1208. static bool active_extruder_parked = false; // used in mode 1 & 2
  1209. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1210. static millis_t delayed_move_time = 0; // used in mode 1
  1211. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1212. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1213. bool extruder_duplication_enabled = false; // used in mode 2
  1214. #endif //DUAL_X_CARRIAGE
  1215. /**
  1216. * Software endstops can be used to monitor the open end of
  1217. * an axis that has a hardware endstop on the other end. Or
  1218. * they can prevent axes from moving past endstops and grinding.
  1219. *
  1220. * To keep doing their job as the coordinate system changes,
  1221. * the software endstop positions must be refreshed to remain
  1222. * at the same positions relative to the machine.
  1223. */
  1224. static void update_software_endstops(AxisEnum axis) {
  1225. float offs = home_offset[axis] + position_shift[axis];
  1226. #if ENABLED(DUAL_X_CARRIAGE)
  1227. if (axis == X_AXIS) {
  1228. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1229. if (active_extruder != 0) {
  1230. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1231. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1232. return;
  1233. }
  1234. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1235. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. return;
  1238. }
  1239. }
  1240. else
  1241. #endif
  1242. {
  1243. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1244. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1245. }
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (DEBUGGING(LEVELING)) {
  1248. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1249. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1250. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1251. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1252. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1253. SERIAL_EOL;
  1254. }
  1255. #endif
  1256. #if ENABLED(DELTA)
  1257. if (axis == Z_AXIS) {
  1258. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1259. }
  1260. #endif
  1261. }
  1262. /**
  1263. * Change the home offset for an axis, update the current
  1264. * position and the software endstops to retain the same
  1265. * relative distance to the new home.
  1266. *
  1267. * Since this changes the current_position, code should
  1268. * call sync_plan_position soon after this.
  1269. */
  1270. static void set_home_offset(AxisEnum axis, float v) {
  1271. current_position[axis] += v - home_offset[axis];
  1272. home_offset[axis] = v;
  1273. update_software_endstops(axis);
  1274. }
  1275. static void set_axis_is_at_home(AxisEnum axis) {
  1276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1277. if (DEBUGGING(LEVELING)) {
  1278. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1279. SERIAL_ECHOLNPGM(")");
  1280. }
  1281. #endif
  1282. position_shift[axis] = 0;
  1283. #if ENABLED(DUAL_X_CARRIAGE)
  1284. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1285. if (active_extruder != 0)
  1286. current_position[X_AXIS] = x_home_pos(active_extruder);
  1287. else
  1288. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1289. update_software_endstops(X_AXIS);
  1290. return;
  1291. }
  1292. #endif
  1293. #if ENABLED(SCARA)
  1294. if (axis == X_AXIS || axis == Y_AXIS) {
  1295. float homeposition[3];
  1296. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1297. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1298. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1299. /**
  1300. * Works out real Homeposition angles using inverse kinematics,
  1301. * and calculates homing offset using forward kinematics
  1302. */
  1303. calculate_delta(homeposition);
  1304. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1305. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1306. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1307. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1308. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1309. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1310. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1311. calculate_SCARA_forward_Transform(delta);
  1312. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1313. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1314. current_position[axis] = delta[axis];
  1315. /**
  1316. * SCARA home positions are based on configuration since the actual
  1317. * limits are determined by the inverse kinematic transform.
  1318. */
  1319. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1320. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1321. }
  1322. else
  1323. #endif
  1324. {
  1325. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1326. update_software_endstops(axis);
  1327. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1328. if (axis == Z_AXIS) {
  1329. current_position[Z_AXIS] -= zprobe_zoffset;
  1330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1331. if (DEBUGGING(LEVELING)) {
  1332. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1333. SERIAL_EOL;
  1334. }
  1335. #endif
  1336. }
  1337. #endif
  1338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (DEBUGGING(LEVELING)) {
  1340. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1341. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1342. SERIAL_EOL;
  1343. DEBUG_POS("", current_position);
  1344. }
  1345. #endif
  1346. }
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) {
  1349. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1350. SERIAL_ECHOLNPGM(")");
  1351. }
  1352. #endif
  1353. }
  1354. /**
  1355. * Some planner shorthand inline functions
  1356. */
  1357. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1358. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1359. int hbd = homing_bump_divisor[axis];
  1360. if (hbd < 1) {
  1361. hbd = 10;
  1362. SERIAL_ECHO_START;
  1363. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1364. }
  1365. feedrate = homing_feedrate[axis] / hbd;
  1366. }
  1367. //
  1368. // line_to_current_position
  1369. // Move the planner to the current position from wherever it last moved
  1370. // (or from wherever it has been told it is located).
  1371. //
  1372. inline void line_to_current_position() {
  1373. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1374. }
  1375. inline void line_to_z(float zPosition) {
  1376. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1377. }
  1378. //
  1379. // line_to_destination
  1380. // Move the planner, not necessarily synced with current_position
  1381. //
  1382. inline void line_to_destination(float mm_m) {
  1383. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1384. }
  1385. inline void line_to_destination() { line_to_destination(feedrate); }
  1386. /**
  1387. * sync_plan_position
  1388. * Set planner / stepper positions to the cartesian current_position.
  1389. * The stepper code translates these coordinates into step units.
  1390. * Allows translation between steps and millimeters for cartesian & core robots
  1391. */
  1392. inline void sync_plan_position() {
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1395. #endif
  1396. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. }
  1398. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1399. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1400. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1401. #if ENABLED(DELTA)
  1402. /**
  1403. * Calculate delta, start a line, and set current_position to destination
  1404. */
  1405. void prepare_move_to_destination_raw() {
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1408. #endif
  1409. refresh_cmd_timeout();
  1410. calculate_delta(destination);
  1411. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1412. set_current_to_destination();
  1413. }
  1414. #endif
  1415. /**
  1416. * Plan a move to (X, Y, Z) and set the current_position
  1417. * The final current_position may not be the one that was requested
  1418. */
  1419. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1420. float old_feedrate = feedrate;
  1421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1422. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
  1423. #endif
  1424. #if ENABLED(DELTA)
  1425. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1426. destination[X_AXIS] = x;
  1427. destination[Y_AXIS] = y;
  1428. destination[Z_AXIS] = z;
  1429. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1430. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1431. else
  1432. prepare_move_to_destination(); // this will also set_current_to_destination
  1433. #else
  1434. // If Z needs to raise, do it before moving XY
  1435. if (current_position[Z_AXIS] < z) {
  1436. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1441. current_position[X_AXIS] = x;
  1442. current_position[Y_AXIS] = y;
  1443. line_to_current_position();
  1444. // If Z needs to lower, do it after moving XY
  1445. if (current_position[Z_AXIS] > z) {
  1446. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1447. current_position[Z_AXIS] = z;
  1448. line_to_current_position();
  1449. }
  1450. #endif
  1451. stepper.synchronize();
  1452. feedrate = old_feedrate;
  1453. }
  1454. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1455. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1456. }
  1457. inline void do_blocking_move_to_y(float y) {
  1458. do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
  1459. }
  1460. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1461. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1462. }
  1463. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1464. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1465. }
  1466. //
  1467. // Prepare to do endstop or probe moves
  1468. // with custom feedrates.
  1469. //
  1470. // - Save current feedrates
  1471. // - Reset the rate multiplier
  1472. // - Reset the command timeout
  1473. // - Enable the endstops (for endstop moves)
  1474. //
  1475. static void setup_for_endstop_or_probe_move() {
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1478. #endif
  1479. saved_feedrate = feedrate;
  1480. saved_feedrate_multiplier = feedrate_multiplier;
  1481. feedrate_multiplier = 100;
  1482. refresh_cmd_timeout();
  1483. }
  1484. static void clean_up_after_endstop_or_probe_move() {
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1487. #endif
  1488. feedrate = saved_feedrate;
  1489. feedrate_multiplier = saved_feedrate_multiplier;
  1490. refresh_cmd_timeout();
  1491. }
  1492. #if HAS_BED_PROBE
  1493. /**
  1494. * Raise Z to a minimum height to make room for a probe to move
  1495. */
  1496. inline void do_probe_raise(float z_raise) {
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) {
  1499. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1500. SERIAL_ECHOLNPGM(")");
  1501. }
  1502. #endif
  1503. float z_dest = home_offset[Z_AXIS] + z_raise;
  1504. if (zprobe_zoffset < 0)
  1505. z_dest -= zprobe_zoffset;
  1506. if (z_dest > current_position[Z_AXIS])
  1507. do_blocking_move_to_z(z_dest);
  1508. }
  1509. #endif //HAS_BED_PROBE
  1510. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1511. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1512. const bool xx = x && !axis_homed[X_AXIS],
  1513. yy = y && !axis_homed[Y_AXIS],
  1514. zz = z && !axis_homed[Z_AXIS];
  1515. if (xx || yy || zz) {
  1516. SERIAL_ECHO_START;
  1517. SERIAL_ECHOPGM(MSG_HOME " ");
  1518. if (xx) SERIAL_ECHOPGM(MSG_X);
  1519. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1520. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1521. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1522. #if ENABLED(ULTRA_LCD)
  1523. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1524. strcat_P(message, PSTR(MSG_HOME " "));
  1525. if (xx) strcat_P(message, PSTR(MSG_X));
  1526. if (yy) strcat_P(message, PSTR(MSG_Y));
  1527. if (zz) strcat_P(message, PSTR(MSG_Z));
  1528. strcat_P(message, PSTR(" " MSG_FIRST));
  1529. lcd_setstatus(message);
  1530. #endif
  1531. return true;
  1532. }
  1533. return false;
  1534. }
  1535. #endif
  1536. #if ENABLED(Z_PROBE_SLED)
  1537. #ifndef SLED_DOCKING_OFFSET
  1538. #define SLED_DOCKING_OFFSET 0
  1539. #endif
  1540. /**
  1541. * Method to dock/undock a sled designed by Charles Bell.
  1542. *
  1543. * stow[in] If false, move to MAX_X and engage the solenoid
  1544. * If true, move to MAX_X and release the solenoid
  1545. */
  1546. static void dock_sled(bool stow) {
  1547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1548. if (DEBUGGING(LEVELING)) {
  1549. SERIAL_ECHOPAIR("dock_sled(", stow);
  1550. SERIAL_ECHOLNPGM(")");
  1551. }
  1552. #endif
  1553. // Dock sled a bit closer to ensure proper capturing
  1554. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1555. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1556. }
  1557. #endif // Z_PROBE_SLED
  1558. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1559. void run_deploy_moves_script() {
  1560. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1561. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1562. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1563. #endif
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1572. #endif
  1573. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1574. #endif
  1575. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1578. #endif
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1587. #endif
  1588. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1589. #endif
  1590. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1593. #endif
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1602. #endif
  1603. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1604. #endif
  1605. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1606. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1607. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1608. #endif
  1609. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1610. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1617. #endif
  1618. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1619. #endif
  1620. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1631. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1632. #endif
  1633. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1634. #endif
  1635. }
  1636. void run_stow_moves_script() {
  1637. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1639. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1642. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1645. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1649. #endif
  1650. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1651. #endif
  1652. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1654. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1657. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1660. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1664. #endif
  1665. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1669. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1672. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1675. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1679. #endif
  1680. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1684. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1687. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1690. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1694. #endif
  1695. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1696. #endif
  1697. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1699. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1702. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1705. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1708. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1709. #endif
  1710. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1711. #endif
  1712. }
  1713. #endif
  1714. #if HAS_BED_PROBE
  1715. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1716. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1717. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1718. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1719. #else
  1720. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1721. #endif
  1722. #endif
  1723. #define DEPLOY_PROBE() set_probe_deployed( true )
  1724. #define STOW_PROBE() set_probe_deployed( false )
  1725. // returns false for ok and true for failure
  1726. static bool set_probe_deployed(bool deploy) {
  1727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1728. if (DEBUGGING(LEVELING)) {
  1729. DEBUG_POS("set_probe_deployed", current_position);
  1730. SERIAL_ECHOPAIR("deploy: ", deploy);
  1731. }
  1732. #endif
  1733. if (endstops.z_probe_enabled == deploy) return false;
  1734. // Make room for probe
  1735. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1736. #if ENABLED(Z_PROBE_SLED)
  1737. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1738. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1739. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1740. #endif
  1741. float oldXpos = current_position[X_AXIS]; // save x position
  1742. float oldYpos = current_position[Y_AXIS]; // save y position
  1743. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1744. // If endstop is already false, the Z probe is deployed
  1745. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1746. // Would a goto be less ugly?
  1747. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1748. // for a triggered when stowed manual probe.
  1749. #endif
  1750. #if ENABLED(Z_PROBE_SLED)
  1751. dock_sled(!deploy);
  1752. #elif HAS_Z_SERVO_ENDSTOP
  1753. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1754. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1755. if (!deploy) run_stow_moves_script();
  1756. else run_deploy_moves_script();
  1757. #else
  1758. // Nothing to be done. Just enable_z_probe below...
  1759. #endif
  1760. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1761. }; // opened before the probe specific actions
  1762. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1763. if (IsRunning()) {
  1764. SERIAL_ERROR_START;
  1765. SERIAL_ERRORLNPGM("Z-Probe failed");
  1766. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1767. }
  1768. stop();
  1769. return true;
  1770. }
  1771. #endif
  1772. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1773. endstops.enable_z_probe( deploy );
  1774. return false;
  1775. }
  1776. // Do a single Z probe and return with current_position[Z_AXIS]
  1777. // at the height where the probe triggered.
  1778. static float run_z_probe() {
  1779. float old_feedrate = feedrate;
  1780. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1781. refresh_cmd_timeout();
  1782. #if ENABLED(DELTA)
  1783. float start_z = current_position[Z_AXIS];
  1784. long start_steps = stepper.position(Z_AXIS);
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1787. #endif
  1788. // move down slowly until you find the bed
  1789. feedrate = homing_feedrate[Z_AXIS] / 4;
  1790. destination[Z_AXIS] = -10;
  1791. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1792. stepper.synchronize();
  1793. endstops.hit_on_purpose(); // clear endstop hit flags
  1794. /**
  1795. * We have to let the planner know where we are right now as it
  1796. * is not where we said to go.
  1797. */
  1798. long stop_steps = stepper.position(Z_AXIS);
  1799. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1800. current_position[Z_AXIS] = mm;
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1803. #endif
  1804. #else // !DELTA
  1805. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1806. planner.bed_level_matrix.set_to_identity();
  1807. #endif
  1808. feedrate = homing_feedrate[Z_AXIS];
  1809. // Move down until the Z probe (or endstop?) is triggered
  1810. float zPosition = -(Z_MAX_LENGTH + 10);
  1811. line_to_z(zPosition);
  1812. stepper.synchronize();
  1813. // Tell the planner where we ended up - Get this from the stepper handler
  1814. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1815. planner.set_position_mm(
  1816. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1817. current_position[E_AXIS]
  1818. );
  1819. // move up the retract distance
  1820. zPosition += home_bump_mm(Z_AXIS);
  1821. line_to_z(zPosition);
  1822. stepper.synchronize();
  1823. endstops.hit_on_purpose(); // clear endstop hit flags
  1824. // move back down slowly to find bed
  1825. set_homing_bump_feedrate(Z_AXIS);
  1826. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1827. line_to_z(zPosition);
  1828. stepper.synchronize();
  1829. endstops.hit_on_purpose(); // clear endstop hit flags
  1830. // Get the current stepper position after bumping an endstop
  1831. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1833. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1834. #endif
  1835. #endif // !DELTA
  1836. SYNC_PLAN_POSITION_KINEMATIC();
  1837. feedrate = old_feedrate;
  1838. return current_position[Z_AXIS];
  1839. }
  1840. //
  1841. // - Move to the given XY
  1842. // - Deploy the probe, if not already deployed
  1843. // - Probe the bed, get the Z position
  1844. // - Depending on the 'stow' flag
  1845. // - Stow the probe, or
  1846. // - Raise to the BETWEEN height
  1847. // - Return the probed Z position
  1848. //
  1849. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) {
  1852. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1853. SERIAL_ECHOPAIR(", ", y);
  1854. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1855. SERIAL_ECHOLNPGM(")");
  1856. DEBUG_POS("", current_position);
  1857. }
  1858. #endif
  1859. float old_feedrate = feedrate;
  1860. // Ensure a minimum height before moving the probe
  1861. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1862. // Move to the XY where we shall probe
  1863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1864. if (DEBUGGING(LEVELING)) {
  1865. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1866. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1867. SERIAL_ECHOLNPGM(")");
  1868. }
  1869. #endif
  1870. feedrate = XY_PROBE_FEEDRATE;
  1871. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1873. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1874. #endif
  1875. if (DEPLOY_PROBE()) return NAN;
  1876. float measured_z = run_z_probe();
  1877. if (stow) {
  1878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1879. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1880. #endif
  1881. if (STOW_PROBE()) return NAN;
  1882. }
  1883. else {
  1884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1885. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1886. #endif
  1887. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1888. }
  1889. if (verbose_level > 2) {
  1890. SERIAL_PROTOCOLPGM("Bed X: ");
  1891. SERIAL_PROTOCOL_F(x, 3);
  1892. SERIAL_PROTOCOLPGM(" Y: ");
  1893. SERIAL_PROTOCOL_F(y, 3);
  1894. SERIAL_PROTOCOLPGM(" Z: ");
  1895. SERIAL_PROTOCOL_F(measured_z, 3);
  1896. SERIAL_EOL;
  1897. }
  1898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1899. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1900. #endif
  1901. feedrate = old_feedrate;
  1902. return measured_z;
  1903. }
  1904. #endif // HAS_BED_PROBE
  1905. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1906. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1907. #if DISABLED(DELTA)
  1908. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1909. //planner.bed_level_matrix.debug("bed level before");
  1910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1911. planner.bed_level_matrix.set_to_identity();
  1912. if (DEBUGGING(LEVELING)) {
  1913. vector_3 uncorrected_position = planner.adjusted_position();
  1914. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1915. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1916. }
  1917. #endif
  1918. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1919. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1920. vector_3 corrected_position = planner.adjusted_position();
  1921. current_position[X_AXIS] = corrected_position.x;
  1922. current_position[Y_AXIS] = corrected_position.y;
  1923. current_position[Z_AXIS] = corrected_position.z;
  1924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1925. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1926. #endif
  1927. SYNC_PLAN_POSITION_KINEMATIC();
  1928. }
  1929. #endif // !DELTA
  1930. #else // !AUTO_BED_LEVELING_GRID
  1931. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1932. planner.bed_level_matrix.set_to_identity();
  1933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1934. if (DEBUGGING(LEVELING)) {
  1935. vector_3 uncorrected_position = planner.adjusted_position();
  1936. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1937. }
  1938. #endif
  1939. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1940. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1941. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1942. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1943. if (planeNormal.z < 0) {
  1944. planeNormal.x = -planeNormal.x;
  1945. planeNormal.y = -planeNormal.y;
  1946. planeNormal.z = -planeNormal.z;
  1947. }
  1948. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1949. vector_3 corrected_position = planner.adjusted_position();
  1950. current_position[X_AXIS] = corrected_position.x;
  1951. current_position[Y_AXIS] = corrected_position.y;
  1952. current_position[Z_AXIS] = corrected_position.z;
  1953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1954. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1955. #endif
  1956. SYNC_PLAN_POSITION_KINEMATIC();
  1957. }
  1958. #endif // !AUTO_BED_LEVELING_GRID
  1959. #if ENABLED(DELTA)
  1960. /**
  1961. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1962. */
  1963. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1964. if (bed_level[x][y] != 0.0) {
  1965. return; // Don't overwrite good values.
  1966. }
  1967. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1968. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1969. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1970. float median = c; // Median is robust (ignores outliers).
  1971. if (a < b) {
  1972. if (b < c) median = b;
  1973. if (c < a) median = a;
  1974. }
  1975. else { // b <= a
  1976. if (c < b) median = b;
  1977. if (a < c) median = a;
  1978. }
  1979. bed_level[x][y] = median;
  1980. }
  1981. /**
  1982. * Fill in the unprobed points (corners of circular print surface)
  1983. * using linear extrapolation, away from the center.
  1984. */
  1985. static void extrapolate_unprobed_bed_level() {
  1986. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1987. for (int y = 0; y <= half; y++) {
  1988. for (int x = 0; x <= half; x++) {
  1989. if (x + y < 3) continue;
  1990. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1991. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1992. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1993. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1994. }
  1995. }
  1996. }
  1997. /**
  1998. * Print calibration results for plotting or manual frame adjustment.
  1999. */
  2000. static void print_bed_level() {
  2001. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2002. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2003. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2004. SERIAL_PROTOCOLCHAR(' ');
  2005. }
  2006. SERIAL_EOL;
  2007. }
  2008. }
  2009. /**
  2010. * Reset calibration results to zero.
  2011. */
  2012. void reset_bed_level() {
  2013. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2014. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2015. #endif
  2016. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2017. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2018. bed_level[x][y] = 0.0;
  2019. }
  2020. }
  2021. }
  2022. #endif // DELTA
  2023. #endif // AUTO_BED_LEVELING_FEATURE
  2024. /**
  2025. * Home an individual axis
  2026. */
  2027. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2028. static void homeaxis(AxisEnum axis) {
  2029. #define HOMEAXIS_DO(LETTER) \
  2030. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2031. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2033. if (DEBUGGING(LEVELING)) {
  2034. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2035. SERIAL_ECHOLNPGM(")");
  2036. }
  2037. #endif
  2038. int axis_home_dir =
  2039. #if ENABLED(DUAL_X_CARRIAGE)
  2040. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2041. #endif
  2042. home_dir(axis);
  2043. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2044. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2045. if (axis == Z_AXIS && axis_home_dir < 0) {
  2046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2047. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2048. #endif
  2049. if (DEPLOY_PROBE()) return;
  2050. }
  2051. #endif
  2052. // Set the axis position as setup for the move
  2053. current_position[axis] = 0;
  2054. sync_plan_position();
  2055. // Set a flag for Z motor locking
  2056. #if ENABLED(Z_DUAL_ENDSTOPS)
  2057. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2058. #endif
  2059. // Move towards the endstop until an endstop is triggered
  2060. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2061. feedrate = homing_feedrate[axis];
  2062. line_to_destination();
  2063. stepper.synchronize();
  2064. // Set the axis position as setup for the move
  2065. current_position[axis] = 0;
  2066. sync_plan_position();
  2067. // Move away from the endstop by the axis HOME_BUMP_MM
  2068. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2069. line_to_destination();
  2070. stepper.synchronize();
  2071. // Slow down the feedrate for the next move
  2072. set_homing_bump_feedrate(axis);
  2073. // Move slowly towards the endstop until triggered
  2074. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2075. line_to_destination();
  2076. stepper.synchronize();
  2077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2078. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2079. #endif
  2080. #if ENABLED(Z_DUAL_ENDSTOPS)
  2081. if (axis == Z_AXIS) {
  2082. float adj = fabs(z_endstop_adj);
  2083. bool lockZ1;
  2084. if (axis_home_dir > 0) {
  2085. adj = -adj;
  2086. lockZ1 = (z_endstop_adj > 0);
  2087. }
  2088. else
  2089. lockZ1 = (z_endstop_adj < 0);
  2090. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2091. sync_plan_position();
  2092. // Move to the adjusted endstop height
  2093. feedrate = homing_feedrate[axis];
  2094. destination[Z_AXIS] = adj;
  2095. line_to_destination();
  2096. stepper.synchronize();
  2097. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2098. stepper.set_homing_flag(false);
  2099. } // Z_AXIS
  2100. #endif
  2101. #if ENABLED(DELTA)
  2102. // retrace by the amount specified in endstop_adj
  2103. if (endstop_adj[axis] * axis_home_dir < 0) {
  2104. sync_plan_position();
  2105. destination[axis] = endstop_adj[axis];
  2106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2107. if (DEBUGGING(LEVELING)) {
  2108. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2109. DEBUG_POS("", destination);
  2110. }
  2111. #endif
  2112. line_to_destination();
  2113. stepper.synchronize();
  2114. }
  2115. #endif
  2116. // Set the axis position to its home position (plus home offsets)
  2117. set_axis_is_at_home(axis);
  2118. SYNC_PLAN_POSITION_KINEMATIC();
  2119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2120. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2121. #endif
  2122. destination[axis] = current_position[axis];
  2123. endstops.hit_on_purpose(); // clear endstop hit flags
  2124. axis_known_position[axis] = true;
  2125. axis_homed[axis] = true;
  2126. // Put away the Z probe
  2127. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2128. if (axis == Z_AXIS && axis_home_dir < 0) {
  2129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2130. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2131. #endif
  2132. if (STOW_PROBE()) return;
  2133. }
  2134. #endif
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) {
  2137. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2138. SERIAL_ECHOLNPGM(")");
  2139. }
  2140. #endif
  2141. }
  2142. #if ENABLED(FWRETRACT)
  2143. void retract(bool retracting, bool swapping = false) {
  2144. if (retracting == retracted[active_extruder]) return;
  2145. float old_feedrate = feedrate;
  2146. set_destination_to_current();
  2147. if (retracting) {
  2148. feedrate = retract_feedrate_mm_s * 60;
  2149. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2150. sync_plan_position_e();
  2151. prepare_move_to_destination();
  2152. if (retract_zlift > 0.01) {
  2153. current_position[Z_AXIS] -= retract_zlift;
  2154. SYNC_PLAN_POSITION_KINEMATIC();
  2155. prepare_move_to_destination();
  2156. }
  2157. }
  2158. else {
  2159. if (retract_zlift > 0.01) {
  2160. current_position[Z_AXIS] += retract_zlift;
  2161. SYNC_PLAN_POSITION_KINEMATIC();
  2162. }
  2163. feedrate = retract_recover_feedrate * 60;
  2164. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2165. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2166. sync_plan_position_e();
  2167. prepare_move_to_destination();
  2168. }
  2169. feedrate = old_feedrate;
  2170. retracted[active_extruder] = retracting;
  2171. } // retract()
  2172. #endif // FWRETRACT
  2173. #if ENABLED(MIXING_EXTRUDER)
  2174. void normalize_mix() {
  2175. float mix_total = 0.0;
  2176. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2177. float v = mixing_factor[i];
  2178. if (v < 0) v = mixing_factor[i] = 0;
  2179. mix_total += v;
  2180. }
  2181. // Scale all values if they don't add up to ~1.0
  2182. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2183. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2184. float mix_scale = 1.0 / mix_total;
  2185. for (int i = 0; i < MIXING_STEPPERS; i++)
  2186. mixing_factor[i] *= mix_scale;
  2187. }
  2188. }
  2189. #if ENABLED(DIRECT_MIXING_IN_G1)
  2190. // Get mixing parameters from the GCode
  2191. // Factors that are left out are set to 0
  2192. // The total "must" be 1.0 (but it will be normalized)
  2193. void gcode_get_mix() {
  2194. const char* mixing_codes = "ABCDHI";
  2195. for (int i = 0; i < MIXING_STEPPERS; i++)
  2196. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2197. normalize_mix();
  2198. }
  2199. #endif
  2200. #endif
  2201. /**
  2202. * ***************************************************************************
  2203. * ***************************** G-CODE HANDLING *****************************
  2204. * ***************************************************************************
  2205. */
  2206. /**
  2207. * Set XYZE destination and feedrate from the current GCode command
  2208. *
  2209. * - Set destination from included axis codes
  2210. * - Set to current for missing axis codes
  2211. * - Set the feedrate, if included
  2212. */
  2213. void gcode_get_destination() {
  2214. for (int i = 0; i < NUM_AXIS; i++) {
  2215. if (code_seen(axis_codes[i]))
  2216. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2217. else
  2218. destination[i] = current_position[i];
  2219. }
  2220. if (code_seen('F') && code_value_linear_units() > 0.0)
  2221. feedrate = code_value_linear_units();
  2222. #if ENABLED(PRINTCOUNTER)
  2223. if(!DEBUGGING(DRYRUN))
  2224. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2225. #endif
  2226. // Get ABCDHI mixing factors
  2227. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2228. gcode_get_mix();
  2229. #endif
  2230. }
  2231. void unknown_command_error() {
  2232. SERIAL_ECHO_START;
  2233. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2234. SERIAL_ECHO(current_command);
  2235. SERIAL_ECHOLNPGM("\"");
  2236. }
  2237. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2238. /**
  2239. * Output a "busy" message at regular intervals
  2240. * while the machine is not accepting commands.
  2241. */
  2242. void host_keepalive() {
  2243. millis_t ms = millis();
  2244. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2245. if (PENDING(ms, next_busy_signal_ms)) return;
  2246. switch (busy_state) {
  2247. case IN_HANDLER:
  2248. case IN_PROCESS:
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2251. break;
  2252. case PAUSED_FOR_USER:
  2253. SERIAL_ECHO_START;
  2254. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2255. break;
  2256. case PAUSED_FOR_INPUT:
  2257. SERIAL_ECHO_START;
  2258. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2259. break;
  2260. default:
  2261. break;
  2262. }
  2263. }
  2264. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2265. }
  2266. #endif //HOST_KEEPALIVE_FEATURE
  2267. /**
  2268. * G0, G1: Coordinated movement of X Y Z E axes
  2269. */
  2270. inline void gcode_G0_G1() {
  2271. if (IsRunning()) {
  2272. gcode_get_destination(); // For X Y Z E F
  2273. #if ENABLED(FWRETRACT)
  2274. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2275. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2276. // Is this move an attempt to retract or recover?
  2277. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2278. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2279. sync_plan_position_e(); // AND from the planner
  2280. retract(!retracted[active_extruder]);
  2281. return;
  2282. }
  2283. }
  2284. #endif //FWRETRACT
  2285. prepare_move_to_destination();
  2286. }
  2287. }
  2288. /**
  2289. * G2: Clockwise Arc
  2290. * G3: Counterclockwise Arc
  2291. */
  2292. #if ENABLED(ARC_SUPPORT)
  2293. inline void gcode_G2_G3(bool clockwise) {
  2294. if (IsRunning()) {
  2295. #if ENABLED(SF_ARC_FIX)
  2296. bool relative_mode_backup = relative_mode;
  2297. relative_mode = true;
  2298. #endif
  2299. gcode_get_destination();
  2300. #if ENABLED(SF_ARC_FIX)
  2301. relative_mode = relative_mode_backup;
  2302. #endif
  2303. // Center of arc as offset from current_position
  2304. float arc_offset[2] = {
  2305. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2306. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2307. };
  2308. // Send an arc to the planner
  2309. plan_arc(destination, arc_offset, clockwise);
  2310. refresh_cmd_timeout();
  2311. }
  2312. }
  2313. #endif
  2314. /**
  2315. * G4: Dwell S<seconds> or P<milliseconds>
  2316. */
  2317. inline void gcode_G4() {
  2318. millis_t codenum = 0;
  2319. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2320. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2321. stepper.synchronize();
  2322. refresh_cmd_timeout();
  2323. codenum += previous_cmd_ms; // keep track of when we started waiting
  2324. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2325. while (PENDING(millis(), codenum)) idle();
  2326. }
  2327. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2328. /**
  2329. * Parameters interpreted according to:
  2330. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2331. * However I, J omission is not supported at this point; all
  2332. * parameters can be omitted and default to zero.
  2333. */
  2334. /**
  2335. * G5: Cubic B-spline
  2336. */
  2337. inline void gcode_G5() {
  2338. if (IsRunning()) {
  2339. gcode_get_destination();
  2340. float offset[] = {
  2341. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2342. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2343. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2344. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2345. };
  2346. plan_cubic_move(offset);
  2347. }
  2348. }
  2349. #endif // BEZIER_CURVE_SUPPORT
  2350. #if ENABLED(FWRETRACT)
  2351. /**
  2352. * G10 - Retract filament according to settings of M207
  2353. * G11 - Recover filament according to settings of M208
  2354. */
  2355. inline void gcode_G10_G11(bool doRetract=false) {
  2356. #if EXTRUDERS > 1
  2357. if (doRetract) {
  2358. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2359. }
  2360. #endif
  2361. retract(doRetract
  2362. #if EXTRUDERS > 1
  2363. , retracted_swap[active_extruder]
  2364. #endif
  2365. );
  2366. }
  2367. #endif //FWRETRACT
  2368. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  2369. #include "nozzle.h"
  2370. /**
  2371. * G12: Clean the nozzle
  2372. */
  2373. inline void gcode_G12() {
  2374. // Don't allow nozzle cleaning without homing first
  2375. if (axis_unhomed_error(true, true, true)) { return; }
  2376. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2377. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2378. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2379. Nozzle::clean(pattern, strokes, objects);
  2380. }
  2381. #endif
  2382. #if ENABLED(INCH_MODE_SUPPORT)
  2383. /**
  2384. * G20: Set input mode to inches
  2385. */
  2386. inline void gcode_G20() {
  2387. set_input_linear_units(LINEARUNIT_INCH);
  2388. }
  2389. /**
  2390. * G21: Set input mode to millimeters
  2391. */
  2392. inline void gcode_G21() {
  2393. set_input_linear_units(LINEARUNIT_MM);
  2394. }
  2395. #endif
  2396. #if ENABLED(QUICK_HOME)
  2397. static void quick_home_xy() {
  2398. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2399. #if ENABLED(DUAL_X_CARRIAGE)
  2400. int x_axis_home_dir = x_home_dir(active_extruder);
  2401. extruder_duplication_enabled = false;
  2402. #else
  2403. int x_axis_home_dir = home_dir(X_AXIS);
  2404. #endif
  2405. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2406. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2407. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2408. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2409. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2410. line_to_destination();
  2411. stepper.synchronize();
  2412. endstops.hit_on_purpose(); // clear endstop hit flags
  2413. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2414. }
  2415. #endif // QUICK_HOME
  2416. #if ENABLED(NOZZLE_PARK_FEATURE)
  2417. #include "nozzle.h"
  2418. /**
  2419. * G27: Park the nozzle
  2420. */
  2421. inline void gcode_G27() {
  2422. // Don't allow nozzle parking without homing first
  2423. if (axis_unhomed_error(true, true, true)) { return; }
  2424. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2425. Nozzle::park(z_action);
  2426. }
  2427. #endif // NOZZLE_PARK_FEATURE
  2428. /**
  2429. * G28: Home all axes according to settings
  2430. *
  2431. * Parameters
  2432. *
  2433. * None Home to all axes with no parameters.
  2434. * With QUICK_HOME enabled XY will home together, then Z.
  2435. *
  2436. * Cartesian parameters
  2437. *
  2438. * X Home to the X endstop
  2439. * Y Home to the Y endstop
  2440. * Z Home to the Z endstop
  2441. *
  2442. */
  2443. inline void gcode_G28() {
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2446. #endif
  2447. // Wait for planner moves to finish!
  2448. stepper.synchronize();
  2449. // For auto bed leveling, clear the level matrix
  2450. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2451. planner.bed_level_matrix.set_to_identity();
  2452. #if ENABLED(DELTA)
  2453. reset_bed_level();
  2454. #endif
  2455. #endif
  2456. /**
  2457. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2458. * on again when homing all axis
  2459. */
  2460. #if ENABLED(MESH_BED_LEVELING)
  2461. float pre_home_z = MESH_HOME_SEARCH_Z;
  2462. if (mbl.active()) {
  2463. // Save known Z position if already homed
  2464. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2465. pre_home_z = current_position[Z_AXIS];
  2466. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2467. }
  2468. mbl.set_active(false);
  2469. current_position[Z_AXIS] = pre_home_z;
  2470. }
  2471. #endif
  2472. setup_for_endstop_or_probe_move();
  2473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2474. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2475. #endif
  2476. endstops.enable(true); // Enable endstops for next homing move
  2477. #if ENABLED(DELTA)
  2478. /**
  2479. * A delta can only safely home all axes at the same time
  2480. */
  2481. // Pretend the current position is 0,0,0
  2482. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2483. sync_plan_position();
  2484. // Move all carriages up together until the first endstop is hit.
  2485. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2486. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2487. line_to_destination();
  2488. stepper.synchronize();
  2489. endstops.hit_on_purpose(); // clear endstop hit flags
  2490. // Destination reached
  2491. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2492. // take care of back off and rehome now we are all at the top
  2493. HOMEAXIS(X);
  2494. HOMEAXIS(Y);
  2495. HOMEAXIS(Z);
  2496. SYNC_PLAN_POSITION_KINEMATIC();
  2497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2498. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2499. #endif
  2500. #else // NOT DELTA
  2501. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2502. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2503. set_destination_to_current();
  2504. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2505. if (home_all_axis || homeZ) {
  2506. HOMEAXIS(Z);
  2507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2508. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2509. #endif
  2510. }
  2511. #else
  2512. if (home_all_axis || homeX || homeY) {
  2513. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2514. destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2515. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2517. if (DEBUGGING(LEVELING)) {
  2518. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2519. SERIAL_EOL;
  2520. }
  2521. #endif
  2522. do_blocking_move_to_z(destination[Z_AXIS]);
  2523. }
  2524. }
  2525. #endif
  2526. #if ENABLED(QUICK_HOME)
  2527. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2528. #endif
  2529. #if ENABLED(HOME_Y_BEFORE_X)
  2530. // Home Y
  2531. if (home_all_axis || homeY) {
  2532. HOMEAXIS(Y);
  2533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2534. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2535. #endif
  2536. }
  2537. #endif
  2538. // Home X
  2539. if (home_all_axis || homeX) {
  2540. #if ENABLED(DUAL_X_CARRIAGE)
  2541. int tmp_extruder = active_extruder;
  2542. extruder_duplication_enabled = false;
  2543. active_extruder = !active_extruder;
  2544. HOMEAXIS(X);
  2545. inactive_extruder_x_pos = current_position[X_AXIS];
  2546. active_extruder = tmp_extruder;
  2547. HOMEAXIS(X);
  2548. // reset state used by the different modes
  2549. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2550. delayed_move_time = 0;
  2551. active_extruder_parked = true;
  2552. #else
  2553. HOMEAXIS(X);
  2554. #endif
  2555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2556. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2557. #endif
  2558. }
  2559. #if DISABLED(HOME_Y_BEFORE_X)
  2560. // Home Y
  2561. if (home_all_axis || homeY) {
  2562. HOMEAXIS(Y);
  2563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2564. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2565. #endif
  2566. }
  2567. #endif
  2568. // Home Z last if homing towards the bed
  2569. #if Z_HOME_DIR < 0
  2570. if (home_all_axis || homeZ) {
  2571. #if ENABLED(Z_SAFE_HOMING)
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING)) {
  2574. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2575. }
  2576. #endif
  2577. if (home_all_axis) {
  2578. /**
  2579. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2580. * No need to move Z any more as this height should already be safe
  2581. * enough to reach Z_SAFE_HOMING XY positions.
  2582. * Just make sure the planner is in sync.
  2583. */
  2584. SYNC_PLAN_POSITION_KINEMATIC();
  2585. /**
  2586. * Set the Z probe (or just the nozzle) destination to the safe
  2587. * homing point
  2588. */
  2589. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2590. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2591. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2593. if (DEBUGGING(LEVELING)) {
  2594. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2595. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2596. }
  2597. #endif
  2598. // Move in the XY plane
  2599. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2600. }
  2601. // Let's see if X and Y are homed
  2602. if (axis_unhomed_error(true, true, false)) return;
  2603. /**
  2604. * Make sure the Z probe is within the physical limits
  2605. * NOTE: This doesn't necessarily ensure the Z probe is also
  2606. * within the bed!
  2607. */
  2608. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2609. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2610. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2611. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2612. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2613. // Home the Z axis
  2614. HOMEAXIS(Z);
  2615. }
  2616. else {
  2617. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2618. SERIAL_ECHO_START;
  2619. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2620. }
  2621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2622. if (DEBUGGING(LEVELING)) {
  2623. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2624. }
  2625. #endif
  2626. #else // !Z_SAFE_HOMING
  2627. HOMEAXIS(Z);
  2628. #endif // !Z_SAFE_HOMING
  2629. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2630. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2631. #endif
  2632. } // home_all_axis || homeZ
  2633. #endif // Z_HOME_DIR < 0
  2634. SYNC_PLAN_POSITION_KINEMATIC();
  2635. #endif // !DELTA (gcode_G28)
  2636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2637. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2638. #endif
  2639. endstops.not_homing();
  2640. endstops.hit_on_purpose(); // clear endstop hit flags
  2641. // Enable mesh leveling again
  2642. #if ENABLED(MESH_BED_LEVELING)
  2643. if (mbl.has_mesh()) {
  2644. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2645. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2646. #if Z_HOME_DIR > 0
  2647. + Z_MAX_POS
  2648. #endif
  2649. ;
  2650. SYNC_PLAN_POSITION_KINEMATIC();
  2651. mbl.set_active(true);
  2652. #if ENABLED(MESH_G28_REST_ORIGIN)
  2653. current_position[Z_AXIS] = 0.0;
  2654. set_destination_to_current();
  2655. feedrate = homing_feedrate[Z_AXIS];
  2656. line_to_destination();
  2657. stepper.synchronize();
  2658. #else
  2659. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2660. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2661. #if Z_HOME_DIR > 0
  2662. + Z_MAX_POS
  2663. #endif
  2664. ;
  2665. #endif
  2666. }
  2667. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2668. current_position[Z_AXIS] = pre_home_z;
  2669. SYNC_PLAN_POSITION_KINEMATIC();
  2670. mbl.set_active(true);
  2671. current_position[Z_AXIS] = pre_home_z -
  2672. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2673. }
  2674. }
  2675. #endif
  2676. #if ENABLED(DELTA)
  2677. // move to a height where we can use the full xy-area
  2678. do_blocking_move_to_z(delta_clip_start_height);
  2679. #endif
  2680. clean_up_after_endstop_or_probe_move();
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2683. #endif
  2684. report_current_position();
  2685. }
  2686. #if HAS_PROBING_PROCEDURE
  2687. void out_of_range_error(const char* p_edge) {
  2688. SERIAL_PROTOCOLPGM("?Probe ");
  2689. serialprintPGM(p_edge);
  2690. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2691. }
  2692. #endif
  2693. #if ENABLED(MESH_BED_LEVELING)
  2694. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2695. inline void _mbl_goto_xy(float x, float y) {
  2696. float old_feedrate = feedrate;
  2697. feedrate = homing_feedrate[X_AXIS];
  2698. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2699. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2700. + Z_RAISE_BETWEEN_PROBINGS
  2701. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2702. + MIN_Z_HEIGHT_FOR_HOMING
  2703. #endif
  2704. ;
  2705. line_to_current_position();
  2706. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2707. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2708. line_to_current_position();
  2709. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2710. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2711. line_to_current_position();
  2712. #endif
  2713. feedrate = old_feedrate;
  2714. stepper.synchronize();
  2715. }
  2716. /**
  2717. * G29: Mesh-based Z probe, probes a grid and produces a
  2718. * mesh to compensate for variable bed height
  2719. *
  2720. * Parameters With MESH_BED_LEVELING:
  2721. *
  2722. * S0 Produce a mesh report
  2723. * S1 Start probing mesh points
  2724. * S2 Probe the next mesh point
  2725. * S3 Xn Yn Zn.nn Manually modify a single point
  2726. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2727. * S5 Reset and disable mesh
  2728. *
  2729. * The S0 report the points as below
  2730. *
  2731. * +----> X-axis 1-n
  2732. * |
  2733. * |
  2734. * v Y-axis 1-n
  2735. *
  2736. */
  2737. inline void gcode_G29() {
  2738. static int probe_point = -1;
  2739. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2740. if (state < 0 || state > 5) {
  2741. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2742. return;
  2743. }
  2744. int8_t px, py;
  2745. switch (state) {
  2746. case MeshReport:
  2747. if (mbl.has_mesh()) {
  2748. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2749. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2750. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2751. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2752. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2753. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2754. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2755. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2756. SERIAL_PROTOCOLPGM(" ");
  2757. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2758. }
  2759. SERIAL_EOL;
  2760. }
  2761. }
  2762. else
  2763. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2764. break;
  2765. case MeshStart:
  2766. mbl.reset();
  2767. probe_point = 0;
  2768. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2769. break;
  2770. case MeshNext:
  2771. if (probe_point < 0) {
  2772. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2773. return;
  2774. }
  2775. // For each G29 S2...
  2776. if (probe_point == 0) {
  2777. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2778. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2779. #if Z_HOME_DIR > 0
  2780. + Z_MAX_POS
  2781. #endif
  2782. ;
  2783. SYNC_PLAN_POSITION_KINEMATIC();
  2784. }
  2785. else {
  2786. // For G29 S2 after adjusting Z.
  2787. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2788. }
  2789. // If there's another point to sample, move there with optional lift.
  2790. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2791. mbl.zigzag(probe_point, px, py);
  2792. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2793. probe_point++;
  2794. }
  2795. else {
  2796. // One last "return to the bed" (as originally coded) at completion
  2797. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2798. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2799. + Z_RAISE_BETWEEN_PROBINGS
  2800. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2801. + MIN_Z_HEIGHT_FOR_HOMING
  2802. #endif
  2803. ;
  2804. line_to_current_position();
  2805. stepper.synchronize();
  2806. // After recording the last point, activate the mbl and home
  2807. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2808. probe_point = -1;
  2809. mbl.set_has_mesh(true);
  2810. enqueue_and_echo_commands_P(PSTR("G28"));
  2811. }
  2812. break;
  2813. case MeshSet:
  2814. if (code_seen('X')) {
  2815. px = code_value_int() - 1;
  2816. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2817. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2818. return;
  2819. }
  2820. }
  2821. else {
  2822. SERIAL_PROTOCOLLNPGM("X not entered.");
  2823. return;
  2824. }
  2825. if (code_seen('Y')) {
  2826. py = code_value_int() - 1;
  2827. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2828. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2829. return;
  2830. }
  2831. }
  2832. else {
  2833. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2834. return;
  2835. }
  2836. if (code_seen('Z')) {
  2837. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2838. }
  2839. else {
  2840. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2841. return;
  2842. }
  2843. break;
  2844. case MeshSetZOffset:
  2845. if (code_seen('Z')) {
  2846. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2847. }
  2848. else {
  2849. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2850. return;
  2851. }
  2852. break;
  2853. case MeshReset:
  2854. if (mbl.active()) {
  2855. current_position[Z_AXIS] +=
  2856. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2857. mbl.reset();
  2858. SYNC_PLAN_POSITION_KINEMATIC();
  2859. }
  2860. else
  2861. mbl.reset();
  2862. } // switch(state)
  2863. report_current_position();
  2864. }
  2865. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2866. /**
  2867. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2868. * Will fail if the printer has not been homed with G28.
  2869. *
  2870. * Enhanced G29 Auto Bed Leveling Probe Routine
  2871. *
  2872. * Parameters With AUTO_BED_LEVELING_GRID:
  2873. *
  2874. * P Set the size of the grid that will be probed (P x P points).
  2875. * Not supported by non-linear delta printer bed leveling.
  2876. * Example: "G29 P4"
  2877. *
  2878. * S Set the XY travel speed between probe points (in units/min)
  2879. *
  2880. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2881. * or clean the rotation Matrix. Useful to check the topology
  2882. * after a first run of G29.
  2883. *
  2884. * V Set the verbose level (0-4). Example: "G29 V3"
  2885. *
  2886. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2887. * This is useful for manual bed leveling and finding flaws in the bed (to
  2888. * assist with part placement).
  2889. * Not supported by non-linear delta printer bed leveling.
  2890. *
  2891. * F Set the Front limit of the probing grid
  2892. * B Set the Back limit of the probing grid
  2893. * L Set the Left limit of the probing grid
  2894. * R Set the Right limit of the probing grid
  2895. *
  2896. * Global Parameters:
  2897. *
  2898. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2899. * Include "E" to engage/disengage the Z probe for each sample.
  2900. * There's no extra effect if you have a fixed Z probe.
  2901. * Usage: "G29 E" or "G29 e"
  2902. *
  2903. */
  2904. inline void gcode_G29() {
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) {
  2907. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2908. DEBUG_POS("", current_position);
  2909. }
  2910. #endif
  2911. // Don't allow auto-leveling without homing first
  2912. if (axis_unhomed_error(true, true, true)) return;
  2913. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2914. if (verbose_level < 0 || verbose_level > 4) {
  2915. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2916. return;
  2917. }
  2918. bool dryrun = code_seen('D');
  2919. bool stow_probe_after_each = code_seen('E');
  2920. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2921. #if DISABLED(DELTA)
  2922. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2923. #endif
  2924. if (verbose_level > 0) {
  2925. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2926. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2927. }
  2928. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2929. #if DISABLED(DELTA)
  2930. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2931. if (auto_bed_leveling_grid_points < 2) {
  2932. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2933. return;
  2934. }
  2935. #endif
  2936. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2937. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2938. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2939. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2940. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2941. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2942. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2943. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2944. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2945. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2946. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2947. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2948. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2949. if (left_out || right_out || front_out || back_out) {
  2950. if (left_out) {
  2951. out_of_range_error(PSTR("(L)eft"));
  2952. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2953. }
  2954. if (right_out) {
  2955. out_of_range_error(PSTR("(R)ight"));
  2956. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2957. }
  2958. if (front_out) {
  2959. out_of_range_error(PSTR("(F)ront"));
  2960. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2961. }
  2962. if (back_out) {
  2963. out_of_range_error(PSTR("(B)ack"));
  2964. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2965. }
  2966. return;
  2967. }
  2968. #endif // AUTO_BED_LEVELING_GRID
  2969. if (!dryrun) {
  2970. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2971. if (DEBUGGING(LEVELING)) {
  2972. vector_3 corrected_position = planner.adjusted_position();
  2973. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2974. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2975. }
  2976. #endif
  2977. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2978. planner.bed_level_matrix.set_to_identity();
  2979. #if ENABLED(DELTA)
  2980. reset_bed_level();
  2981. #else //!DELTA
  2982. //vector_3 corrected_position = planner.adjusted_position();
  2983. //corrected_position.debug("position before G29");
  2984. vector_3 uncorrected_position = planner.adjusted_position();
  2985. //uncorrected_position.debug("position during G29");
  2986. current_position[X_AXIS] = uncorrected_position.x;
  2987. current_position[Y_AXIS] = uncorrected_position.y;
  2988. current_position[Z_AXIS] = uncorrected_position.z;
  2989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2990. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2991. #endif
  2992. SYNC_PLAN_POSITION_KINEMATIC();
  2993. #endif // !DELTA
  2994. }
  2995. stepper.synchronize();
  2996. setup_for_endstop_or_probe_move();
  2997. // Deploy the probe. Probe will raise if needed.
  2998. if (DEPLOY_PROBE()) return;
  2999. bed_leveling_in_progress = true;
  3000. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3001. // probe at the points of a lattice grid
  3002. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3003. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3004. #if ENABLED(DELTA)
  3005. delta_grid_spacing[0] = xGridSpacing;
  3006. delta_grid_spacing[1] = yGridSpacing;
  3007. float zoffset = zprobe_zoffset;
  3008. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3009. #else // !DELTA
  3010. /**
  3011. * solve the plane equation ax + by + d = z
  3012. * A is the matrix with rows [x y 1] for all the probed points
  3013. * B is the vector of the Z positions
  3014. * the normal vector to the plane is formed by the coefficients of the
  3015. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3016. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3017. */
  3018. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  3019. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3020. eqnBVector[abl2], // "B" vector of Z points
  3021. mean = 0.0;
  3022. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3023. #endif // !DELTA
  3024. int probePointCounter = 0;
  3025. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3026. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3027. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3028. int xStart, xStop, xInc;
  3029. if (zig) {
  3030. xStart = 0;
  3031. xStop = auto_bed_leveling_grid_points;
  3032. xInc = 1;
  3033. }
  3034. else {
  3035. xStart = auto_bed_leveling_grid_points - 1;
  3036. xStop = -1;
  3037. xInc = -1;
  3038. }
  3039. zig = !zig;
  3040. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3041. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3042. #if ENABLED(DELTA)
  3043. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3044. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3045. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3046. #endif //DELTA
  3047. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3048. #if DISABLED(DELTA)
  3049. mean += measured_z;
  3050. eqnBVector[probePointCounter] = measured_z;
  3051. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3052. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3053. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3054. indexIntoAB[xCount][yCount] = probePointCounter;
  3055. #else
  3056. bed_level[xCount][yCount] = measured_z + zoffset;
  3057. #endif
  3058. probePointCounter++;
  3059. idle();
  3060. } //xProbe
  3061. } //yProbe
  3062. #else // !AUTO_BED_LEVELING_GRID
  3063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3064. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3065. #endif
  3066. // Probe at 3 arbitrary points
  3067. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3068. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3069. stow_probe_after_each, verbose_level),
  3070. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3071. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3072. stow_probe_after_each, verbose_level),
  3073. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3074. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3075. stow_probe_after_each, verbose_level);
  3076. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3077. #endif // !AUTO_BED_LEVELING_GRID
  3078. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3079. if (STOW_PROBE()) return;
  3080. // Restore state after probing
  3081. clean_up_after_endstop_or_probe_move();
  3082. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3083. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3084. #endif
  3085. // Calculate leveling, print reports, correct the position
  3086. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3087. #if ENABLED(DELTA)
  3088. if (!dryrun) extrapolate_unprobed_bed_level();
  3089. print_bed_level();
  3090. #else // !DELTA
  3091. // solve lsq problem
  3092. double plane_equation_coefficients[3];
  3093. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3094. mean /= abl2;
  3095. if (verbose_level) {
  3096. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3097. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3098. SERIAL_PROTOCOLPGM(" b: ");
  3099. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3100. SERIAL_PROTOCOLPGM(" d: ");
  3101. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3102. SERIAL_EOL;
  3103. if (verbose_level > 2) {
  3104. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3105. SERIAL_PROTOCOL_F(mean, 8);
  3106. SERIAL_EOL;
  3107. }
  3108. }
  3109. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3110. // Show the Topography map if enabled
  3111. if (do_topography_map) {
  3112. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3113. " +--- BACK --+\n"
  3114. " | |\n"
  3115. " L | (+) | R\n"
  3116. " E | | I\n"
  3117. " F | (-) N (+) | G\n"
  3118. " T | | H\n"
  3119. " | (-) | T\n"
  3120. " | |\n"
  3121. " O-- FRONT --+\n"
  3122. " (0,0)");
  3123. float min_diff = 999;
  3124. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3125. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3126. int ind = indexIntoAB[xx][yy];
  3127. float diff = eqnBVector[ind] - mean;
  3128. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3129. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3130. z_tmp = 0;
  3131. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3132. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3133. if (diff >= 0.0)
  3134. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3135. else
  3136. SERIAL_PROTOCOLCHAR(' ');
  3137. SERIAL_PROTOCOL_F(diff, 5);
  3138. } // xx
  3139. SERIAL_EOL;
  3140. } // yy
  3141. SERIAL_EOL;
  3142. if (verbose_level > 3) {
  3143. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3144. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3145. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3146. int ind = indexIntoAB[xx][yy];
  3147. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3148. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3149. z_tmp = 0;
  3150. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3151. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3152. if (diff >= 0.0)
  3153. SERIAL_PROTOCOLPGM(" +");
  3154. // Include + for column alignment
  3155. else
  3156. SERIAL_PROTOCOLCHAR(' ');
  3157. SERIAL_PROTOCOL_F(diff, 5);
  3158. } // xx
  3159. SERIAL_EOL;
  3160. } // yy
  3161. SERIAL_EOL;
  3162. }
  3163. } //do_topography_map
  3164. #endif //!DELTA
  3165. #endif // AUTO_BED_LEVELING_GRID
  3166. #if DISABLED(DELTA)
  3167. if (verbose_level > 0)
  3168. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3169. if (!dryrun) {
  3170. /**
  3171. * Correct the Z height difference from Z probe position and nozzle tip position.
  3172. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3173. * from the nozzle. When the bed is uneven, this height must be corrected.
  3174. */
  3175. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3176. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3177. z_tmp = current_position[Z_AXIS],
  3178. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3180. if (DEBUGGING(LEVELING)) {
  3181. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3182. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3183. SERIAL_EOL;
  3184. }
  3185. #endif
  3186. // Apply the correction sending the Z probe offset
  3187. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3189. if (DEBUGGING(LEVELING)) {
  3190. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3191. SERIAL_EOL;
  3192. }
  3193. #endif
  3194. // Adjust the current Z and send it to the planner.
  3195. current_position[Z_AXIS] += z_tmp - stepper_z;
  3196. SYNC_PLAN_POSITION_KINEMATIC();
  3197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3198. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3199. #endif
  3200. }
  3201. #endif // !DELTA
  3202. #ifdef Z_PROBE_END_SCRIPT
  3203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3204. if (DEBUGGING(LEVELING)) {
  3205. SERIAL_ECHOPGM("Z Probe End Script: ");
  3206. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3207. }
  3208. #endif
  3209. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3210. stepper.synchronize();
  3211. #endif
  3212. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3213. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3214. #endif
  3215. bed_leveling_in_progress = false;
  3216. report_current_position();
  3217. KEEPALIVE_STATE(IN_HANDLER);
  3218. }
  3219. #endif //AUTO_BED_LEVELING_FEATURE
  3220. #if HAS_BED_PROBE
  3221. /**
  3222. * G30: Do a single Z probe at the current XY
  3223. */
  3224. inline void gcode_G30() {
  3225. setup_for_endstop_or_probe_move();
  3226. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3227. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3228. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3229. true, 1);
  3230. SERIAL_PROTOCOLPGM("Bed X: ");
  3231. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3232. SERIAL_PROTOCOLPGM(" Y: ");
  3233. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3234. SERIAL_PROTOCOLPGM(" Z: ");
  3235. SERIAL_PROTOCOL(measured_z + 0.0001);
  3236. SERIAL_EOL;
  3237. clean_up_after_endstop_or_probe_move();
  3238. report_current_position();
  3239. }
  3240. #if ENABLED(Z_PROBE_SLED)
  3241. /**
  3242. * G31: Deploy the Z probe
  3243. */
  3244. inline void gcode_G31() { DEPLOY_PROBE(); }
  3245. /**
  3246. * G32: Stow the Z probe
  3247. */
  3248. inline void gcode_G32() { STOW_PROBE(); }
  3249. #endif // Z_PROBE_SLED
  3250. #endif // HAS_BED_PROBE
  3251. /**
  3252. * G92: Set current position to given X Y Z E
  3253. */
  3254. inline void gcode_G92() {
  3255. bool didE = code_seen('E');
  3256. if (!didE) stepper.synchronize();
  3257. bool didXYZ = false;
  3258. for (int i = 0; i < NUM_AXIS; i++) {
  3259. if (code_seen(axis_codes[i])) {
  3260. float p = current_position[i],
  3261. v = code_value_axis_units(i);
  3262. current_position[i] = v;
  3263. if (i != E_AXIS) {
  3264. position_shift[i] += v - p; // Offset the coordinate space
  3265. update_software_endstops((AxisEnum)i);
  3266. didXYZ = true;
  3267. }
  3268. }
  3269. }
  3270. if (didXYZ)
  3271. SYNC_PLAN_POSITION_KINEMATIC();
  3272. else if (didE)
  3273. sync_plan_position_e();
  3274. }
  3275. #if ENABLED(ULTIPANEL)
  3276. /**
  3277. * M0: Unconditional stop - Wait for user button press on LCD
  3278. * M1: Conditional stop - Wait for user button press on LCD
  3279. */
  3280. inline void gcode_M0_M1() {
  3281. char* args = current_command_args;
  3282. millis_t codenum = 0;
  3283. bool hasP = false, hasS = false;
  3284. if (code_seen('P')) {
  3285. codenum = code_value_millis(); // milliseconds to wait
  3286. hasP = codenum > 0;
  3287. }
  3288. if (code_seen('S')) {
  3289. codenum = code_value_millis_from_seconds(); // seconds to wait
  3290. hasS = codenum > 0;
  3291. }
  3292. if (!hasP && !hasS && *args != '\0')
  3293. lcd_setstatus(args, true);
  3294. else {
  3295. LCD_MESSAGEPGM(MSG_USERWAIT);
  3296. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3297. dontExpireStatus();
  3298. #endif
  3299. }
  3300. lcd_ignore_click();
  3301. stepper.synchronize();
  3302. refresh_cmd_timeout();
  3303. if (codenum > 0) {
  3304. codenum += previous_cmd_ms; // wait until this time for a click
  3305. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3306. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3307. KEEPALIVE_STATE(IN_HANDLER);
  3308. lcd_ignore_click(false);
  3309. }
  3310. else {
  3311. if (!lcd_detected()) return;
  3312. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3313. while (!lcd_clicked()) idle();
  3314. KEEPALIVE_STATE(IN_HANDLER);
  3315. }
  3316. if (IS_SD_PRINTING)
  3317. LCD_MESSAGEPGM(MSG_RESUMING);
  3318. else
  3319. LCD_MESSAGEPGM(WELCOME_MSG);
  3320. }
  3321. #endif // ULTIPANEL
  3322. /**
  3323. * M17: Enable power on all stepper motors
  3324. */
  3325. inline void gcode_M17() {
  3326. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3327. enable_all_steppers();
  3328. }
  3329. #if ENABLED(SDSUPPORT)
  3330. /**
  3331. * M20: List SD card to serial output
  3332. */
  3333. inline void gcode_M20() {
  3334. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3335. card.ls();
  3336. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3337. }
  3338. /**
  3339. * M21: Init SD Card
  3340. */
  3341. inline void gcode_M21() {
  3342. card.initsd();
  3343. }
  3344. /**
  3345. * M22: Release SD Card
  3346. */
  3347. inline void gcode_M22() {
  3348. card.release();
  3349. }
  3350. /**
  3351. * M23: Open a file
  3352. */
  3353. inline void gcode_M23() {
  3354. card.openFile(current_command_args, true);
  3355. }
  3356. /**
  3357. * M24: Start SD Print
  3358. */
  3359. inline void gcode_M24() {
  3360. card.startFileprint();
  3361. print_job_timer.start();
  3362. }
  3363. /**
  3364. * M25: Pause SD Print
  3365. */
  3366. inline void gcode_M25() {
  3367. card.pauseSDPrint();
  3368. }
  3369. /**
  3370. * M26: Set SD Card file index
  3371. */
  3372. inline void gcode_M26() {
  3373. if (card.cardOK && code_seen('S'))
  3374. card.setIndex(code_value_long());
  3375. }
  3376. /**
  3377. * M27: Get SD Card status
  3378. */
  3379. inline void gcode_M27() {
  3380. card.getStatus();
  3381. }
  3382. /**
  3383. * M28: Start SD Write
  3384. */
  3385. inline void gcode_M28() {
  3386. card.openFile(current_command_args, false);
  3387. }
  3388. /**
  3389. * M29: Stop SD Write
  3390. * Processed in write to file routine above
  3391. */
  3392. inline void gcode_M29() {
  3393. // card.saving = false;
  3394. }
  3395. /**
  3396. * M30 <filename>: Delete SD Card file
  3397. */
  3398. inline void gcode_M30() {
  3399. if (card.cardOK) {
  3400. card.closefile();
  3401. card.removeFile(current_command_args);
  3402. }
  3403. }
  3404. #endif //SDSUPPORT
  3405. /**
  3406. * M31: Get the time since the start of SD Print (or last M109)
  3407. */
  3408. inline void gcode_M31() {
  3409. millis_t t = print_job_timer.duration();
  3410. int d = int(t / 60 / 60 / 24),
  3411. h = int(t / 60 / 60) % 60,
  3412. m = int(t / 60) % 60,
  3413. s = int(t % 60);
  3414. char time[18]; // 123456789012345678
  3415. if (d)
  3416. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3417. else
  3418. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3419. lcd_setstatus(time);
  3420. SERIAL_ECHO_START;
  3421. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3422. SERIAL_ECHOLN(time);
  3423. thermalManager.autotempShutdown();
  3424. }
  3425. #if ENABLED(SDSUPPORT)
  3426. /**
  3427. * M32: Select file and start SD Print
  3428. */
  3429. inline void gcode_M32() {
  3430. if (card.sdprinting)
  3431. stepper.synchronize();
  3432. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3433. if (!namestartpos)
  3434. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3435. else
  3436. namestartpos++; //to skip the '!'
  3437. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3438. if (card.cardOK) {
  3439. card.openFile(namestartpos, true, call_procedure);
  3440. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3441. card.setIndex(code_value_long());
  3442. card.startFileprint();
  3443. // Procedure calls count as normal print time.
  3444. if (!call_procedure) print_job_timer.start();
  3445. }
  3446. }
  3447. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3448. /**
  3449. * M33: Get the long full path of a file or folder
  3450. *
  3451. * Parameters:
  3452. * <dospath> Case-insensitive DOS-style path to a file or folder
  3453. *
  3454. * Example:
  3455. * M33 miscel~1/armchair/armcha~1.gco
  3456. *
  3457. * Output:
  3458. * /Miscellaneous/Armchair/Armchair.gcode
  3459. */
  3460. inline void gcode_M33() {
  3461. card.printLongPath(current_command_args);
  3462. }
  3463. #endif
  3464. /**
  3465. * M928: Start SD Write
  3466. */
  3467. inline void gcode_M928() {
  3468. card.openLogFile(current_command_args);
  3469. }
  3470. #endif // SDSUPPORT
  3471. /**
  3472. * M42: Change pin status via GCode
  3473. *
  3474. * P<pin> Pin number (LED if omitted)
  3475. * S<byte> Pin status from 0 - 255
  3476. */
  3477. inline void gcode_M42() {
  3478. if (!code_seen('S')) return;
  3479. int pin_status = code_value_int();
  3480. if (pin_status < 0 || pin_status > 255) return;
  3481. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3482. if (pin_number < 0) return;
  3483. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3484. if (pin_number == sensitive_pins[i]) return;
  3485. pinMode(pin_number, OUTPUT);
  3486. digitalWrite(pin_number, pin_status);
  3487. analogWrite(pin_number, pin_status);
  3488. #if FAN_COUNT > 0
  3489. switch (pin_number) {
  3490. #if HAS_FAN0
  3491. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3492. #endif
  3493. #if HAS_FAN1
  3494. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3495. #endif
  3496. #if HAS_FAN2
  3497. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3498. #endif
  3499. }
  3500. #endif
  3501. }
  3502. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3503. /**
  3504. * M48: Z probe repeatability measurement function.
  3505. *
  3506. * Usage:
  3507. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3508. * P = Number of sampled points (4-50, default 10)
  3509. * X = Sample X position
  3510. * Y = Sample Y position
  3511. * V = Verbose level (0-4, default=1)
  3512. * E = Engage Z probe for each reading
  3513. * L = Number of legs of movement before probe
  3514. * S = Schizoid (Or Star if you prefer)
  3515. *
  3516. * This function assumes the bed has been homed. Specifically, that a G28 command
  3517. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3518. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3519. * regenerated.
  3520. */
  3521. inline void gcode_M48() {
  3522. if (axis_unhomed_error(true, true, true)) return;
  3523. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3524. if (verbose_level < 0 || verbose_level > 4) {
  3525. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3526. return;
  3527. }
  3528. if (verbose_level > 0)
  3529. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3530. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3531. if (n_samples < 4 || n_samples > 50) {
  3532. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3533. return;
  3534. }
  3535. float X_current = current_position[X_AXIS],
  3536. Y_current = current_position[Y_AXIS];
  3537. bool stow_probe_after_each = code_seen('E');
  3538. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3539. #if DISABLED(DELTA)
  3540. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3541. out_of_range_error(PSTR("X"));
  3542. return;
  3543. }
  3544. #endif
  3545. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3546. #if DISABLED(DELTA)
  3547. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3548. out_of_range_error(PSTR("Y"));
  3549. return;
  3550. }
  3551. #else
  3552. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3553. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3554. return;
  3555. }
  3556. #endif
  3557. bool seen_L = code_seen('L');
  3558. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3559. if (n_legs > 15) {
  3560. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3561. return;
  3562. }
  3563. if (n_legs == 1) n_legs = 2;
  3564. bool schizoid_flag = code_seen('S');
  3565. if (schizoid_flag && !seen_L) n_legs = 7;
  3566. /**
  3567. * Now get everything to the specified probe point So we can safely do a
  3568. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3569. * we don't want to use that as a starting point for each probe.
  3570. */
  3571. if (verbose_level > 2)
  3572. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3573. #if ENABLED(DELTA)
  3574. // we don't do bed level correction in M48 because we want the raw data when we probe
  3575. reset_bed_level();
  3576. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3577. // we don't do bed level correction in M48 because we want the raw data when we probe
  3578. planner.bed_level_matrix.set_to_identity();
  3579. #endif
  3580. setup_for_endstop_or_probe_move();
  3581. // Move to the first point, deploy, and probe
  3582. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3583. randomSeed(millis());
  3584. double mean = 0, sigma = 0, sample_set[n_samples];
  3585. for (uint8_t n = 0; n < n_samples; n++) {
  3586. if (n_legs) {
  3587. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3588. float angle = random(0.0, 360.0),
  3589. radius = random(
  3590. #if ENABLED(DELTA)
  3591. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3592. #else
  3593. 5, X_MAX_LENGTH / 8
  3594. #endif
  3595. );
  3596. if (verbose_level > 3) {
  3597. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3598. SERIAL_ECHOPAIR(" angle: ", angle);
  3599. SERIAL_ECHOPGM(" Direction: ");
  3600. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3601. SERIAL_ECHOLNPGM("Clockwise");
  3602. }
  3603. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3604. double delta_angle;
  3605. if (schizoid_flag)
  3606. // The points of a 5 point star are 72 degrees apart. We need to
  3607. // skip a point and go to the next one on the star.
  3608. delta_angle = dir * 2.0 * 72.0;
  3609. else
  3610. // If we do this line, we are just trying to move further
  3611. // around the circle.
  3612. delta_angle = dir * (float) random(25, 45);
  3613. angle += delta_angle;
  3614. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3615. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3616. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3617. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3618. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3619. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3620. #if DISABLED(DELTA)
  3621. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3622. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3623. #else
  3624. // If we have gone out too far, we can do a simple fix and scale the numbers
  3625. // back in closer to the origin.
  3626. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3627. X_current /= 1.25;
  3628. Y_current /= 1.25;
  3629. if (verbose_level > 3) {
  3630. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3631. SERIAL_ECHOPAIR(", ", Y_current);
  3632. SERIAL_EOL;
  3633. }
  3634. }
  3635. #endif
  3636. if (verbose_level > 3) {
  3637. SERIAL_PROTOCOLPGM("Going to:");
  3638. SERIAL_ECHOPAIR(" X", X_current);
  3639. SERIAL_ECHOPAIR(" Y", Y_current);
  3640. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3641. SERIAL_EOL;
  3642. }
  3643. do_blocking_move_to_xy(X_current, Y_current);
  3644. } // n_legs loop
  3645. } // n_legs
  3646. // Probe a single point
  3647. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3648. /**
  3649. * Get the current mean for the data points we have so far
  3650. */
  3651. double sum = 0.0;
  3652. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3653. mean = sum / (n + 1);
  3654. /**
  3655. * Now, use that mean to calculate the standard deviation for the
  3656. * data points we have so far
  3657. */
  3658. sum = 0.0;
  3659. for (uint8_t j = 0; j <= n; j++) {
  3660. float ss = sample_set[j] - mean;
  3661. sum += ss * ss;
  3662. }
  3663. sigma = sqrt(sum / (n + 1));
  3664. if (verbose_level > 0) {
  3665. if (verbose_level > 1) {
  3666. SERIAL_PROTOCOL(n + 1);
  3667. SERIAL_PROTOCOLPGM(" of ");
  3668. SERIAL_PROTOCOL((int)n_samples);
  3669. SERIAL_PROTOCOLPGM(" z: ");
  3670. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3671. if (verbose_level > 2) {
  3672. SERIAL_PROTOCOLPGM(" mean: ");
  3673. SERIAL_PROTOCOL_F(mean, 6);
  3674. SERIAL_PROTOCOLPGM(" sigma: ");
  3675. SERIAL_PROTOCOL_F(sigma, 6);
  3676. }
  3677. }
  3678. SERIAL_EOL;
  3679. }
  3680. } // End of probe loop
  3681. if (STOW_PROBE()) return;
  3682. if (verbose_level > 0) {
  3683. SERIAL_PROTOCOLPGM("Mean: ");
  3684. SERIAL_PROTOCOL_F(mean, 6);
  3685. SERIAL_EOL;
  3686. }
  3687. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3688. SERIAL_PROTOCOL_F(sigma, 6);
  3689. SERIAL_EOL; SERIAL_EOL;
  3690. clean_up_after_endstop_or_probe_move();
  3691. report_current_position();
  3692. }
  3693. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3694. /**
  3695. * M75: Start print timer
  3696. */
  3697. inline void gcode_M75() { print_job_timer.start(); }
  3698. /**
  3699. * M76: Pause print timer
  3700. */
  3701. inline void gcode_M76() { print_job_timer.pause(); }
  3702. /**
  3703. * M77: Stop print timer
  3704. */
  3705. inline void gcode_M77() { print_job_timer.stop(); }
  3706. #if ENABLED(PRINTCOUNTER)
  3707. /*+
  3708. * M78: Show print statistics
  3709. */
  3710. inline void gcode_M78() {
  3711. // "M78 S78" will reset the statistics
  3712. if (code_seen('S') && code_value_int() == 78)
  3713. print_job_timer.initStats();
  3714. else print_job_timer.showStats();
  3715. }
  3716. #endif
  3717. /**
  3718. * M104: Set hot end temperature
  3719. */
  3720. inline void gcode_M104() {
  3721. if (get_target_extruder_from_command(104)) return;
  3722. if (DEBUGGING(DRYRUN)) return;
  3723. #if ENABLED(SINGLENOZZLE)
  3724. if (target_extruder != active_extruder) return;
  3725. #endif
  3726. if (code_seen('S')) {
  3727. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3728. #if ENABLED(DUAL_X_CARRIAGE)
  3729. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3730. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3731. #endif
  3732. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3733. /**
  3734. * Stop the timer at the end of print, starting is managed by
  3735. * 'heat and wait' M109.
  3736. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3737. * stand by mode, for instance in a dual extruder setup, without affecting
  3738. * the running print timer.
  3739. */
  3740. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3741. print_job_timer.stop();
  3742. LCD_MESSAGEPGM(WELCOME_MSG);
  3743. }
  3744. #endif
  3745. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3746. }
  3747. }
  3748. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3749. void print_heaterstates() {
  3750. #if HAS_TEMP_HOTEND
  3751. SERIAL_PROTOCOLPGM(" T:");
  3752. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3753. SERIAL_PROTOCOLPGM(" /");
  3754. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3755. #endif
  3756. #if HAS_TEMP_BED
  3757. SERIAL_PROTOCOLPGM(" B:");
  3758. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3759. SERIAL_PROTOCOLPGM(" /");
  3760. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3761. #endif
  3762. #if HOTENDS > 1
  3763. HOTEND_LOOP() {
  3764. SERIAL_PROTOCOLPGM(" T");
  3765. SERIAL_PROTOCOL(e);
  3766. SERIAL_PROTOCOLCHAR(':');
  3767. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3768. SERIAL_PROTOCOLPGM(" /");
  3769. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3770. }
  3771. #endif
  3772. #if HAS_TEMP_BED
  3773. SERIAL_PROTOCOLPGM(" B@:");
  3774. #ifdef BED_WATTS
  3775. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3776. SERIAL_PROTOCOLCHAR('W');
  3777. #else
  3778. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3779. #endif
  3780. #endif
  3781. SERIAL_PROTOCOLPGM(" @:");
  3782. #ifdef EXTRUDER_WATTS
  3783. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3784. SERIAL_PROTOCOLCHAR('W');
  3785. #else
  3786. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3787. #endif
  3788. #if HOTENDS > 1
  3789. HOTEND_LOOP() {
  3790. SERIAL_PROTOCOLPGM(" @");
  3791. SERIAL_PROTOCOL(e);
  3792. SERIAL_PROTOCOLCHAR(':');
  3793. #ifdef EXTRUDER_WATTS
  3794. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3795. SERIAL_PROTOCOLCHAR('W');
  3796. #else
  3797. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3798. #endif
  3799. }
  3800. #endif
  3801. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3802. #if HAS_TEMP_BED
  3803. SERIAL_PROTOCOLPGM(" ADC B:");
  3804. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3805. SERIAL_PROTOCOLPGM("C->");
  3806. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3807. #endif
  3808. HOTEND_LOOP() {
  3809. SERIAL_PROTOCOLPGM(" T");
  3810. SERIAL_PROTOCOL(e);
  3811. SERIAL_PROTOCOLCHAR(':');
  3812. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3813. SERIAL_PROTOCOLPGM("C->");
  3814. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3815. }
  3816. #endif
  3817. }
  3818. #endif
  3819. /**
  3820. * M105: Read hot end and bed temperature
  3821. */
  3822. inline void gcode_M105() {
  3823. if (get_target_extruder_from_command(105)) return;
  3824. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3825. SERIAL_PROTOCOLPGM(MSG_OK);
  3826. print_heaterstates();
  3827. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3828. SERIAL_ERROR_START;
  3829. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3830. #endif
  3831. SERIAL_EOL;
  3832. }
  3833. #if FAN_COUNT > 0
  3834. /**
  3835. * M106: Set Fan Speed
  3836. *
  3837. * S<int> Speed between 0-255
  3838. * P<index> Fan index, if more than one fan
  3839. */
  3840. inline void gcode_M106() {
  3841. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3842. p = code_seen('P') ? code_value_ushort() : 0;
  3843. NOMORE(s, 255);
  3844. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3845. }
  3846. /**
  3847. * M107: Fan Off
  3848. */
  3849. inline void gcode_M107() {
  3850. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3851. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3852. }
  3853. #endif // FAN_COUNT > 0
  3854. #if DISABLED(EMERGENCY_PARSER)
  3855. /**
  3856. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3857. */
  3858. inline void gcode_M108() { wait_for_heatup = false; }
  3859. /**
  3860. * M112: Emergency Stop
  3861. */
  3862. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3863. /**
  3864. * M410: Quickstop - Abort all planned moves
  3865. *
  3866. * This will stop the carriages mid-move, so most likely they
  3867. * will be out of sync with the stepper position after this.
  3868. */
  3869. inline void gcode_M410() { quickstop_stepper(); }
  3870. #endif
  3871. #ifndef MIN_COOLING_SLOPE_DEG
  3872. #define MIN_COOLING_SLOPE_DEG 1.50
  3873. #endif
  3874. #ifndef MIN_COOLING_SLOPE_TIME
  3875. #define MIN_COOLING_SLOPE_TIME 60
  3876. #endif
  3877. /**
  3878. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3879. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3880. */
  3881. inline void gcode_M109() {
  3882. if (get_target_extruder_from_command(109)) return;
  3883. if (DEBUGGING(DRYRUN)) return;
  3884. #if ENABLED(SINGLENOZZLE)
  3885. if (target_extruder != active_extruder) return;
  3886. #endif
  3887. bool no_wait_for_cooling = code_seen('S');
  3888. if (no_wait_for_cooling || code_seen('R')) {
  3889. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3890. #if ENABLED(DUAL_X_CARRIAGE)
  3891. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3892. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3893. #endif
  3894. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3895. /**
  3896. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3897. * stand by mode, for instance in a dual extruder setup, without affecting
  3898. * the running print timer.
  3899. */
  3900. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3901. print_job_timer.stop();
  3902. LCD_MESSAGEPGM(WELCOME_MSG);
  3903. }
  3904. /**
  3905. * We do not check if the timer is already running because this check will
  3906. * be done for us inside the Stopwatch::start() method thus a running timer
  3907. * will not restart.
  3908. */
  3909. else print_job_timer.start();
  3910. #endif
  3911. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3912. }
  3913. #if ENABLED(AUTOTEMP)
  3914. planner.autotemp_M109();
  3915. #endif
  3916. #if TEMP_RESIDENCY_TIME > 0
  3917. millis_t residency_start_ms = 0;
  3918. // Loop until the temperature has stabilized
  3919. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3920. #else
  3921. // Loop until the temperature is very close target
  3922. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3923. #endif //TEMP_RESIDENCY_TIME > 0
  3924. float theTarget = -1.0, old_temp = 9999.0;
  3925. bool wants_to_cool = false;
  3926. wait_for_heatup = true;
  3927. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3928. KEEPALIVE_STATE(NOT_BUSY);
  3929. do {
  3930. // Target temperature might be changed during the loop
  3931. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3932. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3933. theTarget = thermalManager.degTargetHotend(target_extruder);
  3934. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3935. if (no_wait_for_cooling && wants_to_cool) break;
  3936. }
  3937. now = millis();
  3938. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3939. next_temp_ms = now + 1000UL;
  3940. print_heaterstates();
  3941. #if TEMP_RESIDENCY_TIME > 0
  3942. SERIAL_PROTOCOLPGM(" W:");
  3943. if (residency_start_ms) {
  3944. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3945. SERIAL_PROTOCOLLN(rem);
  3946. }
  3947. else {
  3948. SERIAL_PROTOCOLLNPGM("?");
  3949. }
  3950. #else
  3951. SERIAL_EOL;
  3952. #endif
  3953. }
  3954. idle();
  3955. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3956. float temp = thermalManager.degHotend(target_extruder);
  3957. #if TEMP_RESIDENCY_TIME > 0
  3958. float temp_diff = fabs(theTarget - temp);
  3959. if (!residency_start_ms) {
  3960. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3961. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3962. }
  3963. else if (temp_diff > TEMP_HYSTERESIS) {
  3964. // Restart the timer whenever the temperature falls outside the hysteresis.
  3965. residency_start_ms = now;
  3966. }
  3967. #endif //TEMP_RESIDENCY_TIME > 0
  3968. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3969. if (wants_to_cool) {
  3970. // break after MIN_COOLING_SLOPE_TIME seconds
  3971. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3972. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3973. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3974. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3975. old_temp = temp;
  3976. }
  3977. }
  3978. } while (wait_for_heatup && TEMP_CONDITIONS);
  3979. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3980. KEEPALIVE_STATE(IN_HANDLER);
  3981. }
  3982. #if HAS_TEMP_BED
  3983. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3984. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3985. #endif
  3986. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3987. #define MIN_COOLING_SLOPE_TIME_BED 60
  3988. #endif
  3989. /**
  3990. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3991. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3992. */
  3993. inline void gcode_M190() {
  3994. if (DEBUGGING(DRYRUN)) return;
  3995. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3996. bool no_wait_for_cooling = code_seen('S');
  3997. if (no_wait_for_cooling || code_seen('R')) {
  3998. thermalManager.setTargetBed(code_value_temp_abs());
  3999. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4000. if (code_value_temp_abs() > BED_MINTEMP) {
  4001. /**
  4002. * We start the timer when 'heating and waiting' command arrives, LCD
  4003. * functions never wait. Cooling down managed by extruders.
  4004. *
  4005. * We do not check if the timer is already running because this check will
  4006. * be done for us inside the Stopwatch::start() method thus a running timer
  4007. * will not restart.
  4008. */
  4009. print_job_timer.start();
  4010. }
  4011. #endif
  4012. }
  4013. #if TEMP_BED_RESIDENCY_TIME > 0
  4014. millis_t residency_start_ms = 0;
  4015. // Loop until the temperature has stabilized
  4016. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4017. #else
  4018. // Loop until the temperature is very close target
  4019. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4020. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4021. float theTarget = -1.0, old_temp = 9999.0;
  4022. bool wants_to_cool = false;
  4023. wait_for_heatup = true;
  4024. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4025. KEEPALIVE_STATE(NOT_BUSY);
  4026. target_extruder = active_extruder; // for print_heaterstates
  4027. do {
  4028. // Target temperature might be changed during the loop
  4029. if (theTarget != thermalManager.degTargetBed()) {
  4030. wants_to_cool = thermalManager.isCoolingBed();
  4031. theTarget = thermalManager.degTargetBed();
  4032. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4033. if (no_wait_for_cooling && wants_to_cool) break;
  4034. }
  4035. now = millis();
  4036. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4037. next_temp_ms = now + 1000UL;
  4038. print_heaterstates();
  4039. #if TEMP_BED_RESIDENCY_TIME > 0
  4040. SERIAL_PROTOCOLPGM(" W:");
  4041. if (residency_start_ms) {
  4042. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4043. SERIAL_PROTOCOLLN(rem);
  4044. }
  4045. else {
  4046. SERIAL_PROTOCOLLNPGM("?");
  4047. }
  4048. #else
  4049. SERIAL_EOL;
  4050. #endif
  4051. }
  4052. idle();
  4053. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4054. float temp = thermalManager.degBed();
  4055. #if TEMP_BED_RESIDENCY_TIME > 0
  4056. float temp_diff = fabs(theTarget - temp);
  4057. if (!residency_start_ms) {
  4058. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4059. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4060. }
  4061. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4062. // Restart the timer whenever the temperature falls outside the hysteresis.
  4063. residency_start_ms = now;
  4064. }
  4065. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4066. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4067. if (wants_to_cool) {
  4068. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4069. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4070. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4071. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4072. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4073. old_temp = temp;
  4074. }
  4075. }
  4076. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4077. LCD_MESSAGEPGM(MSG_BED_DONE);
  4078. KEEPALIVE_STATE(IN_HANDLER);
  4079. }
  4080. #endif // HAS_TEMP_BED
  4081. /**
  4082. * M110: Set Current Line Number
  4083. */
  4084. inline void gcode_M110() {
  4085. if (code_seen('N')) gcode_N = code_value_long();
  4086. }
  4087. /**
  4088. * M111: Set the debug level
  4089. */
  4090. inline void gcode_M111() {
  4091. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4092. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4093. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4094. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4095. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4096. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4098. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4099. #endif
  4100. const static char* const debug_strings[] PROGMEM = {
  4101. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4103. str_debug_32
  4104. #endif
  4105. };
  4106. SERIAL_ECHO_START;
  4107. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4108. if (marlin_debug_flags) {
  4109. uint8_t comma = 0;
  4110. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4111. if (TEST(marlin_debug_flags, i)) {
  4112. if (comma++) SERIAL_CHAR(',');
  4113. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4114. }
  4115. }
  4116. }
  4117. else {
  4118. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4119. }
  4120. SERIAL_EOL;
  4121. }
  4122. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4123. /**
  4124. * M113: Get or set Host Keepalive interval (0 to disable)
  4125. *
  4126. * S<seconds> Optional. Set the keepalive interval.
  4127. */
  4128. inline void gcode_M113() {
  4129. if (code_seen('S')) {
  4130. host_keepalive_interval = code_value_byte();
  4131. NOMORE(host_keepalive_interval, 60);
  4132. }
  4133. else {
  4134. SERIAL_ECHO_START;
  4135. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4136. SERIAL_EOL;
  4137. }
  4138. }
  4139. #endif
  4140. #if ENABLED(BARICUDA)
  4141. #if HAS_HEATER_1
  4142. /**
  4143. * M126: Heater 1 valve open
  4144. */
  4145. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4146. /**
  4147. * M127: Heater 1 valve close
  4148. */
  4149. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4150. #endif
  4151. #if HAS_HEATER_2
  4152. /**
  4153. * M128: Heater 2 valve open
  4154. */
  4155. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4156. /**
  4157. * M129: Heater 2 valve close
  4158. */
  4159. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4160. #endif
  4161. #endif //BARICUDA
  4162. /**
  4163. * M140: Set bed temperature
  4164. */
  4165. inline void gcode_M140() {
  4166. if (DEBUGGING(DRYRUN)) return;
  4167. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4168. }
  4169. #if ENABLED(ULTIPANEL)
  4170. /**
  4171. * M145: Set the heatup state for a material in the LCD menu
  4172. * S<material> (0=PLA, 1=ABS)
  4173. * H<hotend temp>
  4174. * B<bed temp>
  4175. * F<fan speed>
  4176. */
  4177. inline void gcode_M145() {
  4178. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4179. if (material < 0 || material > 1) {
  4180. SERIAL_ERROR_START;
  4181. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4182. }
  4183. else {
  4184. int v;
  4185. switch (material) {
  4186. case 0:
  4187. if (code_seen('H')) {
  4188. v = code_value_int();
  4189. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4190. }
  4191. if (code_seen('F')) {
  4192. v = code_value_int();
  4193. preheatFanSpeed1 = constrain(v, 0, 255);
  4194. }
  4195. #if TEMP_SENSOR_BED != 0
  4196. if (code_seen('B')) {
  4197. v = code_value_int();
  4198. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4199. }
  4200. #endif
  4201. break;
  4202. case 1:
  4203. if (code_seen('H')) {
  4204. v = code_value_int();
  4205. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4206. }
  4207. if (code_seen('F')) {
  4208. v = code_value_int();
  4209. preheatFanSpeed2 = constrain(v, 0, 255);
  4210. }
  4211. #if TEMP_SENSOR_BED != 0
  4212. if (code_seen('B')) {
  4213. v = code_value_int();
  4214. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4215. }
  4216. #endif
  4217. break;
  4218. }
  4219. }
  4220. }
  4221. #endif
  4222. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4223. /**
  4224. * M149: Set temperature units
  4225. */
  4226. inline void gcode_M149() {
  4227. if (code_seen('C')) {
  4228. set_input_temp_units(TEMPUNIT_C);
  4229. } else if (code_seen('K')) {
  4230. set_input_temp_units(TEMPUNIT_K);
  4231. } else if (code_seen('F')) {
  4232. set_input_temp_units(TEMPUNIT_F);
  4233. }
  4234. }
  4235. #endif
  4236. #if HAS_POWER_SWITCH
  4237. /**
  4238. * M80: Turn on Power Supply
  4239. */
  4240. inline void gcode_M80() {
  4241. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4242. /**
  4243. * If you have a switch on suicide pin, this is useful
  4244. * if you want to start another print with suicide feature after
  4245. * a print without suicide...
  4246. */
  4247. #if HAS_SUICIDE
  4248. OUT_WRITE(SUICIDE_PIN, HIGH);
  4249. #endif
  4250. #if ENABLED(ULTIPANEL)
  4251. powersupply = true;
  4252. LCD_MESSAGEPGM(WELCOME_MSG);
  4253. lcd_update();
  4254. #endif
  4255. }
  4256. #endif // HAS_POWER_SWITCH
  4257. /**
  4258. * M81: Turn off Power, including Power Supply, if there is one.
  4259. *
  4260. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4261. */
  4262. inline void gcode_M81() {
  4263. thermalManager.disable_all_heaters();
  4264. stepper.finish_and_disable();
  4265. #if FAN_COUNT > 0
  4266. #if FAN_COUNT > 1
  4267. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4268. #else
  4269. fanSpeeds[0] = 0;
  4270. #endif
  4271. #endif
  4272. delay(1000); // Wait 1 second before switching off
  4273. #if HAS_SUICIDE
  4274. stepper.synchronize();
  4275. suicide();
  4276. #elif HAS_POWER_SWITCH
  4277. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4278. #endif
  4279. #if ENABLED(ULTIPANEL)
  4280. #if HAS_POWER_SWITCH
  4281. powersupply = false;
  4282. #endif
  4283. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4284. lcd_update();
  4285. #endif
  4286. }
  4287. /**
  4288. * M82: Set E codes absolute (default)
  4289. */
  4290. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4291. /**
  4292. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4293. */
  4294. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4295. /**
  4296. * M18, M84: Disable all stepper motors
  4297. */
  4298. inline void gcode_M18_M84() {
  4299. if (code_seen('S')) {
  4300. stepper_inactive_time = code_value_millis_from_seconds();
  4301. }
  4302. else {
  4303. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4304. if (all_axis) {
  4305. stepper.finish_and_disable();
  4306. }
  4307. else {
  4308. stepper.synchronize();
  4309. if (code_seen('X')) disable_x();
  4310. if (code_seen('Y')) disable_y();
  4311. if (code_seen('Z')) disable_z();
  4312. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4313. if (code_seen('E')) {
  4314. disable_e0();
  4315. disable_e1();
  4316. disable_e2();
  4317. disable_e3();
  4318. }
  4319. #endif
  4320. }
  4321. }
  4322. }
  4323. /**
  4324. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4325. */
  4326. inline void gcode_M85() {
  4327. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4328. }
  4329. /**
  4330. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4331. * (Follows the same syntax as G92)
  4332. */
  4333. inline void gcode_M92() {
  4334. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4335. if (code_seen(axis_codes[i])) {
  4336. if (i == E_AXIS) {
  4337. float value = code_value_per_axis_unit(i);
  4338. if (value < 20.0) {
  4339. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4340. planner.max_e_jerk *= factor;
  4341. planner.max_feedrate[i] *= factor;
  4342. planner.max_acceleration_steps_per_s2[i] *= factor;
  4343. }
  4344. planner.axis_steps_per_mm[i] = value;
  4345. }
  4346. else {
  4347. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4348. }
  4349. }
  4350. }
  4351. }
  4352. /**
  4353. * Output the current position to serial
  4354. */
  4355. static void report_current_position() {
  4356. SERIAL_PROTOCOLPGM("X:");
  4357. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4358. SERIAL_PROTOCOLPGM(" Y:");
  4359. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4360. SERIAL_PROTOCOLPGM(" Z:");
  4361. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4362. SERIAL_PROTOCOLPGM(" E:");
  4363. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4364. stepper.report_positions();
  4365. #if ENABLED(SCARA)
  4366. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4367. SERIAL_PROTOCOL(delta[X_AXIS]);
  4368. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4369. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4370. SERIAL_EOL;
  4371. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4372. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4373. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4374. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4375. SERIAL_EOL;
  4376. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4377. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4378. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4379. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4380. SERIAL_EOL; SERIAL_EOL;
  4381. #endif
  4382. }
  4383. /**
  4384. * M114: Output current position to serial port
  4385. */
  4386. inline void gcode_M114() { report_current_position(); }
  4387. /**
  4388. * M115: Capabilities string
  4389. */
  4390. inline void gcode_M115() {
  4391. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4392. }
  4393. /**
  4394. * M117: Set LCD Status Message
  4395. */
  4396. inline void gcode_M117() {
  4397. lcd_setstatus(current_command_args);
  4398. }
  4399. /**
  4400. * M119: Output endstop states to serial output
  4401. */
  4402. inline void gcode_M119() { endstops.M119(); }
  4403. /**
  4404. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4405. */
  4406. inline void gcode_M120() { endstops.enable_globally(true); }
  4407. /**
  4408. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4409. */
  4410. inline void gcode_M121() { endstops.enable_globally(false); }
  4411. #if ENABLED(BLINKM)
  4412. /**
  4413. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4414. */
  4415. inline void gcode_M150() {
  4416. SendColors(
  4417. code_seen('R') ? code_value_byte() : 0,
  4418. code_seen('U') ? code_value_byte() : 0,
  4419. code_seen('B') ? code_value_byte() : 0
  4420. );
  4421. }
  4422. #endif // BLINKM
  4423. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4424. /**
  4425. * M155: Send data to a I2C slave device
  4426. *
  4427. * This is a PoC, the formating and arguments for the GCODE will
  4428. * change to be more compatible, the current proposal is:
  4429. *
  4430. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4431. *
  4432. * M155 B<byte-1 value in base 10>
  4433. * M155 B<byte-2 value in base 10>
  4434. * M155 B<byte-3 value in base 10>
  4435. *
  4436. * M155 S1 ; Send the buffered data and reset the buffer
  4437. * M155 R1 ; Reset the buffer without sending data
  4438. *
  4439. */
  4440. inline void gcode_M155() {
  4441. // Set the target address
  4442. if (code_seen('A'))
  4443. i2c.address(code_value_byte());
  4444. // Add a new byte to the buffer
  4445. else if (code_seen('B'))
  4446. i2c.addbyte(code_value_int());
  4447. // Flush the buffer to the bus
  4448. else if (code_seen('S')) i2c.send();
  4449. // Reset and rewind the buffer
  4450. else if (code_seen('R')) i2c.reset();
  4451. }
  4452. /**
  4453. * M156: Request X bytes from I2C slave device
  4454. *
  4455. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4456. */
  4457. inline void gcode_M156() {
  4458. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4459. int bytes = code_seen('B') ? code_value_int() : 1;
  4460. if (addr && bytes > 0 && bytes <= 32) {
  4461. i2c.address(addr);
  4462. i2c.reqbytes(bytes);
  4463. }
  4464. else {
  4465. SERIAL_ERROR_START;
  4466. SERIAL_ERRORLN("Bad i2c request");
  4467. }
  4468. }
  4469. #endif //EXPERIMENTAL_I2CBUS
  4470. /**
  4471. * M200: Set filament diameter and set E axis units to cubic units
  4472. *
  4473. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4474. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4475. */
  4476. inline void gcode_M200() {
  4477. if (get_target_extruder_from_command(200)) return;
  4478. if (code_seen('D')) {
  4479. // setting any extruder filament size disables volumetric on the assumption that
  4480. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4481. // for all extruders
  4482. volumetric_enabled = (code_value_linear_units() != 0.0);
  4483. if (volumetric_enabled) {
  4484. filament_size[target_extruder] = code_value_linear_units();
  4485. // make sure all extruders have some sane value for the filament size
  4486. for (int i = 0; i < COUNT(filament_size); i++)
  4487. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4488. }
  4489. }
  4490. else {
  4491. //reserved for setting filament diameter via UFID or filament measuring device
  4492. return;
  4493. }
  4494. calculate_volumetric_multipliers();
  4495. }
  4496. /**
  4497. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4498. */
  4499. inline void gcode_M201() {
  4500. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4501. if (code_seen(axis_codes[i])) {
  4502. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4503. }
  4504. }
  4505. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4506. planner.reset_acceleration_rates();
  4507. }
  4508. #if 0 // Not used for Sprinter/grbl gen6
  4509. inline void gcode_M202() {
  4510. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4511. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4512. }
  4513. }
  4514. #endif
  4515. /**
  4516. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4517. */
  4518. inline void gcode_M203() {
  4519. for (int8_t i = 0; i < NUM_AXIS; i++)
  4520. if (code_seen(axis_codes[i]))
  4521. planner.max_feedrate[i] = code_value_axis_units(i);
  4522. }
  4523. /**
  4524. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4525. *
  4526. * P = Printing moves
  4527. * R = Retract only (no X, Y, Z) moves
  4528. * T = Travel (non printing) moves
  4529. *
  4530. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4531. */
  4532. inline void gcode_M204() {
  4533. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4534. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4535. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4536. SERIAL_EOL;
  4537. }
  4538. if (code_seen('P')) {
  4539. planner.acceleration = code_value_linear_units();
  4540. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4541. SERIAL_EOL;
  4542. }
  4543. if (code_seen('R')) {
  4544. planner.retract_acceleration = code_value_linear_units();
  4545. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4546. SERIAL_EOL;
  4547. }
  4548. if (code_seen('T')) {
  4549. planner.travel_acceleration = code_value_linear_units();
  4550. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4551. SERIAL_EOL;
  4552. }
  4553. }
  4554. /**
  4555. * M205: Set Advanced Settings
  4556. *
  4557. * S = Min Feed Rate (units/s)
  4558. * T = Min Travel Feed Rate (units/s)
  4559. * B = Min Segment Time (µs)
  4560. * X = Max XY Jerk (units/sec^2)
  4561. * Z = Max Z Jerk (units/sec^2)
  4562. * E = Max E Jerk (units/sec^2)
  4563. */
  4564. inline void gcode_M205() {
  4565. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4566. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4567. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4568. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4569. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4570. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4571. }
  4572. /**
  4573. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4574. */
  4575. inline void gcode_M206() {
  4576. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4577. if (code_seen(axis_codes[i]))
  4578. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4579. #if ENABLED(SCARA)
  4580. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4581. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4582. #endif
  4583. SYNC_PLAN_POSITION_KINEMATIC();
  4584. report_current_position();
  4585. }
  4586. #if ENABLED(DELTA)
  4587. /**
  4588. * M665: Set delta configurations
  4589. *
  4590. * L = diagonal rod
  4591. * R = delta radius
  4592. * S = segments per second
  4593. * A = Alpha (Tower 1) diagonal rod trim
  4594. * B = Beta (Tower 2) diagonal rod trim
  4595. * C = Gamma (Tower 3) diagonal rod trim
  4596. */
  4597. inline void gcode_M665() {
  4598. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4599. if (code_seen('R')) delta_radius = code_value_linear_units();
  4600. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4601. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4602. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4603. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4604. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4605. }
  4606. /**
  4607. * M666: Set delta endstop adjustment
  4608. */
  4609. inline void gcode_M666() {
  4610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4611. if (DEBUGGING(LEVELING)) {
  4612. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4613. }
  4614. #endif
  4615. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4616. if (code_seen(axis_codes[i])) {
  4617. endstop_adj[i] = code_value_axis_units(i);
  4618. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4619. if (DEBUGGING(LEVELING)) {
  4620. SERIAL_ECHOPGM("endstop_adj[");
  4621. SERIAL_ECHO(axis_codes[i]);
  4622. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4623. SERIAL_EOL;
  4624. }
  4625. #endif
  4626. }
  4627. }
  4628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4629. if (DEBUGGING(LEVELING)) {
  4630. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4631. }
  4632. #endif
  4633. }
  4634. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4635. /**
  4636. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4637. */
  4638. inline void gcode_M666() {
  4639. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4640. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4641. SERIAL_EOL;
  4642. }
  4643. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4644. #if ENABLED(FWRETRACT)
  4645. /**
  4646. * M207: Set firmware retraction values
  4647. *
  4648. * S[+units] retract_length
  4649. * W[+units] retract_length_swap (multi-extruder)
  4650. * F[units/min] retract_feedrate_mm_s
  4651. * Z[units] retract_zlift
  4652. */
  4653. inline void gcode_M207() {
  4654. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4655. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4656. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4657. #if EXTRUDERS > 1
  4658. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4659. #endif
  4660. }
  4661. /**
  4662. * M208: Set firmware un-retraction values
  4663. *
  4664. * S[+units] retract_recover_length (in addition to M207 S*)
  4665. * W[+units] retract_recover_length_swap (multi-extruder)
  4666. * F[units/min] retract_recover_feedrate
  4667. */
  4668. inline void gcode_M208() {
  4669. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4670. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4671. #if EXTRUDERS > 1
  4672. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4673. #endif
  4674. }
  4675. /**
  4676. * M209: Enable automatic retract (M209 S1)
  4677. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4678. */
  4679. inline void gcode_M209() {
  4680. if (code_seen('S')) {
  4681. int t = code_value_int();
  4682. switch (t) {
  4683. case 0:
  4684. autoretract_enabled = false;
  4685. break;
  4686. case 1:
  4687. autoretract_enabled = true;
  4688. break;
  4689. default:
  4690. unknown_command_error();
  4691. return;
  4692. }
  4693. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4694. }
  4695. }
  4696. #endif // FWRETRACT
  4697. #if HOTENDS > 1
  4698. /**
  4699. * M218 - set hotend offset (in linear units)
  4700. *
  4701. * T<tool>
  4702. * X<xoffset>
  4703. * Y<yoffset>
  4704. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4705. */
  4706. inline void gcode_M218() {
  4707. if (get_target_extruder_from_command(218)) return;
  4708. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4709. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4710. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4711. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4712. #endif
  4713. SERIAL_ECHO_START;
  4714. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4715. HOTEND_LOOP() {
  4716. SERIAL_CHAR(' ');
  4717. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4718. SERIAL_CHAR(',');
  4719. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4720. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4721. SERIAL_CHAR(',');
  4722. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4723. #endif
  4724. }
  4725. SERIAL_EOL;
  4726. }
  4727. #endif // HOTENDS > 1
  4728. /**
  4729. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4730. */
  4731. inline void gcode_M220() {
  4732. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4733. }
  4734. /**
  4735. * M221: Set extrusion percentage (M221 T0 S95)
  4736. */
  4737. inline void gcode_M221() {
  4738. if (get_target_extruder_from_command(221)) return;
  4739. if (code_seen('S'))
  4740. extruder_multiplier[target_extruder] = code_value_int();
  4741. }
  4742. /**
  4743. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4744. */
  4745. inline void gcode_M226() {
  4746. if (code_seen('P')) {
  4747. int pin_number = code_value_int();
  4748. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4749. if (pin_state >= -1 && pin_state <= 1) {
  4750. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4751. if (sensitive_pins[i] == pin_number) {
  4752. pin_number = -1;
  4753. break;
  4754. }
  4755. }
  4756. if (pin_number > -1) {
  4757. int target = LOW;
  4758. stepper.synchronize();
  4759. pinMode(pin_number, INPUT);
  4760. switch (pin_state) {
  4761. case 1:
  4762. target = HIGH;
  4763. break;
  4764. case 0:
  4765. target = LOW;
  4766. break;
  4767. case -1:
  4768. target = !digitalRead(pin_number);
  4769. break;
  4770. }
  4771. while (digitalRead(pin_number) != target) idle();
  4772. } // pin_number > -1
  4773. } // pin_state -1 0 1
  4774. } // code_seen('P')
  4775. }
  4776. #if HAS_SERVOS
  4777. /**
  4778. * M280: Get or set servo position. P<index> [S<angle>]
  4779. */
  4780. inline void gcode_M280() {
  4781. if (!code_seen('P')) return;
  4782. int servo_index = code_value_int();
  4783. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4784. if (code_seen('S'))
  4785. MOVE_SERVO(servo_index, code_value_int());
  4786. else {
  4787. SERIAL_ECHO_START;
  4788. SERIAL_ECHOPGM(" Servo ");
  4789. SERIAL_ECHO(servo_index);
  4790. SERIAL_ECHOPGM(": ");
  4791. SERIAL_ECHOLN(servo[servo_index].read());
  4792. }
  4793. }
  4794. else {
  4795. SERIAL_ERROR_START;
  4796. SERIAL_ERROR("Servo ");
  4797. SERIAL_ERROR(servo_index);
  4798. SERIAL_ERRORLN(" out of range");
  4799. }
  4800. }
  4801. #endif // HAS_SERVOS
  4802. #if HAS_BUZZER
  4803. /**
  4804. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4805. */
  4806. inline void gcode_M300() {
  4807. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4808. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4809. // Limits the tone duration to 0-5 seconds.
  4810. NOMORE(duration, 5000);
  4811. buzzer.tone(duration, frequency);
  4812. }
  4813. #endif // HAS_BUZZER
  4814. #if ENABLED(PIDTEMP)
  4815. /**
  4816. * M301: Set PID parameters P I D (and optionally C, L)
  4817. *
  4818. * P[float] Kp term
  4819. * I[float] Ki term (unscaled)
  4820. * D[float] Kd term (unscaled)
  4821. *
  4822. * With PID_ADD_EXTRUSION_RATE:
  4823. *
  4824. * C[float] Kc term
  4825. * L[float] LPQ length
  4826. */
  4827. inline void gcode_M301() {
  4828. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4829. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4830. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4831. if (e < HOTENDS) { // catch bad input value
  4832. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4833. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4834. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4835. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4836. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4837. if (code_seen('L')) lpq_len = code_value_float();
  4838. NOMORE(lpq_len, LPQ_MAX_LEN);
  4839. #endif
  4840. thermalManager.updatePID();
  4841. SERIAL_ECHO_START;
  4842. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4843. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4844. SERIAL_ECHO(e);
  4845. #endif // PID_PARAMS_PER_HOTEND
  4846. SERIAL_ECHOPGM(" p:");
  4847. SERIAL_ECHO(PID_PARAM(Kp, e));
  4848. SERIAL_ECHOPGM(" i:");
  4849. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4850. SERIAL_ECHOPGM(" d:");
  4851. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4852. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4853. SERIAL_ECHOPGM(" c:");
  4854. //Kc does not have scaling applied above, or in resetting defaults
  4855. SERIAL_ECHO(PID_PARAM(Kc, e));
  4856. #endif
  4857. SERIAL_EOL;
  4858. }
  4859. else {
  4860. SERIAL_ERROR_START;
  4861. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4862. }
  4863. }
  4864. #endif // PIDTEMP
  4865. #if ENABLED(PIDTEMPBED)
  4866. inline void gcode_M304() {
  4867. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4868. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4869. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4870. thermalManager.updatePID();
  4871. SERIAL_ECHO_START;
  4872. SERIAL_ECHOPGM(" p:");
  4873. SERIAL_ECHO(thermalManager.bedKp);
  4874. SERIAL_ECHOPGM(" i:");
  4875. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4876. SERIAL_ECHOPGM(" d:");
  4877. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4878. }
  4879. #endif // PIDTEMPBED
  4880. #if defined(CHDK) || HAS_PHOTOGRAPH
  4881. /**
  4882. * M240: Trigger a camera by emulating a Canon RC-1
  4883. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4884. */
  4885. inline void gcode_M240() {
  4886. #ifdef CHDK
  4887. OUT_WRITE(CHDK, HIGH);
  4888. chdkHigh = millis();
  4889. chdkActive = true;
  4890. #elif HAS_PHOTOGRAPH
  4891. const uint8_t NUM_PULSES = 16;
  4892. const float PULSE_LENGTH = 0.01524;
  4893. for (int i = 0; i < NUM_PULSES; i++) {
  4894. WRITE(PHOTOGRAPH_PIN, HIGH);
  4895. _delay_ms(PULSE_LENGTH);
  4896. WRITE(PHOTOGRAPH_PIN, LOW);
  4897. _delay_ms(PULSE_LENGTH);
  4898. }
  4899. delay(7.33);
  4900. for (int i = 0; i < NUM_PULSES; i++) {
  4901. WRITE(PHOTOGRAPH_PIN, HIGH);
  4902. _delay_ms(PULSE_LENGTH);
  4903. WRITE(PHOTOGRAPH_PIN, LOW);
  4904. _delay_ms(PULSE_LENGTH);
  4905. }
  4906. #endif // !CHDK && HAS_PHOTOGRAPH
  4907. }
  4908. #endif // CHDK || PHOTOGRAPH_PIN
  4909. #if HAS_LCD_CONTRAST
  4910. /**
  4911. * M250: Read and optionally set the LCD contrast
  4912. */
  4913. inline void gcode_M250() {
  4914. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4915. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4916. SERIAL_PROTOCOL(lcd_contrast);
  4917. SERIAL_EOL;
  4918. }
  4919. #endif // HAS_LCD_CONTRAST
  4920. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4921. /**
  4922. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4923. *
  4924. * S<temperature> sets the minimum extrude temperature
  4925. * P<bool> enables (1) or disables (0) cold extrusion
  4926. *
  4927. * Examples:
  4928. *
  4929. * M302 ; report current cold extrusion state
  4930. * M302 P0 ; enable cold extrusion checking
  4931. * M302 P1 ; disables cold extrusion checking
  4932. * M302 S0 ; always allow extrusion (disables checking)
  4933. * M302 S170 ; only allow extrusion above 170
  4934. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4935. */
  4936. inline void gcode_M302() {
  4937. bool seen_S = code_seen('S');
  4938. if (seen_S) {
  4939. thermalManager.extrude_min_temp = code_value_temp_abs();
  4940. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4941. }
  4942. if (code_seen('P'))
  4943. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4944. else if (!seen_S) {
  4945. // Report current state
  4946. SERIAL_ECHO_START;
  4947. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4948. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4949. SERIAL_ECHOLNPGM("C)");
  4950. }
  4951. }
  4952. #endif // PREVENT_DANGEROUS_EXTRUDE
  4953. /**
  4954. * M303: PID relay autotune
  4955. *
  4956. * S<temperature> sets the target temperature. (default 150C)
  4957. * E<extruder> (-1 for the bed) (default 0)
  4958. * C<cycles>
  4959. * U<bool> with a non-zero value will apply the result to current settings
  4960. */
  4961. inline void gcode_M303() {
  4962. #if HAS_PID_HEATING
  4963. int e = code_seen('E') ? code_value_int() : 0;
  4964. int c = code_seen('C') ? code_value_int() : 5;
  4965. bool u = code_seen('U') && code_value_bool();
  4966. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4967. if (e >= 0 && e < HOTENDS)
  4968. target_extruder = e;
  4969. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4970. thermalManager.PID_autotune(temp, e, c, u);
  4971. KEEPALIVE_STATE(IN_HANDLER);
  4972. #else
  4973. SERIAL_ERROR_START;
  4974. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4975. #endif
  4976. }
  4977. #if ENABLED(SCARA)
  4978. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4979. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4980. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4981. if (IsRunning()) {
  4982. //gcode_get_destination(); // For X Y Z E F
  4983. delta[X_AXIS] = delta_x;
  4984. delta[Y_AXIS] = delta_y;
  4985. calculate_SCARA_forward_Transform(delta);
  4986. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4987. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4988. prepare_move_to_destination();
  4989. //ok_to_send();
  4990. return true;
  4991. }
  4992. return false;
  4993. }
  4994. /**
  4995. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4996. */
  4997. inline bool gcode_M360() {
  4998. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4999. return SCARA_move_to_cal(0, 120);
  5000. }
  5001. /**
  5002. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5003. */
  5004. inline bool gcode_M361() {
  5005. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5006. return SCARA_move_to_cal(90, 130);
  5007. }
  5008. /**
  5009. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5010. */
  5011. inline bool gcode_M362() {
  5012. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5013. return SCARA_move_to_cal(60, 180);
  5014. }
  5015. /**
  5016. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5017. */
  5018. inline bool gcode_M363() {
  5019. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5020. return SCARA_move_to_cal(50, 90);
  5021. }
  5022. /**
  5023. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5024. */
  5025. inline bool gcode_M364() {
  5026. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5027. return SCARA_move_to_cal(45, 135);
  5028. }
  5029. /**
  5030. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5031. */
  5032. inline void gcode_M365() {
  5033. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  5034. if (code_seen(axis_codes[i]))
  5035. axis_scaling[i] = code_value_float();
  5036. }
  5037. #endif // SCARA
  5038. #if ENABLED(EXT_SOLENOID)
  5039. void enable_solenoid(uint8_t num) {
  5040. switch (num) {
  5041. case 0:
  5042. OUT_WRITE(SOL0_PIN, HIGH);
  5043. break;
  5044. #if HAS_SOLENOID_1
  5045. case 1:
  5046. OUT_WRITE(SOL1_PIN, HIGH);
  5047. break;
  5048. #endif
  5049. #if HAS_SOLENOID_2
  5050. case 2:
  5051. OUT_WRITE(SOL2_PIN, HIGH);
  5052. break;
  5053. #endif
  5054. #if HAS_SOLENOID_3
  5055. case 3:
  5056. OUT_WRITE(SOL3_PIN, HIGH);
  5057. break;
  5058. #endif
  5059. default:
  5060. SERIAL_ECHO_START;
  5061. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5062. break;
  5063. }
  5064. }
  5065. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5066. void disable_all_solenoids() {
  5067. OUT_WRITE(SOL0_PIN, LOW);
  5068. OUT_WRITE(SOL1_PIN, LOW);
  5069. OUT_WRITE(SOL2_PIN, LOW);
  5070. OUT_WRITE(SOL3_PIN, LOW);
  5071. }
  5072. /**
  5073. * M380: Enable solenoid on the active extruder
  5074. */
  5075. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5076. /**
  5077. * M381: Disable all solenoids
  5078. */
  5079. inline void gcode_M381() { disable_all_solenoids(); }
  5080. #endif // EXT_SOLENOID
  5081. /**
  5082. * M400: Finish all moves
  5083. */
  5084. inline void gcode_M400() { stepper.synchronize(); }
  5085. #if HAS_BED_PROBE
  5086. /**
  5087. * M401: Engage Z Servo endstop if available
  5088. */
  5089. inline void gcode_M401() { DEPLOY_PROBE(); }
  5090. /**
  5091. * M402: Retract Z Servo endstop if enabled
  5092. */
  5093. inline void gcode_M402() { STOW_PROBE(); }
  5094. #endif // HAS_BED_PROBE
  5095. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5096. /**
  5097. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5098. */
  5099. inline void gcode_M404() {
  5100. if (code_seen('W')) {
  5101. filament_width_nominal = code_value_linear_units();
  5102. }
  5103. else {
  5104. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5105. SERIAL_PROTOCOLLN(filament_width_nominal);
  5106. }
  5107. }
  5108. /**
  5109. * M405: Turn on filament sensor for control
  5110. */
  5111. inline void gcode_M405() {
  5112. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5113. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5114. if (code_seen('D')) meas_delay_cm = code_value_int();
  5115. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5116. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5117. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5118. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5119. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5120. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5121. }
  5122. filament_sensor = true;
  5123. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5124. //SERIAL_PROTOCOL(filament_width_meas);
  5125. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5126. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5127. }
  5128. /**
  5129. * M406: Turn off filament sensor for control
  5130. */
  5131. inline void gcode_M406() { filament_sensor = false; }
  5132. /**
  5133. * M407: Get measured filament diameter on serial output
  5134. */
  5135. inline void gcode_M407() {
  5136. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5137. SERIAL_PROTOCOLLN(filament_width_meas);
  5138. }
  5139. #endif // FILAMENT_WIDTH_SENSOR
  5140. void quickstop_stepper() {
  5141. stepper.quick_stop();
  5142. #if DISABLED(DELTA) && DISABLED(SCARA)
  5143. stepper.synchronize();
  5144. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5145. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5146. current_position[X_AXIS] = pos.x;
  5147. current_position[Y_AXIS] = pos.y;
  5148. current_position[Z_AXIS] = pos.z;
  5149. #else
  5150. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5151. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5152. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5153. #endif
  5154. sync_plan_position(); // ...re-apply to planner position
  5155. #endif
  5156. }
  5157. #if ENABLED(MESH_BED_LEVELING)
  5158. /**
  5159. * M420: Enable/Disable Mesh Bed Leveling
  5160. */
  5161. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5162. /**
  5163. * M421: Set a single Mesh Bed Leveling Z coordinate
  5164. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5165. */
  5166. inline void gcode_M421() {
  5167. int8_t px = 0, py = 0;
  5168. float z = 0;
  5169. bool hasX, hasY, hasZ, hasI, hasJ;
  5170. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5171. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5172. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5173. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5174. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5175. if (hasX && hasY && hasZ) {
  5176. if (px >= 0 && py >= 0)
  5177. mbl.set_z(px, py, z);
  5178. else {
  5179. SERIAL_ERROR_START;
  5180. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5181. }
  5182. }
  5183. else if (hasI && hasJ && hasZ) {
  5184. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5185. mbl.set_z(px, py, z);
  5186. else {
  5187. SERIAL_ERROR_START;
  5188. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5189. }
  5190. }
  5191. else {
  5192. SERIAL_ERROR_START;
  5193. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5194. }
  5195. }
  5196. #endif
  5197. /**
  5198. * M428: Set home_offset based on the distance between the
  5199. * current_position and the nearest "reference point."
  5200. * If an axis is past center its endstop position
  5201. * is the reference-point. Otherwise it uses 0. This allows
  5202. * the Z offset to be set near the bed when using a max endstop.
  5203. *
  5204. * M428 can't be used more than 2cm away from 0 or an endstop.
  5205. *
  5206. * Use M206 to set these values directly.
  5207. */
  5208. inline void gcode_M428() {
  5209. bool err = false;
  5210. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5211. if (axis_homed[i]) {
  5212. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5213. diff = current_position[i] - base;
  5214. if (diff > -20 && diff < 20) {
  5215. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5216. }
  5217. else {
  5218. SERIAL_ERROR_START;
  5219. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5220. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5221. #if HAS_BUZZER
  5222. buzzer.tone(200, 40);
  5223. #endif
  5224. err = true;
  5225. break;
  5226. }
  5227. }
  5228. }
  5229. if (!err) {
  5230. SYNC_PLAN_POSITION_KINEMATIC();
  5231. report_current_position();
  5232. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5233. #if HAS_BUZZER
  5234. buzzer.tone(200, 659);
  5235. buzzer.tone(200, 698);
  5236. #endif
  5237. }
  5238. }
  5239. /**
  5240. * M500: Store settings in EEPROM
  5241. */
  5242. inline void gcode_M500() {
  5243. Config_StoreSettings();
  5244. }
  5245. /**
  5246. * M501: Read settings from EEPROM
  5247. */
  5248. inline void gcode_M501() {
  5249. Config_RetrieveSettings();
  5250. }
  5251. /**
  5252. * M502: Revert to default settings
  5253. */
  5254. inline void gcode_M502() {
  5255. Config_ResetDefault();
  5256. }
  5257. /**
  5258. * M503: print settings currently in memory
  5259. */
  5260. inline void gcode_M503() {
  5261. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5262. }
  5263. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5264. /**
  5265. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5266. */
  5267. inline void gcode_M540() {
  5268. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5269. }
  5270. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5271. #if HAS_BED_PROBE
  5272. inline void gcode_M851() {
  5273. SERIAL_ECHO_START;
  5274. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5275. SERIAL_CHAR(' ');
  5276. if (code_seen('Z')) {
  5277. float value = code_value_axis_units(Z_AXIS);
  5278. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5279. zprobe_zoffset = value;
  5280. SERIAL_ECHO(zprobe_zoffset);
  5281. }
  5282. else {
  5283. SERIAL_ECHOPGM(MSG_Z_MIN);
  5284. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5285. SERIAL_CHAR(' ');
  5286. SERIAL_ECHOPGM(MSG_Z_MAX);
  5287. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5288. }
  5289. }
  5290. else {
  5291. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5292. }
  5293. SERIAL_EOL;
  5294. }
  5295. #endif // HAS_BED_PROBE
  5296. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5297. /**
  5298. * M600: Pause for filament change
  5299. *
  5300. * E[distance] - Retract the filament this far (negative value)
  5301. * Z[distance] - Move the Z axis by this distance
  5302. * X[position] - Move to this X position, with Y
  5303. * Y[position] - Move to this Y position, with X
  5304. * L[distance] - Retract distance for removal (manual reload)
  5305. *
  5306. * Default values are used for omitted arguments.
  5307. *
  5308. */
  5309. inline void gcode_M600() {
  5310. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5311. SERIAL_ERROR_START;
  5312. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5313. return;
  5314. }
  5315. // Show initial message and wait for synchronize steppers
  5316. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5317. stepper.synchronize();
  5318. float lastpos[NUM_AXIS];
  5319. // Save current position of all axes
  5320. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5321. lastpos[i] = destination[i] = current_position[i];
  5322. // Define runplan for move axes
  5323. #if ENABLED(DELTA)
  5324. #define RUNPLAN(RATE) calculate_delta(destination); \
  5325. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5326. #else
  5327. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5328. #endif
  5329. KEEPALIVE_STATE(IN_HANDLER);
  5330. // Initial retract before move to filament change position
  5331. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5332. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5333. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5334. #endif
  5335. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5336. // Lift Z axis
  5337. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5338. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5339. FILAMENT_CHANGE_Z_ADD
  5340. #else
  5341. 0
  5342. #endif
  5343. ;
  5344. if (z_lift > 0) {
  5345. destination[Z_AXIS] += z_lift;
  5346. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5347. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5348. }
  5349. // Move XY axes to filament exchange position
  5350. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5351. #ifdef FILAMENT_CHANGE_X_POS
  5352. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5353. #endif
  5354. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5355. #ifdef FILAMENT_CHANGE_Y_POS
  5356. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5357. #endif
  5358. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5359. stepper.synchronize();
  5360. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5361. // Unload filament
  5362. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5363. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5364. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5365. #endif
  5366. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5367. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5368. stepper.synchronize();
  5369. disable_e0();
  5370. disable_e1();
  5371. disable_e2();
  5372. disable_e3();
  5373. delay(100);
  5374. #if HAS_BUZZER
  5375. millis_t next_tick = 0;
  5376. #endif
  5377. // Wait for filament insert by user and press button
  5378. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5379. while (!lcd_clicked()) {
  5380. #if HAS_BUZZER
  5381. millis_t ms = millis();
  5382. if (ms >= next_tick) {
  5383. buzzer.tone(300, 2000);
  5384. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5385. }
  5386. #endif
  5387. idle(true);
  5388. }
  5389. delay(100);
  5390. while (lcd_clicked()) idle(true);
  5391. delay(100);
  5392. // Show load message
  5393. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5394. // Load filament
  5395. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5396. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5397. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5398. #endif
  5399. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5400. stepper.synchronize();
  5401. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5402. do {
  5403. // Extrude filament to get into hotend
  5404. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5405. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5406. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5407. stepper.synchronize();
  5408. // Ask user if more filament should be extruded
  5409. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5410. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5411. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5412. KEEPALIVE_STATE(IN_HANDLER);
  5413. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5414. #endif
  5415. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5416. KEEPALIVE_STATE(IN_HANDLER);
  5417. // Set extruder to saved position
  5418. current_position[E_AXIS] = lastpos[E_AXIS];
  5419. destination[E_AXIS] = lastpos[E_AXIS];
  5420. planner.set_e_position_mm(current_position[E_AXIS]);
  5421. #if ENABLED(DELTA)
  5422. // Move XYZ to starting position, then E
  5423. calculate_delta(lastpos);
  5424. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5425. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5426. #else
  5427. // Move XY to starting position, then Z, then E
  5428. destination[X_AXIS] = lastpos[X_AXIS];
  5429. destination[Y_AXIS] = lastpos[Y_AXIS];
  5430. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5431. destination[Z_AXIS] = lastpos[Z_AXIS];
  5432. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5433. #endif
  5434. stepper.synchronize();
  5435. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5436. filament_ran_out = false;
  5437. #endif
  5438. // Show status screen
  5439. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5440. }
  5441. #endif // FILAMENT_CHANGE_FEATURE
  5442. #if ENABLED(DUAL_X_CARRIAGE)
  5443. /**
  5444. * M605: Set dual x-carriage movement mode
  5445. *
  5446. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5447. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5448. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5449. * units x-offset and an optional differential hotend temperature of
  5450. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5451. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5452. *
  5453. * Note: the X axis should be homed after changing dual x-carriage mode.
  5454. */
  5455. inline void gcode_M605() {
  5456. stepper.synchronize();
  5457. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5458. switch (dual_x_carriage_mode) {
  5459. case DXC_DUPLICATION_MODE:
  5460. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5461. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5462. SERIAL_ECHO_START;
  5463. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5464. SERIAL_CHAR(' ');
  5465. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5466. SERIAL_CHAR(',');
  5467. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5468. SERIAL_CHAR(' ');
  5469. SERIAL_ECHO(duplicate_extruder_x_offset);
  5470. SERIAL_CHAR(',');
  5471. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5472. break;
  5473. case DXC_FULL_CONTROL_MODE:
  5474. case DXC_AUTO_PARK_MODE:
  5475. break;
  5476. default:
  5477. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5478. break;
  5479. }
  5480. active_extruder_parked = false;
  5481. extruder_duplication_enabled = false;
  5482. delayed_move_time = 0;
  5483. }
  5484. #endif // DUAL_X_CARRIAGE
  5485. #if ENABLED(LIN_ADVANCE)
  5486. /**
  5487. * M905: Set advance factor
  5488. */
  5489. inline void gcode_M905() {
  5490. stepper.synchronize();
  5491. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5492. }
  5493. #endif
  5494. /**
  5495. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5496. */
  5497. inline void gcode_M907() {
  5498. #if HAS_DIGIPOTSS
  5499. for (int i = 0; i < NUM_AXIS; i++)
  5500. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5501. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5502. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5503. #endif
  5504. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5505. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5506. #endif
  5507. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5508. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5509. #endif
  5510. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5511. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5512. #endif
  5513. #if ENABLED(DIGIPOT_I2C)
  5514. // this one uses actual amps in floating point
  5515. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5516. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5517. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5518. #endif
  5519. #if ENABLED(DAC_STEPPER_CURRENT)
  5520. if (code_seen('S')) {
  5521. float dac_percent = code_value_float();
  5522. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5523. }
  5524. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5525. #endif
  5526. }
  5527. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5528. /**
  5529. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5530. */
  5531. inline void gcode_M908() {
  5532. #if HAS_DIGIPOTSS
  5533. stepper.digitalPotWrite(
  5534. code_seen('P') ? code_value_int() : 0,
  5535. code_seen('S') ? code_value_int() : 0
  5536. );
  5537. #endif
  5538. #ifdef DAC_STEPPER_CURRENT
  5539. dac_current_raw(
  5540. code_seen('P') ? code_value_byte() : -1,
  5541. code_seen('S') ? code_value_ushort() : 0
  5542. );
  5543. #endif
  5544. }
  5545. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5546. inline void gcode_M909() { dac_print_values(); }
  5547. inline void gcode_M910() { dac_commit_eeprom(); }
  5548. #endif
  5549. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5550. #if HAS_MICROSTEPS
  5551. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5552. inline void gcode_M350() {
  5553. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5554. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5555. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5556. stepper.microstep_readings();
  5557. }
  5558. /**
  5559. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5560. * S# determines MS1 or MS2, X# sets the pin high/low.
  5561. */
  5562. inline void gcode_M351() {
  5563. if (code_seen('S')) switch (code_value_byte()) {
  5564. case 1:
  5565. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5566. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5567. break;
  5568. case 2:
  5569. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5570. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5571. break;
  5572. }
  5573. stepper.microstep_readings();
  5574. }
  5575. #endif // HAS_MICROSTEPS
  5576. #if ENABLED(MIXING_EXTRUDER)
  5577. /**
  5578. * M163: Set a single mix factor for a mixing extruder
  5579. * This is called "weight" by some systems.
  5580. *
  5581. * S[index] The channel index to set
  5582. * P[float] The mix value
  5583. *
  5584. */
  5585. inline void gcode_M163() {
  5586. int mix_index = code_seen('S') ? code_value_int() : 0;
  5587. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5588. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5589. }
  5590. #if MIXING_VIRTUAL_TOOLS > 1
  5591. /**
  5592. * M164: Store the current mix factors as a virtual tool.
  5593. *
  5594. * S[index] The virtual tool to store
  5595. *
  5596. */
  5597. inline void gcode_M164() {
  5598. int tool_index = code_seen('S') ? code_value_int() : 0;
  5599. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5600. normalize_mix();
  5601. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5602. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5603. }
  5604. }
  5605. #endif
  5606. #if ENABLED(DIRECT_MIXING_IN_G1)
  5607. /**
  5608. * M165: Set multiple mix factors for a mixing extruder.
  5609. * Factors that are left out will be set to 0.
  5610. * All factors together must add up to 1.0.
  5611. *
  5612. * A[factor] Mix factor for extruder stepper 1
  5613. * B[factor] Mix factor for extruder stepper 2
  5614. * C[factor] Mix factor for extruder stepper 3
  5615. * D[factor] Mix factor for extruder stepper 4
  5616. * H[factor] Mix factor for extruder stepper 5
  5617. * I[factor] Mix factor for extruder stepper 6
  5618. *
  5619. */
  5620. inline void gcode_M165() { gcode_get_mix(); }
  5621. #endif
  5622. #endif // MIXING_EXTRUDER
  5623. /**
  5624. * M999: Restart after being stopped
  5625. *
  5626. * Default behaviour is to flush the serial buffer and request
  5627. * a resend to the host starting on the last N line received.
  5628. *
  5629. * Sending "M999 S1" will resume printing without flushing the
  5630. * existing command buffer.
  5631. *
  5632. */
  5633. inline void gcode_M999() {
  5634. Running = true;
  5635. lcd_reset_alert_level();
  5636. if (code_seen('S') && code_value_bool()) return;
  5637. // gcode_LastN = Stopped_gcode_LastN;
  5638. FlushSerialRequestResend();
  5639. }
  5640. #if ENABLED(SWITCHING_EXTRUDER)
  5641. inline void move_extruder_servo(uint8_t e) {
  5642. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5643. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5644. }
  5645. #endif
  5646. inline void invalid_extruder_error(const uint8_t &e) {
  5647. SERIAL_ECHO_START;
  5648. SERIAL_CHAR('T');
  5649. SERIAL_PROTOCOL_F(e, DEC);
  5650. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5651. }
  5652. /**
  5653. * T0-T3: Switch tool, usually switching extruders
  5654. *
  5655. * F[units/min] Set the movement feedrate
  5656. * S1 Don't move the tool in XY after change
  5657. */
  5658. inline void gcode_T(uint8_t tmp_extruder) {
  5659. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5660. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5661. invalid_extruder_error(tmp_extruder);
  5662. return;
  5663. }
  5664. // T0-Tnnn: Switch virtual tool by changing the mix
  5665. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5666. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5667. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5669. if (DEBUGGING(LEVELING)) {
  5670. SERIAL_ECHOLNPGM(">>> gcode_T");
  5671. DEBUG_POS("BEFORE", current_position);
  5672. }
  5673. #endif
  5674. #if HOTENDS > 1
  5675. if (tmp_extruder >= EXTRUDERS) {
  5676. invalid_extruder_error(tmp_extruder);
  5677. return;
  5678. }
  5679. float old_feedrate = feedrate;
  5680. if (code_seen('F')) {
  5681. float next_feedrate = code_value_axis_units(X_AXIS);
  5682. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5683. }
  5684. else
  5685. feedrate = XY_PROBE_FEEDRATE;
  5686. if (tmp_extruder != active_extruder) {
  5687. bool no_move = code_seen('S') && code_value_bool();
  5688. if (!no_move && axis_unhomed_error(true, true, true)) {
  5689. SERIAL_ECHOLNPGM("No move on toolchange");
  5690. no_move = true;
  5691. }
  5692. // Save current position to destination, for use later
  5693. set_destination_to_current();
  5694. #if ENABLED(DUAL_X_CARRIAGE)
  5695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5696. if (DEBUGGING(LEVELING)) {
  5697. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5698. switch (dual_x_carriage_mode) {
  5699. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5700. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5701. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5702. }
  5703. }
  5704. #endif
  5705. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5706. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5707. ) {
  5708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5709. if (DEBUGGING(LEVELING)) {
  5710. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5711. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5712. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5713. }
  5714. #endif
  5715. // Park old head: 1) raise 2) move to park position 3) lower
  5716. for (uint8_t i = 0; i < 3; i++)
  5717. planner.buffer_line(
  5718. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5719. current_position[Y_AXIS],
  5720. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5721. current_position[E_AXIS],
  5722. planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS],
  5723. active_extruder
  5724. );
  5725. stepper.synchronize();
  5726. }
  5727. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5728. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5729. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5730. active_extruder = tmp_extruder;
  5731. // This function resets the max/min values - the current position may be overwritten below.
  5732. set_axis_is_at_home(X_AXIS);
  5733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5734. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5735. #endif
  5736. switch (dual_x_carriage_mode) {
  5737. case DXC_FULL_CONTROL_MODE:
  5738. current_position[X_AXIS] = inactive_extruder_x_pos;
  5739. inactive_extruder_x_pos = destination[X_AXIS];
  5740. break;
  5741. case DXC_DUPLICATION_MODE:
  5742. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5743. if (active_extruder_parked)
  5744. current_position[X_AXIS] = inactive_extruder_x_pos;
  5745. else
  5746. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5747. inactive_extruder_x_pos = destination[X_AXIS];
  5748. extruder_duplication_enabled = false;
  5749. break;
  5750. default:
  5751. // record raised toolhead position for use by unpark
  5752. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5753. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5754. active_extruder_parked = true;
  5755. delayed_move_time = 0;
  5756. break;
  5757. }
  5758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5759. if (DEBUGGING(LEVELING)) {
  5760. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5761. SERIAL_EOL;
  5762. DEBUG_POS("New extruder (parked)", current_position);
  5763. }
  5764. #endif
  5765. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5766. #else // !DUAL_X_CARRIAGE
  5767. #if ENABLED(SWITCHING_EXTRUDER)
  5768. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5769. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5770. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5771. // Always raise by some amount
  5772. planner.buffer_line(
  5773. current_position[X_AXIS],
  5774. current_position[Y_AXIS],
  5775. current_position[Z_AXIS] + z_raise,
  5776. current_position[E_AXIS],
  5777. planner.max_feedrate[Z_AXIS],
  5778. active_extruder
  5779. );
  5780. stepper.synchronize();
  5781. move_extruder_servo(active_extruder);
  5782. delay(500);
  5783. // Move back down, if needed
  5784. if (z_raise != z_diff) {
  5785. planner.buffer_line(
  5786. current_position[X_AXIS],
  5787. current_position[Y_AXIS],
  5788. current_position[Z_AXIS] + z_diff,
  5789. current_position[E_AXIS],
  5790. planner.max_feedrate[Z_AXIS],
  5791. active_extruder
  5792. );
  5793. stepper.synchronize();
  5794. }
  5795. #endif
  5796. /**
  5797. * Set current_position to the position of the new nozzle.
  5798. * Offsets are based on linear distance, so we need to get
  5799. * the resulting position in coordinate space.
  5800. *
  5801. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5802. * - With mesh leveling, update Z for the new position
  5803. * - Otherwise, just use the raw linear distance
  5804. *
  5805. * Software endstops are altered here too. Consider a case where:
  5806. * E0 at X=0 ... E1 at X=10
  5807. * When we switch to E1 now X=10, but E1 can't move left.
  5808. * To express this we apply the change in XY to the software endstops.
  5809. * E1 can move farther right than E0, so the right limit is extended.
  5810. *
  5811. * Note that we don't adjust the Z software endstops. Why not?
  5812. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5813. * because the bed is 1mm lower at the new position. As long as
  5814. * the first nozzle is out of the way, the carriage should be
  5815. * allowed to move 1mm lower. This technically "breaks" the
  5816. * Z software endstop. But this is technically correct (and
  5817. * there is no viable alternative).
  5818. */
  5819. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5820. // Offset extruder, make sure to apply the bed level rotation matrix
  5821. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5822. hotend_offset[Y_AXIS][tmp_extruder],
  5823. 0),
  5824. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5825. hotend_offset[Y_AXIS][active_extruder],
  5826. 0),
  5827. offset_vec = tmp_offset_vec - act_offset_vec;
  5828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5829. if (DEBUGGING(LEVELING)) {
  5830. tmp_offset_vec.debug("tmp_offset_vec");
  5831. act_offset_vec.debug("act_offset_vec");
  5832. offset_vec.debug("offset_vec (BEFORE)");
  5833. }
  5834. #endif
  5835. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5837. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5838. #endif
  5839. // Adjustments to the current position
  5840. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5841. current_position[Z_AXIS] += offset_vec.z;
  5842. #else // !AUTO_BED_LEVELING_FEATURE
  5843. float xydiff[2] = {
  5844. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5845. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5846. };
  5847. #if ENABLED(MESH_BED_LEVELING)
  5848. if (mbl.active()) {
  5849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5850. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5851. #endif
  5852. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5853. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5854. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5856. if (DEBUGGING(LEVELING)) {
  5857. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5858. SERIAL_EOL;
  5859. }
  5860. #endif
  5861. }
  5862. #endif // MESH_BED_LEVELING
  5863. #endif // !AUTO_BED_LEVELING_FEATURE
  5864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5865. if (DEBUGGING(LEVELING)) {
  5866. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5867. SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
  5868. SERIAL_ECHOLNPGM(" }");
  5869. }
  5870. #endif
  5871. // The newly-selected extruder XY is actually at...
  5872. current_position[X_AXIS] += xydiff[X_AXIS];
  5873. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5874. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5875. position_shift[i] += xydiff[i];
  5876. update_software_endstops((AxisEnum)i);
  5877. }
  5878. // Set the new active extruder
  5879. active_extruder = tmp_extruder;
  5880. #endif // !DUAL_X_CARRIAGE
  5881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5882. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5883. #endif
  5884. // Tell the planner the new "current position"
  5885. SYNC_PLAN_POSITION_KINEMATIC();
  5886. // Move to the "old position" (move the extruder into place)
  5887. if (!no_move && IsRunning()) {
  5888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5889. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5890. #endif
  5891. prepare_move_to_destination();
  5892. }
  5893. } // (tmp_extruder != active_extruder)
  5894. stepper.synchronize();
  5895. #if ENABLED(EXT_SOLENOID)
  5896. disable_all_solenoids();
  5897. enable_solenoid_on_active_extruder();
  5898. #endif // EXT_SOLENOID
  5899. feedrate = old_feedrate;
  5900. #else // HOTENDS <= 1
  5901. // Set the new active extruder
  5902. active_extruder = tmp_extruder;
  5903. #endif // HOTENDS <= 1
  5904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5905. if (DEBUGGING(LEVELING)) {
  5906. DEBUG_POS("AFTER", current_position);
  5907. SERIAL_ECHOLNPGM("<<< gcode_T");
  5908. }
  5909. #endif
  5910. SERIAL_ECHO_START;
  5911. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5912. SERIAL_PROTOCOLLN((int)active_extruder);
  5913. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5914. }
  5915. /**
  5916. * Process a single command and dispatch it to its handler
  5917. * This is called from the main loop()
  5918. */
  5919. void process_next_command() {
  5920. current_command = command_queue[cmd_queue_index_r];
  5921. if (DEBUGGING(ECHO)) {
  5922. SERIAL_ECHO_START;
  5923. SERIAL_ECHOLN(current_command);
  5924. }
  5925. // Sanitize the current command:
  5926. // - Skip leading spaces
  5927. // - Bypass N[-0-9][0-9]*[ ]*
  5928. // - Overwrite * with nul to mark the end
  5929. while (*current_command == ' ') ++current_command;
  5930. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5931. current_command += 2; // skip N[-0-9]
  5932. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5933. while (*current_command == ' ') ++current_command; // skip [ ]*
  5934. }
  5935. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5936. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5937. char *cmd_ptr = current_command;
  5938. // Get the command code, which must be G, M, or T
  5939. char command_code = *cmd_ptr++;
  5940. // Skip spaces to get the numeric part
  5941. while (*cmd_ptr == ' ') cmd_ptr++;
  5942. uint16_t codenum = 0; // define ahead of goto
  5943. // Bail early if there's no code
  5944. bool code_is_good = NUMERIC(*cmd_ptr);
  5945. if (!code_is_good) goto ExitUnknownCommand;
  5946. // Get and skip the code number
  5947. do {
  5948. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5949. cmd_ptr++;
  5950. } while (NUMERIC(*cmd_ptr));
  5951. // Skip all spaces to get to the first argument, or nul
  5952. while (*cmd_ptr == ' ') cmd_ptr++;
  5953. // The command's arguments (if any) start here, for sure!
  5954. current_command_args = cmd_ptr;
  5955. KEEPALIVE_STATE(IN_HANDLER);
  5956. // Handle a known G, M, or T
  5957. switch (command_code) {
  5958. case 'G': switch (codenum) {
  5959. // G0, G1
  5960. case 0:
  5961. case 1:
  5962. gcode_G0_G1();
  5963. break;
  5964. // G2, G3
  5965. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5966. case 2: // G2 - CW ARC
  5967. case 3: // G3 - CCW ARC
  5968. gcode_G2_G3(codenum == 2);
  5969. break;
  5970. #endif
  5971. // G4 Dwell
  5972. case 4:
  5973. gcode_G4();
  5974. break;
  5975. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5976. // G5
  5977. case 5: // G5 - Cubic B_spline
  5978. gcode_G5();
  5979. break;
  5980. #endif // BEZIER_CURVE_SUPPORT
  5981. #if ENABLED(FWRETRACT)
  5982. case 10: // G10: retract
  5983. case 11: // G11: retract_recover
  5984. gcode_G10_G11(codenum == 10);
  5985. break;
  5986. #endif // FWRETRACT
  5987. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  5988. case 12:
  5989. gcode_G12(); // G12: Nozzle Clean
  5990. break;
  5991. #endif // NOZZLE_CLEAN_FEATURE
  5992. #if ENABLED(INCH_MODE_SUPPORT)
  5993. case 20: //G20: Inch Mode
  5994. gcode_G20();
  5995. break;
  5996. case 21: //G21: MM Mode
  5997. gcode_G21();
  5998. break;
  5999. #endif // INCH_MODE_SUPPORT
  6000. #if ENABLED(NOZZLE_PARK_FEATURE)
  6001. case 27: // G27: Nozzle Park
  6002. gcode_G27();
  6003. break;
  6004. #endif // NOZZLE_PARK_FEATURE
  6005. case 28: // G28: Home all axes, one at a time
  6006. gcode_G28();
  6007. break;
  6008. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6009. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6010. gcode_G29();
  6011. break;
  6012. #endif // AUTO_BED_LEVELING_FEATURE
  6013. #if HAS_BED_PROBE
  6014. case 30: // G30 Single Z probe
  6015. gcode_G30();
  6016. break;
  6017. #if ENABLED(Z_PROBE_SLED)
  6018. case 31: // G31: dock the sled
  6019. gcode_G31();
  6020. break;
  6021. case 32: // G32: undock the sled
  6022. gcode_G32();
  6023. break;
  6024. #endif // Z_PROBE_SLED
  6025. #endif // HAS_BED_PROBE
  6026. case 90: // G90
  6027. relative_mode = false;
  6028. break;
  6029. case 91: // G91
  6030. relative_mode = true;
  6031. break;
  6032. case 92: // G92
  6033. gcode_G92();
  6034. break;
  6035. }
  6036. break;
  6037. case 'M': switch (codenum) {
  6038. #if ENABLED(ULTIPANEL)
  6039. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6040. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6041. gcode_M0_M1();
  6042. break;
  6043. #endif // ULTIPANEL
  6044. case 17:
  6045. gcode_M17();
  6046. break;
  6047. #if ENABLED(SDSUPPORT)
  6048. case 20: // M20 - list SD card
  6049. gcode_M20(); break;
  6050. case 21: // M21 - init SD card
  6051. gcode_M21(); break;
  6052. case 22: //M22 - release SD card
  6053. gcode_M22(); break;
  6054. case 23: //M23 - Select file
  6055. gcode_M23(); break;
  6056. case 24: //M24 - Start SD print
  6057. gcode_M24(); break;
  6058. case 25: //M25 - Pause SD print
  6059. gcode_M25(); break;
  6060. case 26: //M26 - Set SD index
  6061. gcode_M26(); break;
  6062. case 27: //M27 - Get SD status
  6063. gcode_M27(); break;
  6064. case 28: //M28 - Start SD write
  6065. gcode_M28(); break;
  6066. case 29: //M29 - Stop SD write
  6067. gcode_M29(); break;
  6068. case 30: //M30 <filename> Delete File
  6069. gcode_M30(); break;
  6070. case 32: //M32 - Select file and start SD print
  6071. gcode_M32(); break;
  6072. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6073. case 33: //M33 - Get the long full path to a file or folder
  6074. gcode_M33(); break;
  6075. #endif // LONG_FILENAME_HOST_SUPPORT
  6076. case 928: //M928 - Start SD write
  6077. gcode_M928(); break;
  6078. #endif //SDSUPPORT
  6079. case 31: //M31 take time since the start of the SD print or an M109 command
  6080. gcode_M31();
  6081. break;
  6082. case 42: //M42 -Change pin status via gcode
  6083. gcode_M42();
  6084. break;
  6085. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6086. case 48: // M48 Z probe repeatability
  6087. gcode_M48();
  6088. break;
  6089. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6090. case 75: // Start print timer
  6091. gcode_M75();
  6092. break;
  6093. case 76: // Pause print timer
  6094. gcode_M76();
  6095. break;
  6096. case 77: // Stop print timer
  6097. gcode_M77();
  6098. break;
  6099. #if ENABLED(PRINTCOUNTER)
  6100. case 78: // Show print statistics
  6101. gcode_M78();
  6102. break;
  6103. #endif
  6104. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6105. case 100:
  6106. gcode_M100();
  6107. break;
  6108. #endif
  6109. case 104: // M104
  6110. gcode_M104();
  6111. break;
  6112. case 110: // M110: Set Current Line Number
  6113. gcode_M110();
  6114. break;
  6115. case 111: // M111: Set debug level
  6116. gcode_M111();
  6117. break;
  6118. #if DISABLED(EMERGENCY_PARSER)
  6119. case 108: // M108: Cancel Waiting
  6120. gcode_M108();
  6121. break;
  6122. case 112: // M112: Emergency Stop
  6123. gcode_M112();
  6124. break;
  6125. case 410: // M410 quickstop - Abort all the planned moves.
  6126. gcode_M410();
  6127. break;
  6128. #endif
  6129. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6130. case 113: // M113: Set Host Keepalive interval
  6131. gcode_M113();
  6132. break;
  6133. #endif
  6134. case 140: // M140: Set bed temp
  6135. gcode_M140();
  6136. break;
  6137. case 105: // M105: Read current temperature
  6138. gcode_M105();
  6139. KEEPALIVE_STATE(NOT_BUSY);
  6140. return; // "ok" already printed
  6141. case 109: // M109: Wait for temperature
  6142. gcode_M109();
  6143. break;
  6144. #if HAS_TEMP_BED
  6145. case 190: // M190: Wait for bed heater to reach target
  6146. gcode_M190();
  6147. break;
  6148. #endif // HAS_TEMP_BED
  6149. #if FAN_COUNT > 0
  6150. case 106: // M106: Fan On
  6151. gcode_M106();
  6152. break;
  6153. case 107: // M107: Fan Off
  6154. gcode_M107();
  6155. break;
  6156. #endif // FAN_COUNT > 0
  6157. #if ENABLED(BARICUDA)
  6158. // PWM for HEATER_1_PIN
  6159. #if HAS_HEATER_1
  6160. case 126: // M126: valve open
  6161. gcode_M126();
  6162. break;
  6163. case 127: // M127: valve closed
  6164. gcode_M127();
  6165. break;
  6166. #endif // HAS_HEATER_1
  6167. // PWM for HEATER_2_PIN
  6168. #if HAS_HEATER_2
  6169. case 128: // M128: valve open
  6170. gcode_M128();
  6171. break;
  6172. case 129: // M129: valve closed
  6173. gcode_M129();
  6174. break;
  6175. #endif // HAS_HEATER_2
  6176. #endif // BARICUDA
  6177. #if HAS_POWER_SWITCH
  6178. case 80: // M80: Turn on Power Supply
  6179. gcode_M80();
  6180. break;
  6181. #endif // HAS_POWER_SWITCH
  6182. case 81: // M81: Turn off Power, including Power Supply, if possible
  6183. gcode_M81();
  6184. break;
  6185. case 82:
  6186. gcode_M82();
  6187. break;
  6188. case 83:
  6189. gcode_M83();
  6190. break;
  6191. case 18: // (for compatibility)
  6192. case 84: // M84
  6193. gcode_M18_M84();
  6194. break;
  6195. case 85: // M85
  6196. gcode_M85();
  6197. break;
  6198. case 92: // M92: Set the steps-per-unit for one or more axes
  6199. gcode_M92();
  6200. break;
  6201. case 115: // M115: Report capabilities
  6202. gcode_M115();
  6203. break;
  6204. case 117: // M117: Set LCD message text, if possible
  6205. gcode_M117();
  6206. break;
  6207. case 114: // M114: Report current position
  6208. gcode_M114();
  6209. break;
  6210. case 120: // M120: Enable endstops
  6211. gcode_M120();
  6212. break;
  6213. case 121: // M121: Disable endstops
  6214. gcode_M121();
  6215. break;
  6216. case 119: // M119: Report endstop states
  6217. gcode_M119();
  6218. break;
  6219. #if ENABLED(ULTIPANEL)
  6220. case 145: // M145: Set material heatup parameters
  6221. gcode_M145();
  6222. break;
  6223. #endif
  6224. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6225. case 149:
  6226. gcode_M149();
  6227. break;
  6228. #endif
  6229. #if ENABLED(BLINKM)
  6230. case 150: // M150
  6231. gcode_M150();
  6232. break;
  6233. #endif //BLINKM
  6234. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6235. case 155:
  6236. gcode_M155();
  6237. break;
  6238. case 156:
  6239. gcode_M156();
  6240. break;
  6241. #endif //EXPERIMENTAL_I2CBUS
  6242. #if ENABLED(MIXING_EXTRUDER)
  6243. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6244. gcode_M163();
  6245. break;
  6246. #if MIXING_VIRTUAL_TOOLS > 1
  6247. case 164: // M164 S<int> save current mix as a virtual extruder
  6248. gcode_M164();
  6249. break;
  6250. #endif
  6251. #if ENABLED(DIRECT_MIXING_IN_G1)
  6252. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6253. gcode_M165();
  6254. break;
  6255. #endif
  6256. #endif
  6257. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6258. gcode_M200();
  6259. break;
  6260. case 201: // M201
  6261. gcode_M201();
  6262. break;
  6263. #if 0 // Not used for Sprinter/grbl gen6
  6264. case 202: // M202
  6265. gcode_M202();
  6266. break;
  6267. #endif
  6268. case 203: // M203 max feedrate units/sec
  6269. gcode_M203();
  6270. break;
  6271. case 204: // M204 acclereration S normal moves T filmanent only moves
  6272. gcode_M204();
  6273. break;
  6274. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6275. gcode_M205();
  6276. break;
  6277. case 206: // M206 additional homing offset
  6278. gcode_M206();
  6279. break;
  6280. #if ENABLED(DELTA)
  6281. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6282. gcode_M665();
  6283. break;
  6284. #endif
  6285. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6286. case 666: // M666 set delta / dual endstop adjustment
  6287. gcode_M666();
  6288. break;
  6289. #endif
  6290. #if ENABLED(FWRETRACT)
  6291. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6292. gcode_M207();
  6293. break;
  6294. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6295. gcode_M208();
  6296. break;
  6297. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6298. gcode_M209();
  6299. break;
  6300. #endif // FWRETRACT
  6301. #if HOTENDS > 1
  6302. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6303. gcode_M218();
  6304. break;
  6305. #endif
  6306. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6307. gcode_M220();
  6308. break;
  6309. case 221: // M221 - Set Flow Percentage: S<percent>
  6310. gcode_M221();
  6311. break;
  6312. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6313. gcode_M226();
  6314. break;
  6315. #if HAS_SERVOS
  6316. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6317. gcode_M280();
  6318. break;
  6319. #endif // HAS_SERVOS
  6320. #if HAS_BUZZER
  6321. case 300: // M300 - Play beep tone
  6322. gcode_M300();
  6323. break;
  6324. #endif // HAS_BUZZER
  6325. #if ENABLED(PIDTEMP)
  6326. case 301: // M301
  6327. gcode_M301();
  6328. break;
  6329. #endif // PIDTEMP
  6330. #if ENABLED(PIDTEMPBED)
  6331. case 304: // M304
  6332. gcode_M304();
  6333. break;
  6334. #endif // PIDTEMPBED
  6335. #if defined(CHDK) || HAS_PHOTOGRAPH
  6336. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6337. gcode_M240();
  6338. break;
  6339. #endif // CHDK || PHOTOGRAPH_PIN
  6340. #if HAS_LCD_CONTRAST
  6341. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6342. gcode_M250();
  6343. break;
  6344. #endif // HAS_LCD_CONTRAST
  6345. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6346. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6347. gcode_M302();
  6348. break;
  6349. #endif // PREVENT_DANGEROUS_EXTRUDE
  6350. case 303: // M303 PID autotune
  6351. gcode_M303();
  6352. break;
  6353. #if ENABLED(SCARA)
  6354. case 360: // M360 SCARA Theta pos1
  6355. if (gcode_M360()) return;
  6356. break;
  6357. case 361: // M361 SCARA Theta pos2
  6358. if (gcode_M361()) return;
  6359. break;
  6360. case 362: // M362 SCARA Psi pos1
  6361. if (gcode_M362()) return;
  6362. break;
  6363. case 363: // M363 SCARA Psi pos2
  6364. if (gcode_M363()) return;
  6365. break;
  6366. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6367. if (gcode_M364()) return;
  6368. break;
  6369. case 365: // M365 Set SCARA scaling for X Y Z
  6370. gcode_M365();
  6371. break;
  6372. #endif // SCARA
  6373. case 400: // M400 finish all moves
  6374. gcode_M400();
  6375. break;
  6376. #if HAS_BED_PROBE
  6377. case 401:
  6378. gcode_M401();
  6379. break;
  6380. case 402:
  6381. gcode_M402();
  6382. break;
  6383. #endif // HAS_BED_PROBE
  6384. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6385. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6386. gcode_M404();
  6387. break;
  6388. case 405: //M405 Turn on filament sensor for control
  6389. gcode_M405();
  6390. break;
  6391. case 406: //M406 Turn off filament sensor for control
  6392. gcode_M406();
  6393. break;
  6394. case 407: //M407 Display measured filament diameter
  6395. gcode_M407();
  6396. break;
  6397. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6398. #if ENABLED(MESH_BED_LEVELING)
  6399. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6400. gcode_M420();
  6401. break;
  6402. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6403. gcode_M421();
  6404. break;
  6405. #endif
  6406. case 428: // M428 Apply current_position to home_offset
  6407. gcode_M428();
  6408. break;
  6409. case 500: // M500 Store settings in EEPROM
  6410. gcode_M500();
  6411. break;
  6412. case 501: // M501 Read settings from EEPROM
  6413. gcode_M501();
  6414. break;
  6415. case 502: // M502 Revert to default settings
  6416. gcode_M502();
  6417. break;
  6418. case 503: // M503 print settings currently in memory
  6419. gcode_M503();
  6420. break;
  6421. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6422. case 540:
  6423. gcode_M540();
  6424. break;
  6425. #endif
  6426. #if HAS_BED_PROBE
  6427. case 851:
  6428. gcode_M851();
  6429. break;
  6430. #endif // HAS_BED_PROBE
  6431. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6432. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6433. gcode_M600();
  6434. break;
  6435. #endif // FILAMENT_CHANGE_FEATURE
  6436. #if ENABLED(DUAL_X_CARRIAGE)
  6437. case 605:
  6438. gcode_M605();
  6439. break;
  6440. #endif // DUAL_X_CARRIAGE
  6441. #if ENABLED(LIN_ADVANCE)
  6442. case 905: // M905 Set advance factor.
  6443. gcode_M905();
  6444. break;
  6445. #endif
  6446. case 907: // M907 Set digital trimpot motor current using axis codes.
  6447. gcode_M907();
  6448. break;
  6449. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6450. case 908: // M908 Control digital trimpot directly.
  6451. gcode_M908();
  6452. break;
  6453. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6454. case 909: // M909 Print digipot/DAC current value
  6455. gcode_M909();
  6456. break;
  6457. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6458. gcode_M910();
  6459. break;
  6460. #endif
  6461. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6462. #if HAS_MICROSTEPS
  6463. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6464. gcode_M350();
  6465. break;
  6466. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6467. gcode_M351();
  6468. break;
  6469. #endif // HAS_MICROSTEPS
  6470. case 999: // M999: Restart after being Stopped
  6471. gcode_M999();
  6472. break;
  6473. }
  6474. break;
  6475. case 'T':
  6476. gcode_T(codenum);
  6477. break;
  6478. default: code_is_good = false;
  6479. }
  6480. KEEPALIVE_STATE(NOT_BUSY);
  6481. ExitUnknownCommand:
  6482. // Still unknown command? Throw an error
  6483. if (!code_is_good) unknown_command_error();
  6484. ok_to_send();
  6485. }
  6486. void FlushSerialRequestResend() {
  6487. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6488. MYSERIAL.flush();
  6489. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6490. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6491. ok_to_send();
  6492. }
  6493. void ok_to_send() {
  6494. refresh_cmd_timeout();
  6495. if (!send_ok[cmd_queue_index_r]) return;
  6496. SERIAL_PROTOCOLPGM(MSG_OK);
  6497. #if ENABLED(ADVANCED_OK)
  6498. char* p = command_queue[cmd_queue_index_r];
  6499. if (*p == 'N') {
  6500. SERIAL_PROTOCOL(' ');
  6501. SERIAL_ECHO(*p++);
  6502. while (NUMERIC_SIGNED(*p))
  6503. SERIAL_ECHO(*p++);
  6504. }
  6505. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6506. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6507. #endif
  6508. SERIAL_EOL;
  6509. }
  6510. void clamp_to_software_endstops(float target[3]) {
  6511. if (min_software_endstops) {
  6512. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6513. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6514. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6515. }
  6516. if (max_software_endstops) {
  6517. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6518. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6519. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6520. }
  6521. }
  6522. #if ENABLED(DELTA)
  6523. void recalc_delta_settings(float radius, float diagonal_rod) {
  6524. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6525. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6526. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6527. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6528. delta_tower3_x = 0.0; // back middle tower
  6529. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6530. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6531. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6532. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6533. }
  6534. void calculate_delta(float cartesian[3]) {
  6535. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6536. - sq(delta_tower1_x - cartesian[X_AXIS])
  6537. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6538. ) + cartesian[Z_AXIS];
  6539. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6540. - sq(delta_tower2_x - cartesian[X_AXIS])
  6541. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6542. ) + cartesian[Z_AXIS];
  6543. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6544. - sq(delta_tower3_x - cartesian[X_AXIS])
  6545. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6546. ) + cartesian[Z_AXIS];
  6547. /**
  6548. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6549. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6550. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6551. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6552. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6553. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6554. */
  6555. }
  6556. float delta_safe_distance_from_top() {
  6557. float cartesian[3] = { 0 };
  6558. calculate_delta(cartesian);
  6559. float distance = delta[TOWER_3];
  6560. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  6561. calculate_delta(cartesian);
  6562. return abs(distance - delta[TOWER_3]);
  6563. }
  6564. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6565. // Adjust print surface height by linear interpolation over the bed_level array.
  6566. void adjust_delta(float cartesian[3]) {
  6567. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6568. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6569. float h1 = 0.001 - half, h2 = half - 0.001,
  6570. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6571. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6572. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6573. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6574. z1 = bed_level[floor_x + half][floor_y + half],
  6575. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6576. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6577. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6578. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6579. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6580. offset = (1 - ratio_x) * left + ratio_x * right;
  6581. delta[X_AXIS] += offset;
  6582. delta[Y_AXIS] += offset;
  6583. delta[Z_AXIS] += offset;
  6584. /**
  6585. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6586. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6587. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6588. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6589. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6590. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6591. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6592. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6593. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6594. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6595. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6596. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6597. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6598. */
  6599. }
  6600. #endif // AUTO_BED_LEVELING_FEATURE
  6601. #endif // DELTA
  6602. #if ENABLED(MESH_BED_LEVELING)
  6603. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6604. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6605. if (!mbl.active()) {
  6606. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6607. set_current_to_destination();
  6608. return;
  6609. }
  6610. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6611. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6612. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6613. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6614. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6615. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6616. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6617. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6618. if (pcx == cx && pcy == cy) {
  6619. // Start and end on same mesh square
  6620. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6621. set_current_to_destination();
  6622. return;
  6623. }
  6624. float nx, ny, nz, ne, normalized_dist;
  6625. if (cx > pcx && TEST(x_splits, cx)) {
  6626. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6627. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6628. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6629. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6630. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6631. CBI(x_splits, cx);
  6632. }
  6633. else if (cx < pcx && TEST(x_splits, pcx)) {
  6634. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6635. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6636. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6637. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6638. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6639. CBI(x_splits, pcx);
  6640. }
  6641. else if (cy > pcy && TEST(y_splits, cy)) {
  6642. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6643. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6644. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6645. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6646. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6647. CBI(y_splits, cy);
  6648. }
  6649. else if (cy < pcy && TEST(y_splits, pcy)) {
  6650. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6651. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6652. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6653. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6654. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6655. CBI(y_splits, pcy);
  6656. }
  6657. else {
  6658. // Already split on a border
  6659. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6660. set_current_to_destination();
  6661. return;
  6662. }
  6663. // Do the split and look for more borders
  6664. destination[X_AXIS] = nx;
  6665. destination[Y_AXIS] = ny;
  6666. destination[Z_AXIS] = nz;
  6667. destination[E_AXIS] = ne;
  6668. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6669. destination[X_AXIS] = x;
  6670. destination[Y_AXIS] = y;
  6671. destination[Z_AXIS] = z;
  6672. destination[E_AXIS] = e;
  6673. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6674. }
  6675. #endif // MESH_BED_LEVELING
  6676. #if ENABLED(DELTA) || ENABLED(SCARA)
  6677. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6678. float difference[NUM_AXIS];
  6679. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6680. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6681. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6682. if (cartesian_mm < 0.000001) return false;
  6683. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6684. float seconds = cartesian_mm / _feedrate;
  6685. int steps = max(1, int(delta_segments_per_second * seconds));
  6686. float inv_steps = 1.0/steps;
  6687. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6688. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6689. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6690. for (int s = 1; s <= steps; s++) {
  6691. float fraction = float(s) * inv_steps;
  6692. for (int8_t i = 0; i < NUM_AXIS; i++)
  6693. target[i] = current_position[i] + difference[i] * fraction;
  6694. calculate_delta(target);
  6695. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6696. if (!bed_leveling_in_progress) adjust_delta(target);
  6697. #endif
  6698. //DEBUG_POS("prepare_delta_move_to", target);
  6699. //DEBUG_POS("prepare_delta_move_to", delta);
  6700. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6701. }
  6702. return true;
  6703. }
  6704. #endif // DELTA || SCARA
  6705. #if ENABLED(SCARA)
  6706. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6707. #endif
  6708. #if ENABLED(DUAL_X_CARRIAGE)
  6709. inline bool prepare_move_to_destination_dualx() {
  6710. if (active_extruder_parked) {
  6711. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6712. // move duplicate extruder into correct duplication position.
  6713. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6714. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6715. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6716. SYNC_PLAN_POSITION_KINEMATIC();
  6717. stepper.synchronize();
  6718. extruder_duplication_enabled = true;
  6719. active_extruder_parked = false;
  6720. }
  6721. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6722. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6723. // This is a travel move (with no extrusion)
  6724. // Skip it, but keep track of the current position
  6725. // (so it can be used as the start of the next non-travel move)
  6726. if (delayed_move_time != 0xFFFFFFFFUL) {
  6727. set_current_to_destination();
  6728. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6729. delayed_move_time = millis();
  6730. return false;
  6731. }
  6732. }
  6733. delayed_move_time = 0;
  6734. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6735. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6736. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6737. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6738. active_extruder_parked = false;
  6739. }
  6740. }
  6741. return true;
  6742. }
  6743. #endif // DUAL_X_CARRIAGE
  6744. #if DISABLED(DELTA) && DISABLED(SCARA)
  6745. inline bool prepare_move_to_destination_cartesian() {
  6746. // Do not use feedrate_multiplier for E or Z only moves
  6747. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6748. line_to_destination();
  6749. }
  6750. else {
  6751. #if ENABLED(MESH_BED_LEVELING)
  6752. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6753. return false;
  6754. #else
  6755. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6756. #endif
  6757. }
  6758. return true;
  6759. }
  6760. #endif // !DELTA && !SCARA
  6761. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6762. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6763. if (DEBUGGING(DRYRUN)) return;
  6764. float de = dest_e - curr_e;
  6765. if (de) {
  6766. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6767. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6768. SERIAL_ECHO_START;
  6769. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6770. }
  6771. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6772. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6773. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6774. SERIAL_ECHO_START;
  6775. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6776. }
  6777. #endif
  6778. }
  6779. }
  6780. #endif // PREVENT_DANGEROUS_EXTRUDE
  6781. /**
  6782. * Prepare a single move and get ready for the next one
  6783. *
  6784. * (This may call planner.buffer_line several times to put
  6785. * smaller moves into the planner for DELTA or SCARA.)
  6786. */
  6787. void prepare_move_to_destination() {
  6788. clamp_to_software_endstops(destination);
  6789. refresh_cmd_timeout();
  6790. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6791. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6792. #endif
  6793. #if ENABLED(SCARA)
  6794. if (!prepare_scara_move_to(destination)) return;
  6795. #elif ENABLED(DELTA)
  6796. if (!prepare_delta_move_to(destination)) return;
  6797. #else
  6798. #if ENABLED(DUAL_X_CARRIAGE)
  6799. if (!prepare_move_to_destination_dualx()) return;
  6800. #endif
  6801. if (!prepare_move_to_destination_cartesian()) return;
  6802. #endif
  6803. set_current_to_destination();
  6804. }
  6805. #if ENABLED(ARC_SUPPORT)
  6806. /**
  6807. * Plan an arc in 2 dimensions
  6808. *
  6809. * The arc is approximated by generating many small linear segments.
  6810. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6811. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6812. * larger segments will tend to be more efficient. Your slicer should have
  6813. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6814. */
  6815. void plan_arc(
  6816. float target[NUM_AXIS], // Destination position
  6817. float* offset, // Center of rotation relative to current_position
  6818. uint8_t clockwise // Clockwise?
  6819. ) {
  6820. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6821. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6822. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6823. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6824. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6825. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6826. r_Y = -offset[Y_AXIS],
  6827. rt_X = target[X_AXIS] - center_X,
  6828. rt_Y = target[Y_AXIS] - center_Y;
  6829. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6830. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6831. if (angular_travel < 0) angular_travel += RADIANS(360);
  6832. if (clockwise) angular_travel -= RADIANS(360);
  6833. // Make a circle if the angular rotation is 0
  6834. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6835. angular_travel += RADIANS(360);
  6836. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6837. if (mm_of_travel < 0.001) return;
  6838. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6839. if (segments == 0) segments = 1;
  6840. float theta_per_segment = angular_travel / segments;
  6841. float linear_per_segment = linear_travel / segments;
  6842. float extruder_per_segment = extruder_travel / segments;
  6843. /**
  6844. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6845. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6846. * r_T = [cos(phi) -sin(phi);
  6847. * sin(phi) cos(phi] * r ;
  6848. *
  6849. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6850. * defined from the circle center to the initial position. Each line segment is formed by successive
  6851. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6852. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6853. * all double numbers are single precision on the Arduino. (True double precision will not have
  6854. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6855. * tool precision in some cases. Therefore, arc path correction is implemented.
  6856. *
  6857. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6858. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6859. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6860. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6861. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6862. * issue for CNC machines with the single precision Arduino calculations.
  6863. *
  6864. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6865. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6866. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6867. * This is important when there are successive arc motions.
  6868. */
  6869. // Vector rotation matrix values
  6870. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6871. float sin_T = theta_per_segment;
  6872. float arc_target[NUM_AXIS];
  6873. float sin_Ti, cos_Ti, r_new_Y;
  6874. uint16_t i;
  6875. int8_t count = 0;
  6876. // Initialize the linear axis
  6877. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6878. // Initialize the extruder axis
  6879. arc_target[E_AXIS] = current_position[E_AXIS];
  6880. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6881. millis_t next_idle_ms = millis() + 200UL;
  6882. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6883. thermalManager.manage_heater();
  6884. millis_t now = millis();
  6885. if (ELAPSED(now, next_idle_ms)) {
  6886. next_idle_ms = now + 200UL;
  6887. idle();
  6888. }
  6889. if (++count < N_ARC_CORRECTION) {
  6890. // Apply vector rotation matrix to previous r_X / 1
  6891. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6892. r_X = r_X * cos_T - r_Y * sin_T;
  6893. r_Y = r_new_Y;
  6894. }
  6895. else {
  6896. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6897. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6898. // To reduce stuttering, the sin and cos could be computed at different times.
  6899. // For now, compute both at the same time.
  6900. cos_Ti = cos(i * theta_per_segment);
  6901. sin_Ti = sin(i * theta_per_segment);
  6902. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6903. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6904. count = 0;
  6905. }
  6906. // Update arc_target location
  6907. arc_target[X_AXIS] = center_X + r_X;
  6908. arc_target[Y_AXIS] = center_Y + r_Y;
  6909. arc_target[Z_AXIS] += linear_per_segment;
  6910. arc_target[E_AXIS] += extruder_per_segment;
  6911. clamp_to_software_endstops(arc_target);
  6912. #if ENABLED(DELTA) || ENABLED(SCARA)
  6913. calculate_delta(arc_target);
  6914. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6915. adjust_delta(arc_target);
  6916. #endif
  6917. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6918. #else
  6919. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6920. #endif
  6921. }
  6922. // Ensure last segment arrives at target location.
  6923. #if ENABLED(DELTA) || ENABLED(SCARA)
  6924. calculate_delta(target);
  6925. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6926. adjust_delta(target);
  6927. #endif
  6928. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6929. #else
  6930. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6931. #endif
  6932. // As far as the parser is concerned, the position is now == target. In reality the
  6933. // motion control system might still be processing the action and the real tool position
  6934. // in any intermediate location.
  6935. set_current_to_destination();
  6936. }
  6937. #endif
  6938. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6939. void plan_cubic_move(const float offset[4]) {
  6940. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6941. // As far as the parser is concerned, the position is now == target. In reality the
  6942. // motion control system might still be processing the action and the real tool position
  6943. // in any intermediate location.
  6944. set_current_to_destination();
  6945. }
  6946. #endif // BEZIER_CURVE_SUPPORT
  6947. #if HAS_CONTROLLERFAN
  6948. void controllerFan() {
  6949. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6950. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6951. millis_t ms = millis();
  6952. if (ELAPSED(ms, nextMotorCheck)) {
  6953. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6954. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6955. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6956. #if E_STEPPERS > 1
  6957. || E1_ENABLE_READ == E_ENABLE_ON
  6958. #if HAS_X2_ENABLE
  6959. || X2_ENABLE_READ == X_ENABLE_ON
  6960. #endif
  6961. #if E_STEPPERS > 2
  6962. || E2_ENABLE_READ == E_ENABLE_ON
  6963. #if E_STEPPERS > 3
  6964. || E3_ENABLE_READ == E_ENABLE_ON
  6965. #endif
  6966. #endif
  6967. #endif
  6968. ) {
  6969. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6970. }
  6971. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6972. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6973. // allows digital or PWM fan output to be used (see M42 handling)
  6974. digitalWrite(CONTROLLERFAN_PIN, speed);
  6975. analogWrite(CONTROLLERFAN_PIN, speed);
  6976. }
  6977. }
  6978. #endif // HAS_CONTROLLERFAN
  6979. #if ENABLED(SCARA)
  6980. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6981. // Perform forward kinematics, and place results in delta[3]
  6982. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6983. float x_sin, x_cos, y_sin, y_cos;
  6984. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6985. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6986. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6987. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6988. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6989. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6990. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6991. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6992. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6993. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6994. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6995. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6996. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6997. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6998. }
  6999. void calculate_delta(float cartesian[3]) {
  7000. //reverse kinematics.
  7001. // Perform reversed kinematics, and place results in delta[3]
  7002. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7003. float SCARA_pos[2];
  7004. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7005. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7006. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7007. #if (Linkage_1 == Linkage_2)
  7008. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7009. #else
  7010. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7011. #endif
  7012. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7013. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7014. SCARA_K2 = Linkage_2 * SCARA_S2;
  7015. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7016. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7017. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7018. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7019. delta[Z_AXIS] = cartesian[Z_AXIS];
  7020. /**
  7021. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7022. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7023. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7024. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7025. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7026. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7027. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7028. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7029. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7030. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7031. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7032. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7033. SERIAL_EOL;
  7034. */
  7035. }
  7036. #endif // SCARA
  7037. #if ENABLED(TEMP_STAT_LEDS)
  7038. static bool red_led = false;
  7039. static millis_t next_status_led_update_ms = 0;
  7040. void handle_status_leds(void) {
  7041. float max_temp = 0.0;
  7042. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7043. next_status_led_update_ms += 500; // Update every 0.5s
  7044. HOTEND_LOOP() {
  7045. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7046. }
  7047. #if HAS_TEMP_BED
  7048. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7049. #endif
  7050. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7051. if (new_led != red_led) {
  7052. red_led = new_led;
  7053. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7054. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7055. }
  7056. }
  7057. }
  7058. #endif
  7059. void enable_all_steppers() {
  7060. enable_x();
  7061. enable_y();
  7062. enable_z();
  7063. enable_e0();
  7064. enable_e1();
  7065. enable_e2();
  7066. enable_e3();
  7067. }
  7068. void disable_all_steppers() {
  7069. disable_x();
  7070. disable_y();
  7071. disable_z();
  7072. disable_e0();
  7073. disable_e1();
  7074. disable_e2();
  7075. disable_e3();
  7076. }
  7077. /**
  7078. * Standard idle routine keeps the machine alive
  7079. */
  7080. void idle(
  7081. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7082. bool no_stepper_sleep/*=false*/
  7083. #endif
  7084. ) {
  7085. lcd_update();
  7086. host_keepalive();
  7087. manage_inactivity(
  7088. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7089. no_stepper_sleep
  7090. #endif
  7091. );
  7092. thermalManager.manage_heater();
  7093. #if ENABLED(PRINTCOUNTER)
  7094. print_job_timer.tick();
  7095. #endif
  7096. #if HAS_BUZZER
  7097. buzzer.tick();
  7098. #endif
  7099. }
  7100. /**
  7101. * Manage several activities:
  7102. * - Check for Filament Runout
  7103. * - Keep the command buffer full
  7104. * - Check for maximum inactive time between commands
  7105. * - Check for maximum inactive time between stepper commands
  7106. * - Check if pin CHDK needs to go LOW
  7107. * - Check for KILL button held down
  7108. * - Check for HOME button held down
  7109. * - Check if cooling fan needs to be switched on
  7110. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7111. */
  7112. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7113. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7114. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7115. handle_filament_runout();
  7116. #endif
  7117. if (commands_in_queue < BUFSIZE) get_available_commands();
  7118. millis_t ms = millis();
  7119. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7120. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7121. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7122. #if ENABLED(DISABLE_INACTIVE_X)
  7123. disable_x();
  7124. #endif
  7125. #if ENABLED(DISABLE_INACTIVE_Y)
  7126. disable_y();
  7127. #endif
  7128. #if ENABLED(DISABLE_INACTIVE_Z)
  7129. disable_z();
  7130. #endif
  7131. #if ENABLED(DISABLE_INACTIVE_E)
  7132. disable_e0();
  7133. disable_e1();
  7134. disable_e2();
  7135. disable_e3();
  7136. #endif
  7137. }
  7138. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7139. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7140. chdkActive = false;
  7141. WRITE(CHDK, LOW);
  7142. }
  7143. #endif
  7144. #if HAS_KILL
  7145. // Check if the kill button was pressed and wait just in case it was an accidental
  7146. // key kill key press
  7147. // -------------------------------------------------------------------------------
  7148. static int killCount = 0; // make the inactivity button a bit less responsive
  7149. const int KILL_DELAY = 750;
  7150. if (!READ(KILL_PIN))
  7151. killCount++;
  7152. else if (killCount > 0)
  7153. killCount--;
  7154. // Exceeded threshold and we can confirm that it was not accidental
  7155. // KILL the machine
  7156. // ----------------------------------------------------------------
  7157. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7158. #endif
  7159. #if HAS_HOME
  7160. // Check to see if we have to home, use poor man's debouncer
  7161. // ---------------------------------------------------------
  7162. static int homeDebounceCount = 0; // poor man's debouncing count
  7163. const int HOME_DEBOUNCE_DELAY = 2500;
  7164. if (!READ(HOME_PIN)) {
  7165. if (!homeDebounceCount) {
  7166. enqueue_and_echo_commands_P(PSTR("G28"));
  7167. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7168. }
  7169. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7170. homeDebounceCount++;
  7171. else
  7172. homeDebounceCount = 0;
  7173. }
  7174. #endif
  7175. #if HAS_CONTROLLERFAN
  7176. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7177. #endif
  7178. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7179. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7180. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7181. #if ENABLED(SWITCHING_EXTRUDER)
  7182. bool oldstatus = E0_ENABLE_READ;
  7183. enable_e0();
  7184. #else // !SWITCHING_EXTRUDER
  7185. bool oldstatus;
  7186. switch (active_extruder) {
  7187. case 0:
  7188. oldstatus = E0_ENABLE_READ;
  7189. enable_e0();
  7190. break;
  7191. #if E_STEPPERS > 1
  7192. case 1:
  7193. oldstatus = E1_ENABLE_READ;
  7194. enable_e1();
  7195. break;
  7196. #if E_STEPPERS > 2
  7197. case 2:
  7198. oldstatus = E2_ENABLE_READ;
  7199. enable_e2();
  7200. break;
  7201. #if E_STEPPERS > 3
  7202. case 3:
  7203. oldstatus = E3_ENABLE_READ;
  7204. enable_e3();
  7205. break;
  7206. #endif
  7207. #endif
  7208. #endif
  7209. }
  7210. #endif // !SWITCHING_EXTRUDER
  7211. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7212. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7213. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7214. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7215. current_position[E_AXIS] = oldepos;
  7216. destination[E_AXIS] = oldedes;
  7217. planner.set_e_position_mm(oldepos);
  7218. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7219. stepper.synchronize();
  7220. #if ENABLED(SWITCHING_EXTRUDER)
  7221. E0_ENABLE_WRITE(oldstatus);
  7222. #else
  7223. switch (active_extruder) {
  7224. case 0:
  7225. E0_ENABLE_WRITE(oldstatus);
  7226. break;
  7227. #if E_STEPPERS > 1
  7228. case 1:
  7229. E1_ENABLE_WRITE(oldstatus);
  7230. break;
  7231. #if E_STEPPERS > 2
  7232. case 2:
  7233. E2_ENABLE_WRITE(oldstatus);
  7234. break;
  7235. #if E_STEPPERS > 3
  7236. case 3:
  7237. E3_ENABLE_WRITE(oldstatus);
  7238. break;
  7239. #endif
  7240. #endif
  7241. #endif
  7242. }
  7243. #endif // !SWITCHING_EXTRUDER
  7244. }
  7245. #endif // EXTRUDER_RUNOUT_PREVENT
  7246. #if ENABLED(DUAL_X_CARRIAGE)
  7247. // handle delayed move timeout
  7248. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7249. // travel moves have been received so enact them
  7250. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7251. set_destination_to_current();
  7252. prepare_move_to_destination();
  7253. }
  7254. #endif
  7255. #if ENABLED(TEMP_STAT_LEDS)
  7256. handle_status_leds();
  7257. #endif
  7258. planner.check_axes_activity();
  7259. }
  7260. void kill(const char* lcd_msg) {
  7261. SERIAL_ERROR_START;
  7262. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7263. #if ENABLED(ULTRA_LCD)
  7264. kill_screen(lcd_msg);
  7265. #else
  7266. UNUSED(lcd_msg);
  7267. #endif
  7268. for (int i = 5; i--;) delay(100); // Wait a short time
  7269. cli(); // Stop interrupts
  7270. thermalManager.disable_all_heaters();
  7271. disable_all_steppers();
  7272. #if HAS_POWER_SWITCH
  7273. pinMode(PS_ON_PIN, INPUT);
  7274. #endif
  7275. suicide();
  7276. while (1) {
  7277. #if ENABLED(USE_WATCHDOG)
  7278. watchdog_reset();
  7279. #endif
  7280. } // Wait for reset
  7281. }
  7282. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7283. void handle_filament_runout() {
  7284. if (!filament_ran_out) {
  7285. filament_ran_out = true;
  7286. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7287. stepper.synchronize();
  7288. }
  7289. }
  7290. #endif // FILAMENT_RUNOUT_SENSOR
  7291. #if ENABLED(FAST_PWM_FAN)
  7292. void setPwmFrequency(uint8_t pin, int val) {
  7293. val &= 0x07;
  7294. switch (digitalPinToTimer(pin)) {
  7295. #if defined(TCCR0A)
  7296. case TIMER0A:
  7297. case TIMER0B:
  7298. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7299. // TCCR0B |= val;
  7300. break;
  7301. #endif
  7302. #if defined(TCCR1A)
  7303. case TIMER1A:
  7304. case TIMER1B:
  7305. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7306. // TCCR1B |= val;
  7307. break;
  7308. #endif
  7309. #if defined(TCCR2)
  7310. case TIMER2:
  7311. case TIMER2:
  7312. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7313. TCCR2 |= val;
  7314. break;
  7315. #endif
  7316. #if defined(TCCR2A)
  7317. case TIMER2A:
  7318. case TIMER2B:
  7319. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7320. TCCR2B |= val;
  7321. break;
  7322. #endif
  7323. #if defined(TCCR3A)
  7324. case TIMER3A:
  7325. case TIMER3B:
  7326. case TIMER3C:
  7327. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7328. TCCR3B |= val;
  7329. break;
  7330. #endif
  7331. #if defined(TCCR4A)
  7332. case TIMER4A:
  7333. case TIMER4B:
  7334. case TIMER4C:
  7335. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7336. TCCR4B |= val;
  7337. break;
  7338. #endif
  7339. #if defined(TCCR5A)
  7340. case TIMER5A:
  7341. case TIMER5B:
  7342. case TIMER5C:
  7343. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7344. TCCR5B |= val;
  7345. break;
  7346. #endif
  7347. }
  7348. }
  7349. #endif // FAST_PWM_FAN
  7350. void stop() {
  7351. thermalManager.disable_all_heaters();
  7352. if (IsRunning()) {
  7353. Running = false;
  7354. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7355. SERIAL_ERROR_START;
  7356. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7357. LCD_MESSAGEPGM(MSG_STOPPED);
  7358. }
  7359. }
  7360. float calculate_volumetric_multiplier(float diameter) {
  7361. if (!volumetric_enabled || diameter == 0) return 1.0;
  7362. float d2 = diameter * 0.5;
  7363. return 1.0 / (M_PI * d2 * d2);
  7364. }
  7365. void calculate_volumetric_multipliers() {
  7366. for (int i = 0; i < COUNT(filament_size); i++)
  7367. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7368. }