My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

configuration_store.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. #define MAX_EXTRUDERS 4
  41. /**
  42. * V24 EEPROM Layout:
  43. *
  44. * 100 Version (char x4)
  45. * 104 EEPROM Checksum (uint16_t)
  46. *
  47. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  48. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
  49. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  50. * 154 M204 P planner.acceleration (float)
  51. * 158 M204 R planner.retract_acceleration (float)
  52. * 162 M204 T planner.travel_acceleration (float)
  53. * 166 M205 S planner.min_feedrate_mm_s (float)
  54. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 174 M205 B planner.min_segment_time (ulong)
  56. * 178 M205 X planner.max_xy_jerk (float)
  57. * 182 M205 Z planner.max_z_jerk (float)
  58. * 186 M205 E planner.max_e_jerk (float)
  59. * 190 M206 XYZ home_offset (float x3)
  60. *
  61. * Mesh bed leveling:
  62. * 202 M420 S status (uint8)
  63. * 203 z_offset (float)
  64. * 207 mesh_num_x (uint8 as set in firmware)
  65. * 208 mesh_num_y (uint8 as set in firmware)
  66. * 209 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  67. *
  68. * AUTO BED LEVELING
  69. * 245 M851 zprobe_zoffset (float)
  70. *
  71. * DELTA:
  72. * 249 M666 XYZ endstop_adj (float x3)
  73. * 261 M665 R delta_radius (float)
  74. * 265 M665 L delta_diagonal_rod (float)
  75. * 269 M665 S delta_segments_per_second (float)
  76. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  77. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  78. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  79. *
  80. * Z_DUAL_ENDSTOPS:
  81. * 285 M666 Z z_endstop_adj (float)
  82. *
  83. * ULTIPANEL:
  84. * 289 M145 S0 H preheatHotendTemp1 (int)
  85. * 291 M145 S0 B preheatBedTemp1 (int)
  86. * 293 M145 S0 F preheatFanSpeed1 (int)
  87. * 295 M145 S1 H preheatHotendTemp2 (int)
  88. * 297 M145 S1 B preheatBedTemp2 (int)
  89. * 299 M145 S1 F preheatFanSpeed2 (int)
  90. *
  91. * PIDTEMP:
  92. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  93. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  94. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  95. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  96. * 365 M301 L lpq_len (int)
  97. *
  98. * PIDTEMPBED:
  99. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  100. *
  101. * DOGLCD:
  102. * 379 M250 C lcd_contrast (int)
  103. *
  104. * SCARA:
  105. * 381 M365 XYZ axis_scaling (float x3)
  106. *
  107. * FWRETRACT:
  108. * 393 M209 S autoretract_enabled (bool)
  109. * 394 M207 S retract_length (float)
  110. * 398 M207 W retract_length_swap (float)
  111. * 402 M207 F retract_feedrate_mm_s (float)
  112. * 406 M207 Z retract_zlift (float)
  113. * 410 M208 S retract_recover_length (float)
  114. * 414 M208 W retract_recover_length_swap (float)
  115. * 418 M208 F retract_recover_feedrate_mm_s (float)
  116. *
  117. * Volumetric Extrusion:
  118. * 422 M200 D volumetric_enabled (bool)
  119. * 423 M200 T D filament_size (float x4) (T0..3)
  120. *
  121. * 439 This Slot is Available!
  122. *
  123. */
  124. #include "Marlin.h"
  125. #include "language.h"
  126. #include "endstops.h"
  127. #include "planner.h"
  128. #include "temperature.h"
  129. #include "ultralcd.h"
  130. #include "configuration_store.h"
  131. #if ENABLED(MESH_BED_LEVELING)
  132. #include "mesh_bed_leveling.h"
  133. #endif
  134. uint16_t eeprom_checksum;
  135. const char version[4] = EEPROM_VERSION;
  136. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  137. uint8_t c;
  138. while (size--) {
  139. eeprom_write_byte((unsigned char*)pos, *value);
  140. c = eeprom_read_byte((unsigned char*)pos);
  141. if (c != *value) {
  142. SERIAL_ECHO_START;
  143. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  144. }
  145. eeprom_checksum += c;
  146. pos++;
  147. value++;
  148. };
  149. }
  150. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  151. do {
  152. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  153. *value = c;
  154. eeprom_checksum += c;
  155. pos++;
  156. value++;
  157. } while (--size);
  158. }
  159. /**
  160. * Post-process after Retrieve or Reset
  161. */
  162. void Config_Postprocess() {
  163. // steps per s2 needs to be updated to agree with units per s2
  164. planner.reset_acceleration_rates();
  165. #if ENABLED(DELTA)
  166. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  167. #endif
  168. #if ENABLED(PIDTEMP)
  169. thermalManager.updatePID();
  170. #endif
  171. calculate_volumetric_multipliers();
  172. }
  173. #if ENABLED(EEPROM_SETTINGS)
  174. #define DUMMY_PID_VALUE 3000.0f
  175. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  176. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  177. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  178. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  179. /**
  180. * M500 - Store Configuration
  181. */
  182. void Config_StoreSettings() {
  183. float dummy = 0.0f;
  184. char ver[4] = "000";
  185. EEPROM_START();
  186. EEPROM_WRITE(ver); // invalidate data first
  187. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  188. eeprom_checksum = 0; // clear before first "real data"
  189. EEPROM_WRITE(planner.axis_steps_per_mm);
  190. EEPROM_WRITE(planner.max_feedrate_mm_s);
  191. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  192. EEPROM_WRITE(planner.acceleration);
  193. EEPROM_WRITE(planner.retract_acceleration);
  194. EEPROM_WRITE(planner.travel_acceleration);
  195. EEPROM_WRITE(planner.min_feedrate_mm_s);
  196. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  197. EEPROM_WRITE(planner.min_segment_time);
  198. EEPROM_WRITE(planner.max_xy_jerk);
  199. EEPROM_WRITE(planner.max_z_jerk);
  200. EEPROM_WRITE(planner.max_e_jerk);
  201. EEPROM_WRITE(home_offset);
  202. #if ENABLED(MESH_BED_LEVELING)
  203. // Compile time test that sizeof(mbl.z_values) is as expected
  204. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  205. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  206. mesh_num_y = MESH_NUM_Y_POINTS,
  207. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  208. EEPROM_WRITE(dummy_uint8);
  209. EEPROM_WRITE(mbl.z_offset);
  210. EEPROM_WRITE(mesh_num_x);
  211. EEPROM_WRITE(mesh_num_y);
  212. EEPROM_WRITE(mbl.z_values);
  213. #else
  214. // For disabled MBL write a default mesh
  215. uint8_t mesh_num_x = 3,
  216. mesh_num_y = 3,
  217. dummy_uint8 = 0;
  218. dummy = 0.0f;
  219. EEPROM_WRITE(dummy_uint8);
  220. EEPROM_WRITE(dummy);
  221. EEPROM_WRITE(mesh_num_x);
  222. EEPROM_WRITE(mesh_num_y);
  223. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  224. #endif // MESH_BED_LEVELING
  225. #if !HAS_BED_PROBE
  226. float zprobe_zoffset = 0;
  227. #endif
  228. EEPROM_WRITE(zprobe_zoffset);
  229. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  230. #if ENABLED(DELTA)
  231. EEPROM_WRITE(endstop_adj); // 3 floats
  232. EEPROM_WRITE(delta_radius); // 1 float
  233. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  234. EEPROM_WRITE(delta_segments_per_second); // 1 float
  235. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  236. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  237. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  238. #elif ENABLED(Z_DUAL_ENDSTOPS)
  239. EEPROM_WRITE(z_endstop_adj); // 1 float
  240. dummy = 0.0f;
  241. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  242. #else
  243. dummy = 0.0f;
  244. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  245. #endif
  246. #if DISABLED(ULTIPANEL)
  247. int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
  248. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  249. #endif // !ULTIPANEL
  250. EEPROM_WRITE(preheatHotendTemp1);
  251. EEPROM_WRITE(preheatBedTemp1);
  252. EEPROM_WRITE(preheatFanSpeed1);
  253. EEPROM_WRITE(preheatHotendTemp2);
  254. EEPROM_WRITE(preheatBedTemp2);
  255. EEPROM_WRITE(preheatFanSpeed2);
  256. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  257. #if ENABLED(PIDTEMP)
  258. if (e < HOTENDS) {
  259. EEPROM_WRITE(PID_PARAM(Kp, e));
  260. EEPROM_WRITE(PID_PARAM(Ki, e));
  261. EEPROM_WRITE(PID_PARAM(Kd, e));
  262. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  263. EEPROM_WRITE(PID_PARAM(Kc, e));
  264. #else
  265. dummy = 1.0f; // 1.0 = default kc
  266. EEPROM_WRITE(dummy);
  267. #endif
  268. }
  269. else
  270. #endif // !PIDTEMP
  271. {
  272. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  273. EEPROM_WRITE(dummy); // Kp
  274. dummy = 0.0f;
  275. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  276. }
  277. } // Hotends Loop
  278. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  279. int lpq_len = 20;
  280. #endif
  281. EEPROM_WRITE(lpq_len);
  282. #if DISABLED(PIDTEMPBED)
  283. dummy = DUMMY_PID_VALUE;
  284. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  285. #else
  286. EEPROM_WRITE(thermalManager.bedKp);
  287. EEPROM_WRITE(thermalManager.bedKi);
  288. EEPROM_WRITE(thermalManager.bedKd);
  289. #endif
  290. #if !HAS_LCD_CONTRAST
  291. const int lcd_contrast = 32;
  292. #endif
  293. EEPROM_WRITE(lcd_contrast);
  294. #if ENABLED(SCARA)
  295. EEPROM_WRITE(axis_scaling); // 3 floats
  296. #else
  297. dummy = 1.0f;
  298. EEPROM_WRITE(dummy);
  299. #endif
  300. #if ENABLED(FWRETRACT)
  301. EEPROM_WRITE(autoretract_enabled);
  302. EEPROM_WRITE(retract_length);
  303. #if EXTRUDERS > 1
  304. EEPROM_WRITE(retract_length_swap);
  305. #else
  306. dummy = 0.0f;
  307. EEPROM_WRITE(dummy);
  308. #endif
  309. EEPROM_WRITE(retract_feedrate_mm_s);
  310. EEPROM_WRITE(retract_zlift);
  311. EEPROM_WRITE(retract_recover_length);
  312. #if EXTRUDERS > 1
  313. EEPROM_WRITE(retract_recover_length_swap);
  314. #else
  315. dummy = 0.0f;
  316. EEPROM_WRITE(dummy);
  317. #endif
  318. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  319. #endif // FWRETRACT
  320. EEPROM_WRITE(volumetric_enabled);
  321. // Save filament sizes
  322. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  323. if (q < COUNT(filament_size)) dummy = filament_size[q];
  324. EEPROM_WRITE(dummy);
  325. }
  326. uint16_t final_checksum = eeprom_checksum,
  327. eeprom_size = eeprom_index;
  328. eeprom_index = EEPROM_OFFSET;
  329. EEPROM_WRITE(version);
  330. EEPROM_WRITE(final_checksum);
  331. // Report storage size
  332. SERIAL_ECHO_START;
  333. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  334. SERIAL_ECHOLNPGM(" bytes)");
  335. }
  336. /**
  337. * M501 - Retrieve Configuration
  338. */
  339. void Config_RetrieveSettings() {
  340. EEPROM_START();
  341. char stored_ver[4];
  342. EEPROM_READ(stored_ver);
  343. uint16_t stored_checksum;
  344. EEPROM_READ(stored_checksum);
  345. // SERIAL_ECHOPAIR("Version: [", ver);
  346. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  347. // SERIAL_ECHOLNPGM("]");
  348. if (strncmp(version, stored_ver, 3) != 0) {
  349. Config_ResetDefault();
  350. }
  351. else {
  352. float dummy = 0;
  353. eeprom_checksum = 0; // clear before reading first "real data"
  354. // version number match
  355. EEPROM_READ(planner.axis_steps_per_mm);
  356. EEPROM_READ(planner.max_feedrate_mm_s);
  357. EEPROM_READ(planner.max_acceleration_mm_per_s2);
  358. EEPROM_READ(planner.acceleration);
  359. EEPROM_READ(planner.retract_acceleration);
  360. EEPROM_READ(planner.travel_acceleration);
  361. EEPROM_READ(planner.min_feedrate_mm_s);
  362. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  363. EEPROM_READ(planner.min_segment_time);
  364. EEPROM_READ(planner.max_xy_jerk);
  365. EEPROM_READ(planner.max_z_jerk);
  366. EEPROM_READ(planner.max_e_jerk);
  367. EEPROM_READ(home_offset);
  368. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  369. EEPROM_READ(dummy_uint8);
  370. EEPROM_READ(dummy);
  371. EEPROM_READ(mesh_num_x);
  372. EEPROM_READ(mesh_num_y);
  373. #if ENABLED(MESH_BED_LEVELING)
  374. mbl.status = dummy_uint8;
  375. mbl.z_offset = dummy;
  376. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  377. // EEPROM data fits the current mesh
  378. EEPROM_READ(mbl.z_values);
  379. }
  380. else {
  381. // EEPROM data is stale
  382. mbl.reset();
  383. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  384. }
  385. #else
  386. // MBL is disabled - skip the stored data
  387. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  388. #endif // MESH_BED_LEVELING
  389. #if !HAS_BED_PROBE
  390. float zprobe_zoffset = 0;
  391. #endif
  392. EEPROM_READ(zprobe_zoffset);
  393. #if ENABLED(DELTA)
  394. EEPROM_READ(endstop_adj); // 3 floats
  395. EEPROM_READ(delta_radius); // 1 float
  396. EEPROM_READ(delta_diagonal_rod); // 1 float
  397. EEPROM_READ(delta_segments_per_second); // 1 float
  398. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  399. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  400. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  401. #elif ENABLED(Z_DUAL_ENDSTOPS)
  402. EEPROM_READ(z_endstop_adj);
  403. dummy = 0.0f;
  404. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  405. #else
  406. dummy = 0.0f;
  407. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  408. #endif
  409. #if DISABLED(ULTIPANEL)
  410. int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
  411. preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
  412. #endif
  413. EEPROM_READ(preheatHotendTemp1);
  414. EEPROM_READ(preheatBedTemp1);
  415. EEPROM_READ(preheatFanSpeed1);
  416. EEPROM_READ(preheatHotendTemp2);
  417. EEPROM_READ(preheatBedTemp2);
  418. EEPROM_READ(preheatFanSpeed2);
  419. #if ENABLED(PIDTEMP)
  420. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  421. EEPROM_READ(dummy); // Kp
  422. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  423. // do not need to scale PID values as the values in EEPROM are already scaled
  424. PID_PARAM(Kp, e) = dummy;
  425. EEPROM_READ(PID_PARAM(Ki, e));
  426. EEPROM_READ(PID_PARAM(Kd, e));
  427. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  428. EEPROM_READ(PID_PARAM(Kc, e));
  429. #else
  430. EEPROM_READ(dummy);
  431. #endif
  432. }
  433. else {
  434. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  435. }
  436. }
  437. #else // !PIDTEMP
  438. // 4 x 4 = 16 slots for PID parameters
  439. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  440. #endif // !PIDTEMP
  441. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  442. int lpq_len;
  443. #endif
  444. EEPROM_READ(lpq_len);
  445. #if ENABLED(PIDTEMPBED)
  446. EEPROM_READ(dummy); // bedKp
  447. if (dummy != DUMMY_PID_VALUE) {
  448. thermalManager.bedKp = dummy;
  449. EEPROM_READ(thermalManager.bedKi);
  450. EEPROM_READ(thermalManager.bedKd);
  451. }
  452. #else
  453. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  454. #endif
  455. #if !HAS_LCD_CONTRAST
  456. int lcd_contrast;
  457. #endif
  458. EEPROM_READ(lcd_contrast);
  459. #if ENABLED(SCARA)
  460. EEPROM_READ(axis_scaling); // 3 floats
  461. #else
  462. EEPROM_READ(dummy);
  463. #endif
  464. #if ENABLED(FWRETRACT)
  465. EEPROM_READ(autoretract_enabled);
  466. EEPROM_READ(retract_length);
  467. #if EXTRUDERS > 1
  468. EEPROM_READ(retract_length_swap);
  469. #else
  470. EEPROM_READ(dummy);
  471. #endif
  472. EEPROM_READ(retract_feedrate_mm_s);
  473. EEPROM_READ(retract_zlift);
  474. EEPROM_READ(retract_recover_length);
  475. #if EXTRUDERS > 1
  476. EEPROM_READ(retract_recover_length_swap);
  477. #else
  478. EEPROM_READ(dummy);
  479. #endif
  480. EEPROM_READ(retract_recover_feedrate_mm_s);
  481. #endif // FWRETRACT
  482. EEPROM_READ(volumetric_enabled);
  483. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  484. EEPROM_READ(dummy);
  485. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  486. }
  487. if (eeprom_checksum == stored_checksum) {
  488. Config_Postprocess();
  489. SERIAL_ECHO_START;
  490. SERIAL_ECHO(version);
  491. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  492. SERIAL_ECHOLNPGM(" bytes)");
  493. }
  494. else {
  495. SERIAL_ERROR_START;
  496. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  497. Config_ResetDefault();
  498. }
  499. }
  500. #if ENABLED(EEPROM_CHITCHAT)
  501. Config_PrintSettings();
  502. #endif
  503. }
  504. #endif // EEPROM_SETTINGS
  505. /**
  506. * M502 - Reset Configuration
  507. */
  508. void Config_ResetDefault() {
  509. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  510. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  511. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  512. LOOP_XYZE(i) {
  513. planner.axis_steps_per_mm[i] = tmp1[i];
  514. planner.max_feedrate_mm_s[i] = tmp2[i];
  515. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  516. #if ENABLED(SCARA)
  517. if (i < COUNT(axis_scaling))
  518. axis_scaling[i] = 1;
  519. #endif
  520. }
  521. planner.acceleration = DEFAULT_ACCELERATION;
  522. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  523. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  524. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  525. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  526. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  527. planner.max_xy_jerk = DEFAULT_XYJERK;
  528. planner.max_z_jerk = DEFAULT_ZJERK;
  529. planner.max_e_jerk = DEFAULT_EJERK;
  530. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  531. #if ENABLED(MESH_BED_LEVELING)
  532. mbl.reset();
  533. #endif
  534. #if HAS_BED_PROBE
  535. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  536. #endif
  537. #if ENABLED(DELTA)
  538. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  539. delta_radius = DELTA_RADIUS;
  540. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  541. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  542. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  543. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  544. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  545. #elif ENABLED(Z_DUAL_ENDSTOPS)
  546. z_endstop_adj = 0;
  547. #endif
  548. #if ENABLED(ULTIPANEL)
  549. preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
  550. preheatBedTemp1 = PREHEAT_1_TEMP_BED;
  551. preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
  552. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
  553. preheatBedTemp2 = PREHEAT_2_TEMP_BED;
  554. preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  555. #endif
  556. #if HAS_LCD_CONTRAST
  557. lcd_contrast = DEFAULT_LCD_CONTRAST;
  558. #endif
  559. #if ENABLED(PIDTEMP)
  560. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  561. HOTEND_LOOP()
  562. #else
  563. int e = 0; UNUSED(e); // only need to write once
  564. #endif
  565. {
  566. PID_PARAM(Kp, e) = DEFAULT_Kp;
  567. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  568. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  569. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  570. PID_PARAM(Kc, e) = DEFAULT_Kc;
  571. #endif
  572. }
  573. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  574. lpq_len = 20; // default last-position-queue size
  575. #endif
  576. #endif // PIDTEMP
  577. #if ENABLED(PIDTEMPBED)
  578. thermalManager.bedKp = DEFAULT_bedKp;
  579. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  580. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  581. #endif
  582. #if ENABLED(FWRETRACT)
  583. autoretract_enabled = false;
  584. retract_length = RETRACT_LENGTH;
  585. #if EXTRUDERS > 1
  586. retract_length_swap = RETRACT_LENGTH_SWAP;
  587. #endif
  588. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  589. retract_zlift = RETRACT_ZLIFT;
  590. retract_recover_length = RETRACT_RECOVER_LENGTH;
  591. #if EXTRUDERS > 1
  592. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  593. #endif
  594. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  595. #endif
  596. volumetric_enabled = false;
  597. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  598. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  599. endstops.enable_globally(
  600. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  601. (true)
  602. #else
  603. (false)
  604. #endif
  605. );
  606. Config_Postprocess();
  607. SERIAL_ECHO_START;
  608. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  609. }
  610. #if DISABLED(DISABLE_M503)
  611. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  612. /**
  613. * M503 - Print Configuration
  614. */
  615. void Config_PrintSettings(bool forReplay) {
  616. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  617. CONFIG_ECHO_START;
  618. if (!forReplay) {
  619. SERIAL_ECHOLNPGM("Steps per unit:");
  620. CONFIG_ECHO_START;
  621. }
  622. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  623. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  624. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  625. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  626. SERIAL_EOL;
  627. CONFIG_ECHO_START;
  628. #if ENABLED(SCARA)
  629. if (!forReplay) {
  630. SERIAL_ECHOLNPGM("Scaling factors:");
  631. CONFIG_ECHO_START;
  632. }
  633. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  634. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  635. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  636. SERIAL_EOL;
  637. CONFIG_ECHO_START;
  638. #endif // SCARA
  639. if (!forReplay) {
  640. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  641. CONFIG_ECHO_START;
  642. }
  643. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  644. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  645. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  646. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  647. SERIAL_EOL;
  648. CONFIG_ECHO_START;
  649. if (!forReplay) {
  650. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  651. CONFIG_ECHO_START;
  652. }
  653. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  654. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  655. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  656. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  657. SERIAL_EOL;
  658. CONFIG_ECHO_START;
  659. if (!forReplay) {
  660. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  661. CONFIG_ECHO_START;
  662. }
  663. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  664. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  665. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  666. SERIAL_EOL;
  667. CONFIG_ECHO_START;
  668. if (!forReplay) {
  669. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  670. CONFIG_ECHO_START;
  671. }
  672. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  673. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  674. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  675. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  676. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  677. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  678. SERIAL_EOL;
  679. CONFIG_ECHO_START;
  680. if (!forReplay) {
  681. SERIAL_ECHOLNPGM("Home offset (mm)");
  682. CONFIG_ECHO_START;
  683. }
  684. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  685. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  686. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  687. SERIAL_EOL;
  688. #if ENABLED(MESH_BED_LEVELING)
  689. if (!forReplay) {
  690. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  691. CONFIG_ECHO_START;
  692. }
  693. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  694. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  695. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  696. SERIAL_EOL;
  697. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  698. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  699. CONFIG_ECHO_START;
  700. SERIAL_ECHOPAIR(" G29 S3 X", px);
  701. SERIAL_ECHOPAIR(" Y", py);
  702. SERIAL_ECHOPGM(" Z");
  703. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  704. SERIAL_EOL;
  705. }
  706. }
  707. #endif
  708. #if ENABLED(DELTA)
  709. CONFIG_ECHO_START;
  710. if (!forReplay) {
  711. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  712. CONFIG_ECHO_START;
  713. }
  714. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  715. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  716. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  717. SERIAL_EOL;
  718. CONFIG_ECHO_START;
  719. if (!forReplay) {
  720. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  721. CONFIG_ECHO_START;
  722. }
  723. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  724. SERIAL_ECHOPAIR(" R", delta_radius);
  725. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  726. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  727. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  728. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  729. SERIAL_EOL;
  730. #elif ENABLED(Z_DUAL_ENDSTOPS)
  731. CONFIG_ECHO_START;
  732. if (!forReplay) {
  733. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  734. CONFIG_ECHO_START;
  735. }
  736. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  737. SERIAL_EOL;
  738. #endif // DELTA
  739. #if ENABLED(ULTIPANEL)
  740. CONFIG_ECHO_START;
  741. if (!forReplay) {
  742. SERIAL_ECHOLNPGM("Material heatup parameters:");
  743. CONFIG_ECHO_START;
  744. }
  745. SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
  746. SERIAL_ECHOPAIR(" B", preheatBedTemp1);
  747. SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
  748. SERIAL_EOL;
  749. CONFIG_ECHO_START;
  750. SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
  751. SERIAL_ECHOPAIR(" B", preheatBedTemp2);
  752. SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
  753. SERIAL_EOL;
  754. #endif // ULTIPANEL
  755. #if HAS_PID_HEATING
  756. CONFIG_ECHO_START;
  757. if (!forReplay) {
  758. SERIAL_ECHOLNPGM("PID settings:");
  759. }
  760. #if ENABLED(PIDTEMP)
  761. #if HOTENDS > 1
  762. if (forReplay) {
  763. HOTEND_LOOP() {
  764. CONFIG_ECHO_START;
  765. SERIAL_ECHOPAIR(" M301 E", e);
  766. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  767. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  768. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  769. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  770. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  771. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  772. #endif
  773. SERIAL_EOL;
  774. }
  775. }
  776. else
  777. #endif // HOTENDS > 1
  778. // !forReplay || HOTENDS == 1
  779. {
  780. CONFIG_ECHO_START;
  781. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  782. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  783. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  784. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  785. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  786. SERIAL_ECHOPAIR(" L", lpq_len);
  787. #endif
  788. SERIAL_EOL;
  789. }
  790. #endif // PIDTEMP
  791. #if ENABLED(PIDTEMPBED)
  792. CONFIG_ECHO_START;
  793. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  794. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  795. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  796. SERIAL_EOL;
  797. #endif
  798. #endif // PIDTEMP || PIDTEMPBED
  799. #if HAS_LCD_CONTRAST
  800. CONFIG_ECHO_START;
  801. if (!forReplay) {
  802. SERIAL_ECHOLNPGM("LCD Contrast:");
  803. CONFIG_ECHO_START;
  804. }
  805. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  806. SERIAL_EOL;
  807. #endif
  808. #if ENABLED(FWRETRACT)
  809. CONFIG_ECHO_START;
  810. if (!forReplay) {
  811. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  812. CONFIG_ECHO_START;
  813. }
  814. SERIAL_ECHOPAIR(" M207 S", retract_length);
  815. #if EXTRUDERS > 1
  816. SERIAL_ECHOPAIR(" W", retract_length_swap);
  817. #endif
  818. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  819. SERIAL_ECHOPAIR(" Z", retract_zlift);
  820. SERIAL_EOL;
  821. CONFIG_ECHO_START;
  822. if (!forReplay) {
  823. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  824. CONFIG_ECHO_START;
  825. }
  826. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  827. #if EXTRUDERS > 1
  828. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  829. #endif
  830. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  831. SERIAL_EOL;
  832. CONFIG_ECHO_START;
  833. if (!forReplay) {
  834. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  835. CONFIG_ECHO_START;
  836. }
  837. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  838. SERIAL_EOL;
  839. #endif // FWRETRACT
  840. /**
  841. * Volumetric extrusion M200
  842. */
  843. if (!forReplay) {
  844. CONFIG_ECHO_START;
  845. SERIAL_ECHOPGM("Filament settings:");
  846. if (volumetric_enabled)
  847. SERIAL_EOL;
  848. else
  849. SERIAL_ECHOLNPGM(" Disabled");
  850. }
  851. CONFIG_ECHO_START;
  852. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  853. SERIAL_EOL;
  854. #if EXTRUDERS > 1
  855. CONFIG_ECHO_START;
  856. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  857. SERIAL_EOL;
  858. #if EXTRUDERS > 2
  859. CONFIG_ECHO_START;
  860. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  861. SERIAL_EOL;
  862. #if EXTRUDERS > 3
  863. CONFIG_ECHO_START;
  864. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  865. SERIAL_EOL;
  866. #endif
  867. #endif
  868. #endif
  869. if (!volumetric_enabled) {
  870. CONFIG_ECHO_START;
  871. SERIAL_ECHOLNPGM(" M200 D0");
  872. }
  873. /**
  874. * Auto Bed Leveling
  875. */
  876. #if HAS_BED_PROBE
  877. if (!forReplay) {
  878. CONFIG_ECHO_START;
  879. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  880. }
  881. CONFIG_ECHO_START;
  882. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  883. SERIAL_EOL;
  884. #endif
  885. }
  886. #endif // !DISABLE_M503