My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 90KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V64"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h"
  51. #include "../gcode/gcode.h"
  52. #include "../Marlin.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if HAS_SERVOS
  60. #include "servo.h"
  61. #endif
  62. #if HAS_SERVOS && HAS_SERVO_ANGLES
  63. #define EEPROM_NUM_SERVOS NUM_SERVOS
  64. #else
  65. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  66. #endif
  67. #if HAS_BED_PROBE
  68. #include "probe.h"
  69. #endif
  70. #include "../feature/fwretract.h"
  71. #if ENABLED(POWER_LOSS_RECOVERY)
  72. #include "../feature/power_loss_recovery.h"
  73. #endif
  74. #include "../feature/pause.h"
  75. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  76. extern float saved_extruder_advance_K[EXTRUDERS];
  77. #endif
  78. #if EXTRUDERS > 1
  79. #include "tool_change.h"
  80. void M217_report(const bool eeprom);
  81. #endif
  82. #if HAS_TRINAMIC
  83. #include "stepper_indirection.h"
  84. #include "../feature/tmc_util.h"
  85. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  86. #endif
  87. #pragma pack(push, 1) // No padding between variables
  88. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  89. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  90. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  91. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  92. // Limit an index to an array size
  93. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  94. /**
  95. * Current EEPROM Layout
  96. *
  97. * Keep this data structure up to date so
  98. * EEPROM size is known at compile time!
  99. */
  100. typedef struct SettingsDataStruct {
  101. char version[4]; // Vnn\0
  102. uint16_t crc; // Data Checksum
  103. //
  104. // DISTINCT_E_FACTORS
  105. //
  106. uint8_t esteppers; // XYZE_N - XYZ
  107. planner_settings_t planner_settings;
  108. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  109. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  110. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  111. #if HAS_HOTEND_OFFSET
  112. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  113. #endif
  114. //
  115. // ENABLE_LEVELING_FADE_HEIGHT
  116. //
  117. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  118. //
  119. // MESH_BED_LEVELING
  120. //
  121. float mbl_z_offset; // mbl.z_offset
  122. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  123. #if ENABLED(MESH_BED_LEVELING)
  124. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  125. #else
  126. float mbl_z_values[3][3];
  127. #endif
  128. //
  129. // HAS_BED_PROBE
  130. //
  131. float zprobe_zoffset;
  132. //
  133. // ABL_PLANAR
  134. //
  135. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  136. //
  137. // AUTO_BED_LEVELING_BILINEAR
  138. //
  139. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  140. int bilinear_grid_spacing[2],
  141. bilinear_start[2]; // G29 L F
  142. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  143. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  144. #else
  145. float z_values[3][3];
  146. #endif
  147. //
  148. // AUTO_BED_LEVELING_UBL
  149. //
  150. bool planner_leveling_active; // M420 S planner.leveling_active
  151. int8_t ubl_storage_slot; // ubl.storage_slot
  152. //
  153. // SERVO_ANGLES
  154. //
  155. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  156. //
  157. // DELTA / [XYZ]_DUAL_ENDSTOPS
  158. //
  159. #if ENABLED(DELTA)
  160. float delta_height, // M666 H
  161. delta_endstop_adj[ABC], // M666 XYZ
  162. delta_radius, // M665 R
  163. delta_diagonal_rod, // M665 L
  164. delta_segments_per_second, // M665 S
  165. delta_calibration_radius, // M665 B
  166. delta_tower_angle_trim[ABC]; // M665 XYZ
  167. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  168. float x2_endstop_adj, // M666 X
  169. y2_endstop_adj, // M666 Y
  170. z2_endstop_adj, // M666 Z (S2)
  171. z3_endstop_adj; // M666 Z (S3)
  172. #endif
  173. //
  174. // ULTIPANEL
  175. //
  176. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  177. ui_preheat_bed_temp[2]; // M145 S0 B
  178. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  179. //
  180. // PIDTEMP
  181. //
  182. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  183. int16_t lpq_len; // M301 L
  184. //
  185. // PIDTEMPBED
  186. //
  187. PID_t bedPID; // M304 PID / M303 E-1 U
  188. //
  189. // HAS_LCD_CONTRAST
  190. //
  191. int16_t lcd_contrast; // M250 C
  192. //
  193. // POWER_LOSS_RECOVERY
  194. //
  195. bool recovery_enabled; // M413 S
  196. //
  197. // FWRETRACT
  198. //
  199. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  200. bool autoretract_enabled; // M209 S
  201. //
  202. // !NO_VOLUMETRIC
  203. //
  204. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  205. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  206. //
  207. // HAS_TRINAMIC
  208. //
  209. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  210. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  211. tmc_sgt_t tmc_sgt; // M914 X Y Z
  212. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  213. //
  214. // LIN_ADVANCE
  215. //
  216. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  217. //
  218. // HAS_MOTOR_CURRENT_PWM
  219. //
  220. uint32_t motor_current_setting[3]; // M907 X Z E
  221. //
  222. // CNC_COORDINATE_SYSTEMS
  223. //
  224. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  225. //
  226. // SKEW_CORRECTION
  227. //
  228. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  229. //
  230. // ADVANCED_PAUSE_FEATURE
  231. //
  232. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  233. //
  234. // Tool-change settings
  235. //
  236. #if EXTRUDERS > 1
  237. toolchange_settings_t toolchange_settings; // M217 S P R
  238. #endif
  239. } SettingsData;
  240. MarlinSettings settings;
  241. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  242. /**
  243. * Post-process after Retrieve or Reset
  244. */
  245. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  246. float new_z_fade_height;
  247. #endif
  248. void MarlinSettings::postprocess() {
  249. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  250. // steps per s2 needs to be updated to agree with units per s2
  251. planner.reset_acceleration_rates();
  252. // Make sure delta kinematics are updated before refreshing the
  253. // planner position so the stepper counts will be set correctly.
  254. #if ENABLED(DELTA)
  255. recalc_delta_settings();
  256. #endif
  257. #if ENABLED(PIDTEMP)
  258. thermalManager.updatePID();
  259. #endif
  260. #if DISABLED(NO_VOLUMETRICS)
  261. planner.calculate_volumetric_multipliers();
  262. #else
  263. for (uint8_t i = COUNT(planner.e_factor); i--;)
  264. planner.refresh_e_factor(i);
  265. #endif
  266. // Software endstops depend on home_offset
  267. LOOP_XYZ(i) {
  268. update_workspace_offset((AxisEnum)i);
  269. update_software_endstops((AxisEnum)i);
  270. }
  271. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  272. set_z_fade_height(new_z_fade_height, false); // false = no report
  273. #endif
  274. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  275. refresh_bed_level();
  276. #endif
  277. #if HAS_MOTOR_CURRENT_PWM
  278. stepper.refresh_motor_power();
  279. #endif
  280. #if ENABLED(FWRETRACT)
  281. fwretract.refresh_autoretract();
  282. #endif
  283. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  284. planner.recalculate_max_e_jerk();
  285. #endif
  286. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  287. // and init stepper.count[], planner.position[] with current_position
  288. planner.refresh_positioning();
  289. // Various factors can change the current position
  290. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  291. report_current_position();
  292. }
  293. #if ENABLED(SD_FIRMWARE_UPDATE)
  294. #if ENABLED(EEPROM_SETTINGS)
  295. static_assert(
  296. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  297. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  298. );
  299. #endif
  300. bool MarlinSettings::sd_update_status() {
  301. uint8_t val;
  302. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  303. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  304. }
  305. bool MarlinSettings::set_sd_update_status(const bool enable) {
  306. if (enable != sd_update_status())
  307. persistentStore.write_data(
  308. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  309. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  310. );
  311. return true;
  312. }
  313. #endif // SD_FIRMWARE_UPDATE
  314. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  315. #include "../core/debug_out.h"
  316. #if ENABLED(EEPROM_SETTINGS)
  317. #define WORD_PADDED_EEPROM ENABLED(__STM32F1__, FLASH_EEPROM_EMULATION)
  318. #if WORD_PADDED_EEPROM && ENABLED(DEBUG_EEPROM_READWRITE)
  319. #define UPDATE_TEST_INDEX(VAR) (text_index += sizeof(VAR))
  320. #else
  321. #define UPDATE_TEST_INDEX(VAR) NOOP
  322. #endif
  323. #if WORD_PADDED_EEPROM
  324. #define EEPROM_SKIP(VAR) do{ eeprom_index += sizeof(VAR) + (sizeof(VAR) & 1); UPDATE_TEST_INDEX(sizeof(VAR)); }while(0)
  325. #else
  326. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  327. #endif
  328. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  329. #define EEPROM_FINISH() persistentStore.access_finish()
  330. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  331. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); UPDATE_TEST_INDEX(VAR); }while(0)
  332. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  333. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  334. #if ENABLED(DEBUG_EEPROM_READWRITE)
  335. #if WORD_PADDED_EEPROM
  336. int test_index;
  337. #else
  338. #define test_index eeprom_index
  339. #endif
  340. #define _FIELD_TEST(FIELD) \
  341. EEPROM_ASSERT( \
  342. eeprom_error || test_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  343. "Field " STRINGIFY(FIELD) " mismatch." \
  344. )
  345. #else
  346. #define _FIELD_TEST(FIELD) NOOP
  347. #endif
  348. const char version[4] = EEPROM_VERSION;
  349. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  350. bool MarlinSettings::size_error(const uint16_t size) {
  351. if (size != datasize()) {
  352. DEBUG_ERROR_MSG("EEPROM datasize error.");
  353. return true;
  354. }
  355. return false;
  356. }
  357. /**
  358. * M500 - Store Configuration
  359. */
  360. bool MarlinSettings::save() {
  361. float dummy = 0;
  362. char ver[4] = "ERR";
  363. uint16_t working_crc = 0;
  364. EEPROM_START();
  365. eeprom_error = false;
  366. #if ENABLED(FLASH_EEPROM_EMULATION)
  367. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  368. #else
  369. EEPROM_WRITE(ver); // invalidate data first
  370. #endif
  371. EEPROM_SKIP(working_crc); // Skip the checksum slot
  372. working_crc = 0; // clear before first "real data"
  373. _FIELD_TEST(esteppers);
  374. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  375. EEPROM_WRITE(esteppers);
  376. //
  377. // Planner Motion
  378. //
  379. {
  380. EEPROM_WRITE(planner.settings);
  381. #if HAS_CLASSIC_JERK
  382. EEPROM_WRITE(planner.max_jerk);
  383. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  384. dummy = float(DEFAULT_EJERK);
  385. EEPROM_WRITE(dummy);
  386. #endif
  387. #else
  388. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  389. EEPROM_WRITE(planner_max_jerk);
  390. #endif
  391. #if ENABLED(JUNCTION_DEVIATION)
  392. EEPROM_WRITE(planner.junction_deviation_mm);
  393. #else
  394. dummy = 0.02f;
  395. EEPROM_WRITE(dummy);
  396. #endif
  397. }
  398. //
  399. // Home Offset
  400. //
  401. {
  402. _FIELD_TEST(home_offset);
  403. #if HAS_SCARA_OFFSET
  404. EEPROM_WRITE(scara_home_offset);
  405. #else
  406. #if !HAS_HOME_OFFSET
  407. const float home_offset[XYZ] = { 0 };
  408. #endif
  409. EEPROM_WRITE(home_offset);
  410. #endif
  411. #if HAS_HOTEND_OFFSET
  412. // Skip hotend 0 which must be 0
  413. for (uint8_t e = 1; e < HOTENDS; e++)
  414. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  415. #endif
  416. }
  417. //
  418. // Global Leveling
  419. //
  420. {
  421. const float zfh = (
  422. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  423. planner.z_fade_height
  424. #else
  425. 10.0
  426. #endif
  427. );
  428. EEPROM_WRITE(zfh);
  429. }
  430. //
  431. // Mesh Bed Leveling
  432. //
  433. {
  434. #if ENABLED(MESH_BED_LEVELING)
  435. // Compile time test that sizeof(mbl.z_values) is as expected
  436. static_assert(
  437. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  438. "MBL Z array is the wrong size."
  439. );
  440. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  441. EEPROM_WRITE(mbl.z_offset);
  442. EEPROM_WRITE(mesh_num_x);
  443. EEPROM_WRITE(mesh_num_y);
  444. EEPROM_WRITE(mbl.z_values);
  445. #else // For disabled MBL write a default mesh
  446. dummy = 0;
  447. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  448. EEPROM_WRITE(dummy); // z_offset
  449. EEPROM_WRITE(mesh_num_x);
  450. EEPROM_WRITE(mesh_num_y);
  451. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  452. #endif
  453. }
  454. //
  455. // Probe Z Offset
  456. //
  457. {
  458. _FIELD_TEST(zprobe_zoffset);
  459. #if !HAS_BED_PROBE
  460. const float zprobe_zoffset = 0;
  461. #endif
  462. EEPROM_WRITE(zprobe_zoffset);
  463. }
  464. //
  465. // Planar Bed Leveling matrix
  466. //
  467. {
  468. #if ABL_PLANAR
  469. EEPROM_WRITE(planner.bed_level_matrix);
  470. #else
  471. dummy = 0;
  472. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  473. #endif
  474. }
  475. //
  476. // Bilinear Auto Bed Leveling
  477. //
  478. {
  479. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  480. // Compile time test that sizeof(z_values) is as expected
  481. static_assert(
  482. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  483. "Bilinear Z array is the wrong size."
  484. );
  485. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  486. EEPROM_WRITE(grid_max_x); // 1 byte
  487. EEPROM_WRITE(grid_max_y); // 1 byte
  488. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  489. EEPROM_WRITE(bilinear_start); // 2 ints
  490. EEPROM_WRITE(z_values); // 9-256 floats
  491. #else
  492. // For disabled Bilinear Grid write an empty 3x3 grid
  493. const uint8_t grid_max_x = 3, grid_max_y = 3;
  494. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  495. dummy = 0;
  496. EEPROM_WRITE(grid_max_x);
  497. EEPROM_WRITE(grid_max_y);
  498. EEPROM_WRITE(bilinear_grid_spacing);
  499. EEPROM_WRITE(bilinear_start);
  500. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  501. #endif
  502. }
  503. //
  504. // Unified Bed Leveling
  505. //
  506. {
  507. _FIELD_TEST(planner_leveling_active);
  508. #if ENABLED(AUTO_BED_LEVELING_UBL)
  509. EEPROM_WRITE(planner.leveling_active);
  510. EEPROM_WRITE(ubl.storage_slot);
  511. #else
  512. const bool ubl_active = false;
  513. const int8_t storage_slot = -1;
  514. EEPROM_WRITE(ubl_active);
  515. EEPROM_WRITE(storage_slot);
  516. #endif // AUTO_BED_LEVELING_UBL
  517. }
  518. //
  519. // Servo Angles
  520. //
  521. {
  522. _FIELD_TEST(servo_angles);
  523. #if !HAS_SERVO_ANGLES
  524. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  525. #endif
  526. EEPROM_WRITE(servo_angles);
  527. }
  528. //
  529. // DELTA Geometry or Dual Endstops offsets
  530. //
  531. {
  532. #if ENABLED(DELTA)
  533. _FIELD_TEST(delta_height);
  534. EEPROM_WRITE(delta_height); // 1 float
  535. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  536. EEPROM_WRITE(delta_radius); // 1 float
  537. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  538. EEPROM_WRITE(delta_segments_per_second); // 1 float
  539. EEPROM_WRITE(delta_calibration_radius); // 1 float
  540. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  541. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  542. _FIELD_TEST(x2_endstop_adj);
  543. // Write dual endstops in X, Y, Z order. Unused = 0.0
  544. dummy = 0;
  545. #if ENABLED(X_DUAL_ENDSTOPS)
  546. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  547. #else
  548. EEPROM_WRITE(dummy);
  549. #endif
  550. #if ENABLED(Y_DUAL_ENDSTOPS)
  551. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  552. #else
  553. EEPROM_WRITE(dummy);
  554. #endif
  555. #if Z_MULTI_ENDSTOPS
  556. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  557. #else
  558. EEPROM_WRITE(dummy);
  559. #endif
  560. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  561. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  562. #else
  563. EEPROM_WRITE(dummy);
  564. #endif
  565. #endif
  566. }
  567. //
  568. // LCD Preheat settings
  569. //
  570. {
  571. _FIELD_TEST(ui_preheat_hotend_temp);
  572. #if HAS_LCD_MENU
  573. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  574. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  575. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  576. #else
  577. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  578. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  579. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  580. #endif
  581. EEPROM_WRITE(ui_preheat_hotend_temp);
  582. EEPROM_WRITE(ui_preheat_bed_temp);
  583. EEPROM_WRITE(ui_preheat_fan_speed);
  584. }
  585. //
  586. // PIDTEMP
  587. //
  588. {
  589. _FIELD_TEST(hotendPID);
  590. HOTEND_LOOP() {
  591. PIDC_t pidc = {
  592. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  593. };
  594. EEPROM_WRITE(pidc);
  595. }
  596. _FIELD_TEST(lpq_len);
  597. #if ENABLED(PID_EXTRUSION_SCALING)
  598. EEPROM_WRITE(thermalManager.lpq_len);
  599. #else
  600. const int16_t lpq_len = 20;
  601. EEPROM_WRITE(lpq_len);
  602. #endif
  603. }
  604. //
  605. // PIDTEMPBED
  606. //
  607. {
  608. _FIELD_TEST(bedPID);
  609. #if DISABLED(PIDTEMPBED)
  610. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  611. EEPROM_WRITE(bed_pid);
  612. #else
  613. EEPROM_WRITE(thermalManager.temp_bed.pid);
  614. #endif
  615. }
  616. //
  617. // LCD Contrast
  618. //
  619. {
  620. _FIELD_TEST(lcd_contrast);
  621. const int16_t lcd_contrast =
  622. #if HAS_LCD_CONTRAST
  623. ui.contrast
  624. #else
  625. 32
  626. #endif
  627. ;
  628. EEPROM_WRITE(lcd_contrast);
  629. }
  630. //
  631. // Power-Loss Recovery
  632. //
  633. {
  634. _FIELD_TEST(recovery_enabled);
  635. const bool recovery_enabled =
  636. #if ENABLED(POWER_LOSS_RECOVERY)
  637. recovery.enabled
  638. #else
  639. true
  640. #endif
  641. ;
  642. EEPROM_WRITE(recovery_enabled);
  643. }
  644. //
  645. // Firmware Retraction
  646. //
  647. {
  648. _FIELD_TEST(fwretract_settings);
  649. #if ENABLED(FWRETRACT)
  650. EEPROM_WRITE(fwretract.settings);
  651. #else
  652. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  653. EEPROM_WRITE(autoretract_defaults);
  654. #endif
  655. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  656. EEPROM_WRITE(fwretract.autoretract_enabled);
  657. #else
  658. const bool autoretract_enabled = false;
  659. EEPROM_WRITE(autoretract_enabled);
  660. #endif
  661. }
  662. //
  663. // Volumetric & Filament Size
  664. //
  665. {
  666. _FIELD_TEST(parser_volumetric_enabled);
  667. #if DISABLED(NO_VOLUMETRICS)
  668. EEPROM_WRITE(parser.volumetric_enabled);
  669. EEPROM_WRITE(planner.filament_size);
  670. #else
  671. const bool volumetric_enabled = false;
  672. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  673. EEPROM_WRITE(volumetric_enabled);
  674. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  675. #endif
  676. }
  677. //
  678. // TMC Configuration
  679. //
  680. {
  681. _FIELD_TEST(tmc_stepper_current);
  682. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  683. #if HAS_TRINAMIC
  684. #if AXIS_IS_TMC(X)
  685. tmc_stepper_current.X = stepperX.getMilliamps();
  686. #endif
  687. #if AXIS_IS_TMC(Y)
  688. tmc_stepper_current.Y = stepperY.getMilliamps();
  689. #endif
  690. #if AXIS_IS_TMC(Z)
  691. tmc_stepper_current.Z = stepperZ.getMilliamps();
  692. #endif
  693. #if AXIS_IS_TMC(X2)
  694. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  695. #endif
  696. #if AXIS_IS_TMC(Y2)
  697. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  698. #endif
  699. #if AXIS_IS_TMC(Z2)
  700. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  701. #endif
  702. #if AXIS_IS_TMC(Z3)
  703. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  704. #endif
  705. #if MAX_EXTRUDERS
  706. #if AXIS_IS_TMC(E0)
  707. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  708. #endif
  709. #if MAX_EXTRUDERS > 1
  710. #if AXIS_IS_TMC(E1)
  711. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  712. #endif
  713. #if MAX_EXTRUDERS > 2
  714. #if AXIS_IS_TMC(E2)
  715. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  716. #endif
  717. #if MAX_EXTRUDERS > 3
  718. #if AXIS_IS_TMC(E3)
  719. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  720. #endif
  721. #if MAX_EXTRUDERS > 4
  722. #if AXIS_IS_TMC(E4)
  723. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  724. #endif
  725. #if MAX_EXTRUDERS > 5
  726. #if AXIS_IS_TMC(E5)
  727. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  728. #endif
  729. #endif // MAX_EXTRUDERS > 5
  730. #endif // MAX_EXTRUDERS > 4
  731. #endif // MAX_EXTRUDERS > 3
  732. #endif // MAX_EXTRUDERS > 2
  733. #endif // MAX_EXTRUDERS > 1
  734. #endif // MAX_EXTRUDERS
  735. #endif
  736. EEPROM_WRITE(tmc_stepper_current);
  737. }
  738. //
  739. // TMC Hybrid Threshold, and placeholder values
  740. //
  741. {
  742. _FIELD_TEST(tmc_hybrid_threshold);
  743. #if ENABLED(HYBRID_THRESHOLD)
  744. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  745. #if AXIS_HAS_STEALTHCHOP(X)
  746. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  747. #endif
  748. #if AXIS_HAS_STEALTHCHOP(Y)
  749. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  750. #endif
  751. #if AXIS_HAS_STEALTHCHOP(Z)
  752. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  753. #endif
  754. #if AXIS_HAS_STEALTHCHOP(X2)
  755. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  756. #endif
  757. #if AXIS_HAS_STEALTHCHOP(Y2)
  758. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  759. #endif
  760. #if AXIS_HAS_STEALTHCHOP(Z2)
  761. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  762. #endif
  763. #if AXIS_HAS_STEALTHCHOP(Z3)
  764. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  765. #endif
  766. #if MAX_EXTRUDERS
  767. #if AXIS_HAS_STEALTHCHOP(E0)
  768. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  769. #endif
  770. #if MAX_EXTRUDERS > 1
  771. #if AXIS_HAS_STEALTHCHOP(E1)
  772. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  773. #endif
  774. #if MAX_EXTRUDERS > 2
  775. #if AXIS_HAS_STEALTHCHOP(E2)
  776. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  777. #endif
  778. #if MAX_EXTRUDERS > 3
  779. #if AXIS_HAS_STEALTHCHOP(E3)
  780. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  781. #endif
  782. #if MAX_EXTRUDERS > 4
  783. #if AXIS_HAS_STEALTHCHOP(E4)
  784. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  785. #endif
  786. #if MAX_EXTRUDERS > 5
  787. #if AXIS_HAS_STEALTHCHOP(E5)
  788. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  789. #endif
  790. #endif // MAX_EXTRUDERS > 5
  791. #endif // MAX_EXTRUDERS > 4
  792. #endif // MAX_EXTRUDERS > 3
  793. #endif // MAX_EXTRUDERS > 2
  794. #endif // MAX_EXTRUDERS > 1
  795. #endif // MAX_EXTRUDERS
  796. #else
  797. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  798. .X = 100, .Y = 100, .Z = 3,
  799. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  800. .E0 = 30, .E1 = 30, .E2 = 30,
  801. .E3 = 30, .E4 = 30, .E5 = 30
  802. };
  803. #endif
  804. EEPROM_WRITE(tmc_hybrid_threshold);
  805. }
  806. //
  807. // TMC StallGuard threshold
  808. //
  809. {
  810. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  811. #if USE_SENSORLESS
  812. #if X_SENSORLESS
  813. tmc_sgt.X = stepperX.sgt();
  814. #endif
  815. #if Y_SENSORLESS
  816. tmc_sgt.Y = stepperY.sgt();
  817. #endif
  818. #if Z_SENSORLESS
  819. tmc_sgt.Z = stepperZ.sgt();
  820. #endif
  821. #endif
  822. EEPROM_WRITE(tmc_sgt);
  823. }
  824. //
  825. // TMC stepping mode
  826. //
  827. {
  828. _FIELD_TEST(tmc_stealth_enabled);
  829. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  830. #if HAS_STEALTHCHOP
  831. #if AXIS_HAS_STEALTHCHOP(X)
  832. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  833. #endif
  834. #if AXIS_HAS_STEALTHCHOP(Y)
  835. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  836. #endif
  837. #if AXIS_HAS_STEALTHCHOP(Z)
  838. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  839. #endif
  840. #if AXIS_HAS_STEALTHCHOP(X2)
  841. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  842. #endif
  843. #if AXIS_HAS_STEALTHCHOP(Y2)
  844. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  845. #endif
  846. #if AXIS_HAS_STEALTHCHOP(Z2)
  847. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  848. #endif
  849. #if AXIS_HAS_STEALTHCHOP(Z3)
  850. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  851. #endif
  852. #if MAX_EXTRUDERS
  853. #if AXIS_HAS_STEALTHCHOP(E0)
  854. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  855. #endif
  856. #if MAX_EXTRUDERS > 1
  857. #if AXIS_HAS_STEALTHCHOP(E1)
  858. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  859. #endif
  860. #if MAX_EXTRUDERS > 2
  861. #if AXIS_HAS_STEALTHCHOP(E2)
  862. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  863. #endif
  864. #if MAX_EXTRUDERS > 3
  865. #if AXIS_HAS_STEALTHCHOP(E3)
  866. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  867. #endif
  868. #if MAX_EXTRUDERS > 4
  869. #if AXIS_HAS_STEALTHCHOP(E4)
  870. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  871. #endif
  872. #if MAX_EXTRUDERS > 5
  873. #if AXIS_HAS_STEALTHCHOP(E5)
  874. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  875. #endif
  876. #endif // MAX_EXTRUDERS > 5
  877. #endif // MAX_EXTRUDERS > 4
  878. #endif // MAX_EXTRUDERS > 3
  879. #endif // MAX_EXTRUDERS > 2
  880. #endif // MAX_EXTRUDERS > 1
  881. #endif // MAX_EXTRUDERS
  882. #endif
  883. EEPROM_WRITE(tmc_stealth_enabled);
  884. }
  885. //
  886. // Linear Advance
  887. //
  888. {
  889. _FIELD_TEST(planner_extruder_advance_K);
  890. #if ENABLED(LIN_ADVANCE)
  891. EEPROM_WRITE(planner.extruder_advance_K);
  892. #else
  893. dummy = 0;
  894. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  895. #endif
  896. }
  897. //
  898. // Motor Current PWM
  899. //
  900. {
  901. _FIELD_TEST(motor_current_setting);
  902. #if HAS_MOTOR_CURRENT_PWM
  903. EEPROM_WRITE(stepper.motor_current_setting);
  904. #else
  905. const uint32_t dummyui32[XYZ] = { 0 };
  906. EEPROM_WRITE(dummyui32);
  907. #endif
  908. }
  909. //
  910. // CNC Coordinate Systems
  911. //
  912. _FIELD_TEST(coordinate_system);
  913. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  914. EEPROM_WRITE(gcode.coordinate_system);
  915. #else
  916. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  917. EEPROM_WRITE(coordinate_system);
  918. #endif
  919. //
  920. // Skew correction factors
  921. //
  922. _FIELD_TEST(planner_skew_factor);
  923. EEPROM_WRITE(planner.skew_factor);
  924. //
  925. // Advanced Pause filament load & unload lengths
  926. //
  927. {
  928. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  929. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  930. #endif
  931. _FIELD_TEST(fc_settings);
  932. EEPROM_WRITE(fc_settings);
  933. }
  934. //
  935. // Multiple Extruders
  936. //
  937. #if EXTRUDERS > 1
  938. _FIELD_TEST(toolchange_settings);
  939. EEPROM_WRITE(toolchange_settings);
  940. #endif
  941. //
  942. // Validate CRC and Data Size
  943. //
  944. if (!eeprom_error) {
  945. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  946. final_crc = working_crc;
  947. // Write the EEPROM header
  948. eeprom_index = EEPROM_OFFSET;
  949. EEPROM_WRITE(version);
  950. EEPROM_WRITE(final_crc);
  951. // Report storage size
  952. DEBUG_ECHO_START();
  953. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  954. eeprom_error |= size_error(eeprom_size);
  955. }
  956. EEPROM_FINISH();
  957. //
  958. // UBL Mesh
  959. //
  960. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  961. if (ubl.storage_slot >= 0)
  962. store_mesh(ubl.storage_slot);
  963. #endif
  964. return !eeprom_error;
  965. }
  966. /**
  967. * M501 - Retrieve Configuration
  968. */
  969. bool MarlinSettings::_load() {
  970. uint16_t working_crc = 0;
  971. EEPROM_START();
  972. char stored_ver[4];
  973. EEPROM_READ_ALWAYS(stored_ver);
  974. uint16_t stored_crc;
  975. EEPROM_READ_ALWAYS(stored_crc);
  976. // Version has to match or defaults are used
  977. if (strncmp(version, stored_ver, 3) != 0) {
  978. if (stored_ver[3] != '\0') {
  979. stored_ver[0] = '?';
  980. stored_ver[1] = '\0';
  981. }
  982. DEBUG_ECHO_START();
  983. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  984. eeprom_error = true;
  985. }
  986. else {
  987. float dummy = 0;
  988. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  989. _FIELD_TEST(esteppers);
  990. // Number of esteppers may change
  991. uint8_t esteppers;
  992. EEPROM_READ_ALWAYS(esteppers);
  993. //
  994. // Planner Motion
  995. //
  996. {
  997. // Get only the number of E stepper parameters previously stored
  998. // Any steppers added later are set to their defaults
  999. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  1000. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  1001. uint32_t tmp1[XYZ + esteppers];
  1002. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1003. EEPROM_READ(planner.settings.min_segment_time_us);
  1004. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  1005. EEPROM_READ(tmp2); // axis_steps_per_mm
  1006. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1007. if (!validating) LOOP_XYZE_N(i) {
  1008. const bool in = (i < esteppers + XYZ);
  1009. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  1010. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  1011. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  1012. }
  1013. EEPROM_READ(planner.settings.acceleration);
  1014. EEPROM_READ(planner.settings.retract_acceleration);
  1015. EEPROM_READ(planner.settings.travel_acceleration);
  1016. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1017. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1018. #if HAS_CLASSIC_JERK
  1019. EEPROM_READ(planner.max_jerk);
  1020. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  1021. EEPROM_READ(dummy);
  1022. #endif
  1023. #else
  1024. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1025. #endif
  1026. #if ENABLED(JUNCTION_DEVIATION)
  1027. EEPROM_READ(planner.junction_deviation_mm);
  1028. #else
  1029. EEPROM_READ(dummy);
  1030. #endif
  1031. }
  1032. //
  1033. // Home Offset (M206 / M665)
  1034. //
  1035. {
  1036. _FIELD_TEST(home_offset);
  1037. #if HAS_SCARA_OFFSET
  1038. EEPROM_READ(scara_home_offset);
  1039. #else
  1040. #if !HAS_HOME_OFFSET
  1041. float home_offset[XYZ];
  1042. #endif
  1043. EEPROM_READ(home_offset);
  1044. #endif
  1045. }
  1046. //
  1047. // Hotend Offsets, if any
  1048. //
  1049. {
  1050. #if HAS_HOTEND_OFFSET
  1051. // Skip hotend 0 which must be 0
  1052. for (uint8_t e = 1; e < HOTENDS; e++)
  1053. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1054. #endif
  1055. }
  1056. //
  1057. // Global Leveling
  1058. //
  1059. {
  1060. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1061. EEPROM_READ(new_z_fade_height);
  1062. #else
  1063. EEPROM_READ(dummy);
  1064. #endif
  1065. }
  1066. //
  1067. // Mesh (Manual) Bed Leveling
  1068. //
  1069. {
  1070. uint8_t mesh_num_x, mesh_num_y;
  1071. EEPROM_READ(dummy);
  1072. EEPROM_READ_ALWAYS(mesh_num_x);
  1073. EEPROM_READ_ALWAYS(mesh_num_y);
  1074. #if ENABLED(MESH_BED_LEVELING)
  1075. if (!validating) mbl.z_offset = dummy;
  1076. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1077. // EEPROM data fits the current mesh
  1078. EEPROM_READ(mbl.z_values);
  1079. }
  1080. else {
  1081. // EEPROM data is stale
  1082. if (!validating) mbl.reset();
  1083. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1084. }
  1085. #else
  1086. // MBL is disabled - skip the stored data
  1087. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1088. #endif // MESH_BED_LEVELING
  1089. }
  1090. //
  1091. // Probe Z Offset
  1092. //
  1093. {
  1094. _FIELD_TEST(zprobe_zoffset);
  1095. #if !HAS_BED_PROBE
  1096. float zprobe_zoffset;
  1097. #endif
  1098. EEPROM_READ(zprobe_zoffset);
  1099. }
  1100. //
  1101. // Planar Bed Leveling matrix
  1102. //
  1103. {
  1104. #if ABL_PLANAR
  1105. EEPROM_READ(planner.bed_level_matrix);
  1106. #else
  1107. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1108. #endif
  1109. }
  1110. //
  1111. // Bilinear Auto Bed Leveling
  1112. //
  1113. {
  1114. uint8_t grid_max_x, grid_max_y;
  1115. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1116. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1117. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1118. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1119. if (!validating) set_bed_leveling_enabled(false);
  1120. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1121. EEPROM_READ(bilinear_start); // 2 ints
  1122. EEPROM_READ(z_values); // 9 to 256 floats
  1123. }
  1124. else // EEPROM data is stale
  1125. #endif // AUTO_BED_LEVELING_BILINEAR
  1126. {
  1127. // Skip past disabled (or stale) Bilinear Grid data
  1128. int bgs[2], bs[2];
  1129. EEPROM_READ(bgs);
  1130. EEPROM_READ(bs);
  1131. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1132. }
  1133. }
  1134. //
  1135. // Unified Bed Leveling active state
  1136. //
  1137. {
  1138. _FIELD_TEST(planner_leveling_active);
  1139. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1140. EEPROM_READ(planner.leveling_active);
  1141. EEPROM_READ(ubl.storage_slot);
  1142. #else
  1143. bool planner_leveling_active;
  1144. uint8_t ubl_storage_slot;
  1145. EEPROM_READ(planner_leveling_active);
  1146. EEPROM_READ(ubl_storage_slot);
  1147. #endif
  1148. }
  1149. //
  1150. // SERVO_ANGLES
  1151. //
  1152. {
  1153. _FIELD_TEST(servo_angles);
  1154. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1155. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1156. #else
  1157. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1158. #endif
  1159. EEPROM_READ(servo_angles_arr);
  1160. }
  1161. //
  1162. // DELTA Geometry or Dual Endstops offsets
  1163. //
  1164. {
  1165. #if ENABLED(DELTA)
  1166. _FIELD_TEST(delta_height);
  1167. EEPROM_READ(delta_height); // 1 float
  1168. EEPROM_READ(delta_endstop_adj); // 3 floats
  1169. EEPROM_READ(delta_radius); // 1 float
  1170. EEPROM_READ(delta_diagonal_rod); // 1 float
  1171. EEPROM_READ(delta_segments_per_second); // 1 float
  1172. EEPROM_READ(delta_calibration_radius); // 1 float
  1173. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1174. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1175. _FIELD_TEST(x2_endstop_adj);
  1176. #if ENABLED(X_DUAL_ENDSTOPS)
  1177. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1178. #else
  1179. EEPROM_READ(dummy);
  1180. #endif
  1181. #if ENABLED(Y_DUAL_ENDSTOPS)
  1182. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1183. #else
  1184. EEPROM_READ(dummy);
  1185. #endif
  1186. #if Z_MULTI_ENDSTOPS
  1187. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1188. #else
  1189. EEPROM_READ(dummy);
  1190. #endif
  1191. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1192. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1193. #else
  1194. EEPROM_READ(dummy);
  1195. #endif
  1196. #endif
  1197. }
  1198. //
  1199. // LCD Preheat settings
  1200. //
  1201. {
  1202. _FIELD_TEST(ui_preheat_hotend_temp);
  1203. #if HAS_LCD_MENU
  1204. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1205. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1206. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1207. #else
  1208. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1209. uint8_t ui_preheat_fan_speed[2];
  1210. #endif
  1211. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1212. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1213. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1214. }
  1215. //
  1216. // Hotend PID
  1217. //
  1218. {
  1219. HOTEND_LOOP() {
  1220. PIDC_t pidc;
  1221. EEPROM_READ(pidc);
  1222. #if ENABLED(PIDTEMP)
  1223. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1224. // No need to scale PID values since EEPROM values are scaled
  1225. PID_PARAM(Kp, e) = pidc.Kp;
  1226. PID_PARAM(Ki, e) = pidc.Ki;
  1227. PID_PARAM(Kd, e) = pidc.Kd;
  1228. #if ENABLED(PID_EXTRUSION_SCALING)
  1229. PID_PARAM(Kc, e) = pidc.Kc;
  1230. #endif
  1231. }
  1232. #endif
  1233. }
  1234. }
  1235. //
  1236. // PID Extrusion Scaling
  1237. //
  1238. {
  1239. _FIELD_TEST(lpq_len);
  1240. #if ENABLED(PID_EXTRUSION_SCALING)
  1241. EEPROM_READ(thermalManager.lpq_len);
  1242. #else
  1243. int16_t lpq_len;
  1244. EEPROM_READ(lpq_len);
  1245. #endif
  1246. }
  1247. //
  1248. // Heated Bed PID
  1249. //
  1250. {
  1251. PID_t pid;
  1252. EEPROM_READ(pid);
  1253. #if ENABLED(PIDTEMPBED)
  1254. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1255. memcpy(&thermalManager.temp_bed.pid, &pid, sizeof(pid));
  1256. #endif
  1257. }
  1258. //
  1259. // LCD Contrast
  1260. //
  1261. {
  1262. _FIELD_TEST(lcd_contrast);
  1263. int16_t lcd_contrast;
  1264. EEPROM_READ(lcd_contrast);
  1265. #if HAS_LCD_CONTRAST
  1266. ui.set_contrast(lcd_contrast);
  1267. #endif
  1268. }
  1269. //
  1270. // Power-Loss Recovery
  1271. //
  1272. {
  1273. _FIELD_TEST(recovery_enabled);
  1274. #if ENABLED(POWER_LOSS_RECOVERY)
  1275. EEPROM_READ(recovery.enabled);
  1276. #else
  1277. bool recovery_enabled;
  1278. EEPROM_READ(recovery_enabled);
  1279. #endif
  1280. }
  1281. //
  1282. // Firmware Retraction
  1283. //
  1284. {
  1285. _FIELD_TEST(fwretract_settings);
  1286. #if ENABLED(FWRETRACT)
  1287. EEPROM_READ(fwretract.settings);
  1288. #else
  1289. fwretract_settings_t fwretract_settings;
  1290. EEPROM_READ(fwretract_settings);
  1291. #endif
  1292. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1293. EEPROM_READ(fwretract.autoretract_enabled);
  1294. #else
  1295. bool autoretract_enabled;
  1296. EEPROM_READ(autoretract_enabled);
  1297. #endif
  1298. }
  1299. //
  1300. // Volumetric & Filament Size
  1301. //
  1302. {
  1303. struct {
  1304. bool volumetric_enabled;
  1305. float filament_size[EXTRUDERS];
  1306. } storage;
  1307. _FIELD_TEST(parser_volumetric_enabled);
  1308. EEPROM_READ(storage);
  1309. #if DISABLED(NO_VOLUMETRICS)
  1310. if (!validating) {
  1311. parser.volumetric_enabled = storage.volumetric_enabled;
  1312. COPY(planner.filament_size, storage.filament_size);
  1313. }
  1314. #endif
  1315. }
  1316. //
  1317. // TMC Stepper Settings
  1318. //
  1319. if (!validating) reset_stepper_drivers();
  1320. // TMC Stepper Current
  1321. {
  1322. _FIELD_TEST(tmc_stepper_current);
  1323. tmc_stepper_current_t currents;
  1324. EEPROM_READ(currents);
  1325. #if HAS_TRINAMIC
  1326. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1327. if (!validating) {
  1328. #if AXIS_IS_TMC(X)
  1329. SET_CURR(X);
  1330. #endif
  1331. #if AXIS_IS_TMC(Y)
  1332. SET_CURR(Y);
  1333. #endif
  1334. #if AXIS_IS_TMC(Z)
  1335. SET_CURR(Z);
  1336. #endif
  1337. #if AXIS_IS_TMC(X2)
  1338. SET_CURR(X2);
  1339. #endif
  1340. #if AXIS_IS_TMC(Y2)
  1341. SET_CURR(Y2);
  1342. #endif
  1343. #if AXIS_IS_TMC(Z2)
  1344. SET_CURR(Z2);
  1345. #endif
  1346. #if AXIS_IS_TMC(Z3)
  1347. SET_CURR(Z3);
  1348. #endif
  1349. #if AXIS_IS_TMC(E0)
  1350. SET_CURR(E0);
  1351. #endif
  1352. #if AXIS_IS_TMC(E1)
  1353. SET_CURR(E1);
  1354. #endif
  1355. #if AXIS_IS_TMC(E2)
  1356. SET_CURR(E2);
  1357. #endif
  1358. #if AXIS_IS_TMC(E3)
  1359. SET_CURR(E3);
  1360. #endif
  1361. #if AXIS_IS_TMC(E4)
  1362. SET_CURR(E4);
  1363. #endif
  1364. #if AXIS_IS_TMC(E5)
  1365. SET_CURR(E5);
  1366. #endif
  1367. }
  1368. #endif
  1369. }
  1370. // TMC Hybrid Threshold
  1371. {
  1372. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1373. _FIELD_TEST(tmc_hybrid_threshold);
  1374. EEPROM_READ(tmc_hybrid_threshold);
  1375. #if ENABLED(HYBRID_THRESHOLD)
  1376. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1377. if (!validating) {
  1378. #if AXIS_HAS_STEALTHCHOP(X)
  1379. TMC_SET_PWMTHRS(X, X);
  1380. #endif
  1381. #if AXIS_HAS_STEALTHCHOP(Y)
  1382. TMC_SET_PWMTHRS(Y, Y);
  1383. #endif
  1384. #if AXIS_HAS_STEALTHCHOP(Z)
  1385. TMC_SET_PWMTHRS(Z, Z);
  1386. #endif
  1387. #if AXIS_HAS_STEALTHCHOP(X2)
  1388. TMC_SET_PWMTHRS(X, X2);
  1389. #endif
  1390. #if AXIS_HAS_STEALTHCHOP(Y2)
  1391. TMC_SET_PWMTHRS(Y, Y2);
  1392. #endif
  1393. #if AXIS_HAS_STEALTHCHOP(Z2)
  1394. TMC_SET_PWMTHRS(Z, Z2);
  1395. #endif
  1396. #if AXIS_HAS_STEALTHCHOP(Z3)
  1397. TMC_SET_PWMTHRS(Z, Z3);
  1398. #endif
  1399. #if AXIS_HAS_STEALTHCHOP(E0)
  1400. TMC_SET_PWMTHRS(E, E0);
  1401. #endif
  1402. #if AXIS_HAS_STEALTHCHOP(E1)
  1403. TMC_SET_PWMTHRS(E, E1);
  1404. #endif
  1405. #if AXIS_HAS_STEALTHCHOP(E2)
  1406. TMC_SET_PWMTHRS(E, E2);
  1407. #endif
  1408. #if AXIS_HAS_STEALTHCHOP(E3)
  1409. TMC_SET_PWMTHRS(E, E3);
  1410. #endif
  1411. #if AXIS_HAS_STEALTHCHOP(E4)
  1412. TMC_SET_PWMTHRS(E, E4);
  1413. #endif
  1414. #if AXIS_HAS_STEALTHCHOP(E5)
  1415. TMC_SET_PWMTHRS(E, E5);
  1416. #endif
  1417. }
  1418. #endif
  1419. }
  1420. //
  1421. // TMC StallGuard threshold.
  1422. // X and X2 use the same value
  1423. // Y and Y2 use the same value
  1424. // Z, Z2 and Z3 use the same value
  1425. //
  1426. {
  1427. tmc_sgt_t tmc_sgt;
  1428. _FIELD_TEST(tmc_sgt);
  1429. EEPROM_READ(tmc_sgt);
  1430. #if USE_SENSORLESS
  1431. if (!validating) {
  1432. #ifdef X_STALL_SENSITIVITY
  1433. #if AXIS_HAS_STALLGUARD(X)
  1434. stepperX.sgt(tmc_sgt.X);
  1435. #endif
  1436. #if AXIS_HAS_STALLGUARD(X2)
  1437. stepperX2.sgt(tmc_sgt.X);
  1438. #endif
  1439. #endif
  1440. #ifdef Y_STALL_SENSITIVITY
  1441. #if AXIS_HAS_STALLGUARD(Y)
  1442. stepperY.sgt(tmc_sgt.Y);
  1443. #endif
  1444. #if AXIS_HAS_STALLGUARD(Y2)
  1445. stepperY2.sgt(tmc_sgt.Y);
  1446. #endif
  1447. #endif
  1448. #ifdef Z_STALL_SENSITIVITY
  1449. #if AXIS_HAS_STALLGUARD(Z)
  1450. stepperZ.sgt(tmc_sgt.Z);
  1451. #endif
  1452. #if AXIS_HAS_STALLGUARD(Z2)
  1453. stepperZ2.sgt(tmc_sgt.Z);
  1454. #endif
  1455. #if AXIS_HAS_STALLGUARD(Z3)
  1456. stepperZ3.sgt(tmc_sgt.Z);
  1457. #endif
  1458. #endif
  1459. }
  1460. #endif
  1461. }
  1462. // TMC stepping mode
  1463. {
  1464. _FIELD_TEST(tmc_stealth_enabled);
  1465. tmc_stealth_enabled_t tmc_stealth_enabled;
  1466. EEPROM_READ(tmc_stealth_enabled);
  1467. #if HAS_TRINAMIC
  1468. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1469. if (!validating) {
  1470. #if AXIS_HAS_STEALTHCHOP(X)
  1471. SET_STEPPING_MODE(X);
  1472. #endif
  1473. #if AXIS_HAS_STEALTHCHOP(Y)
  1474. SET_STEPPING_MODE(Y);
  1475. #endif
  1476. #if AXIS_HAS_STEALTHCHOP(Z)
  1477. SET_STEPPING_MODE(Z);
  1478. #endif
  1479. #if AXIS_HAS_STEALTHCHOP(X2)
  1480. SET_STEPPING_MODE(X2);
  1481. #endif
  1482. #if AXIS_HAS_STEALTHCHOP(Y2)
  1483. SET_STEPPING_MODE(Y2);
  1484. #endif
  1485. #if AXIS_HAS_STEALTHCHOP(Z2)
  1486. SET_STEPPING_MODE(Z2);
  1487. #endif
  1488. #if AXIS_HAS_STEALTHCHOP(Z3)
  1489. SET_STEPPING_MODE(Z3);
  1490. #endif
  1491. #if AXIS_HAS_STEALTHCHOP(E0)
  1492. SET_STEPPING_MODE(E0);
  1493. #endif
  1494. #if AXIS_HAS_STEALTHCHOP(E1)
  1495. SET_STEPPING_MODE(E1);
  1496. #endif
  1497. #if AXIS_HAS_STEALTHCHOP(E2)
  1498. SET_STEPPING_MODE(E2);
  1499. #endif
  1500. #if AXIS_HAS_STEALTHCHOP(E3)
  1501. SET_STEPPING_MODE(E3);
  1502. #endif
  1503. #if AXIS_HAS_STEALTHCHOP(E4)
  1504. SET_STEPPING_MODE(E4);
  1505. #endif
  1506. #if AXIS_HAS_STEALTHCHOP(E5)
  1507. SET_STEPPING_MODE(E5);
  1508. #endif
  1509. }
  1510. #endif
  1511. }
  1512. //
  1513. // Linear Advance
  1514. //
  1515. {
  1516. float extruder_advance_K[EXTRUDERS];
  1517. _FIELD_TEST(planner_extruder_advance_K);
  1518. EEPROM_READ(extruder_advance_K);
  1519. #if ENABLED(LIN_ADVANCE)
  1520. if (!validating)
  1521. COPY(planner.extruder_advance_K, extruder_advance_K);
  1522. #endif
  1523. }
  1524. //
  1525. // Motor Current PWM
  1526. //
  1527. {
  1528. uint32_t motor_current_setting[3];
  1529. _FIELD_TEST(motor_current_setting);
  1530. EEPROM_READ(motor_current_setting);
  1531. #if HAS_MOTOR_CURRENT_PWM
  1532. if (!validating)
  1533. COPY(stepper.motor_current_setting, motor_current_setting);
  1534. #endif
  1535. }
  1536. //
  1537. // CNC Coordinate System
  1538. //
  1539. {
  1540. _FIELD_TEST(coordinate_system);
  1541. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1542. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1543. EEPROM_READ(gcode.coordinate_system);
  1544. #else
  1545. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1546. EEPROM_READ(coordinate_system);
  1547. #endif
  1548. }
  1549. //
  1550. // Skew correction factors
  1551. //
  1552. {
  1553. skew_factor_t skew_factor;
  1554. _FIELD_TEST(planner_skew_factor);
  1555. EEPROM_READ(skew_factor);
  1556. #if ENABLED(SKEW_CORRECTION_GCODE)
  1557. if (!validating) {
  1558. planner.skew_factor.xy = skew_factor.xy;
  1559. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1560. planner.skew_factor.xz = skew_factor.xz;
  1561. planner.skew_factor.yz = skew_factor.yz;
  1562. #endif
  1563. }
  1564. #endif
  1565. }
  1566. //
  1567. // Advanced Pause filament load & unload lengths
  1568. //
  1569. {
  1570. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1571. fil_change_settings_t fc_settings[EXTRUDERS];
  1572. #endif
  1573. _FIELD_TEST(fc_settings);
  1574. EEPROM_READ(fc_settings);
  1575. }
  1576. //
  1577. // Tool-change settings
  1578. //
  1579. #if EXTRUDERS > 1
  1580. _FIELD_TEST(toolchange_settings);
  1581. EEPROM_READ(toolchange_settings);
  1582. #endif
  1583. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1584. if (eeprom_error) {
  1585. DEBUG_ECHO_START();
  1586. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1587. }
  1588. else if (working_crc != stored_crc) {
  1589. eeprom_error = true;
  1590. DEBUG_ERROR_START();
  1591. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1592. }
  1593. else if (!validating) {
  1594. DEBUG_ECHO_START();
  1595. DEBUG_ECHO(version);
  1596. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1597. }
  1598. if (!validating && !eeprom_error) postprocess();
  1599. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1600. if (!validating) {
  1601. ubl.report_state();
  1602. if (!ubl.sanity_check()) {
  1603. SERIAL_EOL();
  1604. #if ENABLED(EEPROM_CHITCHAT)
  1605. ubl.echo_name();
  1606. DEBUG_ECHOLNPGM(" initialized.\n");
  1607. #endif
  1608. }
  1609. else {
  1610. eeprom_error = true;
  1611. #if ENABLED(EEPROM_CHITCHAT)
  1612. DEBUG_ECHOPGM("?Can't enable ");
  1613. ubl.echo_name();
  1614. DEBUG_ECHOLNPGM(".");
  1615. #endif
  1616. ubl.reset();
  1617. }
  1618. if (ubl.storage_slot >= 0) {
  1619. load_mesh(ubl.storage_slot);
  1620. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1621. }
  1622. else {
  1623. ubl.reset();
  1624. DEBUG_ECHOLNPGM("UBL System reset()");
  1625. }
  1626. }
  1627. #endif
  1628. }
  1629. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1630. if (!validating) report();
  1631. #endif
  1632. EEPROM_FINISH();
  1633. return !eeprom_error;
  1634. }
  1635. bool MarlinSettings::validate() {
  1636. validating = true;
  1637. const bool success = _load();
  1638. validating = false;
  1639. return success;
  1640. }
  1641. bool MarlinSettings::load() {
  1642. if (validate()) return _load();
  1643. reset();
  1644. return true;
  1645. }
  1646. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1647. inline void ubl_invalid_slot(const int s) {
  1648. #if ENABLED(EEPROM_CHITCHAT)
  1649. DEBUG_ECHOLNPGM("?Invalid slot.");
  1650. DEBUG_ECHO(s);
  1651. DEBUG_ECHOLNPGM(" mesh slots available.");
  1652. #else
  1653. UNUSED(s);
  1654. #endif
  1655. }
  1656. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1657. // is a placeholder for the size of the MAT; the MAT will always
  1658. // live at the very end of the eeprom
  1659. uint16_t MarlinSettings::meshes_start_index() {
  1660. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1661. // or down a little bit without disrupting the mesh data
  1662. }
  1663. uint16_t MarlinSettings::calc_num_meshes() {
  1664. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1665. }
  1666. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1667. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1668. }
  1669. void MarlinSettings::store_mesh(const int8_t slot) {
  1670. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1671. const int16_t a = calc_num_meshes();
  1672. if (!WITHIN(slot, 0, a - 1)) {
  1673. ubl_invalid_slot(a);
  1674. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1675. DEBUG_EOL();
  1676. return;
  1677. }
  1678. int pos = mesh_slot_offset(slot);
  1679. uint16_t crc = 0;
  1680. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1681. persistentStore.access_start();
  1682. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1683. persistentStore.access_finish();
  1684. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1685. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1686. #else
  1687. // Other mesh types
  1688. #endif
  1689. }
  1690. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1691. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1692. const int16_t a = settings.calc_num_meshes();
  1693. if (!WITHIN(slot, 0, a - 1)) {
  1694. ubl_invalid_slot(a);
  1695. return;
  1696. }
  1697. int pos = mesh_slot_offset(slot);
  1698. uint16_t crc = 0;
  1699. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1700. persistentStore.access_start();
  1701. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1702. persistentStore.access_finish();
  1703. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1704. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1705. EEPROM_FINISH();
  1706. #else
  1707. // Other mesh types
  1708. #endif
  1709. }
  1710. //void MarlinSettings::delete_mesh() { return; }
  1711. //void MarlinSettings::defrag_meshes() { return; }
  1712. #endif // AUTO_BED_LEVELING_UBL
  1713. #else // !EEPROM_SETTINGS
  1714. bool MarlinSettings::save() {
  1715. DEBUG_ERROR_MSG("EEPROM disabled");
  1716. return false;
  1717. }
  1718. #endif // !EEPROM_SETTINGS
  1719. /**
  1720. * M502 - Reset Configuration
  1721. */
  1722. void MarlinSettings::reset() {
  1723. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1724. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1725. LOOP_XYZE_N(i) {
  1726. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1727. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1728. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1729. }
  1730. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1731. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1732. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1733. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1734. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1735. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1736. #if HAS_CLASSIC_JERK
  1737. #ifndef DEFAULT_XJERK
  1738. #define DEFAULT_XJERK 0
  1739. #endif
  1740. #ifndef DEFAULT_YJERK
  1741. #define DEFAULT_YJERK 0
  1742. #endif
  1743. #ifndef DEFAULT_ZJERK
  1744. #define DEFAULT_ZJERK 0
  1745. #endif
  1746. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1747. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1748. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1749. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1750. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1751. #endif
  1752. #endif
  1753. #if ENABLED(JUNCTION_DEVIATION)
  1754. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1755. #endif
  1756. #if HAS_SCARA_OFFSET
  1757. ZERO(scara_home_offset);
  1758. #elif HAS_HOME_OFFSET
  1759. ZERO(home_offset);
  1760. #endif
  1761. #if HAS_HOTEND_OFFSET
  1762. reset_hotend_offsets();
  1763. #endif
  1764. #if EXTRUDERS > 1
  1765. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1766. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1767. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1768. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1769. #endif
  1770. #if ENABLED(TOOLCHANGE_PARK)
  1771. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1772. #endif
  1773. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1774. #endif
  1775. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  1776. mpe_settings_init();
  1777. #endif
  1778. //
  1779. // Global Leveling
  1780. //
  1781. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1782. new_z_fade_height = 0.0;
  1783. #endif
  1784. #if HAS_LEVELING
  1785. reset_bed_level();
  1786. #endif
  1787. #if HAS_BED_PROBE
  1788. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1789. #endif
  1790. //
  1791. // Servo Angles
  1792. //
  1793. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1794. COPY(servo_angles, base_servo_angles);
  1795. #endif
  1796. //
  1797. // Endstop Adjustments
  1798. //
  1799. #if ENABLED(DELTA)
  1800. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1801. delta_height = DELTA_HEIGHT;
  1802. COPY(delta_endstop_adj, adj);
  1803. delta_radius = DELTA_RADIUS;
  1804. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1805. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1806. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1807. COPY(delta_tower_angle_trim, dta);
  1808. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1809. #if ENABLED(X_DUAL_ENDSTOPS)
  1810. endstops.x2_endstop_adj = (
  1811. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1812. X_DUAL_ENDSTOPS_ADJUSTMENT
  1813. #else
  1814. 0
  1815. #endif
  1816. );
  1817. #endif
  1818. #if ENABLED(Y_DUAL_ENDSTOPS)
  1819. endstops.y2_endstop_adj = (
  1820. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1821. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1822. #else
  1823. 0
  1824. #endif
  1825. );
  1826. #endif
  1827. #if ENABLED(Z_DUAL_ENDSTOPS)
  1828. endstops.z2_endstop_adj = (
  1829. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1830. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1831. #else
  1832. 0
  1833. #endif
  1834. );
  1835. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1836. endstops.z2_endstop_adj = (
  1837. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1838. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1839. #else
  1840. 0
  1841. #endif
  1842. );
  1843. endstops.z3_endstop_adj = (
  1844. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1845. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1846. #else
  1847. 0
  1848. #endif
  1849. );
  1850. #endif
  1851. #endif
  1852. //
  1853. // Preheat parameters
  1854. //
  1855. #if HAS_LCD_MENU
  1856. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1857. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1858. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1859. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1860. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1861. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1862. #endif
  1863. //
  1864. // Hotend PID
  1865. //
  1866. #if ENABLED(PIDTEMP)
  1867. HOTEND_LOOP() {
  1868. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1869. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1870. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1871. #if ENABLED(PID_EXTRUSION_SCALING)
  1872. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1873. #endif
  1874. }
  1875. #endif
  1876. //
  1877. // PID Extrusion Scaling
  1878. //
  1879. #if ENABLED(PID_EXTRUSION_SCALING)
  1880. thermalManager.lpq_len = 20; // Default last-position-queue size
  1881. #endif
  1882. //
  1883. // Heated Bed PID
  1884. //
  1885. #if ENABLED(PIDTEMPBED)
  1886. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  1887. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  1888. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  1889. #endif
  1890. //
  1891. // LCD Contrast
  1892. //
  1893. #if HAS_LCD_CONTRAST
  1894. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  1895. #endif
  1896. //
  1897. // Power-Loss Recovery
  1898. //
  1899. #if ENABLED(POWER_LOSS_RECOVERY)
  1900. recovery.enable(true);
  1901. #endif
  1902. //
  1903. // Firmware Retraction
  1904. //
  1905. #if ENABLED(FWRETRACT)
  1906. fwretract.reset();
  1907. #endif
  1908. //
  1909. // Volumetric & Filament Size
  1910. //
  1911. #if DISABLED(NO_VOLUMETRICS)
  1912. parser.volumetric_enabled =
  1913. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1914. true
  1915. #else
  1916. false
  1917. #endif
  1918. ;
  1919. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1920. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1921. #endif
  1922. endstops.enable_globally(
  1923. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1924. true
  1925. #else
  1926. false
  1927. #endif
  1928. );
  1929. reset_stepper_drivers();
  1930. //
  1931. // Linear Advance
  1932. //
  1933. #if ENABLED(LIN_ADVANCE)
  1934. LOOP_L_N(i, EXTRUDERS) {
  1935. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1936. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  1937. saved_extruder_advance_K[i] = LIN_ADVANCE_K;
  1938. #endif
  1939. }
  1940. #endif
  1941. //
  1942. // Motor Current PWM
  1943. //
  1944. #if HAS_MOTOR_CURRENT_PWM
  1945. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1946. for (uint8_t q = 3; q--;)
  1947. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1948. #endif
  1949. //
  1950. // CNC Coordinate System
  1951. //
  1952. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1953. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1954. #endif
  1955. //
  1956. // Skew Correction
  1957. //
  1958. #if ENABLED(SKEW_CORRECTION_GCODE)
  1959. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1960. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1961. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1962. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1963. #endif
  1964. #endif
  1965. //
  1966. // Advanced Pause filament load & unload lengths
  1967. //
  1968. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1969. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1970. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1971. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1972. }
  1973. #endif
  1974. postprocess();
  1975. DEBUG_ECHO_START();
  1976. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1977. }
  1978. #if DISABLED(DISABLE_M503)
  1979. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1980. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  1981. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  1982. #if HAS_TRINAMIC
  1983. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  1984. #if HAS_STEALTHCHOP
  1985. void say_M569(const char * const etc=NULL) {
  1986. SERIAL_ECHOPGM(" M569 S1");
  1987. if (etc) {
  1988. SERIAL_CHAR(' ');
  1989. serialprintPGM(etc);
  1990. SERIAL_EOL();
  1991. }
  1992. }
  1993. #endif
  1994. #if ENABLED(HYBRID_THRESHOLD)
  1995. inline void say_M913() { SERIAL_ECHOPGM(" M913"); }
  1996. #endif
  1997. #if USE_SENSORLESS
  1998. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  1999. #endif
  2000. #endif
  2001. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2002. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2003. #endif
  2004. inline void say_units(const bool colon) {
  2005. serialprintPGM(
  2006. #if ENABLED(INCH_MODE_SUPPORT)
  2007. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2008. #endif
  2009. PSTR(" (mm)")
  2010. );
  2011. if (colon) SERIAL_ECHOLNPGM(":");
  2012. }
  2013. void report_M92(const bool echo=true, const int8_t e=-1);
  2014. /**
  2015. * M503 - Report current settings in RAM
  2016. *
  2017. * Unless specifically disabled, M503 is available even without EEPROM
  2018. */
  2019. void MarlinSettings::report(const bool forReplay) {
  2020. /**
  2021. * Announce current units, in case inches are being displayed
  2022. */
  2023. CONFIG_ECHO_START();
  2024. #if ENABLED(INCH_MODE_SUPPORT)
  2025. SERIAL_ECHOPGM(" G2");
  2026. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2027. SERIAL_ECHOPGM(" ;");
  2028. say_units(false);
  2029. #else
  2030. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2031. say_units(false);
  2032. #endif
  2033. SERIAL_EOL();
  2034. #if HAS_LCD_MENU
  2035. // Temperature units - for Ultipanel temperature options
  2036. CONFIG_ECHO_START();
  2037. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2038. SERIAL_ECHOPGM(" M149 ");
  2039. SERIAL_CHAR(parser.temp_units_code());
  2040. SERIAL_ECHOPGM(" ; Units in ");
  2041. serialprintPGM(parser.temp_units_name());
  2042. #else
  2043. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2044. #endif
  2045. #endif
  2046. SERIAL_EOL();
  2047. #if DISABLED(NO_VOLUMETRICS)
  2048. /**
  2049. * Volumetric extrusion M200
  2050. */
  2051. if (!forReplay) {
  2052. CONFIG_ECHO_START();
  2053. SERIAL_ECHOPGM("Filament settings:");
  2054. if (parser.volumetric_enabled)
  2055. SERIAL_EOL();
  2056. else
  2057. SERIAL_ECHOLNPGM(" Disabled");
  2058. }
  2059. CONFIG_ECHO_START();
  2060. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2061. #if EXTRUDERS > 1
  2062. CONFIG_ECHO_START();
  2063. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2064. #if EXTRUDERS > 2
  2065. CONFIG_ECHO_START();
  2066. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2067. #if EXTRUDERS > 3
  2068. CONFIG_ECHO_START();
  2069. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2070. #if EXTRUDERS > 4
  2071. CONFIG_ECHO_START();
  2072. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2073. #if EXTRUDERS > 5
  2074. CONFIG_ECHO_START();
  2075. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2076. #endif // EXTRUDERS > 5
  2077. #endif // EXTRUDERS > 4
  2078. #endif // EXTRUDERS > 3
  2079. #endif // EXTRUDERS > 2
  2080. #endif // EXTRUDERS > 1
  2081. if (!parser.volumetric_enabled)
  2082. CONFIG_ECHO_MSG(" M200 D0");
  2083. #endif // !NO_VOLUMETRICS
  2084. CONFIG_ECHO_HEADING("Steps per unit:");
  2085. report_M92(!forReplay);
  2086. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2087. CONFIG_ECHO_START();
  2088. SERIAL_ECHOLNPAIR(
  2089. " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2090. , " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2091. , " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2092. #if DISABLED(DISTINCT_E_FACTORS)
  2093. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2094. #endif
  2095. );
  2096. #if ENABLED(DISTINCT_E_FACTORS)
  2097. CONFIG_ECHO_START();
  2098. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2099. SERIAL_ECHOLNPAIR(
  2100. " M203 T", (int)i
  2101. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2102. );
  2103. }
  2104. #endif
  2105. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2106. CONFIG_ECHO_START();
  2107. SERIAL_ECHOLNPAIR(
  2108. " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2109. , " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2110. , " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2111. #if DISABLED(DISTINCT_E_FACTORS)
  2112. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2113. #endif
  2114. );
  2115. #if ENABLED(DISTINCT_E_FACTORS)
  2116. CONFIG_ECHO_START();
  2117. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2118. SERIAL_ECHOLNPAIR(
  2119. " M201 T", (int)i
  2120. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2121. );
  2122. #endif
  2123. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2124. CONFIG_ECHO_START();
  2125. SERIAL_ECHOLNPAIR(
  2126. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2127. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2128. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2129. );
  2130. if (!forReplay) {
  2131. CONFIG_ECHO_START();
  2132. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2133. #if ENABLED(JUNCTION_DEVIATION)
  2134. SERIAL_ECHOPGM(" J<junc_dev>");
  2135. #endif
  2136. #if HAS_CLASSIC_JERK
  2137. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2138. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2139. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2140. #endif
  2141. #endif
  2142. SERIAL_EOL();
  2143. }
  2144. CONFIG_ECHO_START();
  2145. SERIAL_ECHOLNPAIR(
  2146. " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us)
  2147. , " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2148. , " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2149. #if ENABLED(JUNCTION_DEVIATION)
  2150. , " J", LINEAR_UNIT(planner.junction_deviation_mm)
  2151. #endif
  2152. #if HAS_CLASSIC_JERK
  2153. , " X", LINEAR_UNIT(planner.max_jerk[X_AXIS])
  2154. , " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])
  2155. , " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])
  2156. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2157. , " E", LINEAR_UNIT(planner.max_jerk[E_AXIS])
  2158. #endif
  2159. #endif
  2160. );
  2161. #if HAS_M206_COMMAND
  2162. CONFIG_ECHO_HEADING("Home offset:");
  2163. CONFIG_ECHO_START();
  2164. SERIAL_ECHOLNPAIR(" M206"
  2165. #if IS_CARTESIAN
  2166. " X", LINEAR_UNIT(home_offset[X_AXIS]),
  2167. " Y", LINEAR_UNIT(home_offset[Y_AXIS]),
  2168. #endif
  2169. " Z", LINEAR_UNIT(home_offset[Z_AXIS])
  2170. );
  2171. #endif
  2172. #if HAS_HOTEND_OFFSET
  2173. CONFIG_ECHO_HEADING("Hotend offsets:");
  2174. CONFIG_ECHO_START();
  2175. for (uint8_t e = 1; e < HOTENDS; e++) {
  2176. SERIAL_ECHOPAIR(
  2177. " M218 T", (int)e
  2178. , " X", LINEAR_UNIT(hotend_offset[X_AXIS][e])
  2179. , " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])
  2180. );
  2181. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2182. }
  2183. #endif
  2184. /**
  2185. * Bed Leveling
  2186. */
  2187. #if HAS_LEVELING
  2188. #if ENABLED(MESH_BED_LEVELING)
  2189. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2190. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2191. if (!forReplay) {
  2192. CONFIG_ECHO_START();
  2193. ubl.echo_name();
  2194. SERIAL_ECHOLNPGM(":");
  2195. }
  2196. #elif HAS_ABL_OR_UBL
  2197. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2198. #endif
  2199. CONFIG_ECHO_START();
  2200. SERIAL_ECHOLNPAIR(
  2201. " M420 S", planner.leveling_active ? 1 : 0
  2202. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2203. , " Z", LINEAR_UNIT(planner.z_fade_height)
  2204. #endif
  2205. );
  2206. #if ENABLED(MESH_BED_LEVELING)
  2207. if (leveling_is_valid()) {
  2208. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2209. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2210. CONFIG_ECHO_START();
  2211. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1, " Y", (int)py + 1);
  2212. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2213. }
  2214. }
  2215. }
  2216. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2217. if (!forReplay) {
  2218. SERIAL_EOL();
  2219. ubl.report_state();
  2220. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2221. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2222. }
  2223. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2224. // solution needs to be found.
  2225. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2226. if (leveling_is_valid()) {
  2227. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2228. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2229. CONFIG_ECHO_START();
  2230. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2231. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(z_values[px][py]), 5);
  2232. }
  2233. }
  2234. }
  2235. #endif
  2236. #endif // HAS_LEVELING
  2237. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2238. CONFIG_ECHO_HEADING("Servo Angles:");
  2239. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2240. switch (i) {
  2241. #if ENABLED(SWITCHING_EXTRUDER)
  2242. case SWITCHING_EXTRUDER_SERVO_NR:
  2243. #if EXTRUDERS > 3
  2244. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2245. #endif
  2246. #elif ENABLED(SWITCHING_NOZZLE)
  2247. case SWITCHING_NOZZLE_SERVO_NR:
  2248. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2249. case Z_PROBE_SERVO_NR:
  2250. #endif
  2251. CONFIG_ECHO_START();
  2252. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2253. default: break;
  2254. }
  2255. }
  2256. #endif // EDITABLE_SERVO_ANGLES
  2257. #if HAS_SCARA_OFFSET
  2258. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2259. CONFIG_ECHO_START();
  2260. SERIAL_ECHOLNPAIR(
  2261. " M665 S", delta_segments_per_second
  2262. , " P", scara_home_offset[A_AXIS]
  2263. , " T", scara_home_offset[B_AXIS]
  2264. , " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS])
  2265. );
  2266. #elif ENABLED(DELTA)
  2267. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2268. CONFIG_ECHO_START();
  2269. SERIAL_ECHOLNPAIR(
  2270. " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])
  2271. , " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])
  2272. , " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])
  2273. );
  2274. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2275. CONFIG_ECHO_START();
  2276. SERIAL_ECHOLNPAIR(
  2277. " M665 L", LINEAR_UNIT(delta_diagonal_rod)
  2278. , " R", LINEAR_UNIT(delta_radius)
  2279. , " H", LINEAR_UNIT(delta_height)
  2280. , " S", delta_segments_per_second
  2281. , " B", LINEAR_UNIT(delta_calibration_radius)
  2282. , " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])
  2283. , " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])
  2284. , " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])
  2285. );
  2286. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2287. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2288. CONFIG_ECHO_START();
  2289. SERIAL_ECHOPGM(" M666");
  2290. #if ENABLED(X_DUAL_ENDSTOPS)
  2291. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2292. #endif
  2293. #if ENABLED(Y_DUAL_ENDSTOPS)
  2294. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2295. #endif
  2296. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2297. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2298. CONFIG_ECHO_START();
  2299. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2300. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2301. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2302. #endif
  2303. SERIAL_EOL();
  2304. #endif // [XYZ]_DUAL_ENDSTOPS
  2305. #if HAS_LCD_MENU
  2306. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2307. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2308. CONFIG_ECHO_START();
  2309. SERIAL_ECHOLNPAIR(
  2310. " M145 S", (int)i
  2311. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2312. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2313. , " F", int(ui.preheat_fan_speed[i])
  2314. );
  2315. }
  2316. #endif
  2317. #if HAS_PID_HEATING
  2318. CONFIG_ECHO_HEADING("PID settings:");
  2319. #if ENABLED(PIDTEMP)
  2320. #if HOTENDS > 1
  2321. if (forReplay) {
  2322. HOTEND_LOOP() {
  2323. CONFIG_ECHO_START();
  2324. SERIAL_ECHOPAIR(
  2325. " M301 E", e
  2326. , " P", PID_PARAM(Kp, e)
  2327. , " I", unscalePID_i(PID_PARAM(Ki, e))
  2328. , " D", unscalePID_d(PID_PARAM(Kd, e))
  2329. );
  2330. #if ENABLED(PID_EXTRUSION_SCALING)
  2331. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2332. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2333. #endif
  2334. SERIAL_EOL();
  2335. }
  2336. }
  2337. else
  2338. #endif // HOTENDS > 1
  2339. // !forReplay || HOTENDS == 1
  2340. {
  2341. CONFIG_ECHO_START();
  2342. SERIAL_ECHOLNPAIR(
  2343. " M301 P", PID_PARAM(Kp, 0) // for compatibility with hosts, only echo values for E0
  2344. , " I", unscalePID_i(PID_PARAM(Ki, 0))
  2345. , " D", unscalePID_d(PID_PARAM(Kd, 0))
  2346. #if ENABLED(PID_EXTRUSION_SCALING)
  2347. , " C", PID_PARAM(Kc, 0)
  2348. , " L", thermalManager.lpq_len
  2349. #endif
  2350. );
  2351. }
  2352. #endif // PIDTEMP
  2353. #if ENABLED(PIDTEMPBED)
  2354. CONFIG_ECHO_START();
  2355. SERIAL_ECHOLNPAIR(
  2356. " M304 P", thermalManager.temp_bed.pid.Kp
  2357. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2358. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2359. );
  2360. #endif
  2361. #endif // PIDTEMP || PIDTEMPBED
  2362. #if HAS_LCD_CONTRAST
  2363. CONFIG_ECHO_HEADING("LCD Contrast:");
  2364. CONFIG_ECHO_START();
  2365. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2366. #endif
  2367. #if ENABLED(POWER_LOSS_RECOVERY)
  2368. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2369. CONFIG_ECHO_START();
  2370. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2371. #endif
  2372. #if ENABLED(FWRETRACT)
  2373. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2374. CONFIG_ECHO_START();
  2375. SERIAL_ECHOLNPAIR(
  2376. " M207 S", LINEAR_UNIT(fwretract.settings.retract_length)
  2377. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2378. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s))
  2379. , " Z", LINEAR_UNIT(fwretract.settings.retract_zraise)
  2380. );
  2381. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2382. CONFIG_ECHO_START();
  2383. SERIAL_ECHOLNPAIR(
  2384. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2385. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2386. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s))
  2387. );
  2388. #if ENABLED(FWRETRACT_AUTORETRACT)
  2389. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2390. CONFIG_ECHO_START();
  2391. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2392. #endif // FWRETRACT_AUTORETRACT
  2393. #endif // FWRETRACT
  2394. /**
  2395. * Probe Offset
  2396. */
  2397. #if HAS_BED_PROBE
  2398. if (!forReplay) {
  2399. CONFIG_ECHO_START();
  2400. SERIAL_ECHOPGM("Z-Probe Offset");
  2401. say_units(true);
  2402. }
  2403. CONFIG_ECHO_START();
  2404. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2405. #endif
  2406. /**
  2407. * Bed Skew Correction
  2408. */
  2409. #if ENABLED(SKEW_CORRECTION_GCODE)
  2410. CONFIG_ECHO_HEADING("Skew Factor: ");
  2411. CONFIG_ECHO_START();
  2412. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2413. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2414. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2415. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2416. #else
  2417. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2418. #endif
  2419. #endif
  2420. #if HAS_TRINAMIC
  2421. /**
  2422. * TMC stepper driver current
  2423. */
  2424. CONFIG_ECHO_HEADING("Stepper driver current:");
  2425. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2426. say_M906(forReplay);
  2427. SERIAL_ECHOLNPAIR(
  2428. #if AXIS_IS_TMC(X)
  2429. " X", stepperX.getMilliamps(),
  2430. #endif
  2431. #if AXIS_IS_TMC(Y)
  2432. " Y", stepperY.getMilliamps(),
  2433. #endif
  2434. #if AXIS_IS_TMC(Z)
  2435. " Z", stepperZ.getMilliamps()
  2436. #endif
  2437. );
  2438. #endif
  2439. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2440. say_M906(forReplay);
  2441. SERIAL_ECHOPGM(" I1");
  2442. SERIAL_ECHOLNPAIR(
  2443. #if AXIS_IS_TMC(X2)
  2444. " X", stepperX2.getMilliamps(),
  2445. #endif
  2446. #if AXIS_IS_TMC(Y2)
  2447. " Y", stepperY2.getMilliamps(),
  2448. #endif
  2449. #if AXIS_IS_TMC(Z2)
  2450. " Z", stepperZ2.getMilliamps()
  2451. #endif
  2452. );
  2453. #endif
  2454. #if AXIS_IS_TMC(Z3)
  2455. say_M906(forReplay);
  2456. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2457. #endif
  2458. #if AXIS_IS_TMC(E0)
  2459. say_M906(forReplay);
  2460. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2461. #endif
  2462. #if AXIS_IS_TMC(E1)
  2463. say_M906(forReplay);
  2464. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2465. #endif
  2466. #if AXIS_IS_TMC(E2)
  2467. say_M906(forReplay);
  2468. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2469. #endif
  2470. #if AXIS_IS_TMC(E3)
  2471. say_M906(forReplay);
  2472. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2473. #endif
  2474. #if AXIS_IS_TMC(E4)
  2475. say_M906(forReplay);
  2476. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2477. #endif
  2478. #if AXIS_IS_TMC(E5)
  2479. say_M906(forReplay);
  2480. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2481. #endif
  2482. SERIAL_EOL();
  2483. /**
  2484. * TMC Hybrid Threshold
  2485. */
  2486. #if ENABLED(HYBRID_THRESHOLD)
  2487. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2488. CONFIG_ECHO_START();
  2489. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2490. say_M913();
  2491. #endif
  2492. #if AXIS_HAS_STEALTHCHOP(X)
  2493. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
  2494. #endif
  2495. #if AXIS_HAS_STEALTHCHOP(Y)
  2496. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
  2497. #endif
  2498. #if AXIS_HAS_STEALTHCHOP(Z)
  2499. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
  2500. #endif
  2501. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2502. SERIAL_EOL();
  2503. #endif
  2504. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2505. say_M913();
  2506. SERIAL_ECHOPGM(" I1");
  2507. #endif
  2508. #if AXIS_HAS_STEALTHCHOP(X2)
  2509. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
  2510. #endif
  2511. #if AXIS_HAS_STEALTHCHOP(Y2)
  2512. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
  2513. #endif
  2514. #if AXIS_HAS_STEALTHCHOP(Z2)
  2515. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
  2516. #endif
  2517. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2518. SERIAL_EOL();
  2519. #endif
  2520. #if AXIS_HAS_STEALTHCHOP(Z3)
  2521. say_M913();
  2522. SERIAL_ECHOLNPAIR(" I2 Z", TMC_GET_PWMTHRS(Z, Z3));
  2523. #endif
  2524. #if AXIS_HAS_STEALTHCHOP(E0)
  2525. say_M913();
  2526. SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
  2527. #endif
  2528. #if AXIS_HAS_STEALTHCHOP(E1)
  2529. say_M913();
  2530. SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
  2531. #endif
  2532. #if AXIS_HAS_STEALTHCHOP(E2)
  2533. say_M913();
  2534. SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
  2535. #endif
  2536. #if AXIS_HAS_STEALTHCHOP(E3)
  2537. say_M913();
  2538. SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
  2539. #endif
  2540. #if AXIS_HAS_STEALTHCHOP(E4)
  2541. say_M913();
  2542. SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
  2543. #endif
  2544. #if AXIS_HAS_STEALTHCHOP(E5)
  2545. say_M913();
  2546. SERIAL_ECHOLNPAIR(" T5 E", TMC_GET_PWMTHRS(E, E5));
  2547. #endif
  2548. SERIAL_EOL();
  2549. #endif // HYBRID_THRESHOLD
  2550. /**
  2551. * TMC Sensorless homing thresholds
  2552. */
  2553. #if USE_SENSORLESS
  2554. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2555. CONFIG_ECHO_START();
  2556. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2557. say_M914();
  2558. #if X_SENSORLESS
  2559. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  2560. #endif
  2561. #if Y_SENSORLESS
  2562. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  2563. #endif
  2564. #if Z_SENSORLESS
  2565. SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
  2566. #endif
  2567. SERIAL_EOL();
  2568. #endif
  2569. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2570. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2571. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2572. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2573. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2574. say_M914();
  2575. SERIAL_ECHOPGM(" I1");
  2576. #if HAS_X2_SENSORLESS
  2577. SERIAL_ECHOPAIR(" X", stepperX2.sgt());
  2578. #endif
  2579. #if HAS_Y2_SENSORLESS
  2580. SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
  2581. #endif
  2582. #if HAS_Z2_SENSORLESS
  2583. SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
  2584. #endif
  2585. SERIAL_EOL();
  2586. #endif
  2587. #if HAS_Z3_SENSORLESS
  2588. say_M914();
  2589. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.sgt());
  2590. #endif
  2591. #endif // USE_SENSORLESS
  2592. /**
  2593. * TMC stepping mode
  2594. */
  2595. #if HAS_STEALTHCHOP
  2596. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2597. CONFIG_ECHO_START();
  2598. #if AXIS_HAS_STEALTHCHOP(X)
  2599. const bool chop_x = stepperX.get_stealthChop_status();
  2600. #else
  2601. constexpr bool chop_x = false;
  2602. #endif
  2603. #if AXIS_HAS_STEALTHCHOP(Y)
  2604. const bool chop_y = stepperY.get_stealthChop_status();
  2605. #else
  2606. constexpr bool chop_y = false;
  2607. #endif
  2608. #if AXIS_HAS_STEALTHCHOP(Z)
  2609. const bool chop_z = stepperZ.get_stealthChop_status();
  2610. #else
  2611. constexpr bool chop_z = false;
  2612. #endif
  2613. if (chop_x || chop_y || chop_z) say_M569();
  2614. if (chop_x) SERIAL_ECHOPGM(" X");
  2615. if (chop_y) SERIAL_ECHOPGM(" Y");
  2616. if (chop_z) SERIAL_ECHOPGM(" Z");
  2617. if (chop_x || chop_y || chop_z) SERIAL_EOL();
  2618. #if AXIS_HAS_STEALTHCHOP(X2)
  2619. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2620. #else
  2621. constexpr bool chop_x2 = false;
  2622. #endif
  2623. #if AXIS_HAS_STEALTHCHOP(Y2)
  2624. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2625. #else
  2626. constexpr bool chop_y2 = false;
  2627. #endif
  2628. #if AXIS_HAS_STEALTHCHOP(Z2)
  2629. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2630. #else
  2631. constexpr bool chop_z2 = false;
  2632. #endif
  2633. if (chop_x2 || chop_y2 || chop_z2) say_M569(PSTR("I1"));
  2634. if (chop_x2) SERIAL_ECHOPGM(" X");
  2635. if (chop_y2) SERIAL_ECHOPGM(" Y");
  2636. if (chop_z2) SERIAL_ECHOPGM(" Z");
  2637. if (chop_x2 || chop_y2 || chop_z2) SERIAL_EOL();
  2638. #if AXIS_HAS_STEALTHCHOP(Z3)
  2639. if (stepperZ3.get_stealthChop_status()) { say_M569(PSTR("I2 Z")); }
  2640. #endif
  2641. #if AXIS_HAS_STEALTHCHOP(E0)
  2642. if (stepperE0.get_stealthChop_status()) { say_M569(PSTR("T0 E")); }
  2643. #endif
  2644. #if AXIS_HAS_STEALTHCHOP(E1)
  2645. if (stepperE1.get_stealthChop_status()) { say_M569(PSTR("T1 E")); }
  2646. #endif
  2647. #if AXIS_HAS_STEALTHCHOP(E2)
  2648. if (stepperE2.get_stealthChop_status()) { say_M569(PSTR("T2 E")); }
  2649. #endif
  2650. #if AXIS_HAS_STEALTHCHOP(E3)
  2651. if (stepperE3.get_stealthChop_status()) { say_M569(PSTR("T3 E")); }
  2652. #endif
  2653. #if AXIS_HAS_STEALTHCHOP(E4)
  2654. if (stepperE4.get_stealthChop_status()) { say_M569(PSTR("T4 E")); }
  2655. #endif
  2656. #if AXIS_HAS_STEALTHCHOP(E5)
  2657. if (stepperE5.get_stealthChop_status()) { say_M569(PSTR("T5 E")); }
  2658. #endif
  2659. #endif // HAS_STEALTHCHOP
  2660. #endif // HAS_TRINAMIC
  2661. /**
  2662. * Linear Advance
  2663. */
  2664. #if ENABLED(LIN_ADVANCE)
  2665. CONFIG_ECHO_HEADING("Linear Advance:");
  2666. CONFIG_ECHO_START();
  2667. #if EXTRUDERS < 2
  2668. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  2669. #else
  2670. LOOP_L_N(i, EXTRUDERS)
  2671. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  2672. #endif
  2673. #endif
  2674. #if HAS_MOTOR_CURRENT_PWM
  2675. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2676. CONFIG_ECHO_START();
  2677. SERIAL_ECHOLNPAIR(
  2678. " M907 X", stepper.motor_current_setting[0]
  2679. , " Z", stepper.motor_current_setting[1]
  2680. , " E", stepper.motor_current_setting[2]
  2681. );
  2682. #endif
  2683. /**
  2684. * Advanced Pause filament load & unload lengths
  2685. */
  2686. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2687. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2688. #if EXTRUDERS == 1
  2689. say_M603(forReplay);
  2690. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2691. #else
  2692. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  2693. _ECHO_603(0);
  2694. _ECHO_603(1);
  2695. #if EXTRUDERS > 2
  2696. _ECHO_603(2);
  2697. #if EXTRUDERS > 3
  2698. _ECHO_603(3);
  2699. #if EXTRUDERS > 4
  2700. _ECHO_603(4);
  2701. #if EXTRUDERS > 5
  2702. _ECHO_603(5);
  2703. #endif // EXTRUDERS > 5
  2704. #endif // EXTRUDERS > 4
  2705. #endif // EXTRUDERS > 3
  2706. #endif // EXTRUDERS > 2
  2707. #endif // EXTRUDERS == 1
  2708. #endif // ADVANCED_PAUSE_FEATURE
  2709. #if EXTRUDERS > 1
  2710. CONFIG_ECHO_HEADING("Tool-changing:");
  2711. CONFIG_ECHO_START();
  2712. M217_report(true);
  2713. #endif
  2714. }
  2715. #endif // !DISABLE_M503
  2716. #pragma pack(pop)