My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 386KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '4-point' auto calibration iteration
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[ABC],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_diagonal_rod_trim[ABC],
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  538. #endif
  539. #if IS_SCARA
  540. // Float constants for SCARA calculations
  541. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  542. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  543. L2_2 = sq(float(L2));
  544. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  545. delta[ABC];
  546. #endif
  547. float cartes[XYZ] = { 0 };
  548. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  549. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  550. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  551. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  552. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  553. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  554. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  555. #endif
  556. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  557. static bool filament_ran_out = false;
  558. #endif
  559. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  560. FilamentChangeMenuResponse filament_change_menu_response;
  561. #endif
  562. #if ENABLED(MIXING_EXTRUDER)
  563. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  564. #if MIXING_VIRTUAL_TOOLS > 1
  565. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  566. #endif
  567. #endif
  568. static bool send_ok[BUFSIZE];
  569. #if HAS_SERVOS
  570. Servo servo[NUM_SERVOS];
  571. #define MOVE_SERVO(I, P) servo[I].move(P)
  572. #if HAS_Z_SERVO_ENDSTOP
  573. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  574. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  575. #endif
  576. #endif
  577. #ifdef CHDK
  578. millis_t chdkHigh = 0;
  579. bool chdkActive = false;
  580. #endif
  581. #ifdef AUTOMATIC_CURRENT_CONTROL
  582. bool auto_current_control = 0;
  583. #endif
  584. #if ENABLED(PID_EXTRUSION_SCALING)
  585. int lpq_len = 20;
  586. #endif
  587. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  588. MarlinBusyState busy_state = NOT_BUSY;
  589. static millis_t next_busy_signal_ms = 0;
  590. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  591. #else
  592. #define host_keepalive() NOOP
  593. #endif
  594. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  595. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  597. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  598. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  599. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  600. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  601. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  602. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  603. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  604. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  605. /**
  606. * ***************************************************************************
  607. * ******************************** FUNCTIONS ********************************
  608. * ***************************************************************************
  609. */
  610. void stop();
  611. void get_available_commands();
  612. void process_next_command();
  613. void prepare_move_to_destination();
  614. void get_cartesian_from_steppers();
  615. void set_current_from_steppers_for_axis(const AxisEnum axis);
  616. #if ENABLED(ARC_SUPPORT)
  617. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  618. #endif
  619. #if ENABLED(BEZIER_CURVE_SUPPORT)
  620. void plan_cubic_move(const float offset[4]);
  621. #endif
  622. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  623. static void report_current_position();
  624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  625. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  626. serialprintPGM(prefix);
  627. SERIAL_ECHOPAIR("(", x);
  628. SERIAL_ECHOPAIR(", ", y);
  629. SERIAL_ECHOPAIR(", ", z);
  630. SERIAL_CHAR(')');
  631. if (suffix) serialprintPGM(suffix);
  632. else SERIAL_EOL;
  633. }
  634. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  635. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  636. }
  637. #if HAS_ABL
  638. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  639. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  640. }
  641. #endif
  642. #define DEBUG_POS(SUFFIX,VAR) do { \
  643. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  644. #endif
  645. /**
  646. * sync_plan_position
  647. *
  648. * Set the planner/stepper positions directly from current_position with
  649. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  650. */
  651. inline void sync_plan_position() {
  652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  653. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  654. #endif
  655. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  656. }
  657. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  658. #if IS_KINEMATIC
  659. inline void sync_plan_position_kinematic() {
  660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  661. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  662. #endif
  663. planner.set_position_mm_kinematic(current_position);
  664. }
  665. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  666. #else
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  668. #endif
  669. #if ENABLED(SDSUPPORT)
  670. #include "SdFatUtil.h"
  671. int freeMemory() { return SdFatUtil::FreeRam(); }
  672. #else
  673. extern "C" {
  674. extern char __bss_end;
  675. extern char __heap_start;
  676. extern void* __brkval;
  677. int freeMemory() {
  678. int free_memory;
  679. if ((int)__brkval == 0)
  680. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  681. else
  682. free_memory = ((int)&free_memory) - ((int)__brkval);
  683. return free_memory;
  684. }
  685. }
  686. #endif //!SDSUPPORT
  687. #if ENABLED(DIGIPOT_I2C)
  688. extern void digipot_i2c_set_current(int channel, float current);
  689. extern void digipot_i2c_init();
  690. #endif
  691. /**
  692. * Inject the next "immediate" command, when possible, onto the front of the queue.
  693. * Return true if any immediate commands remain to inject.
  694. */
  695. static bool drain_injected_commands_P() {
  696. if (injected_commands_P != NULL) {
  697. size_t i = 0;
  698. char c, cmd[30];
  699. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  700. cmd[sizeof(cmd) - 1] = '\0';
  701. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  702. cmd[i] = '\0';
  703. if (enqueue_and_echo_command(cmd)) // success?
  704. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  705. }
  706. return (injected_commands_P != NULL); // return whether any more remain
  707. }
  708. /**
  709. * Record one or many commands to run from program memory.
  710. * Aborts the current queue, if any.
  711. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  712. */
  713. void enqueue_and_echo_commands_P(const char* pgcode) {
  714. injected_commands_P = pgcode;
  715. drain_injected_commands_P(); // first command executed asap (when possible)
  716. }
  717. /**
  718. * Clear the Marlin command queue
  719. */
  720. void clear_command_queue() {
  721. cmd_queue_index_r = cmd_queue_index_w;
  722. commands_in_queue = 0;
  723. }
  724. /**
  725. * Once a new command is in the ring buffer, call this to commit it
  726. */
  727. inline void _commit_command(bool say_ok) {
  728. send_ok[cmd_queue_index_w] = say_ok;
  729. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  730. commands_in_queue++;
  731. }
  732. /**
  733. * Copy a command from RAM into the main command buffer.
  734. * Return true if the command was successfully added.
  735. * Return false for a full buffer, or if the 'command' is a comment.
  736. */
  737. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  738. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  739. strcpy(command_queue[cmd_queue_index_w], cmd);
  740. _commit_command(say_ok);
  741. return true;
  742. }
  743. /**
  744. * Enqueue with Serial Echo
  745. */
  746. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  747. if (_enqueuecommand(cmd, say_ok)) {
  748. SERIAL_ECHO_START;
  749. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  750. SERIAL_CHAR('"');
  751. SERIAL_EOL;
  752. return true;
  753. }
  754. return false;
  755. }
  756. void setup_killpin() {
  757. #if HAS_KILL
  758. SET_INPUT_PULLUP(KILL_PIN);
  759. #endif
  760. }
  761. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  762. void setup_filrunoutpin() {
  763. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  764. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  765. #else
  766. SET_INPUT(FIL_RUNOUT_PIN);
  767. #endif
  768. }
  769. #endif
  770. void setup_homepin(void) {
  771. #if HAS_HOME
  772. SET_INPUT_PULLUP(HOME_PIN);
  773. #endif
  774. }
  775. void setup_powerhold() {
  776. #if HAS_SUICIDE
  777. OUT_WRITE(SUICIDE_PIN, HIGH);
  778. #endif
  779. #if HAS_POWER_SWITCH
  780. #if ENABLED(PS_DEFAULT_OFF)
  781. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  782. #else
  783. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  784. #endif
  785. #endif
  786. }
  787. void suicide() {
  788. #if HAS_SUICIDE
  789. OUT_WRITE(SUICIDE_PIN, LOW);
  790. #endif
  791. }
  792. void servo_init() {
  793. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  794. servo[0].attach(SERVO0_PIN);
  795. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  796. #endif
  797. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  798. servo[1].attach(SERVO1_PIN);
  799. servo[1].detach();
  800. #endif
  801. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  802. servo[2].attach(SERVO2_PIN);
  803. servo[2].detach();
  804. #endif
  805. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  806. servo[3].attach(SERVO3_PIN);
  807. servo[3].detach();
  808. #endif
  809. #if HAS_Z_SERVO_ENDSTOP
  810. /**
  811. * Set position of Z Servo Endstop
  812. *
  813. * The servo might be deployed and positioned too low to stow
  814. * when starting up the machine or rebooting the board.
  815. * There's no way to know where the nozzle is positioned until
  816. * homing has been done - no homing with z-probe without init!
  817. *
  818. */
  819. STOW_Z_SERVO();
  820. #endif
  821. }
  822. /**
  823. * Stepper Reset (RigidBoard, et.al.)
  824. */
  825. #if HAS_STEPPER_RESET
  826. void disableStepperDrivers() {
  827. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  828. }
  829. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  830. #endif
  831. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  832. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  833. i2c.receive(bytes);
  834. }
  835. void i2c_on_request() { // just send dummy data for now
  836. i2c.reply("Hello World!\n");
  837. }
  838. #endif
  839. #if HAS_COLOR_LEDS
  840. void set_led_color(
  841. const uint8_t r, const uint8_t g, const uint8_t b
  842. #if ENABLED(RGBW_LED)
  843. , const uint8_t w=0
  844. #endif
  845. ) {
  846. #if ENABLED(BLINKM)
  847. // This variant uses i2c to send the RGB components to the device.
  848. SendColors(r, g, b);
  849. #else
  850. // This variant uses 3 separate pins for the RGB components.
  851. // If the pins can do PWM then their intensity will be set.
  852. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  853. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  854. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  855. analogWrite(RGB_LED_R_PIN, r);
  856. analogWrite(RGB_LED_G_PIN, g);
  857. analogWrite(RGB_LED_B_PIN, b);
  858. #if ENABLED(RGBW_LED)
  859. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  860. analogWrite(RGB_LED_W_PIN, w);
  861. #endif
  862. #endif
  863. }
  864. #endif // HAS_COLOR_LEDS
  865. void gcode_line_error(const char* err, bool doFlush = true) {
  866. SERIAL_ERROR_START;
  867. serialprintPGM(err);
  868. SERIAL_ERRORLN(gcode_LastN);
  869. //Serial.println(gcode_N);
  870. if (doFlush) FlushSerialRequestResend();
  871. serial_count = 0;
  872. }
  873. /**
  874. * Get all commands waiting on the serial port and queue them.
  875. * Exit when the buffer is full or when no more characters are
  876. * left on the serial port.
  877. */
  878. inline void get_serial_commands() {
  879. static char serial_line_buffer[MAX_CMD_SIZE];
  880. static bool serial_comment_mode = false;
  881. // If the command buffer is empty for too long,
  882. // send "wait" to indicate Marlin is still waiting.
  883. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  884. static millis_t last_command_time = 0;
  885. const millis_t ms = millis();
  886. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  887. SERIAL_ECHOLNPGM(MSG_WAIT);
  888. last_command_time = ms;
  889. }
  890. #endif
  891. /**
  892. * Loop while serial characters are incoming and the queue is not full
  893. */
  894. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  895. char serial_char = MYSERIAL.read();
  896. /**
  897. * If the character ends the line
  898. */
  899. if (serial_char == '\n' || serial_char == '\r') {
  900. serial_comment_mode = false; // end of line == end of comment
  901. if (!serial_count) continue; // skip empty lines
  902. serial_line_buffer[serial_count] = 0; // terminate string
  903. serial_count = 0; //reset buffer
  904. char* command = serial_line_buffer;
  905. while (*command == ' ') command++; // skip any leading spaces
  906. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  907. char* apos = strchr(command, '*');
  908. if (npos) {
  909. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  910. if (M110) {
  911. char* n2pos = strchr(command + 4, 'N');
  912. if (n2pos) npos = n2pos;
  913. }
  914. gcode_N = strtol(npos + 1, NULL, 10);
  915. if (gcode_N != gcode_LastN + 1 && !M110) {
  916. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  917. return;
  918. }
  919. if (apos) {
  920. byte checksum = 0, count = 0;
  921. while (command[count] != '*') checksum ^= command[count++];
  922. if (strtol(apos + 1, NULL, 10) != checksum) {
  923. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  924. return;
  925. }
  926. // if no errors, continue parsing
  927. }
  928. else {
  929. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  930. return;
  931. }
  932. gcode_LastN = gcode_N;
  933. // if no errors, continue parsing
  934. }
  935. else if (apos) { // No '*' without 'N'
  936. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  937. return;
  938. }
  939. // Movement commands alert when stopped
  940. if (IsStopped()) {
  941. char* gpos = strchr(command, 'G');
  942. if (gpos) {
  943. const int codenum = strtol(gpos + 1, NULL, 10);
  944. switch (codenum) {
  945. case 0:
  946. case 1:
  947. case 2:
  948. case 3:
  949. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  950. LCD_MESSAGEPGM(MSG_STOPPED);
  951. break;
  952. }
  953. }
  954. }
  955. #if DISABLED(EMERGENCY_PARSER)
  956. // If command was e-stop process now
  957. if (strcmp(command, "M108") == 0) {
  958. wait_for_heatup = false;
  959. #if ENABLED(ULTIPANEL)
  960. wait_for_user = false;
  961. #endif
  962. }
  963. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  964. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  965. #endif
  966. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  967. last_command_time = ms;
  968. #endif
  969. // Add the command to the queue
  970. _enqueuecommand(serial_line_buffer, true);
  971. }
  972. else if (serial_count >= MAX_CMD_SIZE - 1) {
  973. // Keep fetching, but ignore normal characters beyond the max length
  974. // The command will be injected when EOL is reached
  975. }
  976. else if (serial_char == '\\') { // Handle escapes
  977. if (MYSERIAL.available() > 0) {
  978. // if we have one more character, copy it over
  979. serial_char = MYSERIAL.read();
  980. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  981. }
  982. // otherwise do nothing
  983. }
  984. else { // it's not a newline, carriage return or escape char
  985. if (serial_char == ';') serial_comment_mode = true;
  986. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  987. }
  988. } // queue has space, serial has data
  989. }
  990. #if ENABLED(SDSUPPORT)
  991. /**
  992. * Get commands from the SD Card until the command buffer is full
  993. * or until the end of the file is reached. The special character '#'
  994. * can also interrupt buffering.
  995. */
  996. inline void get_sdcard_commands() {
  997. static bool stop_buffering = false,
  998. sd_comment_mode = false;
  999. if (!card.sdprinting) return;
  1000. /**
  1001. * '#' stops reading from SD to the buffer prematurely, so procedural
  1002. * macro calls are possible. If it occurs, stop_buffering is triggered
  1003. * and the buffer is run dry; this character _can_ occur in serial com
  1004. * due to checksums, however, no checksums are used in SD printing.
  1005. */
  1006. if (commands_in_queue == 0) stop_buffering = false;
  1007. uint16_t sd_count = 0;
  1008. bool card_eof = card.eof();
  1009. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1010. const int16_t n = card.get();
  1011. char sd_char = (char)n;
  1012. card_eof = card.eof();
  1013. if (card_eof || n == -1
  1014. || sd_char == '\n' || sd_char == '\r'
  1015. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1016. ) {
  1017. if (card_eof) {
  1018. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1019. card.printingHasFinished();
  1020. #if ENABLED(PRINTER_EVENT_LEDS)
  1021. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1022. set_led_color(0, 255, 0); // Green
  1023. #if HAS_RESUME_CONTINUE
  1024. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1025. wait_for_user = true;
  1026. while (wait_for_user) idle();
  1027. KEEPALIVE_STATE(IN_HANDLER);
  1028. #else
  1029. safe_delay(1000);
  1030. #endif
  1031. set_led_color(0, 0, 0); // OFF
  1032. #endif
  1033. card.checkautostart(true);
  1034. }
  1035. else if (n == -1) {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1038. }
  1039. if (sd_char == '#') stop_buffering = true;
  1040. sd_comment_mode = false; // for new command
  1041. if (!sd_count) continue; // skip empty lines (and comment lines)
  1042. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1043. sd_count = 0; // clear sd line buffer
  1044. _commit_command(false);
  1045. }
  1046. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1047. /**
  1048. * Keep fetching, but ignore normal characters beyond the max length
  1049. * The command will be injected when EOL is reached
  1050. */
  1051. }
  1052. else {
  1053. if (sd_char == ';') sd_comment_mode = true;
  1054. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1055. }
  1056. }
  1057. }
  1058. #endif // SDSUPPORT
  1059. /**
  1060. * Add to the circular command queue the next command from:
  1061. * - The command-injection queue (injected_commands_P)
  1062. * - The active serial input (usually USB)
  1063. * - The SD card file being actively printed
  1064. */
  1065. void get_available_commands() {
  1066. // if any immediate commands remain, don't get other commands yet
  1067. if (drain_injected_commands_P()) return;
  1068. get_serial_commands();
  1069. #if ENABLED(SDSUPPORT)
  1070. get_sdcard_commands();
  1071. #endif
  1072. }
  1073. inline bool code_has_value() {
  1074. int i = 1;
  1075. char c = seen_pointer[i];
  1076. while (c == ' ') c = seen_pointer[++i];
  1077. if (c == '-' || c == '+') c = seen_pointer[++i];
  1078. if (c == '.') c = seen_pointer[++i];
  1079. return NUMERIC(c);
  1080. }
  1081. inline float code_value_float() {
  1082. char* e = strchr(seen_pointer, 'E');
  1083. if (!e) return strtod(seen_pointer + 1, NULL);
  1084. *e = 0;
  1085. float ret = strtod(seen_pointer + 1, NULL);
  1086. *e = 'E';
  1087. return ret;
  1088. }
  1089. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1090. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1091. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1092. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1093. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1094. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1095. #if ENABLED(INCH_MODE_SUPPORT)
  1096. inline void set_input_linear_units(LinearUnit units) {
  1097. switch (units) {
  1098. case LINEARUNIT_INCH:
  1099. linear_unit_factor = 25.4;
  1100. break;
  1101. case LINEARUNIT_MM:
  1102. default:
  1103. linear_unit_factor = 1.0;
  1104. break;
  1105. }
  1106. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1107. }
  1108. inline float axis_unit_factor(const AxisEnum axis) {
  1109. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1110. }
  1111. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1112. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1113. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1114. #else
  1115. #define code_value_linear_units() code_value_float()
  1116. #define code_value_axis_units(A) code_value_float()
  1117. #define code_value_per_axis_unit(A) code_value_float()
  1118. #endif
  1119. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1120. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1121. float code_value_temp_abs() {
  1122. switch (input_temp_units) {
  1123. case TEMPUNIT_C:
  1124. return code_value_float();
  1125. case TEMPUNIT_F:
  1126. return (code_value_float() - 32) * 0.5555555556;
  1127. case TEMPUNIT_K:
  1128. return code_value_float() - 273.15;
  1129. default:
  1130. return code_value_float();
  1131. }
  1132. }
  1133. float code_value_temp_diff() {
  1134. switch (input_temp_units) {
  1135. case TEMPUNIT_C:
  1136. case TEMPUNIT_K:
  1137. return code_value_float();
  1138. case TEMPUNIT_F:
  1139. return code_value_float() * 0.5555555556;
  1140. default:
  1141. return code_value_float();
  1142. }
  1143. }
  1144. #else
  1145. float code_value_temp_abs() { return code_value_float(); }
  1146. float code_value_temp_diff() { return code_value_float(); }
  1147. #endif
  1148. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1149. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1150. bool code_seen(char code) {
  1151. seen_pointer = strchr(current_command_args, code);
  1152. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1153. }
  1154. /**
  1155. * Set target_extruder from the T parameter or the active_extruder
  1156. *
  1157. * Returns TRUE if the target is invalid
  1158. */
  1159. bool get_target_extruder_from_command(int code) {
  1160. if (code_seen('T')) {
  1161. if (code_value_byte() >= EXTRUDERS) {
  1162. SERIAL_ECHO_START;
  1163. SERIAL_CHAR('M');
  1164. SERIAL_ECHO(code);
  1165. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1166. return true;
  1167. }
  1168. target_extruder = code_value_byte();
  1169. }
  1170. else
  1171. target_extruder = active_extruder;
  1172. return false;
  1173. }
  1174. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1175. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1176. #endif
  1177. #if ENABLED(DUAL_X_CARRIAGE)
  1178. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1179. static float x_home_pos(const int extruder) {
  1180. if (extruder == 0)
  1181. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1182. else
  1183. /**
  1184. * In dual carriage mode the extruder offset provides an override of the
  1185. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1186. * This allows soft recalibration of the second extruder home position
  1187. * without firmware reflash (through the M218 command).
  1188. */
  1189. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1190. }
  1191. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1192. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1193. static bool active_extruder_parked = false; // used in mode 1 & 2
  1194. static float raised_parked_position[XYZE]; // used in mode 1
  1195. static millis_t delayed_move_time = 0; // used in mode 1
  1196. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1197. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1198. #endif // DUAL_X_CARRIAGE
  1199. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1200. /**
  1201. * Software endstops can be used to monitor the open end of
  1202. * an axis that has a hardware endstop on the other end. Or
  1203. * they can prevent axes from moving past endstops and grinding.
  1204. *
  1205. * To keep doing their job as the coordinate system changes,
  1206. * the software endstop positions must be refreshed to remain
  1207. * at the same positions relative to the machine.
  1208. */
  1209. void update_software_endstops(const AxisEnum axis) {
  1210. const float offs = 0.0
  1211. #if HAS_HOME_OFFSET
  1212. + home_offset[axis]
  1213. #endif
  1214. #if HAS_POSITION_SHIFT
  1215. + position_shift[axis]
  1216. #endif
  1217. ;
  1218. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1219. workspace_offset[axis] = offs;
  1220. #endif
  1221. #if ENABLED(DUAL_X_CARRIAGE)
  1222. if (axis == X_AXIS) {
  1223. // In Dual X mode hotend_offset[X] is T1's home position
  1224. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1225. if (active_extruder != 0) {
  1226. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1227. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1228. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1229. }
  1230. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1231. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1232. // but not so far to the right that T1 would move past the end
  1233. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1234. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1235. }
  1236. else {
  1237. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1238. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1239. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1240. }
  1241. }
  1242. #else
  1243. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1244. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1245. #endif
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (DEBUGGING(LEVELING)) {
  1248. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1249. #if HAS_HOME_OFFSET
  1250. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1251. #endif
  1252. #if HAS_POSITION_SHIFT
  1253. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1254. #endif
  1255. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1256. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1257. }
  1258. #endif
  1259. #if ENABLED(DELTA)
  1260. if (axis == Z_AXIS)
  1261. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1262. #endif
  1263. }
  1264. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1265. #if HAS_M206_COMMAND
  1266. /**
  1267. * Change the home offset for an axis, update the current
  1268. * position and the software endstops to retain the same
  1269. * relative distance to the new home.
  1270. *
  1271. * Since this changes the current_position, code should
  1272. * call sync_plan_position soon after this.
  1273. */
  1274. static void set_home_offset(const AxisEnum axis, const float v) {
  1275. current_position[axis] += v - home_offset[axis];
  1276. home_offset[axis] = v;
  1277. update_software_endstops(axis);
  1278. }
  1279. #endif // HAS_M206_COMMAND
  1280. /**
  1281. * Set an axis' current position to its home position (after homing).
  1282. *
  1283. * For Core and Cartesian robots this applies one-to-one when an
  1284. * individual axis has been homed.
  1285. *
  1286. * DELTA should wait until all homing is done before setting the XYZ
  1287. * current_position to home, because homing is a single operation.
  1288. * In the case where the axis positions are already known and previously
  1289. * homed, DELTA could home to X or Y individually by moving either one
  1290. * to the center. However, homing Z always homes XY and Z.
  1291. *
  1292. * SCARA should wait until all XY homing is done before setting the XY
  1293. * current_position to home, because neither X nor Y is at home until
  1294. * both are at home. Z can however be homed individually.
  1295. *
  1296. * Callers must sync the planner position after calling this!
  1297. */
  1298. static void set_axis_is_at_home(AxisEnum axis) {
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) {
  1301. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1302. SERIAL_CHAR(')');
  1303. SERIAL_EOL;
  1304. }
  1305. #endif
  1306. axis_known_position[axis] = axis_homed[axis] = true;
  1307. #if HAS_POSITION_SHIFT
  1308. position_shift[axis] = 0;
  1309. update_software_endstops(axis);
  1310. #endif
  1311. #if ENABLED(DUAL_X_CARRIAGE)
  1312. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1313. current_position[X_AXIS] = x_home_pos(active_extruder);
  1314. return;
  1315. }
  1316. #endif
  1317. #if ENABLED(MORGAN_SCARA)
  1318. /**
  1319. * Morgan SCARA homes XY at the same time
  1320. */
  1321. if (axis == X_AXIS || axis == Y_AXIS) {
  1322. float homeposition[XYZ];
  1323. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1324. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1325. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1326. /**
  1327. * Get Home position SCARA arm angles using inverse kinematics,
  1328. * and calculate homing offset using forward kinematics
  1329. */
  1330. inverse_kinematics(homeposition);
  1331. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1332. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1333. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1334. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1335. /**
  1336. * SCARA home positions are based on configuration since the actual
  1337. * limits are determined by the inverse kinematic transform.
  1338. */
  1339. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1340. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1341. }
  1342. else
  1343. #endif
  1344. {
  1345. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1346. }
  1347. /**
  1348. * Z Probe Z Homing? Account for the probe's Z offset.
  1349. */
  1350. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1351. if (axis == Z_AXIS) {
  1352. #if HOMING_Z_WITH_PROBE
  1353. current_position[Z_AXIS] -= zprobe_zoffset;
  1354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1355. if (DEBUGGING(LEVELING)) {
  1356. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1357. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1358. }
  1359. #endif
  1360. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1362. #endif
  1363. }
  1364. #endif
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) {
  1367. #if HAS_HOME_OFFSET
  1368. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1369. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1370. #endif
  1371. DEBUG_POS("", current_position);
  1372. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1373. SERIAL_CHAR(')');
  1374. SERIAL_EOL;
  1375. }
  1376. #endif
  1377. }
  1378. /**
  1379. * Some planner shorthand inline functions
  1380. */
  1381. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1382. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1383. int hbd = homing_bump_divisor[axis];
  1384. if (hbd < 1) {
  1385. hbd = 10;
  1386. SERIAL_ECHO_START;
  1387. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1388. }
  1389. return homing_feedrate_mm_s[axis] / hbd;
  1390. }
  1391. //
  1392. // line_to_current_position
  1393. // Move the planner to the current position from wherever it last moved
  1394. // (or from wherever it has been told it is located).
  1395. //
  1396. inline void line_to_current_position() {
  1397. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1398. }
  1399. //
  1400. // line_to_destination
  1401. // Move the planner, not necessarily synced with current_position
  1402. //
  1403. inline void line_to_destination(float fr_mm_s) {
  1404. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1405. }
  1406. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1407. inline void set_current_to_destination() { COPY(current_position, destination); }
  1408. inline void set_destination_to_current() { COPY(destination, current_position); }
  1409. #if IS_KINEMATIC
  1410. /**
  1411. * Calculate delta, start a line, and set current_position to destination
  1412. */
  1413. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1416. #endif
  1417. if ( current_position[X_AXIS] == destination[X_AXIS]
  1418. && current_position[Y_AXIS] == destination[Y_AXIS]
  1419. && current_position[Z_AXIS] == destination[Z_AXIS]
  1420. && current_position[E_AXIS] == destination[E_AXIS]
  1421. ) return;
  1422. refresh_cmd_timeout();
  1423. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1424. set_current_to_destination();
  1425. }
  1426. #endif // IS_KINEMATIC
  1427. /**
  1428. * Plan a move to (X, Y, Z) and set the current_position
  1429. * The final current_position may not be the one that was requested
  1430. */
  1431. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1432. const float old_feedrate_mm_s = feedrate_mm_s;
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1435. #endif
  1436. #if ENABLED(DELTA)
  1437. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1438. set_destination_to_current(); // sync destination at the start
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1441. #endif
  1442. // when in the danger zone
  1443. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1444. if (z > delta_clip_start_height) { // staying in the danger zone
  1445. destination[X_AXIS] = x; // move directly (uninterpolated)
  1446. destination[Y_AXIS] = y;
  1447. destination[Z_AXIS] = z;
  1448. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1451. #endif
  1452. return;
  1453. }
  1454. else {
  1455. destination[Z_AXIS] = delta_clip_start_height;
  1456. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1459. #endif
  1460. }
  1461. }
  1462. if (z > current_position[Z_AXIS]) { // raising?
  1463. destination[Z_AXIS] = z;
  1464. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1467. #endif
  1468. }
  1469. destination[X_AXIS] = x;
  1470. destination[Y_AXIS] = y;
  1471. prepare_move_to_destination(); // set_current_to_destination
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1474. #endif
  1475. if (z < current_position[Z_AXIS]) { // lowering?
  1476. destination[Z_AXIS] = z;
  1477. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1480. #endif
  1481. }
  1482. #elif IS_SCARA
  1483. set_destination_to_current();
  1484. // If Z needs to raise, do it before moving XY
  1485. if (destination[Z_AXIS] < z) {
  1486. destination[Z_AXIS] = z;
  1487. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1488. }
  1489. destination[X_AXIS] = x;
  1490. destination[Y_AXIS] = y;
  1491. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1492. // If Z needs to lower, do it after moving XY
  1493. if (destination[Z_AXIS] > z) {
  1494. destination[Z_AXIS] = z;
  1495. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1496. }
  1497. #else
  1498. // If Z needs to raise, do it before moving XY
  1499. if (current_position[Z_AXIS] < z) {
  1500. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1501. current_position[Z_AXIS] = z;
  1502. line_to_current_position();
  1503. }
  1504. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1505. current_position[X_AXIS] = x;
  1506. current_position[Y_AXIS] = y;
  1507. line_to_current_position();
  1508. // If Z needs to lower, do it after moving XY
  1509. if (current_position[Z_AXIS] > z) {
  1510. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1511. current_position[Z_AXIS] = z;
  1512. line_to_current_position();
  1513. }
  1514. #endif
  1515. stepper.synchronize();
  1516. feedrate_mm_s = old_feedrate_mm_s;
  1517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1518. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1519. #endif
  1520. }
  1521. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1522. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1523. }
  1524. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1525. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1526. }
  1527. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1528. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1529. }
  1530. //
  1531. // Prepare to do endstop or probe moves
  1532. // with custom feedrates.
  1533. //
  1534. // - Save current feedrates
  1535. // - Reset the rate multiplier
  1536. // - Reset the command timeout
  1537. // - Enable the endstops (for endstop moves)
  1538. //
  1539. static void setup_for_endstop_or_probe_move() {
  1540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1541. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1542. #endif
  1543. saved_feedrate_mm_s = feedrate_mm_s;
  1544. saved_feedrate_percentage = feedrate_percentage;
  1545. feedrate_percentage = 100;
  1546. refresh_cmd_timeout();
  1547. }
  1548. static void clean_up_after_endstop_or_probe_move() {
  1549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1550. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1551. #endif
  1552. feedrate_mm_s = saved_feedrate_mm_s;
  1553. feedrate_percentage = saved_feedrate_percentage;
  1554. refresh_cmd_timeout();
  1555. }
  1556. #if HAS_BED_PROBE
  1557. /**
  1558. * Raise Z to a minimum height to make room for a probe to move
  1559. */
  1560. inline void do_probe_raise(float z_raise) {
  1561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1562. if (DEBUGGING(LEVELING)) {
  1563. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1564. SERIAL_CHAR(')');
  1565. SERIAL_EOL;
  1566. }
  1567. #endif
  1568. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1569. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1570. if (z_dest > current_position[Z_AXIS])
  1571. do_blocking_move_to_z(z_dest);
  1572. }
  1573. #endif //HAS_BED_PROBE
  1574. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1575. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1576. const bool xx = x && !axis_homed[X_AXIS],
  1577. yy = y && !axis_homed[Y_AXIS],
  1578. zz = z && !axis_homed[Z_AXIS];
  1579. if (xx || yy || zz) {
  1580. SERIAL_ECHO_START;
  1581. SERIAL_ECHOPGM(MSG_HOME " ");
  1582. if (xx) SERIAL_ECHOPGM(MSG_X);
  1583. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1584. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1585. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1586. #if ENABLED(ULTRA_LCD)
  1587. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1588. #endif
  1589. return true;
  1590. }
  1591. return false;
  1592. }
  1593. #endif
  1594. #if ENABLED(Z_PROBE_SLED)
  1595. #ifndef SLED_DOCKING_OFFSET
  1596. #define SLED_DOCKING_OFFSET 0
  1597. #endif
  1598. /**
  1599. * Method to dock/undock a sled designed by Charles Bell.
  1600. *
  1601. * stow[in] If false, move to MAX_X and engage the solenoid
  1602. * If true, move to MAX_X and release the solenoid
  1603. */
  1604. static void dock_sled(bool stow) {
  1605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1606. if (DEBUGGING(LEVELING)) {
  1607. SERIAL_ECHOPAIR("dock_sled(", stow);
  1608. SERIAL_CHAR(')');
  1609. SERIAL_EOL;
  1610. }
  1611. #endif
  1612. // Dock sled a bit closer to ensure proper capturing
  1613. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1614. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1615. WRITE(SOL1_PIN, !stow); // switch solenoid
  1616. #endif
  1617. }
  1618. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1619. void run_deploy_moves_script() {
  1620. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1631. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1632. #endif
  1633. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1634. #endif
  1635. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1640. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1643. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1646. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1647. #endif
  1648. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1649. #endif
  1650. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1651. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1652. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1655. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1658. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1661. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1662. #endif
  1663. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1664. #endif
  1665. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1677. #endif
  1678. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1679. #endif
  1680. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1681. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1682. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1685. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1688. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1691. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1692. #endif
  1693. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1694. #endif
  1695. }
  1696. void run_stow_moves_script() {
  1697. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1699. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1702. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1705. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1708. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1709. #endif
  1710. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1711. #endif
  1712. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1714. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1717. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1720. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1721. #endif
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1723. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1724. #endif
  1725. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1726. #endif
  1727. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1728. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1729. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1732. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1735. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1736. #endif
  1737. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1738. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1739. #endif
  1740. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1741. #endif
  1742. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1744. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1745. #endif
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1747. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1750. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1751. #endif
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1753. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1754. #endif
  1755. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1756. #endif
  1757. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1758. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1759. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1760. #endif
  1761. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1762. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1763. #endif
  1764. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1765. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1766. #endif
  1767. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1768. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1769. #endif
  1770. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1771. #endif
  1772. }
  1773. #endif
  1774. #if HAS_BED_PROBE
  1775. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1776. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1777. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1778. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1779. #else
  1780. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1781. #endif
  1782. #endif
  1783. #if ENABLED(BLTOUCH)
  1784. void bltouch_command(int angle) {
  1785. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1786. safe_delay(BLTOUCH_DELAY);
  1787. }
  1788. void set_bltouch_deployed(const bool deploy) {
  1789. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1790. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1791. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1792. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1793. safe_delay(1500); // wait for internal self test to complete
  1794. // measured completion time was 0.65 seconds
  1795. // after reset, deploy & stow sequence
  1796. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1797. SERIAL_ERROR_START;
  1798. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1799. stop(); // punt!
  1800. }
  1801. }
  1802. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) {
  1805. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1806. SERIAL_CHAR(')');
  1807. SERIAL_EOL;
  1808. }
  1809. #endif
  1810. }
  1811. #endif
  1812. // returns false for ok and true for failure
  1813. bool set_probe_deployed(bool deploy) {
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. if (DEBUGGING(LEVELING)) {
  1816. DEBUG_POS("set_probe_deployed", current_position);
  1817. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1818. }
  1819. #endif
  1820. if (endstops.z_probe_enabled == deploy) return false;
  1821. // Make room for probe
  1822. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1823. // When deploying make sure BLTOUCH is not already triggered
  1824. #if ENABLED(BLTOUCH)
  1825. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1826. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1827. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1828. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1829. safe_delay(1500); // wait for internal self test to complete
  1830. // measured completion time was 0.65 seconds
  1831. // after reset, deploy & stow sequence
  1832. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1833. SERIAL_ERROR_START;
  1834. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1835. stop(); // punt!
  1836. return true;
  1837. }
  1838. }
  1839. #elif ENABLED(Z_PROBE_SLED)
  1840. if (axis_unhomed_error(true, false, false)) {
  1841. SERIAL_ERROR_START;
  1842. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1843. stop();
  1844. return true;
  1845. }
  1846. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1847. if (axis_unhomed_error(true, true, true )) {
  1848. SERIAL_ERROR_START;
  1849. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1850. stop();
  1851. return true;
  1852. }
  1853. #endif
  1854. const float oldXpos = current_position[X_AXIS],
  1855. oldYpos = current_position[Y_AXIS];
  1856. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1857. // If endstop is already false, the Z probe is deployed
  1858. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1859. // Would a goto be less ugly?
  1860. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1861. // for a triggered when stowed manual probe.
  1862. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1863. // otherwise an Allen-Key probe can't be stowed.
  1864. #endif
  1865. #if ENABLED(SOLENOID_PROBE)
  1866. #if HAS_SOLENOID_1
  1867. WRITE(SOL1_PIN, deploy);
  1868. #endif
  1869. #elif ENABLED(Z_PROBE_SLED)
  1870. dock_sled(!deploy);
  1871. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1872. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1873. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1874. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1875. #endif
  1876. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1877. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1878. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1879. if (IsRunning()) {
  1880. SERIAL_ERROR_START;
  1881. SERIAL_ERRORLNPGM("Z-Probe failed");
  1882. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1883. }
  1884. stop();
  1885. return true;
  1886. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1887. #endif
  1888. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1889. endstops.enable_z_probe(deploy);
  1890. return false;
  1891. }
  1892. static void do_probe_move(float z, float fr_mm_m) {
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1895. #endif
  1896. // Deploy BLTouch at the start of any probe
  1897. #if ENABLED(BLTOUCH)
  1898. set_bltouch_deployed(true);
  1899. #endif
  1900. // Move down until probe triggered
  1901. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1902. // Retract BLTouch immediately after a probe
  1903. #if ENABLED(BLTOUCH)
  1904. set_bltouch_deployed(false);
  1905. #endif
  1906. // Clear endstop flags
  1907. endstops.hit_on_purpose();
  1908. // Get Z where the steppers were interrupted
  1909. set_current_from_steppers_for_axis(Z_AXIS);
  1910. // Tell the planner where we actually are
  1911. SYNC_PLAN_POSITION_KINEMATIC();
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1914. #endif
  1915. }
  1916. // Do a single Z probe and return with current_position[Z_AXIS]
  1917. // at the height where the probe triggered.
  1918. static float run_z_probe() {
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1921. #endif
  1922. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1923. refresh_cmd_timeout();
  1924. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1925. // Do a first probe at the fast speed
  1926. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1928. float first_probe_z = current_position[Z_AXIS];
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1930. #endif
  1931. // move up by the bump distance
  1932. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1933. #else
  1934. // If the nozzle is above the travel height then
  1935. // move down quickly before doing the slow probe
  1936. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1937. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1938. if (z < current_position[Z_AXIS])
  1939. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1940. #endif
  1941. // move down slowly to find bed
  1942. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1945. #endif
  1946. // Debug: compare probe heights
  1947. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) {
  1949. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1950. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1951. }
  1952. #endif
  1953. return current_position[Z_AXIS] + zprobe_zoffset;
  1954. }
  1955. //
  1956. // - Move to the given XY
  1957. // - Deploy the probe, if not already deployed
  1958. // - Probe the bed, get the Z position
  1959. // - Depending on the 'stow' flag
  1960. // - Stow the probe, or
  1961. // - Raise to the BETWEEN height
  1962. // - Return the probed Z position
  1963. //
  1964. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) {
  1967. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1968. SERIAL_ECHOPAIR(", ", y);
  1969. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1970. SERIAL_ECHOLNPGM("stow)");
  1971. DEBUG_POS("", current_position);
  1972. }
  1973. #endif
  1974. const float old_feedrate_mm_s = feedrate_mm_s;
  1975. #if ENABLED(DELTA)
  1976. if (current_position[Z_AXIS] > delta_clip_start_height)
  1977. do_blocking_move_to_z(delta_clip_start_height);
  1978. #endif
  1979. // Ensure a minimum height before moving the probe
  1980. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1981. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1982. // Move the probe to the given XY
  1983. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1984. if (DEPLOY_PROBE()) return NAN;
  1985. const float measured_z = run_z_probe();
  1986. if (!stow)
  1987. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1988. else
  1989. if (STOW_PROBE()) return NAN;
  1990. if (verbose_level > 2) {
  1991. SERIAL_PROTOCOLPGM("Bed X: ");
  1992. SERIAL_PROTOCOL_F(x, 3);
  1993. SERIAL_PROTOCOLPGM(" Y: ");
  1994. SERIAL_PROTOCOL_F(y, 3);
  1995. SERIAL_PROTOCOLPGM(" Z: ");
  1996. SERIAL_PROTOCOL_F(measured_z, 3);
  1997. SERIAL_EOL;
  1998. }
  1999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2000. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2001. #endif
  2002. feedrate_mm_s = old_feedrate_mm_s;
  2003. return measured_z;
  2004. }
  2005. #endif // HAS_BED_PROBE
  2006. #if PLANNER_LEVELING
  2007. /**
  2008. * Turn bed leveling on or off, fixing the current
  2009. * position as-needed.
  2010. *
  2011. * Disable: Current position = physical position
  2012. * Enable: Current position = "unleveled" physical position
  2013. */
  2014. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2015. #if ENABLED(MESH_BED_LEVELING)
  2016. if (enable != mbl.active()) {
  2017. if (!enable)
  2018. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2019. mbl.set_active(enable && mbl.has_mesh());
  2020. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2021. }
  2022. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2023. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2024. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2025. #else
  2026. constexpr bool can_change = true;
  2027. #endif
  2028. if (can_change && enable != planner.abl_enabled) {
  2029. planner.abl_enabled = enable;
  2030. if (!enable)
  2031. set_current_from_steppers_for_axis(
  2032. #if ABL_PLANAR
  2033. ALL_AXES
  2034. #else
  2035. Z_AXIS
  2036. #endif
  2037. );
  2038. else
  2039. planner.unapply_leveling(current_position);
  2040. }
  2041. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2042. ubl.state.active = enable;
  2043. //set_current_from_steppers_for_axis(Z_AXIS);
  2044. #endif
  2045. }
  2046. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2047. void set_z_fade_height(const float zfh) {
  2048. planner.z_fade_height = zfh;
  2049. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2050. if (
  2051. #if ENABLED(MESH_BED_LEVELING)
  2052. mbl.active()
  2053. #else
  2054. planner.abl_enabled
  2055. #endif
  2056. ) {
  2057. set_current_from_steppers_for_axis(
  2058. #if ABL_PLANAR
  2059. ALL_AXES
  2060. #else
  2061. Z_AXIS
  2062. #endif
  2063. );
  2064. }
  2065. }
  2066. #endif // LEVELING_FADE_HEIGHT
  2067. /**
  2068. * Reset calibration results to zero.
  2069. */
  2070. void reset_bed_level() {
  2071. set_bed_leveling_enabled(false);
  2072. #if ENABLED(MESH_BED_LEVELING)
  2073. if (mbl.has_mesh()) {
  2074. mbl.reset();
  2075. mbl.set_has_mesh(false);
  2076. }
  2077. #else
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2080. #endif
  2081. #if ABL_PLANAR
  2082. planner.bed_level_matrix.set_to_identity();
  2083. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2084. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2085. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2086. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2087. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2088. z_values[x][y] = NAN;
  2089. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2090. ubl.reset();
  2091. #endif
  2092. #endif
  2093. }
  2094. #endif // PLANNER_LEVELING
  2095. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2096. //
  2097. // Enable if you prefer your output in JSON format
  2098. // suitable for SCAD or JavaScript mesh visualizers.
  2099. //
  2100. // Visualize meshes in OpenSCAD using the included script.
  2101. //
  2102. // buildroot/shared/scripts/MarlinMesh.scad
  2103. //
  2104. //#define SCAD_MESH_OUTPUT
  2105. /**
  2106. * Print calibration results for plotting or manual frame adjustment.
  2107. */
  2108. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2109. #ifndef SCAD_MESH_OUTPUT
  2110. for (uint8_t x = 0; x < sx; x++) {
  2111. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2112. SERIAL_PROTOCOLCHAR(' ');
  2113. SERIAL_PROTOCOL((int)x);
  2114. }
  2115. SERIAL_EOL;
  2116. #endif
  2117. #ifdef SCAD_MESH_OUTPUT
  2118. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2119. #endif
  2120. for (uint8_t y = 0; y < sy; y++) {
  2121. #ifdef SCAD_MESH_OUTPUT
  2122. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2123. #else
  2124. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2125. SERIAL_PROTOCOL((int)y);
  2126. #endif
  2127. for (uint8_t x = 0; x < sx; x++) {
  2128. SERIAL_PROTOCOLCHAR(' ');
  2129. const float offset = fn(x, y);
  2130. if (!isnan(offset)) {
  2131. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2132. SERIAL_PROTOCOL_F(offset, precision);
  2133. }
  2134. else {
  2135. #ifdef SCAD_MESH_OUTPUT
  2136. for (uint8_t i = 3; i < precision + 3; i++)
  2137. SERIAL_PROTOCOLCHAR(' ');
  2138. SERIAL_PROTOCOLPGM("NAN");
  2139. #else
  2140. for (uint8_t i = 0; i < precision + 3; i++)
  2141. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2142. #endif
  2143. }
  2144. #ifdef SCAD_MESH_OUTPUT
  2145. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2146. #endif
  2147. }
  2148. #ifdef SCAD_MESH_OUTPUT
  2149. SERIAL_PROTOCOLCHAR(' ');
  2150. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2151. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2152. #endif
  2153. SERIAL_EOL;
  2154. }
  2155. #ifdef SCAD_MESH_OUTPUT
  2156. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2157. #endif
  2158. SERIAL_EOL;
  2159. }
  2160. #endif
  2161. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2162. /**
  2163. * Extrapolate a single point from its neighbors
  2164. */
  2165. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) {
  2168. SERIAL_ECHOPGM("Extrapolate [");
  2169. if (x < 10) SERIAL_CHAR(' ');
  2170. SERIAL_ECHO((int)x);
  2171. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2172. SERIAL_CHAR(' ');
  2173. if (y < 10) SERIAL_CHAR(' ');
  2174. SERIAL_ECHO((int)y);
  2175. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2176. SERIAL_CHAR(']');
  2177. }
  2178. #endif
  2179. if (!isnan(z_values[x][y])) {
  2180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2181. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2182. #endif
  2183. return; // Don't overwrite good values.
  2184. }
  2185. SERIAL_EOL;
  2186. // Get X neighbors, Y neighbors, and XY neighbors
  2187. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2188. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2189. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2190. // Treat far unprobed points as zero, near as equal to far
  2191. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2192. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2193. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2194. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2195. // Take the average instead of the median
  2196. z_values[x][y] = (a + b + c) / 3.0;
  2197. // Median is robust (ignores outliers).
  2198. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2199. // : ((c < b) ? b : (a < c) ? a : c);
  2200. }
  2201. //Enable this if your SCARA uses 180° of total area
  2202. //#define EXTRAPOLATE_FROM_EDGE
  2203. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2204. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2205. #define HALF_IN_X
  2206. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2207. #define HALF_IN_Y
  2208. #endif
  2209. #endif
  2210. /**
  2211. * Fill in the unprobed points (corners of circular print surface)
  2212. * using linear extrapolation, away from the center.
  2213. */
  2214. static void extrapolate_unprobed_bed_level() {
  2215. #ifdef HALF_IN_X
  2216. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2217. #else
  2218. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2219. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2220. xlen = ctrx1;
  2221. #endif
  2222. #ifdef HALF_IN_Y
  2223. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2224. #else
  2225. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2226. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2227. ylen = ctry1;
  2228. #endif
  2229. for (uint8_t xo = 0; xo <= xlen; xo++)
  2230. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2231. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2232. #ifndef HALF_IN_X
  2233. const uint8_t x1 = ctrx1 - xo;
  2234. #endif
  2235. #ifndef HALF_IN_Y
  2236. const uint8_t y1 = ctry1 - yo;
  2237. #ifndef HALF_IN_X
  2238. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2239. #endif
  2240. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2241. #endif
  2242. #ifndef HALF_IN_X
  2243. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2244. #endif
  2245. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2246. }
  2247. }
  2248. static void print_bilinear_leveling_grid() {
  2249. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2250. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2251. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2252. );
  2253. }
  2254. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2255. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2256. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2257. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2258. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2259. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2260. int bilinear_grid_spacing_virt[2] = { 0 };
  2261. static void bed_level_virt_print() {
  2262. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2263. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2264. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2265. );
  2266. }
  2267. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2268. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2269. uint8_t ep = 0, ip = 1;
  2270. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2271. if (x) {
  2272. ep = GRID_MAX_POINTS_X - 1;
  2273. ip = GRID_MAX_POINTS_X - 2;
  2274. }
  2275. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2276. return LINEAR_EXTRAPOLATION(
  2277. z_values[ep][y - 1],
  2278. z_values[ip][y - 1]
  2279. );
  2280. else
  2281. return LINEAR_EXTRAPOLATION(
  2282. bed_level_virt_coord(ep + 1, y),
  2283. bed_level_virt_coord(ip + 1, y)
  2284. );
  2285. }
  2286. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2287. if (y) {
  2288. ep = GRID_MAX_POINTS_Y - 1;
  2289. ip = GRID_MAX_POINTS_Y - 2;
  2290. }
  2291. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2292. return LINEAR_EXTRAPOLATION(
  2293. z_values[x - 1][ep],
  2294. z_values[x - 1][ip]
  2295. );
  2296. else
  2297. return LINEAR_EXTRAPOLATION(
  2298. bed_level_virt_coord(x, ep + 1),
  2299. bed_level_virt_coord(x, ip + 1)
  2300. );
  2301. }
  2302. return z_values[x - 1][y - 1];
  2303. }
  2304. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2305. return (
  2306. p[i-1] * -t * sq(1 - t)
  2307. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2308. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2309. - p[i+2] * sq(t) * (1 - t)
  2310. ) * 0.5;
  2311. }
  2312. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2313. float row[4], column[4];
  2314. for (uint8_t i = 0; i < 4; i++) {
  2315. for (uint8_t j = 0; j < 4; j++) {
  2316. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2317. }
  2318. row[i] = bed_level_virt_cmr(column, 1, ty);
  2319. }
  2320. return bed_level_virt_cmr(row, 1, tx);
  2321. }
  2322. void bed_level_virt_interpolate() {
  2323. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2324. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2325. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2326. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2327. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2328. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2329. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2330. continue;
  2331. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2332. bed_level_virt_2cmr(
  2333. x + 1,
  2334. y + 1,
  2335. (float)tx / (BILINEAR_SUBDIVISIONS),
  2336. (float)ty / (BILINEAR_SUBDIVISIONS)
  2337. );
  2338. }
  2339. }
  2340. #endif // ABL_BILINEAR_SUBDIVISION
  2341. // Refresh after other values have been updated
  2342. void refresh_bed_level() {
  2343. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2344. bed_level_virt_interpolate();
  2345. #endif
  2346. }
  2347. #endif // AUTO_BED_LEVELING_BILINEAR
  2348. /**
  2349. * Home an individual linear axis
  2350. */
  2351. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2353. if (DEBUGGING(LEVELING)) {
  2354. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2355. SERIAL_ECHOPAIR(", ", distance);
  2356. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2357. SERIAL_CHAR(')');
  2358. SERIAL_EOL;
  2359. }
  2360. #endif
  2361. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2362. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2363. if (deploy_bltouch) set_bltouch_deployed(true);
  2364. #endif
  2365. // Tell the planner we're at Z=0
  2366. current_position[axis] = 0;
  2367. #if IS_SCARA
  2368. SYNC_PLAN_POSITION_KINEMATIC();
  2369. current_position[axis] = distance;
  2370. inverse_kinematics(current_position);
  2371. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2372. #else
  2373. sync_plan_position();
  2374. current_position[axis] = distance;
  2375. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2376. #endif
  2377. stepper.synchronize();
  2378. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2379. if (deploy_bltouch) set_bltouch_deployed(false);
  2380. #endif
  2381. endstops.hit_on_purpose();
  2382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2383. if (DEBUGGING(LEVELING)) {
  2384. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2385. SERIAL_CHAR(')');
  2386. SERIAL_EOL;
  2387. }
  2388. #endif
  2389. }
  2390. /**
  2391. * TMC2130 specific sensorless homing using stallGuard2.
  2392. * stallGuard2 only works when in spreadCycle mode.
  2393. * spreadCycle and stealthChop are mutually exclusive.
  2394. */
  2395. #if ENABLED(SENSORLESS_HOMING)
  2396. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2397. #if ENABLED(STEALTHCHOP)
  2398. if (enable) {
  2399. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2400. st.stealthChop(0);
  2401. }
  2402. else {
  2403. st.coolstep_min_speed(0);
  2404. st.stealthChop(1);
  2405. }
  2406. #endif
  2407. st.diag1_stall(enable ? 1 : 0);
  2408. }
  2409. #endif
  2410. /**
  2411. * Home an individual "raw axis" to its endstop.
  2412. * This applies to XYZ on Cartesian and Core robots, and
  2413. * to the individual ABC steppers on DELTA and SCARA.
  2414. *
  2415. * At the end of the procedure the axis is marked as
  2416. * homed and the current position of that axis is updated.
  2417. * Kinematic robots should wait till all axes are homed
  2418. * before updating the current position.
  2419. */
  2420. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2421. static void homeaxis(const AxisEnum axis) {
  2422. #if IS_SCARA
  2423. // Only Z homing (with probe) is permitted
  2424. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2425. #else
  2426. #define CAN_HOME(A) \
  2427. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2428. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2429. #endif
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) {
  2432. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2433. SERIAL_CHAR(')');
  2434. SERIAL_EOL;
  2435. }
  2436. #endif
  2437. const int axis_home_dir =
  2438. #if ENABLED(DUAL_X_CARRIAGE)
  2439. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2440. #endif
  2441. home_dir(axis);
  2442. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2443. #if HOMING_Z_WITH_PROBE
  2444. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2445. #endif
  2446. // Set a flag for Z motor locking
  2447. #if ENABLED(Z_DUAL_ENDSTOPS)
  2448. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2449. #endif
  2450. // Disable stealthChop if used. Enable diag1 pin on driver.
  2451. #if ENABLED(SENSORLESS_HOMING)
  2452. #if ENABLED(X_IS_TMC2130)
  2453. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2454. #endif
  2455. #if ENABLED(Y_IS_TMC2130)
  2456. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2457. #endif
  2458. #endif
  2459. // Fast move towards endstop until triggered
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2462. #endif
  2463. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2464. // When homing Z with probe respect probe clearance
  2465. const float bump = axis_home_dir * (
  2466. #if HOMING_Z_WITH_PROBE
  2467. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2468. #endif
  2469. home_bump_mm(axis)
  2470. );
  2471. // If a second homing move is configured...
  2472. if (bump) {
  2473. // Move away from the endstop by the axis HOME_BUMP_MM
  2474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2475. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2476. #endif
  2477. do_homing_move(axis, -bump);
  2478. // Slow move towards endstop until triggered
  2479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2480. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2481. #endif
  2482. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2483. }
  2484. #if ENABLED(Z_DUAL_ENDSTOPS)
  2485. if (axis == Z_AXIS) {
  2486. float adj = fabs(z_endstop_adj);
  2487. bool lockZ1;
  2488. if (axis_home_dir > 0) {
  2489. adj = -adj;
  2490. lockZ1 = (z_endstop_adj > 0);
  2491. }
  2492. else
  2493. lockZ1 = (z_endstop_adj < 0);
  2494. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2495. // Move to the adjusted endstop height
  2496. do_homing_move(axis, adj);
  2497. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2498. stepper.set_homing_flag(false);
  2499. } // Z_AXIS
  2500. #endif
  2501. #if IS_SCARA
  2502. set_axis_is_at_home(axis);
  2503. SYNC_PLAN_POSITION_KINEMATIC();
  2504. #elif ENABLED(DELTA)
  2505. // Delta has already moved all three towers up in G28
  2506. // so here it re-homes each tower in turn.
  2507. // Delta homing treats the axes as normal linear axes.
  2508. // retrace by the amount specified in endstop_adj
  2509. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2512. #endif
  2513. do_homing_move(axis, endstop_adj[axis]);
  2514. }
  2515. #else
  2516. // For cartesian/core machines,
  2517. // set the axis to its home position
  2518. set_axis_is_at_home(axis);
  2519. sync_plan_position();
  2520. destination[axis] = current_position[axis];
  2521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2522. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2523. #endif
  2524. #endif
  2525. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2526. #if ENABLED(SENSORLESS_HOMING)
  2527. #if ENABLED(X_IS_TMC2130)
  2528. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2529. #endif
  2530. #if ENABLED(Y_IS_TMC2130)
  2531. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2532. #endif
  2533. #endif
  2534. // Put away the Z probe
  2535. #if HOMING_Z_WITH_PROBE
  2536. if (axis == Z_AXIS && STOW_PROBE()) return;
  2537. #endif
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (DEBUGGING(LEVELING)) {
  2540. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2541. SERIAL_CHAR(')');
  2542. SERIAL_EOL;
  2543. }
  2544. #endif
  2545. } // homeaxis()
  2546. #if ENABLED(FWRETRACT)
  2547. void retract(const bool retracting, const bool swapping = false) {
  2548. static float hop_height;
  2549. if (retracting == retracted[active_extruder]) return;
  2550. const float old_feedrate_mm_s = feedrate_mm_s;
  2551. set_destination_to_current();
  2552. if (retracting) {
  2553. feedrate_mm_s = retract_feedrate_mm_s;
  2554. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2555. sync_plan_position_e();
  2556. prepare_move_to_destination();
  2557. if (retract_zlift > 0.01) {
  2558. hop_height = current_position[Z_AXIS];
  2559. // Pretend current position is lower
  2560. current_position[Z_AXIS] -= retract_zlift;
  2561. SYNC_PLAN_POSITION_KINEMATIC();
  2562. // Raise up to the old current_position
  2563. prepare_move_to_destination();
  2564. }
  2565. }
  2566. else {
  2567. // If the height hasn't been altered, undo the Z hop
  2568. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2569. // Pretend current position is higher. Z will lower on the next move
  2570. current_position[Z_AXIS] += retract_zlift;
  2571. SYNC_PLAN_POSITION_KINEMATIC();
  2572. }
  2573. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2574. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2575. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2576. sync_plan_position_e();
  2577. // Lower Z and recover E
  2578. prepare_move_to_destination();
  2579. }
  2580. feedrate_mm_s = old_feedrate_mm_s;
  2581. retracted[active_extruder] = retracting;
  2582. } // retract()
  2583. #endif // FWRETRACT
  2584. #if ENABLED(MIXING_EXTRUDER)
  2585. void normalize_mix() {
  2586. float mix_total = 0.0;
  2587. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2588. // Scale all values if they don't add up to ~1.0
  2589. if (!NEAR(mix_total, 1.0)) {
  2590. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2591. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2592. }
  2593. }
  2594. #if ENABLED(DIRECT_MIXING_IN_G1)
  2595. // Get mixing parameters from the GCode
  2596. // The total "must" be 1.0 (but it will be normalized)
  2597. // If no mix factors are given, the old mix is preserved
  2598. void gcode_get_mix() {
  2599. const char* mixing_codes = "ABCDHI";
  2600. byte mix_bits = 0;
  2601. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2602. if (code_seen(mixing_codes[i])) {
  2603. SBI(mix_bits, i);
  2604. float v = code_value_float();
  2605. NOLESS(v, 0.0);
  2606. mixing_factor[i] = RECIPROCAL(v);
  2607. }
  2608. }
  2609. // If any mixing factors were included, clear the rest
  2610. // If none were included, preserve the last mix
  2611. if (mix_bits) {
  2612. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2613. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2614. normalize_mix();
  2615. }
  2616. }
  2617. #endif
  2618. #endif
  2619. /**
  2620. * ***************************************************************************
  2621. * ***************************** G-CODE HANDLING *****************************
  2622. * ***************************************************************************
  2623. */
  2624. /**
  2625. * Set XYZE destination and feedrate from the current GCode command
  2626. *
  2627. * - Set destination from included axis codes
  2628. * - Set to current for missing axis codes
  2629. * - Set the feedrate, if included
  2630. */
  2631. void gcode_get_destination() {
  2632. LOOP_XYZE(i) {
  2633. if (code_seen(axis_codes[i]))
  2634. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2635. else
  2636. destination[i] = current_position[i];
  2637. }
  2638. if (code_seen('F') && code_value_linear_units() > 0.0)
  2639. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2640. #if ENABLED(PRINTCOUNTER)
  2641. if (!DEBUGGING(DRYRUN))
  2642. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2643. #endif
  2644. // Get ABCDHI mixing factors
  2645. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2646. gcode_get_mix();
  2647. #endif
  2648. }
  2649. void unknown_command_error() {
  2650. SERIAL_ECHO_START;
  2651. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2652. SERIAL_CHAR('"');
  2653. SERIAL_EOL;
  2654. }
  2655. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2656. /**
  2657. * Output a "busy" message at regular intervals
  2658. * while the machine is not accepting commands.
  2659. */
  2660. void host_keepalive() {
  2661. const millis_t ms = millis();
  2662. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2663. if (PENDING(ms, next_busy_signal_ms)) return;
  2664. switch (busy_state) {
  2665. case IN_HANDLER:
  2666. case IN_PROCESS:
  2667. SERIAL_ECHO_START;
  2668. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2669. break;
  2670. case PAUSED_FOR_USER:
  2671. SERIAL_ECHO_START;
  2672. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2673. break;
  2674. case PAUSED_FOR_INPUT:
  2675. SERIAL_ECHO_START;
  2676. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2677. break;
  2678. default:
  2679. break;
  2680. }
  2681. }
  2682. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2683. }
  2684. #endif //HOST_KEEPALIVE_FEATURE
  2685. bool position_is_reachable(float target[XYZ]
  2686. #if HAS_BED_PROBE
  2687. , bool by_probe=false
  2688. #endif
  2689. ) {
  2690. float dx = RAW_X_POSITION(target[X_AXIS]),
  2691. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2692. #if HAS_BED_PROBE
  2693. if (by_probe) {
  2694. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2695. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2696. }
  2697. #endif
  2698. #if IS_SCARA
  2699. #if MIDDLE_DEAD_ZONE_R > 0
  2700. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2701. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2702. #else
  2703. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2704. #endif
  2705. #elif ENABLED(DELTA)
  2706. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2707. #else
  2708. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2709. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2710. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2711. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2712. #endif
  2713. }
  2714. /**************************************************
  2715. ***************** GCode Handlers *****************
  2716. **************************************************/
  2717. /**
  2718. * G0, G1: Coordinated movement of X Y Z E axes
  2719. */
  2720. inline void gcode_G0_G1(
  2721. #if IS_SCARA
  2722. bool fast_move=false
  2723. #endif
  2724. ) {
  2725. if (IsRunning()) {
  2726. gcode_get_destination(); // For X Y Z E F
  2727. #if ENABLED(FWRETRACT)
  2728. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2729. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2730. // Is this move an attempt to retract or recover?
  2731. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2732. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2733. sync_plan_position_e(); // AND from the planner
  2734. retract(!retracted[active_extruder]);
  2735. return;
  2736. }
  2737. }
  2738. #endif //FWRETRACT
  2739. #if IS_SCARA
  2740. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2741. #else
  2742. prepare_move_to_destination();
  2743. #endif
  2744. }
  2745. }
  2746. /**
  2747. * G2: Clockwise Arc
  2748. * G3: Counterclockwise Arc
  2749. *
  2750. * This command has two forms: IJ-form and R-form.
  2751. *
  2752. * - I specifies an X offset. J specifies a Y offset.
  2753. * At least one of the IJ parameters is required.
  2754. * X and Y can be omitted to do a complete circle.
  2755. * The given XY is not error-checked. The arc ends
  2756. * based on the angle of the destination.
  2757. * Mixing I or J with R will throw an error.
  2758. *
  2759. * - R specifies the radius. X or Y is required.
  2760. * Omitting both X and Y will throw an error.
  2761. * X or Y must differ from the current XY.
  2762. * Mixing R with I or J will throw an error.
  2763. *
  2764. * Examples:
  2765. *
  2766. * G2 I10 ; CW circle centered at X+10
  2767. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2768. */
  2769. #if ENABLED(ARC_SUPPORT)
  2770. inline void gcode_G2_G3(bool clockwise) {
  2771. if (IsRunning()) {
  2772. #if ENABLED(SF_ARC_FIX)
  2773. const bool relative_mode_backup = relative_mode;
  2774. relative_mode = true;
  2775. #endif
  2776. gcode_get_destination();
  2777. #if ENABLED(SF_ARC_FIX)
  2778. relative_mode = relative_mode_backup;
  2779. #endif
  2780. float arc_offset[2] = { 0.0, 0.0 };
  2781. if (code_seen('R')) {
  2782. const float r = code_value_linear_units(),
  2783. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2784. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2785. if (r && (x2 != x1 || y2 != y1)) {
  2786. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2787. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2788. d = HYPOT(dx, dy), // Linear distance between the points
  2789. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2790. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2791. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2792. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2793. arc_offset[X_AXIS] = cx - x1;
  2794. arc_offset[Y_AXIS] = cy - y1;
  2795. }
  2796. }
  2797. else {
  2798. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2799. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2800. }
  2801. if (arc_offset[0] || arc_offset[1]) {
  2802. // Send an arc to the planner
  2803. plan_arc(destination, arc_offset, clockwise);
  2804. refresh_cmd_timeout();
  2805. }
  2806. else {
  2807. // Bad arguments
  2808. SERIAL_ERROR_START;
  2809. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2810. }
  2811. }
  2812. }
  2813. #endif
  2814. /**
  2815. * G4: Dwell S<seconds> or P<milliseconds>
  2816. */
  2817. inline void gcode_G4() {
  2818. millis_t dwell_ms = 0;
  2819. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2820. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2821. stepper.synchronize();
  2822. refresh_cmd_timeout();
  2823. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2824. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2825. while (PENDING(millis(), dwell_ms)) idle();
  2826. }
  2827. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2828. /**
  2829. * Parameters interpreted according to:
  2830. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2831. * However I, J omission is not supported at this point; all
  2832. * parameters can be omitted and default to zero.
  2833. */
  2834. /**
  2835. * G5: Cubic B-spline
  2836. */
  2837. inline void gcode_G5() {
  2838. if (IsRunning()) {
  2839. gcode_get_destination();
  2840. const float offset[] = {
  2841. code_seen('I') ? code_value_linear_units() : 0.0,
  2842. code_seen('J') ? code_value_linear_units() : 0.0,
  2843. code_seen('P') ? code_value_linear_units() : 0.0,
  2844. code_seen('Q') ? code_value_linear_units() : 0.0
  2845. };
  2846. plan_cubic_move(offset);
  2847. }
  2848. }
  2849. #endif // BEZIER_CURVE_SUPPORT
  2850. #if ENABLED(FWRETRACT)
  2851. /**
  2852. * G10 - Retract filament according to settings of M207
  2853. * G11 - Recover filament according to settings of M208
  2854. */
  2855. inline void gcode_G10_G11(bool doRetract=false) {
  2856. #if EXTRUDERS > 1
  2857. if (doRetract) {
  2858. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2859. }
  2860. #endif
  2861. retract(doRetract
  2862. #if EXTRUDERS > 1
  2863. , retracted_swap[active_extruder]
  2864. #endif
  2865. );
  2866. }
  2867. #endif //FWRETRACT
  2868. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2869. /**
  2870. * G12: Clean the nozzle
  2871. */
  2872. inline void gcode_G12() {
  2873. // Don't allow nozzle cleaning without homing first
  2874. if (axis_unhomed_error(true, true, true)) return;
  2875. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2876. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2877. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2878. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2879. Nozzle::clean(pattern, strokes, radius, objects);
  2880. }
  2881. #endif
  2882. #if ENABLED(INCH_MODE_SUPPORT)
  2883. /**
  2884. * G20: Set input mode to inches
  2885. */
  2886. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2887. /**
  2888. * G21: Set input mode to millimeters
  2889. */
  2890. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2891. #endif
  2892. #if ENABLED(NOZZLE_PARK_FEATURE)
  2893. /**
  2894. * G27: Park the nozzle
  2895. */
  2896. inline void gcode_G27() {
  2897. // Don't allow nozzle parking without homing first
  2898. if (axis_unhomed_error(true, true, true)) return;
  2899. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2900. }
  2901. #endif // NOZZLE_PARK_FEATURE
  2902. #if ENABLED(QUICK_HOME)
  2903. static void quick_home_xy() {
  2904. // Pretend the current position is 0,0
  2905. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2906. sync_plan_position();
  2907. const int x_axis_home_dir =
  2908. #if ENABLED(DUAL_X_CARRIAGE)
  2909. x_home_dir(active_extruder)
  2910. #else
  2911. home_dir(X_AXIS)
  2912. #endif
  2913. ;
  2914. const float mlx = max_length(X_AXIS),
  2915. mly = max_length(Y_AXIS),
  2916. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2917. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2918. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2919. endstops.hit_on_purpose(); // clear endstop hit flags
  2920. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2921. }
  2922. #endif // QUICK_HOME
  2923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2924. void log_machine_info() {
  2925. SERIAL_ECHOPGM("Machine Type: ");
  2926. #if ENABLED(DELTA)
  2927. SERIAL_ECHOLNPGM("Delta");
  2928. #elif IS_SCARA
  2929. SERIAL_ECHOLNPGM("SCARA");
  2930. #elif IS_CORE
  2931. SERIAL_ECHOLNPGM("Core");
  2932. #else
  2933. SERIAL_ECHOLNPGM("Cartesian");
  2934. #endif
  2935. SERIAL_ECHOPGM("Probe: ");
  2936. #if ENABLED(PROBE_MANUALLY)
  2937. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2938. #elif ENABLED(FIX_MOUNTED_PROBE)
  2939. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2940. #elif ENABLED(BLTOUCH)
  2941. SERIAL_ECHOLNPGM("BLTOUCH");
  2942. #elif HAS_Z_SERVO_ENDSTOP
  2943. SERIAL_ECHOLNPGM("SERVO PROBE");
  2944. #elif ENABLED(Z_PROBE_SLED)
  2945. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2946. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2947. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2948. #else
  2949. SERIAL_ECHOLNPGM("NONE");
  2950. #endif
  2951. #if HAS_BED_PROBE
  2952. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2953. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2954. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2955. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2956. SERIAL_ECHOPGM(" (Right");
  2957. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2958. SERIAL_ECHOPGM(" (Left");
  2959. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2960. SERIAL_ECHOPGM(" (Middle");
  2961. #else
  2962. SERIAL_ECHOPGM(" (Aligned With");
  2963. #endif
  2964. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2965. SERIAL_ECHOPGM("-Back");
  2966. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2967. SERIAL_ECHOPGM("-Front");
  2968. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2969. SERIAL_ECHOPGM("-Center");
  2970. #endif
  2971. if (zprobe_zoffset < 0)
  2972. SERIAL_ECHOPGM(" & Below");
  2973. else if (zprobe_zoffset > 0)
  2974. SERIAL_ECHOPGM(" & Above");
  2975. else
  2976. SERIAL_ECHOPGM(" & Same Z as");
  2977. SERIAL_ECHOLNPGM(" Nozzle)");
  2978. #endif
  2979. #if HAS_ABL
  2980. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2981. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2982. SERIAL_ECHOPGM("LINEAR");
  2983. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2984. SERIAL_ECHOPGM("BILINEAR");
  2985. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2986. SERIAL_ECHOPGM("3POINT");
  2987. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2988. SERIAL_ECHOPGM("UBL");
  2989. #endif
  2990. if (planner.abl_enabled) {
  2991. SERIAL_ECHOLNPGM(" (enabled)");
  2992. #if ABL_PLANAR
  2993. float diff[XYZ] = {
  2994. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2995. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2996. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2997. };
  2998. SERIAL_ECHOPGM("ABL Adjustment X");
  2999. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3000. SERIAL_ECHO(diff[X_AXIS]);
  3001. SERIAL_ECHOPGM(" Y");
  3002. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3003. SERIAL_ECHO(diff[Y_AXIS]);
  3004. SERIAL_ECHOPGM(" Z");
  3005. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3006. SERIAL_ECHO(diff[Z_AXIS]);
  3007. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3008. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3009. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3010. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3011. #endif
  3012. }
  3013. else
  3014. SERIAL_ECHOLNPGM(" (disabled)");
  3015. SERIAL_EOL;
  3016. #elif ENABLED(MESH_BED_LEVELING)
  3017. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3018. if (mbl.active()) {
  3019. float lz = current_position[Z_AXIS];
  3020. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3021. SERIAL_ECHOLNPGM(" (enabled)");
  3022. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3023. }
  3024. else
  3025. SERIAL_ECHOPGM(" (disabled)");
  3026. SERIAL_EOL;
  3027. #endif // MESH_BED_LEVELING
  3028. }
  3029. #endif // DEBUG_LEVELING_FEATURE
  3030. #if ENABLED(DELTA)
  3031. /**
  3032. * A delta can only safely home all axes at the same time
  3033. * This is like quick_home_xy() but for 3 towers.
  3034. */
  3035. inline void home_delta() {
  3036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3037. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3038. #endif
  3039. // Init the current position of all carriages to 0,0,0
  3040. ZERO(current_position);
  3041. sync_plan_position();
  3042. // Move all carriages together linearly until an endstop is hit.
  3043. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3044. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3045. line_to_current_position();
  3046. stepper.synchronize();
  3047. endstops.hit_on_purpose(); // clear endstop hit flags
  3048. // At least one carriage has reached the top.
  3049. // Now re-home each carriage separately.
  3050. HOMEAXIS(A);
  3051. HOMEAXIS(B);
  3052. HOMEAXIS(C);
  3053. // Set all carriages to their home positions
  3054. // Do this here all at once for Delta, because
  3055. // XYZ isn't ABC. Applying this per-tower would
  3056. // give the impression that they are the same.
  3057. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3058. SYNC_PLAN_POSITION_KINEMATIC();
  3059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3060. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3061. #endif
  3062. }
  3063. #endif // DELTA
  3064. #if ENABLED(Z_SAFE_HOMING)
  3065. inline void home_z_safely() {
  3066. // Disallow Z homing if X or Y are unknown
  3067. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3068. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3069. SERIAL_ECHO_START;
  3070. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3071. return;
  3072. }
  3073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3075. #endif
  3076. SYNC_PLAN_POSITION_KINEMATIC();
  3077. /**
  3078. * Move the Z probe (or just the nozzle) to the safe homing point
  3079. */
  3080. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3081. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3082. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3083. if (position_is_reachable(
  3084. destination
  3085. #if HOMING_Z_WITH_PROBE
  3086. , true
  3087. #endif
  3088. )
  3089. ) {
  3090. #if HOMING_Z_WITH_PROBE
  3091. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3092. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3093. #endif
  3094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3095. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3096. #endif
  3097. // This causes the carriage on Dual X to unpark
  3098. #if ENABLED(DUAL_X_CARRIAGE)
  3099. active_extruder_parked = false;
  3100. #endif
  3101. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3102. HOMEAXIS(Z);
  3103. }
  3104. else {
  3105. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3106. SERIAL_ECHO_START;
  3107. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3108. }
  3109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3110. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3111. #endif
  3112. }
  3113. #endif // Z_SAFE_HOMING
  3114. #if ENABLED(PROBE_MANUALLY)
  3115. bool g29_in_progress = false;
  3116. #else
  3117. constexpr bool g29_in_progress = false;
  3118. #endif
  3119. /**
  3120. * G28: Home all axes according to settings
  3121. *
  3122. * Parameters
  3123. *
  3124. * None Home to all axes with no parameters.
  3125. * With QUICK_HOME enabled XY will home together, then Z.
  3126. *
  3127. * Cartesian parameters
  3128. *
  3129. * X Home to the X endstop
  3130. * Y Home to the Y endstop
  3131. * Z Home to the Z endstop
  3132. *
  3133. */
  3134. inline void gcode_G28() {
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) {
  3137. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3138. log_machine_info();
  3139. }
  3140. #endif
  3141. // Wait for planner moves to finish!
  3142. stepper.synchronize();
  3143. // Cancel the active G29 session
  3144. #if ENABLED(PROBE_MANUALLY)
  3145. g29_in_progress = false;
  3146. #endif
  3147. // Disable the leveling matrix before homing
  3148. #if PLANNER_LEVELING
  3149. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3150. const bool bed_leveling_state_at_entry = ubl.state.active;
  3151. #endif
  3152. set_bed_leveling_enabled(false);
  3153. #endif
  3154. // Always home with tool 0 active
  3155. #if HOTENDS > 1
  3156. const uint8_t old_tool_index = active_extruder;
  3157. tool_change(0, 0, true);
  3158. #endif
  3159. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3160. extruder_duplication_enabled = false;
  3161. #endif
  3162. setup_for_endstop_or_probe_move();
  3163. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3164. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3165. #endif
  3166. endstops.enable(true); // Enable endstops for next homing move
  3167. #if ENABLED(DELTA)
  3168. home_delta();
  3169. #else // NOT DELTA
  3170. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3171. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3172. set_destination_to_current();
  3173. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3174. if (home_all_axis || homeZ) {
  3175. HOMEAXIS(Z);
  3176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3177. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3178. #endif
  3179. }
  3180. #else
  3181. if (home_all_axis || homeX || homeY) {
  3182. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3183. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3184. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3186. if (DEBUGGING(LEVELING))
  3187. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3188. #endif
  3189. do_blocking_move_to_z(destination[Z_AXIS]);
  3190. }
  3191. }
  3192. #endif
  3193. #if ENABLED(QUICK_HOME)
  3194. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3195. #endif
  3196. #if ENABLED(HOME_Y_BEFORE_X)
  3197. // Home Y
  3198. if (home_all_axis || homeY) {
  3199. HOMEAXIS(Y);
  3200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3201. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3202. #endif
  3203. }
  3204. #endif
  3205. // Home X
  3206. if (home_all_axis || homeX) {
  3207. #if ENABLED(DUAL_X_CARRIAGE)
  3208. // Always home the 2nd (right) extruder first
  3209. active_extruder = 1;
  3210. HOMEAXIS(X);
  3211. // Remember this extruder's position for later tool change
  3212. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3213. // Home the 1st (left) extruder
  3214. active_extruder = 0;
  3215. HOMEAXIS(X);
  3216. // Consider the active extruder to be parked
  3217. COPY(raised_parked_position, current_position);
  3218. delayed_move_time = 0;
  3219. active_extruder_parked = true;
  3220. #else
  3221. HOMEAXIS(X);
  3222. #endif
  3223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3224. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3225. #endif
  3226. }
  3227. #if DISABLED(HOME_Y_BEFORE_X)
  3228. // Home Y
  3229. if (home_all_axis || homeY) {
  3230. HOMEAXIS(Y);
  3231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3232. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3233. #endif
  3234. }
  3235. #endif
  3236. // Home Z last if homing towards the bed
  3237. #if Z_HOME_DIR < 0
  3238. if (home_all_axis || homeZ) {
  3239. #if ENABLED(Z_SAFE_HOMING)
  3240. home_z_safely();
  3241. #else
  3242. HOMEAXIS(Z);
  3243. #endif
  3244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3245. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3246. #endif
  3247. } // home_all_axis || homeZ
  3248. #endif // Z_HOME_DIR < 0
  3249. SYNC_PLAN_POSITION_KINEMATIC();
  3250. #endif // !DELTA (gcode_G28)
  3251. endstops.not_homing();
  3252. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3253. // move to a height where we can use the full xy-area
  3254. do_blocking_move_to_z(delta_clip_start_height);
  3255. #endif
  3256. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3257. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3258. #endif
  3259. // Enable mesh leveling again
  3260. #if ENABLED(MESH_BED_LEVELING)
  3261. if (mbl.reactivate()) {
  3262. set_bed_leveling_enabled(true);
  3263. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3264. #if ENABLED(MESH_G28_REST_ORIGIN)
  3265. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3266. set_destination_to_current();
  3267. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3268. stepper.synchronize();
  3269. #endif
  3270. }
  3271. }
  3272. #endif
  3273. clean_up_after_endstop_or_probe_move();
  3274. // Restore the active tool after homing
  3275. #if HOTENDS > 1
  3276. tool_change(old_tool_index, 0, true);
  3277. #endif
  3278. report_current_position();
  3279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3280. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3281. #endif
  3282. }
  3283. #if HAS_PROBING_PROCEDURE
  3284. void out_of_range_error(const char* p_edge) {
  3285. SERIAL_PROTOCOLPGM("?Probe ");
  3286. serialprintPGM(p_edge);
  3287. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3288. }
  3289. #endif
  3290. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3291. inline void _manual_goto_xy(const float &x, const float &y) {
  3292. const float old_feedrate_mm_s = feedrate_mm_s;
  3293. #if MANUAL_PROBE_HEIGHT > 0
  3294. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3295. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3296. line_to_current_position();
  3297. #endif
  3298. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3299. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3300. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3301. line_to_current_position();
  3302. #if MANUAL_PROBE_HEIGHT > 0
  3303. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3304. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3305. line_to_current_position();
  3306. #endif
  3307. feedrate_mm_s = old_feedrate_mm_s;
  3308. stepper.synchronize();
  3309. }
  3310. #endif
  3311. #if ENABLED(MESH_BED_LEVELING)
  3312. // Save 130 bytes with non-duplication of PSTR
  3313. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3314. void mbl_mesh_report() {
  3315. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3316. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3317. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3318. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3319. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3320. );
  3321. }
  3322. /**
  3323. * G29: Mesh-based Z probe, probes a grid and produces a
  3324. * mesh to compensate for variable bed height
  3325. *
  3326. * Parameters With MESH_BED_LEVELING:
  3327. *
  3328. * S0 Produce a mesh report
  3329. * S1 Start probing mesh points
  3330. * S2 Probe the next mesh point
  3331. * S3 Xn Yn Zn.nn Manually modify a single point
  3332. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3333. * S5 Reset and disable mesh
  3334. *
  3335. * The S0 report the points as below
  3336. *
  3337. * +----> X-axis 1-n
  3338. * |
  3339. * |
  3340. * v Y-axis 1-n
  3341. *
  3342. */
  3343. inline void gcode_G29() {
  3344. static int mbl_probe_index = -1;
  3345. #if HAS_SOFTWARE_ENDSTOPS
  3346. static bool enable_soft_endstops;
  3347. #endif
  3348. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3349. if (!WITHIN(state, 0, 5)) {
  3350. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3351. return;
  3352. }
  3353. int8_t px, py;
  3354. switch (state) {
  3355. case MeshReport:
  3356. if (mbl.has_mesh()) {
  3357. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3358. mbl_mesh_report();
  3359. }
  3360. else
  3361. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3362. break;
  3363. case MeshStart:
  3364. mbl.reset();
  3365. mbl_probe_index = 0;
  3366. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3367. break;
  3368. case MeshNext:
  3369. if (mbl_probe_index < 0) {
  3370. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3371. return;
  3372. }
  3373. // For each G29 S2...
  3374. if (mbl_probe_index == 0) {
  3375. #if HAS_SOFTWARE_ENDSTOPS
  3376. // For the initial G29 S2 save software endstop state
  3377. enable_soft_endstops = soft_endstops_enabled;
  3378. #endif
  3379. }
  3380. else {
  3381. // For G29 S2 after adjusting Z.
  3382. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3383. #if HAS_SOFTWARE_ENDSTOPS
  3384. soft_endstops_enabled = enable_soft_endstops;
  3385. #endif
  3386. }
  3387. // If there's another point to sample, move there with optional lift.
  3388. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3389. mbl.zigzag(mbl_probe_index, px, py);
  3390. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3391. #if HAS_SOFTWARE_ENDSTOPS
  3392. // Disable software endstops to allow manual adjustment
  3393. // If G29 is not completed, they will not be re-enabled
  3394. soft_endstops_enabled = false;
  3395. #endif
  3396. mbl_probe_index++;
  3397. }
  3398. else {
  3399. // One last "return to the bed" (as originally coded) at completion
  3400. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3401. line_to_current_position();
  3402. stepper.synchronize();
  3403. // After recording the last point, activate the mbl and home
  3404. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3405. mbl_probe_index = -1;
  3406. mbl.set_has_mesh(true);
  3407. mbl.set_reactivate(true);
  3408. enqueue_and_echo_commands_P(PSTR("G28"));
  3409. BUZZ(100, 659);
  3410. BUZZ(100, 698);
  3411. }
  3412. break;
  3413. case MeshSet:
  3414. if (code_seen('X')) {
  3415. px = code_value_int() - 1;
  3416. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3417. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3418. return;
  3419. }
  3420. }
  3421. else {
  3422. SERIAL_CHAR('X'); say_not_entered();
  3423. return;
  3424. }
  3425. if (code_seen('Y')) {
  3426. py = code_value_int() - 1;
  3427. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3428. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3429. return;
  3430. }
  3431. }
  3432. else {
  3433. SERIAL_CHAR('Y'); say_not_entered();
  3434. return;
  3435. }
  3436. if (code_seen('Z')) {
  3437. mbl.z_values[px][py] = code_value_linear_units();
  3438. }
  3439. else {
  3440. SERIAL_CHAR('Z'); say_not_entered();
  3441. return;
  3442. }
  3443. break;
  3444. case MeshSetZOffset:
  3445. if (code_seen('Z')) {
  3446. mbl.z_offset = code_value_linear_units();
  3447. }
  3448. else {
  3449. SERIAL_CHAR('Z'); say_not_entered();
  3450. return;
  3451. }
  3452. break;
  3453. case MeshReset:
  3454. reset_bed_level();
  3455. break;
  3456. } // switch(state)
  3457. report_current_position();
  3458. }
  3459. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3460. #if ABL_GRID
  3461. #if ENABLED(PROBE_Y_FIRST)
  3462. #define PR_OUTER_VAR xCount
  3463. #define PR_OUTER_END abl_grid_points_x
  3464. #define PR_INNER_VAR yCount
  3465. #define PR_INNER_END abl_grid_points_y
  3466. #else
  3467. #define PR_OUTER_VAR yCount
  3468. #define PR_OUTER_END abl_grid_points_y
  3469. #define PR_INNER_VAR xCount
  3470. #define PR_INNER_END abl_grid_points_x
  3471. #endif
  3472. #endif
  3473. /**
  3474. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3475. * Will fail if the printer has not been homed with G28.
  3476. *
  3477. * Enhanced G29 Auto Bed Leveling Probe Routine
  3478. *
  3479. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3480. * or alter the bed level data. Useful to check the topology
  3481. * after a first run of G29.
  3482. *
  3483. * J Jettison current bed leveling data
  3484. *
  3485. * V Set the verbose level (0-4). Example: "G29 V3"
  3486. *
  3487. * Parameters With LINEAR leveling only:
  3488. *
  3489. * P Set the size of the grid that will be probed (P x P points).
  3490. * Example: "G29 P4"
  3491. *
  3492. * X Set the X size of the grid that will be probed (X x Y points).
  3493. * Example: "G29 X7 Y5"
  3494. *
  3495. * Y Set the Y size of the grid that will be probed (X x Y points).
  3496. *
  3497. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3498. * This is useful for manual bed leveling and finding flaws in the bed (to
  3499. * assist with part placement).
  3500. * Not supported by non-linear delta printer bed leveling.
  3501. *
  3502. * Parameters With LINEAR and BILINEAR leveling only:
  3503. *
  3504. * S Set the XY travel speed between probe points (in units/min)
  3505. *
  3506. * F Set the Front limit of the probing grid
  3507. * B Set the Back limit of the probing grid
  3508. * L Set the Left limit of the probing grid
  3509. * R Set the Right limit of the probing grid
  3510. *
  3511. * Parameters with DEBUG_LEVELING_FEATURE only:
  3512. *
  3513. * C Make a totally fake grid with no actual probing.
  3514. * For use in testing when no probing is possible.
  3515. *
  3516. * Parameters with BILINEAR leveling only:
  3517. *
  3518. * Z Supply an additional Z probe offset
  3519. *
  3520. * Extra parameters with PROBE_MANUALLY:
  3521. *
  3522. * To do manual probing simply repeat G29 until the procedure is complete.
  3523. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3524. *
  3525. * Q Query leveling and G29 state
  3526. *
  3527. * A Abort current leveling procedure
  3528. *
  3529. * W Write a mesh point. (Ignored during leveling.)
  3530. * X Required X for mesh point
  3531. * Y Required Y for mesh point
  3532. * Z Required Z for mesh point
  3533. *
  3534. * Without PROBE_MANUALLY:
  3535. *
  3536. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3537. * Include "E" to engage/disengage the Z probe for each sample.
  3538. * There's no extra effect if you have a fixed Z probe.
  3539. *
  3540. */
  3541. inline void gcode_G29() {
  3542. // G29 Q is also available if debugging
  3543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3544. const bool query = code_seen('Q');
  3545. const uint8_t old_debug_flags = marlin_debug_flags;
  3546. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3547. if (DEBUGGING(LEVELING)) {
  3548. DEBUG_POS(">>> gcode_G29", current_position);
  3549. log_machine_info();
  3550. }
  3551. marlin_debug_flags = old_debug_flags;
  3552. #if DISABLED(PROBE_MANUALLY)
  3553. if (query) return;
  3554. #endif
  3555. #endif
  3556. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3557. const bool faux = code_seen('C') && code_value_bool();
  3558. #else
  3559. bool constexpr faux = false;
  3560. #endif
  3561. // Don't allow auto-leveling without homing first
  3562. if (axis_unhomed_error(true, true, true)) return;
  3563. // Define local vars 'static' for manual probing, 'auto' otherwise
  3564. #if ENABLED(PROBE_MANUALLY)
  3565. #define ABL_VAR static
  3566. #else
  3567. #define ABL_VAR
  3568. #endif
  3569. ABL_VAR int verbose_level;
  3570. ABL_VAR float xProbe, yProbe, measured_z;
  3571. ABL_VAR bool dryrun, abl_should_enable;
  3572. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3573. ABL_VAR int abl_probe_index;
  3574. #endif
  3575. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3576. ABL_VAR bool enable_soft_endstops = true;
  3577. #endif
  3578. #if ABL_GRID
  3579. #if ENABLED(PROBE_MANUALLY)
  3580. ABL_VAR uint8_t PR_OUTER_VAR;
  3581. ABL_VAR int8_t PR_INNER_VAR;
  3582. #endif
  3583. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3584. ABL_VAR float xGridSpacing, yGridSpacing;
  3585. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3586. #if ABL_PLANAR
  3587. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3588. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3589. ABL_VAR bool do_topography_map;
  3590. #else // 3-point
  3591. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3592. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3593. #endif
  3594. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3595. #if ABL_PLANAR
  3596. ABL_VAR int abl2;
  3597. #else // 3-point
  3598. int constexpr abl2 = ABL_GRID_MAX;
  3599. #endif
  3600. #endif
  3601. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3602. ABL_VAR float zoffset;
  3603. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3604. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3605. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3606. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3607. mean;
  3608. #endif
  3609. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3610. // Probe at 3 arbitrary points
  3611. ABL_VAR vector_3 points[3] = {
  3612. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3613. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3614. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3615. };
  3616. #endif // AUTO_BED_LEVELING_3POINT
  3617. /**
  3618. * On the initial G29 fetch command parameters.
  3619. */
  3620. if (!g29_in_progress) {
  3621. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3622. abl_probe_index = 0;
  3623. #endif
  3624. abl_should_enable = planner.abl_enabled;
  3625. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3626. if (code_seen('W')) {
  3627. if (!bilinear_grid_spacing[X_AXIS]) {
  3628. SERIAL_ERROR_START;
  3629. SERIAL_ERRORLNPGM("No bilinear grid");
  3630. return;
  3631. }
  3632. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3633. if (!WITHIN(z, -10, 10)) {
  3634. SERIAL_ERROR_START;
  3635. SERIAL_ERRORLNPGM("Bad Z value");
  3636. return;
  3637. }
  3638. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3639. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3640. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3641. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3642. if (x < 99998 && y < 99998) {
  3643. // Get nearest i / j from x / y
  3644. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3645. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3646. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3647. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3648. }
  3649. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3650. set_bed_leveling_enabled(false);
  3651. z_values[i][j] = z;
  3652. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3653. bed_level_virt_interpolate();
  3654. #endif
  3655. set_bed_leveling_enabled(abl_should_enable);
  3656. }
  3657. return;
  3658. } // code_seen('W')
  3659. #endif
  3660. #if PLANNER_LEVELING
  3661. // Jettison bed leveling data
  3662. if (code_seen('J')) {
  3663. reset_bed_level();
  3664. return;
  3665. }
  3666. #endif
  3667. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3668. if (!WITHIN(verbose_level, 0, 4)) {
  3669. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3670. return;
  3671. }
  3672. dryrun = code_seen('D') && code_value_bool();
  3673. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3674. do_topography_map = verbose_level > 2 || code_seen('T');
  3675. // X and Y specify points in each direction, overriding the default
  3676. // These values may be saved with the completed mesh
  3677. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3678. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3679. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3680. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3681. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3682. return;
  3683. }
  3684. abl2 = abl_grid_points_x * abl_grid_points_y;
  3685. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3686. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3687. #endif
  3688. #if ABL_GRID
  3689. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3690. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3691. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3692. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3693. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3694. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3695. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3696. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3697. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3698. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3699. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3700. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3701. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3702. if (left_out || right_out || front_out || back_out) {
  3703. if (left_out) {
  3704. out_of_range_error(PSTR("(L)eft"));
  3705. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3706. }
  3707. if (right_out) {
  3708. out_of_range_error(PSTR("(R)ight"));
  3709. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3710. }
  3711. if (front_out) {
  3712. out_of_range_error(PSTR("(F)ront"));
  3713. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3714. }
  3715. if (back_out) {
  3716. out_of_range_error(PSTR("(B)ack"));
  3717. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3718. }
  3719. return;
  3720. }
  3721. // probe at the points of a lattice grid
  3722. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3723. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3724. #endif // ABL_GRID
  3725. if (verbose_level > 0) {
  3726. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3727. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3728. }
  3729. stepper.synchronize();
  3730. // Disable auto bed leveling during G29
  3731. planner.abl_enabled = false;
  3732. if (!dryrun) {
  3733. // Re-orient the current position without leveling
  3734. // based on where the steppers are positioned.
  3735. set_current_from_steppers_for_axis(ALL_AXES);
  3736. // Sync the planner to where the steppers stopped
  3737. SYNC_PLAN_POSITION_KINEMATIC();
  3738. }
  3739. if (!faux) setup_for_endstop_or_probe_move();
  3740. //xProbe = yProbe = measured_z = 0;
  3741. #if HAS_BED_PROBE
  3742. // Deploy the probe. Probe will raise if needed.
  3743. if (DEPLOY_PROBE()) {
  3744. planner.abl_enabled = abl_should_enable;
  3745. return;
  3746. }
  3747. #endif
  3748. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3749. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3750. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3751. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3752. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3753. ) {
  3754. if (dryrun) {
  3755. // Before reset bed level, re-enable to correct the position
  3756. planner.abl_enabled = abl_should_enable;
  3757. }
  3758. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3759. reset_bed_level();
  3760. // Initialize a grid with the given dimensions
  3761. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3762. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3763. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3764. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3765. // Can't re-enable (on error) until the new grid is written
  3766. abl_should_enable = false;
  3767. }
  3768. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3769. mean = 0.0;
  3770. #endif // AUTO_BED_LEVELING_LINEAR
  3771. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3773. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3774. #endif
  3775. // Probe at 3 arbitrary points
  3776. points[0].z = points[1].z = points[2].z = 0;
  3777. #endif // AUTO_BED_LEVELING_3POINT
  3778. } // !g29_in_progress
  3779. #if ENABLED(PROBE_MANUALLY)
  3780. // Abort current G29 procedure, go back to ABLStart
  3781. if (code_seen('A') && g29_in_progress) {
  3782. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3783. #if HAS_SOFTWARE_ENDSTOPS
  3784. soft_endstops_enabled = enable_soft_endstops;
  3785. #endif
  3786. planner.abl_enabled = abl_should_enable;
  3787. g29_in_progress = false;
  3788. }
  3789. // Query G29 status
  3790. if (code_seen('Q')) {
  3791. if (!g29_in_progress)
  3792. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3793. else {
  3794. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3795. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3796. }
  3797. }
  3798. if (code_seen('A') || code_seen('Q')) return;
  3799. // Fall through to probe the first point
  3800. g29_in_progress = true;
  3801. if (abl_probe_index == 0) {
  3802. // For the initial G29 save software endstop state
  3803. #if HAS_SOFTWARE_ENDSTOPS
  3804. enable_soft_endstops = soft_endstops_enabled;
  3805. #endif
  3806. }
  3807. else {
  3808. // For G29 after adjusting Z.
  3809. // Save the previous Z before going to the next point
  3810. measured_z = current_position[Z_AXIS];
  3811. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3812. mean += measured_z;
  3813. eqnBVector[abl_probe_index] = measured_z;
  3814. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3815. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3816. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3817. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3818. z_values[xCount][yCount] = measured_z + zoffset;
  3819. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3820. points[i].z = measured_z;
  3821. #endif
  3822. }
  3823. //
  3824. // If there's another point to sample, move there with optional lift.
  3825. //
  3826. #if ABL_GRID
  3827. // Find a next point to probe
  3828. // On the first G29 this will be the first probe point
  3829. while (abl_probe_index < abl2) {
  3830. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3831. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3832. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3833. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3834. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3835. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3836. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3837. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3838. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3839. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3840. indexIntoAB[xCount][yCount] = abl_probe_index;
  3841. #endif
  3842. float pos[XYZ] = { xProbe, yProbe, 0 };
  3843. if (position_is_reachable(pos)) break;
  3844. ++abl_probe_index;
  3845. }
  3846. // Is there a next point to move to?
  3847. if (abl_probe_index < abl2) {
  3848. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3849. ++abl_probe_index;
  3850. #if HAS_SOFTWARE_ENDSTOPS
  3851. // Disable software endstops to allow manual adjustment
  3852. // If G29 is not completed, they will not be re-enabled
  3853. soft_endstops_enabled = false;
  3854. #endif
  3855. return;
  3856. }
  3857. else {
  3858. // Then leveling is done!
  3859. // G29 finishing code goes here
  3860. // After recording the last point, activate abl
  3861. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3862. g29_in_progress = false;
  3863. // Re-enable software endstops, if needed
  3864. #if HAS_SOFTWARE_ENDSTOPS
  3865. soft_endstops_enabled = enable_soft_endstops;
  3866. #endif
  3867. }
  3868. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3869. // Probe at 3 arbitrary points
  3870. if (abl_probe_index < 3) {
  3871. xProbe = LOGICAL_X_POSITION(points[i].x);
  3872. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3873. ++abl_probe_index;
  3874. #if HAS_SOFTWARE_ENDSTOPS
  3875. // Disable software endstops to allow manual adjustment
  3876. // If G29 is not completed, they will not be re-enabled
  3877. soft_endstops_enabled = false;
  3878. #endif
  3879. return;
  3880. }
  3881. else {
  3882. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3883. g29_in_progress = false;
  3884. // Re-enable software endstops, if needed
  3885. #if HAS_SOFTWARE_ENDSTOPS
  3886. soft_endstops_enabled = enable_soft_endstops;
  3887. #endif
  3888. if (!dryrun) {
  3889. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3890. if (planeNormal.z < 0) {
  3891. planeNormal.x *= -1;
  3892. planeNormal.y *= -1;
  3893. planeNormal.z *= -1;
  3894. }
  3895. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3896. // Can't re-enable (on error) until the new grid is written
  3897. abl_should_enable = false;
  3898. }
  3899. }
  3900. #endif // AUTO_BED_LEVELING_3POINT
  3901. #else // !PROBE_MANUALLY
  3902. bool stow_probe_after_each = code_seen('E');
  3903. #if ABL_GRID
  3904. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3905. // Outer loop is Y with PROBE_Y_FIRST disabled
  3906. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3907. int8_t inStart, inStop, inInc;
  3908. if (zig) { // away from origin
  3909. inStart = 0;
  3910. inStop = PR_INNER_END;
  3911. inInc = 1;
  3912. }
  3913. else { // towards origin
  3914. inStart = PR_INNER_END - 1;
  3915. inStop = -1;
  3916. inInc = -1;
  3917. }
  3918. zig ^= true; // zag
  3919. // Inner loop is Y with PROBE_Y_FIRST enabled
  3920. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3921. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3922. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3923. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3924. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3925. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3926. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3927. #endif
  3928. #if IS_KINEMATIC
  3929. // Avoid probing outside the round or hexagonal area
  3930. float pos[XYZ] = { xProbe, yProbe, 0 };
  3931. if (!position_is_reachable(pos, true)) continue;
  3932. #endif
  3933. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3934. if (isnan(measured_z)) {
  3935. planner.abl_enabled = abl_should_enable;
  3936. return;
  3937. }
  3938. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3939. mean += measured_z;
  3940. eqnBVector[abl_probe_index] = measured_z;
  3941. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3942. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3943. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3944. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3945. z_values[xCount][yCount] = measured_z + zoffset;
  3946. #endif
  3947. abl_should_enable = false;
  3948. idle();
  3949. } // inner
  3950. } // outer
  3951. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3952. // Probe at 3 arbitrary points
  3953. for (uint8_t i = 0; i < 3; ++i) {
  3954. // Retain the last probe position
  3955. xProbe = LOGICAL_X_POSITION(points[i].x);
  3956. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3957. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3958. }
  3959. if (isnan(measured_z)) {
  3960. planner.abl_enabled = abl_should_enable;
  3961. return;
  3962. }
  3963. if (!dryrun) {
  3964. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3965. if (planeNormal.z < 0) {
  3966. planeNormal.x *= -1;
  3967. planeNormal.y *= -1;
  3968. planeNormal.z *= -1;
  3969. }
  3970. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3971. // Can't re-enable (on error) until the new grid is written
  3972. abl_should_enable = false;
  3973. }
  3974. #endif // AUTO_BED_LEVELING_3POINT
  3975. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3976. if (STOW_PROBE()) {
  3977. planner.abl_enabled = abl_should_enable;
  3978. return;
  3979. }
  3980. #endif // !PROBE_MANUALLY
  3981. //
  3982. // G29 Finishing Code
  3983. //
  3984. // Unless this is a dry run, auto bed leveling will
  3985. // definitely be enabled after this point
  3986. //
  3987. // Restore state after probing
  3988. if (!faux) clean_up_after_endstop_or_probe_move();
  3989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3990. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3991. #endif
  3992. // Calculate leveling, print reports, correct the position
  3993. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3994. if (!dryrun) extrapolate_unprobed_bed_level();
  3995. print_bilinear_leveling_grid();
  3996. refresh_bed_level();
  3997. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3998. bed_level_virt_print();
  3999. #endif
  4000. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4001. // For LINEAR leveling calculate matrix, print reports, correct the position
  4002. /**
  4003. * solve the plane equation ax + by + d = z
  4004. * A is the matrix with rows [x y 1] for all the probed points
  4005. * B is the vector of the Z positions
  4006. * the normal vector to the plane is formed by the coefficients of the
  4007. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4008. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4009. */
  4010. float plane_equation_coefficients[3];
  4011. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4012. mean /= abl2;
  4013. if (verbose_level) {
  4014. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4015. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4016. SERIAL_PROTOCOLPGM(" b: ");
  4017. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4018. SERIAL_PROTOCOLPGM(" d: ");
  4019. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4020. SERIAL_EOL;
  4021. if (verbose_level > 2) {
  4022. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4023. SERIAL_PROTOCOL_F(mean, 8);
  4024. SERIAL_EOL;
  4025. }
  4026. }
  4027. // Create the matrix but don't correct the position yet
  4028. if (!dryrun) {
  4029. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4030. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4031. );
  4032. }
  4033. // Show the Topography map if enabled
  4034. if (do_topography_map) {
  4035. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4036. " +--- BACK --+\n"
  4037. " | |\n"
  4038. " L | (+) | R\n"
  4039. " E | | I\n"
  4040. " F | (-) N (+) | G\n"
  4041. " T | | H\n"
  4042. " | (-) | T\n"
  4043. " | |\n"
  4044. " O-- FRONT --+\n"
  4045. " (0,0)");
  4046. float min_diff = 999;
  4047. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4048. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4049. int ind = indexIntoAB[xx][yy];
  4050. float diff = eqnBVector[ind] - mean,
  4051. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4052. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4053. z_tmp = 0;
  4054. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4055. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4056. if (diff >= 0.0)
  4057. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4058. else
  4059. SERIAL_PROTOCOLCHAR(' ');
  4060. SERIAL_PROTOCOL_F(diff, 5);
  4061. } // xx
  4062. SERIAL_EOL;
  4063. } // yy
  4064. SERIAL_EOL;
  4065. if (verbose_level > 3) {
  4066. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4067. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4068. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4069. int ind = indexIntoAB[xx][yy];
  4070. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4071. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4072. z_tmp = 0;
  4073. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4074. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4075. if (diff >= 0.0)
  4076. SERIAL_PROTOCOLPGM(" +");
  4077. // Include + for column alignment
  4078. else
  4079. SERIAL_PROTOCOLCHAR(' ');
  4080. SERIAL_PROTOCOL_F(diff, 5);
  4081. } // xx
  4082. SERIAL_EOL;
  4083. } // yy
  4084. SERIAL_EOL;
  4085. }
  4086. } //do_topography_map
  4087. #endif // AUTO_BED_LEVELING_LINEAR
  4088. #if ABL_PLANAR
  4089. // For LINEAR and 3POINT leveling correct the current position
  4090. if (verbose_level > 0)
  4091. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4092. if (!dryrun) {
  4093. //
  4094. // Correct the current XYZ position based on the tilted plane.
  4095. //
  4096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4097. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4098. #endif
  4099. float converted[XYZ];
  4100. COPY(converted, current_position);
  4101. planner.abl_enabled = true;
  4102. planner.unapply_leveling(converted); // use conversion machinery
  4103. planner.abl_enabled = false;
  4104. // Use the last measured distance to the bed, if possible
  4105. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4106. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4107. ) {
  4108. float simple_z = current_position[Z_AXIS] - measured_z;
  4109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4110. if (DEBUGGING(LEVELING)) {
  4111. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4112. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4113. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4114. }
  4115. #endif
  4116. converted[Z_AXIS] = simple_z;
  4117. }
  4118. // The rotated XY and corrected Z are now current_position
  4119. COPY(current_position, converted);
  4120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4121. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4122. #endif
  4123. }
  4124. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4125. if (!dryrun) {
  4126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4128. #endif
  4129. // Unapply the offset because it is going to be immediately applied
  4130. // and cause compensation movement in Z
  4131. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4134. #endif
  4135. }
  4136. #endif // ABL_PLANAR
  4137. #ifdef Z_PROBE_END_SCRIPT
  4138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4139. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4140. #endif
  4141. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4142. stepper.synchronize();
  4143. #endif
  4144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4145. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4146. #endif
  4147. report_current_position();
  4148. KEEPALIVE_STATE(IN_HANDLER);
  4149. // Auto Bed Leveling is complete! Enable if possible.
  4150. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4151. if (planner.abl_enabled)
  4152. SYNC_PLAN_POSITION_KINEMATIC();
  4153. }
  4154. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4155. #if HAS_BED_PROBE
  4156. /**
  4157. * G30: Do a single Z probe at the current XY
  4158. * Usage:
  4159. * G30 <X#> <Y#> <S#>
  4160. * X = Probe X position (default=current probe position)
  4161. * Y = Probe Y position (default=current probe position)
  4162. * S = Stows the probe if 1 (default=1)
  4163. */
  4164. inline void gcode_G30() {
  4165. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4166. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4167. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4168. if (!position_is_reachable(pos, true)) return;
  4169. // Disable leveling so the planner won't mess with us
  4170. #if PLANNER_LEVELING
  4171. set_bed_leveling_enabled(false);
  4172. #endif
  4173. setup_for_endstop_or_probe_move();
  4174. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4175. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4176. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4177. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4178. clean_up_after_endstop_or_probe_move();
  4179. report_current_position();
  4180. }
  4181. #if ENABLED(Z_PROBE_SLED)
  4182. /**
  4183. * G31: Deploy the Z probe
  4184. */
  4185. inline void gcode_G31() { DEPLOY_PROBE(); }
  4186. /**
  4187. * G32: Stow the Z probe
  4188. */
  4189. inline void gcode_G32() { STOW_PROBE(); }
  4190. #endif // Z_PROBE_SLED
  4191. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4192. /**
  4193. * G33: Delta '4-point' auto calibration iteration
  4194. *
  4195. * Usage: G33 <Cn> <Vn>
  4196. *
  4197. * C (default) = Calibrate endstops, height and delta radius
  4198. *
  4199. * -2, 1-4: n x n probe points, default 3 x 3
  4200. *
  4201. * 1: probe center
  4202. * set height only - useful when z_offset is changed
  4203. * 2: probe center and towers
  4204. * solve one '4 point' calibration
  4205. * -2: probe center and opposite the towers
  4206. * solve one '4 point' calibration
  4207. * 3: probe 3 center points, towers and opposite-towers
  4208. * averages between 2 '4 point' calibrations
  4209. * 4: probe 4 center points, towers, opposite-towers and itermediate points
  4210. * averages between 4 '4 point' calibrations
  4211. *
  4212. * V Verbose level (0-3, default 1)
  4213. *
  4214. * 0: Dry-run mode: no calibration
  4215. * 1: Settings
  4216. * 2: Setting + probe results
  4217. * 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
  4218. * This prematurely stops the iteration process when factors are found
  4219. */
  4220. inline void gcode_G33() {
  4221. stepper.synchronize();
  4222. #if PLANNER_LEVELING
  4223. set_bed_leveling_enabled(false);
  4224. #endif
  4225. const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
  4226. probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
  4227. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4228. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4229. #define _MAX_M33_V 3
  4230. if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
  4231. #else
  4232. #define _MAX_M33_V 2
  4233. if (verbose_level > 2)
  4234. SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
  4235. #endif
  4236. if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
  4237. float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
  4238. gcode_G28();
  4239. float e_old[XYZ],
  4240. dr_old = delta_radius,
  4241. zh_old = home_offset[Z_AXIS];
  4242. COPY(e_old,endstop_adj);
  4243. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4244. // expert variables
  4245. float h_f_old = 1.00, r_f_old = 0.00,
  4246. h_diff_min = 1.00, r_diff_max = 0.10;
  4247. #endif
  4248. // print settings
  4249. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4250. SERIAL_PROTOCOLPGM("Checking... AC");
  4251. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4252. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4253. if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
  4254. #endif
  4255. SERIAL_EOL;
  4256. LCD_MESSAGEPGM("Checking... AC");
  4257. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4258. if (abs(probe_points) > 1) {
  4259. SERIAL_PROTOCOLPGM(" Ex:");
  4260. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4261. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4262. SERIAL_PROTOCOLPGM(" Ey:");
  4263. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4264. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4265. SERIAL_PROTOCOLPGM(" Ez:");
  4266. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4267. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4268. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4269. }
  4270. SERIAL_EOL;
  4271. #if ENABLED(Z_PROBE_SLED)
  4272. DEPLOY_PROBE();
  4273. #endif
  4274. float test_precision;
  4275. int8_t iterations = 0;
  4276. do { // start iterations
  4277. setup_for_endstop_or_probe_move();
  4278. test_precision =
  4279. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4280. // Expert mode : forced end at std_dev < 0.1
  4281. (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
  4282. #endif
  4283. zero_std_dev
  4284. ;
  4285. float z_at_pt[13] = { 0 };
  4286. iterations++;
  4287. // probe the points
  4288. int16_t center_points = 0;
  4289. if (probe_points != 3) {
  4290. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4291. center_points = 1;
  4292. }
  4293. int16_t step_axis = 4;
  4294. if (probe_points >= 3) {
  4295. for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
  4296. z_at_pt[0] += probe_pt(
  4297. 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4298. 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
  4299. }
  4300. center_points += 3;
  4301. z_at_pt[0] /= center_points;
  4302. }
  4303. float S1 = z_at_pt[0], S2 = sq(S1);
  4304. int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
  4305. step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
  4306. if (probe_points != 1) {
  4307. for (uint8_t axis = start; axis < 13; axis += step_axis)
  4308. z_at_pt[axis] += probe_pt(
  4309. cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4310. sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
  4311. );
  4312. if (probe_points == 4) step_axis = 2;
  4313. }
  4314. for (uint8_t axis = start; axis < 13; axis += step_axis) {
  4315. if (probe_points == 4)
  4316. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4317. S1 += z_at_pt[axis];
  4318. S2 += sq(z_at_pt[axis]);
  4319. N++;
  4320. }
  4321. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
  4322. // Solve matrices
  4323. if (zero_std_dev < test_precision) {
  4324. COPY(e_old, endstop_adj);
  4325. dr_old = delta_radius;
  4326. zh_old = home_offset[Z_AXIS];
  4327. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
  4328. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4329. float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
  4330. h_diff = 0.00, r_diff = 0.00;
  4331. #endif
  4332. #define ZP(N,I) ((N) * z_at_pt[I])
  4333. #define Z1000(I) ZP(1.00, I)
  4334. #define Z1050(I) ZP(H_FACTOR, I)
  4335. #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
  4336. #define Z0350(I) ZP((H_FACTOR) / 3.00, I)
  4337. #define Z0175(I) ZP((H_FACTOR) / 6.00, I)
  4338. #define Z2250(I) ZP(R_FACTOR, I)
  4339. #define Z0750(I) ZP((R_FACTOR) / 3.00, I)
  4340. #define Z0375(I) ZP((R_FACTOR) / 6.00, I)
  4341. switch (probe_points) {
  4342. case 1:
  4343. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4344. r_delta = 0.00;
  4345. break;
  4346. case 2:
  4347. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4348. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4349. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4350. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4351. break;
  4352. case -2:
  4353. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4354. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4355. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4356. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4357. break;
  4358. default:
  4359. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4360. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4361. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4362. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4363. break;
  4364. }
  4365. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4366. // Calculate h & r factors
  4367. if (verbose_level == 3) {
  4368. LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
  4369. r_f_new = r_delta;
  4370. h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
  4371. if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
  4372. if (r_f_old != 0)
  4373. r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
  4374. + 0.311 * sq(R_FACTOR)
  4375. + 1.1493 * R_FACTOR
  4376. + 1.7952
  4377. ) * (r_f_old - r_f_new) / r_f_old;
  4378. if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
  4379. SERIAL_EOL;
  4380. h_f_old = h_f_new;
  4381. r_f_old = r_f_new;
  4382. }
  4383. #endif // DELTA_CALIBRATE_EXPERT_MODE
  4384. // Adjust delta_height and endstops by the max amount
  4385. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4386. delta_radius += r_delta;
  4387. const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
  4388. home_offset[Z_AXIS] -= z_temp;
  4389. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4390. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4391. }
  4392. else { // !iterate
  4393. // step one back
  4394. COPY(endstop_adj, e_old);
  4395. delta_radius = dr_old;
  4396. home_offset[Z_AXIS] = zh_old;
  4397. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4398. }
  4399. // print report
  4400. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4401. if (verbose_level == 3) {
  4402. const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
  4403. - 44.988 * sq(r_diff_max)
  4404. + 31.697 * r_diff_max
  4405. - 9.4439;
  4406. SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
  4407. SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
  4408. SERIAL_EOL;
  4409. }
  4410. #endif
  4411. if (verbose_level == 2) {
  4412. SERIAL_PROTOCOLPGM(". c:");
  4413. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4414. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4415. if (probe_points > 1) {
  4416. SERIAL_PROTOCOLPGM(" x:");
  4417. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4418. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4419. SERIAL_PROTOCOLPGM(" y:");
  4420. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4421. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4422. SERIAL_PROTOCOLPGM(" z:");
  4423. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4424. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4425. }
  4426. if (probe_points > 0) SERIAL_EOL;
  4427. if (probe_points > 2 || probe_points == -2) {
  4428. if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
  4429. SERIAL_PROTOCOLPGM(" yz:");
  4430. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4431. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4432. SERIAL_PROTOCOLPGM(" zx:");
  4433. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4434. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4435. SERIAL_PROTOCOLPGM(" xy:");
  4436. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4437. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4438. SERIAL_EOL;
  4439. }
  4440. }
  4441. if (test_precision != 0.0) { // !forced end
  4442. if (zero_std_dev >= test_precision) {
  4443. SERIAL_PROTOCOLPGM("Calibration OK");
  4444. SERIAL_PROTOCOLLNPGM(" rolling back 1");
  4445. LCD_MESSAGEPGM("Calibration OK");
  4446. SERIAL_EOL;
  4447. }
  4448. else { // !end iterations
  4449. char mess[15] = "No convergence";
  4450. if (iterations < 31)
  4451. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4452. SERIAL_PROTOCOL(mess);
  4453. SERIAL_PROTOCOLPGM(" std dev:");
  4454. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4455. SERIAL_EOL;
  4456. lcd_setstatus(mess);
  4457. }
  4458. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4459. if (abs(probe_points) > 1) {
  4460. SERIAL_PROTOCOLPGM(" Ex:");
  4461. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4462. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4463. SERIAL_PROTOCOLPGM(" Ey:");
  4464. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4465. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4466. SERIAL_PROTOCOLPGM(" Ez:");
  4467. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4468. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4469. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4470. }
  4471. SERIAL_EOL;
  4472. if (zero_std_dev >= test_precision)
  4473. SERIAL_PROTOCOLLNPGM("Save with M500");
  4474. }
  4475. else { // forced end
  4476. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4477. if (verbose_level == 3)
  4478. SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
  4479. else
  4480. #endif
  4481. {
  4482. SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
  4483. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4484. SERIAL_EOL;
  4485. }
  4486. }
  4487. clean_up_after_endstop_or_probe_move();
  4488. stepper.synchronize();
  4489. gcode_G28();
  4490. } while (zero_std_dev < test_precision && iterations < 31);
  4491. #if ENABLED(Z_PROBE_SLED)
  4492. RETRACT_PROBE();
  4493. #endif
  4494. }
  4495. #endif // DELTA_AUTO_CALIBRATION
  4496. #endif // HAS_BED_PROBE
  4497. #if ENABLED(G38_PROBE_TARGET)
  4498. static bool G38_run_probe() {
  4499. bool G38_pass_fail = false;
  4500. // Get direction of move and retract
  4501. float retract_mm[XYZ];
  4502. LOOP_XYZ(i) {
  4503. float dist = destination[i] - current_position[i];
  4504. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4505. }
  4506. stepper.synchronize(); // wait until the machine is idle
  4507. // Move until destination reached or target hit
  4508. endstops.enable(true);
  4509. G38_move = true;
  4510. G38_endstop_hit = false;
  4511. prepare_move_to_destination();
  4512. stepper.synchronize();
  4513. G38_move = false;
  4514. endstops.hit_on_purpose();
  4515. set_current_from_steppers_for_axis(ALL_AXES);
  4516. SYNC_PLAN_POSITION_KINEMATIC();
  4517. if (G38_endstop_hit) {
  4518. G38_pass_fail = true;
  4519. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4520. // Move away by the retract distance
  4521. set_destination_to_current();
  4522. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4523. endstops.enable(false);
  4524. prepare_move_to_destination();
  4525. stepper.synchronize();
  4526. feedrate_mm_s /= 4;
  4527. // Bump the target more slowly
  4528. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4529. endstops.enable(true);
  4530. G38_move = true;
  4531. prepare_move_to_destination();
  4532. stepper.synchronize();
  4533. G38_move = false;
  4534. set_current_from_steppers_for_axis(ALL_AXES);
  4535. SYNC_PLAN_POSITION_KINEMATIC();
  4536. #endif
  4537. }
  4538. endstops.hit_on_purpose();
  4539. endstops.not_homing();
  4540. return G38_pass_fail;
  4541. }
  4542. /**
  4543. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4544. * G38.3 - probe toward workpiece, stop on contact
  4545. *
  4546. * Like G28 except uses Z min probe for all axes
  4547. */
  4548. inline void gcode_G38(bool is_38_2) {
  4549. // Get X Y Z E F
  4550. gcode_get_destination();
  4551. setup_for_endstop_or_probe_move();
  4552. // If any axis has enough movement, do the move
  4553. LOOP_XYZ(i)
  4554. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4555. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4556. // If G38.2 fails throw an error
  4557. if (!G38_run_probe() && is_38_2) {
  4558. SERIAL_ERROR_START;
  4559. SERIAL_ERRORLNPGM("Failed to reach target");
  4560. }
  4561. break;
  4562. }
  4563. clean_up_after_endstop_or_probe_move();
  4564. }
  4565. #endif // G38_PROBE_TARGET
  4566. /**
  4567. * G92: Set current position to given X Y Z E
  4568. */
  4569. inline void gcode_G92() {
  4570. bool didXYZ = false,
  4571. didE = code_seen('E');
  4572. if (!didE) stepper.synchronize();
  4573. LOOP_XYZE(i) {
  4574. if (code_seen(axis_codes[i])) {
  4575. #if IS_SCARA
  4576. current_position[i] = code_value_axis_units((AxisEnum)i);
  4577. if (i != E_AXIS) didXYZ = true;
  4578. #else
  4579. #if HAS_POSITION_SHIFT
  4580. const float p = current_position[i];
  4581. #endif
  4582. float v = code_value_axis_units((AxisEnum)i);
  4583. current_position[i] = v;
  4584. if (i != E_AXIS) {
  4585. didXYZ = true;
  4586. #if HAS_POSITION_SHIFT
  4587. position_shift[i] += v - p; // Offset the coordinate space
  4588. update_software_endstops((AxisEnum)i);
  4589. #endif
  4590. }
  4591. #endif
  4592. }
  4593. }
  4594. if (didXYZ)
  4595. SYNC_PLAN_POSITION_KINEMATIC();
  4596. else if (didE)
  4597. sync_plan_position_e();
  4598. report_current_position();
  4599. }
  4600. #if HAS_RESUME_CONTINUE
  4601. /**
  4602. * M0: Unconditional stop - Wait for user button press on LCD
  4603. * M1: Conditional stop - Wait for user button press on LCD
  4604. */
  4605. inline void gcode_M0_M1() {
  4606. const char * const args = current_command_args;
  4607. millis_t codenum = 0;
  4608. bool hasP = false, hasS = false;
  4609. if (code_seen('P')) {
  4610. codenum = code_value_millis(); // milliseconds to wait
  4611. hasP = codenum > 0;
  4612. }
  4613. if (code_seen('S')) {
  4614. codenum = code_value_millis_from_seconds(); // seconds to wait
  4615. hasS = codenum > 0;
  4616. }
  4617. #if ENABLED(ULTIPANEL)
  4618. if (!hasP && !hasS && *args != '\0')
  4619. lcd_setstatus(args, true);
  4620. else {
  4621. LCD_MESSAGEPGM(MSG_USERWAIT);
  4622. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4623. dontExpireStatus();
  4624. #endif
  4625. }
  4626. #else
  4627. if (!hasP && !hasS && *args != '\0') {
  4628. SERIAL_ECHO_START;
  4629. SERIAL_ECHOLN(args);
  4630. }
  4631. #endif
  4632. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4633. wait_for_user = true;
  4634. stepper.synchronize();
  4635. refresh_cmd_timeout();
  4636. if (codenum > 0) {
  4637. codenum += previous_cmd_ms; // wait until this time for a click
  4638. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4639. }
  4640. else {
  4641. #if ENABLED(ULTIPANEL)
  4642. if (lcd_detected()) {
  4643. while (wait_for_user) idle();
  4644. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4645. }
  4646. #else
  4647. while (wait_for_user) idle();
  4648. #endif
  4649. }
  4650. wait_for_user = false;
  4651. KEEPALIVE_STATE(IN_HANDLER);
  4652. }
  4653. #endif // HAS_RESUME_CONTINUE
  4654. /**
  4655. * M17: Enable power on all stepper motors
  4656. */
  4657. inline void gcode_M17() {
  4658. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4659. enable_all_steppers();
  4660. }
  4661. #if IS_KINEMATIC
  4662. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4663. #else
  4664. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4665. #endif
  4666. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4667. float resume_position[XYZE];
  4668. bool move_away_flag = false;
  4669. inline void move_back_on_resume() {
  4670. if (!move_away_flag) return;
  4671. move_away_flag = false;
  4672. // Set extruder to saved position
  4673. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4674. planner.set_e_position_mm(current_position[E_AXIS]);
  4675. #if IS_KINEMATIC
  4676. // Move XYZ to starting position
  4677. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4678. #else
  4679. // Move XY to starting position, then Z
  4680. destination[X_AXIS] = resume_position[X_AXIS];
  4681. destination[Y_AXIS] = resume_position[Y_AXIS];
  4682. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4683. destination[Z_AXIS] = resume_position[Z_AXIS];
  4684. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4685. #endif
  4686. stepper.synchronize();
  4687. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4688. filament_ran_out = false;
  4689. #endif
  4690. set_current_to_destination();
  4691. }
  4692. #endif // PARK_HEAD_ON_PAUSE
  4693. #if ENABLED(SDSUPPORT)
  4694. /**
  4695. * M20: List SD card to serial output
  4696. */
  4697. inline void gcode_M20() {
  4698. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4699. card.ls();
  4700. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4701. }
  4702. /**
  4703. * M21: Init SD Card
  4704. */
  4705. inline void gcode_M21() { card.initsd(); }
  4706. /**
  4707. * M22: Release SD Card
  4708. */
  4709. inline void gcode_M22() { card.release(); }
  4710. /**
  4711. * M23: Open a file
  4712. */
  4713. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4714. /**
  4715. * M24: Start or Resume SD Print
  4716. */
  4717. inline void gcode_M24() {
  4718. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4719. move_back_on_resume();
  4720. #endif
  4721. card.startFileprint();
  4722. print_job_timer.start();
  4723. }
  4724. /**
  4725. * M25: Pause SD Print
  4726. */
  4727. inline void gcode_M25() {
  4728. card.pauseSDPrint();
  4729. print_job_timer.pause();
  4730. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4731. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4732. #endif
  4733. }
  4734. /**
  4735. * M26: Set SD Card file index
  4736. */
  4737. inline void gcode_M26() {
  4738. if (card.cardOK && code_seen('S'))
  4739. card.setIndex(code_value_long());
  4740. }
  4741. /**
  4742. * M27: Get SD Card status
  4743. */
  4744. inline void gcode_M27() { card.getStatus(); }
  4745. /**
  4746. * M28: Start SD Write
  4747. */
  4748. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4749. /**
  4750. * M29: Stop SD Write
  4751. * Processed in write to file routine above
  4752. */
  4753. inline void gcode_M29() {
  4754. // card.saving = false;
  4755. }
  4756. /**
  4757. * M30 <filename>: Delete SD Card file
  4758. */
  4759. inline void gcode_M30() {
  4760. if (card.cardOK) {
  4761. card.closefile();
  4762. card.removeFile(current_command_args);
  4763. }
  4764. }
  4765. #endif // SDSUPPORT
  4766. /**
  4767. * M31: Get the time since the start of SD Print (or last M109)
  4768. */
  4769. inline void gcode_M31() {
  4770. char buffer[21];
  4771. duration_t elapsed = print_job_timer.duration();
  4772. elapsed.toString(buffer);
  4773. lcd_setstatus(buffer);
  4774. SERIAL_ECHO_START;
  4775. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4776. #if ENABLED(AUTOTEMP)
  4777. thermalManager.autotempShutdown();
  4778. #endif
  4779. }
  4780. #if ENABLED(SDSUPPORT)
  4781. /**
  4782. * M32: Select file and start SD Print
  4783. */
  4784. inline void gcode_M32() {
  4785. if (card.sdprinting)
  4786. stepper.synchronize();
  4787. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4788. if (!namestartpos)
  4789. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4790. else
  4791. namestartpos++; //to skip the '!'
  4792. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4793. if (card.cardOK) {
  4794. card.openFile(namestartpos, true, call_procedure);
  4795. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4796. card.setIndex(code_value_long());
  4797. card.startFileprint();
  4798. // Procedure calls count as normal print time.
  4799. if (!call_procedure) print_job_timer.start();
  4800. }
  4801. }
  4802. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4803. /**
  4804. * M33: Get the long full path of a file or folder
  4805. *
  4806. * Parameters:
  4807. * <dospath> Case-insensitive DOS-style path to a file or folder
  4808. *
  4809. * Example:
  4810. * M33 miscel~1/armchair/armcha~1.gco
  4811. *
  4812. * Output:
  4813. * /Miscellaneous/Armchair/Armchair.gcode
  4814. */
  4815. inline void gcode_M33() {
  4816. card.printLongPath(current_command_args);
  4817. }
  4818. #endif
  4819. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4820. /**
  4821. * M34: Set SD Card Sorting Options
  4822. */
  4823. inline void gcode_M34() {
  4824. if (code_seen('S')) card.setSortOn(code_value_bool());
  4825. if (code_seen('F')) {
  4826. int v = code_value_long();
  4827. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4828. }
  4829. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4830. }
  4831. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4832. /**
  4833. * M928: Start SD Write
  4834. */
  4835. inline void gcode_M928() {
  4836. card.openLogFile(current_command_args);
  4837. }
  4838. #endif // SDSUPPORT
  4839. /**
  4840. * Sensitive pin test for M42, M226
  4841. */
  4842. static bool pin_is_protected(uint8_t pin) {
  4843. static const int sensitive_pins[] = SENSITIVE_PINS;
  4844. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4845. if (sensitive_pins[i] == pin) return true;
  4846. return false;
  4847. }
  4848. /**
  4849. * M42: Change pin status via GCode
  4850. *
  4851. * P<pin> Pin number (LED if omitted)
  4852. * S<byte> Pin status from 0 - 255
  4853. */
  4854. inline void gcode_M42() {
  4855. if (!code_seen('S')) return;
  4856. int pin_status = code_value_int();
  4857. if (!WITHIN(pin_status, 0, 255)) return;
  4858. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4859. if (pin_number < 0) return;
  4860. if (pin_is_protected(pin_number)) {
  4861. SERIAL_ERROR_START;
  4862. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4863. return;
  4864. }
  4865. pinMode(pin_number, OUTPUT);
  4866. digitalWrite(pin_number, pin_status);
  4867. analogWrite(pin_number, pin_status);
  4868. #if FAN_COUNT > 0
  4869. switch (pin_number) {
  4870. #if HAS_FAN0
  4871. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4872. #endif
  4873. #if HAS_FAN1
  4874. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4875. #endif
  4876. #if HAS_FAN2
  4877. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4878. #endif
  4879. }
  4880. #endif
  4881. }
  4882. #if ENABLED(PINS_DEBUGGING)
  4883. #include "pinsDebug.h"
  4884. inline void toggle_pins() {
  4885. const bool I_flag = code_seen('I') && code_value_bool();
  4886. const int repeat = code_seen('R') ? code_value_int() : 1,
  4887. start = code_seen('S') ? code_value_int() : 0,
  4888. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4889. wait = code_seen('W') ? code_value_int() : 500;
  4890. for (uint8_t pin = start; pin <= end; pin++) {
  4891. if (!I_flag && pin_is_protected(pin)) {
  4892. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4893. SERIAL_ECHOLNPGM(" untouched.");
  4894. }
  4895. else {
  4896. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4897. pinMode(pin, OUTPUT);
  4898. for (int16_t j = 0; j < repeat; j++) {
  4899. digitalWrite(pin, 0);
  4900. safe_delay(wait);
  4901. digitalWrite(pin, 1);
  4902. safe_delay(wait);
  4903. digitalWrite(pin, 0);
  4904. safe_delay(wait);
  4905. }
  4906. }
  4907. SERIAL_CHAR('\n');
  4908. }
  4909. SERIAL_ECHOLNPGM("Done.");
  4910. } // toggle_pins
  4911. inline void servo_probe_test() {
  4912. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4913. SERIAL_ERROR_START;
  4914. SERIAL_ERRORLNPGM("SERVO not setup");
  4915. #elif !HAS_Z_SERVO_ENDSTOP
  4916. SERIAL_ERROR_START;
  4917. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4918. #else
  4919. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4920. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4921. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4922. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4923. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4924. bool probe_inverting;
  4925. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4926. #define PROBE_TEST_PIN Z_MIN_PIN
  4927. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4928. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4929. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4930. #if Z_MIN_ENDSTOP_INVERTING
  4931. SERIAL_PROTOCOLLNPGM("true");
  4932. #else
  4933. SERIAL_PROTOCOLLNPGM("false");
  4934. #endif
  4935. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4936. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4937. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4938. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4939. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4940. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4941. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  4942. SERIAL_PROTOCOLLNPGM("true");
  4943. #else
  4944. SERIAL_PROTOCOLLNPGM("false");
  4945. #endif
  4946. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4947. #endif
  4948. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4949. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4950. bool deploy_state;
  4951. bool stow_state;
  4952. for (uint8_t i = 0; i < 4; i++) {
  4953. servo[probe_index].move(z_servo_angle[0]); //deploy
  4954. safe_delay(500);
  4955. deploy_state = digitalRead(PROBE_TEST_PIN);
  4956. servo[probe_index].move(z_servo_angle[1]); //stow
  4957. safe_delay(500);
  4958. stow_state = digitalRead(PROBE_TEST_PIN);
  4959. }
  4960. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4961. refresh_cmd_timeout();
  4962. if (deploy_state != stow_state) {
  4963. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  4964. if (deploy_state) {
  4965. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4966. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4967. }
  4968. else {
  4969. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4970. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4971. }
  4972. #if ENABLED(BLTOUCH)
  4973. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  4974. #endif
  4975. }
  4976. else { // measure active signal length
  4977. servo[probe_index].move(z_servo_angle[0]); // deploy
  4978. safe_delay(500);
  4979. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4980. uint16_t probe_counter = 0;
  4981. // Allow 30 seconds max for operator to trigger probe
  4982. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  4983. safe_delay(2);
  4984. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  4985. refresh_cmd_timeout();
  4986. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4987. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  4988. safe_delay(2);
  4989. if (probe_counter == 50)
  4990. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4991. else if (probe_counter >= 2)
  4992. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  4993. else
  4994. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4995. servo[probe_index].move(z_servo_angle[1]); //stow
  4996. } // pulse detected
  4997. } // for loop waiting for trigger
  4998. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4999. } // measure active signal length
  5000. #endif
  5001. } // servo_probe_test
  5002. /**
  5003. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5004. *
  5005. * M43 - report name and state of pin(s)
  5006. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5007. * I Flag to ignore Marlin's pin protection.
  5008. *
  5009. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5010. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5011. * I Flag to ignore Marlin's pin protection.
  5012. *
  5013. * M43 E<bool> - Enable / disable background endstop monitoring
  5014. * - Machine continues to operate
  5015. * - Reports changes to endstops
  5016. * - Toggles LED when an endstop changes
  5017. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5018. *
  5019. * M43 T - Toggle pin(s) and report which pin is being toggled
  5020. * S<pin> - Start Pin number. If not given, will default to 0
  5021. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5022. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5023. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5024. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5025. *
  5026. * M43 S - Servo probe test
  5027. * P<index> - Probe index (optional - defaults to 0
  5028. */
  5029. inline void gcode_M43() {
  5030. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5031. toggle_pins();
  5032. return;
  5033. }
  5034. // Enable or disable endstop monitoring
  5035. if (code_seen('E')) {
  5036. endstop_monitor_flag = code_value_bool();
  5037. SERIAL_PROTOCOLPGM("endstop monitor ");
  5038. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5039. SERIAL_PROTOCOLLNPGM("abled");
  5040. return;
  5041. }
  5042. if (code_seen('S')) {
  5043. servo_probe_test();
  5044. return;
  5045. }
  5046. // Get the range of pins to test or watch
  5047. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5048. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5049. if (first_pin > last_pin) return;
  5050. const bool ignore_protection = code_seen('I') && code_value_bool();
  5051. // Watch until click, M108, or reset
  5052. if (code_seen('W') && code_value_bool()) {
  5053. SERIAL_PROTOCOLLNPGM("Watching pins");
  5054. byte pin_state[last_pin - first_pin + 1];
  5055. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5056. if (pin_is_protected(pin) && !ignore_protection) continue;
  5057. pinMode(pin, INPUT_PULLUP);
  5058. /*
  5059. if (IS_ANALOG(pin))
  5060. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5061. else
  5062. //*/
  5063. pin_state[pin - first_pin] = digitalRead(pin);
  5064. }
  5065. #if HAS_RESUME_CONTINUE
  5066. wait_for_user = true;
  5067. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5068. #endif
  5069. for (;;) {
  5070. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5071. if (pin_is_protected(pin)) continue;
  5072. const byte val =
  5073. /*
  5074. IS_ANALOG(pin)
  5075. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5076. :
  5077. //*/
  5078. digitalRead(pin);
  5079. if (val != pin_state[pin - first_pin]) {
  5080. report_pin_state(pin);
  5081. pin_state[pin - first_pin] = val;
  5082. }
  5083. }
  5084. #if HAS_RESUME_CONTINUE
  5085. if (!wait_for_user) {
  5086. KEEPALIVE_STATE(IN_HANDLER);
  5087. break;
  5088. }
  5089. #endif
  5090. safe_delay(500);
  5091. }
  5092. return;
  5093. }
  5094. // Report current state of selected pin(s)
  5095. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5096. report_pin_state_extended(pin, ignore_protection);
  5097. }
  5098. #endif // PINS_DEBUGGING
  5099. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5100. /**
  5101. * M48: Z probe repeatability measurement function.
  5102. *
  5103. * Usage:
  5104. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5105. * P = Number of sampled points (4-50, default 10)
  5106. * X = Sample X position
  5107. * Y = Sample Y position
  5108. * V = Verbose level (0-4, default=1)
  5109. * E = Engage Z probe for each reading
  5110. * L = Number of legs of movement before probe
  5111. * S = Schizoid (Or Star if you prefer)
  5112. *
  5113. * This function assumes the bed has been homed. Specifically, that a G28 command
  5114. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5115. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5116. * regenerated.
  5117. */
  5118. inline void gcode_M48() {
  5119. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5120. bool bed_leveling_state_at_entry=0;
  5121. bed_leveling_state_at_entry = ubl.state.active;
  5122. #endif
  5123. if (axis_unhomed_error(true, true, true)) return;
  5124. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5125. if (!WITHIN(verbose_level, 0, 4)) {
  5126. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5127. return;
  5128. }
  5129. if (verbose_level > 0)
  5130. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5131. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5132. if (!WITHIN(n_samples, 4, 50)) {
  5133. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5134. return;
  5135. }
  5136. float X_current = current_position[X_AXIS],
  5137. Y_current = current_position[Y_AXIS];
  5138. bool stow_probe_after_each = code_seen('E');
  5139. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5140. #if DISABLED(DELTA)
  5141. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5142. out_of_range_error(PSTR("X"));
  5143. return;
  5144. }
  5145. #endif
  5146. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5147. #if DISABLED(DELTA)
  5148. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5149. out_of_range_error(PSTR("Y"));
  5150. return;
  5151. }
  5152. #else
  5153. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5154. if (!position_is_reachable(pos, true)) {
  5155. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5156. return;
  5157. }
  5158. #endif
  5159. bool seen_L = code_seen('L');
  5160. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5161. if (n_legs > 15) {
  5162. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5163. return;
  5164. }
  5165. if (n_legs == 1) n_legs = 2;
  5166. bool schizoid_flag = code_seen('S');
  5167. if (schizoid_flag && !seen_L) n_legs = 7;
  5168. /**
  5169. * Now get everything to the specified probe point So we can safely do a
  5170. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5171. * we don't want to use that as a starting point for each probe.
  5172. */
  5173. if (verbose_level > 2)
  5174. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5175. // Disable bed level correction in M48 because we want the raw data when we probe
  5176. #if HAS_ABL
  5177. const bool abl_was_enabled = planner.abl_enabled;
  5178. set_bed_leveling_enabled(false);
  5179. #endif
  5180. setup_for_endstop_or_probe_move();
  5181. // Move to the first point, deploy, and probe
  5182. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5183. randomSeed(millis());
  5184. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5185. for (uint8_t n = 0; n < n_samples; n++) {
  5186. if (n_legs) {
  5187. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5188. float angle = random(0.0, 360.0),
  5189. radius = random(
  5190. #if ENABLED(DELTA)
  5191. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5192. #else
  5193. 5, X_MAX_LENGTH / 8
  5194. #endif
  5195. );
  5196. if (verbose_level > 3) {
  5197. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5198. SERIAL_ECHOPAIR(" angle: ", angle);
  5199. SERIAL_ECHOPGM(" Direction: ");
  5200. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5201. SERIAL_ECHOLNPGM("Clockwise");
  5202. }
  5203. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5204. double delta_angle;
  5205. if (schizoid_flag)
  5206. // The points of a 5 point star are 72 degrees apart. We need to
  5207. // skip a point and go to the next one on the star.
  5208. delta_angle = dir * 2.0 * 72.0;
  5209. else
  5210. // If we do this line, we are just trying to move further
  5211. // around the circle.
  5212. delta_angle = dir * (float) random(25, 45);
  5213. angle += delta_angle;
  5214. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5215. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5216. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5217. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5218. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5219. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5220. #if DISABLED(DELTA)
  5221. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5222. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5223. #else
  5224. // If we have gone out too far, we can do a simple fix and scale the numbers
  5225. // back in closer to the origin.
  5226. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5227. X_current *= 0.8;
  5228. Y_current *= 0.8;
  5229. if (verbose_level > 3) {
  5230. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5231. SERIAL_ECHOLNPAIR(", ", Y_current);
  5232. }
  5233. }
  5234. #endif
  5235. if (verbose_level > 3) {
  5236. SERIAL_PROTOCOLPGM("Going to:");
  5237. SERIAL_ECHOPAIR(" X", X_current);
  5238. SERIAL_ECHOPAIR(" Y", Y_current);
  5239. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5240. }
  5241. do_blocking_move_to_xy(X_current, Y_current);
  5242. } // n_legs loop
  5243. } // n_legs
  5244. // Probe a single point
  5245. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5246. /**
  5247. * Get the current mean for the data points we have so far
  5248. */
  5249. double sum = 0.0;
  5250. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5251. mean = sum / (n + 1);
  5252. NOMORE(min, sample_set[n]);
  5253. NOLESS(max, sample_set[n]);
  5254. /**
  5255. * Now, use that mean to calculate the standard deviation for the
  5256. * data points we have so far
  5257. */
  5258. sum = 0.0;
  5259. for (uint8_t j = 0; j <= n; j++)
  5260. sum += sq(sample_set[j] - mean);
  5261. sigma = sqrt(sum / (n + 1));
  5262. if (verbose_level > 0) {
  5263. if (verbose_level > 1) {
  5264. SERIAL_PROTOCOL(n + 1);
  5265. SERIAL_PROTOCOLPGM(" of ");
  5266. SERIAL_PROTOCOL((int)n_samples);
  5267. SERIAL_PROTOCOLPGM(": z: ");
  5268. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5269. if (verbose_level > 2) {
  5270. SERIAL_PROTOCOLPGM(" mean: ");
  5271. SERIAL_PROTOCOL_F(mean, 4);
  5272. SERIAL_PROTOCOLPGM(" sigma: ");
  5273. SERIAL_PROTOCOL_F(sigma, 6);
  5274. SERIAL_PROTOCOLPGM(" min: ");
  5275. SERIAL_PROTOCOL_F(min, 3);
  5276. SERIAL_PROTOCOLPGM(" max: ");
  5277. SERIAL_PROTOCOL_F(max, 3);
  5278. SERIAL_PROTOCOLPGM(" range: ");
  5279. SERIAL_PROTOCOL_F(max-min, 3);
  5280. }
  5281. SERIAL_EOL;
  5282. }
  5283. }
  5284. } // End of probe loop
  5285. if (STOW_PROBE()) return;
  5286. SERIAL_PROTOCOLPGM("Finished!");
  5287. SERIAL_EOL;
  5288. if (verbose_level > 0) {
  5289. SERIAL_PROTOCOLPGM("Mean: ");
  5290. SERIAL_PROTOCOL_F(mean, 6);
  5291. SERIAL_PROTOCOLPGM(" Min: ");
  5292. SERIAL_PROTOCOL_F(min, 3);
  5293. SERIAL_PROTOCOLPGM(" Max: ");
  5294. SERIAL_PROTOCOL_F(max, 3);
  5295. SERIAL_PROTOCOLPGM(" Range: ");
  5296. SERIAL_PROTOCOL_F(max-min, 3);
  5297. SERIAL_EOL;
  5298. }
  5299. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5300. SERIAL_PROTOCOL_F(sigma, 6);
  5301. SERIAL_EOL;
  5302. SERIAL_EOL;
  5303. clean_up_after_endstop_or_probe_move();
  5304. // Re-enable bed level correction if it has been on
  5305. #if HAS_ABL
  5306. set_bed_leveling_enabled(abl_was_enabled);
  5307. #endif
  5308. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5309. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5310. ubl.state.active = bed_leveling_state_at_entry;
  5311. #endif
  5312. report_current_position();
  5313. }
  5314. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5315. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5316. inline void gcode_M49() {
  5317. ubl.g26_debug_flag ^= true;
  5318. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5319. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5320. }
  5321. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5322. /**
  5323. * M75: Start print timer
  5324. */
  5325. inline void gcode_M75() { print_job_timer.start(); }
  5326. /**
  5327. * M76: Pause print timer
  5328. */
  5329. inline void gcode_M76() { print_job_timer.pause(); }
  5330. /**
  5331. * M77: Stop print timer
  5332. */
  5333. inline void gcode_M77() { print_job_timer.stop(); }
  5334. #if ENABLED(PRINTCOUNTER)
  5335. /**
  5336. * M78: Show print statistics
  5337. */
  5338. inline void gcode_M78() {
  5339. // "M78 S78" will reset the statistics
  5340. if (code_seen('S') && code_value_int() == 78)
  5341. print_job_timer.initStats();
  5342. else
  5343. print_job_timer.showStats();
  5344. }
  5345. #endif
  5346. /**
  5347. * M104: Set hot end temperature
  5348. */
  5349. inline void gcode_M104() {
  5350. if (get_target_extruder_from_command(104)) return;
  5351. if (DEBUGGING(DRYRUN)) return;
  5352. #if ENABLED(SINGLENOZZLE)
  5353. if (target_extruder != active_extruder) return;
  5354. #endif
  5355. if (code_seen('S')) {
  5356. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5357. #if ENABLED(DUAL_X_CARRIAGE)
  5358. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5359. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5360. #endif
  5361. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5362. /**
  5363. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5364. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5365. * standby mode, for instance in a dual extruder setup, without affecting
  5366. * the running print timer.
  5367. */
  5368. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5369. print_job_timer.stop();
  5370. LCD_MESSAGEPGM(WELCOME_MSG);
  5371. }
  5372. #endif
  5373. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5374. }
  5375. #if ENABLED(AUTOTEMP)
  5376. planner.autotemp_M104_M109();
  5377. #endif
  5378. }
  5379. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5380. void print_heaterstates() {
  5381. #if HAS_TEMP_HOTEND
  5382. SERIAL_PROTOCOLPGM(" T:");
  5383. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5384. SERIAL_PROTOCOLPGM(" /");
  5385. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5386. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5387. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5388. SERIAL_PROTOCOLCHAR(')');
  5389. #endif
  5390. #endif
  5391. #if HAS_TEMP_BED
  5392. SERIAL_PROTOCOLPGM(" B:");
  5393. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5394. SERIAL_PROTOCOLPGM(" /");
  5395. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5396. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5397. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5398. SERIAL_PROTOCOLCHAR(')');
  5399. #endif
  5400. #endif
  5401. #if HOTENDS > 1
  5402. HOTEND_LOOP() {
  5403. SERIAL_PROTOCOLPAIR(" T", e);
  5404. SERIAL_PROTOCOLCHAR(':');
  5405. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5406. SERIAL_PROTOCOLPGM(" /");
  5407. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5408. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5409. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5410. SERIAL_PROTOCOLCHAR(')');
  5411. #endif
  5412. }
  5413. #endif
  5414. SERIAL_PROTOCOLPGM(" @:");
  5415. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5416. #if HAS_TEMP_BED
  5417. SERIAL_PROTOCOLPGM(" B@:");
  5418. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5419. #endif
  5420. #if HOTENDS > 1
  5421. HOTEND_LOOP() {
  5422. SERIAL_PROTOCOLPAIR(" @", e);
  5423. SERIAL_PROTOCOLCHAR(':');
  5424. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5425. }
  5426. #endif
  5427. }
  5428. #endif
  5429. /**
  5430. * M105: Read hot end and bed temperature
  5431. */
  5432. inline void gcode_M105() {
  5433. if (get_target_extruder_from_command(105)) return;
  5434. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5435. SERIAL_PROTOCOLPGM(MSG_OK);
  5436. print_heaterstates();
  5437. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5438. SERIAL_ERROR_START;
  5439. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5440. #endif
  5441. SERIAL_EOL;
  5442. }
  5443. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5444. static uint8_t auto_report_temp_interval;
  5445. static millis_t next_temp_report_ms;
  5446. /**
  5447. * M155: Set temperature auto-report interval. M155 S<seconds>
  5448. */
  5449. inline void gcode_M155() {
  5450. if (code_seen('S')) {
  5451. auto_report_temp_interval = code_value_byte();
  5452. NOMORE(auto_report_temp_interval, 60);
  5453. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5454. }
  5455. }
  5456. inline void auto_report_temperatures() {
  5457. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5458. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5459. print_heaterstates();
  5460. SERIAL_EOL;
  5461. }
  5462. }
  5463. #endif // AUTO_REPORT_TEMPERATURES
  5464. #if FAN_COUNT > 0
  5465. /**
  5466. * M106: Set Fan Speed
  5467. *
  5468. * S<int> Speed between 0-255
  5469. * P<index> Fan index, if more than one fan
  5470. */
  5471. inline void gcode_M106() {
  5472. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5473. p = code_seen('P') ? code_value_ushort() : 0;
  5474. NOMORE(s, 255);
  5475. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5476. }
  5477. /**
  5478. * M107: Fan Off
  5479. */
  5480. inline void gcode_M107() {
  5481. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5482. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5483. }
  5484. #endif // FAN_COUNT > 0
  5485. #if DISABLED(EMERGENCY_PARSER)
  5486. /**
  5487. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5488. */
  5489. inline void gcode_M108() { wait_for_heatup = false; }
  5490. /**
  5491. * M112: Emergency Stop
  5492. */
  5493. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5494. /**
  5495. * M410: Quickstop - Abort all planned moves
  5496. *
  5497. * This will stop the carriages mid-move, so most likely they
  5498. * will be out of sync with the stepper position after this.
  5499. */
  5500. inline void gcode_M410() { quickstop_stepper(); }
  5501. #endif
  5502. /**
  5503. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5504. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5505. */
  5506. #ifndef MIN_COOLING_SLOPE_DEG
  5507. #define MIN_COOLING_SLOPE_DEG 1.50
  5508. #endif
  5509. #ifndef MIN_COOLING_SLOPE_TIME
  5510. #define MIN_COOLING_SLOPE_TIME 60
  5511. #endif
  5512. inline void gcode_M109() {
  5513. if (get_target_extruder_from_command(109)) return;
  5514. if (DEBUGGING(DRYRUN)) return;
  5515. #if ENABLED(SINGLENOZZLE)
  5516. if (target_extruder != active_extruder) return;
  5517. #endif
  5518. const bool no_wait_for_cooling = code_seen('S');
  5519. if (no_wait_for_cooling || code_seen('R')) {
  5520. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5521. #if ENABLED(DUAL_X_CARRIAGE)
  5522. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5523. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5524. #endif
  5525. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5526. /**
  5527. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5528. * standby mode, (e.g., in a dual extruder setup) without affecting
  5529. * the running print timer.
  5530. */
  5531. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5532. print_job_timer.stop();
  5533. LCD_MESSAGEPGM(WELCOME_MSG);
  5534. }
  5535. else
  5536. print_job_timer.start();
  5537. #endif
  5538. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5539. }
  5540. else return;
  5541. #if ENABLED(AUTOTEMP)
  5542. planner.autotemp_M104_M109();
  5543. #endif
  5544. #if TEMP_RESIDENCY_TIME > 0
  5545. millis_t residency_start_ms = 0;
  5546. // Loop until the temperature has stabilized
  5547. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5548. #else
  5549. // Loop until the temperature is very close target
  5550. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5551. #endif
  5552. float target_temp = -1.0, old_temp = 9999.0;
  5553. bool wants_to_cool = false;
  5554. wait_for_heatup = true;
  5555. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5556. KEEPALIVE_STATE(NOT_BUSY);
  5557. #if ENABLED(PRINTER_EVENT_LEDS)
  5558. const float start_temp = thermalManager.degHotend(target_extruder);
  5559. uint8_t old_blue = 0;
  5560. #endif
  5561. do {
  5562. // Target temperature might be changed during the loop
  5563. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5564. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5565. target_temp = thermalManager.degTargetHotend(target_extruder);
  5566. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5567. if (no_wait_for_cooling && wants_to_cool) break;
  5568. }
  5569. now = millis();
  5570. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5571. next_temp_ms = now + 1000UL;
  5572. print_heaterstates();
  5573. #if TEMP_RESIDENCY_TIME > 0
  5574. SERIAL_PROTOCOLPGM(" W:");
  5575. if (residency_start_ms) {
  5576. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5577. SERIAL_PROTOCOLLN(rem);
  5578. }
  5579. else {
  5580. SERIAL_PROTOCOLLNPGM("?");
  5581. }
  5582. #else
  5583. SERIAL_EOL;
  5584. #endif
  5585. }
  5586. idle();
  5587. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5588. const float temp = thermalManager.degHotend(target_extruder);
  5589. #if ENABLED(PRINTER_EVENT_LEDS)
  5590. // Gradually change LED strip from violet to red as nozzle heats up
  5591. if (!wants_to_cool) {
  5592. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5593. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5594. }
  5595. #endif
  5596. #if TEMP_RESIDENCY_TIME > 0
  5597. const float temp_diff = fabs(target_temp - temp);
  5598. if (!residency_start_ms) {
  5599. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5600. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5601. }
  5602. else if (temp_diff > TEMP_HYSTERESIS) {
  5603. // Restart the timer whenever the temperature falls outside the hysteresis.
  5604. residency_start_ms = now;
  5605. }
  5606. #endif
  5607. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5608. if (wants_to_cool) {
  5609. // break after MIN_COOLING_SLOPE_TIME seconds
  5610. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5611. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5612. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5613. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5614. old_temp = temp;
  5615. }
  5616. }
  5617. } while (wait_for_heatup && TEMP_CONDITIONS);
  5618. if (wait_for_heatup) {
  5619. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5620. #if ENABLED(PRINTER_EVENT_LEDS)
  5621. #if ENABLED(RGBW_LED)
  5622. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5623. #else
  5624. set_led_color(255, 255, 255); // Set LEDs All On
  5625. #endif
  5626. #endif
  5627. }
  5628. KEEPALIVE_STATE(IN_HANDLER);
  5629. }
  5630. #if HAS_TEMP_BED
  5631. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5632. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5633. #endif
  5634. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5635. #define MIN_COOLING_SLOPE_TIME_BED 60
  5636. #endif
  5637. /**
  5638. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5639. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5640. */
  5641. inline void gcode_M190() {
  5642. if (DEBUGGING(DRYRUN)) return;
  5643. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5644. const bool no_wait_for_cooling = code_seen('S');
  5645. if (no_wait_for_cooling || code_seen('R')) {
  5646. thermalManager.setTargetBed(code_value_temp_abs());
  5647. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5648. if (code_value_temp_abs() > BED_MINTEMP)
  5649. print_job_timer.start();
  5650. #endif
  5651. }
  5652. else return;
  5653. #if TEMP_BED_RESIDENCY_TIME > 0
  5654. millis_t residency_start_ms = 0;
  5655. // Loop until the temperature has stabilized
  5656. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5657. #else
  5658. // Loop until the temperature is very close target
  5659. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5660. #endif
  5661. float target_temp = -1.0, old_temp = 9999.0;
  5662. bool wants_to_cool = false;
  5663. wait_for_heatup = true;
  5664. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5665. KEEPALIVE_STATE(NOT_BUSY);
  5666. target_extruder = active_extruder; // for print_heaterstates
  5667. #if ENABLED(PRINTER_EVENT_LEDS)
  5668. const float start_temp = thermalManager.degBed();
  5669. uint8_t old_red = 255;
  5670. #endif
  5671. do {
  5672. // Target temperature might be changed during the loop
  5673. if (target_temp != thermalManager.degTargetBed()) {
  5674. wants_to_cool = thermalManager.isCoolingBed();
  5675. target_temp = thermalManager.degTargetBed();
  5676. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5677. if (no_wait_for_cooling && wants_to_cool) break;
  5678. }
  5679. now = millis();
  5680. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5681. next_temp_ms = now + 1000UL;
  5682. print_heaterstates();
  5683. #if TEMP_BED_RESIDENCY_TIME > 0
  5684. SERIAL_PROTOCOLPGM(" W:");
  5685. if (residency_start_ms) {
  5686. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5687. SERIAL_PROTOCOLLN(rem);
  5688. }
  5689. else {
  5690. SERIAL_PROTOCOLLNPGM("?");
  5691. }
  5692. #else
  5693. SERIAL_EOL;
  5694. #endif
  5695. }
  5696. idle();
  5697. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5698. const float temp = thermalManager.degBed();
  5699. #if ENABLED(PRINTER_EVENT_LEDS)
  5700. // Gradually change LED strip from blue to violet as bed heats up
  5701. if (!wants_to_cool) {
  5702. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5703. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5704. }
  5705. }
  5706. #endif
  5707. #if TEMP_BED_RESIDENCY_TIME > 0
  5708. const float temp_diff = fabs(target_temp - temp);
  5709. if (!residency_start_ms) {
  5710. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5711. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5712. }
  5713. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5714. // Restart the timer whenever the temperature falls outside the hysteresis.
  5715. residency_start_ms = now;
  5716. }
  5717. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5718. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5719. if (wants_to_cool) {
  5720. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5721. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5722. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5723. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5724. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5725. old_temp = temp;
  5726. }
  5727. }
  5728. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5729. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5730. KEEPALIVE_STATE(IN_HANDLER);
  5731. }
  5732. #endif // HAS_TEMP_BED
  5733. /**
  5734. * M110: Set Current Line Number
  5735. */
  5736. inline void gcode_M110() {
  5737. if (code_seen('N')) gcode_LastN = code_value_long();
  5738. }
  5739. /**
  5740. * M111: Set the debug level
  5741. */
  5742. inline void gcode_M111() {
  5743. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5744. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5745. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5746. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5747. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5748. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5750. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5751. #endif
  5752. const static char* const debug_strings[] PROGMEM = {
  5753. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5755. str_debug_32
  5756. #endif
  5757. };
  5758. SERIAL_ECHO_START;
  5759. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5760. if (marlin_debug_flags) {
  5761. uint8_t comma = 0;
  5762. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5763. if (TEST(marlin_debug_flags, i)) {
  5764. if (comma++) SERIAL_CHAR(',');
  5765. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5766. }
  5767. }
  5768. }
  5769. else {
  5770. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5771. }
  5772. SERIAL_EOL;
  5773. }
  5774. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5775. /**
  5776. * M113: Get or set Host Keepalive interval (0 to disable)
  5777. *
  5778. * S<seconds> Optional. Set the keepalive interval.
  5779. */
  5780. inline void gcode_M113() {
  5781. if (code_seen('S')) {
  5782. host_keepalive_interval = code_value_byte();
  5783. NOMORE(host_keepalive_interval, 60);
  5784. }
  5785. else {
  5786. SERIAL_ECHO_START;
  5787. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5788. }
  5789. }
  5790. #endif
  5791. #if ENABLED(BARICUDA)
  5792. #if HAS_HEATER_1
  5793. /**
  5794. * M126: Heater 1 valve open
  5795. */
  5796. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5797. /**
  5798. * M127: Heater 1 valve close
  5799. */
  5800. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5801. #endif
  5802. #if HAS_HEATER_2
  5803. /**
  5804. * M128: Heater 2 valve open
  5805. */
  5806. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5807. /**
  5808. * M129: Heater 2 valve close
  5809. */
  5810. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5811. #endif
  5812. #endif //BARICUDA
  5813. /**
  5814. * M140: Set bed temperature
  5815. */
  5816. inline void gcode_M140() {
  5817. if (DEBUGGING(DRYRUN)) return;
  5818. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5819. }
  5820. #if ENABLED(ULTIPANEL)
  5821. /**
  5822. * M145: Set the heatup state for a material in the LCD menu
  5823. *
  5824. * S<material> (0=PLA, 1=ABS)
  5825. * H<hotend temp>
  5826. * B<bed temp>
  5827. * F<fan speed>
  5828. */
  5829. inline void gcode_M145() {
  5830. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5831. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5832. SERIAL_ERROR_START;
  5833. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5834. }
  5835. else {
  5836. int v;
  5837. if (code_seen('H')) {
  5838. v = code_value_int();
  5839. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5840. }
  5841. if (code_seen('F')) {
  5842. v = code_value_int();
  5843. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5844. }
  5845. #if TEMP_SENSOR_BED != 0
  5846. if (code_seen('B')) {
  5847. v = code_value_int();
  5848. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5849. }
  5850. #endif
  5851. }
  5852. }
  5853. #endif // ULTIPANEL
  5854. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5855. /**
  5856. * M149: Set temperature units
  5857. */
  5858. inline void gcode_M149() {
  5859. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5860. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5861. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5862. }
  5863. #endif
  5864. #if HAS_POWER_SWITCH
  5865. /**
  5866. * M80: Turn on Power Supply
  5867. */
  5868. inline void gcode_M80() {
  5869. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5870. /**
  5871. * If you have a switch on suicide pin, this is useful
  5872. * if you want to start another print with suicide feature after
  5873. * a print without suicide...
  5874. */
  5875. #if HAS_SUICIDE
  5876. OUT_WRITE(SUICIDE_PIN, HIGH);
  5877. #endif
  5878. #if ENABLED(HAVE_TMC2130)
  5879. delay(100);
  5880. tmc2130_init(); // Settings only stick when the driver has power
  5881. #endif
  5882. #if ENABLED(ULTIPANEL)
  5883. powersupply = true;
  5884. LCD_MESSAGEPGM(WELCOME_MSG);
  5885. #endif
  5886. }
  5887. #endif // HAS_POWER_SWITCH
  5888. /**
  5889. * M81: Turn off Power, including Power Supply, if there is one.
  5890. *
  5891. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5892. */
  5893. inline void gcode_M81() {
  5894. thermalManager.disable_all_heaters();
  5895. stepper.finish_and_disable();
  5896. #if FAN_COUNT > 0
  5897. #if FAN_COUNT > 1
  5898. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5899. #else
  5900. fanSpeeds[0] = 0;
  5901. #endif
  5902. #endif
  5903. safe_delay(1000); // Wait 1 second before switching off
  5904. #if HAS_SUICIDE
  5905. stepper.synchronize();
  5906. suicide();
  5907. #elif HAS_POWER_SWITCH
  5908. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5909. #endif
  5910. #if ENABLED(ULTIPANEL)
  5911. #if HAS_POWER_SWITCH
  5912. powersupply = false;
  5913. #endif
  5914. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5915. #endif
  5916. }
  5917. /**
  5918. * M82: Set E codes absolute (default)
  5919. */
  5920. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5921. /**
  5922. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5923. */
  5924. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5925. /**
  5926. * M18, M84: Disable all stepper motors
  5927. */
  5928. inline void gcode_M18_M84() {
  5929. if (code_seen('S')) {
  5930. stepper_inactive_time = code_value_millis_from_seconds();
  5931. }
  5932. else {
  5933. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5934. if (all_axis) {
  5935. stepper.finish_and_disable();
  5936. }
  5937. else {
  5938. stepper.synchronize();
  5939. if (code_seen('X')) disable_X();
  5940. if (code_seen('Y')) disable_Y();
  5941. if (code_seen('Z')) disable_Z();
  5942. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5943. if (code_seen('E')) disable_e_steppers();
  5944. #endif
  5945. }
  5946. }
  5947. }
  5948. /**
  5949. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5950. */
  5951. inline void gcode_M85() {
  5952. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5953. }
  5954. /**
  5955. * Multi-stepper support for M92, M201, M203
  5956. */
  5957. #if ENABLED(DISTINCT_E_FACTORS)
  5958. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5959. #define TARGET_EXTRUDER target_extruder
  5960. #else
  5961. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5962. #define TARGET_EXTRUDER 0
  5963. #endif
  5964. /**
  5965. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5966. * (Follows the same syntax as G92)
  5967. *
  5968. * With multiple extruders use T to specify which one.
  5969. */
  5970. inline void gcode_M92() {
  5971. GET_TARGET_EXTRUDER(92);
  5972. LOOP_XYZE(i) {
  5973. if (code_seen(axis_codes[i])) {
  5974. if (i == E_AXIS) {
  5975. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5976. if (value < 20.0) {
  5977. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5978. planner.max_jerk[E_AXIS] *= factor;
  5979. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5980. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5981. }
  5982. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5983. }
  5984. else {
  5985. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5986. }
  5987. }
  5988. }
  5989. planner.refresh_positioning();
  5990. }
  5991. /**
  5992. * Output the current position to serial
  5993. */
  5994. static void report_current_position() {
  5995. SERIAL_PROTOCOLPGM("X:");
  5996. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5997. SERIAL_PROTOCOLPGM(" Y:");
  5998. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5999. SERIAL_PROTOCOLPGM(" Z:");
  6000. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6001. SERIAL_PROTOCOLPGM(" E:");
  6002. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6003. stepper.report_positions();
  6004. #if IS_SCARA
  6005. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6006. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6007. SERIAL_EOL;
  6008. #endif
  6009. }
  6010. /**
  6011. * M114: Output current position to serial port
  6012. */
  6013. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6014. /**
  6015. * M115: Capabilities string
  6016. */
  6017. inline void gcode_M115() {
  6018. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6019. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6020. // EEPROM (M500, M501)
  6021. #if ENABLED(EEPROM_SETTINGS)
  6022. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6023. #else
  6024. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6025. #endif
  6026. // AUTOREPORT_TEMP (M155)
  6027. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6028. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6029. #else
  6030. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6031. #endif
  6032. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6033. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6034. // AUTOLEVEL (G29)
  6035. #if HAS_ABL
  6036. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6037. #else
  6038. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6039. #endif
  6040. // Z_PROBE (G30)
  6041. #if HAS_BED_PROBE
  6042. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6043. #else
  6044. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6045. #endif
  6046. // MESH_REPORT (M420 V)
  6047. #if PLANNER_LEVELING
  6048. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6049. #else
  6050. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6051. #endif
  6052. // SOFTWARE_POWER (G30)
  6053. #if HAS_POWER_SWITCH
  6054. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6055. #else
  6056. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6057. #endif
  6058. // TOGGLE_LIGHTS (M355)
  6059. #if HAS_CASE_LIGHT
  6060. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6061. #else
  6062. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6063. #endif
  6064. // EMERGENCY_PARSER (M108, M112, M410)
  6065. #if ENABLED(EMERGENCY_PARSER)
  6066. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6067. #else
  6068. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6069. #endif
  6070. #endif // EXTENDED_CAPABILITIES_REPORT
  6071. }
  6072. /**
  6073. * M117: Set LCD Status Message
  6074. */
  6075. inline void gcode_M117() {
  6076. lcd_setstatus(current_command_args);
  6077. }
  6078. /**
  6079. * M119: Output endstop states to serial output
  6080. */
  6081. inline void gcode_M119() { endstops.M119(); }
  6082. /**
  6083. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6084. */
  6085. inline void gcode_M120() { endstops.enable_globally(true); }
  6086. /**
  6087. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6088. */
  6089. inline void gcode_M121() { endstops.enable_globally(false); }
  6090. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6091. /**
  6092. * M125: Store current position and move to filament change position.
  6093. * Called on pause (by M25) to prevent material leaking onto the
  6094. * object. On resume (M24) the head will be moved back and the
  6095. * print will resume.
  6096. *
  6097. * If Marlin is compiled without SD Card support, M125 can be
  6098. * used directly to pause the print and move to park position,
  6099. * resuming with a button click or M108.
  6100. *
  6101. * L = override retract length
  6102. * X = override X
  6103. * Y = override Y
  6104. * Z = override Z raise
  6105. */
  6106. inline void gcode_M125() {
  6107. if (move_away_flag) return; // already paused
  6108. const bool job_running = print_job_timer.isRunning();
  6109. // there are blocks after this one, or sd printing
  6110. move_away_flag = job_running || planner.blocks_queued()
  6111. #if ENABLED(SDSUPPORT)
  6112. || card.sdprinting
  6113. #endif
  6114. ;
  6115. if (!move_away_flag) return; // nothing to pause
  6116. // M125 can be used to pause a print too
  6117. #if ENABLED(SDSUPPORT)
  6118. card.pauseSDPrint();
  6119. #endif
  6120. print_job_timer.pause();
  6121. // Save current position
  6122. COPY(resume_position, current_position);
  6123. set_destination_to_current();
  6124. // Initial retract before move to filament change position
  6125. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6126. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6127. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6128. #endif
  6129. ;
  6130. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6131. // Lift Z axis
  6132. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6133. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6134. FILAMENT_CHANGE_Z_ADD
  6135. #else
  6136. 0
  6137. #endif
  6138. ;
  6139. if (z_lift > 0) {
  6140. destination[Z_AXIS] += z_lift;
  6141. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6142. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6143. }
  6144. // Move XY axes to filament change position or given position
  6145. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6146. #ifdef FILAMENT_CHANGE_X_POS
  6147. + FILAMENT_CHANGE_X_POS
  6148. #endif
  6149. ;
  6150. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6151. #ifdef FILAMENT_CHANGE_Y_POS
  6152. + FILAMENT_CHANGE_Y_POS
  6153. #endif
  6154. ;
  6155. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6156. if (active_extruder > 0) {
  6157. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6158. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6159. }
  6160. #endif
  6161. clamp_to_software_endstops(destination);
  6162. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6163. set_current_to_destination();
  6164. stepper.synchronize();
  6165. disable_e_steppers();
  6166. #if DISABLED(SDSUPPORT)
  6167. // Wait for lcd click or M108
  6168. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6169. wait_for_user = true;
  6170. while (wait_for_user) idle();
  6171. KEEPALIVE_STATE(IN_HANDLER);
  6172. // Return to print position and continue
  6173. move_back_on_resume();
  6174. if (job_running) print_job_timer.start();
  6175. move_away_flag = false;
  6176. #endif
  6177. }
  6178. #endif // PARK_HEAD_ON_PAUSE
  6179. #if HAS_COLOR_LEDS
  6180. /**
  6181. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6182. *
  6183. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6184. *
  6185. * Examples:
  6186. *
  6187. * M150 R255 ; Turn LED red
  6188. * M150 R255 U127 ; Turn LED orange (PWM only)
  6189. * M150 ; Turn LED off
  6190. * M150 R U B ; Turn LED white
  6191. * M150 W ; Turn LED white using a white LED
  6192. *
  6193. */
  6194. inline void gcode_M150() {
  6195. set_led_color(
  6196. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6197. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6198. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6199. #if ENABLED(RGBW_LED)
  6200. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6201. #endif
  6202. );
  6203. }
  6204. #endif // BLINKM || RGB_LED
  6205. /**
  6206. * M200: Set filament diameter and set E axis units to cubic units
  6207. *
  6208. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6209. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6210. */
  6211. inline void gcode_M200() {
  6212. if (get_target_extruder_from_command(200)) return;
  6213. if (code_seen('D')) {
  6214. // setting any extruder filament size disables volumetric on the assumption that
  6215. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6216. // for all extruders
  6217. volumetric_enabled = (code_value_linear_units() != 0.0);
  6218. if (volumetric_enabled) {
  6219. filament_size[target_extruder] = code_value_linear_units();
  6220. // make sure all extruders have some sane value for the filament size
  6221. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6222. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6223. }
  6224. }
  6225. calculate_volumetric_multipliers();
  6226. }
  6227. /**
  6228. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6229. *
  6230. * With multiple extruders use T to specify which one.
  6231. */
  6232. inline void gcode_M201() {
  6233. GET_TARGET_EXTRUDER(201);
  6234. LOOP_XYZE(i) {
  6235. if (code_seen(axis_codes[i])) {
  6236. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6237. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6238. }
  6239. }
  6240. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6241. planner.reset_acceleration_rates();
  6242. }
  6243. #if 0 // Not used for Sprinter/grbl gen6
  6244. inline void gcode_M202() {
  6245. LOOP_XYZE(i) {
  6246. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6247. }
  6248. }
  6249. #endif
  6250. /**
  6251. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6252. *
  6253. * With multiple extruders use T to specify which one.
  6254. */
  6255. inline void gcode_M203() {
  6256. GET_TARGET_EXTRUDER(203);
  6257. LOOP_XYZE(i)
  6258. if (code_seen(axis_codes[i])) {
  6259. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6260. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6261. }
  6262. }
  6263. /**
  6264. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6265. *
  6266. * P = Printing moves
  6267. * R = Retract only (no X, Y, Z) moves
  6268. * T = Travel (non printing) moves
  6269. *
  6270. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6271. */
  6272. inline void gcode_M204() {
  6273. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6274. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6275. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6276. }
  6277. if (code_seen('P')) {
  6278. planner.acceleration = code_value_linear_units();
  6279. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6280. }
  6281. if (code_seen('R')) {
  6282. planner.retract_acceleration = code_value_linear_units();
  6283. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6284. }
  6285. if (code_seen('T')) {
  6286. planner.travel_acceleration = code_value_linear_units();
  6287. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6288. }
  6289. }
  6290. /**
  6291. * M205: Set Advanced Settings
  6292. *
  6293. * S = Min Feed Rate (units/s)
  6294. * T = Min Travel Feed Rate (units/s)
  6295. * B = Min Segment Time (µs)
  6296. * X = Max X Jerk (units/sec^2)
  6297. * Y = Max Y Jerk (units/sec^2)
  6298. * Z = Max Z Jerk (units/sec^2)
  6299. * E = Max E Jerk (units/sec^2)
  6300. */
  6301. inline void gcode_M205() {
  6302. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6303. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6304. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6305. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6306. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6307. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6308. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6309. }
  6310. #if HAS_M206_COMMAND
  6311. /**
  6312. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6313. */
  6314. inline void gcode_M206() {
  6315. LOOP_XYZ(i)
  6316. if (code_seen(axis_codes[i]))
  6317. set_home_offset((AxisEnum)i, code_value_linear_units());
  6318. #if ENABLED(MORGAN_SCARA)
  6319. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6320. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6321. #endif
  6322. SYNC_PLAN_POSITION_KINEMATIC();
  6323. report_current_position();
  6324. }
  6325. #endif // HAS_M206_COMMAND
  6326. #if ENABLED(DELTA)
  6327. /**
  6328. * M665: Set delta configurations
  6329. *
  6330. * H = diagonal rod // AC-version
  6331. * L = diagonal rod
  6332. * R = delta radius
  6333. * S = segments per second
  6334. * A = Alpha (Tower 1) diagonal rod trim
  6335. * B = Beta (Tower 2) diagonal rod trim
  6336. * C = Gamma (Tower 3) diagonal rod trim
  6337. */
  6338. inline void gcode_M665() {
  6339. if (code_seen('H')) {
  6340. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6341. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6342. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6343. update_software_endstops(Z_AXIS);
  6344. }
  6345. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6346. if (code_seen('R')) delta_radius = code_value_linear_units();
  6347. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6348. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  6349. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  6350. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  6351. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6352. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6353. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  6354. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6355. }
  6356. /**
  6357. * M666: Set delta endstop adjustment
  6358. */
  6359. inline void gcode_M666() {
  6360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6361. if (DEBUGGING(LEVELING)) {
  6362. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6363. }
  6364. #endif
  6365. LOOP_XYZ(i) {
  6366. if (code_seen(axis_codes[i])) {
  6367. endstop_adj[i] = code_value_linear_units();
  6368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6369. if (DEBUGGING(LEVELING)) {
  6370. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6371. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6372. }
  6373. #endif
  6374. }
  6375. }
  6376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6377. if (DEBUGGING(LEVELING)) {
  6378. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6379. }
  6380. #endif
  6381. }
  6382. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6383. /**
  6384. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6385. */
  6386. inline void gcode_M666() {
  6387. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6388. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6389. }
  6390. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6391. #if ENABLED(FWRETRACT)
  6392. /**
  6393. * M207: Set firmware retraction values
  6394. *
  6395. * S[+units] retract_length
  6396. * W[+units] retract_length_swap (multi-extruder)
  6397. * F[units/min] retract_feedrate_mm_s
  6398. * Z[units] retract_zlift
  6399. */
  6400. inline void gcode_M207() {
  6401. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6402. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6403. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6404. #if EXTRUDERS > 1
  6405. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6406. #endif
  6407. }
  6408. /**
  6409. * M208: Set firmware un-retraction values
  6410. *
  6411. * S[+units] retract_recover_length (in addition to M207 S*)
  6412. * W[+units] retract_recover_length_swap (multi-extruder)
  6413. * F[units/min] retract_recover_feedrate_mm_s
  6414. */
  6415. inline void gcode_M208() {
  6416. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6417. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6418. #if EXTRUDERS > 1
  6419. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6420. #endif
  6421. }
  6422. /**
  6423. * M209: Enable automatic retract (M209 S1)
  6424. * For slicers that don't support G10/11, reversed extrude-only
  6425. * moves will be classified as retraction.
  6426. */
  6427. inline void gcode_M209() {
  6428. if (code_seen('S')) {
  6429. autoretract_enabled = code_value_bool();
  6430. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6431. }
  6432. }
  6433. #endif // FWRETRACT
  6434. /**
  6435. * M211: Enable, Disable, and/or Report software endstops
  6436. *
  6437. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6438. */
  6439. inline void gcode_M211() {
  6440. SERIAL_ECHO_START;
  6441. #if HAS_SOFTWARE_ENDSTOPS
  6442. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6443. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6444. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6445. #else
  6446. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6447. SERIAL_ECHOPGM(MSG_OFF);
  6448. #endif
  6449. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6450. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6451. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6452. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6453. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6454. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6455. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6456. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6457. }
  6458. #if HOTENDS > 1
  6459. /**
  6460. * M218 - set hotend offset (in linear units)
  6461. *
  6462. * T<tool>
  6463. * X<xoffset>
  6464. * Y<yoffset>
  6465. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6466. */
  6467. inline void gcode_M218() {
  6468. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6469. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6470. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6471. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6472. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6473. #endif
  6474. SERIAL_ECHO_START;
  6475. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6476. HOTEND_LOOP() {
  6477. SERIAL_CHAR(' ');
  6478. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6479. SERIAL_CHAR(',');
  6480. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6481. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6482. SERIAL_CHAR(',');
  6483. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6484. #endif
  6485. }
  6486. SERIAL_EOL;
  6487. }
  6488. #endif // HOTENDS > 1
  6489. /**
  6490. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6491. */
  6492. inline void gcode_M220() {
  6493. if (code_seen('S')) feedrate_percentage = code_value_int();
  6494. }
  6495. /**
  6496. * M221: Set extrusion percentage (M221 T0 S95)
  6497. */
  6498. inline void gcode_M221() {
  6499. if (get_target_extruder_from_command(221)) return;
  6500. if (code_seen('S'))
  6501. flow_percentage[target_extruder] = code_value_int();
  6502. }
  6503. /**
  6504. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6505. */
  6506. inline void gcode_M226() {
  6507. if (code_seen('P')) {
  6508. int pin_number = code_value_int(),
  6509. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6510. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6511. int target = LOW;
  6512. stepper.synchronize();
  6513. pinMode(pin_number, INPUT);
  6514. switch (pin_state) {
  6515. case 1:
  6516. target = HIGH;
  6517. break;
  6518. case 0:
  6519. target = LOW;
  6520. break;
  6521. case -1:
  6522. target = !digitalRead(pin_number);
  6523. break;
  6524. }
  6525. while (digitalRead(pin_number) != target) idle();
  6526. } // pin_state -1 0 1 && pin_number > -1
  6527. } // code_seen('P')
  6528. }
  6529. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6530. /**
  6531. * M260: Send data to a I2C slave device
  6532. *
  6533. * This is a PoC, the formating and arguments for the GCODE will
  6534. * change to be more compatible, the current proposal is:
  6535. *
  6536. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6537. *
  6538. * M260 B<byte-1 value in base 10>
  6539. * M260 B<byte-2 value in base 10>
  6540. * M260 B<byte-3 value in base 10>
  6541. *
  6542. * M260 S1 ; Send the buffered data and reset the buffer
  6543. * M260 R1 ; Reset the buffer without sending data
  6544. *
  6545. */
  6546. inline void gcode_M260() {
  6547. // Set the target address
  6548. if (code_seen('A')) i2c.address(code_value_byte());
  6549. // Add a new byte to the buffer
  6550. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6551. // Flush the buffer to the bus
  6552. if (code_seen('S')) i2c.send();
  6553. // Reset and rewind the buffer
  6554. else if (code_seen('R')) i2c.reset();
  6555. }
  6556. /**
  6557. * M261: Request X bytes from I2C slave device
  6558. *
  6559. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6560. */
  6561. inline void gcode_M261() {
  6562. if (code_seen('A')) i2c.address(code_value_byte());
  6563. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6564. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6565. i2c.relay(bytes);
  6566. }
  6567. else {
  6568. SERIAL_ERROR_START;
  6569. SERIAL_ERRORLN("Bad i2c request");
  6570. }
  6571. }
  6572. #endif // EXPERIMENTAL_I2CBUS
  6573. #if HAS_SERVOS
  6574. /**
  6575. * M280: Get or set servo position. P<index> [S<angle>]
  6576. */
  6577. inline void gcode_M280() {
  6578. if (!code_seen('P')) return;
  6579. int servo_index = code_value_int();
  6580. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6581. if (code_seen('S'))
  6582. MOVE_SERVO(servo_index, code_value_int());
  6583. else {
  6584. SERIAL_ECHO_START;
  6585. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6586. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6587. }
  6588. }
  6589. else {
  6590. SERIAL_ERROR_START;
  6591. SERIAL_ECHOPAIR("Servo ", servo_index);
  6592. SERIAL_ECHOLNPGM(" out of range");
  6593. }
  6594. }
  6595. #endif // HAS_SERVOS
  6596. #if HAS_BUZZER
  6597. /**
  6598. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6599. */
  6600. inline void gcode_M300() {
  6601. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6602. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6603. // Limits the tone duration to 0-5 seconds.
  6604. NOMORE(duration, 5000);
  6605. BUZZ(duration, frequency);
  6606. }
  6607. #endif // HAS_BUZZER
  6608. #if ENABLED(PIDTEMP)
  6609. /**
  6610. * M301: Set PID parameters P I D (and optionally C, L)
  6611. *
  6612. * P[float] Kp term
  6613. * I[float] Ki term (unscaled)
  6614. * D[float] Kd term (unscaled)
  6615. *
  6616. * With PID_EXTRUSION_SCALING:
  6617. *
  6618. * C[float] Kc term
  6619. * L[float] LPQ length
  6620. */
  6621. inline void gcode_M301() {
  6622. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6623. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6624. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6625. if (e < HOTENDS) { // catch bad input value
  6626. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6627. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6628. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6629. #if ENABLED(PID_EXTRUSION_SCALING)
  6630. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6631. if (code_seen('L')) lpq_len = code_value_float();
  6632. NOMORE(lpq_len, LPQ_MAX_LEN);
  6633. #endif
  6634. thermalManager.updatePID();
  6635. SERIAL_ECHO_START;
  6636. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6637. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6638. #endif // PID_PARAMS_PER_HOTEND
  6639. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6640. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6641. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6642. #if ENABLED(PID_EXTRUSION_SCALING)
  6643. //Kc does not have scaling applied above, or in resetting defaults
  6644. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6645. #endif
  6646. SERIAL_EOL;
  6647. }
  6648. else {
  6649. SERIAL_ERROR_START;
  6650. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6651. }
  6652. }
  6653. #endif // PIDTEMP
  6654. #if ENABLED(PIDTEMPBED)
  6655. inline void gcode_M304() {
  6656. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6657. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6658. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6659. thermalManager.updatePID();
  6660. SERIAL_ECHO_START;
  6661. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6662. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6663. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6664. }
  6665. #endif // PIDTEMPBED
  6666. #if defined(CHDK) || HAS_PHOTOGRAPH
  6667. /**
  6668. * M240: Trigger a camera by emulating a Canon RC-1
  6669. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6670. */
  6671. inline void gcode_M240() {
  6672. #ifdef CHDK
  6673. OUT_WRITE(CHDK, HIGH);
  6674. chdkHigh = millis();
  6675. chdkActive = true;
  6676. #elif HAS_PHOTOGRAPH
  6677. const uint8_t NUM_PULSES = 16;
  6678. const float PULSE_LENGTH = 0.01524;
  6679. for (int i = 0; i < NUM_PULSES; i++) {
  6680. WRITE(PHOTOGRAPH_PIN, HIGH);
  6681. _delay_ms(PULSE_LENGTH);
  6682. WRITE(PHOTOGRAPH_PIN, LOW);
  6683. _delay_ms(PULSE_LENGTH);
  6684. }
  6685. delay(7.33);
  6686. for (int i = 0; i < NUM_PULSES; i++) {
  6687. WRITE(PHOTOGRAPH_PIN, HIGH);
  6688. _delay_ms(PULSE_LENGTH);
  6689. WRITE(PHOTOGRAPH_PIN, LOW);
  6690. _delay_ms(PULSE_LENGTH);
  6691. }
  6692. #endif // !CHDK && HAS_PHOTOGRAPH
  6693. }
  6694. #endif // CHDK || PHOTOGRAPH_PIN
  6695. #if HAS_LCD_CONTRAST
  6696. /**
  6697. * M250: Read and optionally set the LCD contrast
  6698. */
  6699. inline void gcode_M250() {
  6700. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6701. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6702. SERIAL_PROTOCOL(lcd_contrast);
  6703. SERIAL_EOL;
  6704. }
  6705. #endif // HAS_LCD_CONTRAST
  6706. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6707. /**
  6708. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6709. *
  6710. * S<temperature> sets the minimum extrude temperature
  6711. * P<bool> enables (1) or disables (0) cold extrusion
  6712. *
  6713. * Examples:
  6714. *
  6715. * M302 ; report current cold extrusion state
  6716. * M302 P0 ; enable cold extrusion checking
  6717. * M302 P1 ; disables cold extrusion checking
  6718. * M302 S0 ; always allow extrusion (disables checking)
  6719. * M302 S170 ; only allow extrusion above 170
  6720. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6721. */
  6722. inline void gcode_M302() {
  6723. bool seen_S = code_seen('S');
  6724. if (seen_S) {
  6725. thermalManager.extrude_min_temp = code_value_temp_abs();
  6726. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6727. }
  6728. if (code_seen('P'))
  6729. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6730. else if (!seen_S) {
  6731. // Report current state
  6732. SERIAL_ECHO_START;
  6733. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6734. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6735. SERIAL_ECHOLNPGM("C)");
  6736. }
  6737. }
  6738. #endif // PREVENT_COLD_EXTRUSION
  6739. /**
  6740. * M303: PID relay autotune
  6741. *
  6742. * S<temperature> sets the target temperature. (default 150C)
  6743. * E<extruder> (-1 for the bed) (default 0)
  6744. * C<cycles>
  6745. * U<bool> with a non-zero value will apply the result to current settings
  6746. */
  6747. inline void gcode_M303() {
  6748. #if HAS_PID_HEATING
  6749. int e = code_seen('E') ? code_value_int() : 0;
  6750. int c = code_seen('C') ? code_value_int() : 5;
  6751. bool u = code_seen('U') && code_value_bool();
  6752. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6753. if (WITHIN(e, 0, HOTENDS - 1))
  6754. target_extruder = e;
  6755. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6756. thermalManager.PID_autotune(temp, e, c, u);
  6757. KEEPALIVE_STATE(IN_HANDLER);
  6758. #else
  6759. SERIAL_ERROR_START;
  6760. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6761. #endif
  6762. }
  6763. #if ENABLED(MORGAN_SCARA)
  6764. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6765. if (IsRunning()) {
  6766. forward_kinematics_SCARA(delta_a, delta_b);
  6767. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6768. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6769. destination[Z_AXIS] = current_position[Z_AXIS];
  6770. prepare_move_to_destination();
  6771. return true;
  6772. }
  6773. return false;
  6774. }
  6775. /**
  6776. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6777. */
  6778. inline bool gcode_M360() {
  6779. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6780. return SCARA_move_to_cal(0, 120);
  6781. }
  6782. /**
  6783. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6784. */
  6785. inline bool gcode_M361() {
  6786. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6787. return SCARA_move_to_cal(90, 130);
  6788. }
  6789. /**
  6790. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6791. */
  6792. inline bool gcode_M362() {
  6793. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6794. return SCARA_move_to_cal(60, 180);
  6795. }
  6796. /**
  6797. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6798. */
  6799. inline bool gcode_M363() {
  6800. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6801. return SCARA_move_to_cal(50, 90);
  6802. }
  6803. /**
  6804. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6805. */
  6806. inline bool gcode_M364() {
  6807. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6808. return SCARA_move_to_cal(45, 135);
  6809. }
  6810. #endif // SCARA
  6811. #if ENABLED(EXT_SOLENOID)
  6812. void enable_solenoid(const uint8_t num) {
  6813. switch (num) {
  6814. case 0:
  6815. OUT_WRITE(SOL0_PIN, HIGH);
  6816. break;
  6817. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6818. case 1:
  6819. OUT_WRITE(SOL1_PIN, HIGH);
  6820. break;
  6821. #endif
  6822. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6823. case 2:
  6824. OUT_WRITE(SOL2_PIN, HIGH);
  6825. break;
  6826. #endif
  6827. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6828. case 3:
  6829. OUT_WRITE(SOL3_PIN, HIGH);
  6830. break;
  6831. #endif
  6832. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6833. case 4:
  6834. OUT_WRITE(SOL4_PIN, HIGH);
  6835. break;
  6836. #endif
  6837. default:
  6838. SERIAL_ECHO_START;
  6839. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6840. break;
  6841. }
  6842. }
  6843. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6844. void disable_all_solenoids() {
  6845. OUT_WRITE(SOL0_PIN, LOW);
  6846. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6847. OUT_WRITE(SOL1_PIN, LOW);
  6848. #endif
  6849. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6850. OUT_WRITE(SOL2_PIN, LOW);
  6851. #endif
  6852. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6853. OUT_WRITE(SOL3_PIN, LOW);
  6854. #endif
  6855. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6856. OUT_WRITE(SOL4_PIN, LOW);
  6857. #endif
  6858. }
  6859. /**
  6860. * M380: Enable solenoid on the active extruder
  6861. */
  6862. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6863. /**
  6864. * M381: Disable all solenoids
  6865. */
  6866. inline void gcode_M381() { disable_all_solenoids(); }
  6867. #endif // EXT_SOLENOID
  6868. /**
  6869. * M400: Finish all moves
  6870. */
  6871. inline void gcode_M400() { stepper.synchronize(); }
  6872. #if HAS_BED_PROBE
  6873. /**
  6874. * M401: Engage Z Servo endstop if available
  6875. */
  6876. inline void gcode_M401() { DEPLOY_PROBE(); }
  6877. /**
  6878. * M402: Retract Z Servo endstop if enabled
  6879. */
  6880. inline void gcode_M402() { STOW_PROBE(); }
  6881. #endif // HAS_BED_PROBE
  6882. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6883. /**
  6884. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6885. */
  6886. inline void gcode_M404() {
  6887. if (code_seen('W')) {
  6888. filament_width_nominal = code_value_linear_units();
  6889. }
  6890. else {
  6891. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6892. SERIAL_PROTOCOLLN(filament_width_nominal);
  6893. }
  6894. }
  6895. /**
  6896. * M405: Turn on filament sensor for control
  6897. */
  6898. inline void gcode_M405() {
  6899. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6900. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6901. if (code_seen('D')) meas_delay_cm = code_value_int();
  6902. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6903. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6904. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6905. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6906. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6907. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6908. }
  6909. filament_sensor = true;
  6910. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6911. //SERIAL_PROTOCOL(filament_width_meas);
  6912. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6913. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6914. }
  6915. /**
  6916. * M406: Turn off filament sensor for control
  6917. */
  6918. inline void gcode_M406() { filament_sensor = false; }
  6919. /**
  6920. * M407: Get measured filament diameter on serial output
  6921. */
  6922. inline void gcode_M407() {
  6923. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6924. SERIAL_PROTOCOLLN(filament_width_meas);
  6925. }
  6926. #endif // FILAMENT_WIDTH_SENSOR
  6927. void quickstop_stepper() {
  6928. stepper.quick_stop();
  6929. stepper.synchronize();
  6930. set_current_from_steppers_for_axis(ALL_AXES);
  6931. SYNC_PLAN_POSITION_KINEMATIC();
  6932. }
  6933. #if PLANNER_LEVELING
  6934. /**
  6935. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6936. *
  6937. * S[bool] Turns leveling on or off
  6938. * Z[height] Sets the Z fade height (0 or none to disable)
  6939. * V[bool] Verbose - Print the leveling grid
  6940. *
  6941. * With AUTO_BED_LEVELING_UBL only:
  6942. *
  6943. * L[index] Load UBL mesh from index (0 is default)
  6944. */
  6945. inline void gcode_M420() {
  6946. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6947. // L to load a mesh from the EEPROM
  6948. if (code_seen('L')) {
  6949. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6950. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6951. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6952. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6953. return;
  6954. }
  6955. ubl.load_mesh(storage_slot);
  6956. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6957. ubl.state.eeprom_storage_slot = storage_slot;
  6958. }
  6959. #endif // AUTO_BED_LEVELING_UBL
  6960. // V to print the matrix or mesh
  6961. if (code_seen('V')) {
  6962. #if ABL_PLANAR
  6963. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6964. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6965. if (bilinear_grid_spacing[X_AXIS]) {
  6966. print_bilinear_leveling_grid();
  6967. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6968. bed_level_virt_print();
  6969. #endif
  6970. }
  6971. #elif ENABLED(MESH_BED_LEVELING)
  6972. if (mbl.has_mesh()) {
  6973. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6974. mbl_mesh_report();
  6975. }
  6976. #endif
  6977. }
  6978. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6979. // L to load a mesh from the EEPROM
  6980. if (code_seen('L') || code_seen('V')) {
  6981. ubl.display_map(0); // Currently only supports one map type
  6982. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6983. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6984. }
  6985. #endif
  6986. bool to_enable = false;
  6987. if (code_seen('S')) {
  6988. to_enable = code_value_bool();
  6989. set_bed_leveling_enabled(to_enable);
  6990. }
  6991. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6992. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6993. #endif
  6994. const bool new_status =
  6995. #if ENABLED(MESH_BED_LEVELING)
  6996. mbl.active()
  6997. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6998. ubl.state.active
  6999. #else
  7000. planner.abl_enabled
  7001. #endif
  7002. ;
  7003. if (to_enable && !new_status) {
  7004. SERIAL_ERROR_START;
  7005. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7006. }
  7007. SERIAL_ECHO_START;
  7008. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7009. }
  7010. #endif
  7011. #if ENABLED(MESH_BED_LEVELING)
  7012. /**
  7013. * M421: Set a single Mesh Bed Leveling Z coordinate
  7014. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7015. */
  7016. inline void gcode_M421() {
  7017. int8_t px = 0, py = 0;
  7018. float z = 0;
  7019. bool hasX, hasY, hasZ, hasI, hasJ;
  7020. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7021. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7022. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7023. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7024. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7025. if (hasX && hasY && hasZ) {
  7026. if (px >= 0 && py >= 0)
  7027. mbl.set_z(px, py, z);
  7028. else {
  7029. SERIAL_ERROR_START;
  7030. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7031. }
  7032. }
  7033. else if (hasI && hasJ && hasZ) {
  7034. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7035. mbl.set_z(px, py, z);
  7036. else {
  7037. SERIAL_ERROR_START;
  7038. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7039. }
  7040. }
  7041. else {
  7042. SERIAL_ERROR_START;
  7043. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7044. }
  7045. }
  7046. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7047. /**
  7048. * M421: Set a single Mesh Bed Leveling Z coordinate
  7049. *
  7050. * M421 I<xindex> J<yindex> Z<linear>
  7051. */
  7052. inline void gcode_M421() {
  7053. int8_t px = 0, py = 0;
  7054. float z = 0;
  7055. bool hasI, hasJ, hasZ;
  7056. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7057. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7058. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7059. if (hasI && hasJ && hasZ) {
  7060. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7061. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7062. ubl.z_values[px][py] = z;
  7063. #else
  7064. z_values[px][py] = z;
  7065. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7066. bed_level_virt_interpolate();
  7067. #endif
  7068. #endif
  7069. }
  7070. else {
  7071. SERIAL_ERROR_START;
  7072. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7073. }
  7074. }
  7075. else {
  7076. SERIAL_ERROR_START;
  7077. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7078. }
  7079. }
  7080. #endif
  7081. #if HAS_M206_COMMAND
  7082. /**
  7083. * M428: Set home_offset based on the distance between the
  7084. * current_position and the nearest "reference point."
  7085. * If an axis is past center its endstop position
  7086. * is the reference-point. Otherwise it uses 0. This allows
  7087. * the Z offset to be set near the bed when using a max endstop.
  7088. *
  7089. * M428 can't be used more than 2cm away from 0 or an endstop.
  7090. *
  7091. * Use M206 to set these values directly.
  7092. */
  7093. inline void gcode_M428() {
  7094. bool err = false;
  7095. LOOP_XYZ(i) {
  7096. if (axis_homed[i]) {
  7097. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7098. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7099. if (WITHIN(diff, -20, 20)) {
  7100. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7101. }
  7102. else {
  7103. SERIAL_ERROR_START;
  7104. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7105. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7106. BUZZ(200, 40);
  7107. err = true;
  7108. break;
  7109. }
  7110. }
  7111. }
  7112. if (!err) {
  7113. SYNC_PLAN_POSITION_KINEMATIC();
  7114. report_current_position();
  7115. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7116. BUZZ(100, 659);
  7117. BUZZ(100, 698);
  7118. }
  7119. }
  7120. #endif // HAS_M206_COMMAND
  7121. /**
  7122. * M500: Store settings in EEPROM
  7123. */
  7124. inline void gcode_M500() {
  7125. (void)settings.save();
  7126. }
  7127. /**
  7128. * M501: Read settings from EEPROM
  7129. */
  7130. inline void gcode_M501() {
  7131. (void)settings.load();
  7132. }
  7133. /**
  7134. * M502: Revert to default settings
  7135. */
  7136. inline void gcode_M502() {
  7137. (void)settings.reset();
  7138. }
  7139. /**
  7140. * M503: print settings currently in memory
  7141. */
  7142. inline void gcode_M503() {
  7143. (void)settings.report(code_seen('S') && !code_value_bool());
  7144. }
  7145. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7146. /**
  7147. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7148. */
  7149. inline void gcode_M540() {
  7150. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7151. }
  7152. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7153. #if HAS_BED_PROBE
  7154. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7155. static float last_zoffset = NAN;
  7156. if (!isnan(last_zoffset)) {
  7157. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7158. const float diff = zprobe_zoffset - last_zoffset;
  7159. #endif
  7160. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7161. // Correct bilinear grid for new probe offset
  7162. if (diff) {
  7163. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7164. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7165. z_values[x][y] -= diff;
  7166. }
  7167. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7168. bed_level_virt_interpolate();
  7169. #endif
  7170. #endif
  7171. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7172. if (!no_babystep && planner.abl_enabled)
  7173. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7174. #else
  7175. UNUSED(no_babystep);
  7176. #endif
  7177. }
  7178. last_zoffset = zprobe_zoffset;
  7179. }
  7180. inline void gcode_M851() {
  7181. SERIAL_ECHO_START;
  7182. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7183. if (code_seen('Z')) {
  7184. const float value = code_value_linear_units();
  7185. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7186. zprobe_zoffset = value;
  7187. refresh_zprobe_zoffset();
  7188. SERIAL_ECHO(zprobe_zoffset);
  7189. }
  7190. else
  7191. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7192. }
  7193. else
  7194. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7195. SERIAL_EOL;
  7196. }
  7197. #endif // HAS_BED_PROBE
  7198. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7199. void filament_change_beep(const bool init=false) {
  7200. static millis_t next_buzz = 0;
  7201. static uint16_t runout_beep = 0;
  7202. if (init) next_buzz = runout_beep = 0;
  7203. const millis_t ms = millis();
  7204. if (ELAPSED(ms, next_buzz)) {
  7205. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7206. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7207. BUZZ(300, 2000);
  7208. runout_beep++;
  7209. }
  7210. }
  7211. }
  7212. static bool busy_doing_M600 = false;
  7213. /**
  7214. * M600: Pause for filament change
  7215. *
  7216. * E[distance] - Retract the filament this far (negative value)
  7217. * Z[distance] - Move the Z axis by this distance
  7218. * X[position] - Move to this X position, with Y
  7219. * Y[position] - Move to this Y position, with X
  7220. * L[distance] - Retract distance for removal (manual reload)
  7221. *
  7222. * Default values are used for omitted arguments.
  7223. *
  7224. */
  7225. inline void gcode_M600() {
  7226. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7227. SERIAL_ERROR_START;
  7228. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7229. return;
  7230. }
  7231. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7232. // Pause the print job timer
  7233. const bool job_running = print_job_timer.isRunning();
  7234. print_job_timer.pause();
  7235. // Show initial message and wait for synchronize steppers
  7236. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7237. stepper.synchronize();
  7238. // Save current position of all axes
  7239. float lastpos[XYZE];
  7240. COPY(lastpos, current_position);
  7241. set_destination_to_current();
  7242. // Initial retract before move to filament change position
  7243. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7244. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7245. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7246. #endif
  7247. ;
  7248. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7249. // Lift Z axis
  7250. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7251. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7252. FILAMENT_CHANGE_Z_ADD
  7253. #else
  7254. 0
  7255. #endif
  7256. ;
  7257. if (z_lift > 0) {
  7258. destination[Z_AXIS] += z_lift;
  7259. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7260. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7261. }
  7262. // Move XY axes to filament exchange position
  7263. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7264. #ifdef FILAMENT_CHANGE_X_POS
  7265. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7266. #endif
  7267. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7268. #ifdef FILAMENT_CHANGE_Y_POS
  7269. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7270. #endif
  7271. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7272. stepper.synchronize();
  7273. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7274. idle();
  7275. // Unload filament
  7276. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7277. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7278. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7279. #endif
  7280. ;
  7281. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7282. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7283. stepper.synchronize();
  7284. disable_e_steppers();
  7285. safe_delay(100);
  7286. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7287. bool nozzle_timed_out = false;
  7288. float temps[4];
  7289. // Wait for filament insert by user and press button
  7290. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7291. #if HAS_BUZZER
  7292. filament_change_beep(true);
  7293. #endif
  7294. idle();
  7295. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7296. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7297. wait_for_user = true; // LCD click or M108 will clear this
  7298. while (wait_for_user) {
  7299. if (nozzle_timed_out)
  7300. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7301. #if HAS_BUZZER
  7302. filament_change_beep();
  7303. #endif
  7304. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7305. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7306. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7307. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7308. }
  7309. idle(true);
  7310. }
  7311. KEEPALIVE_STATE(IN_HANDLER);
  7312. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7313. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7314. // Show "wait for heating"
  7315. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7316. wait_for_heatup = true;
  7317. while (wait_for_heatup) {
  7318. idle();
  7319. wait_for_heatup = false;
  7320. HOTEND_LOOP() {
  7321. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7322. wait_for_heatup = true;
  7323. break;
  7324. }
  7325. }
  7326. }
  7327. // Show "insert filament"
  7328. if (nozzle_timed_out)
  7329. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7330. #if HAS_BUZZER
  7331. filament_change_beep(true);
  7332. #endif
  7333. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7334. wait_for_user = true; // LCD click or M108 will clear this
  7335. while (wait_for_user && nozzle_timed_out) {
  7336. #if HAS_BUZZER
  7337. filament_change_beep();
  7338. #endif
  7339. idle(true);
  7340. }
  7341. KEEPALIVE_STATE(IN_HANDLER);
  7342. // Show "load" message
  7343. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7344. // Load filament
  7345. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7346. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7347. + FILAMENT_CHANGE_LOAD_LENGTH
  7348. #endif
  7349. ;
  7350. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7351. stepper.synchronize();
  7352. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7353. do {
  7354. // "Wait for filament extrude"
  7355. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7356. // Extrude filament to get into hotend
  7357. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7358. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7359. stepper.synchronize();
  7360. // Show "Extrude More" / "Resume" menu and wait for reply
  7361. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7362. wait_for_user = false;
  7363. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7364. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7365. KEEPALIVE_STATE(IN_HANDLER);
  7366. // Keep looping if "Extrude More" was selected
  7367. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7368. #endif
  7369. // "Wait for print to resume"
  7370. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7371. // Set extruder to saved position
  7372. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7373. planner.set_e_position_mm(current_position[E_AXIS]);
  7374. #if IS_KINEMATIC
  7375. // Move XYZ to starting position
  7376. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7377. #else
  7378. // Move XY to starting position, then Z
  7379. destination[X_AXIS] = lastpos[X_AXIS];
  7380. destination[Y_AXIS] = lastpos[Y_AXIS];
  7381. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7382. destination[Z_AXIS] = lastpos[Z_AXIS];
  7383. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7384. #endif
  7385. stepper.synchronize();
  7386. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7387. filament_ran_out = false;
  7388. #endif
  7389. // Show status screen
  7390. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7391. // Resume the print job timer if it was running
  7392. if (job_running) print_job_timer.start();
  7393. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7394. }
  7395. #endif // FILAMENT_CHANGE_FEATURE
  7396. #if ENABLED(DUAL_X_CARRIAGE)
  7397. /**
  7398. * M605: Set dual x-carriage movement mode
  7399. *
  7400. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7401. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7402. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7403. * units x-offset and an optional differential hotend temperature of
  7404. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7405. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7406. *
  7407. * Note: the X axis should be homed after changing dual x-carriage mode.
  7408. */
  7409. inline void gcode_M605() {
  7410. stepper.synchronize();
  7411. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7412. switch (dual_x_carriage_mode) {
  7413. case DXC_FULL_CONTROL_MODE:
  7414. case DXC_AUTO_PARK_MODE:
  7415. break;
  7416. case DXC_DUPLICATION_MODE:
  7417. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7418. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7419. SERIAL_ECHO_START;
  7420. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7421. SERIAL_CHAR(' ');
  7422. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7423. SERIAL_CHAR(',');
  7424. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7425. SERIAL_CHAR(' ');
  7426. SERIAL_ECHO(duplicate_extruder_x_offset);
  7427. SERIAL_CHAR(',');
  7428. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7429. break;
  7430. default:
  7431. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7432. break;
  7433. }
  7434. active_extruder_parked = false;
  7435. extruder_duplication_enabled = false;
  7436. delayed_move_time = 0;
  7437. }
  7438. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7439. inline void gcode_M605() {
  7440. stepper.synchronize();
  7441. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7442. SERIAL_ECHO_START;
  7443. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7444. }
  7445. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7446. #if ENABLED(LIN_ADVANCE)
  7447. /**
  7448. * M900: Set and/or Get advance K factor and WH/D ratio
  7449. *
  7450. * K<factor> Set advance K factor
  7451. * R<ratio> Set ratio directly (overrides WH/D)
  7452. * W<width> H<height> D<diam> Set ratio from WH/D
  7453. */
  7454. inline void gcode_M900() {
  7455. stepper.synchronize();
  7456. const float newK = code_seen('K') ? code_value_float() : -1;
  7457. if (newK >= 0) planner.extruder_advance_k = newK;
  7458. float newR = code_seen('R') ? code_value_float() : -1;
  7459. if (newR < 0) {
  7460. const float newD = code_seen('D') ? code_value_float() : -1,
  7461. newW = code_seen('W') ? code_value_float() : -1,
  7462. newH = code_seen('H') ? code_value_float() : -1;
  7463. if (newD >= 0 && newW >= 0 && newH >= 0)
  7464. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7465. }
  7466. if (newR >= 0) planner.advance_ed_ratio = newR;
  7467. SERIAL_ECHO_START;
  7468. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7469. SERIAL_ECHOPGM(" E/D=");
  7470. const float ratio = planner.advance_ed_ratio;
  7471. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7472. SERIAL_EOL;
  7473. }
  7474. #endif // LIN_ADVANCE
  7475. #if ENABLED(HAVE_TMC2130)
  7476. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7477. SERIAL_CHAR(name);
  7478. SERIAL_ECHOPGM(" axis driver current: ");
  7479. SERIAL_ECHOLN(st.getCurrent());
  7480. }
  7481. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7482. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7483. tmc2130_get_current(st, name);
  7484. }
  7485. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7486. SERIAL_CHAR(name);
  7487. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7488. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7489. SERIAL_EOL;
  7490. }
  7491. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7492. st.clear_otpw();
  7493. SERIAL_CHAR(name);
  7494. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7495. }
  7496. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7497. SERIAL_CHAR(name);
  7498. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7499. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7500. }
  7501. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7502. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7503. tmc2130_get_pwmthrs(st, name, spmm);
  7504. }
  7505. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7506. SERIAL_CHAR(name);
  7507. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7508. SERIAL_ECHOLN(st.sgt());
  7509. }
  7510. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7511. st.sgt(sgt_val);
  7512. tmc2130_get_sgt(st, name);
  7513. }
  7514. /**
  7515. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7516. * Report driver currents when no axis specified
  7517. *
  7518. * S1: Enable automatic current control
  7519. * S0: Disable
  7520. */
  7521. inline void gcode_M906() {
  7522. uint16_t values[XYZE];
  7523. LOOP_XYZE(i)
  7524. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7525. #if ENABLED(X_IS_TMC2130)
  7526. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7527. else tmc2130_get_current(stepperX, 'X');
  7528. #endif
  7529. #if ENABLED(Y_IS_TMC2130)
  7530. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7531. else tmc2130_get_current(stepperY, 'Y');
  7532. #endif
  7533. #if ENABLED(Z_IS_TMC2130)
  7534. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7535. else tmc2130_get_current(stepperZ, 'Z');
  7536. #endif
  7537. #if ENABLED(E0_IS_TMC2130)
  7538. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7539. else tmc2130_get_current(stepperE0, 'E');
  7540. #endif
  7541. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7542. if (code_seen('S')) auto_current_control = code_value_bool();
  7543. #endif
  7544. }
  7545. /**
  7546. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7547. * The flag is held by the library and persist until manually cleared by M912
  7548. */
  7549. inline void gcode_M911() {
  7550. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7551. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7552. #if ENABLED(X_IS_TMC2130)
  7553. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7554. #endif
  7555. #if ENABLED(Y_IS_TMC2130)
  7556. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7557. #endif
  7558. #if ENABLED(Z_IS_TMC2130)
  7559. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7560. #endif
  7561. #if ENABLED(E0_IS_TMC2130)
  7562. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7563. #endif
  7564. }
  7565. /**
  7566. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7567. */
  7568. inline void gcode_M912() {
  7569. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7570. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7571. #if ENABLED(X_IS_TMC2130)
  7572. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7573. #endif
  7574. #if ENABLED(Y_IS_TMC2130)
  7575. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7576. #endif
  7577. #if ENABLED(Z_IS_TMC2130)
  7578. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7579. #endif
  7580. #if ENABLED(E0_IS_TMC2130)
  7581. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7582. #endif
  7583. }
  7584. /**
  7585. * M913: Set HYBRID_THRESHOLD speed.
  7586. */
  7587. #if ENABLED(HYBRID_THRESHOLD)
  7588. inline void gcode_M913() {
  7589. uint16_t values[XYZE];
  7590. LOOP_XYZE(i)
  7591. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7592. #if ENABLED(X_IS_TMC2130)
  7593. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7594. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7595. #endif
  7596. #if ENABLED(Y_IS_TMC2130)
  7597. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7598. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7599. #endif
  7600. #if ENABLED(Z_IS_TMC2130)
  7601. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7602. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7603. #endif
  7604. #if ENABLED(E0_IS_TMC2130)
  7605. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7606. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7607. #endif
  7608. }
  7609. #endif // HYBRID_THRESHOLD
  7610. /**
  7611. * M914: Set SENSORLESS_HOMING sensitivity.
  7612. */
  7613. #if ENABLED(SENSORLESS_HOMING)
  7614. inline void gcode_M914() {
  7615. #if ENABLED(X_IS_TMC2130)
  7616. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7617. else tmc2130_get_sgt(stepperX, 'X');
  7618. #endif
  7619. #if ENABLED(Y_IS_TMC2130)
  7620. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7621. else tmc2130_get_sgt(stepperY, 'Y');
  7622. #endif
  7623. }
  7624. #endif // SENSORLESS_HOMING
  7625. #endif // HAVE_TMC2130
  7626. /**
  7627. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7628. */
  7629. inline void gcode_M907() {
  7630. #if HAS_DIGIPOTSS
  7631. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7632. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7633. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7634. #elif HAS_MOTOR_CURRENT_PWM
  7635. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7636. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7637. #endif
  7638. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7639. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7640. #endif
  7641. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7642. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7643. #endif
  7644. #endif
  7645. #if ENABLED(DIGIPOT_I2C)
  7646. // this one uses actual amps in floating point
  7647. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7648. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7649. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7650. #endif
  7651. #if ENABLED(DAC_STEPPER_CURRENT)
  7652. if (code_seen('S')) {
  7653. const float dac_percent = code_value_float();
  7654. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7655. }
  7656. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7657. #endif
  7658. }
  7659. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7660. /**
  7661. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7662. */
  7663. inline void gcode_M908() {
  7664. #if HAS_DIGIPOTSS
  7665. stepper.digitalPotWrite(
  7666. code_seen('P') ? code_value_int() : 0,
  7667. code_seen('S') ? code_value_int() : 0
  7668. );
  7669. #endif
  7670. #ifdef DAC_STEPPER_CURRENT
  7671. dac_current_raw(
  7672. code_seen('P') ? code_value_byte() : -1,
  7673. code_seen('S') ? code_value_ushort() : 0
  7674. );
  7675. #endif
  7676. }
  7677. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7678. inline void gcode_M909() { dac_print_values(); }
  7679. inline void gcode_M910() { dac_commit_eeprom(); }
  7680. #endif
  7681. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7682. #if HAS_MICROSTEPS
  7683. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7684. inline void gcode_M350() {
  7685. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7686. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7687. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7688. stepper.microstep_readings();
  7689. }
  7690. /**
  7691. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7692. * S# determines MS1 or MS2, X# sets the pin high/low.
  7693. */
  7694. inline void gcode_M351() {
  7695. if (code_seen('S')) switch (code_value_byte()) {
  7696. case 1:
  7697. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7698. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7699. break;
  7700. case 2:
  7701. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7702. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7703. break;
  7704. }
  7705. stepper.microstep_readings();
  7706. }
  7707. #endif // HAS_MICROSTEPS
  7708. #if HAS_CASE_LIGHT
  7709. uint8_t case_light_brightness = 255;
  7710. void update_case_light() {
  7711. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7712. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7713. }
  7714. #endif // HAS_CASE_LIGHT
  7715. /**
  7716. * M355: Turn case lights on/off and set brightness
  7717. *
  7718. * S<bool> Turn case light on or off
  7719. * P<byte> Set case light brightness (PWM pin required)
  7720. */
  7721. inline void gcode_M355() {
  7722. #if HAS_CASE_LIGHT
  7723. if (code_seen('P')) case_light_brightness = code_value_byte();
  7724. if (code_seen('S')) case_light_on = code_value_bool();
  7725. update_case_light();
  7726. SERIAL_ECHO_START;
  7727. SERIAL_ECHOPGM("Case lights ");
  7728. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7729. #else
  7730. SERIAL_ERROR_START;
  7731. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7732. #endif // HAS_CASE_LIGHT
  7733. }
  7734. #if ENABLED(MIXING_EXTRUDER)
  7735. /**
  7736. * M163: Set a single mix factor for a mixing extruder
  7737. * This is called "weight" by some systems.
  7738. *
  7739. * S[index] The channel index to set
  7740. * P[float] The mix value
  7741. *
  7742. */
  7743. inline void gcode_M163() {
  7744. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7745. if (mix_index < MIXING_STEPPERS) {
  7746. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7747. NOLESS(mix_value, 0.0);
  7748. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7749. }
  7750. }
  7751. #if MIXING_VIRTUAL_TOOLS > 1
  7752. /**
  7753. * M164: Store the current mix factors as a virtual tool.
  7754. *
  7755. * S[index] The virtual tool to store
  7756. *
  7757. */
  7758. inline void gcode_M164() {
  7759. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7760. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7761. normalize_mix();
  7762. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7763. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7764. }
  7765. }
  7766. #endif
  7767. #if ENABLED(DIRECT_MIXING_IN_G1)
  7768. /**
  7769. * M165: Set multiple mix factors for a mixing extruder.
  7770. * Factors that are left out will be set to 0.
  7771. * All factors together must add up to 1.0.
  7772. *
  7773. * A[factor] Mix factor for extruder stepper 1
  7774. * B[factor] Mix factor for extruder stepper 2
  7775. * C[factor] Mix factor for extruder stepper 3
  7776. * D[factor] Mix factor for extruder stepper 4
  7777. * H[factor] Mix factor for extruder stepper 5
  7778. * I[factor] Mix factor for extruder stepper 6
  7779. *
  7780. */
  7781. inline void gcode_M165() { gcode_get_mix(); }
  7782. #endif
  7783. #endif // MIXING_EXTRUDER
  7784. /**
  7785. * M999: Restart after being stopped
  7786. *
  7787. * Default behaviour is to flush the serial buffer and request
  7788. * a resend to the host starting on the last N line received.
  7789. *
  7790. * Sending "M999 S1" will resume printing without flushing the
  7791. * existing command buffer.
  7792. *
  7793. */
  7794. inline void gcode_M999() {
  7795. Running = true;
  7796. lcd_reset_alert_level();
  7797. if (code_seen('S') && code_value_bool()) return;
  7798. // gcode_LastN = Stopped_gcode_LastN;
  7799. FlushSerialRequestResend();
  7800. }
  7801. #if ENABLED(SWITCHING_EXTRUDER)
  7802. inline void move_extruder_servo(uint8_t e) {
  7803. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7804. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7805. safe_delay(500);
  7806. }
  7807. #endif
  7808. inline void invalid_extruder_error(const uint8_t &e) {
  7809. SERIAL_ECHO_START;
  7810. SERIAL_CHAR('T');
  7811. SERIAL_ECHO_F(e, DEC);
  7812. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7813. }
  7814. /**
  7815. * Perform a tool-change, which may result in moving the
  7816. * previous tool out of the way and the new tool into place.
  7817. */
  7818. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7819. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7820. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7821. return invalid_extruder_error(tmp_extruder);
  7822. // T0-Tnnn: Switch virtual tool by changing the mix
  7823. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7824. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7825. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7826. #if HOTENDS > 1
  7827. if (tmp_extruder >= EXTRUDERS)
  7828. return invalid_extruder_error(tmp_extruder);
  7829. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7830. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7831. if (tmp_extruder != active_extruder) {
  7832. if (!no_move && axis_unhomed_error(true, true, true)) {
  7833. SERIAL_ECHOLNPGM("No move on toolchange");
  7834. no_move = true;
  7835. }
  7836. // Save current position to destination, for use later
  7837. set_destination_to_current();
  7838. #if ENABLED(DUAL_X_CARRIAGE)
  7839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7840. if (DEBUGGING(LEVELING)) {
  7841. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7842. switch (dual_x_carriage_mode) {
  7843. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7844. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7845. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7846. }
  7847. }
  7848. #endif
  7849. const float xhome = x_home_pos(active_extruder);
  7850. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7851. && IsRunning()
  7852. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7853. ) {
  7854. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7855. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7856. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7857. #endif
  7858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7859. if (DEBUGGING(LEVELING)) {
  7860. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7861. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7862. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7863. }
  7864. #endif
  7865. // Park old head: 1) raise 2) move to park position 3) lower
  7866. for (uint8_t i = 0; i < 3; i++)
  7867. planner.buffer_line(
  7868. i == 0 ? current_position[X_AXIS] : xhome,
  7869. current_position[Y_AXIS],
  7870. i == 2 ? current_position[Z_AXIS] : raised_z,
  7871. current_position[E_AXIS],
  7872. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7873. active_extruder
  7874. );
  7875. stepper.synchronize();
  7876. }
  7877. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7878. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7879. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7880. // Activate the new extruder
  7881. active_extruder = tmp_extruder;
  7882. // This function resets the max/min values - the current position may be overwritten below.
  7883. set_axis_is_at_home(X_AXIS);
  7884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7885. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7886. #endif
  7887. // Only when auto-parking are carriages safe to move
  7888. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7889. switch (dual_x_carriage_mode) {
  7890. case DXC_FULL_CONTROL_MODE:
  7891. // New current position is the position of the activated extruder
  7892. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7893. // Save the inactive extruder's position (from the old current_position)
  7894. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7895. break;
  7896. case DXC_AUTO_PARK_MODE:
  7897. // record raised toolhead position for use by unpark
  7898. COPY(raised_parked_position, current_position);
  7899. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7900. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7901. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7902. #endif
  7903. active_extruder_parked = true;
  7904. delayed_move_time = 0;
  7905. break;
  7906. case DXC_DUPLICATION_MODE:
  7907. // If the new extruder is the left one, set it "parked"
  7908. // This triggers the second extruder to move into the duplication position
  7909. active_extruder_parked = (active_extruder == 0);
  7910. if (active_extruder_parked)
  7911. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7912. else
  7913. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7914. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7915. extruder_duplication_enabled = false;
  7916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7917. if (DEBUGGING(LEVELING)) {
  7918. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  7919. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  7920. }
  7921. #endif
  7922. break;
  7923. }
  7924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7925. if (DEBUGGING(LEVELING)) {
  7926. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7927. DEBUG_POS("New extruder (parked)", current_position);
  7928. }
  7929. #endif
  7930. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7931. #else // !DUAL_X_CARRIAGE
  7932. #if ENABLED(SWITCHING_EXTRUDER)
  7933. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7934. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7935. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7936. // Always raise by some amount (destination copied from current_position earlier)
  7937. current_position[Z_AXIS] += z_raise;
  7938. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7939. stepper.synchronize();
  7940. move_extruder_servo(active_extruder);
  7941. #endif
  7942. /**
  7943. * Set current_position to the position of the new nozzle.
  7944. * Offsets are based on linear distance, so we need to get
  7945. * the resulting position in coordinate space.
  7946. *
  7947. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7948. * - With mesh leveling, update Z for the new position
  7949. * - Otherwise, just use the raw linear distance
  7950. *
  7951. * Software endstops are altered here too. Consider a case where:
  7952. * E0 at X=0 ... E1 at X=10
  7953. * When we switch to E1 now X=10, but E1 can't move left.
  7954. * To express this we apply the change in XY to the software endstops.
  7955. * E1 can move farther right than E0, so the right limit is extended.
  7956. *
  7957. * Note that we don't adjust the Z software endstops. Why not?
  7958. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7959. * because the bed is 1mm lower at the new position. As long as
  7960. * the first nozzle is out of the way, the carriage should be
  7961. * allowed to move 1mm lower. This technically "breaks" the
  7962. * Z software endstop. But this is technically correct (and
  7963. * there is no viable alternative).
  7964. */
  7965. #if ABL_PLANAR
  7966. // Offset extruder, make sure to apply the bed level rotation matrix
  7967. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7968. hotend_offset[Y_AXIS][tmp_extruder],
  7969. 0),
  7970. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7971. hotend_offset[Y_AXIS][active_extruder],
  7972. 0),
  7973. offset_vec = tmp_offset_vec - act_offset_vec;
  7974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7975. if (DEBUGGING(LEVELING)) {
  7976. tmp_offset_vec.debug("tmp_offset_vec");
  7977. act_offset_vec.debug("act_offset_vec");
  7978. offset_vec.debug("offset_vec (BEFORE)");
  7979. }
  7980. #endif
  7981. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7983. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7984. #endif
  7985. // Adjustments to the current position
  7986. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7987. current_position[Z_AXIS] += offset_vec.z;
  7988. #else // !ABL_PLANAR
  7989. const float xydiff[2] = {
  7990. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7991. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7992. };
  7993. #if ENABLED(MESH_BED_LEVELING)
  7994. if (mbl.active()) {
  7995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7996. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7997. #endif
  7998. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7999. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8000. z1 = current_position[Z_AXIS], z2 = z1;
  8001. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8002. planner.apply_leveling(x2, y2, z2);
  8003. current_position[Z_AXIS] += z2 - z1;
  8004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8005. if (DEBUGGING(LEVELING))
  8006. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8007. #endif
  8008. }
  8009. #endif // MESH_BED_LEVELING
  8010. #endif // !HAS_ABL
  8011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8012. if (DEBUGGING(LEVELING)) {
  8013. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8014. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8015. SERIAL_ECHOLNPGM(" }");
  8016. }
  8017. #endif
  8018. // The newly-selected extruder XY is actually at...
  8019. current_position[X_AXIS] += xydiff[X_AXIS];
  8020. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8021. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8022. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8023. #if HAS_POSITION_SHIFT
  8024. position_shift[i] += xydiff[i];
  8025. #endif
  8026. update_software_endstops((AxisEnum)i);
  8027. }
  8028. #endif
  8029. // Set the new active extruder
  8030. active_extruder = tmp_extruder;
  8031. #endif // !DUAL_X_CARRIAGE
  8032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8033. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8034. #endif
  8035. // Tell the planner the new "current position"
  8036. SYNC_PLAN_POSITION_KINEMATIC();
  8037. // Move to the "old position" (move the extruder into place)
  8038. if (!no_move && IsRunning()) {
  8039. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8040. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8041. #endif
  8042. prepare_move_to_destination();
  8043. }
  8044. #if ENABLED(SWITCHING_EXTRUDER)
  8045. // Move back down, if needed. (Including when the new tool is higher.)
  8046. if (z_raise != z_diff) {
  8047. destination[Z_AXIS] += z_diff;
  8048. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8049. prepare_move_to_destination();
  8050. }
  8051. #endif
  8052. } // (tmp_extruder != active_extruder)
  8053. stepper.synchronize();
  8054. #if ENABLED(EXT_SOLENOID)
  8055. disable_all_solenoids();
  8056. enable_solenoid_on_active_extruder();
  8057. #endif // EXT_SOLENOID
  8058. feedrate_mm_s = old_feedrate_mm_s;
  8059. #else // HOTENDS <= 1
  8060. // Set the new active extruder
  8061. active_extruder = tmp_extruder;
  8062. UNUSED(fr_mm_s);
  8063. UNUSED(no_move);
  8064. #endif // HOTENDS <= 1
  8065. SERIAL_ECHO_START;
  8066. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8067. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8068. }
  8069. /**
  8070. * T0-T3: Switch tool, usually switching extruders
  8071. *
  8072. * F[units/min] Set the movement feedrate
  8073. * S1 Don't move the tool in XY after change
  8074. */
  8075. inline void gcode_T(uint8_t tmp_extruder) {
  8076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8077. if (DEBUGGING(LEVELING)) {
  8078. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8079. SERIAL_CHAR(')');
  8080. SERIAL_EOL;
  8081. DEBUG_POS("BEFORE", current_position);
  8082. }
  8083. #endif
  8084. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8085. tool_change(tmp_extruder);
  8086. #elif HOTENDS > 1
  8087. tool_change(
  8088. tmp_extruder,
  8089. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8090. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8091. );
  8092. #endif
  8093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8094. if (DEBUGGING(LEVELING)) {
  8095. DEBUG_POS("AFTER", current_position);
  8096. SERIAL_ECHOLNPGM("<<< gcode_T");
  8097. }
  8098. #endif
  8099. }
  8100. /**
  8101. * Process a single command and dispatch it to its handler
  8102. * This is called from the main loop()
  8103. */
  8104. void process_next_command() {
  8105. current_command = command_queue[cmd_queue_index_r];
  8106. if (DEBUGGING(ECHO)) {
  8107. SERIAL_ECHO_START;
  8108. SERIAL_ECHOLN(current_command);
  8109. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8110. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8111. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8112. #endif
  8113. }
  8114. // Sanitize the current command:
  8115. // - Skip leading spaces
  8116. // - Bypass N[-0-9][0-9]*[ ]*
  8117. // - Overwrite * with nul to mark the end
  8118. while (*current_command == ' ') ++current_command;
  8119. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8120. current_command += 2; // skip N[-0-9]
  8121. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8122. while (*current_command == ' ') ++current_command; // skip [ ]*
  8123. }
  8124. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8125. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8126. char *cmd_ptr = current_command;
  8127. // Get the command code, which must be G, M, or T
  8128. char command_code = *cmd_ptr++;
  8129. // Skip spaces to get the numeric part
  8130. while (*cmd_ptr == ' ') cmd_ptr++;
  8131. // Allow for decimal point in command
  8132. #if ENABLED(G38_PROBE_TARGET)
  8133. uint8_t subcode = 0;
  8134. #endif
  8135. uint16_t codenum = 0; // define ahead of goto
  8136. // Bail early if there's no code
  8137. bool code_is_good = NUMERIC(*cmd_ptr);
  8138. if (!code_is_good) goto ExitUnknownCommand;
  8139. // Get and skip the code number
  8140. do {
  8141. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8142. cmd_ptr++;
  8143. } while (NUMERIC(*cmd_ptr));
  8144. // Allow for decimal point in command
  8145. #if ENABLED(G38_PROBE_TARGET)
  8146. if (*cmd_ptr == '.') {
  8147. cmd_ptr++;
  8148. while (NUMERIC(*cmd_ptr))
  8149. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8150. }
  8151. #endif
  8152. // Skip all spaces to get to the first argument, or nul
  8153. while (*cmd_ptr == ' ') cmd_ptr++;
  8154. // The command's arguments (if any) start here, for sure!
  8155. current_command_args = cmd_ptr;
  8156. KEEPALIVE_STATE(IN_HANDLER);
  8157. // Handle a known G, M, or T
  8158. switch (command_code) {
  8159. case 'G': switch (codenum) {
  8160. // G0, G1
  8161. case 0:
  8162. case 1:
  8163. #if IS_SCARA
  8164. gcode_G0_G1(codenum == 0);
  8165. #else
  8166. gcode_G0_G1();
  8167. #endif
  8168. break;
  8169. // G2, G3
  8170. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8171. case 2: // G2 - CW ARC
  8172. case 3: // G3 - CCW ARC
  8173. gcode_G2_G3(codenum == 2);
  8174. break;
  8175. #endif
  8176. // G4 Dwell
  8177. case 4:
  8178. gcode_G4();
  8179. break;
  8180. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8181. // G5
  8182. case 5: // G5 - Cubic B_spline
  8183. gcode_G5();
  8184. break;
  8185. #endif // BEZIER_CURVE_SUPPORT
  8186. #if ENABLED(FWRETRACT)
  8187. case 10: // G10: retract
  8188. case 11: // G11: retract_recover
  8189. gcode_G10_G11(codenum == 10);
  8190. break;
  8191. #endif // FWRETRACT
  8192. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8193. case 12:
  8194. gcode_G12(); // G12: Nozzle Clean
  8195. break;
  8196. #endif // NOZZLE_CLEAN_FEATURE
  8197. #if ENABLED(INCH_MODE_SUPPORT)
  8198. case 20: //G20: Inch Mode
  8199. gcode_G20();
  8200. break;
  8201. case 21: //G21: MM Mode
  8202. gcode_G21();
  8203. break;
  8204. #endif // INCH_MODE_SUPPORT
  8205. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8206. case 26: // G26: Mesh Validation Pattern generation
  8207. gcode_G26();
  8208. break;
  8209. #endif // AUTO_BED_LEVELING_UBL
  8210. #if ENABLED(NOZZLE_PARK_FEATURE)
  8211. case 27: // G27: Nozzle Park
  8212. gcode_G27();
  8213. break;
  8214. #endif // NOZZLE_PARK_FEATURE
  8215. case 28: // G28: Home all axes, one at a time
  8216. gcode_G28();
  8217. break;
  8218. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8219. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8220. // or provides access to the UBL System if enabled.
  8221. gcode_G29();
  8222. break;
  8223. #endif // PLANNER_LEVELING
  8224. #if HAS_BED_PROBE
  8225. case 30: // G30 Single Z probe
  8226. gcode_G30();
  8227. break;
  8228. #if ENABLED(Z_PROBE_SLED)
  8229. case 31: // G31: dock the sled
  8230. gcode_G31();
  8231. break;
  8232. case 32: // G32: undock the sled
  8233. gcode_G32();
  8234. break;
  8235. #endif // Z_PROBE_SLED
  8236. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8237. case 33: // G33: Delta Auto Calibrate
  8238. gcode_G33();
  8239. break;
  8240. #endif // DELTA_AUTO_CALIBRATION
  8241. #endif // HAS_BED_PROBE
  8242. #if ENABLED(G38_PROBE_TARGET)
  8243. case 38: // G38.2 & G38.3
  8244. if (subcode == 2 || subcode == 3)
  8245. gcode_G38(subcode == 2);
  8246. break;
  8247. #endif
  8248. case 90: // G90
  8249. relative_mode = false;
  8250. break;
  8251. case 91: // G91
  8252. relative_mode = true;
  8253. break;
  8254. case 92: // G92
  8255. gcode_G92();
  8256. break;
  8257. }
  8258. break;
  8259. case 'M': switch (codenum) {
  8260. #if HAS_RESUME_CONTINUE
  8261. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8262. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8263. gcode_M0_M1();
  8264. break;
  8265. #endif // ULTIPANEL
  8266. case 17: // M17: Enable all stepper motors
  8267. gcode_M17();
  8268. break;
  8269. #if ENABLED(SDSUPPORT)
  8270. case 20: // M20: list SD card
  8271. gcode_M20(); break;
  8272. case 21: // M21: init SD card
  8273. gcode_M21(); break;
  8274. case 22: // M22: release SD card
  8275. gcode_M22(); break;
  8276. case 23: // M23: Select file
  8277. gcode_M23(); break;
  8278. case 24: // M24: Start SD print
  8279. gcode_M24(); break;
  8280. case 25: // M25: Pause SD print
  8281. gcode_M25(); break;
  8282. case 26: // M26: Set SD index
  8283. gcode_M26(); break;
  8284. case 27: // M27: Get SD status
  8285. gcode_M27(); break;
  8286. case 28: // M28: Start SD write
  8287. gcode_M28(); break;
  8288. case 29: // M29: Stop SD write
  8289. gcode_M29(); break;
  8290. case 30: // M30 <filename> Delete File
  8291. gcode_M30(); break;
  8292. case 32: // M32: Select file and start SD print
  8293. gcode_M32(); break;
  8294. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8295. case 33: // M33: Get the long full path to a file or folder
  8296. gcode_M33(); break;
  8297. #endif
  8298. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8299. case 34: //M34 - Set SD card sorting options
  8300. gcode_M34(); break;
  8301. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8302. case 928: // M928: Start SD write
  8303. gcode_M928(); break;
  8304. #endif //SDSUPPORT
  8305. case 31: // M31: Report time since the start of SD print or last M109
  8306. gcode_M31(); break;
  8307. case 42: // M42: Change pin state
  8308. gcode_M42(); break;
  8309. #if ENABLED(PINS_DEBUGGING)
  8310. case 43: // M43: Read pin state
  8311. gcode_M43(); break;
  8312. #endif
  8313. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8314. case 48: // M48: Z probe repeatability test
  8315. gcode_M48();
  8316. break;
  8317. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8318. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8319. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8320. gcode_M49();
  8321. break;
  8322. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8323. case 75: // M75: Start print timer
  8324. gcode_M75(); break;
  8325. case 76: // M76: Pause print timer
  8326. gcode_M76(); break;
  8327. case 77: // M77: Stop print timer
  8328. gcode_M77(); break;
  8329. #if ENABLED(PRINTCOUNTER)
  8330. case 78: // M78: Show print statistics
  8331. gcode_M78(); break;
  8332. #endif
  8333. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8334. case 100: // M100: Free Memory Report
  8335. gcode_M100();
  8336. break;
  8337. #endif
  8338. case 104: // M104: Set hot end temperature
  8339. gcode_M104();
  8340. break;
  8341. case 110: // M110: Set Current Line Number
  8342. gcode_M110();
  8343. break;
  8344. case 111: // M111: Set debug level
  8345. gcode_M111();
  8346. break;
  8347. #if DISABLED(EMERGENCY_PARSER)
  8348. case 108: // M108: Cancel Waiting
  8349. gcode_M108();
  8350. break;
  8351. case 112: // M112: Emergency Stop
  8352. gcode_M112();
  8353. break;
  8354. case 410: // M410 quickstop - Abort all the planned moves.
  8355. gcode_M410();
  8356. break;
  8357. #endif
  8358. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8359. case 113: // M113: Set Host Keepalive interval
  8360. gcode_M113();
  8361. break;
  8362. #endif
  8363. case 140: // M140: Set bed temperature
  8364. gcode_M140();
  8365. break;
  8366. case 105: // M105: Report current temperature
  8367. gcode_M105();
  8368. KEEPALIVE_STATE(NOT_BUSY);
  8369. return; // "ok" already printed
  8370. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8371. case 155: // M155: Set temperature auto-report interval
  8372. gcode_M155();
  8373. break;
  8374. #endif
  8375. case 109: // M109: Wait for hotend temperature to reach target
  8376. gcode_M109();
  8377. break;
  8378. #if HAS_TEMP_BED
  8379. case 190: // M190: Wait for bed temperature to reach target
  8380. gcode_M190();
  8381. break;
  8382. #endif // HAS_TEMP_BED
  8383. #if FAN_COUNT > 0
  8384. case 106: // M106: Fan On
  8385. gcode_M106();
  8386. break;
  8387. case 107: // M107: Fan Off
  8388. gcode_M107();
  8389. break;
  8390. #endif // FAN_COUNT > 0
  8391. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8392. case 125: // M125: Store current position and move to filament change position
  8393. gcode_M125(); break;
  8394. #endif
  8395. #if ENABLED(BARICUDA)
  8396. // PWM for HEATER_1_PIN
  8397. #if HAS_HEATER_1
  8398. case 126: // M126: valve open
  8399. gcode_M126();
  8400. break;
  8401. case 127: // M127: valve closed
  8402. gcode_M127();
  8403. break;
  8404. #endif // HAS_HEATER_1
  8405. // PWM for HEATER_2_PIN
  8406. #if HAS_HEATER_2
  8407. case 128: // M128: valve open
  8408. gcode_M128();
  8409. break;
  8410. case 129: // M129: valve closed
  8411. gcode_M129();
  8412. break;
  8413. #endif // HAS_HEATER_2
  8414. #endif // BARICUDA
  8415. #if HAS_POWER_SWITCH
  8416. case 80: // M80: Turn on Power Supply
  8417. gcode_M80();
  8418. break;
  8419. #endif // HAS_POWER_SWITCH
  8420. case 81: // M81: Turn off Power, including Power Supply, if possible
  8421. gcode_M81();
  8422. break;
  8423. case 82: // M83: Set E axis normal mode (same as other axes)
  8424. gcode_M82();
  8425. break;
  8426. case 83: // M83: Set E axis relative mode
  8427. gcode_M83();
  8428. break;
  8429. case 18: // M18 => M84
  8430. case 84: // M84: Disable all steppers or set timeout
  8431. gcode_M18_M84();
  8432. break;
  8433. case 85: // M85: Set inactivity stepper shutdown timeout
  8434. gcode_M85();
  8435. break;
  8436. case 92: // M92: Set the steps-per-unit for one or more axes
  8437. gcode_M92();
  8438. break;
  8439. case 114: // M114: Report current position
  8440. gcode_M114();
  8441. break;
  8442. case 115: // M115: Report capabilities
  8443. gcode_M115();
  8444. break;
  8445. case 117: // M117: Set LCD message text, if possible
  8446. gcode_M117();
  8447. break;
  8448. case 119: // M119: Report endstop states
  8449. gcode_M119();
  8450. break;
  8451. case 120: // M120: Enable endstops
  8452. gcode_M120();
  8453. break;
  8454. case 121: // M121: Disable endstops
  8455. gcode_M121();
  8456. break;
  8457. #if ENABLED(ULTIPANEL)
  8458. case 145: // M145: Set material heatup parameters
  8459. gcode_M145();
  8460. break;
  8461. #endif
  8462. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8463. case 149: // M149: Set temperature units
  8464. gcode_M149();
  8465. break;
  8466. #endif
  8467. #if HAS_COLOR_LEDS
  8468. case 150: // M150: Set Status LED Color
  8469. gcode_M150();
  8470. break;
  8471. #endif // BLINKM
  8472. #if ENABLED(MIXING_EXTRUDER)
  8473. case 163: // M163: Set a component weight for mixing extruder
  8474. gcode_M163();
  8475. break;
  8476. #if MIXING_VIRTUAL_TOOLS > 1
  8477. case 164: // M164: Save current mix as a virtual extruder
  8478. gcode_M164();
  8479. break;
  8480. #endif
  8481. #if ENABLED(DIRECT_MIXING_IN_G1)
  8482. case 165: // M165: Set multiple mix weights
  8483. gcode_M165();
  8484. break;
  8485. #endif
  8486. #endif
  8487. case 200: // M200: Set filament diameter, E to cubic units
  8488. gcode_M200();
  8489. break;
  8490. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8491. gcode_M201();
  8492. break;
  8493. #if 0 // Not used for Sprinter/grbl gen6
  8494. case 202: // M202
  8495. gcode_M202();
  8496. break;
  8497. #endif
  8498. case 203: // M203: Set max feedrate (units/sec)
  8499. gcode_M203();
  8500. break;
  8501. case 204: // M204: Set acceleration
  8502. gcode_M204();
  8503. break;
  8504. case 205: //M205: Set advanced settings
  8505. gcode_M205();
  8506. break;
  8507. #if HAS_M206_COMMAND
  8508. case 206: // M206: Set home offsets
  8509. gcode_M206();
  8510. break;
  8511. #endif
  8512. #if ENABLED(DELTA)
  8513. case 665: // M665: Set delta configurations
  8514. gcode_M665();
  8515. break;
  8516. #endif
  8517. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8518. case 666: // M666: Set delta or dual endstop adjustment
  8519. gcode_M666();
  8520. break;
  8521. #endif
  8522. #if ENABLED(FWRETRACT)
  8523. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8524. gcode_M207();
  8525. break;
  8526. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8527. gcode_M208();
  8528. break;
  8529. case 209: // M209: Turn Automatic Retract Detection on/off
  8530. gcode_M209();
  8531. break;
  8532. #endif // FWRETRACT
  8533. case 211: // M211: Enable, Disable, and/or Report software endstops
  8534. gcode_M211();
  8535. break;
  8536. #if HOTENDS > 1
  8537. case 218: // M218: Set a tool offset
  8538. gcode_M218();
  8539. break;
  8540. #endif
  8541. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8542. gcode_M220();
  8543. break;
  8544. case 221: // M221: Set Flow Percentage
  8545. gcode_M221();
  8546. break;
  8547. case 226: // M226: Wait until a pin reaches a state
  8548. gcode_M226();
  8549. break;
  8550. #if HAS_SERVOS
  8551. case 280: // M280: Set servo position absolute
  8552. gcode_M280();
  8553. break;
  8554. #endif // HAS_SERVOS
  8555. #if HAS_BUZZER
  8556. case 300: // M300: Play beep tone
  8557. gcode_M300();
  8558. break;
  8559. #endif // HAS_BUZZER
  8560. #if ENABLED(PIDTEMP)
  8561. case 301: // M301: Set hotend PID parameters
  8562. gcode_M301();
  8563. break;
  8564. #endif // PIDTEMP
  8565. #if ENABLED(PIDTEMPBED)
  8566. case 304: // M304: Set bed PID parameters
  8567. gcode_M304();
  8568. break;
  8569. #endif // PIDTEMPBED
  8570. #if defined(CHDK) || HAS_PHOTOGRAPH
  8571. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8572. gcode_M240();
  8573. break;
  8574. #endif // CHDK || PHOTOGRAPH_PIN
  8575. #if HAS_LCD_CONTRAST
  8576. case 250: // M250: Set LCD contrast
  8577. gcode_M250();
  8578. break;
  8579. #endif // HAS_LCD_CONTRAST
  8580. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8581. case 260: // M260: Send data to an i2c slave
  8582. gcode_M260();
  8583. break;
  8584. case 261: // M261: Request data from an i2c slave
  8585. gcode_M261();
  8586. break;
  8587. #endif // EXPERIMENTAL_I2CBUS
  8588. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8589. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8590. gcode_M302();
  8591. break;
  8592. #endif // PREVENT_COLD_EXTRUSION
  8593. case 303: // M303: PID autotune
  8594. gcode_M303();
  8595. break;
  8596. #if ENABLED(MORGAN_SCARA)
  8597. case 360: // M360: SCARA Theta pos1
  8598. if (gcode_M360()) return;
  8599. break;
  8600. case 361: // M361: SCARA Theta pos2
  8601. if (gcode_M361()) return;
  8602. break;
  8603. case 362: // M362: SCARA Psi pos1
  8604. if (gcode_M362()) return;
  8605. break;
  8606. case 363: // M363: SCARA Psi pos2
  8607. if (gcode_M363()) return;
  8608. break;
  8609. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8610. if (gcode_M364()) return;
  8611. break;
  8612. #endif // SCARA
  8613. case 400: // M400: Finish all moves
  8614. gcode_M400();
  8615. break;
  8616. #if HAS_BED_PROBE
  8617. case 401: // M401: Deploy probe
  8618. gcode_M401();
  8619. break;
  8620. case 402: // M402: Stow probe
  8621. gcode_M402();
  8622. break;
  8623. #endif // HAS_BED_PROBE
  8624. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8625. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8626. gcode_M404();
  8627. break;
  8628. case 405: // M405: Turn on filament sensor for control
  8629. gcode_M405();
  8630. break;
  8631. case 406: // M406: Turn off filament sensor for control
  8632. gcode_M406();
  8633. break;
  8634. case 407: // M407: Display measured filament diameter
  8635. gcode_M407();
  8636. break;
  8637. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8638. #if PLANNER_LEVELING
  8639. case 420: // M420: Enable/Disable Bed Leveling
  8640. gcode_M420();
  8641. break;
  8642. #endif
  8643. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8644. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8645. gcode_M421();
  8646. break;
  8647. #endif
  8648. #if HAS_M206_COMMAND
  8649. case 428: // M428: Apply current_position to home_offset
  8650. gcode_M428();
  8651. break;
  8652. #endif
  8653. case 500: // M500: Store settings in EEPROM
  8654. gcode_M500();
  8655. break;
  8656. case 501: // M501: Read settings from EEPROM
  8657. gcode_M501();
  8658. break;
  8659. case 502: // M502: Revert to default settings
  8660. gcode_M502();
  8661. break;
  8662. case 503: // M503: print settings currently in memory
  8663. gcode_M503();
  8664. break;
  8665. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8666. case 540: // M540: Set abort on endstop hit for SD printing
  8667. gcode_M540();
  8668. break;
  8669. #endif
  8670. #if HAS_BED_PROBE
  8671. case 851: // M851: Set Z Probe Z Offset
  8672. gcode_M851();
  8673. break;
  8674. #endif // HAS_BED_PROBE
  8675. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8676. case 600: // M600: Pause for filament change
  8677. gcode_M600();
  8678. break;
  8679. #endif // FILAMENT_CHANGE_FEATURE
  8680. #if ENABLED(DUAL_X_CARRIAGE)
  8681. case 605: // M605: Set Dual X Carriage movement mode
  8682. gcode_M605();
  8683. break;
  8684. #endif // DUAL_X_CARRIAGE
  8685. #if ENABLED(LIN_ADVANCE)
  8686. case 900: // M900: Set advance K factor.
  8687. gcode_M900();
  8688. break;
  8689. #endif
  8690. #if ENABLED(HAVE_TMC2130)
  8691. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8692. gcode_M906();
  8693. break;
  8694. #endif
  8695. case 907: // M907: Set digital trimpot motor current using axis codes.
  8696. gcode_M907();
  8697. break;
  8698. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8699. case 908: // M908: Control digital trimpot directly.
  8700. gcode_M908();
  8701. break;
  8702. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8703. case 909: // M909: Print digipot/DAC current value
  8704. gcode_M909();
  8705. break;
  8706. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8707. gcode_M910();
  8708. break;
  8709. #endif
  8710. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8711. #if ENABLED(HAVE_TMC2130)
  8712. case 911: // M911: Report TMC2130 prewarn triggered flags
  8713. gcode_M911();
  8714. break;
  8715. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8716. gcode_M912();
  8717. break;
  8718. #if ENABLED(HYBRID_THRESHOLD)
  8719. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8720. gcode_M913();
  8721. break;
  8722. #endif
  8723. #if ENABLED(SENSORLESS_HOMING)
  8724. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8725. gcode_M914();
  8726. break;
  8727. #endif
  8728. #endif
  8729. #if HAS_MICROSTEPS
  8730. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8731. gcode_M350();
  8732. break;
  8733. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8734. gcode_M351();
  8735. break;
  8736. #endif // HAS_MICROSTEPS
  8737. case 355: // M355 Turn case lights on/off
  8738. gcode_M355();
  8739. break;
  8740. case 999: // M999: Restart after being Stopped
  8741. gcode_M999();
  8742. break;
  8743. }
  8744. break;
  8745. case 'T':
  8746. gcode_T(codenum);
  8747. break;
  8748. default: code_is_good = false;
  8749. }
  8750. KEEPALIVE_STATE(NOT_BUSY);
  8751. ExitUnknownCommand:
  8752. // Still unknown command? Throw an error
  8753. if (!code_is_good) unknown_command_error();
  8754. ok_to_send();
  8755. }
  8756. /**
  8757. * Send a "Resend: nnn" message to the host to
  8758. * indicate that a command needs to be re-sent.
  8759. */
  8760. void FlushSerialRequestResend() {
  8761. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8762. MYSERIAL.flush();
  8763. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8764. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8765. ok_to_send();
  8766. }
  8767. /**
  8768. * Send an "ok" message to the host, indicating
  8769. * that a command was successfully processed.
  8770. *
  8771. * If ADVANCED_OK is enabled also include:
  8772. * N<int> Line number of the command, if any
  8773. * P<int> Planner space remaining
  8774. * B<int> Block queue space remaining
  8775. */
  8776. void ok_to_send() {
  8777. refresh_cmd_timeout();
  8778. if (!send_ok[cmd_queue_index_r]) return;
  8779. SERIAL_PROTOCOLPGM(MSG_OK);
  8780. #if ENABLED(ADVANCED_OK)
  8781. char* p = command_queue[cmd_queue_index_r];
  8782. if (*p == 'N') {
  8783. SERIAL_PROTOCOL(' ');
  8784. SERIAL_ECHO(*p++);
  8785. while (NUMERIC_SIGNED(*p))
  8786. SERIAL_ECHO(*p++);
  8787. }
  8788. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8789. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8790. #endif
  8791. SERIAL_EOL;
  8792. }
  8793. #if HAS_SOFTWARE_ENDSTOPS
  8794. /**
  8795. * Constrain the given coordinates to the software endstops.
  8796. */
  8797. void clamp_to_software_endstops(float target[XYZ]) {
  8798. if (!soft_endstops_enabled) return;
  8799. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8800. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8801. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8802. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8803. #endif
  8804. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8805. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8806. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8807. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8808. #endif
  8809. }
  8810. #endif
  8811. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8812. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8813. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8814. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8815. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8816. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8817. #else
  8818. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8819. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8820. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8821. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8822. #endif
  8823. // Get the Z adjustment for non-linear bed leveling
  8824. float bilinear_z_offset(float cartesian[XYZ]) {
  8825. // XY relative to the probed area
  8826. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8827. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8828. // Convert to grid box units
  8829. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8830. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8831. // Whole units for the grid line indices. Constrained within bounds.
  8832. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8833. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8834. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8835. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8836. // Subtract whole to get the ratio within the grid box
  8837. ratio_x -= gridx; ratio_y -= gridy;
  8838. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8839. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8840. // Z at the box corners
  8841. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8842. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8843. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8844. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8845. // Bilinear interpolate
  8846. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8847. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8848. offset = L + ratio_x * (R - L);
  8849. /*
  8850. static float last_offset = 0;
  8851. if (fabs(last_offset - offset) > 0.2) {
  8852. SERIAL_ECHOPGM("Sudden Shift at ");
  8853. SERIAL_ECHOPAIR("x=", x);
  8854. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8855. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8856. SERIAL_ECHOPAIR(" y=", y);
  8857. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8858. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8859. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8860. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8861. SERIAL_ECHOPAIR(" z1=", z1);
  8862. SERIAL_ECHOPAIR(" z2=", z2);
  8863. SERIAL_ECHOPAIR(" z3=", z3);
  8864. SERIAL_ECHOLNPAIR(" z4=", z4);
  8865. SERIAL_ECHOPAIR(" L=", L);
  8866. SERIAL_ECHOPAIR(" R=", R);
  8867. SERIAL_ECHOLNPAIR(" offset=", offset);
  8868. }
  8869. last_offset = offset;
  8870. */
  8871. return offset;
  8872. }
  8873. #endif // AUTO_BED_LEVELING_BILINEAR
  8874. #if ENABLED(DELTA)
  8875. /**
  8876. * Recalculate factors used for delta kinematics whenever
  8877. * settings have been changed (e.g., by M665).
  8878. */
  8879. void recalc_delta_settings(float radius, float diagonal_rod) {
  8880. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8881. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8882. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8883. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8884. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8885. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8886. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8887. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8888. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8889. }
  8890. #if ENABLED(DELTA_FAST_SQRT)
  8891. /**
  8892. * Fast inverse sqrt from Quake III Arena
  8893. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8894. */
  8895. float Q_rsqrt(float number) {
  8896. long i;
  8897. float x2, y;
  8898. const float threehalfs = 1.5f;
  8899. x2 = number * 0.5f;
  8900. y = number;
  8901. i = * ( long * ) &y; // evil floating point bit level hacking
  8902. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  8903. y = * ( float * ) &i;
  8904. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8905. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8906. return y;
  8907. }
  8908. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8909. #else
  8910. #define _SQRT(n) sqrt(n)
  8911. #endif
  8912. /**
  8913. * Delta Inverse Kinematics
  8914. *
  8915. * Calculate the tower positions for a given logical
  8916. * position, storing the result in the delta[] array.
  8917. *
  8918. * This is an expensive calculation, requiring 3 square
  8919. * roots per segmented linear move, and strains the limits
  8920. * of a Mega2560 with a Graphical Display.
  8921. *
  8922. * Suggested optimizations include:
  8923. *
  8924. * - Disable the home_offset (M206) and/or position_shift (G92)
  8925. * features to remove up to 12 float additions.
  8926. *
  8927. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8928. * (see above)
  8929. */
  8930. // Macro to obtain the Z position of an individual tower
  8931. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8932. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8933. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8934. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8935. ) \
  8936. )
  8937. #define DELTA_RAW_IK() do { \
  8938. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8939. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8940. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8941. } while(0)
  8942. #define DELTA_LOGICAL_IK() do { \
  8943. const float raw[XYZ] = { \
  8944. RAW_X_POSITION(logical[X_AXIS]), \
  8945. RAW_Y_POSITION(logical[Y_AXIS]), \
  8946. RAW_Z_POSITION(logical[Z_AXIS]) \
  8947. }; \
  8948. DELTA_RAW_IK(); \
  8949. } while(0)
  8950. #define DELTA_DEBUG() do { \
  8951. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8952. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8953. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8954. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8955. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8956. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8957. } while(0)
  8958. void inverse_kinematics(const float logical[XYZ]) {
  8959. DELTA_LOGICAL_IK();
  8960. // DELTA_DEBUG();
  8961. }
  8962. /**
  8963. * Calculate the highest Z position where the
  8964. * effector has the full range of XY motion.
  8965. */
  8966. float delta_safe_distance_from_top() {
  8967. float cartesian[XYZ] = {
  8968. LOGICAL_X_POSITION(0),
  8969. LOGICAL_Y_POSITION(0),
  8970. LOGICAL_Z_POSITION(0)
  8971. };
  8972. inverse_kinematics(cartesian);
  8973. float distance = delta[A_AXIS];
  8974. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8975. inverse_kinematics(cartesian);
  8976. return abs(distance - delta[A_AXIS]);
  8977. }
  8978. /**
  8979. * Delta Forward Kinematics
  8980. *
  8981. * See the Wikipedia article "Trilateration"
  8982. * https://en.wikipedia.org/wiki/Trilateration
  8983. *
  8984. * Establish a new coordinate system in the plane of the
  8985. * three carriage points. This system has its origin at
  8986. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8987. * plane with a Z component of zero.
  8988. * We will define unit vectors in this coordinate system
  8989. * in our original coordinate system. Then when we calculate
  8990. * the Xnew, Ynew and Znew values, we can translate back into
  8991. * the original system by moving along those unit vectors
  8992. * by the corresponding values.
  8993. *
  8994. * Variable names matched to Marlin, c-version, and avoid the
  8995. * use of any vector library.
  8996. *
  8997. * by Andreas Hardtung 2016-06-07
  8998. * based on a Java function from "Delta Robot Kinematics V3"
  8999. * by Steve Graves
  9000. *
  9001. * The result is stored in the cartes[] array.
  9002. */
  9003. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9004. // Create a vector in old coordinates along x axis of new coordinate
  9005. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9006. // Get the Magnitude of vector.
  9007. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9008. // Create unit vector by dividing by magnitude.
  9009. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9010. // Get the vector from the origin of the new system to the third point.
  9011. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9012. // Use the dot product to find the component of this vector on the X axis.
  9013. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9014. // Create a vector along the x axis that represents the x component of p13.
  9015. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9016. // Subtract the X component from the original vector leaving only Y. We use the
  9017. // variable that will be the unit vector after we scale it.
  9018. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9019. // The magnitude of Y component
  9020. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9021. // Convert to a unit vector
  9022. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9023. // The cross product of the unit x and y is the unit z
  9024. // float[] ez = vectorCrossProd(ex, ey);
  9025. float ez[3] = {
  9026. ex[1] * ey[2] - ex[2] * ey[1],
  9027. ex[2] * ey[0] - ex[0] * ey[2],
  9028. ex[0] * ey[1] - ex[1] * ey[0]
  9029. };
  9030. // We now have the d, i and j values defined in Wikipedia.
  9031. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9032. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9033. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9034. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9035. // Start from the origin of the old coordinates and add vectors in the
  9036. // old coords that represent the Xnew, Ynew and Znew to find the point
  9037. // in the old system.
  9038. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9039. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9040. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9041. }
  9042. void forward_kinematics_DELTA(float point[ABC]) {
  9043. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9044. }
  9045. #endif // DELTA
  9046. /**
  9047. * Get the stepper positions in the cartes[] array.
  9048. * Forward kinematics are applied for DELTA and SCARA.
  9049. *
  9050. * The result is in the current coordinate space with
  9051. * leveling applied. The coordinates need to be run through
  9052. * unapply_leveling to obtain the "ideal" coordinates
  9053. * suitable for current_position, etc.
  9054. */
  9055. void get_cartesian_from_steppers() {
  9056. #if ENABLED(DELTA)
  9057. forward_kinematics_DELTA(
  9058. stepper.get_axis_position_mm(A_AXIS),
  9059. stepper.get_axis_position_mm(B_AXIS),
  9060. stepper.get_axis_position_mm(C_AXIS)
  9061. );
  9062. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9063. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9064. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9065. #elif IS_SCARA
  9066. forward_kinematics_SCARA(
  9067. stepper.get_axis_position_degrees(A_AXIS),
  9068. stepper.get_axis_position_degrees(B_AXIS)
  9069. );
  9070. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9071. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9072. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9073. #else
  9074. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9075. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9076. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9077. #endif
  9078. }
  9079. /**
  9080. * Set the current_position for an axis based on
  9081. * the stepper positions, removing any leveling that
  9082. * may have been applied.
  9083. */
  9084. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9085. get_cartesian_from_steppers();
  9086. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9087. planner.unapply_leveling(cartes);
  9088. #endif
  9089. if (axis == ALL_AXES)
  9090. COPY(current_position, cartes);
  9091. else
  9092. current_position[axis] = cartes[axis];
  9093. }
  9094. #if ENABLED(MESH_BED_LEVELING)
  9095. /**
  9096. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9097. * splitting the move where it crosses mesh borders.
  9098. */
  9099. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9100. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9101. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9102. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9103. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9104. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9105. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9106. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9107. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9108. if (cx1 == cx2 && cy1 == cy2) {
  9109. // Start and end on same mesh square
  9110. line_to_destination(fr_mm_s);
  9111. set_current_to_destination();
  9112. return;
  9113. }
  9114. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9115. float normalized_dist, end[XYZE];
  9116. // Split at the left/front border of the right/top square
  9117. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9118. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9119. COPY(end, destination);
  9120. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9121. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9122. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9123. CBI(x_splits, gcx);
  9124. }
  9125. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9126. COPY(end, destination);
  9127. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9128. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9129. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9130. CBI(y_splits, gcy);
  9131. }
  9132. else {
  9133. // Already split on a border
  9134. line_to_destination(fr_mm_s);
  9135. set_current_to_destination();
  9136. return;
  9137. }
  9138. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9139. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9140. // Do the split and look for more borders
  9141. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9142. // Restore destination from stack
  9143. COPY(destination, end);
  9144. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9145. }
  9146. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9147. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  9148. /**
  9149. * Prepare a bilinear-leveled linear move on Cartesian,
  9150. * splitting the move where it crosses grid borders.
  9151. */
  9152. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9153. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9154. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9155. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9156. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9157. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9158. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9159. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9160. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9161. if (cx1 == cx2 && cy1 == cy2) {
  9162. // Start and end on same mesh square
  9163. line_to_destination(fr_mm_s);
  9164. set_current_to_destination();
  9165. return;
  9166. }
  9167. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9168. float normalized_dist, end[XYZE];
  9169. // Split at the left/front border of the right/top square
  9170. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9171. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9172. COPY(end, destination);
  9173. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9174. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9175. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9176. CBI(x_splits, gcx);
  9177. }
  9178. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9179. COPY(end, destination);
  9180. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9181. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9182. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9183. CBI(y_splits, gcy);
  9184. }
  9185. else {
  9186. // Already split on a border
  9187. line_to_destination(fr_mm_s);
  9188. set_current_to_destination();
  9189. return;
  9190. }
  9191. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9192. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9193. // Do the split and look for more borders
  9194. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9195. // Restore destination from stack
  9196. COPY(destination, end);
  9197. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9198. }
  9199. #endif // AUTO_BED_LEVELING_BILINEAR
  9200. #if IS_KINEMATIC
  9201. /**
  9202. * Prepare a linear move in a DELTA or SCARA setup.
  9203. *
  9204. * This calls planner.buffer_line several times, adding
  9205. * small incremental moves for DELTA or SCARA.
  9206. */
  9207. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9208. // Get the top feedrate of the move in the XY plane
  9209. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9210. // If the move is only in Z/E don't split up the move
  9211. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9212. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9213. return false;
  9214. }
  9215. // Get the cartesian distances moved in XYZE
  9216. float difference[XYZE];
  9217. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9218. // Get the linear distance in XYZ
  9219. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9220. // If the move is very short, check the E move distance
  9221. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9222. // No E move either? Game over.
  9223. if (UNEAR_ZERO(cartesian_mm)) return true;
  9224. // Minimum number of seconds to move the given distance
  9225. float seconds = cartesian_mm / _feedrate_mm_s;
  9226. // The number of segments-per-second times the duration
  9227. // gives the number of segments
  9228. uint16_t segments = delta_segments_per_second * seconds;
  9229. // For SCARA minimum segment size is 0.25mm
  9230. #if IS_SCARA
  9231. NOMORE(segments, cartesian_mm * 4);
  9232. #endif
  9233. // At least one segment is required
  9234. NOLESS(segments, 1);
  9235. // The approximate length of each segment
  9236. const float inv_segments = 1.0 / float(segments),
  9237. segment_distance[XYZE] = {
  9238. difference[X_AXIS] * inv_segments,
  9239. difference[Y_AXIS] * inv_segments,
  9240. difference[Z_AXIS] * inv_segments,
  9241. difference[E_AXIS] * inv_segments
  9242. };
  9243. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9244. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9245. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9246. #if IS_SCARA
  9247. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9248. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9249. feed_factor = inv_segment_length * _feedrate_mm_s;
  9250. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9251. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9252. #endif
  9253. // Get the logical current position as starting point
  9254. float logical[XYZE];
  9255. COPY(logical, current_position);
  9256. // Drop one segment so the last move is to the exact target.
  9257. // If there's only 1 segment, loops will be skipped entirely.
  9258. --segments;
  9259. // Calculate and execute the segments
  9260. for (uint16_t s = segments + 1; --s;) {
  9261. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9262. #if ENABLED(DELTA)
  9263. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9264. #else
  9265. inverse_kinematics(logical);
  9266. #endif
  9267. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9268. #if IS_SCARA
  9269. // For SCARA scale the feed rate from mm/s to degrees/s
  9270. // Use ratio between the length of the move and the larger angle change
  9271. const float adiff = abs(delta[A_AXIS] - oldA),
  9272. bdiff = abs(delta[B_AXIS] - oldB);
  9273. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9274. oldA = delta[A_AXIS];
  9275. oldB = delta[B_AXIS];
  9276. #else
  9277. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9278. #endif
  9279. }
  9280. // Since segment_distance is only approximate,
  9281. // the final move must be to the exact destination.
  9282. #if IS_SCARA
  9283. // For SCARA scale the feed rate from mm/s to degrees/s
  9284. // With segments > 1 length is 1 segment, otherwise total length
  9285. inverse_kinematics(ltarget);
  9286. ADJUST_DELTA(logical);
  9287. const float adiff = abs(delta[A_AXIS] - oldA),
  9288. bdiff = abs(delta[B_AXIS] - oldB);
  9289. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9290. #else
  9291. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9292. #endif
  9293. return false;
  9294. }
  9295. #else // !IS_KINEMATIC
  9296. /**
  9297. * Prepare a linear move in a Cartesian setup.
  9298. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9299. *
  9300. * Returns true if the caller didn't update current_position.
  9301. */
  9302. inline bool prepare_move_to_destination_cartesian() {
  9303. // Do not use feedrate_percentage for E or Z only moves
  9304. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9305. line_to_destination();
  9306. }
  9307. else {
  9308. #if ENABLED(MESH_BED_LEVELING)
  9309. if (mbl.active()) {
  9310. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9311. return true;
  9312. }
  9313. else
  9314. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9315. if (ubl.state.active) {
  9316. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9317. return true;
  9318. }
  9319. else
  9320. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9321. if (planner.abl_enabled) {
  9322. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9323. return true;
  9324. }
  9325. else
  9326. #endif
  9327. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9328. }
  9329. return false;
  9330. }
  9331. #endif // !IS_KINEMATIC
  9332. #if ENABLED(DUAL_X_CARRIAGE)
  9333. /**
  9334. * Prepare a linear move in a dual X axis setup
  9335. */
  9336. inline bool prepare_move_to_destination_dualx() {
  9337. if (active_extruder_parked) {
  9338. switch (dual_x_carriage_mode) {
  9339. case DXC_FULL_CONTROL_MODE:
  9340. break;
  9341. case DXC_AUTO_PARK_MODE:
  9342. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9343. // This is a travel move (with no extrusion)
  9344. // Skip it, but keep track of the current position
  9345. // (so it can be used as the start of the next non-travel move)
  9346. if (delayed_move_time != 0xFFFFFFFFUL) {
  9347. set_current_to_destination();
  9348. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9349. delayed_move_time = millis();
  9350. return true;
  9351. }
  9352. }
  9353. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9354. for (uint8_t i = 0; i < 3; i++)
  9355. planner.buffer_line(
  9356. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9357. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9358. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9359. current_position[E_AXIS],
  9360. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9361. active_extruder
  9362. );
  9363. delayed_move_time = 0;
  9364. active_extruder_parked = false;
  9365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9366. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9367. #endif
  9368. break;
  9369. case DXC_DUPLICATION_MODE:
  9370. if (active_extruder == 0) {
  9371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9372. if (DEBUGGING(LEVELING)) {
  9373. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9374. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9375. }
  9376. #endif
  9377. // move duplicate extruder into correct duplication position.
  9378. planner.set_position_mm(
  9379. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9380. current_position[Y_AXIS],
  9381. current_position[Z_AXIS],
  9382. current_position[E_AXIS]
  9383. );
  9384. planner.buffer_line(
  9385. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9386. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9387. planner.max_feedrate_mm_s[X_AXIS], 1
  9388. );
  9389. SYNC_PLAN_POSITION_KINEMATIC();
  9390. stepper.synchronize();
  9391. extruder_duplication_enabled = true;
  9392. active_extruder_parked = false;
  9393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9394. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9395. #endif
  9396. }
  9397. else {
  9398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9399. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9400. #endif
  9401. }
  9402. break;
  9403. }
  9404. }
  9405. return false;
  9406. }
  9407. #endif // DUAL_X_CARRIAGE
  9408. /**
  9409. * Prepare a single move and get ready for the next one
  9410. *
  9411. * This may result in several calls to planner.buffer_line to
  9412. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9413. */
  9414. void prepare_move_to_destination() {
  9415. clamp_to_software_endstops(destination);
  9416. refresh_cmd_timeout();
  9417. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9418. if (!DEBUGGING(DRYRUN)) {
  9419. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9420. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9421. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9422. SERIAL_ECHO_START;
  9423. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9424. }
  9425. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9426. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9427. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9428. SERIAL_ECHO_START;
  9429. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9430. }
  9431. #endif
  9432. }
  9433. }
  9434. #endif
  9435. #if IS_KINEMATIC
  9436. if (prepare_kinematic_move_to(destination)) return;
  9437. #else
  9438. #if ENABLED(DUAL_X_CARRIAGE)
  9439. if (prepare_move_to_destination_dualx()) return;
  9440. #endif
  9441. if (prepare_move_to_destination_cartesian()) return;
  9442. #endif
  9443. set_current_to_destination();
  9444. }
  9445. #if ENABLED(ARC_SUPPORT)
  9446. /**
  9447. * Plan an arc in 2 dimensions
  9448. *
  9449. * The arc is approximated by generating many small linear segments.
  9450. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9451. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9452. * larger segments will tend to be more efficient. Your slicer should have
  9453. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9454. */
  9455. void plan_arc(
  9456. float logical[XYZE], // Destination position
  9457. float *offset, // Center of rotation relative to current_position
  9458. uint8_t clockwise // Clockwise?
  9459. ) {
  9460. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9461. r_Y = -offset[Y_AXIS];
  9462. const float radius = HYPOT(r_X, r_Y),
  9463. center_X = current_position[X_AXIS] - r_X,
  9464. center_Y = current_position[Y_AXIS] - r_Y,
  9465. rt_X = logical[X_AXIS] - center_X,
  9466. rt_Y = logical[Y_AXIS] - center_Y,
  9467. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9468. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9469. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9470. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9471. if (angular_travel < 0) angular_travel += RADIANS(360);
  9472. if (clockwise) angular_travel -= RADIANS(360);
  9473. // Make a circle if the angular rotation is 0
  9474. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9475. angular_travel += RADIANS(360);
  9476. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9477. if (mm_of_travel < 0.001) return;
  9478. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9479. if (segments == 0) segments = 1;
  9480. /**
  9481. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9482. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9483. * r_T = [cos(phi) -sin(phi);
  9484. * sin(phi) cos(phi)] * r ;
  9485. *
  9486. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9487. * defined from the circle center to the initial position. Each line segment is formed by successive
  9488. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9489. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9490. * all double numbers are single precision on the Arduino. (True double precision will not have
  9491. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9492. * tool precision in some cases. Therefore, arc path correction is implemented.
  9493. *
  9494. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9495. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9496. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9497. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9498. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9499. * issue for CNC machines with the single precision Arduino calculations.
  9500. *
  9501. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9502. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9503. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9504. * This is important when there are successive arc motions.
  9505. */
  9506. // Vector rotation matrix values
  9507. float arc_target[XYZE];
  9508. const float theta_per_segment = angular_travel / segments,
  9509. linear_per_segment = linear_travel / segments,
  9510. extruder_per_segment = extruder_travel / segments,
  9511. sin_T = theta_per_segment,
  9512. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9513. // Initialize the linear axis
  9514. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9515. // Initialize the extruder axis
  9516. arc_target[E_AXIS] = current_position[E_AXIS];
  9517. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9518. millis_t next_idle_ms = millis() + 200UL;
  9519. int8_t count = 0;
  9520. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9521. thermalManager.manage_heater();
  9522. if (ELAPSED(millis(), next_idle_ms)) {
  9523. next_idle_ms = millis() + 200UL;
  9524. idle();
  9525. }
  9526. if (++count < N_ARC_CORRECTION) {
  9527. // Apply vector rotation matrix to previous r_X / 1
  9528. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9529. r_X = r_X * cos_T - r_Y * sin_T;
  9530. r_Y = r_new_Y;
  9531. }
  9532. else {
  9533. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9534. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9535. // To reduce stuttering, the sin and cos could be computed at different times.
  9536. // For now, compute both at the same time.
  9537. const float cos_Ti = cos(i * theta_per_segment),
  9538. sin_Ti = sin(i * theta_per_segment);
  9539. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9540. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9541. count = 0;
  9542. }
  9543. // Update arc_target location
  9544. arc_target[X_AXIS] = center_X + r_X;
  9545. arc_target[Y_AXIS] = center_Y + r_Y;
  9546. arc_target[Z_AXIS] += linear_per_segment;
  9547. arc_target[E_AXIS] += extruder_per_segment;
  9548. clamp_to_software_endstops(arc_target);
  9549. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9550. }
  9551. // Ensure last segment arrives at target location.
  9552. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9553. // As far as the parser is concerned, the position is now == target. In reality the
  9554. // motion control system might still be processing the action and the real tool position
  9555. // in any intermediate location.
  9556. set_current_to_destination();
  9557. }
  9558. #endif
  9559. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9560. void plan_cubic_move(const float offset[4]) {
  9561. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9562. // As far as the parser is concerned, the position is now == destination. In reality the
  9563. // motion control system might still be processing the action and the real tool position
  9564. // in any intermediate location.
  9565. set_current_to_destination();
  9566. }
  9567. #endif // BEZIER_CURVE_SUPPORT
  9568. #if HAS_CONTROLLERFAN
  9569. void controllerFan() {
  9570. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9571. nextMotorCheck = 0; // Last time the state was checked
  9572. const millis_t ms = millis();
  9573. if (ELAPSED(ms, nextMotorCheck)) {
  9574. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9575. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9576. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9577. #if E_STEPPERS > 1
  9578. || E1_ENABLE_READ == E_ENABLE_ON
  9579. #if HAS_X2_ENABLE
  9580. || X2_ENABLE_READ == X_ENABLE_ON
  9581. #endif
  9582. #if E_STEPPERS > 2
  9583. || E2_ENABLE_READ == E_ENABLE_ON
  9584. #if E_STEPPERS > 3
  9585. || E3_ENABLE_READ == E_ENABLE_ON
  9586. #if E_STEPPERS > 4
  9587. || E4_ENABLE_READ == E_ENABLE_ON
  9588. #endif // E_STEPPERS > 4
  9589. #endif // E_STEPPERS > 3
  9590. #endif // E_STEPPERS > 2
  9591. #endif // E_STEPPERS > 1
  9592. ) {
  9593. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9594. }
  9595. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9596. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9597. // allows digital or PWM fan output to be used (see M42 handling)
  9598. WRITE(CONTROLLERFAN_PIN, speed);
  9599. analogWrite(CONTROLLERFAN_PIN, speed);
  9600. }
  9601. }
  9602. #endif // HAS_CONTROLLERFAN
  9603. #if ENABLED(MORGAN_SCARA)
  9604. /**
  9605. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9606. * Maths and first version by QHARLEY.
  9607. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9608. */
  9609. void forward_kinematics_SCARA(const float &a, const float &b) {
  9610. float a_sin = sin(RADIANS(a)) * L1,
  9611. a_cos = cos(RADIANS(a)) * L1,
  9612. b_sin = sin(RADIANS(b)) * L2,
  9613. b_cos = cos(RADIANS(b)) * L2;
  9614. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9615. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9616. /*
  9617. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9618. SERIAL_ECHOPAIR(" b=", b);
  9619. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9620. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9621. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9622. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9623. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9624. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9625. //*/
  9626. }
  9627. /**
  9628. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9629. *
  9630. * See http://forums.reprap.org/read.php?185,283327
  9631. *
  9632. * Maths and first version by QHARLEY.
  9633. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9634. */
  9635. void inverse_kinematics(const float logical[XYZ]) {
  9636. static float C2, S2, SK1, SK2, THETA, PSI;
  9637. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9638. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9639. if (L1 == L2)
  9640. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9641. else
  9642. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9643. S2 = sqrt(sq(C2) - 1);
  9644. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9645. SK1 = L1 + L2 * C2;
  9646. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9647. SK2 = L2 * S2;
  9648. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9649. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9650. // Angle of Arm2
  9651. PSI = atan2(S2, C2);
  9652. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9653. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9654. delta[C_AXIS] = logical[Z_AXIS];
  9655. /*
  9656. DEBUG_POS("SCARA IK", logical);
  9657. DEBUG_POS("SCARA IK", delta);
  9658. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9659. SERIAL_ECHOPAIR(",", sy);
  9660. SERIAL_ECHOPAIR(" C2=", C2);
  9661. SERIAL_ECHOPAIR(" S2=", S2);
  9662. SERIAL_ECHOPAIR(" Theta=", THETA);
  9663. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9664. //*/
  9665. }
  9666. #endif // MORGAN_SCARA
  9667. #if ENABLED(TEMP_STAT_LEDS)
  9668. static bool red_led = false;
  9669. static millis_t next_status_led_update_ms = 0;
  9670. void handle_status_leds(void) {
  9671. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9672. next_status_led_update_ms += 500; // Update every 0.5s
  9673. float max_temp = 0.0;
  9674. #if HAS_TEMP_BED
  9675. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9676. #endif
  9677. HOTEND_LOOP() {
  9678. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9679. }
  9680. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9681. if (new_led != red_led) {
  9682. red_led = new_led;
  9683. #if PIN_EXISTS(STAT_LED_RED)
  9684. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9685. #if PIN_EXISTS(STAT_LED_BLUE)
  9686. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9687. #endif
  9688. #else
  9689. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9690. #endif
  9691. }
  9692. }
  9693. }
  9694. #endif
  9695. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9696. void handle_filament_runout() {
  9697. if (!filament_ran_out) {
  9698. filament_ran_out = true;
  9699. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9700. stepper.synchronize();
  9701. }
  9702. }
  9703. #endif // FILAMENT_RUNOUT_SENSOR
  9704. #if ENABLED(FAST_PWM_FAN)
  9705. void setPwmFrequency(uint8_t pin, int val) {
  9706. val &= 0x07;
  9707. switch (digitalPinToTimer(pin)) {
  9708. #ifdef TCCR0A
  9709. case TIMER0A:
  9710. case TIMER0B:
  9711. //SET_CS(0, val);
  9712. break;
  9713. #endif
  9714. #ifdef TCCR1A
  9715. case TIMER1A:
  9716. case TIMER1B:
  9717. //SET_CS(1, val);
  9718. break;
  9719. #endif
  9720. #ifdef TCCR2
  9721. case TIMER2:
  9722. case TIMER2:
  9723. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9724. TCCR2 |= val;
  9725. break;
  9726. #endif
  9727. #ifdef TCCR2A
  9728. case TIMER2A:
  9729. case TIMER2B:
  9730. SET_CS(2, val);
  9731. break;
  9732. #endif
  9733. #ifdef TCCR3A
  9734. case TIMER3A:
  9735. case TIMER3B:
  9736. case TIMER3C:
  9737. SET_CS(3, val);
  9738. break;
  9739. #endif
  9740. #ifdef TCCR4A
  9741. case TIMER4A:
  9742. case TIMER4B:
  9743. case TIMER4C:
  9744. SET_CS(4, val);
  9745. break;
  9746. #endif
  9747. #ifdef TCCR5A
  9748. case TIMER5A:
  9749. case TIMER5B:
  9750. case TIMER5C:
  9751. SET_CS(5, val);
  9752. break;
  9753. #endif
  9754. }
  9755. }
  9756. #endif // FAST_PWM_FAN
  9757. float calculate_volumetric_multiplier(float diameter) {
  9758. if (!volumetric_enabled || diameter == 0) return 1.0;
  9759. return 1.0 / (M_PI * sq(diameter * 0.5));
  9760. }
  9761. void calculate_volumetric_multipliers() {
  9762. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9763. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9764. }
  9765. void enable_all_steppers() {
  9766. enable_X();
  9767. enable_Y();
  9768. enable_Z();
  9769. enable_E0();
  9770. enable_E1();
  9771. enable_E2();
  9772. enable_E3();
  9773. enable_E4();
  9774. }
  9775. void disable_e_steppers() {
  9776. disable_E0();
  9777. disable_E1();
  9778. disable_E2();
  9779. disable_E3();
  9780. disable_E4();
  9781. }
  9782. void disable_all_steppers() {
  9783. disable_X();
  9784. disable_Y();
  9785. disable_Z();
  9786. disable_e_steppers();
  9787. }
  9788. #if ENABLED(HAVE_TMC2130)
  9789. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9790. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9791. const bool is_otpw = st.checkOT();
  9792. // Report if a warning was triggered
  9793. static bool previous_otpw = false;
  9794. if (is_otpw && !previous_otpw) {
  9795. char timestamp[10];
  9796. duration_t elapsed = print_job_timer.duration();
  9797. const bool has_days = (elapsed.value > 60*60*24L);
  9798. (void)elapsed.toDigital(timestamp, has_days);
  9799. SERIAL_ECHO(timestamp);
  9800. SERIAL_ECHO(": ");
  9801. SERIAL_ECHO(axisID);
  9802. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9803. }
  9804. previous_otpw = is_otpw;
  9805. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9806. // Return if user has not enabled current control start with M906 S1.
  9807. if (!auto_current_control) return;
  9808. /**
  9809. * Decrease current if is_otpw is true.
  9810. * Bail out if driver is disabled.
  9811. * Increase current if OTPW has not been triggered yet.
  9812. */
  9813. uint16_t current = st.getCurrent();
  9814. if (is_otpw) {
  9815. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9816. #if ENABLED(REPORT_CURRENT_CHANGE)
  9817. SERIAL_ECHO(axisID);
  9818. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9819. #endif
  9820. }
  9821. else if (!st.isEnabled())
  9822. return;
  9823. else if (!is_otpw && !st.getOTPW()) {
  9824. current += CURRENT_STEP;
  9825. if (current <= AUTO_ADJUST_MAX) {
  9826. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9827. #if ENABLED(REPORT_CURRENT_CHANGE)
  9828. SERIAL_ECHO(axisID);
  9829. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9830. #endif
  9831. }
  9832. }
  9833. SERIAL_EOL;
  9834. #endif
  9835. }
  9836. void checkOverTemp() {
  9837. static millis_t next_cOT = 0;
  9838. if (ELAPSED(millis(), next_cOT)) {
  9839. next_cOT = millis() + 5000;
  9840. #if ENABLED(X_IS_TMC2130)
  9841. automatic_current_control(stepperX, "X");
  9842. #endif
  9843. #if ENABLED(Y_IS_TMC2130)
  9844. automatic_current_control(stepperY, "Y");
  9845. #endif
  9846. #if ENABLED(Z_IS_TMC2130)
  9847. automatic_current_control(stepperZ, "Z");
  9848. #endif
  9849. #if ENABLED(X2_IS_TMC2130)
  9850. automatic_current_control(stepperX2, "X2");
  9851. #endif
  9852. #if ENABLED(Y2_IS_TMC2130)
  9853. automatic_current_control(stepperY2, "Y2");
  9854. #endif
  9855. #if ENABLED(Z2_IS_TMC2130)
  9856. automatic_current_control(stepperZ2, "Z2");
  9857. #endif
  9858. #if ENABLED(E0_IS_TMC2130)
  9859. automatic_current_control(stepperE0, "E0");
  9860. #endif
  9861. #if ENABLED(E1_IS_TMC2130)
  9862. automatic_current_control(stepperE1, "E1");
  9863. #endif
  9864. #if ENABLED(E2_IS_TMC2130)
  9865. automatic_current_control(stepperE2, "E2");
  9866. #endif
  9867. #if ENABLED(E3_IS_TMC2130)
  9868. automatic_current_control(stepperE3, "E3");
  9869. #endif
  9870. #if ENABLED(E4_IS_TMC2130)
  9871. automatic_current_control(stepperE4, "E4");
  9872. #endif
  9873. #if ENABLED(E4_IS_TMC2130)
  9874. automatic_current_control(stepperE4);
  9875. #endif
  9876. }
  9877. }
  9878. #endif // HAVE_TMC2130
  9879. /**
  9880. * Manage several activities:
  9881. * - Check for Filament Runout
  9882. * - Keep the command buffer full
  9883. * - Check for maximum inactive time between commands
  9884. * - Check for maximum inactive time between stepper commands
  9885. * - Check if pin CHDK needs to go LOW
  9886. * - Check for KILL button held down
  9887. * - Check for HOME button held down
  9888. * - Check if cooling fan needs to be switched on
  9889. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9890. */
  9891. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9892. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9893. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9894. handle_filament_runout();
  9895. #endif
  9896. if (commands_in_queue < BUFSIZE) get_available_commands();
  9897. const millis_t ms = millis();
  9898. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9899. SERIAL_ERROR_START;
  9900. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9901. kill(PSTR(MSG_KILLED));
  9902. }
  9903. // Prevent steppers timing-out in the middle of M600
  9904. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9905. #define M600_TEST !busy_doing_M600
  9906. #else
  9907. #define M600_TEST true
  9908. #endif
  9909. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9910. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9911. #if ENABLED(DISABLE_INACTIVE_X)
  9912. disable_X();
  9913. #endif
  9914. #if ENABLED(DISABLE_INACTIVE_Y)
  9915. disable_Y();
  9916. #endif
  9917. #if ENABLED(DISABLE_INACTIVE_Z)
  9918. disable_Z();
  9919. #endif
  9920. #if ENABLED(DISABLE_INACTIVE_E)
  9921. disable_e_steppers();
  9922. #endif
  9923. }
  9924. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9925. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9926. chdkActive = false;
  9927. WRITE(CHDK, LOW);
  9928. }
  9929. #endif
  9930. #if HAS_KILL
  9931. // Check if the kill button was pressed and wait just in case it was an accidental
  9932. // key kill key press
  9933. // -------------------------------------------------------------------------------
  9934. static int killCount = 0; // make the inactivity button a bit less responsive
  9935. const int KILL_DELAY = 750;
  9936. if (!READ(KILL_PIN))
  9937. killCount++;
  9938. else if (killCount > 0)
  9939. killCount--;
  9940. // Exceeded threshold and we can confirm that it was not accidental
  9941. // KILL the machine
  9942. // ----------------------------------------------------------------
  9943. if (killCount >= KILL_DELAY) {
  9944. SERIAL_ERROR_START;
  9945. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9946. kill(PSTR(MSG_KILLED));
  9947. }
  9948. #endif
  9949. #if HAS_HOME
  9950. // Check to see if we have to home, use poor man's debouncer
  9951. // ---------------------------------------------------------
  9952. static int homeDebounceCount = 0; // poor man's debouncing count
  9953. const int HOME_DEBOUNCE_DELAY = 2500;
  9954. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9955. if (!homeDebounceCount) {
  9956. enqueue_and_echo_commands_P(PSTR("G28"));
  9957. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9958. }
  9959. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9960. homeDebounceCount++;
  9961. else
  9962. homeDebounceCount = 0;
  9963. }
  9964. #endif
  9965. #if HAS_CONTROLLERFAN
  9966. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9967. #endif
  9968. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9969. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9970. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9971. bool oldstatus;
  9972. #if ENABLED(SWITCHING_EXTRUDER)
  9973. oldstatus = E0_ENABLE_READ;
  9974. enable_E0();
  9975. #else // !SWITCHING_EXTRUDER
  9976. switch (active_extruder) {
  9977. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  9978. #if E_STEPPERS > 1
  9979. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  9980. #if E_STEPPERS > 2
  9981. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  9982. #if E_STEPPERS > 3
  9983. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  9984. #if E_STEPPERS > 4
  9985. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  9986. #endif // E_STEPPERS > 4
  9987. #endif // E_STEPPERS > 3
  9988. #endif // E_STEPPERS > 2
  9989. #endif // E_STEPPERS > 1
  9990. }
  9991. #endif // !SWITCHING_EXTRUDER
  9992. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9993. const float olde = current_position[E_AXIS];
  9994. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9995. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9996. current_position[E_AXIS] = olde;
  9997. planner.set_e_position_mm(olde);
  9998. stepper.synchronize();
  9999. #if ENABLED(SWITCHING_EXTRUDER)
  10000. E0_ENABLE_WRITE(oldstatus);
  10001. #else
  10002. switch (active_extruder) {
  10003. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10004. #if E_STEPPERS > 1
  10005. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10006. #if E_STEPPERS > 2
  10007. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10008. #if E_STEPPERS > 3
  10009. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10010. #if E_STEPPERS > 4
  10011. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10012. #endif // E_STEPPERS > 4
  10013. #endif // E_STEPPERS > 3
  10014. #endif // E_STEPPERS > 2
  10015. #endif // E_STEPPERS > 1
  10016. }
  10017. #endif // !SWITCHING_EXTRUDER
  10018. }
  10019. #endif // EXTRUDER_RUNOUT_PREVENT
  10020. #if ENABLED(DUAL_X_CARRIAGE)
  10021. // handle delayed move timeout
  10022. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10023. // travel moves have been received so enact them
  10024. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10025. set_destination_to_current();
  10026. prepare_move_to_destination();
  10027. }
  10028. #endif
  10029. #if ENABLED(TEMP_STAT_LEDS)
  10030. handle_status_leds();
  10031. #endif
  10032. #if ENABLED(HAVE_TMC2130)
  10033. checkOverTemp();
  10034. #endif
  10035. planner.check_axes_activity();
  10036. }
  10037. /**
  10038. * Standard idle routine keeps the machine alive
  10039. */
  10040. void idle(
  10041. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10042. bool no_stepper_sleep/*=false*/
  10043. #endif
  10044. ) {
  10045. lcd_update();
  10046. host_keepalive();
  10047. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10048. auto_report_temperatures();
  10049. #endif
  10050. manage_inactivity(
  10051. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10052. no_stepper_sleep
  10053. #endif
  10054. );
  10055. thermalManager.manage_heater();
  10056. #if ENABLED(PRINTCOUNTER)
  10057. print_job_timer.tick();
  10058. #endif
  10059. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10060. buzzer.tick();
  10061. #endif
  10062. }
  10063. /**
  10064. * Kill all activity and lock the machine.
  10065. * After this the machine will need to be reset.
  10066. */
  10067. void kill(const char* lcd_msg) {
  10068. SERIAL_ERROR_START;
  10069. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10070. thermalManager.disable_all_heaters();
  10071. disable_all_steppers();
  10072. #if ENABLED(ULTRA_LCD)
  10073. kill_screen(lcd_msg);
  10074. #else
  10075. UNUSED(lcd_msg);
  10076. #endif
  10077. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10078. cli(); // Stop interrupts
  10079. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10080. thermalManager.disable_all_heaters(); //turn off heaters again
  10081. #if HAS_POWER_SWITCH
  10082. SET_INPUT(PS_ON_PIN);
  10083. #endif
  10084. suicide();
  10085. while (1) {
  10086. #if ENABLED(USE_WATCHDOG)
  10087. watchdog_reset();
  10088. #endif
  10089. } // Wait for reset
  10090. }
  10091. /**
  10092. * Turn off heaters and stop the print in progress
  10093. * After a stop the machine may be resumed with M999
  10094. */
  10095. void stop() {
  10096. thermalManager.disable_all_heaters();
  10097. if (IsRunning()) {
  10098. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10099. SERIAL_ERROR_START;
  10100. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10101. LCD_MESSAGEPGM(MSG_STOPPED);
  10102. safe_delay(350); // allow enough time for messages to get out before stopping
  10103. Running = false;
  10104. }
  10105. }
  10106. /**
  10107. * Marlin entry-point: Set up before the program loop
  10108. * - Set up the kill pin, filament runout, power hold
  10109. * - Start the serial port
  10110. * - Print startup messages and diagnostics
  10111. * - Get EEPROM or default settings
  10112. * - Initialize managers for:
  10113. * • temperature
  10114. * • planner
  10115. * • watchdog
  10116. * • stepper
  10117. * • photo pin
  10118. * • servos
  10119. * • LCD controller
  10120. * • Digipot I2C
  10121. * • Z probe sled
  10122. * • status LEDs
  10123. */
  10124. void setup() {
  10125. #ifdef DISABLE_JTAG
  10126. // Disable JTAG on AT90USB chips to free up pins for IO
  10127. MCUCR = 0x80;
  10128. MCUCR = 0x80;
  10129. #endif
  10130. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10131. setup_filrunoutpin();
  10132. #endif
  10133. setup_killpin();
  10134. setup_powerhold();
  10135. #if HAS_STEPPER_RESET
  10136. disableStepperDrivers();
  10137. #endif
  10138. MYSERIAL.begin(BAUDRATE);
  10139. SERIAL_PROTOCOLLNPGM("start");
  10140. SERIAL_ECHO_START;
  10141. // Check startup - does nothing if bootloader sets MCUSR to 0
  10142. byte mcu = MCUSR;
  10143. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10144. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10145. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10146. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10147. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10148. MCUSR = 0;
  10149. SERIAL_ECHOPGM(MSG_MARLIN);
  10150. SERIAL_CHAR(' ');
  10151. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10152. SERIAL_EOL;
  10153. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10154. SERIAL_ECHO_START;
  10155. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10156. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10157. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10158. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10159. #endif
  10160. SERIAL_ECHO_START;
  10161. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10162. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10163. // Send "ok" after commands by default
  10164. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10165. // Load data from EEPROM if available (or use defaults)
  10166. // This also updates variables in the planner, elsewhere
  10167. (void)settings.load();
  10168. #if HAS_M206_COMMAND
  10169. // Initialize current position based on home_offset
  10170. COPY(current_position, home_offset);
  10171. #else
  10172. ZERO(current_position);
  10173. #endif
  10174. // Vital to init stepper/planner equivalent for current_position
  10175. SYNC_PLAN_POSITION_KINEMATIC();
  10176. thermalManager.init(); // Initialize temperature loop
  10177. #if ENABLED(USE_WATCHDOG)
  10178. watchdog_init();
  10179. #endif
  10180. stepper.init(); // Initialize stepper, this enables interrupts!
  10181. servo_init();
  10182. #if HAS_PHOTOGRAPH
  10183. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10184. #endif
  10185. #if HAS_CASE_LIGHT
  10186. update_case_light();
  10187. #endif
  10188. #if HAS_BED_PROBE
  10189. endstops.enable_z_probe(false);
  10190. #endif
  10191. #if HAS_CONTROLLERFAN
  10192. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10193. #endif
  10194. #if HAS_STEPPER_RESET
  10195. enableStepperDrivers();
  10196. #endif
  10197. #if ENABLED(DIGIPOT_I2C)
  10198. digipot_i2c_init();
  10199. #endif
  10200. #if ENABLED(DAC_STEPPER_CURRENT)
  10201. dac_init();
  10202. #endif
  10203. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10204. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10205. #endif
  10206. setup_homepin();
  10207. #if PIN_EXISTS(STAT_LED_RED)
  10208. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10209. #endif
  10210. #if PIN_EXISTS(STAT_LED_BLUE)
  10211. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10212. #endif
  10213. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10214. SET_OUTPUT(RGB_LED_R_PIN);
  10215. SET_OUTPUT(RGB_LED_G_PIN);
  10216. SET_OUTPUT(RGB_LED_B_PIN);
  10217. #if ENABLED(RGBW_LED)
  10218. SET_OUTPUT(RGB_LED_W_PIN);
  10219. #endif
  10220. #endif
  10221. lcd_init();
  10222. #if ENABLED(SHOW_BOOTSCREEN)
  10223. #if ENABLED(DOGLCD)
  10224. safe_delay(BOOTSCREEN_TIMEOUT);
  10225. #elif ENABLED(ULTRA_LCD)
  10226. bootscreen();
  10227. #if DISABLED(SDSUPPORT)
  10228. lcd_init();
  10229. #endif
  10230. #endif
  10231. #endif
  10232. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10233. // Initialize mixing to 100% color 1
  10234. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10235. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10236. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10237. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10238. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10239. #endif
  10240. #if ENABLED(BLTOUCH)
  10241. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10242. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10243. set_bltouch_deployed(false); // error condition.
  10244. #endif
  10245. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10246. i2c.onReceive(i2c_on_receive);
  10247. i2c.onRequest(i2c_on_request);
  10248. #endif
  10249. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10250. setup_endstop_interrupts();
  10251. #endif
  10252. }
  10253. /**
  10254. * The main Marlin program loop
  10255. *
  10256. * - Save or log commands to SD
  10257. * - Process available commands (if not saving)
  10258. * - Call heater manager
  10259. * - Call inactivity manager
  10260. * - Call endstop manager
  10261. * - Call LCD update
  10262. */
  10263. void loop() {
  10264. if (commands_in_queue < BUFSIZE) get_available_commands();
  10265. #if ENABLED(SDSUPPORT)
  10266. card.checkautostart(false);
  10267. #endif
  10268. if (commands_in_queue) {
  10269. #if ENABLED(SDSUPPORT)
  10270. if (card.saving) {
  10271. char* command = command_queue[cmd_queue_index_r];
  10272. if (strstr_P(command, PSTR("M29"))) {
  10273. // M29 closes the file
  10274. card.closefile();
  10275. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10276. ok_to_send();
  10277. }
  10278. else {
  10279. // Write the string from the read buffer to SD
  10280. card.write_command(command);
  10281. if (card.logging)
  10282. process_next_command(); // The card is saving because it's logging
  10283. else
  10284. ok_to_send();
  10285. }
  10286. }
  10287. else
  10288. process_next_command();
  10289. #else
  10290. process_next_command();
  10291. #endif // SDSUPPORT
  10292. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10293. if (commands_in_queue) {
  10294. --commands_in_queue;
  10295. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10296. }
  10297. }
  10298. endstops.report_state();
  10299. idle();
  10300. }