My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 389KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '4-point' auto calibration iteration
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[ABC],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_diagonal_rod_trim[ABC],
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float bilinear_grid_factor[2],
  538. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  539. #endif
  540. #if IS_SCARA
  541. // Float constants for SCARA calculations
  542. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  543. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  544. L2_2 = sq(float(L2));
  545. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  546. delta[ABC];
  547. #endif
  548. float cartes[XYZ] = { 0 };
  549. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  550. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  551. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  552. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  553. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  554. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  555. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  556. #endif
  557. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  558. static bool filament_ran_out = false;
  559. #endif
  560. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  561. FilamentChangeMenuResponse filament_change_menu_response;
  562. #endif
  563. #if ENABLED(MIXING_EXTRUDER)
  564. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  565. #if MIXING_VIRTUAL_TOOLS > 1
  566. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  567. #endif
  568. #endif
  569. static bool send_ok[BUFSIZE];
  570. #if HAS_SERVOS
  571. Servo servo[NUM_SERVOS];
  572. #define MOVE_SERVO(I, P) servo[I].move(P)
  573. #if HAS_Z_SERVO_ENDSTOP
  574. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  575. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  576. #endif
  577. #endif
  578. #ifdef CHDK
  579. millis_t chdkHigh = 0;
  580. bool chdkActive = false;
  581. #endif
  582. #ifdef AUTOMATIC_CURRENT_CONTROL
  583. bool auto_current_control = 0;
  584. #endif
  585. #if ENABLED(PID_EXTRUSION_SCALING)
  586. int lpq_len = 20;
  587. #endif
  588. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  589. MarlinBusyState busy_state = NOT_BUSY;
  590. static millis_t next_busy_signal_ms = 0;
  591. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  592. #else
  593. #define host_keepalive() NOOP
  594. #endif
  595. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  596. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  597. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  598. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  599. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  600. typedef void __void_##CONFIG##__
  601. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  604. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  605. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  606. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  607. /**
  608. * ***************************************************************************
  609. * ******************************** FUNCTIONS ********************************
  610. * ***************************************************************************
  611. */
  612. void stop();
  613. void get_available_commands();
  614. void process_next_command();
  615. void prepare_move_to_destination();
  616. void get_cartesian_from_steppers();
  617. void set_current_from_steppers_for_axis(const AxisEnum axis);
  618. #if ENABLED(ARC_SUPPORT)
  619. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  620. #endif
  621. #if ENABLED(BEZIER_CURVE_SUPPORT)
  622. void plan_cubic_move(const float offset[4]);
  623. #endif
  624. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  625. static void report_current_position();
  626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  627. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  628. serialprintPGM(prefix);
  629. SERIAL_CHAR('(');
  630. SERIAL_ECHO(x);
  631. SERIAL_ECHOPAIR(", ", y);
  632. SERIAL_ECHOPAIR(", ", z);
  633. SERIAL_CHAR(')');
  634. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  635. }
  636. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  637. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  638. }
  639. #if HAS_ABL
  640. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  641. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  642. }
  643. #endif
  644. #define DEBUG_POS(SUFFIX,VAR) do { \
  645. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  646. #endif
  647. /**
  648. * sync_plan_position
  649. *
  650. * Set the planner/stepper positions directly from current_position with
  651. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  652. */
  653. inline void sync_plan_position() {
  654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  655. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  656. #endif
  657. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  658. }
  659. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  660. #if IS_KINEMATIC
  661. inline void sync_plan_position_kinematic() {
  662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  663. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  664. #endif
  665. planner.set_position_mm_kinematic(current_position);
  666. }
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  668. #else
  669. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  670. #endif
  671. #if ENABLED(SDSUPPORT)
  672. #include "SdFatUtil.h"
  673. int freeMemory() { return SdFatUtil::FreeRam(); }
  674. #else
  675. extern "C" {
  676. extern char __bss_end;
  677. extern char __heap_start;
  678. extern void* __brkval;
  679. int freeMemory() {
  680. int free_memory;
  681. if ((int)__brkval == 0)
  682. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  683. else
  684. free_memory = ((int)&free_memory) - ((int)__brkval);
  685. return free_memory;
  686. }
  687. }
  688. #endif //!SDSUPPORT
  689. #if ENABLED(DIGIPOT_I2C)
  690. extern void digipot_i2c_set_current(int channel, float current);
  691. extern void digipot_i2c_init();
  692. #endif
  693. /**
  694. * Inject the next "immediate" command, when possible, onto the front of the queue.
  695. * Return true if any immediate commands remain to inject.
  696. */
  697. static bool drain_injected_commands_P() {
  698. if (injected_commands_P != NULL) {
  699. size_t i = 0;
  700. char c, cmd[30];
  701. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  702. cmd[sizeof(cmd) - 1] = '\0';
  703. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  704. cmd[i] = '\0';
  705. if (enqueue_and_echo_command(cmd)) // success?
  706. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  707. }
  708. return (injected_commands_P != NULL); // return whether any more remain
  709. }
  710. /**
  711. * Record one or many commands to run from program memory.
  712. * Aborts the current queue, if any.
  713. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  714. */
  715. void enqueue_and_echo_commands_P(const char* pgcode) {
  716. injected_commands_P = pgcode;
  717. drain_injected_commands_P(); // first command executed asap (when possible)
  718. }
  719. /**
  720. * Clear the Marlin command queue
  721. */
  722. void clear_command_queue() {
  723. cmd_queue_index_r = cmd_queue_index_w;
  724. commands_in_queue = 0;
  725. }
  726. /**
  727. * Once a new command is in the ring buffer, call this to commit it
  728. */
  729. inline void _commit_command(bool say_ok) {
  730. send_ok[cmd_queue_index_w] = say_ok;
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue++;
  733. }
  734. /**
  735. * Copy a command from RAM into the main command buffer.
  736. * Return true if the command was successfully added.
  737. * Return false for a full buffer, or if the 'command' is a comment.
  738. */
  739. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  740. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  741. strcpy(command_queue[cmd_queue_index_w], cmd);
  742. _commit_command(say_ok);
  743. return true;
  744. }
  745. /**
  746. * Enqueue with Serial Echo
  747. */
  748. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  749. if (_enqueuecommand(cmd, say_ok)) {
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  752. SERIAL_CHAR('"');
  753. SERIAL_EOL;
  754. return true;
  755. }
  756. return false;
  757. }
  758. void setup_killpin() {
  759. #if HAS_KILL
  760. SET_INPUT_PULLUP(KILL_PIN);
  761. #endif
  762. }
  763. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  764. void setup_filrunoutpin() {
  765. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  766. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  767. #else
  768. SET_INPUT(FIL_RUNOUT_PIN);
  769. #endif
  770. }
  771. #endif
  772. void setup_homepin(void) {
  773. #if HAS_HOME
  774. SET_INPUT_PULLUP(HOME_PIN);
  775. #endif
  776. }
  777. void setup_powerhold() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, HIGH);
  780. #endif
  781. #if HAS_POWER_SWITCH
  782. #if ENABLED(PS_DEFAULT_OFF)
  783. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide() {
  790. #if HAS_SUICIDE
  791. OUT_WRITE(SUICIDE_PIN, LOW);
  792. #endif
  793. }
  794. void servo_init() {
  795. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  796. servo[0].attach(SERVO0_PIN);
  797. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  798. #endif
  799. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  800. servo[1].attach(SERVO1_PIN);
  801. servo[1].detach();
  802. #endif
  803. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  804. servo[2].attach(SERVO2_PIN);
  805. servo[2].detach();
  806. #endif
  807. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  808. servo[3].attach(SERVO3_PIN);
  809. servo[3].detach();
  810. #endif
  811. #if HAS_Z_SERVO_ENDSTOP
  812. /**
  813. * Set position of Z Servo Endstop
  814. *
  815. * The servo might be deployed and positioned too low to stow
  816. * when starting up the machine or rebooting the board.
  817. * There's no way to know where the nozzle is positioned until
  818. * homing has been done - no homing with z-probe without init!
  819. *
  820. */
  821. STOW_Z_SERVO();
  822. #endif
  823. }
  824. /**
  825. * Stepper Reset (RigidBoard, et.al.)
  826. */
  827. #if HAS_STEPPER_RESET
  828. void disableStepperDrivers() {
  829. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  830. }
  831. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  832. #endif
  833. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  834. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  835. i2c.receive(bytes);
  836. }
  837. void i2c_on_request() { // just send dummy data for now
  838. i2c.reply("Hello World!\n");
  839. }
  840. #endif
  841. #if HAS_COLOR_LEDS
  842. void set_led_color(
  843. const uint8_t r, const uint8_t g, const uint8_t b
  844. #if ENABLED(RGBW_LED)
  845. , const uint8_t w=0
  846. #endif
  847. ) {
  848. #if ENABLED(BLINKM)
  849. // This variant uses i2c to send the RGB components to the device.
  850. SendColors(r, g, b);
  851. #else
  852. // This variant uses 3 separate pins for the RGB components.
  853. // If the pins can do PWM then their intensity will be set.
  854. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  855. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  856. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  857. analogWrite(RGB_LED_R_PIN, r);
  858. analogWrite(RGB_LED_G_PIN, g);
  859. analogWrite(RGB_LED_B_PIN, b);
  860. #if ENABLED(RGBW_LED)
  861. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  862. analogWrite(RGB_LED_W_PIN, w);
  863. #endif
  864. #endif
  865. }
  866. #endif // HAS_COLOR_LEDS
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. /**
  876. * Get all commands waiting on the serial port and queue them.
  877. * Exit when the buffer is full or when no more characters are
  878. * left on the serial port.
  879. */
  880. inline void get_serial_commands() {
  881. static char serial_line_buffer[MAX_CMD_SIZE];
  882. static bool serial_comment_mode = false;
  883. // If the command buffer is empty for too long,
  884. // send "wait" to indicate Marlin is still waiting.
  885. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  886. static millis_t last_command_time = 0;
  887. const millis_t ms = millis();
  888. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  889. SERIAL_ECHOLNPGM(MSG_WAIT);
  890. last_command_time = ms;
  891. }
  892. #endif
  893. /**
  894. * Loop while serial characters are incoming and the queue is not full
  895. */
  896. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  897. char serial_char = MYSERIAL.read();
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // skip empty lines
  904. serial_line_buffer[serial_count] = 0; // terminate string
  905. serial_count = 0; //reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // skip any leading spaces
  908. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. char* apos = strchr(command, '*');
  910. if (npos) {
  911. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  912. if (M110) {
  913. char* n2pos = strchr(command + 4, 'N');
  914. if (n2pos) npos = n2pos;
  915. }
  916. gcode_N = strtol(npos + 1, NULL, 10);
  917. if (gcode_N != gcode_LastN + 1 && !M110) {
  918. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  919. return;
  920. }
  921. if (apos) {
  922. byte checksum = 0, count = 0;
  923. while (command[count] != '*') checksum ^= command[count++];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. // if no errors, continue parsing
  929. }
  930. else {
  931. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  932. return;
  933. }
  934. gcode_LastN = gcode_N;
  935. // if no errors, continue parsing
  936. }
  937. else if (apos) { // No '*' without 'N'
  938. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  939. return;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. const int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) {
  960. wait_for_heatup = false;
  961. #if ENABLED(ULTIPANEL)
  962. wait_for_user = false;
  963. #endif
  964. }
  965. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  966. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  967. #endif
  968. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  969. last_command_time = ms;
  970. #endif
  971. // Add the command to the queue
  972. _enqueuecommand(serial_line_buffer, true);
  973. }
  974. else if (serial_count >= MAX_CMD_SIZE - 1) {
  975. // Keep fetching, but ignore normal characters beyond the max length
  976. // The command will be injected when EOL is reached
  977. }
  978. else if (serial_char == '\\') { // Handle escapes
  979. if (MYSERIAL.available() > 0) {
  980. // if we have one more character, copy it over
  981. serial_char = MYSERIAL.read();
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. // otherwise do nothing
  985. }
  986. else { // it's not a newline, carriage return or escape char
  987. if (serial_char == ';') serial_comment_mode = true;
  988. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  989. }
  990. } // queue has space, serial has data
  991. }
  992. #if ENABLED(SDSUPPORT)
  993. /**
  994. * Get commands from the SD Card until the command buffer is full
  995. * or until the end of the file is reached. The special character '#'
  996. * can also interrupt buffering.
  997. */
  998. inline void get_sdcard_commands() {
  999. static bool stop_buffering = false,
  1000. sd_comment_mode = false;
  1001. if (!card.sdprinting) return;
  1002. /**
  1003. * '#' stops reading from SD to the buffer prematurely, so procedural
  1004. * macro calls are possible. If it occurs, stop_buffering is triggered
  1005. * and the buffer is run dry; this character _can_ occur in serial com
  1006. * due to checksums, however, no checksums are used in SD printing.
  1007. */
  1008. if (commands_in_queue == 0) stop_buffering = false;
  1009. uint16_t sd_count = 0;
  1010. bool card_eof = card.eof();
  1011. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1012. const int16_t n = card.get();
  1013. char sd_char = (char)n;
  1014. card_eof = card.eof();
  1015. if (card_eof || n == -1
  1016. || sd_char == '\n' || sd_char == '\r'
  1017. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1018. ) {
  1019. if (card_eof) {
  1020. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1021. card.printingHasFinished();
  1022. #if ENABLED(PRINTER_EVENT_LEDS)
  1023. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1024. set_led_color(0, 255, 0); // Green
  1025. #if HAS_RESUME_CONTINUE
  1026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1027. wait_for_user = true;
  1028. while (wait_for_user) idle();
  1029. KEEPALIVE_STATE(IN_HANDLER);
  1030. #else
  1031. safe_delay(1000);
  1032. #endif
  1033. set_led_color(0, 0, 0); // OFF
  1034. #endif
  1035. card.checkautostart(true);
  1036. }
  1037. else if (n == -1) {
  1038. SERIAL_ERROR_START;
  1039. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1040. }
  1041. if (sd_char == '#') stop_buffering = true;
  1042. sd_comment_mode = false; // for new command
  1043. if (!sd_count) continue; // skip empty lines (and comment lines)
  1044. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1045. sd_count = 0; // clear sd line buffer
  1046. _commit_command(false);
  1047. }
  1048. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1049. /**
  1050. * Keep fetching, but ignore normal characters beyond the max length
  1051. * The command will be injected when EOL is reached
  1052. */
  1053. }
  1054. else {
  1055. if (sd_char == ';') sd_comment_mode = true;
  1056. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1057. }
  1058. }
  1059. }
  1060. #endif // SDSUPPORT
  1061. /**
  1062. * Add to the circular command queue the next command from:
  1063. * - The command-injection queue (injected_commands_P)
  1064. * - The active serial input (usually USB)
  1065. * - The SD card file being actively printed
  1066. */
  1067. void get_available_commands() {
  1068. // if any immediate commands remain, don't get other commands yet
  1069. if (drain_injected_commands_P()) return;
  1070. get_serial_commands();
  1071. #if ENABLED(SDSUPPORT)
  1072. get_sdcard_commands();
  1073. #endif
  1074. }
  1075. inline bool code_has_value() {
  1076. int i = 1;
  1077. char c = seen_pointer[i];
  1078. while (c == ' ') c = seen_pointer[++i];
  1079. if (c == '-' || c == '+') c = seen_pointer[++i];
  1080. if (c == '.') c = seen_pointer[++i];
  1081. return NUMERIC(c);
  1082. }
  1083. inline float code_value_float() {
  1084. char* e = strchr(seen_pointer, 'E');
  1085. if (!e) return strtod(seen_pointer + 1, NULL);
  1086. *e = 0;
  1087. float ret = strtod(seen_pointer + 1, NULL);
  1088. *e = 'E';
  1089. return ret;
  1090. }
  1091. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1092. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1093. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1094. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1095. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1096. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1097. #if ENABLED(INCH_MODE_SUPPORT)
  1098. inline void set_input_linear_units(LinearUnit units) {
  1099. switch (units) {
  1100. case LINEARUNIT_INCH:
  1101. linear_unit_factor = 25.4;
  1102. break;
  1103. case LINEARUNIT_MM:
  1104. default:
  1105. linear_unit_factor = 1.0;
  1106. break;
  1107. }
  1108. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1109. }
  1110. inline float axis_unit_factor(const AxisEnum axis) {
  1111. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1112. }
  1113. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1114. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1115. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1116. #else
  1117. #define code_value_linear_units() code_value_float()
  1118. #define code_value_axis_units(A) code_value_float()
  1119. #define code_value_per_axis_unit(A) code_value_float()
  1120. #endif
  1121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1122. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1123. float code_value_temp_abs() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. return code_value_float();
  1127. case TEMPUNIT_F:
  1128. return (code_value_float() - 32) * 0.5555555556;
  1129. case TEMPUNIT_K:
  1130. return code_value_float() - 273.15;
  1131. default:
  1132. return code_value_float();
  1133. }
  1134. }
  1135. float code_value_temp_diff() {
  1136. switch (input_temp_units) {
  1137. case TEMPUNIT_C:
  1138. case TEMPUNIT_K:
  1139. return code_value_float();
  1140. case TEMPUNIT_F:
  1141. return code_value_float() * 0.5555555556;
  1142. default:
  1143. return code_value_float();
  1144. }
  1145. }
  1146. #else
  1147. float code_value_temp_abs() { return code_value_float(); }
  1148. float code_value_temp_diff() { return code_value_float(); }
  1149. #endif
  1150. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1151. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1152. bool code_seen(char code) {
  1153. seen_pointer = strchr(current_command_args, code);
  1154. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1155. }
  1156. /**
  1157. * Set target_extruder from the T parameter or the active_extruder
  1158. *
  1159. * Returns TRUE if the target is invalid
  1160. */
  1161. bool get_target_extruder_from_command(int code) {
  1162. if (code_seen('T')) {
  1163. if (code_value_byte() >= EXTRUDERS) {
  1164. SERIAL_ECHO_START;
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1168. return true;
  1169. }
  1170. target_extruder = code_value_byte();
  1171. }
  1172. else
  1173. target_extruder = active_extruder;
  1174. return false;
  1175. }
  1176. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1177. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1178. #endif
  1179. #if ENABLED(DUAL_X_CARRIAGE)
  1180. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1181. static float x_home_pos(const int extruder) {
  1182. if (extruder == 0)
  1183. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1184. else
  1185. /**
  1186. * In dual carriage mode the extruder offset provides an override of the
  1187. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1188. * This allows soft recalibration of the second extruder home position
  1189. * without firmware reflash (through the M218 command).
  1190. */
  1191. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1192. }
  1193. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[XYZE]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. #endif // DUAL_X_CARRIAGE
  1201. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. void update_software_endstops(const AxisEnum axis) {
  1212. const float offs = 0.0
  1213. #if HAS_HOME_OFFSET
  1214. + home_offset[axis]
  1215. #endif
  1216. #if HAS_POSITION_SHIFT
  1217. + position_shift[axis]
  1218. #endif
  1219. ;
  1220. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1221. workspace_offset[axis] = offs;
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. if (axis == X_AXIS) {
  1225. // In Dual X mode hotend_offset[X] is T1's home position
  1226. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1227. if (active_extruder != 0) {
  1228. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1229. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1230. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1231. }
  1232. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1233. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1234. // but not so far to the right that T1 would move past the end
  1235. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. }
  1238. else {
  1239. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. }
  1243. }
  1244. #else
  1245. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1246. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1247. #endif
  1248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1249. if (DEBUGGING(LEVELING)) {
  1250. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1251. #if HAS_HOME_OFFSET
  1252. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1253. #endif
  1254. #if HAS_POSITION_SHIFT
  1255. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1256. #endif
  1257. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1258. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1259. }
  1260. #endif
  1261. #if ENABLED(DELTA)
  1262. if (axis == Z_AXIS)
  1263. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1264. #endif
  1265. }
  1266. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1267. #if HAS_M206_COMMAND
  1268. /**
  1269. * Change the home offset for an axis, update the current
  1270. * position and the software endstops to retain the same
  1271. * relative distance to the new home.
  1272. *
  1273. * Since this changes the current_position, code should
  1274. * call sync_plan_position soon after this.
  1275. */
  1276. static void set_home_offset(const AxisEnum axis, const float v) {
  1277. current_position[axis] += v - home_offset[axis];
  1278. home_offset[axis] = v;
  1279. update_software_endstops(axis);
  1280. }
  1281. #endif // HAS_M206_COMMAND
  1282. /**
  1283. * Set an axis' current position to its home position (after homing).
  1284. *
  1285. * For Core and Cartesian robots this applies one-to-one when an
  1286. * individual axis has been homed.
  1287. *
  1288. * DELTA should wait until all homing is done before setting the XYZ
  1289. * current_position to home, because homing is a single operation.
  1290. * In the case where the axis positions are already known and previously
  1291. * homed, DELTA could home to X or Y individually by moving either one
  1292. * to the center. However, homing Z always homes XY and Z.
  1293. *
  1294. * SCARA should wait until all XY homing is done before setting the XY
  1295. * current_position to home, because neither X nor Y is at home until
  1296. * both are at home. Z can however be homed individually.
  1297. *
  1298. * Callers must sync the planner position after calling this!
  1299. */
  1300. static void set_axis_is_at_home(AxisEnum axis) {
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) {
  1303. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1304. SERIAL_CHAR(')');
  1305. SERIAL_EOL;
  1306. }
  1307. #endif
  1308. axis_known_position[axis] = axis_homed[axis] = true;
  1309. #if HAS_POSITION_SHIFT
  1310. position_shift[axis] = 0;
  1311. update_software_endstops(axis);
  1312. #endif
  1313. #if ENABLED(DUAL_X_CARRIAGE)
  1314. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1315. current_position[X_AXIS] = x_home_pos(active_extruder);
  1316. return;
  1317. }
  1318. #endif
  1319. #if ENABLED(MORGAN_SCARA)
  1320. /**
  1321. * Morgan SCARA homes XY at the same time
  1322. */
  1323. if (axis == X_AXIS || axis == Y_AXIS) {
  1324. float homeposition[XYZ];
  1325. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1326. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1327. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1328. /**
  1329. * Get Home position SCARA arm angles using inverse kinematics,
  1330. * and calculate homing offset using forward kinematics
  1331. */
  1332. inverse_kinematics(homeposition);
  1333. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1334. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1335. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1336. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1337. /**
  1338. * SCARA home positions are based on configuration since the actual
  1339. * limits are determined by the inverse kinematic transform.
  1340. */
  1341. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1343. }
  1344. else
  1345. #endif
  1346. {
  1347. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1348. }
  1349. /**
  1350. * Z Probe Z Homing? Account for the probe's Z offset.
  1351. */
  1352. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1353. if (axis == Z_AXIS) {
  1354. #if HOMING_Z_WITH_PROBE
  1355. current_position[Z_AXIS] -= zprobe_zoffset;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) {
  1358. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1359. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1360. }
  1361. #endif
  1362. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1364. #endif
  1365. }
  1366. #endif
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (DEBUGGING(LEVELING)) {
  1369. #if HAS_HOME_OFFSET
  1370. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1371. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1372. #endif
  1373. DEBUG_POS("", current_position);
  1374. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1375. SERIAL_CHAR(')');
  1376. SERIAL_EOL;
  1377. }
  1378. #endif
  1379. }
  1380. /**
  1381. * Some planner shorthand inline functions
  1382. */
  1383. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1384. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1385. int hbd = homing_bump_divisor[axis];
  1386. if (hbd < 1) {
  1387. hbd = 10;
  1388. SERIAL_ECHO_START;
  1389. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1390. }
  1391. return homing_feedrate_mm_s[axis] / hbd;
  1392. }
  1393. //
  1394. // line_to_current_position
  1395. // Move the planner to the current position from wherever it last moved
  1396. // (or from wherever it has been told it is located).
  1397. //
  1398. inline void line_to_current_position() {
  1399. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1400. }
  1401. //
  1402. // line_to_destination
  1403. // Move the planner, not necessarily synced with current_position
  1404. //
  1405. inline void line_to_destination(float fr_mm_s) {
  1406. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1407. }
  1408. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1409. inline void set_current_to_destination() { COPY(current_position, destination); }
  1410. inline void set_destination_to_current() { COPY(destination, current_position); }
  1411. #if IS_KINEMATIC
  1412. /**
  1413. * Calculate delta, start a line, and set current_position to destination
  1414. */
  1415. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1418. #endif
  1419. if ( current_position[X_AXIS] == destination[X_AXIS]
  1420. && current_position[Y_AXIS] == destination[Y_AXIS]
  1421. && current_position[Z_AXIS] == destination[Z_AXIS]
  1422. && current_position[E_AXIS] == destination[E_AXIS]
  1423. ) return;
  1424. refresh_cmd_timeout();
  1425. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1426. set_current_to_destination();
  1427. }
  1428. #endif // IS_KINEMATIC
  1429. /**
  1430. * Plan a move to (X, Y, Z) and set the current_position
  1431. * The final current_position may not be the one that was requested
  1432. */
  1433. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1434. const float old_feedrate_mm_s = feedrate_mm_s;
  1435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1436. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1437. #endif
  1438. #if ENABLED(DELTA)
  1439. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1440. set_destination_to_current(); // sync destination at the start
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1443. #endif
  1444. // when in the danger zone
  1445. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1446. if (z > delta_clip_start_height) { // staying in the danger zone
  1447. destination[X_AXIS] = x; // move directly (uninterpolated)
  1448. destination[Y_AXIS] = y;
  1449. destination[Z_AXIS] = z;
  1450. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1453. #endif
  1454. return;
  1455. }
  1456. else {
  1457. destination[Z_AXIS] = delta_clip_start_height;
  1458. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1460. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1461. #endif
  1462. }
  1463. }
  1464. if (z > current_position[Z_AXIS]) { // raising?
  1465. destination[Z_AXIS] = z;
  1466. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1469. #endif
  1470. }
  1471. destination[X_AXIS] = x;
  1472. destination[Y_AXIS] = y;
  1473. prepare_move_to_destination(); // set_current_to_destination
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1476. #endif
  1477. if (z < current_position[Z_AXIS]) { // lowering?
  1478. destination[Z_AXIS] = z;
  1479. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1482. #endif
  1483. }
  1484. #elif IS_SCARA
  1485. set_destination_to_current();
  1486. // If Z needs to raise, do it before moving XY
  1487. if (destination[Z_AXIS] < z) {
  1488. destination[Z_AXIS] = z;
  1489. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1490. }
  1491. destination[X_AXIS] = x;
  1492. destination[Y_AXIS] = y;
  1493. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1494. // If Z needs to lower, do it after moving XY
  1495. if (destination[Z_AXIS] > z) {
  1496. destination[Z_AXIS] = z;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1498. }
  1499. #else
  1500. // If Z needs to raise, do it before moving XY
  1501. if (current_position[Z_AXIS] < z) {
  1502. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1503. current_position[Z_AXIS] = z;
  1504. line_to_current_position();
  1505. }
  1506. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1507. current_position[X_AXIS] = x;
  1508. current_position[Y_AXIS] = y;
  1509. line_to_current_position();
  1510. // If Z needs to lower, do it after moving XY
  1511. if (current_position[Z_AXIS] > z) {
  1512. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1513. current_position[Z_AXIS] = z;
  1514. line_to_current_position();
  1515. }
  1516. #endif
  1517. stepper.synchronize();
  1518. feedrate_mm_s = old_feedrate_mm_s;
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1521. #endif
  1522. }
  1523. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1524. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1525. }
  1526. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1527. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1528. }
  1529. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1530. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1531. }
  1532. //
  1533. // Prepare to do endstop or probe moves
  1534. // with custom feedrates.
  1535. //
  1536. // - Save current feedrates
  1537. // - Reset the rate multiplier
  1538. // - Reset the command timeout
  1539. // - Enable the endstops (for endstop moves)
  1540. //
  1541. static void setup_for_endstop_or_probe_move() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1544. #endif
  1545. saved_feedrate_mm_s = feedrate_mm_s;
  1546. saved_feedrate_percentage = feedrate_percentage;
  1547. feedrate_percentage = 100;
  1548. refresh_cmd_timeout();
  1549. }
  1550. static void clean_up_after_endstop_or_probe_move() {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1553. #endif
  1554. feedrate_mm_s = saved_feedrate_mm_s;
  1555. feedrate_percentage = saved_feedrate_percentage;
  1556. refresh_cmd_timeout();
  1557. }
  1558. #if HAS_BED_PROBE
  1559. /**
  1560. * Raise Z to a minimum height to make room for a probe to move
  1561. */
  1562. inline void do_probe_raise(float z_raise) {
  1563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1564. if (DEBUGGING(LEVELING)) {
  1565. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1566. SERIAL_CHAR(')');
  1567. SERIAL_EOL;
  1568. }
  1569. #endif
  1570. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1571. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1572. if (z_dest > current_position[Z_AXIS])
  1573. do_blocking_move_to_z(z_dest);
  1574. }
  1575. #endif //HAS_BED_PROBE
  1576. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1577. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1578. const bool xx = x && !axis_homed[X_AXIS],
  1579. yy = y && !axis_homed[Y_AXIS],
  1580. zz = z && !axis_homed[Z_AXIS];
  1581. if (xx || yy || zz) {
  1582. SERIAL_ECHO_START;
  1583. SERIAL_ECHOPGM(MSG_HOME " ");
  1584. if (xx) SERIAL_ECHOPGM(MSG_X);
  1585. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1586. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1587. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1588. #if ENABLED(ULTRA_LCD)
  1589. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1590. #endif
  1591. return true;
  1592. }
  1593. return false;
  1594. }
  1595. #endif
  1596. #if ENABLED(Z_PROBE_SLED)
  1597. #ifndef SLED_DOCKING_OFFSET
  1598. #define SLED_DOCKING_OFFSET 0
  1599. #endif
  1600. /**
  1601. * Method to dock/undock a sled designed by Charles Bell.
  1602. *
  1603. * stow[in] If false, move to MAX_X and engage the solenoid
  1604. * If true, move to MAX_X and release the solenoid
  1605. */
  1606. static void dock_sled(bool stow) {
  1607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1608. if (DEBUGGING(LEVELING)) {
  1609. SERIAL_ECHOPAIR("dock_sled(", stow);
  1610. SERIAL_CHAR(')');
  1611. SERIAL_EOL;
  1612. }
  1613. #endif
  1614. // Dock sled a bit closer to ensure proper capturing
  1615. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1616. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1617. WRITE(SOL1_PIN, !stow); // switch solenoid
  1618. #endif
  1619. }
  1620. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1621. void run_deploy_moves_script() {
  1622. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1634. #endif
  1635. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1636. #endif
  1637. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1649. #endif
  1650. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1651. #endif
  1652. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1664. #endif
  1665. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1679. #endif
  1680. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1694. #endif
  1695. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1696. #endif
  1697. }
  1698. void run_stow_moves_script() {
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1711. #endif
  1712. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1713. #endif
  1714. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1716. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1726. #endif
  1727. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1728. #endif
  1729. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1731. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1741. #endif
  1742. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1743. #endif
  1744. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1746. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1756. #endif
  1757. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1758. #endif
  1759. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1761. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1765. #endif
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1771. #endif
  1772. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1773. #endif
  1774. }
  1775. #endif
  1776. #if HAS_BED_PROBE
  1777. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1778. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1779. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1780. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1781. #else
  1782. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1783. #endif
  1784. #endif
  1785. #if ENABLED(BLTOUCH)
  1786. void bltouch_command(int angle) {
  1787. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1788. safe_delay(BLTOUCH_DELAY);
  1789. }
  1790. //
  1791. // The BL-Touch probes have a HAL effect sensor. The high currents switching
  1792. // on and off cause big magnetic fields that can affect the repeatability of the
  1793. // sensor. So, for BL-Touch probes, we turn off the heaters during the actual probe.
  1794. // And then we quickly turn them back on after we have sampled the point
  1795. //
  1796. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1797. void turn_heaters_on_or_off_for_bltouch(const bool deploy) {
  1798. static int8_t bltouch_recursion_cnt=0;
  1799. static millis_t last_emi_protection=0;
  1800. static float temps_at_entry[HOTENDS];
  1801. #if HAS_TEMP_BED
  1802. static float bed_temp_at_entry;
  1803. #endif
  1804. if (deploy && bltouch_recursion_cnt>0) // if already in the correct state, we don't need to do anything
  1805. return; // with the heaters.
  1806. if (!deploy && bltouch_recursion_cnt<1) // if already in the correct state, we don't need to do anything
  1807. return; // with the heaters.
  1808. if (deploy) {
  1809. bltouch_recursion_cnt++;
  1810. last_emi_protection = millis();
  1811. HOTEND_LOOP() temps_at_entry[e] = thermalManager.degTargetHotend(e); // save the current target temperatures
  1812. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // so we know what to restore them to.
  1813. #if HAS_TEMP_BED
  1814. bed_temp_at_entry = thermalManager.degTargetBed();
  1815. thermalManager.setTargetBed(0.0);
  1816. #endif
  1817. }
  1818. else {
  1819. bltouch_recursion_cnt--; // the heaters are only turned back on
  1820. if (bltouch_recursion_cnt==0 && ((last_emi_protection+20000L)>millis())) { // if everything is perfect. It is expected
  1821. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e); // that the bltouch_recursion_cnt is zero and
  1822. #if HAS_TEMP_BED // that the heaters were shut off less than
  1823. thermalManager.setTargetBed(bed_temp_at_entry); // 20 seconds ago
  1824. #endif
  1825. }
  1826. }
  1827. }
  1828. #endif
  1829. void set_bltouch_deployed(const bool deploy) {
  1830. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1831. turn_heaters_on_or_off_for_bltouch(deploy);
  1832. #endif
  1833. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1834. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1835. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1836. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1837. safe_delay(1500); // Wait for internal self-test to complete.
  1838. // (Measured completion time was 0.65 seconds
  1839. // after reset, deploy, and stow sequence)
  1840. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1841. SERIAL_ERROR_START;
  1842. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1843. stop(); // punt!
  1844. }
  1845. }
  1846. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) {
  1849. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1850. SERIAL_CHAR(')');
  1851. SERIAL_EOL;
  1852. }
  1853. #endif
  1854. }
  1855. #endif
  1856. // returns false for ok and true for failure
  1857. bool set_probe_deployed(bool deploy) {
  1858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1859. if (DEBUGGING(LEVELING)) {
  1860. DEBUG_POS("set_probe_deployed", current_position);
  1861. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1862. }
  1863. #endif
  1864. #if ENABLED(BLTOUCH) && ENABLED(BLTOUCH_HEATERS_OFF)
  1865. turn_heaters_on_or_off_for_bltouch(deploy);
  1866. #endif
  1867. if (endstops.z_probe_enabled == deploy) return false;
  1868. // Make room for probe
  1869. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1870. // When deploying make sure BLTOUCH is not already triggered
  1871. #if ENABLED(BLTOUCH)
  1872. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1873. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1874. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1875. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1876. safe_delay(1500); // wait for internal self test to complete
  1877. // measured completion time was 0.65 seconds
  1878. // after reset, deploy & stow sequence
  1879. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1880. SERIAL_ERROR_START;
  1881. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1882. stop(); // punt!
  1883. return true;
  1884. }
  1885. }
  1886. #elif ENABLED(Z_PROBE_SLED)
  1887. if (axis_unhomed_error(true, false, false)) {
  1888. SERIAL_ERROR_START;
  1889. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1890. stop();
  1891. return true;
  1892. }
  1893. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1894. if (axis_unhomed_error(true, true, true )) {
  1895. SERIAL_ERROR_START;
  1896. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1897. stop();
  1898. return true;
  1899. }
  1900. #endif
  1901. const float oldXpos = current_position[X_AXIS],
  1902. oldYpos = current_position[Y_AXIS];
  1903. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1904. // If endstop is already false, the Z probe is deployed
  1905. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1906. // Would a goto be less ugly?
  1907. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1908. // for a triggered when stowed manual probe.
  1909. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1910. // otherwise an Allen-Key probe can't be stowed.
  1911. #endif
  1912. #if ENABLED(SOLENOID_PROBE)
  1913. #if HAS_SOLENOID_1
  1914. WRITE(SOL1_PIN, deploy);
  1915. #endif
  1916. #elif ENABLED(Z_PROBE_SLED)
  1917. dock_sled(!deploy);
  1918. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1919. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1920. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1921. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1922. #endif
  1923. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1924. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1925. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1926. if (IsRunning()) {
  1927. SERIAL_ERROR_START;
  1928. SERIAL_ERRORLNPGM("Z-Probe failed");
  1929. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1930. }
  1931. stop();
  1932. return true;
  1933. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1934. #endif
  1935. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1936. endstops.enable_z_probe(deploy);
  1937. return false;
  1938. }
  1939. static void do_probe_move(float z, float fr_mm_m) {
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1942. #endif
  1943. // Deploy BLTouch at the start of any probe
  1944. #if ENABLED(BLTOUCH)
  1945. set_bltouch_deployed(true);
  1946. #endif
  1947. // Move down until probe triggered
  1948. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1949. // Retract BLTouch immediately after a probe
  1950. #if ENABLED(BLTOUCH)
  1951. set_bltouch_deployed(false);
  1952. #endif
  1953. // Clear endstop flags
  1954. endstops.hit_on_purpose();
  1955. // Get Z where the steppers were interrupted
  1956. set_current_from_steppers_for_axis(Z_AXIS);
  1957. // Tell the planner where we actually are
  1958. SYNC_PLAN_POSITION_KINEMATIC();
  1959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1960. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1961. #endif
  1962. }
  1963. // Do a single Z probe and return with current_position[Z_AXIS]
  1964. // at the height where the probe triggered.
  1965. static float run_z_probe() {
  1966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1967. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1968. #endif
  1969. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1970. refresh_cmd_timeout();
  1971. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1972. // Do a first probe at the fast speed
  1973. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1975. float first_probe_z = current_position[Z_AXIS];
  1976. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1977. #endif
  1978. // move up by the bump distance
  1979. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1980. #else
  1981. // If the nozzle is above the travel height then
  1982. // move down quickly before doing the slow probe
  1983. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1984. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1985. if (z < current_position[Z_AXIS])
  1986. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1987. #endif
  1988. // move down slowly to find bed
  1989. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1991. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1992. #endif
  1993. // Debug: compare probe heights
  1994. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) {
  1996. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1997. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1998. }
  1999. #endif
  2000. return current_position[Z_AXIS] + zprobe_zoffset;
  2001. }
  2002. /**
  2003. * - Move to the given XY
  2004. * - Deploy the probe, if not already deployed
  2005. * - Probe the bed, get the Z position
  2006. * - Depending on the 'stow' flag
  2007. * - Stow the probe, or
  2008. * - Raise to the BETWEEN height
  2009. * - Return the probed Z position
  2010. */
  2011. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2013. if (DEBUGGING(LEVELING)) {
  2014. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2015. SERIAL_ECHOPAIR(", ", y);
  2016. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2017. SERIAL_ECHOLNPGM("stow)");
  2018. DEBUG_POS("", current_position);
  2019. }
  2020. #endif
  2021. const float old_feedrate_mm_s = feedrate_mm_s;
  2022. #if ENABLED(DELTA)
  2023. if (current_position[Z_AXIS] > delta_clip_start_height)
  2024. do_blocking_move_to_z(delta_clip_start_height);
  2025. #endif
  2026. // Ensure a minimum height before moving the probe
  2027. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2028. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2029. // Move the probe to the given XY
  2030. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2031. if (DEPLOY_PROBE()) return NAN;
  2032. const float measured_z = run_z_probe();
  2033. if (!stow)
  2034. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2035. else
  2036. if (STOW_PROBE()) return NAN;
  2037. if (verbose_level > 2) {
  2038. SERIAL_PROTOCOLPGM("Bed X: ");
  2039. SERIAL_PROTOCOL_F(x, 3);
  2040. SERIAL_PROTOCOLPGM(" Y: ");
  2041. SERIAL_PROTOCOL_F(y, 3);
  2042. SERIAL_PROTOCOLPGM(" Z: ");
  2043. SERIAL_PROTOCOL_F(measured_z, 3);
  2044. SERIAL_EOL;
  2045. }
  2046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2048. #endif
  2049. feedrate_mm_s = old_feedrate_mm_s;
  2050. return measured_z;
  2051. }
  2052. #endif // HAS_BED_PROBE
  2053. #if PLANNER_LEVELING
  2054. /**
  2055. * Turn bed leveling on or off, fixing the current
  2056. * position as-needed.
  2057. *
  2058. * Disable: Current position = physical position
  2059. * Enable: Current position = "unleveled" physical position
  2060. */
  2061. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2062. #if ENABLED(MESH_BED_LEVELING)
  2063. if (enable != mbl.active()) {
  2064. if (!enable)
  2065. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2066. mbl.set_active(enable && mbl.has_mesh());
  2067. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2068. }
  2069. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2070. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2071. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2072. #else
  2073. constexpr bool can_change = true;
  2074. #endif
  2075. if (can_change && enable != planner.abl_enabled) {
  2076. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2077. // Force bilinear_z_offset to re-calculate next time
  2078. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2079. (void)bilinear_z_offset(reset);
  2080. #endif
  2081. planner.abl_enabled = enable;
  2082. if (!enable)
  2083. set_current_from_steppers_for_axis(
  2084. #if ABL_PLANAR
  2085. ALL_AXES
  2086. #else
  2087. Z_AXIS
  2088. #endif
  2089. );
  2090. else
  2091. planner.unapply_leveling(current_position);
  2092. }
  2093. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2094. ubl.state.active = enable;
  2095. //set_current_from_steppers_for_axis(Z_AXIS);
  2096. #endif
  2097. }
  2098. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2099. void set_z_fade_height(const float zfh) {
  2100. planner.z_fade_height = zfh;
  2101. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2102. if (
  2103. #if ENABLED(MESH_BED_LEVELING)
  2104. mbl.active()
  2105. #else
  2106. planner.abl_enabled
  2107. #endif
  2108. ) {
  2109. set_current_from_steppers_for_axis(
  2110. #if ABL_PLANAR
  2111. ALL_AXES
  2112. #else
  2113. Z_AXIS
  2114. #endif
  2115. );
  2116. }
  2117. }
  2118. #endif // LEVELING_FADE_HEIGHT
  2119. /**
  2120. * Reset calibration results to zero.
  2121. */
  2122. void reset_bed_level() {
  2123. set_bed_leveling_enabled(false);
  2124. #if ENABLED(MESH_BED_LEVELING)
  2125. if (mbl.has_mesh()) {
  2126. mbl.reset();
  2127. mbl.set_has_mesh(false);
  2128. }
  2129. #else
  2130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2131. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2132. #endif
  2133. #if ABL_PLANAR
  2134. planner.bed_level_matrix.set_to_identity();
  2135. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2136. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2137. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2138. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2139. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2140. z_values[x][y] = NAN;
  2141. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2142. ubl.reset();
  2143. #endif
  2144. #endif
  2145. }
  2146. #endif // PLANNER_LEVELING
  2147. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2148. /**
  2149. * Enable to produce output in JSON format suitable
  2150. * for SCAD or JavaScript mesh visualizers.
  2151. *
  2152. * Visualize meshes in OpenSCAD using the included script.
  2153. *
  2154. * buildroot/shared/scripts/MarlinMesh.scad
  2155. */
  2156. //#define SCAD_MESH_OUTPUT
  2157. /**
  2158. * Print calibration results for plotting or manual frame adjustment.
  2159. */
  2160. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2161. #ifndef SCAD_MESH_OUTPUT
  2162. for (uint8_t x = 0; x < sx; x++) {
  2163. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2164. SERIAL_PROTOCOLCHAR(' ');
  2165. SERIAL_PROTOCOL((int)x);
  2166. }
  2167. SERIAL_EOL;
  2168. #endif
  2169. #ifdef SCAD_MESH_OUTPUT
  2170. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2171. #endif
  2172. for (uint8_t y = 0; y < sy; y++) {
  2173. #ifdef SCAD_MESH_OUTPUT
  2174. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2175. #else
  2176. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2177. SERIAL_PROTOCOL((int)y);
  2178. #endif
  2179. for (uint8_t x = 0; x < sx; x++) {
  2180. SERIAL_PROTOCOLCHAR(' ');
  2181. const float offset = fn(x, y);
  2182. if (!isnan(offset)) {
  2183. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2184. SERIAL_PROTOCOL_F(offset, precision);
  2185. }
  2186. else {
  2187. #ifdef SCAD_MESH_OUTPUT
  2188. for (uint8_t i = 3; i < precision + 3; i++)
  2189. SERIAL_PROTOCOLCHAR(' ');
  2190. SERIAL_PROTOCOLPGM("NAN");
  2191. #else
  2192. for (uint8_t i = 0; i < precision + 3; i++)
  2193. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2194. #endif
  2195. }
  2196. #ifdef SCAD_MESH_OUTPUT
  2197. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2198. #endif
  2199. }
  2200. #ifdef SCAD_MESH_OUTPUT
  2201. SERIAL_PROTOCOLCHAR(' ');
  2202. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2203. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2204. #endif
  2205. SERIAL_EOL;
  2206. }
  2207. #ifdef SCAD_MESH_OUTPUT
  2208. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2209. #endif
  2210. SERIAL_EOL;
  2211. }
  2212. #endif
  2213. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2214. /**
  2215. * Extrapolate a single point from its neighbors
  2216. */
  2217. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2219. if (DEBUGGING(LEVELING)) {
  2220. SERIAL_ECHOPGM("Extrapolate [");
  2221. if (x < 10) SERIAL_CHAR(' ');
  2222. SERIAL_ECHO((int)x);
  2223. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2224. SERIAL_CHAR(' ');
  2225. if (y < 10) SERIAL_CHAR(' ');
  2226. SERIAL_ECHO((int)y);
  2227. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2228. SERIAL_CHAR(']');
  2229. }
  2230. #endif
  2231. if (!isnan(z_values[x][y])) {
  2232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2233. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2234. #endif
  2235. return; // Don't overwrite good values.
  2236. }
  2237. SERIAL_EOL;
  2238. // Get X neighbors, Y neighbors, and XY neighbors
  2239. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2240. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2241. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2242. // Treat far unprobed points as zero, near as equal to far
  2243. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2244. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2245. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2246. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2247. // Take the average instead of the median
  2248. z_values[x][y] = (a + b + c) / 3.0;
  2249. // Median is robust (ignores outliers).
  2250. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2251. // : ((c < b) ? b : (a < c) ? a : c);
  2252. }
  2253. //Enable this if your SCARA uses 180° of total area
  2254. //#define EXTRAPOLATE_FROM_EDGE
  2255. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2256. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2257. #define HALF_IN_X
  2258. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2259. #define HALF_IN_Y
  2260. #endif
  2261. #endif
  2262. /**
  2263. * Fill in the unprobed points (corners of circular print surface)
  2264. * using linear extrapolation, away from the center.
  2265. */
  2266. static void extrapolate_unprobed_bed_level() {
  2267. #ifdef HALF_IN_X
  2268. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2269. #else
  2270. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2271. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2272. xlen = ctrx1;
  2273. #endif
  2274. #ifdef HALF_IN_Y
  2275. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2276. #else
  2277. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2278. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2279. ylen = ctry1;
  2280. #endif
  2281. for (uint8_t xo = 0; xo <= xlen; xo++)
  2282. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2283. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2284. #ifndef HALF_IN_X
  2285. const uint8_t x1 = ctrx1 - xo;
  2286. #endif
  2287. #ifndef HALF_IN_Y
  2288. const uint8_t y1 = ctry1 - yo;
  2289. #ifndef HALF_IN_X
  2290. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2291. #endif
  2292. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2293. #endif
  2294. #ifndef HALF_IN_X
  2295. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2296. #endif
  2297. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2298. }
  2299. }
  2300. static void print_bilinear_leveling_grid() {
  2301. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2302. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2303. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2304. );
  2305. }
  2306. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2307. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2308. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2309. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2310. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2311. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2312. int bilinear_grid_spacing_virt[2] = { 0 };
  2313. float bilinear_grid_factor_virt[2] = { 0 };
  2314. static void bed_level_virt_print() {
  2315. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2316. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2317. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2318. );
  2319. }
  2320. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2321. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2322. uint8_t ep = 0, ip = 1;
  2323. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2324. if (x) {
  2325. ep = GRID_MAX_POINTS_X - 1;
  2326. ip = GRID_MAX_POINTS_X - 2;
  2327. }
  2328. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2329. return LINEAR_EXTRAPOLATION(
  2330. z_values[ep][y - 1],
  2331. z_values[ip][y - 1]
  2332. );
  2333. else
  2334. return LINEAR_EXTRAPOLATION(
  2335. bed_level_virt_coord(ep + 1, y),
  2336. bed_level_virt_coord(ip + 1, y)
  2337. );
  2338. }
  2339. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2340. if (y) {
  2341. ep = GRID_MAX_POINTS_Y - 1;
  2342. ip = GRID_MAX_POINTS_Y - 2;
  2343. }
  2344. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2345. return LINEAR_EXTRAPOLATION(
  2346. z_values[x - 1][ep],
  2347. z_values[x - 1][ip]
  2348. );
  2349. else
  2350. return LINEAR_EXTRAPOLATION(
  2351. bed_level_virt_coord(x, ep + 1),
  2352. bed_level_virt_coord(x, ip + 1)
  2353. );
  2354. }
  2355. return z_values[x - 1][y - 1];
  2356. }
  2357. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2358. return (
  2359. p[i-1] * -t * sq(1 - t)
  2360. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2361. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2362. - p[i+2] * sq(t) * (1 - t)
  2363. ) * 0.5;
  2364. }
  2365. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2366. float row[4], column[4];
  2367. for (uint8_t i = 0; i < 4; i++) {
  2368. for (uint8_t j = 0; j < 4; j++) {
  2369. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2370. }
  2371. row[i] = bed_level_virt_cmr(column, 1, ty);
  2372. }
  2373. return bed_level_virt_cmr(row, 1, tx);
  2374. }
  2375. void bed_level_virt_interpolate() {
  2376. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2377. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2378. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2379. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2380. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2381. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2382. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2383. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2384. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2385. continue;
  2386. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2387. bed_level_virt_2cmr(
  2388. x + 1,
  2389. y + 1,
  2390. (float)tx / (BILINEAR_SUBDIVISIONS),
  2391. (float)ty / (BILINEAR_SUBDIVISIONS)
  2392. );
  2393. }
  2394. }
  2395. #endif // ABL_BILINEAR_SUBDIVISION
  2396. // Refresh after other values have been updated
  2397. void refresh_bed_level() {
  2398. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2399. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2400. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2401. bed_level_virt_interpolate();
  2402. #endif
  2403. }
  2404. #endif // AUTO_BED_LEVELING_BILINEAR
  2405. /**
  2406. * Home an individual linear axis
  2407. */
  2408. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2410. if (DEBUGGING(LEVELING)) {
  2411. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2412. SERIAL_ECHOPAIR(", ", distance);
  2413. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2414. SERIAL_CHAR(')');
  2415. SERIAL_EOL;
  2416. }
  2417. #endif
  2418. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2419. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2420. if (deploy_bltouch) set_bltouch_deployed(true);
  2421. #endif
  2422. // Tell the planner we're at Z=0
  2423. current_position[axis] = 0;
  2424. #if IS_SCARA
  2425. SYNC_PLAN_POSITION_KINEMATIC();
  2426. current_position[axis] = distance;
  2427. inverse_kinematics(current_position);
  2428. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2429. #else
  2430. sync_plan_position();
  2431. current_position[axis] = distance;
  2432. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2433. #endif
  2434. stepper.synchronize();
  2435. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2436. if (deploy_bltouch) set_bltouch_deployed(false);
  2437. #endif
  2438. endstops.hit_on_purpose();
  2439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2440. if (DEBUGGING(LEVELING)) {
  2441. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2442. SERIAL_CHAR(')');
  2443. SERIAL_EOL;
  2444. }
  2445. #endif
  2446. }
  2447. /**
  2448. * TMC2130 specific sensorless homing using stallGuard2.
  2449. * stallGuard2 only works when in spreadCycle mode.
  2450. * spreadCycle and stealthChop are mutually exclusive.
  2451. */
  2452. #if ENABLED(SENSORLESS_HOMING)
  2453. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2454. #if ENABLED(STEALTHCHOP)
  2455. if (enable) {
  2456. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2457. st.stealthChop(0);
  2458. }
  2459. else {
  2460. st.coolstep_min_speed(0);
  2461. st.stealthChop(1);
  2462. }
  2463. #endif
  2464. st.diag1_stall(enable ? 1 : 0);
  2465. }
  2466. #endif
  2467. /**
  2468. * Home an individual "raw axis" to its endstop.
  2469. * This applies to XYZ on Cartesian and Core robots, and
  2470. * to the individual ABC steppers on DELTA and SCARA.
  2471. *
  2472. * At the end of the procedure the axis is marked as
  2473. * homed and the current position of that axis is updated.
  2474. * Kinematic robots should wait till all axes are homed
  2475. * before updating the current position.
  2476. */
  2477. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2478. static void homeaxis(const AxisEnum axis) {
  2479. #if IS_SCARA
  2480. // Only Z homing (with probe) is permitted
  2481. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2482. #else
  2483. #define CAN_HOME(A) \
  2484. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2485. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2486. #endif
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2490. SERIAL_CHAR(')');
  2491. SERIAL_EOL;
  2492. }
  2493. #endif
  2494. const int axis_home_dir =
  2495. #if ENABLED(DUAL_X_CARRIAGE)
  2496. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2497. #endif
  2498. home_dir(axis);
  2499. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2500. #if HOMING_Z_WITH_PROBE
  2501. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2502. #endif
  2503. // Set a flag for Z motor locking
  2504. #if ENABLED(Z_DUAL_ENDSTOPS)
  2505. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2506. #endif
  2507. // Disable stealthChop if used. Enable diag1 pin on driver.
  2508. #if ENABLED(SENSORLESS_HOMING)
  2509. #if ENABLED(X_IS_TMC2130)
  2510. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2511. #endif
  2512. #if ENABLED(Y_IS_TMC2130)
  2513. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2514. #endif
  2515. #endif
  2516. // Fast move towards endstop until triggered
  2517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2518. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2519. #endif
  2520. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2521. // When homing Z with probe respect probe clearance
  2522. const float bump = axis_home_dir * (
  2523. #if HOMING_Z_WITH_PROBE
  2524. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2525. #endif
  2526. home_bump_mm(axis)
  2527. );
  2528. // If a second homing move is configured...
  2529. if (bump) {
  2530. // Move away from the endstop by the axis HOME_BUMP_MM
  2531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2532. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2533. #endif
  2534. do_homing_move(axis, -bump);
  2535. // Slow move towards endstop until triggered
  2536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2537. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2538. #endif
  2539. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2540. }
  2541. #if ENABLED(Z_DUAL_ENDSTOPS)
  2542. if (axis == Z_AXIS) {
  2543. float adj = fabs(z_endstop_adj);
  2544. bool lockZ1;
  2545. if (axis_home_dir > 0) {
  2546. adj = -adj;
  2547. lockZ1 = (z_endstop_adj > 0);
  2548. }
  2549. else
  2550. lockZ1 = (z_endstop_adj < 0);
  2551. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2552. // Move to the adjusted endstop height
  2553. do_homing_move(axis, adj);
  2554. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2555. stepper.set_homing_flag(false);
  2556. } // Z_AXIS
  2557. #endif
  2558. #if IS_SCARA
  2559. set_axis_is_at_home(axis);
  2560. SYNC_PLAN_POSITION_KINEMATIC();
  2561. #elif ENABLED(DELTA)
  2562. // Delta has already moved all three towers up in G28
  2563. // so here it re-homes each tower in turn.
  2564. // Delta homing treats the axes as normal linear axes.
  2565. // retrace by the amount specified in endstop_adj
  2566. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2568. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2569. #endif
  2570. do_homing_move(axis, endstop_adj[axis]);
  2571. }
  2572. #else
  2573. // For cartesian/core machines,
  2574. // set the axis to its home position
  2575. set_axis_is_at_home(axis);
  2576. sync_plan_position();
  2577. destination[axis] = current_position[axis];
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2580. #endif
  2581. #endif
  2582. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2583. #if ENABLED(SENSORLESS_HOMING)
  2584. #if ENABLED(X_IS_TMC2130)
  2585. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2586. #endif
  2587. #if ENABLED(Y_IS_TMC2130)
  2588. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2589. #endif
  2590. #endif
  2591. // Put away the Z probe
  2592. #if HOMING_Z_WITH_PROBE
  2593. if (axis == Z_AXIS && STOW_PROBE()) return;
  2594. #endif
  2595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2596. if (DEBUGGING(LEVELING)) {
  2597. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2598. SERIAL_CHAR(')');
  2599. SERIAL_EOL;
  2600. }
  2601. #endif
  2602. } // homeaxis()
  2603. #if ENABLED(FWRETRACT)
  2604. void retract(const bool retracting, const bool swapping = false) {
  2605. static float hop_height;
  2606. if (retracting == retracted[active_extruder]) return;
  2607. const float old_feedrate_mm_s = feedrate_mm_s;
  2608. set_destination_to_current();
  2609. if (retracting) {
  2610. feedrate_mm_s = retract_feedrate_mm_s;
  2611. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2612. sync_plan_position_e();
  2613. prepare_move_to_destination();
  2614. if (retract_zlift > 0.01) {
  2615. hop_height = current_position[Z_AXIS];
  2616. // Pretend current position is lower
  2617. current_position[Z_AXIS] -= retract_zlift;
  2618. SYNC_PLAN_POSITION_KINEMATIC();
  2619. // Raise up to the old current_position
  2620. prepare_move_to_destination();
  2621. }
  2622. }
  2623. else {
  2624. // If the height hasn't been altered, undo the Z hop
  2625. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2626. // Pretend current position is higher. Z will lower on the next move
  2627. current_position[Z_AXIS] += retract_zlift;
  2628. SYNC_PLAN_POSITION_KINEMATIC();
  2629. }
  2630. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2631. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2632. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2633. sync_plan_position_e();
  2634. // Lower Z and recover E
  2635. prepare_move_to_destination();
  2636. }
  2637. feedrate_mm_s = old_feedrate_mm_s;
  2638. retracted[active_extruder] = retracting;
  2639. } // retract()
  2640. #endif // FWRETRACT
  2641. #if ENABLED(MIXING_EXTRUDER)
  2642. void normalize_mix() {
  2643. float mix_total = 0.0;
  2644. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2645. // Scale all values if they don't add up to ~1.0
  2646. if (!NEAR(mix_total, 1.0)) {
  2647. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2648. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2649. }
  2650. }
  2651. #if ENABLED(DIRECT_MIXING_IN_G1)
  2652. // Get mixing parameters from the GCode
  2653. // The total "must" be 1.0 (but it will be normalized)
  2654. // If no mix factors are given, the old mix is preserved
  2655. void gcode_get_mix() {
  2656. const char* mixing_codes = "ABCDHI";
  2657. byte mix_bits = 0;
  2658. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2659. if (code_seen(mixing_codes[i])) {
  2660. SBI(mix_bits, i);
  2661. float v = code_value_float();
  2662. NOLESS(v, 0.0);
  2663. mixing_factor[i] = RECIPROCAL(v);
  2664. }
  2665. }
  2666. // If any mixing factors were included, clear the rest
  2667. // If none were included, preserve the last mix
  2668. if (mix_bits) {
  2669. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2670. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2671. normalize_mix();
  2672. }
  2673. }
  2674. #endif
  2675. #endif
  2676. /**
  2677. * ***************************************************************************
  2678. * ***************************** G-CODE HANDLING *****************************
  2679. * ***************************************************************************
  2680. */
  2681. /**
  2682. * Set XYZE destination and feedrate from the current GCode command
  2683. *
  2684. * - Set destination from included axis codes
  2685. * - Set to current for missing axis codes
  2686. * - Set the feedrate, if included
  2687. */
  2688. void gcode_get_destination() {
  2689. LOOP_XYZE(i) {
  2690. if (code_seen(axis_codes[i]))
  2691. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2692. else
  2693. destination[i] = current_position[i];
  2694. }
  2695. if (code_seen('F') && code_value_linear_units() > 0.0)
  2696. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2697. #if ENABLED(PRINTCOUNTER)
  2698. if (!DEBUGGING(DRYRUN))
  2699. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2700. #endif
  2701. // Get ABCDHI mixing factors
  2702. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2703. gcode_get_mix();
  2704. #endif
  2705. }
  2706. void unknown_command_error() {
  2707. SERIAL_ECHO_START;
  2708. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2709. SERIAL_CHAR('"');
  2710. SERIAL_EOL;
  2711. }
  2712. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2713. /**
  2714. * Output a "busy" message at regular intervals
  2715. * while the machine is not accepting commands.
  2716. */
  2717. void host_keepalive() {
  2718. const millis_t ms = millis();
  2719. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2720. if (PENDING(ms, next_busy_signal_ms)) return;
  2721. switch (busy_state) {
  2722. case IN_HANDLER:
  2723. case IN_PROCESS:
  2724. SERIAL_ECHO_START;
  2725. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2726. break;
  2727. case PAUSED_FOR_USER:
  2728. SERIAL_ECHO_START;
  2729. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2730. break;
  2731. case PAUSED_FOR_INPUT:
  2732. SERIAL_ECHO_START;
  2733. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2734. break;
  2735. default:
  2736. break;
  2737. }
  2738. }
  2739. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2740. }
  2741. #endif //HOST_KEEPALIVE_FEATURE
  2742. bool position_is_reachable(const float target[XYZ]
  2743. #if HAS_BED_PROBE
  2744. , bool by_probe=false
  2745. #endif
  2746. ) {
  2747. float dx = RAW_X_POSITION(target[X_AXIS]),
  2748. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2749. #if HAS_BED_PROBE
  2750. if (by_probe) {
  2751. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2752. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2753. }
  2754. #endif
  2755. #if IS_SCARA
  2756. #if MIDDLE_DEAD_ZONE_R > 0
  2757. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2758. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2759. #else
  2760. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2761. #endif
  2762. #elif ENABLED(DELTA)
  2763. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2764. #else
  2765. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2766. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2767. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2768. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2769. #endif
  2770. }
  2771. /**************************************************
  2772. ***************** GCode Handlers *****************
  2773. **************************************************/
  2774. /**
  2775. * G0, G1: Coordinated movement of X Y Z E axes
  2776. */
  2777. inline void gcode_G0_G1(
  2778. #if IS_SCARA
  2779. bool fast_move=false
  2780. #endif
  2781. ) {
  2782. if (IsRunning()) {
  2783. gcode_get_destination(); // For X Y Z E F
  2784. #if ENABLED(FWRETRACT)
  2785. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2786. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2787. // Is this move an attempt to retract or recover?
  2788. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2789. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2790. sync_plan_position_e(); // AND from the planner
  2791. retract(!retracted[active_extruder]);
  2792. return;
  2793. }
  2794. }
  2795. #endif //FWRETRACT
  2796. #if IS_SCARA
  2797. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2798. #else
  2799. prepare_move_to_destination();
  2800. #endif
  2801. }
  2802. }
  2803. /**
  2804. * G2: Clockwise Arc
  2805. * G3: Counterclockwise Arc
  2806. *
  2807. * This command has two forms: IJ-form and R-form.
  2808. *
  2809. * - I specifies an X offset. J specifies a Y offset.
  2810. * At least one of the IJ parameters is required.
  2811. * X and Y can be omitted to do a complete circle.
  2812. * The given XY is not error-checked. The arc ends
  2813. * based on the angle of the destination.
  2814. * Mixing I or J with R will throw an error.
  2815. *
  2816. * - R specifies the radius. X or Y is required.
  2817. * Omitting both X and Y will throw an error.
  2818. * X or Y must differ from the current XY.
  2819. * Mixing R with I or J will throw an error.
  2820. *
  2821. * Examples:
  2822. *
  2823. * G2 I10 ; CW circle centered at X+10
  2824. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2825. */
  2826. #if ENABLED(ARC_SUPPORT)
  2827. inline void gcode_G2_G3(bool clockwise) {
  2828. if (IsRunning()) {
  2829. #if ENABLED(SF_ARC_FIX)
  2830. const bool relative_mode_backup = relative_mode;
  2831. relative_mode = true;
  2832. #endif
  2833. gcode_get_destination();
  2834. #if ENABLED(SF_ARC_FIX)
  2835. relative_mode = relative_mode_backup;
  2836. #endif
  2837. float arc_offset[2] = { 0.0, 0.0 };
  2838. if (code_seen('R')) {
  2839. const float r = code_value_linear_units(),
  2840. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2841. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2842. if (r && (x2 != x1 || y2 != y1)) {
  2843. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2844. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2845. d = HYPOT(dx, dy), // Linear distance between the points
  2846. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2847. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2848. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2849. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2850. arc_offset[X_AXIS] = cx - x1;
  2851. arc_offset[Y_AXIS] = cy - y1;
  2852. }
  2853. }
  2854. else {
  2855. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2856. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2857. }
  2858. if (arc_offset[0] || arc_offset[1]) {
  2859. // Send an arc to the planner
  2860. plan_arc(destination, arc_offset, clockwise);
  2861. refresh_cmd_timeout();
  2862. }
  2863. else {
  2864. // Bad arguments
  2865. SERIAL_ERROR_START;
  2866. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2867. }
  2868. }
  2869. }
  2870. #endif
  2871. /**
  2872. * G4: Dwell S<seconds> or P<milliseconds>
  2873. */
  2874. inline void gcode_G4() {
  2875. millis_t dwell_ms = 0;
  2876. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2877. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2878. stepper.synchronize();
  2879. refresh_cmd_timeout();
  2880. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2881. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2882. while (PENDING(millis(), dwell_ms)) idle();
  2883. }
  2884. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2885. /**
  2886. * Parameters interpreted according to:
  2887. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2888. * However I, J omission is not supported at this point; all
  2889. * parameters can be omitted and default to zero.
  2890. */
  2891. /**
  2892. * G5: Cubic B-spline
  2893. */
  2894. inline void gcode_G5() {
  2895. if (IsRunning()) {
  2896. gcode_get_destination();
  2897. const float offset[] = {
  2898. code_seen('I') ? code_value_linear_units() : 0.0,
  2899. code_seen('J') ? code_value_linear_units() : 0.0,
  2900. code_seen('P') ? code_value_linear_units() : 0.0,
  2901. code_seen('Q') ? code_value_linear_units() : 0.0
  2902. };
  2903. plan_cubic_move(offset);
  2904. }
  2905. }
  2906. #endif // BEZIER_CURVE_SUPPORT
  2907. #if ENABLED(FWRETRACT)
  2908. /**
  2909. * G10 - Retract filament according to settings of M207
  2910. * G11 - Recover filament according to settings of M208
  2911. */
  2912. inline void gcode_G10_G11(bool doRetract=false) {
  2913. #if EXTRUDERS > 1
  2914. if (doRetract) {
  2915. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2916. }
  2917. #endif
  2918. retract(doRetract
  2919. #if EXTRUDERS > 1
  2920. , retracted_swap[active_extruder]
  2921. #endif
  2922. );
  2923. }
  2924. #endif //FWRETRACT
  2925. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2926. /**
  2927. * G12: Clean the nozzle
  2928. */
  2929. inline void gcode_G12() {
  2930. // Don't allow nozzle cleaning without homing first
  2931. if (axis_unhomed_error(true, true, true)) return;
  2932. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2933. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2934. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2935. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2936. Nozzle::clean(pattern, strokes, radius, objects);
  2937. }
  2938. #endif
  2939. #if ENABLED(INCH_MODE_SUPPORT)
  2940. /**
  2941. * G20: Set input mode to inches
  2942. */
  2943. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2944. /**
  2945. * G21: Set input mode to millimeters
  2946. */
  2947. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2948. #endif
  2949. #if ENABLED(NOZZLE_PARK_FEATURE)
  2950. /**
  2951. * G27: Park the nozzle
  2952. */
  2953. inline void gcode_G27() {
  2954. // Don't allow nozzle parking without homing first
  2955. if (axis_unhomed_error(true, true, true)) return;
  2956. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2957. }
  2958. #endif // NOZZLE_PARK_FEATURE
  2959. #if ENABLED(QUICK_HOME)
  2960. static void quick_home_xy() {
  2961. // Pretend the current position is 0,0
  2962. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2963. sync_plan_position();
  2964. const int x_axis_home_dir =
  2965. #if ENABLED(DUAL_X_CARRIAGE)
  2966. x_home_dir(active_extruder)
  2967. #else
  2968. home_dir(X_AXIS)
  2969. #endif
  2970. ;
  2971. const float mlx = max_length(X_AXIS),
  2972. mly = max_length(Y_AXIS),
  2973. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2974. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2975. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2976. endstops.hit_on_purpose(); // clear endstop hit flags
  2977. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2978. }
  2979. #endif // QUICK_HOME
  2980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2981. void log_machine_info() {
  2982. SERIAL_ECHOPGM("Machine Type: ");
  2983. #if ENABLED(DELTA)
  2984. SERIAL_ECHOLNPGM("Delta");
  2985. #elif IS_SCARA
  2986. SERIAL_ECHOLNPGM("SCARA");
  2987. #elif IS_CORE
  2988. SERIAL_ECHOLNPGM("Core");
  2989. #else
  2990. SERIAL_ECHOLNPGM("Cartesian");
  2991. #endif
  2992. SERIAL_ECHOPGM("Probe: ");
  2993. #if ENABLED(PROBE_MANUALLY)
  2994. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2995. #elif ENABLED(FIX_MOUNTED_PROBE)
  2996. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2997. #elif ENABLED(BLTOUCH)
  2998. SERIAL_ECHOLNPGM("BLTOUCH");
  2999. #elif HAS_Z_SERVO_ENDSTOP
  3000. SERIAL_ECHOLNPGM("SERVO PROBE");
  3001. #elif ENABLED(Z_PROBE_SLED)
  3002. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3003. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3004. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3005. #else
  3006. SERIAL_ECHOLNPGM("NONE");
  3007. #endif
  3008. #if HAS_BED_PROBE
  3009. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3010. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3011. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3012. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3013. SERIAL_ECHOPGM(" (Right");
  3014. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3015. SERIAL_ECHOPGM(" (Left");
  3016. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3017. SERIAL_ECHOPGM(" (Middle");
  3018. #else
  3019. SERIAL_ECHOPGM(" (Aligned With");
  3020. #endif
  3021. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3022. SERIAL_ECHOPGM("-Back");
  3023. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3024. SERIAL_ECHOPGM("-Front");
  3025. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3026. SERIAL_ECHOPGM("-Center");
  3027. #endif
  3028. if (zprobe_zoffset < 0)
  3029. SERIAL_ECHOPGM(" & Below");
  3030. else if (zprobe_zoffset > 0)
  3031. SERIAL_ECHOPGM(" & Above");
  3032. else
  3033. SERIAL_ECHOPGM(" & Same Z as");
  3034. SERIAL_ECHOLNPGM(" Nozzle)");
  3035. #endif
  3036. #if HAS_ABL
  3037. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3038. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3039. SERIAL_ECHOPGM("LINEAR");
  3040. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3041. SERIAL_ECHOPGM("BILINEAR");
  3042. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3043. SERIAL_ECHOPGM("3POINT");
  3044. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3045. SERIAL_ECHOPGM("UBL");
  3046. #endif
  3047. if (planner.abl_enabled) {
  3048. SERIAL_ECHOLNPGM(" (enabled)");
  3049. #if ABL_PLANAR
  3050. float diff[XYZ] = {
  3051. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3052. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3053. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3054. };
  3055. SERIAL_ECHOPGM("ABL Adjustment X");
  3056. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3057. SERIAL_ECHO(diff[X_AXIS]);
  3058. SERIAL_ECHOPGM(" Y");
  3059. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3060. SERIAL_ECHO(diff[Y_AXIS]);
  3061. SERIAL_ECHOPGM(" Z");
  3062. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3063. SERIAL_ECHO(diff[Z_AXIS]);
  3064. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3065. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3066. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3067. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3068. #endif
  3069. }
  3070. else
  3071. SERIAL_ECHOLNPGM(" (disabled)");
  3072. SERIAL_EOL;
  3073. #elif ENABLED(MESH_BED_LEVELING)
  3074. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3075. if (mbl.active()) {
  3076. float lz = current_position[Z_AXIS];
  3077. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3078. SERIAL_ECHOLNPGM(" (enabled)");
  3079. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3080. }
  3081. else
  3082. SERIAL_ECHOPGM(" (disabled)");
  3083. SERIAL_EOL;
  3084. #endif // MESH_BED_LEVELING
  3085. }
  3086. #endif // DEBUG_LEVELING_FEATURE
  3087. #if ENABLED(DELTA)
  3088. /**
  3089. * A delta can only safely home all axes at the same time
  3090. * This is like quick_home_xy() but for 3 towers.
  3091. */
  3092. inline void home_delta() {
  3093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3094. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3095. #endif
  3096. // Init the current position of all carriages to 0,0,0
  3097. ZERO(current_position);
  3098. sync_plan_position();
  3099. // Move all carriages together linearly until an endstop is hit.
  3100. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3101. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3102. line_to_current_position();
  3103. stepper.synchronize();
  3104. endstops.hit_on_purpose(); // clear endstop hit flags
  3105. // At least one carriage has reached the top.
  3106. // Now re-home each carriage separately.
  3107. HOMEAXIS(A);
  3108. HOMEAXIS(B);
  3109. HOMEAXIS(C);
  3110. // Set all carriages to their home positions
  3111. // Do this here all at once for Delta, because
  3112. // XYZ isn't ABC. Applying this per-tower would
  3113. // give the impression that they are the same.
  3114. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3115. SYNC_PLAN_POSITION_KINEMATIC();
  3116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3117. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3118. #endif
  3119. }
  3120. #endif // DELTA
  3121. #if ENABLED(Z_SAFE_HOMING)
  3122. inline void home_z_safely() {
  3123. // Disallow Z homing if X or Y are unknown
  3124. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3125. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3126. SERIAL_ECHO_START;
  3127. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3128. return;
  3129. }
  3130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3131. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3132. #endif
  3133. SYNC_PLAN_POSITION_KINEMATIC();
  3134. /**
  3135. * Move the Z probe (or just the nozzle) to the safe homing point
  3136. */
  3137. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3138. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3139. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3140. if (position_is_reachable(
  3141. destination
  3142. #if HOMING_Z_WITH_PROBE
  3143. , true
  3144. #endif
  3145. )
  3146. ) {
  3147. #if HOMING_Z_WITH_PROBE
  3148. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3149. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3150. #endif
  3151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3152. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3153. #endif
  3154. // This causes the carriage on Dual X to unpark
  3155. #if ENABLED(DUAL_X_CARRIAGE)
  3156. active_extruder_parked = false;
  3157. #endif
  3158. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3159. HOMEAXIS(Z);
  3160. }
  3161. else {
  3162. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3163. SERIAL_ECHO_START;
  3164. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3165. }
  3166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3167. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3168. #endif
  3169. }
  3170. #endif // Z_SAFE_HOMING
  3171. #if ENABLED(PROBE_MANUALLY)
  3172. bool g29_in_progress = false;
  3173. #else
  3174. constexpr bool g29_in_progress = false;
  3175. #endif
  3176. /**
  3177. * G28: Home all axes according to settings
  3178. *
  3179. * Parameters
  3180. *
  3181. * None Home to all axes with no parameters.
  3182. * With QUICK_HOME enabled XY will home together, then Z.
  3183. *
  3184. * Cartesian parameters
  3185. *
  3186. * X Home to the X endstop
  3187. * Y Home to the Y endstop
  3188. * Z Home to the Z endstop
  3189. *
  3190. */
  3191. inline void gcode_G28() {
  3192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3193. if (DEBUGGING(LEVELING)) {
  3194. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3195. log_machine_info();
  3196. }
  3197. #endif
  3198. // Wait for planner moves to finish!
  3199. stepper.synchronize();
  3200. // Cancel the active G29 session
  3201. #if ENABLED(PROBE_MANUALLY)
  3202. g29_in_progress = false;
  3203. #endif
  3204. // Disable the leveling matrix before homing
  3205. #if PLANNER_LEVELING
  3206. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3207. const bool bed_leveling_state_at_entry = ubl.state.active;
  3208. #endif
  3209. set_bed_leveling_enabled(false);
  3210. #endif
  3211. // Always home with tool 0 active
  3212. #if HOTENDS > 1
  3213. const uint8_t old_tool_index = active_extruder;
  3214. tool_change(0, 0, true);
  3215. #endif
  3216. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3217. extruder_duplication_enabled = false;
  3218. #endif
  3219. setup_for_endstop_or_probe_move();
  3220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3221. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3222. #endif
  3223. endstops.enable(true); // Enable endstops for next homing move
  3224. #if ENABLED(DELTA)
  3225. home_delta();
  3226. #else // NOT DELTA
  3227. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3228. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3229. set_destination_to_current();
  3230. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3231. if (home_all_axis || homeZ) {
  3232. HOMEAXIS(Z);
  3233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3234. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3235. #endif
  3236. }
  3237. #else
  3238. if (home_all_axis || homeX || homeY) {
  3239. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3240. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3241. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3243. if (DEBUGGING(LEVELING))
  3244. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3245. #endif
  3246. do_blocking_move_to_z(destination[Z_AXIS]);
  3247. }
  3248. }
  3249. #endif
  3250. #if ENABLED(QUICK_HOME)
  3251. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3252. #endif
  3253. #if ENABLED(HOME_Y_BEFORE_X)
  3254. // Home Y
  3255. if (home_all_axis || homeY) {
  3256. HOMEAXIS(Y);
  3257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3258. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3259. #endif
  3260. }
  3261. #endif
  3262. // Home X
  3263. if (home_all_axis || homeX) {
  3264. #if ENABLED(DUAL_X_CARRIAGE)
  3265. // Always home the 2nd (right) extruder first
  3266. active_extruder = 1;
  3267. HOMEAXIS(X);
  3268. // Remember this extruder's position for later tool change
  3269. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3270. // Home the 1st (left) extruder
  3271. active_extruder = 0;
  3272. HOMEAXIS(X);
  3273. // Consider the active extruder to be parked
  3274. COPY(raised_parked_position, current_position);
  3275. delayed_move_time = 0;
  3276. active_extruder_parked = true;
  3277. #else
  3278. HOMEAXIS(X);
  3279. #endif
  3280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3281. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3282. #endif
  3283. }
  3284. #if DISABLED(HOME_Y_BEFORE_X)
  3285. // Home Y
  3286. if (home_all_axis || homeY) {
  3287. HOMEAXIS(Y);
  3288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3289. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3290. #endif
  3291. }
  3292. #endif
  3293. // Home Z last if homing towards the bed
  3294. #if Z_HOME_DIR < 0
  3295. if (home_all_axis || homeZ) {
  3296. #if ENABLED(Z_SAFE_HOMING)
  3297. home_z_safely();
  3298. #else
  3299. HOMEAXIS(Z);
  3300. #endif
  3301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3302. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3303. #endif
  3304. } // home_all_axis || homeZ
  3305. #endif // Z_HOME_DIR < 0
  3306. SYNC_PLAN_POSITION_KINEMATIC();
  3307. #endif // !DELTA (gcode_G28)
  3308. endstops.not_homing();
  3309. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3310. // move to a height where we can use the full xy-area
  3311. do_blocking_move_to_z(delta_clip_start_height);
  3312. #endif
  3313. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3314. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3315. #endif
  3316. // Enable mesh leveling again
  3317. #if ENABLED(MESH_BED_LEVELING)
  3318. if (mbl.reactivate()) {
  3319. set_bed_leveling_enabled(true);
  3320. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3321. #if ENABLED(MESH_G28_REST_ORIGIN)
  3322. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3323. set_destination_to_current();
  3324. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3325. stepper.synchronize();
  3326. #endif
  3327. }
  3328. }
  3329. #endif
  3330. clean_up_after_endstop_or_probe_move();
  3331. // Restore the active tool after homing
  3332. #if HOTENDS > 1
  3333. tool_change(old_tool_index, 0, true);
  3334. #endif
  3335. report_current_position();
  3336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3337. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3338. #endif
  3339. }
  3340. #if HAS_PROBING_PROCEDURE
  3341. void out_of_range_error(const char* p_edge) {
  3342. SERIAL_PROTOCOLPGM("?Probe ");
  3343. serialprintPGM(p_edge);
  3344. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3345. }
  3346. #endif
  3347. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3348. inline void _manual_goto_xy(const float &x, const float &y) {
  3349. const float old_feedrate_mm_s = feedrate_mm_s;
  3350. #if MANUAL_PROBE_HEIGHT > 0
  3351. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3352. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3353. line_to_current_position();
  3354. #endif
  3355. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3356. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3357. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3358. line_to_current_position();
  3359. #if MANUAL_PROBE_HEIGHT > 0
  3360. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3361. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3362. line_to_current_position();
  3363. #endif
  3364. feedrate_mm_s = old_feedrate_mm_s;
  3365. stepper.synchronize();
  3366. }
  3367. #endif
  3368. #if ENABLED(MESH_BED_LEVELING)
  3369. // Save 130 bytes with non-duplication of PSTR
  3370. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3371. void mbl_mesh_report() {
  3372. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3373. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3374. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3375. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3376. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3377. );
  3378. }
  3379. /**
  3380. * G29: Mesh-based Z probe, probes a grid and produces a
  3381. * mesh to compensate for variable bed height
  3382. *
  3383. * Parameters With MESH_BED_LEVELING:
  3384. *
  3385. * S0 Produce a mesh report
  3386. * S1 Start probing mesh points
  3387. * S2 Probe the next mesh point
  3388. * S3 Xn Yn Zn.nn Manually modify a single point
  3389. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3390. * S5 Reset and disable mesh
  3391. *
  3392. * The S0 report the points as below
  3393. *
  3394. * +----> X-axis 1-n
  3395. * |
  3396. * |
  3397. * v Y-axis 1-n
  3398. *
  3399. */
  3400. inline void gcode_G29() {
  3401. static int mbl_probe_index = -1;
  3402. #if HAS_SOFTWARE_ENDSTOPS
  3403. static bool enable_soft_endstops;
  3404. #endif
  3405. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3406. if (!WITHIN(state, 0, 5)) {
  3407. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3408. return;
  3409. }
  3410. int8_t px, py;
  3411. switch (state) {
  3412. case MeshReport:
  3413. if (mbl.has_mesh()) {
  3414. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3415. mbl_mesh_report();
  3416. }
  3417. else
  3418. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3419. break;
  3420. case MeshStart:
  3421. mbl.reset();
  3422. mbl_probe_index = 0;
  3423. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3424. break;
  3425. case MeshNext:
  3426. if (mbl_probe_index < 0) {
  3427. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3428. return;
  3429. }
  3430. // For each G29 S2...
  3431. if (mbl_probe_index == 0) {
  3432. #if HAS_SOFTWARE_ENDSTOPS
  3433. // For the initial G29 S2 save software endstop state
  3434. enable_soft_endstops = soft_endstops_enabled;
  3435. #endif
  3436. }
  3437. else {
  3438. // For G29 S2 after adjusting Z.
  3439. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3440. #if HAS_SOFTWARE_ENDSTOPS
  3441. soft_endstops_enabled = enable_soft_endstops;
  3442. #endif
  3443. }
  3444. // If there's another point to sample, move there with optional lift.
  3445. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3446. mbl.zigzag(mbl_probe_index, px, py);
  3447. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3448. #if HAS_SOFTWARE_ENDSTOPS
  3449. // Disable software endstops to allow manual adjustment
  3450. // If G29 is not completed, they will not be re-enabled
  3451. soft_endstops_enabled = false;
  3452. #endif
  3453. mbl_probe_index++;
  3454. }
  3455. else {
  3456. // One last "return to the bed" (as originally coded) at completion
  3457. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3458. line_to_current_position();
  3459. stepper.synchronize();
  3460. // After recording the last point, activate the mbl and home
  3461. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3462. mbl_probe_index = -1;
  3463. mbl.set_has_mesh(true);
  3464. mbl.set_reactivate(true);
  3465. enqueue_and_echo_commands_P(PSTR("G28"));
  3466. BUZZ(100, 659);
  3467. BUZZ(100, 698);
  3468. }
  3469. break;
  3470. case MeshSet:
  3471. if (code_seen('X')) {
  3472. px = code_value_int() - 1;
  3473. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3474. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3475. return;
  3476. }
  3477. }
  3478. else {
  3479. SERIAL_CHAR('X'); say_not_entered();
  3480. return;
  3481. }
  3482. if (code_seen('Y')) {
  3483. py = code_value_int() - 1;
  3484. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3485. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3486. return;
  3487. }
  3488. }
  3489. else {
  3490. SERIAL_CHAR('Y'); say_not_entered();
  3491. return;
  3492. }
  3493. if (code_seen('Z')) {
  3494. mbl.z_values[px][py] = code_value_linear_units();
  3495. }
  3496. else {
  3497. SERIAL_CHAR('Z'); say_not_entered();
  3498. return;
  3499. }
  3500. break;
  3501. case MeshSetZOffset:
  3502. if (code_seen('Z')) {
  3503. mbl.z_offset = code_value_linear_units();
  3504. }
  3505. else {
  3506. SERIAL_CHAR('Z'); say_not_entered();
  3507. return;
  3508. }
  3509. break;
  3510. case MeshReset:
  3511. reset_bed_level();
  3512. break;
  3513. } // switch(state)
  3514. report_current_position();
  3515. }
  3516. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3517. #if ABL_GRID
  3518. #if ENABLED(PROBE_Y_FIRST)
  3519. #define PR_OUTER_VAR xCount
  3520. #define PR_OUTER_END abl_grid_points_x
  3521. #define PR_INNER_VAR yCount
  3522. #define PR_INNER_END abl_grid_points_y
  3523. #else
  3524. #define PR_OUTER_VAR yCount
  3525. #define PR_OUTER_END abl_grid_points_y
  3526. #define PR_INNER_VAR xCount
  3527. #define PR_INNER_END abl_grid_points_x
  3528. #endif
  3529. #endif
  3530. /**
  3531. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3532. * Will fail if the printer has not been homed with G28.
  3533. *
  3534. * Enhanced G29 Auto Bed Leveling Probe Routine
  3535. *
  3536. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3537. * or alter the bed level data. Useful to check the topology
  3538. * after a first run of G29.
  3539. *
  3540. * J Jettison current bed leveling data
  3541. *
  3542. * V Set the verbose level (0-4). Example: "G29 V3"
  3543. *
  3544. * Parameters With LINEAR leveling only:
  3545. *
  3546. * P Set the size of the grid that will be probed (P x P points).
  3547. * Example: "G29 P4"
  3548. *
  3549. * X Set the X size of the grid that will be probed (X x Y points).
  3550. * Example: "G29 X7 Y5"
  3551. *
  3552. * Y Set the Y size of the grid that will be probed (X x Y points).
  3553. *
  3554. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3555. * This is useful for manual bed leveling and finding flaws in the bed (to
  3556. * assist with part placement).
  3557. * Not supported by non-linear delta printer bed leveling.
  3558. *
  3559. * Parameters With LINEAR and BILINEAR leveling only:
  3560. *
  3561. * S Set the XY travel speed between probe points (in units/min)
  3562. *
  3563. * F Set the Front limit of the probing grid
  3564. * B Set the Back limit of the probing grid
  3565. * L Set the Left limit of the probing grid
  3566. * R Set the Right limit of the probing grid
  3567. *
  3568. * Parameters with DEBUG_LEVELING_FEATURE only:
  3569. *
  3570. * C Make a totally fake grid with no actual probing.
  3571. * For use in testing when no probing is possible.
  3572. *
  3573. * Parameters with BILINEAR leveling only:
  3574. *
  3575. * Z Supply an additional Z probe offset
  3576. *
  3577. * Extra parameters with PROBE_MANUALLY:
  3578. *
  3579. * To do manual probing simply repeat G29 until the procedure is complete.
  3580. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3581. *
  3582. * Q Query leveling and G29 state
  3583. *
  3584. * A Abort current leveling procedure
  3585. *
  3586. * W Write a mesh point. (Ignored during leveling.)
  3587. * X Required X for mesh point
  3588. * Y Required Y for mesh point
  3589. * Z Required Z for mesh point
  3590. *
  3591. * Without PROBE_MANUALLY:
  3592. *
  3593. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3594. * Include "E" to engage/disengage the Z probe for each sample.
  3595. * There's no extra effect if you have a fixed Z probe.
  3596. *
  3597. */
  3598. inline void gcode_G29() {
  3599. // G29 Q is also available if debugging
  3600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3601. const bool query = code_seen('Q');
  3602. const uint8_t old_debug_flags = marlin_debug_flags;
  3603. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3604. if (DEBUGGING(LEVELING)) {
  3605. DEBUG_POS(">>> gcode_G29", current_position);
  3606. log_machine_info();
  3607. }
  3608. marlin_debug_flags = old_debug_flags;
  3609. #if DISABLED(PROBE_MANUALLY)
  3610. if (query) return;
  3611. #endif
  3612. #endif
  3613. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3614. const bool faux = code_seen('C') && code_value_bool();
  3615. #else
  3616. bool constexpr faux = false;
  3617. #endif
  3618. // Don't allow auto-leveling without homing first
  3619. if (axis_unhomed_error(true, true, true)) return;
  3620. // Define local vars 'static' for manual probing, 'auto' otherwise
  3621. #if ENABLED(PROBE_MANUALLY)
  3622. #define ABL_VAR static
  3623. #else
  3624. #define ABL_VAR
  3625. #endif
  3626. ABL_VAR int verbose_level;
  3627. ABL_VAR float xProbe, yProbe, measured_z;
  3628. ABL_VAR bool dryrun, abl_should_enable;
  3629. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3630. ABL_VAR int abl_probe_index;
  3631. #endif
  3632. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3633. ABL_VAR bool enable_soft_endstops = true;
  3634. #endif
  3635. #if ABL_GRID
  3636. #if ENABLED(PROBE_MANUALLY)
  3637. ABL_VAR uint8_t PR_OUTER_VAR;
  3638. ABL_VAR int8_t PR_INNER_VAR;
  3639. #endif
  3640. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3641. ABL_VAR float xGridSpacing, yGridSpacing;
  3642. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3643. #if ABL_PLANAR
  3644. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3645. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3646. ABL_VAR bool do_topography_map;
  3647. #else // 3-point
  3648. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3649. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3650. #endif
  3651. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3652. #if ABL_PLANAR
  3653. ABL_VAR int abl2;
  3654. #else // 3-point
  3655. int constexpr abl2 = ABL_GRID_MAX;
  3656. #endif
  3657. #endif
  3658. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3659. ABL_VAR float zoffset;
  3660. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3661. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3662. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3663. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3664. mean;
  3665. #endif
  3666. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3667. // Probe at 3 arbitrary points
  3668. ABL_VAR vector_3 points[3] = {
  3669. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3670. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3671. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3672. };
  3673. #endif // AUTO_BED_LEVELING_3POINT
  3674. /**
  3675. * On the initial G29 fetch command parameters.
  3676. */
  3677. if (!g29_in_progress) {
  3678. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3679. abl_probe_index = 0;
  3680. #endif
  3681. abl_should_enable = planner.abl_enabled;
  3682. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3683. if (code_seen('W')) {
  3684. if (!bilinear_grid_spacing[X_AXIS]) {
  3685. SERIAL_ERROR_START;
  3686. SERIAL_ERRORLNPGM("No bilinear grid");
  3687. return;
  3688. }
  3689. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3690. if (!WITHIN(z, -10, 10)) {
  3691. SERIAL_ERROR_START;
  3692. SERIAL_ERRORLNPGM("Bad Z value");
  3693. return;
  3694. }
  3695. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3696. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3697. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3698. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3699. if (x < 99998 && y < 99998) {
  3700. // Get nearest i / j from x / y
  3701. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3702. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3703. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3704. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3705. }
  3706. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3707. set_bed_leveling_enabled(false);
  3708. z_values[i][j] = z;
  3709. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3710. bed_level_virt_interpolate();
  3711. #endif
  3712. set_bed_leveling_enabled(abl_should_enable);
  3713. }
  3714. return;
  3715. } // code_seen('W')
  3716. #endif
  3717. #if PLANNER_LEVELING
  3718. // Jettison bed leveling data
  3719. if (code_seen('J')) {
  3720. reset_bed_level();
  3721. return;
  3722. }
  3723. #endif
  3724. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3725. if (!WITHIN(verbose_level, 0, 4)) {
  3726. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3727. return;
  3728. }
  3729. dryrun = code_seen('D') && code_value_bool();
  3730. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3731. do_topography_map = verbose_level > 2 || code_seen('T');
  3732. // X and Y specify points in each direction, overriding the default
  3733. // These values may be saved with the completed mesh
  3734. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3735. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3736. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3737. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3738. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3739. return;
  3740. }
  3741. abl2 = abl_grid_points_x * abl_grid_points_y;
  3742. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3743. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3744. #endif
  3745. #if ABL_GRID
  3746. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3747. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3748. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3749. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3750. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3751. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3752. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3753. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3754. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3755. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3756. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3757. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3758. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3759. if (left_out || right_out || front_out || back_out) {
  3760. if (left_out) {
  3761. out_of_range_error(PSTR("(L)eft"));
  3762. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3763. }
  3764. if (right_out) {
  3765. out_of_range_error(PSTR("(R)ight"));
  3766. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3767. }
  3768. if (front_out) {
  3769. out_of_range_error(PSTR("(F)ront"));
  3770. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3771. }
  3772. if (back_out) {
  3773. out_of_range_error(PSTR("(B)ack"));
  3774. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3775. }
  3776. return;
  3777. }
  3778. // probe at the points of a lattice grid
  3779. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3780. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3781. #endif // ABL_GRID
  3782. if (verbose_level > 0) {
  3783. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3784. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3785. }
  3786. stepper.synchronize();
  3787. // Disable auto bed leveling during G29
  3788. planner.abl_enabled = false;
  3789. if (!dryrun) {
  3790. // Re-orient the current position without leveling
  3791. // based on where the steppers are positioned.
  3792. set_current_from_steppers_for_axis(ALL_AXES);
  3793. // Sync the planner to where the steppers stopped
  3794. SYNC_PLAN_POSITION_KINEMATIC();
  3795. }
  3796. if (!faux) setup_for_endstop_or_probe_move();
  3797. //xProbe = yProbe = measured_z = 0;
  3798. #if HAS_BED_PROBE
  3799. // Deploy the probe. Probe will raise if needed.
  3800. if (DEPLOY_PROBE()) {
  3801. planner.abl_enabled = abl_should_enable;
  3802. return;
  3803. }
  3804. #endif
  3805. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3806. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3807. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3808. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3809. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3810. ) {
  3811. if (dryrun) {
  3812. // Before reset bed level, re-enable to correct the position
  3813. planner.abl_enabled = abl_should_enable;
  3814. }
  3815. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3816. reset_bed_level();
  3817. // Initialize a grid with the given dimensions
  3818. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3819. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3820. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3821. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3822. // Can't re-enable (on error) until the new grid is written
  3823. abl_should_enable = false;
  3824. }
  3825. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3826. mean = 0.0;
  3827. #endif // AUTO_BED_LEVELING_LINEAR
  3828. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3830. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3831. #endif
  3832. // Probe at 3 arbitrary points
  3833. points[0].z = points[1].z = points[2].z = 0;
  3834. #endif // AUTO_BED_LEVELING_3POINT
  3835. } // !g29_in_progress
  3836. #if ENABLED(PROBE_MANUALLY)
  3837. // Abort current G29 procedure, go back to ABLStart
  3838. if (code_seen('A') && g29_in_progress) {
  3839. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3840. #if HAS_SOFTWARE_ENDSTOPS
  3841. soft_endstops_enabled = enable_soft_endstops;
  3842. #endif
  3843. planner.abl_enabled = abl_should_enable;
  3844. g29_in_progress = false;
  3845. }
  3846. // Query G29 status
  3847. if (code_seen('Q')) {
  3848. if (!g29_in_progress)
  3849. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3850. else {
  3851. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3852. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3853. }
  3854. }
  3855. if (code_seen('A') || code_seen('Q')) return;
  3856. // Fall through to probe the first point
  3857. g29_in_progress = true;
  3858. if (abl_probe_index == 0) {
  3859. // For the initial G29 save software endstop state
  3860. #if HAS_SOFTWARE_ENDSTOPS
  3861. enable_soft_endstops = soft_endstops_enabled;
  3862. #endif
  3863. }
  3864. else {
  3865. // For G29 after adjusting Z.
  3866. // Save the previous Z before going to the next point
  3867. measured_z = current_position[Z_AXIS];
  3868. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3869. mean += measured_z;
  3870. eqnBVector[abl_probe_index] = measured_z;
  3871. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3872. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3873. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3874. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3875. z_values[xCount][yCount] = measured_z + zoffset;
  3876. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3877. points[i].z = measured_z;
  3878. #endif
  3879. }
  3880. //
  3881. // If there's another point to sample, move there with optional lift.
  3882. //
  3883. #if ABL_GRID
  3884. // Find a next point to probe
  3885. // On the first G29 this will be the first probe point
  3886. while (abl_probe_index < abl2) {
  3887. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3888. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3889. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3890. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3891. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3892. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3893. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3894. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3895. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3896. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3897. indexIntoAB[xCount][yCount] = abl_probe_index;
  3898. #endif
  3899. float pos[XYZ] = { xProbe, yProbe, 0 };
  3900. if (position_is_reachable(pos)) break;
  3901. ++abl_probe_index;
  3902. }
  3903. // Is there a next point to move to?
  3904. if (abl_probe_index < abl2) {
  3905. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3906. ++abl_probe_index;
  3907. #if HAS_SOFTWARE_ENDSTOPS
  3908. // Disable software endstops to allow manual adjustment
  3909. // If G29 is not completed, they will not be re-enabled
  3910. soft_endstops_enabled = false;
  3911. #endif
  3912. return;
  3913. }
  3914. else {
  3915. // Then leveling is done!
  3916. // G29 finishing code goes here
  3917. // After recording the last point, activate abl
  3918. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3919. g29_in_progress = false;
  3920. // Re-enable software endstops, if needed
  3921. #if HAS_SOFTWARE_ENDSTOPS
  3922. soft_endstops_enabled = enable_soft_endstops;
  3923. #endif
  3924. }
  3925. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3926. // Probe at 3 arbitrary points
  3927. if (abl_probe_index < 3) {
  3928. xProbe = LOGICAL_X_POSITION(points[i].x);
  3929. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3930. ++abl_probe_index;
  3931. #if HAS_SOFTWARE_ENDSTOPS
  3932. // Disable software endstops to allow manual adjustment
  3933. // If G29 is not completed, they will not be re-enabled
  3934. soft_endstops_enabled = false;
  3935. #endif
  3936. return;
  3937. }
  3938. else {
  3939. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3940. g29_in_progress = false;
  3941. // Re-enable software endstops, if needed
  3942. #if HAS_SOFTWARE_ENDSTOPS
  3943. soft_endstops_enabled = enable_soft_endstops;
  3944. #endif
  3945. if (!dryrun) {
  3946. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3947. if (planeNormal.z < 0) {
  3948. planeNormal.x *= -1;
  3949. planeNormal.y *= -1;
  3950. planeNormal.z *= -1;
  3951. }
  3952. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3953. // Can't re-enable (on error) until the new grid is written
  3954. abl_should_enable = false;
  3955. }
  3956. }
  3957. #endif // AUTO_BED_LEVELING_3POINT
  3958. #else // !PROBE_MANUALLY
  3959. bool stow_probe_after_each = code_seen('E');
  3960. #if ABL_GRID
  3961. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3962. // Outer loop is Y with PROBE_Y_FIRST disabled
  3963. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3964. int8_t inStart, inStop, inInc;
  3965. if (zig) { // away from origin
  3966. inStart = 0;
  3967. inStop = PR_INNER_END;
  3968. inInc = 1;
  3969. }
  3970. else { // towards origin
  3971. inStart = PR_INNER_END - 1;
  3972. inStop = -1;
  3973. inInc = -1;
  3974. }
  3975. zig ^= true; // zag
  3976. // Inner loop is Y with PROBE_Y_FIRST enabled
  3977. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3978. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3979. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3980. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3981. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3982. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3983. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3984. #endif
  3985. #if IS_KINEMATIC
  3986. // Avoid probing outside the round or hexagonal area
  3987. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3988. if (!position_is_reachable(pos, true)) continue;
  3989. #endif
  3990. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3991. if (isnan(measured_z)) {
  3992. planner.abl_enabled = abl_should_enable;
  3993. return;
  3994. }
  3995. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3996. mean += measured_z;
  3997. eqnBVector[abl_probe_index] = measured_z;
  3998. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3999. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4000. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4001. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4002. z_values[xCount][yCount] = measured_z + zoffset;
  4003. #endif
  4004. abl_should_enable = false;
  4005. idle();
  4006. } // inner
  4007. } // outer
  4008. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4009. // Probe at 3 arbitrary points
  4010. for (uint8_t i = 0; i < 3; ++i) {
  4011. // Retain the last probe position
  4012. xProbe = LOGICAL_X_POSITION(points[i].x);
  4013. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4014. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4015. }
  4016. if (isnan(measured_z)) {
  4017. planner.abl_enabled = abl_should_enable;
  4018. return;
  4019. }
  4020. if (!dryrun) {
  4021. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4022. if (planeNormal.z < 0) {
  4023. planeNormal.x *= -1;
  4024. planeNormal.y *= -1;
  4025. planeNormal.z *= -1;
  4026. }
  4027. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4028. // Can't re-enable (on error) until the new grid is written
  4029. abl_should_enable = false;
  4030. }
  4031. #endif // AUTO_BED_LEVELING_3POINT
  4032. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4033. if (STOW_PROBE()) {
  4034. planner.abl_enabled = abl_should_enable;
  4035. return;
  4036. }
  4037. #endif // !PROBE_MANUALLY
  4038. //
  4039. // G29 Finishing Code
  4040. //
  4041. // Unless this is a dry run, auto bed leveling will
  4042. // definitely be enabled after this point
  4043. //
  4044. // Restore state after probing
  4045. if (!faux) clean_up_after_endstop_or_probe_move();
  4046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4047. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4048. #endif
  4049. // Calculate leveling, print reports, correct the position
  4050. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4051. if (!dryrun) extrapolate_unprobed_bed_level();
  4052. print_bilinear_leveling_grid();
  4053. refresh_bed_level();
  4054. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4055. bed_level_virt_print();
  4056. #endif
  4057. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4058. // For LINEAR leveling calculate matrix, print reports, correct the position
  4059. /**
  4060. * solve the plane equation ax + by + d = z
  4061. * A is the matrix with rows [x y 1] for all the probed points
  4062. * B is the vector of the Z positions
  4063. * the normal vector to the plane is formed by the coefficients of the
  4064. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4065. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4066. */
  4067. float plane_equation_coefficients[3];
  4068. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4069. mean /= abl2;
  4070. if (verbose_level) {
  4071. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4072. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4073. SERIAL_PROTOCOLPGM(" b: ");
  4074. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4075. SERIAL_PROTOCOLPGM(" d: ");
  4076. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4077. SERIAL_EOL;
  4078. if (verbose_level > 2) {
  4079. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4080. SERIAL_PROTOCOL_F(mean, 8);
  4081. SERIAL_EOL;
  4082. }
  4083. }
  4084. // Create the matrix but don't correct the position yet
  4085. if (!dryrun) {
  4086. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4087. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4088. );
  4089. }
  4090. // Show the Topography map if enabled
  4091. if (do_topography_map) {
  4092. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4093. " +--- BACK --+\n"
  4094. " | |\n"
  4095. " L | (+) | R\n"
  4096. " E | | I\n"
  4097. " F | (-) N (+) | G\n"
  4098. " T | | H\n"
  4099. " | (-) | T\n"
  4100. " | |\n"
  4101. " O-- FRONT --+\n"
  4102. " (0,0)");
  4103. float min_diff = 999;
  4104. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4105. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4106. int ind = indexIntoAB[xx][yy];
  4107. float diff = eqnBVector[ind] - mean,
  4108. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4109. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4110. z_tmp = 0;
  4111. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4112. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4113. if (diff >= 0.0)
  4114. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4115. else
  4116. SERIAL_PROTOCOLCHAR(' ');
  4117. SERIAL_PROTOCOL_F(diff, 5);
  4118. } // xx
  4119. SERIAL_EOL;
  4120. } // yy
  4121. SERIAL_EOL;
  4122. if (verbose_level > 3) {
  4123. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4124. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4125. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4126. int ind = indexIntoAB[xx][yy];
  4127. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4128. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4129. z_tmp = 0;
  4130. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4131. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4132. if (diff >= 0.0)
  4133. SERIAL_PROTOCOLPGM(" +");
  4134. // Include + for column alignment
  4135. else
  4136. SERIAL_PROTOCOLCHAR(' ');
  4137. SERIAL_PROTOCOL_F(diff, 5);
  4138. } // xx
  4139. SERIAL_EOL;
  4140. } // yy
  4141. SERIAL_EOL;
  4142. }
  4143. } //do_topography_map
  4144. #endif // AUTO_BED_LEVELING_LINEAR
  4145. #if ABL_PLANAR
  4146. // For LINEAR and 3POINT leveling correct the current position
  4147. if (verbose_level > 0)
  4148. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4149. if (!dryrun) {
  4150. //
  4151. // Correct the current XYZ position based on the tilted plane.
  4152. //
  4153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4154. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4155. #endif
  4156. float converted[XYZ];
  4157. COPY(converted, current_position);
  4158. planner.abl_enabled = true;
  4159. planner.unapply_leveling(converted); // use conversion machinery
  4160. planner.abl_enabled = false;
  4161. // Use the last measured distance to the bed, if possible
  4162. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4163. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4164. ) {
  4165. float simple_z = current_position[Z_AXIS] - measured_z;
  4166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4167. if (DEBUGGING(LEVELING)) {
  4168. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4169. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4170. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4171. }
  4172. #endif
  4173. converted[Z_AXIS] = simple_z;
  4174. }
  4175. // The rotated XY and corrected Z are now current_position
  4176. COPY(current_position, converted);
  4177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4178. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4179. #endif
  4180. }
  4181. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4182. if (!dryrun) {
  4183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4184. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4185. #endif
  4186. // Unapply the offset because it is going to be immediately applied
  4187. // and cause compensation movement in Z
  4188. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4190. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4191. #endif
  4192. }
  4193. #endif // ABL_PLANAR
  4194. #ifdef Z_PROBE_END_SCRIPT
  4195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4196. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4197. #endif
  4198. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4199. stepper.synchronize();
  4200. #endif
  4201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4202. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4203. #endif
  4204. report_current_position();
  4205. KEEPALIVE_STATE(IN_HANDLER);
  4206. // Auto Bed Leveling is complete! Enable if possible.
  4207. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4208. if (planner.abl_enabled)
  4209. SYNC_PLAN_POSITION_KINEMATIC();
  4210. }
  4211. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4212. #if HAS_BED_PROBE
  4213. /**
  4214. * G30: Do a single Z probe at the current XY
  4215. * Usage:
  4216. * G30 <X#> <Y#> <S#>
  4217. * X = Probe X position (default=current probe position)
  4218. * Y = Probe Y position (default=current probe position)
  4219. * S = Stows the probe if 1 (default=1)
  4220. */
  4221. inline void gcode_G30() {
  4222. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4223. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4224. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4225. if (!position_is_reachable(pos, true)) return;
  4226. // Disable leveling so the planner won't mess with us
  4227. #if PLANNER_LEVELING
  4228. set_bed_leveling_enabled(false);
  4229. #endif
  4230. setup_for_endstop_or_probe_move();
  4231. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4232. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4233. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4234. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4235. clean_up_after_endstop_or_probe_move();
  4236. report_current_position();
  4237. }
  4238. #if ENABLED(Z_PROBE_SLED)
  4239. /**
  4240. * G31: Deploy the Z probe
  4241. */
  4242. inline void gcode_G31() { DEPLOY_PROBE(); }
  4243. /**
  4244. * G32: Stow the Z probe
  4245. */
  4246. inline void gcode_G32() { STOW_PROBE(); }
  4247. #endif // Z_PROBE_SLED
  4248. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4249. /**
  4250. * G33: Delta '4-point' auto calibration iteration
  4251. *
  4252. * Usage: G33 <Cn> <Vn>
  4253. *
  4254. * C (default) = Calibrate endstops, height and delta radius
  4255. *
  4256. * -2, 1-4: n x n probe points, default 3 x 3
  4257. *
  4258. * 1: probe center
  4259. * set height only - useful when z_offset is changed
  4260. * 2: probe center and towers
  4261. * solve one '4 point' calibration
  4262. * -2: probe center and opposite the towers
  4263. * solve one '4 point' calibration
  4264. * 3: probe 3 center points, towers and opposite-towers
  4265. * averages between 2 '4 point' calibrations
  4266. * 4: probe 4 center points, towers, opposite-towers and itermediate points
  4267. * averages between 4 '4 point' calibrations
  4268. *
  4269. * V Verbose level (0-3, default 1)
  4270. *
  4271. * 0: Dry-run mode: no calibration
  4272. * 1: Settings
  4273. * 2: Setting + probe results
  4274. * 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
  4275. * This prematurely stops the iteration process when factors are found
  4276. */
  4277. inline void gcode_G33() {
  4278. stepper.synchronize();
  4279. #if PLANNER_LEVELING
  4280. set_bed_leveling_enabled(false);
  4281. #endif
  4282. const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
  4283. probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
  4284. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4285. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4286. #define _MAX_M33_V 3
  4287. if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
  4288. #else
  4289. #define _MAX_M33_V 2
  4290. if (verbose_level > 2)
  4291. SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
  4292. #endif
  4293. if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
  4294. float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
  4295. gcode_G28();
  4296. float e_old[XYZ],
  4297. dr_old = delta_radius,
  4298. zh_old = home_offset[Z_AXIS];
  4299. COPY(e_old,endstop_adj);
  4300. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4301. // expert variables
  4302. float h_f_old = 1.00, r_f_old = 0.00,
  4303. h_diff_min = 1.00, r_diff_max = 0.10;
  4304. #endif
  4305. // print settings
  4306. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4307. SERIAL_PROTOCOLPGM("Checking... AC");
  4308. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4309. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4310. if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
  4311. #endif
  4312. SERIAL_EOL;
  4313. LCD_MESSAGEPGM("Checking... AC");
  4314. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4315. if (abs(probe_points) > 1) {
  4316. SERIAL_PROTOCOLPGM(" Ex:");
  4317. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4318. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4319. SERIAL_PROTOCOLPGM(" Ey:");
  4320. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4321. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4322. SERIAL_PROTOCOLPGM(" Ez:");
  4323. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4324. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4325. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4326. }
  4327. SERIAL_EOL;
  4328. #if ENABLED(Z_PROBE_SLED)
  4329. DEPLOY_PROBE();
  4330. #endif
  4331. float test_precision;
  4332. int8_t iterations = 0;
  4333. do { // start iterations
  4334. setup_for_endstop_or_probe_move();
  4335. test_precision =
  4336. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4337. // Expert mode : forced end at std_dev < 0.1
  4338. (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
  4339. #endif
  4340. zero_std_dev
  4341. ;
  4342. float z_at_pt[13] = { 0 };
  4343. iterations++;
  4344. // probe the points
  4345. int16_t center_points = 0;
  4346. if (probe_points != 3) {
  4347. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4348. center_points = 1;
  4349. }
  4350. int16_t step_axis = 4;
  4351. if (probe_points >= 3) {
  4352. for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
  4353. z_at_pt[0] += probe_pt(
  4354. 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4355. 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
  4356. }
  4357. center_points += 3;
  4358. z_at_pt[0] /= center_points;
  4359. }
  4360. float S1 = z_at_pt[0], S2 = sq(S1);
  4361. int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
  4362. step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
  4363. if (probe_points != 1) {
  4364. for (uint8_t axis = start; axis < 13; axis += step_axis)
  4365. z_at_pt[axis] += probe_pt(
  4366. cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4367. sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
  4368. );
  4369. if (probe_points == 4) step_axis = 2;
  4370. }
  4371. for (uint8_t axis = start; axis < 13; axis += step_axis) {
  4372. if (probe_points == 4)
  4373. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4374. S1 += z_at_pt[axis];
  4375. S2 += sq(z_at_pt[axis]);
  4376. N++;
  4377. }
  4378. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
  4379. // Solve matrices
  4380. if (zero_std_dev < test_precision) {
  4381. COPY(e_old, endstop_adj);
  4382. dr_old = delta_radius;
  4383. zh_old = home_offset[Z_AXIS];
  4384. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
  4385. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4386. float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
  4387. h_diff = 0.00, r_diff = 0.00;
  4388. #endif
  4389. #define ZP(N,I) ((N) * z_at_pt[I])
  4390. #define Z1000(I) ZP(1.00, I)
  4391. #define Z1050(I) ZP(H_FACTOR, I)
  4392. #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
  4393. #define Z0350(I) ZP((H_FACTOR) / 3.00, I)
  4394. #define Z0175(I) ZP((H_FACTOR) / 6.00, I)
  4395. #define Z2250(I) ZP(R_FACTOR, I)
  4396. #define Z0750(I) ZP((R_FACTOR) / 3.00, I)
  4397. #define Z0375(I) ZP((R_FACTOR) / 6.00, I)
  4398. switch (probe_points) {
  4399. case 1:
  4400. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4401. r_delta = 0.00;
  4402. break;
  4403. case 2:
  4404. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4405. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4406. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4407. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4408. break;
  4409. case -2:
  4410. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4411. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4412. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4413. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4414. break;
  4415. default:
  4416. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4417. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4418. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4419. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4420. break;
  4421. }
  4422. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4423. // Calculate h & r factors
  4424. if (verbose_level == 3) {
  4425. LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
  4426. r_f_new = r_delta;
  4427. h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
  4428. if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
  4429. if (r_f_old != 0)
  4430. r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
  4431. + 0.311 * sq(R_FACTOR)
  4432. + 1.1493 * R_FACTOR
  4433. + 1.7952
  4434. ) * (r_f_old - r_f_new) / r_f_old;
  4435. if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
  4436. SERIAL_EOL;
  4437. h_f_old = h_f_new;
  4438. r_f_old = r_f_new;
  4439. }
  4440. #endif // DELTA_CALIBRATE_EXPERT_MODE
  4441. // Adjust delta_height and endstops by the max amount
  4442. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4443. delta_radius += r_delta;
  4444. const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
  4445. home_offset[Z_AXIS] -= z_temp;
  4446. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4447. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4448. }
  4449. else { // !iterate
  4450. // step one back
  4451. COPY(endstop_adj, e_old);
  4452. delta_radius = dr_old;
  4453. home_offset[Z_AXIS] = zh_old;
  4454. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4455. }
  4456. // print report
  4457. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4458. if (verbose_level == 3) {
  4459. const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
  4460. - 44.988 * sq(r_diff_max)
  4461. + 31.697 * r_diff_max
  4462. - 9.4439;
  4463. SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
  4464. SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
  4465. SERIAL_EOL;
  4466. }
  4467. #endif
  4468. if (verbose_level == 2) {
  4469. SERIAL_PROTOCOLPGM(". c:");
  4470. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4471. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4472. if (probe_points > 1) {
  4473. SERIAL_PROTOCOLPGM(" x:");
  4474. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4475. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4476. SERIAL_PROTOCOLPGM(" y:");
  4477. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4478. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4479. SERIAL_PROTOCOLPGM(" z:");
  4480. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4481. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4482. }
  4483. if (probe_points > 0) SERIAL_EOL;
  4484. if (probe_points > 2 || probe_points == -2) {
  4485. if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
  4486. SERIAL_PROTOCOLPGM(" yz:");
  4487. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4488. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4489. SERIAL_PROTOCOLPGM(" zx:");
  4490. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4491. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4492. SERIAL_PROTOCOLPGM(" xy:");
  4493. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4494. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4495. SERIAL_EOL;
  4496. }
  4497. }
  4498. if (test_precision != 0.0) { // !forced end
  4499. if (zero_std_dev >= test_precision) {
  4500. SERIAL_PROTOCOLPGM("Calibration OK");
  4501. SERIAL_PROTOCOLLNPGM(" rolling back 1");
  4502. LCD_MESSAGEPGM("Calibration OK");
  4503. SERIAL_EOL;
  4504. }
  4505. else { // !end iterations
  4506. char mess[15] = "No convergence";
  4507. if (iterations < 31)
  4508. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4509. SERIAL_PROTOCOL(mess);
  4510. SERIAL_PROTOCOLPGM(" std dev:");
  4511. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4512. SERIAL_EOL;
  4513. lcd_setstatus(mess);
  4514. }
  4515. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4516. if (abs(probe_points) > 1) {
  4517. SERIAL_PROTOCOLPGM(" Ex:");
  4518. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4519. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4520. SERIAL_PROTOCOLPGM(" Ey:");
  4521. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4522. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4523. SERIAL_PROTOCOLPGM(" Ez:");
  4524. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4525. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4526. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4527. }
  4528. SERIAL_EOL;
  4529. if (zero_std_dev >= test_precision)
  4530. SERIAL_PROTOCOLLNPGM("Save with M500");
  4531. }
  4532. else { // forced end
  4533. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4534. if (verbose_level == 3)
  4535. SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
  4536. else
  4537. #endif
  4538. {
  4539. SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
  4540. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4541. SERIAL_EOL;
  4542. }
  4543. }
  4544. clean_up_after_endstop_or_probe_move();
  4545. stepper.synchronize();
  4546. gcode_G28();
  4547. } while (zero_std_dev < test_precision && iterations < 31);
  4548. #if ENABLED(Z_PROBE_SLED)
  4549. RETRACT_PROBE();
  4550. #endif
  4551. }
  4552. #endif // DELTA_AUTO_CALIBRATION
  4553. #endif // HAS_BED_PROBE
  4554. #if ENABLED(G38_PROBE_TARGET)
  4555. static bool G38_run_probe() {
  4556. bool G38_pass_fail = false;
  4557. // Get direction of move and retract
  4558. float retract_mm[XYZ];
  4559. LOOP_XYZ(i) {
  4560. float dist = destination[i] - current_position[i];
  4561. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4562. }
  4563. stepper.synchronize(); // wait until the machine is idle
  4564. // Move until destination reached or target hit
  4565. endstops.enable(true);
  4566. G38_move = true;
  4567. G38_endstop_hit = false;
  4568. prepare_move_to_destination();
  4569. stepper.synchronize();
  4570. G38_move = false;
  4571. endstops.hit_on_purpose();
  4572. set_current_from_steppers_for_axis(ALL_AXES);
  4573. SYNC_PLAN_POSITION_KINEMATIC();
  4574. if (G38_endstop_hit) {
  4575. G38_pass_fail = true;
  4576. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4577. // Move away by the retract distance
  4578. set_destination_to_current();
  4579. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4580. endstops.enable(false);
  4581. prepare_move_to_destination();
  4582. stepper.synchronize();
  4583. feedrate_mm_s /= 4;
  4584. // Bump the target more slowly
  4585. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4586. endstops.enable(true);
  4587. G38_move = true;
  4588. prepare_move_to_destination();
  4589. stepper.synchronize();
  4590. G38_move = false;
  4591. set_current_from_steppers_for_axis(ALL_AXES);
  4592. SYNC_PLAN_POSITION_KINEMATIC();
  4593. #endif
  4594. }
  4595. endstops.hit_on_purpose();
  4596. endstops.not_homing();
  4597. return G38_pass_fail;
  4598. }
  4599. /**
  4600. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4601. * G38.3 - probe toward workpiece, stop on contact
  4602. *
  4603. * Like G28 except uses Z min probe for all axes
  4604. */
  4605. inline void gcode_G38(bool is_38_2) {
  4606. // Get X Y Z E F
  4607. gcode_get_destination();
  4608. setup_for_endstop_or_probe_move();
  4609. // If any axis has enough movement, do the move
  4610. LOOP_XYZ(i)
  4611. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4612. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4613. // If G38.2 fails throw an error
  4614. if (!G38_run_probe() && is_38_2) {
  4615. SERIAL_ERROR_START;
  4616. SERIAL_ERRORLNPGM("Failed to reach target");
  4617. }
  4618. break;
  4619. }
  4620. clean_up_after_endstop_or_probe_move();
  4621. }
  4622. #endif // G38_PROBE_TARGET
  4623. /**
  4624. * G92: Set current position to given X Y Z E
  4625. */
  4626. inline void gcode_G92() {
  4627. bool didXYZ = false,
  4628. didE = code_seen('E');
  4629. if (!didE) stepper.synchronize();
  4630. LOOP_XYZE(i) {
  4631. if (code_seen(axis_codes[i])) {
  4632. #if IS_SCARA
  4633. current_position[i] = code_value_axis_units((AxisEnum)i);
  4634. if (i != E_AXIS) didXYZ = true;
  4635. #else
  4636. #if HAS_POSITION_SHIFT
  4637. const float p = current_position[i];
  4638. #endif
  4639. float v = code_value_axis_units((AxisEnum)i);
  4640. current_position[i] = v;
  4641. if (i != E_AXIS) {
  4642. didXYZ = true;
  4643. #if HAS_POSITION_SHIFT
  4644. position_shift[i] += v - p; // Offset the coordinate space
  4645. update_software_endstops((AxisEnum)i);
  4646. #endif
  4647. }
  4648. #endif
  4649. }
  4650. }
  4651. if (didXYZ)
  4652. SYNC_PLAN_POSITION_KINEMATIC();
  4653. else if (didE)
  4654. sync_plan_position_e();
  4655. report_current_position();
  4656. }
  4657. #if HAS_RESUME_CONTINUE
  4658. /**
  4659. * M0: Unconditional stop - Wait for user button press on LCD
  4660. * M1: Conditional stop - Wait for user button press on LCD
  4661. */
  4662. inline void gcode_M0_M1() {
  4663. const char * const args = current_command_args;
  4664. millis_t codenum = 0;
  4665. bool hasP = false, hasS = false;
  4666. if (code_seen('P')) {
  4667. codenum = code_value_millis(); // milliseconds to wait
  4668. hasP = codenum > 0;
  4669. }
  4670. if (code_seen('S')) {
  4671. codenum = code_value_millis_from_seconds(); // seconds to wait
  4672. hasS = codenum > 0;
  4673. }
  4674. #if ENABLED(ULTIPANEL)
  4675. if (!hasP && !hasS && *args != '\0')
  4676. lcd_setstatus(args, true);
  4677. else {
  4678. LCD_MESSAGEPGM(MSG_USERWAIT);
  4679. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4680. dontExpireStatus();
  4681. #endif
  4682. }
  4683. #else
  4684. if (!hasP && !hasS && *args != '\0') {
  4685. SERIAL_ECHO_START;
  4686. SERIAL_ECHOLN(args);
  4687. }
  4688. #endif
  4689. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4690. wait_for_user = true;
  4691. stepper.synchronize();
  4692. refresh_cmd_timeout();
  4693. if (codenum > 0) {
  4694. codenum += previous_cmd_ms; // wait until this time for a click
  4695. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4696. }
  4697. else {
  4698. #if ENABLED(ULTIPANEL)
  4699. if (lcd_detected()) {
  4700. while (wait_for_user) idle();
  4701. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4702. }
  4703. #else
  4704. while (wait_for_user) idle();
  4705. #endif
  4706. }
  4707. wait_for_user = false;
  4708. KEEPALIVE_STATE(IN_HANDLER);
  4709. }
  4710. #endif // HAS_RESUME_CONTINUE
  4711. /**
  4712. * M17: Enable power on all stepper motors
  4713. */
  4714. inline void gcode_M17() {
  4715. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4716. enable_all_steppers();
  4717. }
  4718. #if IS_KINEMATIC
  4719. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4720. #else
  4721. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4722. #endif
  4723. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4724. float resume_position[XYZE];
  4725. bool move_away_flag = false;
  4726. inline void move_back_on_resume() {
  4727. if (!move_away_flag) return;
  4728. move_away_flag = false;
  4729. // Set extruder to saved position
  4730. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4731. planner.set_e_position_mm(current_position[E_AXIS]);
  4732. #if IS_KINEMATIC
  4733. // Move XYZ to starting position
  4734. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4735. #else
  4736. // Move XY to starting position, then Z
  4737. destination[X_AXIS] = resume_position[X_AXIS];
  4738. destination[Y_AXIS] = resume_position[Y_AXIS];
  4739. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4740. destination[Z_AXIS] = resume_position[Z_AXIS];
  4741. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4742. #endif
  4743. stepper.synchronize();
  4744. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4745. filament_ran_out = false;
  4746. #endif
  4747. set_current_to_destination();
  4748. }
  4749. #endif // PARK_HEAD_ON_PAUSE
  4750. #if ENABLED(SDSUPPORT)
  4751. /**
  4752. * M20: List SD card to serial output
  4753. */
  4754. inline void gcode_M20() {
  4755. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4756. card.ls();
  4757. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4758. }
  4759. /**
  4760. * M21: Init SD Card
  4761. */
  4762. inline void gcode_M21() { card.initsd(); }
  4763. /**
  4764. * M22: Release SD Card
  4765. */
  4766. inline void gcode_M22() { card.release(); }
  4767. /**
  4768. * M23: Open a file
  4769. */
  4770. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4771. /**
  4772. * M24: Start or Resume SD Print
  4773. */
  4774. inline void gcode_M24() {
  4775. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4776. move_back_on_resume();
  4777. #endif
  4778. card.startFileprint();
  4779. print_job_timer.start();
  4780. }
  4781. /**
  4782. * M25: Pause SD Print
  4783. */
  4784. inline void gcode_M25() {
  4785. card.pauseSDPrint();
  4786. print_job_timer.pause();
  4787. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4788. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4789. #endif
  4790. }
  4791. /**
  4792. * M26: Set SD Card file index
  4793. */
  4794. inline void gcode_M26() {
  4795. if (card.cardOK && code_seen('S'))
  4796. card.setIndex(code_value_long());
  4797. }
  4798. /**
  4799. * M27: Get SD Card status
  4800. */
  4801. inline void gcode_M27() { card.getStatus(); }
  4802. /**
  4803. * M28: Start SD Write
  4804. */
  4805. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4806. /**
  4807. * M29: Stop SD Write
  4808. * Processed in write to file routine above
  4809. */
  4810. inline void gcode_M29() {
  4811. // card.saving = false;
  4812. }
  4813. /**
  4814. * M30 <filename>: Delete SD Card file
  4815. */
  4816. inline void gcode_M30() {
  4817. if (card.cardOK) {
  4818. card.closefile();
  4819. card.removeFile(current_command_args);
  4820. }
  4821. }
  4822. #endif // SDSUPPORT
  4823. /**
  4824. * M31: Get the time since the start of SD Print (or last M109)
  4825. */
  4826. inline void gcode_M31() {
  4827. char buffer[21];
  4828. duration_t elapsed = print_job_timer.duration();
  4829. elapsed.toString(buffer);
  4830. lcd_setstatus(buffer);
  4831. SERIAL_ECHO_START;
  4832. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4833. #if ENABLED(AUTOTEMP)
  4834. thermalManager.autotempShutdown();
  4835. #endif
  4836. }
  4837. #if ENABLED(SDSUPPORT)
  4838. /**
  4839. * M32: Select file and start SD Print
  4840. */
  4841. inline void gcode_M32() {
  4842. if (card.sdprinting)
  4843. stepper.synchronize();
  4844. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4845. if (!namestartpos)
  4846. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4847. else
  4848. namestartpos++; //to skip the '!'
  4849. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4850. if (card.cardOK) {
  4851. card.openFile(namestartpos, true, call_procedure);
  4852. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4853. card.setIndex(code_value_long());
  4854. card.startFileprint();
  4855. // Procedure calls count as normal print time.
  4856. if (!call_procedure) print_job_timer.start();
  4857. }
  4858. }
  4859. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4860. /**
  4861. * M33: Get the long full path of a file or folder
  4862. *
  4863. * Parameters:
  4864. * <dospath> Case-insensitive DOS-style path to a file or folder
  4865. *
  4866. * Example:
  4867. * M33 miscel~1/armchair/armcha~1.gco
  4868. *
  4869. * Output:
  4870. * /Miscellaneous/Armchair/Armchair.gcode
  4871. */
  4872. inline void gcode_M33() {
  4873. card.printLongPath(current_command_args);
  4874. }
  4875. #endif
  4876. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4877. /**
  4878. * M34: Set SD Card Sorting Options
  4879. */
  4880. inline void gcode_M34() {
  4881. if (code_seen('S')) card.setSortOn(code_value_bool());
  4882. if (code_seen('F')) {
  4883. int v = code_value_long();
  4884. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4885. }
  4886. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4887. }
  4888. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4889. /**
  4890. * M928: Start SD Write
  4891. */
  4892. inline void gcode_M928() {
  4893. card.openLogFile(current_command_args);
  4894. }
  4895. #endif // SDSUPPORT
  4896. /**
  4897. * Sensitive pin test for M42, M226
  4898. */
  4899. static bool pin_is_protected(uint8_t pin) {
  4900. static const int sensitive_pins[] = SENSITIVE_PINS;
  4901. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4902. if (sensitive_pins[i] == pin) return true;
  4903. return false;
  4904. }
  4905. /**
  4906. * M42: Change pin status via GCode
  4907. *
  4908. * P<pin> Pin number (LED if omitted)
  4909. * S<byte> Pin status from 0 - 255
  4910. */
  4911. inline void gcode_M42() {
  4912. if (!code_seen('S')) return;
  4913. int pin_status = code_value_int();
  4914. if (!WITHIN(pin_status, 0, 255)) return;
  4915. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4916. if (pin_number < 0) return;
  4917. if (pin_is_protected(pin_number)) {
  4918. SERIAL_ERROR_START;
  4919. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4920. return;
  4921. }
  4922. pinMode(pin_number, OUTPUT);
  4923. digitalWrite(pin_number, pin_status);
  4924. analogWrite(pin_number, pin_status);
  4925. #if FAN_COUNT > 0
  4926. switch (pin_number) {
  4927. #if HAS_FAN0
  4928. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4929. #endif
  4930. #if HAS_FAN1
  4931. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4932. #endif
  4933. #if HAS_FAN2
  4934. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4935. #endif
  4936. }
  4937. #endif
  4938. }
  4939. #if ENABLED(PINS_DEBUGGING)
  4940. #include "pinsDebug.h"
  4941. inline void toggle_pins() {
  4942. const bool I_flag = code_seen('I') && code_value_bool();
  4943. const int repeat = code_seen('R') ? code_value_int() : 1,
  4944. start = code_seen('S') ? code_value_int() : 0,
  4945. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4946. wait = code_seen('W') ? code_value_int() : 500;
  4947. for (uint8_t pin = start; pin <= end; pin++) {
  4948. if (!I_flag && pin_is_protected(pin)) {
  4949. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4950. SERIAL_ECHOLNPGM(" untouched.");
  4951. }
  4952. else {
  4953. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4954. pinMode(pin, OUTPUT);
  4955. for (int16_t j = 0; j < repeat; j++) {
  4956. digitalWrite(pin, 0);
  4957. safe_delay(wait);
  4958. digitalWrite(pin, 1);
  4959. safe_delay(wait);
  4960. digitalWrite(pin, 0);
  4961. safe_delay(wait);
  4962. }
  4963. }
  4964. SERIAL_CHAR('\n');
  4965. }
  4966. SERIAL_ECHOLNPGM("Done.");
  4967. } // toggle_pins
  4968. inline void servo_probe_test() {
  4969. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4970. SERIAL_ERROR_START;
  4971. SERIAL_ERRORLNPGM("SERVO not setup");
  4972. #elif !HAS_Z_SERVO_ENDSTOP
  4973. SERIAL_ERROR_START;
  4974. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4975. #else
  4976. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4977. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4978. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4979. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4980. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4981. bool probe_inverting;
  4982. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4983. #define PROBE_TEST_PIN Z_MIN_PIN
  4984. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4985. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4986. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4987. #if Z_MIN_ENDSTOP_INVERTING
  4988. SERIAL_PROTOCOLLNPGM("true");
  4989. #else
  4990. SERIAL_PROTOCOLLNPGM("false");
  4991. #endif
  4992. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4993. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4994. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4995. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4996. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4997. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4998. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  4999. SERIAL_PROTOCOLLNPGM("true");
  5000. #else
  5001. SERIAL_PROTOCOLLNPGM("false");
  5002. #endif
  5003. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5004. #endif
  5005. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5006. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5007. bool deploy_state;
  5008. bool stow_state;
  5009. for (uint8_t i = 0; i < 4; i++) {
  5010. servo[probe_index].move(z_servo_angle[0]); //deploy
  5011. safe_delay(500);
  5012. deploy_state = digitalRead(PROBE_TEST_PIN);
  5013. servo[probe_index].move(z_servo_angle[1]); //stow
  5014. safe_delay(500);
  5015. stow_state = digitalRead(PROBE_TEST_PIN);
  5016. }
  5017. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5018. refresh_cmd_timeout();
  5019. if (deploy_state != stow_state) {
  5020. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5021. if (deploy_state) {
  5022. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5023. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5024. }
  5025. else {
  5026. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5027. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5028. }
  5029. #if ENABLED(BLTOUCH)
  5030. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5031. #endif
  5032. }
  5033. else { // measure active signal length
  5034. servo[probe_index].move(z_servo_angle[0]); // deploy
  5035. safe_delay(500);
  5036. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5037. uint16_t probe_counter = 0;
  5038. // Allow 30 seconds max for operator to trigger probe
  5039. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5040. safe_delay(2);
  5041. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5042. refresh_cmd_timeout();
  5043. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5044. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5045. safe_delay(2);
  5046. if (probe_counter == 50)
  5047. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5048. else if (probe_counter >= 2)
  5049. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5050. else
  5051. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5052. servo[probe_index].move(z_servo_angle[1]); //stow
  5053. } // pulse detected
  5054. } // for loop waiting for trigger
  5055. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5056. } // measure active signal length
  5057. #endif
  5058. } // servo_probe_test
  5059. /**
  5060. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5061. *
  5062. * M43 - report name and state of pin(s)
  5063. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5064. * I Flag to ignore Marlin's pin protection.
  5065. *
  5066. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5067. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5068. * I Flag to ignore Marlin's pin protection.
  5069. *
  5070. * M43 E<bool> - Enable / disable background endstop monitoring
  5071. * - Machine continues to operate
  5072. * - Reports changes to endstops
  5073. * - Toggles LED when an endstop changes
  5074. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5075. *
  5076. * M43 T - Toggle pin(s) and report which pin is being toggled
  5077. * S<pin> - Start Pin number. If not given, will default to 0
  5078. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5079. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5080. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5081. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5082. *
  5083. * M43 S - Servo probe test
  5084. * P<index> - Probe index (optional - defaults to 0
  5085. */
  5086. inline void gcode_M43() {
  5087. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5088. toggle_pins();
  5089. return;
  5090. }
  5091. // Enable or disable endstop monitoring
  5092. if (code_seen('E')) {
  5093. endstop_monitor_flag = code_value_bool();
  5094. SERIAL_PROTOCOLPGM("endstop monitor ");
  5095. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5096. SERIAL_PROTOCOLLNPGM("abled");
  5097. return;
  5098. }
  5099. if (code_seen('S')) {
  5100. servo_probe_test();
  5101. return;
  5102. }
  5103. // Get the range of pins to test or watch
  5104. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5105. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5106. if (first_pin > last_pin) return;
  5107. const bool ignore_protection = code_seen('I') && code_value_bool();
  5108. // Watch until click, M108, or reset
  5109. if (code_seen('W') && code_value_bool()) {
  5110. SERIAL_PROTOCOLLNPGM("Watching pins");
  5111. byte pin_state[last_pin - first_pin + 1];
  5112. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5113. if (pin_is_protected(pin) && !ignore_protection) continue;
  5114. pinMode(pin, INPUT_PULLUP);
  5115. /*
  5116. if (IS_ANALOG(pin))
  5117. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5118. else
  5119. //*/
  5120. pin_state[pin - first_pin] = digitalRead(pin);
  5121. }
  5122. #if HAS_RESUME_CONTINUE
  5123. wait_for_user = true;
  5124. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5125. #endif
  5126. for (;;) {
  5127. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5128. if (pin_is_protected(pin)) continue;
  5129. const byte val =
  5130. /*
  5131. IS_ANALOG(pin)
  5132. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5133. :
  5134. //*/
  5135. digitalRead(pin);
  5136. if (val != pin_state[pin - first_pin]) {
  5137. report_pin_state(pin);
  5138. pin_state[pin - first_pin] = val;
  5139. }
  5140. }
  5141. #if HAS_RESUME_CONTINUE
  5142. if (!wait_for_user) {
  5143. KEEPALIVE_STATE(IN_HANDLER);
  5144. break;
  5145. }
  5146. #endif
  5147. safe_delay(500);
  5148. }
  5149. return;
  5150. }
  5151. // Report current state of selected pin(s)
  5152. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5153. report_pin_state_extended(pin, ignore_protection);
  5154. }
  5155. #endif // PINS_DEBUGGING
  5156. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5157. /**
  5158. * M48: Z probe repeatability measurement function.
  5159. *
  5160. * Usage:
  5161. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5162. * P = Number of sampled points (4-50, default 10)
  5163. * X = Sample X position
  5164. * Y = Sample Y position
  5165. * V = Verbose level (0-4, default=1)
  5166. * E = Engage Z probe for each reading
  5167. * L = Number of legs of movement before probe
  5168. * S = Schizoid (Or Star if you prefer)
  5169. *
  5170. * This function assumes the bed has been homed. Specifically, that a G28 command
  5171. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5172. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5173. * regenerated.
  5174. */
  5175. inline void gcode_M48() {
  5176. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5177. bool bed_leveling_state_at_entry=0;
  5178. bed_leveling_state_at_entry = ubl.state.active;
  5179. #endif
  5180. if (axis_unhomed_error(true, true, true)) return;
  5181. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5182. if (!WITHIN(verbose_level, 0, 4)) {
  5183. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5184. return;
  5185. }
  5186. if (verbose_level > 0)
  5187. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5188. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5189. if (!WITHIN(n_samples, 4, 50)) {
  5190. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5191. return;
  5192. }
  5193. float X_current = current_position[X_AXIS],
  5194. Y_current = current_position[Y_AXIS];
  5195. bool stow_probe_after_each = code_seen('E');
  5196. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5197. #if DISABLED(DELTA)
  5198. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5199. out_of_range_error(PSTR("X"));
  5200. return;
  5201. }
  5202. #endif
  5203. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5204. #if DISABLED(DELTA)
  5205. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5206. out_of_range_error(PSTR("Y"));
  5207. return;
  5208. }
  5209. #else
  5210. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5211. if (!position_is_reachable(pos, true)) {
  5212. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5213. return;
  5214. }
  5215. #endif
  5216. bool seen_L = code_seen('L');
  5217. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5218. if (n_legs > 15) {
  5219. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5220. return;
  5221. }
  5222. if (n_legs == 1) n_legs = 2;
  5223. bool schizoid_flag = code_seen('S');
  5224. if (schizoid_flag && !seen_L) n_legs = 7;
  5225. /**
  5226. * Now get everything to the specified probe point So we can safely do a
  5227. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5228. * we don't want to use that as a starting point for each probe.
  5229. */
  5230. if (verbose_level > 2)
  5231. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5232. // Disable bed level correction in M48 because we want the raw data when we probe
  5233. #if HAS_ABL
  5234. const bool abl_was_enabled = planner.abl_enabled;
  5235. set_bed_leveling_enabled(false);
  5236. #endif
  5237. setup_for_endstop_or_probe_move();
  5238. // Move to the first point, deploy, and probe
  5239. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5240. randomSeed(millis());
  5241. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5242. for (uint8_t n = 0; n < n_samples; n++) {
  5243. if (n_legs) {
  5244. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5245. float angle = random(0.0, 360.0),
  5246. radius = random(
  5247. #if ENABLED(DELTA)
  5248. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5249. #else
  5250. 5, X_MAX_LENGTH / 8
  5251. #endif
  5252. );
  5253. if (verbose_level > 3) {
  5254. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5255. SERIAL_ECHOPAIR(" angle: ", angle);
  5256. SERIAL_ECHOPGM(" Direction: ");
  5257. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5258. SERIAL_ECHOLNPGM("Clockwise");
  5259. }
  5260. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5261. double delta_angle;
  5262. if (schizoid_flag)
  5263. // The points of a 5 point star are 72 degrees apart. We need to
  5264. // skip a point and go to the next one on the star.
  5265. delta_angle = dir * 2.0 * 72.0;
  5266. else
  5267. // If we do this line, we are just trying to move further
  5268. // around the circle.
  5269. delta_angle = dir * (float) random(25, 45);
  5270. angle += delta_angle;
  5271. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5272. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5273. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5274. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5275. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5276. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5277. #if DISABLED(DELTA)
  5278. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5279. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5280. #else
  5281. // If we have gone out too far, we can do a simple fix and scale the numbers
  5282. // back in closer to the origin.
  5283. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5284. X_current *= 0.8;
  5285. Y_current *= 0.8;
  5286. if (verbose_level > 3) {
  5287. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5288. SERIAL_ECHOLNPAIR(", ", Y_current);
  5289. }
  5290. }
  5291. #endif
  5292. if (verbose_level > 3) {
  5293. SERIAL_PROTOCOLPGM("Going to:");
  5294. SERIAL_ECHOPAIR(" X", X_current);
  5295. SERIAL_ECHOPAIR(" Y", Y_current);
  5296. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5297. }
  5298. do_blocking_move_to_xy(X_current, Y_current);
  5299. } // n_legs loop
  5300. } // n_legs
  5301. // Probe a single point
  5302. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5303. /**
  5304. * Get the current mean for the data points we have so far
  5305. */
  5306. double sum = 0.0;
  5307. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5308. mean = sum / (n + 1);
  5309. NOMORE(min, sample_set[n]);
  5310. NOLESS(max, sample_set[n]);
  5311. /**
  5312. * Now, use that mean to calculate the standard deviation for the
  5313. * data points we have so far
  5314. */
  5315. sum = 0.0;
  5316. for (uint8_t j = 0; j <= n; j++)
  5317. sum += sq(sample_set[j] - mean);
  5318. sigma = sqrt(sum / (n + 1));
  5319. if (verbose_level > 0) {
  5320. if (verbose_level > 1) {
  5321. SERIAL_PROTOCOL(n + 1);
  5322. SERIAL_PROTOCOLPGM(" of ");
  5323. SERIAL_PROTOCOL((int)n_samples);
  5324. SERIAL_PROTOCOLPGM(": z: ");
  5325. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5326. if (verbose_level > 2) {
  5327. SERIAL_PROTOCOLPGM(" mean: ");
  5328. SERIAL_PROTOCOL_F(mean, 4);
  5329. SERIAL_PROTOCOLPGM(" sigma: ");
  5330. SERIAL_PROTOCOL_F(sigma, 6);
  5331. SERIAL_PROTOCOLPGM(" min: ");
  5332. SERIAL_PROTOCOL_F(min, 3);
  5333. SERIAL_PROTOCOLPGM(" max: ");
  5334. SERIAL_PROTOCOL_F(max, 3);
  5335. SERIAL_PROTOCOLPGM(" range: ");
  5336. SERIAL_PROTOCOL_F(max-min, 3);
  5337. }
  5338. SERIAL_EOL;
  5339. }
  5340. }
  5341. } // End of probe loop
  5342. if (STOW_PROBE()) return;
  5343. SERIAL_PROTOCOLPGM("Finished!");
  5344. SERIAL_EOL;
  5345. if (verbose_level > 0) {
  5346. SERIAL_PROTOCOLPGM("Mean: ");
  5347. SERIAL_PROTOCOL_F(mean, 6);
  5348. SERIAL_PROTOCOLPGM(" Min: ");
  5349. SERIAL_PROTOCOL_F(min, 3);
  5350. SERIAL_PROTOCOLPGM(" Max: ");
  5351. SERIAL_PROTOCOL_F(max, 3);
  5352. SERIAL_PROTOCOLPGM(" Range: ");
  5353. SERIAL_PROTOCOL_F(max-min, 3);
  5354. SERIAL_EOL;
  5355. }
  5356. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5357. SERIAL_PROTOCOL_F(sigma, 6);
  5358. SERIAL_EOL;
  5359. SERIAL_EOL;
  5360. clean_up_after_endstop_or_probe_move();
  5361. // Re-enable bed level correction if it has been on
  5362. #if HAS_ABL
  5363. set_bed_leveling_enabled(abl_was_enabled);
  5364. #endif
  5365. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5366. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5367. ubl.state.active = bed_leveling_state_at_entry;
  5368. #endif
  5369. report_current_position();
  5370. }
  5371. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5372. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5373. inline void gcode_M49() {
  5374. ubl.g26_debug_flag ^= true;
  5375. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5376. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5377. }
  5378. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5379. /**
  5380. * M75: Start print timer
  5381. */
  5382. inline void gcode_M75() { print_job_timer.start(); }
  5383. /**
  5384. * M76: Pause print timer
  5385. */
  5386. inline void gcode_M76() { print_job_timer.pause(); }
  5387. /**
  5388. * M77: Stop print timer
  5389. */
  5390. inline void gcode_M77() { print_job_timer.stop(); }
  5391. #if ENABLED(PRINTCOUNTER)
  5392. /**
  5393. * M78: Show print statistics
  5394. */
  5395. inline void gcode_M78() {
  5396. // "M78 S78" will reset the statistics
  5397. if (code_seen('S') && code_value_int() == 78)
  5398. print_job_timer.initStats();
  5399. else
  5400. print_job_timer.showStats();
  5401. }
  5402. #endif
  5403. /**
  5404. * M104: Set hot end temperature
  5405. */
  5406. inline void gcode_M104() {
  5407. if (get_target_extruder_from_command(104)) return;
  5408. if (DEBUGGING(DRYRUN)) return;
  5409. #if ENABLED(SINGLENOZZLE)
  5410. if (target_extruder != active_extruder) return;
  5411. #endif
  5412. if (code_seen('S')) {
  5413. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5414. #if ENABLED(DUAL_X_CARRIAGE)
  5415. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5416. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5417. #endif
  5418. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5419. /**
  5420. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5421. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5422. * standby mode, for instance in a dual extruder setup, without affecting
  5423. * the running print timer.
  5424. */
  5425. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5426. print_job_timer.stop();
  5427. LCD_MESSAGEPGM(WELCOME_MSG);
  5428. }
  5429. #endif
  5430. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5431. }
  5432. #if ENABLED(AUTOTEMP)
  5433. planner.autotemp_M104_M109();
  5434. #endif
  5435. }
  5436. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5437. void print_heaterstates() {
  5438. #if HAS_TEMP_HOTEND
  5439. SERIAL_PROTOCOLPGM(" T:");
  5440. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5441. SERIAL_PROTOCOLPGM(" /");
  5442. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5443. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5444. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5445. SERIAL_PROTOCOLCHAR(')');
  5446. #endif
  5447. #endif
  5448. #if HAS_TEMP_BED
  5449. SERIAL_PROTOCOLPGM(" B:");
  5450. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5451. SERIAL_PROTOCOLPGM(" /");
  5452. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5453. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5454. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5455. SERIAL_PROTOCOLCHAR(')');
  5456. #endif
  5457. #endif
  5458. #if HOTENDS > 1
  5459. HOTEND_LOOP() {
  5460. SERIAL_PROTOCOLPAIR(" T", e);
  5461. SERIAL_PROTOCOLCHAR(':');
  5462. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5463. SERIAL_PROTOCOLPGM(" /");
  5464. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5465. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5466. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5467. SERIAL_PROTOCOLCHAR(')');
  5468. #endif
  5469. }
  5470. #endif
  5471. SERIAL_PROTOCOLPGM(" @:");
  5472. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5473. #if HAS_TEMP_BED
  5474. SERIAL_PROTOCOLPGM(" B@:");
  5475. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5476. #endif
  5477. #if HOTENDS > 1
  5478. HOTEND_LOOP() {
  5479. SERIAL_PROTOCOLPAIR(" @", e);
  5480. SERIAL_PROTOCOLCHAR(':');
  5481. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5482. }
  5483. #endif
  5484. }
  5485. #endif
  5486. /**
  5487. * M105: Read hot end and bed temperature
  5488. */
  5489. inline void gcode_M105() {
  5490. if (get_target_extruder_from_command(105)) return;
  5491. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5492. SERIAL_PROTOCOLPGM(MSG_OK);
  5493. print_heaterstates();
  5494. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5495. SERIAL_ERROR_START;
  5496. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5497. #endif
  5498. SERIAL_EOL;
  5499. }
  5500. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5501. static uint8_t auto_report_temp_interval;
  5502. static millis_t next_temp_report_ms;
  5503. /**
  5504. * M155: Set temperature auto-report interval. M155 S<seconds>
  5505. */
  5506. inline void gcode_M155() {
  5507. if (code_seen('S')) {
  5508. auto_report_temp_interval = code_value_byte();
  5509. NOMORE(auto_report_temp_interval, 60);
  5510. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5511. }
  5512. }
  5513. inline void auto_report_temperatures() {
  5514. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5515. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5516. print_heaterstates();
  5517. SERIAL_EOL;
  5518. }
  5519. }
  5520. #endif // AUTO_REPORT_TEMPERATURES
  5521. #if FAN_COUNT > 0
  5522. /**
  5523. * M106: Set Fan Speed
  5524. *
  5525. * S<int> Speed between 0-255
  5526. * P<index> Fan index, if more than one fan
  5527. */
  5528. inline void gcode_M106() {
  5529. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5530. p = code_seen('P') ? code_value_ushort() : 0;
  5531. NOMORE(s, 255);
  5532. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5533. }
  5534. /**
  5535. * M107: Fan Off
  5536. */
  5537. inline void gcode_M107() {
  5538. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5539. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5540. }
  5541. #endif // FAN_COUNT > 0
  5542. #if DISABLED(EMERGENCY_PARSER)
  5543. /**
  5544. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5545. */
  5546. inline void gcode_M108() { wait_for_heatup = false; }
  5547. /**
  5548. * M112: Emergency Stop
  5549. */
  5550. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5551. /**
  5552. * M410: Quickstop - Abort all planned moves
  5553. *
  5554. * This will stop the carriages mid-move, so most likely they
  5555. * will be out of sync with the stepper position after this.
  5556. */
  5557. inline void gcode_M410() { quickstop_stepper(); }
  5558. #endif
  5559. /**
  5560. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5561. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5562. */
  5563. #ifndef MIN_COOLING_SLOPE_DEG
  5564. #define MIN_COOLING_SLOPE_DEG 1.50
  5565. #endif
  5566. #ifndef MIN_COOLING_SLOPE_TIME
  5567. #define MIN_COOLING_SLOPE_TIME 60
  5568. #endif
  5569. inline void gcode_M109() {
  5570. if (get_target_extruder_from_command(109)) return;
  5571. if (DEBUGGING(DRYRUN)) return;
  5572. #if ENABLED(SINGLENOZZLE)
  5573. if (target_extruder != active_extruder) return;
  5574. #endif
  5575. const bool no_wait_for_cooling = code_seen('S');
  5576. if (no_wait_for_cooling || code_seen('R')) {
  5577. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5578. #if ENABLED(DUAL_X_CARRIAGE)
  5579. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5580. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5581. #endif
  5582. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5583. /**
  5584. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5585. * standby mode, (e.g., in a dual extruder setup) without affecting
  5586. * the running print timer.
  5587. */
  5588. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5589. print_job_timer.stop();
  5590. LCD_MESSAGEPGM(WELCOME_MSG);
  5591. }
  5592. else
  5593. print_job_timer.start();
  5594. #endif
  5595. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5596. }
  5597. else return;
  5598. #if ENABLED(AUTOTEMP)
  5599. planner.autotemp_M104_M109();
  5600. #endif
  5601. #if TEMP_RESIDENCY_TIME > 0
  5602. millis_t residency_start_ms = 0;
  5603. // Loop until the temperature has stabilized
  5604. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5605. #else
  5606. // Loop until the temperature is very close target
  5607. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5608. #endif
  5609. float target_temp = -1.0, old_temp = 9999.0;
  5610. bool wants_to_cool = false;
  5611. wait_for_heatup = true;
  5612. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5613. KEEPALIVE_STATE(NOT_BUSY);
  5614. #if ENABLED(PRINTER_EVENT_LEDS)
  5615. const float start_temp = thermalManager.degHotend(target_extruder);
  5616. uint8_t old_blue = 0;
  5617. #endif
  5618. do {
  5619. // Target temperature might be changed during the loop
  5620. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5621. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5622. target_temp = thermalManager.degTargetHotend(target_extruder);
  5623. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5624. if (no_wait_for_cooling && wants_to_cool) break;
  5625. }
  5626. now = millis();
  5627. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5628. next_temp_ms = now + 1000UL;
  5629. print_heaterstates();
  5630. #if TEMP_RESIDENCY_TIME > 0
  5631. SERIAL_PROTOCOLPGM(" W:");
  5632. if (residency_start_ms) {
  5633. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5634. SERIAL_PROTOCOLLN(rem);
  5635. }
  5636. else {
  5637. SERIAL_PROTOCOLLNPGM("?");
  5638. }
  5639. #else
  5640. SERIAL_EOL;
  5641. #endif
  5642. }
  5643. idle();
  5644. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5645. const float temp = thermalManager.degHotend(target_extruder);
  5646. #if ENABLED(PRINTER_EVENT_LEDS)
  5647. // Gradually change LED strip from violet to red as nozzle heats up
  5648. if (!wants_to_cool) {
  5649. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5650. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5651. }
  5652. #endif
  5653. #if TEMP_RESIDENCY_TIME > 0
  5654. const float temp_diff = fabs(target_temp - temp);
  5655. if (!residency_start_ms) {
  5656. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5657. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5658. }
  5659. else if (temp_diff > TEMP_HYSTERESIS) {
  5660. // Restart the timer whenever the temperature falls outside the hysteresis.
  5661. residency_start_ms = now;
  5662. }
  5663. #endif
  5664. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5665. if (wants_to_cool) {
  5666. // break after MIN_COOLING_SLOPE_TIME seconds
  5667. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5668. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5669. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5670. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5671. old_temp = temp;
  5672. }
  5673. }
  5674. } while (wait_for_heatup && TEMP_CONDITIONS);
  5675. if (wait_for_heatup) {
  5676. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5677. #if ENABLED(PRINTER_EVENT_LEDS)
  5678. #if ENABLED(RGBW_LED)
  5679. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5680. #else
  5681. set_led_color(255, 255, 255); // Set LEDs All On
  5682. #endif
  5683. #endif
  5684. }
  5685. KEEPALIVE_STATE(IN_HANDLER);
  5686. }
  5687. #if HAS_TEMP_BED
  5688. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5689. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5690. #endif
  5691. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5692. #define MIN_COOLING_SLOPE_TIME_BED 60
  5693. #endif
  5694. /**
  5695. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5696. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5697. */
  5698. inline void gcode_M190() {
  5699. if (DEBUGGING(DRYRUN)) return;
  5700. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5701. const bool no_wait_for_cooling = code_seen('S');
  5702. if (no_wait_for_cooling || code_seen('R')) {
  5703. thermalManager.setTargetBed(code_value_temp_abs());
  5704. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5705. if (code_value_temp_abs() > BED_MINTEMP)
  5706. print_job_timer.start();
  5707. #endif
  5708. }
  5709. else return;
  5710. #if TEMP_BED_RESIDENCY_TIME > 0
  5711. millis_t residency_start_ms = 0;
  5712. // Loop until the temperature has stabilized
  5713. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5714. #else
  5715. // Loop until the temperature is very close target
  5716. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5717. #endif
  5718. float target_temp = -1.0, old_temp = 9999.0;
  5719. bool wants_to_cool = false;
  5720. wait_for_heatup = true;
  5721. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5722. KEEPALIVE_STATE(NOT_BUSY);
  5723. target_extruder = active_extruder; // for print_heaterstates
  5724. #if ENABLED(PRINTER_EVENT_LEDS)
  5725. const float start_temp = thermalManager.degBed();
  5726. uint8_t old_red = 255;
  5727. #endif
  5728. do {
  5729. // Target temperature might be changed during the loop
  5730. if (target_temp != thermalManager.degTargetBed()) {
  5731. wants_to_cool = thermalManager.isCoolingBed();
  5732. target_temp = thermalManager.degTargetBed();
  5733. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5734. if (no_wait_for_cooling && wants_to_cool) break;
  5735. }
  5736. now = millis();
  5737. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5738. next_temp_ms = now + 1000UL;
  5739. print_heaterstates();
  5740. #if TEMP_BED_RESIDENCY_TIME > 0
  5741. SERIAL_PROTOCOLPGM(" W:");
  5742. if (residency_start_ms) {
  5743. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5744. SERIAL_PROTOCOLLN(rem);
  5745. }
  5746. else {
  5747. SERIAL_PROTOCOLLNPGM("?");
  5748. }
  5749. #else
  5750. SERIAL_EOL;
  5751. #endif
  5752. }
  5753. idle();
  5754. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5755. const float temp = thermalManager.degBed();
  5756. #if ENABLED(PRINTER_EVENT_LEDS)
  5757. // Gradually change LED strip from blue to violet as bed heats up
  5758. if (!wants_to_cool) {
  5759. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5760. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5761. }
  5762. }
  5763. #endif
  5764. #if TEMP_BED_RESIDENCY_TIME > 0
  5765. const float temp_diff = fabs(target_temp - temp);
  5766. if (!residency_start_ms) {
  5767. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5768. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5769. }
  5770. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5771. // Restart the timer whenever the temperature falls outside the hysteresis.
  5772. residency_start_ms = now;
  5773. }
  5774. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5775. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5776. if (wants_to_cool) {
  5777. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5778. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5779. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5780. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5781. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5782. old_temp = temp;
  5783. }
  5784. }
  5785. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5786. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5787. KEEPALIVE_STATE(IN_HANDLER);
  5788. }
  5789. #endif // HAS_TEMP_BED
  5790. /**
  5791. * M110: Set Current Line Number
  5792. */
  5793. inline void gcode_M110() {
  5794. if (code_seen('N')) gcode_LastN = code_value_long();
  5795. }
  5796. /**
  5797. * M111: Set the debug level
  5798. */
  5799. inline void gcode_M111() {
  5800. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5801. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5802. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5803. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5804. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5805. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5807. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5808. #endif
  5809. const static char* const debug_strings[] PROGMEM = {
  5810. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5812. str_debug_32
  5813. #endif
  5814. };
  5815. SERIAL_ECHO_START;
  5816. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5817. if (marlin_debug_flags) {
  5818. uint8_t comma = 0;
  5819. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5820. if (TEST(marlin_debug_flags, i)) {
  5821. if (comma++) SERIAL_CHAR(',');
  5822. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5823. }
  5824. }
  5825. }
  5826. else {
  5827. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5828. }
  5829. SERIAL_EOL;
  5830. }
  5831. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5832. /**
  5833. * M113: Get or set Host Keepalive interval (0 to disable)
  5834. *
  5835. * S<seconds> Optional. Set the keepalive interval.
  5836. */
  5837. inline void gcode_M113() {
  5838. if (code_seen('S')) {
  5839. host_keepalive_interval = code_value_byte();
  5840. NOMORE(host_keepalive_interval, 60);
  5841. }
  5842. else {
  5843. SERIAL_ECHO_START;
  5844. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5845. }
  5846. }
  5847. #endif
  5848. #if ENABLED(BARICUDA)
  5849. #if HAS_HEATER_1
  5850. /**
  5851. * M126: Heater 1 valve open
  5852. */
  5853. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5854. /**
  5855. * M127: Heater 1 valve close
  5856. */
  5857. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5858. #endif
  5859. #if HAS_HEATER_2
  5860. /**
  5861. * M128: Heater 2 valve open
  5862. */
  5863. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5864. /**
  5865. * M129: Heater 2 valve close
  5866. */
  5867. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5868. #endif
  5869. #endif //BARICUDA
  5870. /**
  5871. * M140: Set bed temperature
  5872. */
  5873. inline void gcode_M140() {
  5874. if (DEBUGGING(DRYRUN)) return;
  5875. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5876. }
  5877. #if ENABLED(ULTIPANEL)
  5878. /**
  5879. * M145: Set the heatup state for a material in the LCD menu
  5880. *
  5881. * S<material> (0=PLA, 1=ABS)
  5882. * H<hotend temp>
  5883. * B<bed temp>
  5884. * F<fan speed>
  5885. */
  5886. inline void gcode_M145() {
  5887. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5888. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5889. SERIAL_ERROR_START;
  5890. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5891. }
  5892. else {
  5893. int v;
  5894. if (code_seen('H')) {
  5895. v = code_value_int();
  5896. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5897. }
  5898. if (code_seen('F')) {
  5899. v = code_value_int();
  5900. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5901. }
  5902. #if TEMP_SENSOR_BED != 0
  5903. if (code_seen('B')) {
  5904. v = code_value_int();
  5905. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5906. }
  5907. #endif
  5908. }
  5909. }
  5910. #endif // ULTIPANEL
  5911. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5912. /**
  5913. * M149: Set temperature units
  5914. */
  5915. inline void gcode_M149() {
  5916. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5917. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5918. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5919. }
  5920. #endif
  5921. #if HAS_POWER_SWITCH
  5922. /**
  5923. * M80: Turn on Power Supply
  5924. */
  5925. inline void gcode_M80() {
  5926. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5927. /**
  5928. * If you have a switch on suicide pin, this is useful
  5929. * if you want to start another print with suicide feature after
  5930. * a print without suicide...
  5931. */
  5932. #if HAS_SUICIDE
  5933. OUT_WRITE(SUICIDE_PIN, HIGH);
  5934. #endif
  5935. #if ENABLED(HAVE_TMC2130)
  5936. delay(100);
  5937. tmc2130_init(); // Settings only stick when the driver has power
  5938. #endif
  5939. #if ENABLED(ULTIPANEL)
  5940. powersupply = true;
  5941. LCD_MESSAGEPGM(WELCOME_MSG);
  5942. #endif
  5943. }
  5944. #endif // HAS_POWER_SWITCH
  5945. /**
  5946. * M81: Turn off Power, including Power Supply, if there is one.
  5947. *
  5948. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5949. */
  5950. inline void gcode_M81() {
  5951. thermalManager.disable_all_heaters();
  5952. stepper.finish_and_disable();
  5953. #if FAN_COUNT > 0
  5954. #if FAN_COUNT > 1
  5955. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5956. #else
  5957. fanSpeeds[0] = 0;
  5958. #endif
  5959. #endif
  5960. safe_delay(1000); // Wait 1 second before switching off
  5961. #if HAS_SUICIDE
  5962. stepper.synchronize();
  5963. suicide();
  5964. #elif HAS_POWER_SWITCH
  5965. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5966. #endif
  5967. #if ENABLED(ULTIPANEL)
  5968. #if HAS_POWER_SWITCH
  5969. powersupply = false;
  5970. #endif
  5971. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5972. #endif
  5973. }
  5974. /**
  5975. * M82: Set E codes absolute (default)
  5976. */
  5977. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5978. /**
  5979. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5980. */
  5981. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5982. /**
  5983. * M18, M84: Disable all stepper motors
  5984. */
  5985. inline void gcode_M18_M84() {
  5986. if (code_seen('S')) {
  5987. stepper_inactive_time = code_value_millis_from_seconds();
  5988. }
  5989. else {
  5990. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5991. if (all_axis) {
  5992. stepper.finish_and_disable();
  5993. }
  5994. else {
  5995. stepper.synchronize();
  5996. if (code_seen('X')) disable_X();
  5997. if (code_seen('Y')) disable_Y();
  5998. if (code_seen('Z')) disable_Z();
  5999. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6000. if (code_seen('E')) disable_e_steppers();
  6001. #endif
  6002. }
  6003. }
  6004. }
  6005. /**
  6006. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6007. */
  6008. inline void gcode_M85() {
  6009. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6010. }
  6011. /**
  6012. * Multi-stepper support for M92, M201, M203
  6013. */
  6014. #if ENABLED(DISTINCT_E_FACTORS)
  6015. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6016. #define TARGET_EXTRUDER target_extruder
  6017. #else
  6018. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6019. #define TARGET_EXTRUDER 0
  6020. #endif
  6021. /**
  6022. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6023. * (Follows the same syntax as G92)
  6024. *
  6025. * With multiple extruders use T to specify which one.
  6026. */
  6027. inline void gcode_M92() {
  6028. GET_TARGET_EXTRUDER(92);
  6029. LOOP_XYZE(i) {
  6030. if (code_seen(axis_codes[i])) {
  6031. if (i == E_AXIS) {
  6032. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6033. if (value < 20.0) {
  6034. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6035. planner.max_jerk[E_AXIS] *= factor;
  6036. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6037. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6038. }
  6039. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6040. }
  6041. else {
  6042. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6043. }
  6044. }
  6045. }
  6046. planner.refresh_positioning();
  6047. }
  6048. /**
  6049. * Output the current position to serial
  6050. */
  6051. static void report_current_position() {
  6052. SERIAL_PROTOCOLPGM("X:");
  6053. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6054. SERIAL_PROTOCOLPGM(" Y:");
  6055. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6056. SERIAL_PROTOCOLPGM(" Z:");
  6057. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6058. SERIAL_PROTOCOLPGM(" E:");
  6059. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6060. stepper.report_positions();
  6061. #if IS_SCARA
  6062. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6063. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6064. SERIAL_EOL;
  6065. #endif
  6066. }
  6067. /**
  6068. * M114: Output current position to serial port
  6069. */
  6070. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6071. /**
  6072. * M115: Capabilities string
  6073. */
  6074. inline void gcode_M115() {
  6075. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6076. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6077. // EEPROM (M500, M501)
  6078. #if ENABLED(EEPROM_SETTINGS)
  6079. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6080. #else
  6081. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6082. #endif
  6083. // AUTOREPORT_TEMP (M155)
  6084. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6085. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6086. #else
  6087. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6088. #endif
  6089. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6090. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6091. // AUTOLEVEL (G29)
  6092. #if HAS_ABL
  6093. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6094. #else
  6095. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6096. #endif
  6097. // Z_PROBE (G30)
  6098. #if HAS_BED_PROBE
  6099. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6100. #else
  6101. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6102. #endif
  6103. // MESH_REPORT (M420 V)
  6104. #if PLANNER_LEVELING
  6105. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6106. #else
  6107. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6108. #endif
  6109. // SOFTWARE_POWER (G30)
  6110. #if HAS_POWER_SWITCH
  6111. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6112. #else
  6113. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6114. #endif
  6115. // TOGGLE_LIGHTS (M355)
  6116. #if HAS_CASE_LIGHT
  6117. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6118. #else
  6119. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6120. #endif
  6121. // EMERGENCY_PARSER (M108, M112, M410)
  6122. #if ENABLED(EMERGENCY_PARSER)
  6123. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6124. #else
  6125. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6126. #endif
  6127. #endif // EXTENDED_CAPABILITIES_REPORT
  6128. }
  6129. /**
  6130. * M117: Set LCD Status Message
  6131. */
  6132. inline void gcode_M117() {
  6133. lcd_setstatus(current_command_args);
  6134. }
  6135. /**
  6136. * M119: Output endstop states to serial output
  6137. */
  6138. inline void gcode_M119() { endstops.M119(); }
  6139. /**
  6140. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6141. */
  6142. inline void gcode_M120() { endstops.enable_globally(true); }
  6143. /**
  6144. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6145. */
  6146. inline void gcode_M121() { endstops.enable_globally(false); }
  6147. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6148. /**
  6149. * M125: Store current position and move to filament change position.
  6150. * Called on pause (by M25) to prevent material leaking onto the
  6151. * object. On resume (M24) the head will be moved back and the
  6152. * print will resume.
  6153. *
  6154. * If Marlin is compiled without SD Card support, M125 can be
  6155. * used directly to pause the print and move to park position,
  6156. * resuming with a button click or M108.
  6157. *
  6158. * L = override retract length
  6159. * X = override X
  6160. * Y = override Y
  6161. * Z = override Z raise
  6162. */
  6163. inline void gcode_M125() {
  6164. if (move_away_flag) return; // already paused
  6165. const bool job_running = print_job_timer.isRunning();
  6166. // there are blocks after this one, or sd printing
  6167. move_away_flag = job_running || planner.blocks_queued()
  6168. #if ENABLED(SDSUPPORT)
  6169. || card.sdprinting
  6170. #endif
  6171. ;
  6172. if (!move_away_flag) return; // nothing to pause
  6173. // M125 can be used to pause a print too
  6174. #if ENABLED(SDSUPPORT)
  6175. card.pauseSDPrint();
  6176. #endif
  6177. print_job_timer.pause();
  6178. // Save current position
  6179. COPY(resume_position, current_position);
  6180. set_destination_to_current();
  6181. // Initial retract before move to filament change position
  6182. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6183. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6184. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6185. #endif
  6186. ;
  6187. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6188. // Lift Z axis
  6189. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6190. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6191. FILAMENT_CHANGE_Z_ADD
  6192. #else
  6193. 0
  6194. #endif
  6195. ;
  6196. if (z_lift > 0) {
  6197. destination[Z_AXIS] += z_lift;
  6198. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6199. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6200. }
  6201. // Move XY axes to filament change position or given position
  6202. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6203. #ifdef FILAMENT_CHANGE_X_POS
  6204. + FILAMENT_CHANGE_X_POS
  6205. #endif
  6206. ;
  6207. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6208. #ifdef FILAMENT_CHANGE_Y_POS
  6209. + FILAMENT_CHANGE_Y_POS
  6210. #endif
  6211. ;
  6212. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6213. if (active_extruder > 0) {
  6214. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6215. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6216. }
  6217. #endif
  6218. clamp_to_software_endstops(destination);
  6219. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6220. set_current_to_destination();
  6221. stepper.synchronize();
  6222. disable_e_steppers();
  6223. #if DISABLED(SDSUPPORT)
  6224. // Wait for lcd click or M108
  6225. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6226. wait_for_user = true;
  6227. while (wait_for_user) idle();
  6228. KEEPALIVE_STATE(IN_HANDLER);
  6229. // Return to print position and continue
  6230. move_back_on_resume();
  6231. if (job_running) print_job_timer.start();
  6232. move_away_flag = false;
  6233. #endif
  6234. }
  6235. #endif // PARK_HEAD_ON_PAUSE
  6236. #if HAS_COLOR_LEDS
  6237. /**
  6238. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6239. *
  6240. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6241. *
  6242. * Examples:
  6243. *
  6244. * M150 R255 ; Turn LED red
  6245. * M150 R255 U127 ; Turn LED orange (PWM only)
  6246. * M150 ; Turn LED off
  6247. * M150 R U B ; Turn LED white
  6248. * M150 W ; Turn LED white using a white LED
  6249. *
  6250. */
  6251. inline void gcode_M150() {
  6252. set_led_color(
  6253. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6254. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6255. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6256. #if ENABLED(RGBW_LED)
  6257. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6258. #endif
  6259. );
  6260. }
  6261. #endif // BLINKM || RGB_LED
  6262. /**
  6263. * M200: Set filament diameter and set E axis units to cubic units
  6264. *
  6265. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6266. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6267. */
  6268. inline void gcode_M200() {
  6269. if (get_target_extruder_from_command(200)) return;
  6270. if (code_seen('D')) {
  6271. // setting any extruder filament size disables volumetric on the assumption that
  6272. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6273. // for all extruders
  6274. volumetric_enabled = (code_value_linear_units() != 0.0);
  6275. if (volumetric_enabled) {
  6276. filament_size[target_extruder] = code_value_linear_units();
  6277. // make sure all extruders have some sane value for the filament size
  6278. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6279. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6280. }
  6281. }
  6282. calculate_volumetric_multipliers();
  6283. }
  6284. /**
  6285. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6286. *
  6287. * With multiple extruders use T to specify which one.
  6288. */
  6289. inline void gcode_M201() {
  6290. GET_TARGET_EXTRUDER(201);
  6291. LOOP_XYZE(i) {
  6292. if (code_seen(axis_codes[i])) {
  6293. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6294. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6295. }
  6296. }
  6297. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6298. planner.reset_acceleration_rates();
  6299. }
  6300. #if 0 // Not used for Sprinter/grbl gen6
  6301. inline void gcode_M202() {
  6302. LOOP_XYZE(i) {
  6303. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6304. }
  6305. }
  6306. #endif
  6307. /**
  6308. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6309. *
  6310. * With multiple extruders use T to specify which one.
  6311. */
  6312. inline void gcode_M203() {
  6313. GET_TARGET_EXTRUDER(203);
  6314. LOOP_XYZE(i)
  6315. if (code_seen(axis_codes[i])) {
  6316. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6317. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6318. }
  6319. }
  6320. /**
  6321. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6322. *
  6323. * P = Printing moves
  6324. * R = Retract only (no X, Y, Z) moves
  6325. * T = Travel (non printing) moves
  6326. *
  6327. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6328. */
  6329. inline void gcode_M204() {
  6330. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6331. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6332. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6333. }
  6334. if (code_seen('P')) {
  6335. planner.acceleration = code_value_linear_units();
  6336. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6337. }
  6338. if (code_seen('R')) {
  6339. planner.retract_acceleration = code_value_linear_units();
  6340. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6341. }
  6342. if (code_seen('T')) {
  6343. planner.travel_acceleration = code_value_linear_units();
  6344. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6345. }
  6346. }
  6347. /**
  6348. * M205: Set Advanced Settings
  6349. *
  6350. * S = Min Feed Rate (units/s)
  6351. * T = Min Travel Feed Rate (units/s)
  6352. * B = Min Segment Time (µs)
  6353. * X = Max X Jerk (units/sec^2)
  6354. * Y = Max Y Jerk (units/sec^2)
  6355. * Z = Max Z Jerk (units/sec^2)
  6356. * E = Max E Jerk (units/sec^2)
  6357. */
  6358. inline void gcode_M205() {
  6359. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6360. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6361. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6362. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6363. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6364. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6365. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6366. }
  6367. #if HAS_M206_COMMAND
  6368. /**
  6369. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6370. */
  6371. inline void gcode_M206() {
  6372. LOOP_XYZ(i)
  6373. if (code_seen(axis_codes[i]))
  6374. set_home_offset((AxisEnum)i, code_value_linear_units());
  6375. #if ENABLED(MORGAN_SCARA)
  6376. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6377. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6378. #endif
  6379. SYNC_PLAN_POSITION_KINEMATIC();
  6380. report_current_position();
  6381. }
  6382. #endif // HAS_M206_COMMAND
  6383. #if ENABLED(DELTA)
  6384. /**
  6385. * M665: Set delta configurations
  6386. *
  6387. * H = diagonal rod // AC-version
  6388. * L = diagonal rod
  6389. * R = delta radius
  6390. * S = segments per second
  6391. * A = Alpha (Tower 1) diagonal rod trim
  6392. * B = Beta (Tower 2) diagonal rod trim
  6393. * C = Gamma (Tower 3) diagonal rod trim
  6394. */
  6395. inline void gcode_M665() {
  6396. if (code_seen('H')) {
  6397. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6398. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6399. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6400. update_software_endstops(Z_AXIS);
  6401. }
  6402. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6403. if (code_seen('R')) delta_radius = code_value_linear_units();
  6404. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6405. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  6406. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  6407. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  6408. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6409. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6410. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  6411. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6412. }
  6413. /**
  6414. * M666: Set delta endstop adjustment
  6415. */
  6416. inline void gcode_M666() {
  6417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6418. if (DEBUGGING(LEVELING)) {
  6419. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6420. }
  6421. #endif
  6422. LOOP_XYZ(i) {
  6423. if (code_seen(axis_codes[i])) {
  6424. endstop_adj[i] = code_value_linear_units();
  6425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6426. if (DEBUGGING(LEVELING)) {
  6427. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6428. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6429. }
  6430. #endif
  6431. }
  6432. }
  6433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6434. if (DEBUGGING(LEVELING)) {
  6435. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6436. }
  6437. #endif
  6438. }
  6439. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6440. /**
  6441. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6442. */
  6443. inline void gcode_M666() {
  6444. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6445. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6446. }
  6447. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6448. #if ENABLED(FWRETRACT)
  6449. /**
  6450. * M207: Set firmware retraction values
  6451. *
  6452. * S[+units] retract_length
  6453. * W[+units] retract_length_swap (multi-extruder)
  6454. * F[units/min] retract_feedrate_mm_s
  6455. * Z[units] retract_zlift
  6456. */
  6457. inline void gcode_M207() {
  6458. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6459. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6460. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6461. #if EXTRUDERS > 1
  6462. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6463. #endif
  6464. }
  6465. /**
  6466. * M208: Set firmware un-retraction values
  6467. *
  6468. * S[+units] retract_recover_length (in addition to M207 S*)
  6469. * W[+units] retract_recover_length_swap (multi-extruder)
  6470. * F[units/min] retract_recover_feedrate_mm_s
  6471. */
  6472. inline void gcode_M208() {
  6473. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6474. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6475. #if EXTRUDERS > 1
  6476. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6477. #endif
  6478. }
  6479. /**
  6480. * M209: Enable automatic retract (M209 S1)
  6481. * For slicers that don't support G10/11, reversed extrude-only
  6482. * moves will be classified as retraction.
  6483. */
  6484. inline void gcode_M209() {
  6485. if (code_seen('S')) {
  6486. autoretract_enabled = code_value_bool();
  6487. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6488. }
  6489. }
  6490. #endif // FWRETRACT
  6491. /**
  6492. * M211: Enable, Disable, and/or Report software endstops
  6493. *
  6494. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6495. */
  6496. inline void gcode_M211() {
  6497. SERIAL_ECHO_START;
  6498. #if HAS_SOFTWARE_ENDSTOPS
  6499. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6500. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6501. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6502. #else
  6503. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6504. SERIAL_ECHOPGM(MSG_OFF);
  6505. #endif
  6506. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6507. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6508. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6509. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6510. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6511. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6512. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6513. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6514. }
  6515. #if HOTENDS > 1
  6516. /**
  6517. * M218 - set hotend offset (in linear units)
  6518. *
  6519. * T<tool>
  6520. * X<xoffset>
  6521. * Y<yoffset>
  6522. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6523. */
  6524. inline void gcode_M218() {
  6525. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6526. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6527. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6528. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6529. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6530. #endif
  6531. SERIAL_ECHO_START;
  6532. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6533. HOTEND_LOOP() {
  6534. SERIAL_CHAR(' ');
  6535. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6536. SERIAL_CHAR(',');
  6537. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6538. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6539. SERIAL_CHAR(',');
  6540. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6541. #endif
  6542. }
  6543. SERIAL_EOL;
  6544. }
  6545. #endif // HOTENDS > 1
  6546. /**
  6547. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6548. */
  6549. inline void gcode_M220() {
  6550. if (code_seen('S')) feedrate_percentage = code_value_int();
  6551. }
  6552. /**
  6553. * M221: Set extrusion percentage (M221 T0 S95)
  6554. */
  6555. inline void gcode_M221() {
  6556. if (get_target_extruder_from_command(221)) return;
  6557. if (code_seen('S'))
  6558. flow_percentage[target_extruder] = code_value_int();
  6559. }
  6560. /**
  6561. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6562. */
  6563. inline void gcode_M226() {
  6564. if (code_seen('P')) {
  6565. int pin_number = code_value_int(),
  6566. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6567. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6568. int target = LOW;
  6569. stepper.synchronize();
  6570. pinMode(pin_number, INPUT);
  6571. switch (pin_state) {
  6572. case 1:
  6573. target = HIGH;
  6574. break;
  6575. case 0:
  6576. target = LOW;
  6577. break;
  6578. case -1:
  6579. target = !digitalRead(pin_number);
  6580. break;
  6581. }
  6582. while (digitalRead(pin_number) != target) idle();
  6583. } // pin_state -1 0 1 && pin_number > -1
  6584. } // code_seen('P')
  6585. }
  6586. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6587. /**
  6588. * M260: Send data to a I2C slave device
  6589. *
  6590. * This is a PoC, the formating and arguments for the GCODE will
  6591. * change to be more compatible, the current proposal is:
  6592. *
  6593. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6594. *
  6595. * M260 B<byte-1 value in base 10>
  6596. * M260 B<byte-2 value in base 10>
  6597. * M260 B<byte-3 value in base 10>
  6598. *
  6599. * M260 S1 ; Send the buffered data and reset the buffer
  6600. * M260 R1 ; Reset the buffer without sending data
  6601. *
  6602. */
  6603. inline void gcode_M260() {
  6604. // Set the target address
  6605. if (code_seen('A')) i2c.address(code_value_byte());
  6606. // Add a new byte to the buffer
  6607. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6608. // Flush the buffer to the bus
  6609. if (code_seen('S')) i2c.send();
  6610. // Reset and rewind the buffer
  6611. else if (code_seen('R')) i2c.reset();
  6612. }
  6613. /**
  6614. * M261: Request X bytes from I2C slave device
  6615. *
  6616. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6617. */
  6618. inline void gcode_M261() {
  6619. if (code_seen('A')) i2c.address(code_value_byte());
  6620. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6621. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6622. i2c.relay(bytes);
  6623. }
  6624. else {
  6625. SERIAL_ERROR_START;
  6626. SERIAL_ERRORLN("Bad i2c request");
  6627. }
  6628. }
  6629. #endif // EXPERIMENTAL_I2CBUS
  6630. #if HAS_SERVOS
  6631. /**
  6632. * M280: Get or set servo position. P<index> [S<angle>]
  6633. */
  6634. inline void gcode_M280() {
  6635. if (!code_seen('P')) return;
  6636. int servo_index = code_value_int();
  6637. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6638. if (code_seen('S'))
  6639. MOVE_SERVO(servo_index, code_value_int());
  6640. else {
  6641. SERIAL_ECHO_START;
  6642. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6643. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6644. }
  6645. }
  6646. else {
  6647. SERIAL_ERROR_START;
  6648. SERIAL_ECHOPAIR("Servo ", servo_index);
  6649. SERIAL_ECHOLNPGM(" out of range");
  6650. }
  6651. }
  6652. #endif // HAS_SERVOS
  6653. #if HAS_BUZZER
  6654. /**
  6655. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6656. */
  6657. inline void gcode_M300() {
  6658. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6659. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6660. // Limits the tone duration to 0-5 seconds.
  6661. NOMORE(duration, 5000);
  6662. BUZZ(duration, frequency);
  6663. }
  6664. #endif // HAS_BUZZER
  6665. #if ENABLED(PIDTEMP)
  6666. /**
  6667. * M301: Set PID parameters P I D (and optionally C, L)
  6668. *
  6669. * P[float] Kp term
  6670. * I[float] Ki term (unscaled)
  6671. * D[float] Kd term (unscaled)
  6672. *
  6673. * With PID_EXTRUSION_SCALING:
  6674. *
  6675. * C[float] Kc term
  6676. * L[float] LPQ length
  6677. */
  6678. inline void gcode_M301() {
  6679. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6680. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6681. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6682. if (e < HOTENDS) { // catch bad input value
  6683. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6684. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6685. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6686. #if ENABLED(PID_EXTRUSION_SCALING)
  6687. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6688. if (code_seen('L')) lpq_len = code_value_float();
  6689. NOMORE(lpq_len, LPQ_MAX_LEN);
  6690. #endif
  6691. thermalManager.updatePID();
  6692. SERIAL_ECHO_START;
  6693. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6694. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6695. #endif // PID_PARAMS_PER_HOTEND
  6696. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6697. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6698. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6699. #if ENABLED(PID_EXTRUSION_SCALING)
  6700. //Kc does not have scaling applied above, or in resetting defaults
  6701. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6702. #endif
  6703. SERIAL_EOL;
  6704. }
  6705. else {
  6706. SERIAL_ERROR_START;
  6707. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6708. }
  6709. }
  6710. #endif // PIDTEMP
  6711. #if ENABLED(PIDTEMPBED)
  6712. inline void gcode_M304() {
  6713. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6714. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6715. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6716. thermalManager.updatePID();
  6717. SERIAL_ECHO_START;
  6718. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6719. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6720. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6721. }
  6722. #endif // PIDTEMPBED
  6723. #if defined(CHDK) || HAS_PHOTOGRAPH
  6724. /**
  6725. * M240: Trigger a camera by emulating a Canon RC-1
  6726. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6727. */
  6728. inline void gcode_M240() {
  6729. #ifdef CHDK
  6730. OUT_WRITE(CHDK, HIGH);
  6731. chdkHigh = millis();
  6732. chdkActive = true;
  6733. #elif HAS_PHOTOGRAPH
  6734. const uint8_t NUM_PULSES = 16;
  6735. const float PULSE_LENGTH = 0.01524;
  6736. for (int i = 0; i < NUM_PULSES; i++) {
  6737. WRITE(PHOTOGRAPH_PIN, HIGH);
  6738. _delay_ms(PULSE_LENGTH);
  6739. WRITE(PHOTOGRAPH_PIN, LOW);
  6740. _delay_ms(PULSE_LENGTH);
  6741. }
  6742. delay(7.33);
  6743. for (int i = 0; i < NUM_PULSES; i++) {
  6744. WRITE(PHOTOGRAPH_PIN, HIGH);
  6745. _delay_ms(PULSE_LENGTH);
  6746. WRITE(PHOTOGRAPH_PIN, LOW);
  6747. _delay_ms(PULSE_LENGTH);
  6748. }
  6749. #endif // !CHDK && HAS_PHOTOGRAPH
  6750. }
  6751. #endif // CHDK || PHOTOGRAPH_PIN
  6752. #if HAS_LCD_CONTRAST
  6753. /**
  6754. * M250: Read and optionally set the LCD contrast
  6755. */
  6756. inline void gcode_M250() {
  6757. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6758. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6759. SERIAL_PROTOCOL(lcd_contrast);
  6760. SERIAL_EOL;
  6761. }
  6762. #endif // HAS_LCD_CONTRAST
  6763. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6764. /**
  6765. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6766. *
  6767. * S<temperature> sets the minimum extrude temperature
  6768. * P<bool> enables (1) or disables (0) cold extrusion
  6769. *
  6770. * Examples:
  6771. *
  6772. * M302 ; report current cold extrusion state
  6773. * M302 P0 ; enable cold extrusion checking
  6774. * M302 P1 ; disables cold extrusion checking
  6775. * M302 S0 ; always allow extrusion (disables checking)
  6776. * M302 S170 ; only allow extrusion above 170
  6777. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6778. */
  6779. inline void gcode_M302() {
  6780. bool seen_S = code_seen('S');
  6781. if (seen_S) {
  6782. thermalManager.extrude_min_temp = code_value_temp_abs();
  6783. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6784. }
  6785. if (code_seen('P'))
  6786. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6787. else if (!seen_S) {
  6788. // Report current state
  6789. SERIAL_ECHO_START;
  6790. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6791. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6792. SERIAL_ECHOLNPGM("C)");
  6793. }
  6794. }
  6795. #endif // PREVENT_COLD_EXTRUSION
  6796. /**
  6797. * M303: PID relay autotune
  6798. *
  6799. * S<temperature> sets the target temperature. (default 150C)
  6800. * E<extruder> (-1 for the bed) (default 0)
  6801. * C<cycles>
  6802. * U<bool> with a non-zero value will apply the result to current settings
  6803. */
  6804. inline void gcode_M303() {
  6805. #if HAS_PID_HEATING
  6806. int e = code_seen('E') ? code_value_int() : 0;
  6807. int c = code_seen('C') ? code_value_int() : 5;
  6808. bool u = code_seen('U') && code_value_bool();
  6809. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6810. if (WITHIN(e, 0, HOTENDS - 1))
  6811. target_extruder = e;
  6812. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6813. thermalManager.PID_autotune(temp, e, c, u);
  6814. KEEPALIVE_STATE(IN_HANDLER);
  6815. #else
  6816. SERIAL_ERROR_START;
  6817. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6818. #endif
  6819. }
  6820. #if ENABLED(MORGAN_SCARA)
  6821. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6822. if (IsRunning()) {
  6823. forward_kinematics_SCARA(delta_a, delta_b);
  6824. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6825. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6826. destination[Z_AXIS] = current_position[Z_AXIS];
  6827. prepare_move_to_destination();
  6828. return true;
  6829. }
  6830. return false;
  6831. }
  6832. /**
  6833. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6834. */
  6835. inline bool gcode_M360() {
  6836. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6837. return SCARA_move_to_cal(0, 120);
  6838. }
  6839. /**
  6840. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6841. */
  6842. inline bool gcode_M361() {
  6843. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6844. return SCARA_move_to_cal(90, 130);
  6845. }
  6846. /**
  6847. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6848. */
  6849. inline bool gcode_M362() {
  6850. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6851. return SCARA_move_to_cal(60, 180);
  6852. }
  6853. /**
  6854. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6855. */
  6856. inline bool gcode_M363() {
  6857. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6858. return SCARA_move_to_cal(50, 90);
  6859. }
  6860. /**
  6861. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6862. */
  6863. inline bool gcode_M364() {
  6864. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6865. return SCARA_move_to_cal(45, 135);
  6866. }
  6867. #endif // SCARA
  6868. #if ENABLED(EXT_SOLENOID)
  6869. void enable_solenoid(const uint8_t num) {
  6870. switch (num) {
  6871. case 0:
  6872. OUT_WRITE(SOL0_PIN, HIGH);
  6873. break;
  6874. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6875. case 1:
  6876. OUT_WRITE(SOL1_PIN, HIGH);
  6877. break;
  6878. #endif
  6879. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6880. case 2:
  6881. OUT_WRITE(SOL2_PIN, HIGH);
  6882. break;
  6883. #endif
  6884. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6885. case 3:
  6886. OUT_WRITE(SOL3_PIN, HIGH);
  6887. break;
  6888. #endif
  6889. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6890. case 4:
  6891. OUT_WRITE(SOL4_PIN, HIGH);
  6892. break;
  6893. #endif
  6894. default:
  6895. SERIAL_ECHO_START;
  6896. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6897. break;
  6898. }
  6899. }
  6900. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6901. void disable_all_solenoids() {
  6902. OUT_WRITE(SOL0_PIN, LOW);
  6903. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6904. OUT_WRITE(SOL1_PIN, LOW);
  6905. #endif
  6906. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6907. OUT_WRITE(SOL2_PIN, LOW);
  6908. #endif
  6909. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6910. OUT_WRITE(SOL3_PIN, LOW);
  6911. #endif
  6912. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6913. OUT_WRITE(SOL4_PIN, LOW);
  6914. #endif
  6915. }
  6916. /**
  6917. * M380: Enable solenoid on the active extruder
  6918. */
  6919. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6920. /**
  6921. * M381: Disable all solenoids
  6922. */
  6923. inline void gcode_M381() { disable_all_solenoids(); }
  6924. #endif // EXT_SOLENOID
  6925. /**
  6926. * M400: Finish all moves
  6927. */
  6928. inline void gcode_M400() { stepper.synchronize(); }
  6929. #if HAS_BED_PROBE
  6930. /**
  6931. * M401: Engage Z Servo endstop if available
  6932. */
  6933. inline void gcode_M401() { DEPLOY_PROBE(); }
  6934. /**
  6935. * M402: Retract Z Servo endstop if enabled
  6936. */
  6937. inline void gcode_M402() { STOW_PROBE(); }
  6938. #endif // HAS_BED_PROBE
  6939. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6940. /**
  6941. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6942. */
  6943. inline void gcode_M404() {
  6944. if (code_seen('W')) {
  6945. filament_width_nominal = code_value_linear_units();
  6946. }
  6947. else {
  6948. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6949. SERIAL_PROTOCOLLN(filament_width_nominal);
  6950. }
  6951. }
  6952. /**
  6953. * M405: Turn on filament sensor for control
  6954. */
  6955. inline void gcode_M405() {
  6956. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6957. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6958. if (code_seen('D')) meas_delay_cm = code_value_int();
  6959. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6960. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6961. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6962. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6963. measurement_delay[i] = temp_ratio;
  6964. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6965. }
  6966. filament_sensor = true;
  6967. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6968. //SERIAL_PROTOCOL(filament_width_meas);
  6969. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6970. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6971. }
  6972. /**
  6973. * M406: Turn off filament sensor for control
  6974. */
  6975. inline void gcode_M406() { filament_sensor = false; }
  6976. /**
  6977. * M407: Get measured filament diameter on serial output
  6978. */
  6979. inline void gcode_M407() {
  6980. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6981. SERIAL_PROTOCOLLN(filament_width_meas);
  6982. }
  6983. #endif // FILAMENT_WIDTH_SENSOR
  6984. void quickstop_stepper() {
  6985. stepper.quick_stop();
  6986. stepper.synchronize();
  6987. set_current_from_steppers_for_axis(ALL_AXES);
  6988. SYNC_PLAN_POSITION_KINEMATIC();
  6989. }
  6990. #if PLANNER_LEVELING
  6991. /**
  6992. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6993. *
  6994. * S[bool] Turns leveling on or off
  6995. * Z[height] Sets the Z fade height (0 or none to disable)
  6996. * V[bool] Verbose - Print the leveling grid
  6997. *
  6998. * With AUTO_BED_LEVELING_UBL only:
  6999. *
  7000. * L[index] Load UBL mesh from index (0 is default)
  7001. */
  7002. inline void gcode_M420() {
  7003. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7004. // L to load a mesh from the EEPROM
  7005. if (code_seen('L')) {
  7006. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7007. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7008. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7009. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7010. return;
  7011. }
  7012. ubl.load_mesh(storage_slot);
  7013. ubl.state.eeprom_storage_slot = storage_slot;
  7014. }
  7015. #endif // AUTO_BED_LEVELING_UBL
  7016. // V to print the matrix or mesh
  7017. if (code_seen('V')) {
  7018. #if ABL_PLANAR
  7019. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7020. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7021. if (bilinear_grid_spacing[X_AXIS]) {
  7022. print_bilinear_leveling_grid();
  7023. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7024. bed_level_virt_print();
  7025. #endif
  7026. }
  7027. #elif ENABLED(MESH_BED_LEVELING)
  7028. if (mbl.has_mesh()) {
  7029. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7030. mbl_mesh_report();
  7031. }
  7032. #endif
  7033. }
  7034. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7035. // L to load a mesh from the EEPROM
  7036. if (code_seen('L') || code_seen('V')) {
  7037. ubl.display_map(0); // Currently only supports one map type
  7038. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7039. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7040. }
  7041. #endif
  7042. bool to_enable = false;
  7043. if (code_seen('S')) {
  7044. to_enable = code_value_bool();
  7045. set_bed_leveling_enabled(to_enable);
  7046. }
  7047. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7048. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7049. #endif
  7050. const bool new_status =
  7051. #if ENABLED(MESH_BED_LEVELING)
  7052. mbl.active()
  7053. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7054. ubl.state.active
  7055. #else
  7056. planner.abl_enabled
  7057. #endif
  7058. ;
  7059. if (to_enable && !new_status) {
  7060. SERIAL_ERROR_START;
  7061. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7062. }
  7063. SERIAL_ECHO_START;
  7064. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7065. }
  7066. #endif
  7067. #if ENABLED(MESH_BED_LEVELING)
  7068. /**
  7069. * M421: Set a single Mesh Bed Leveling Z coordinate
  7070. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7071. */
  7072. inline void gcode_M421() {
  7073. int8_t px = 0, py = 0;
  7074. float z = 0;
  7075. bool hasX, hasY, hasZ, hasI, hasJ;
  7076. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7077. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7078. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7079. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7080. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7081. if (hasX && hasY && hasZ) {
  7082. if (px >= 0 && py >= 0)
  7083. mbl.set_z(px, py, z);
  7084. else {
  7085. SERIAL_ERROR_START;
  7086. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7087. }
  7088. }
  7089. else if (hasI && hasJ && hasZ) {
  7090. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7091. mbl.set_z(px, py, z);
  7092. else {
  7093. SERIAL_ERROR_START;
  7094. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7095. }
  7096. }
  7097. else {
  7098. SERIAL_ERROR_START;
  7099. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7100. }
  7101. }
  7102. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7103. /**
  7104. * M421: Set a single Mesh Bed Leveling Z coordinate
  7105. *
  7106. * M421 I<xindex> J<yindex> Z<linear>
  7107. */
  7108. inline void gcode_M421() {
  7109. int8_t px = 0, py = 0;
  7110. float z = 0;
  7111. bool hasI, hasJ, hasZ;
  7112. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7113. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7114. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7115. if (hasI && hasJ && hasZ) {
  7116. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7117. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7118. ubl.z_values[px][py] = z;
  7119. #else
  7120. z_values[px][py] = z;
  7121. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7122. bed_level_virt_interpolate();
  7123. #endif
  7124. #endif
  7125. }
  7126. else {
  7127. SERIAL_ERROR_START;
  7128. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7129. }
  7130. }
  7131. else {
  7132. SERIAL_ERROR_START;
  7133. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7134. }
  7135. }
  7136. #endif
  7137. #if HAS_M206_COMMAND
  7138. /**
  7139. * M428: Set home_offset based on the distance between the
  7140. * current_position and the nearest "reference point."
  7141. * If an axis is past center its endstop position
  7142. * is the reference-point. Otherwise it uses 0. This allows
  7143. * the Z offset to be set near the bed when using a max endstop.
  7144. *
  7145. * M428 can't be used more than 2cm away from 0 or an endstop.
  7146. *
  7147. * Use M206 to set these values directly.
  7148. */
  7149. inline void gcode_M428() {
  7150. bool err = false;
  7151. LOOP_XYZ(i) {
  7152. if (axis_homed[i]) {
  7153. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7154. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7155. if (WITHIN(diff, -20, 20)) {
  7156. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7157. }
  7158. else {
  7159. SERIAL_ERROR_START;
  7160. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7161. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7162. BUZZ(200, 40);
  7163. err = true;
  7164. break;
  7165. }
  7166. }
  7167. }
  7168. if (!err) {
  7169. SYNC_PLAN_POSITION_KINEMATIC();
  7170. report_current_position();
  7171. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7172. BUZZ(100, 659);
  7173. BUZZ(100, 698);
  7174. }
  7175. }
  7176. #endif // HAS_M206_COMMAND
  7177. /**
  7178. * M500: Store settings in EEPROM
  7179. */
  7180. inline void gcode_M500() {
  7181. (void)settings.save();
  7182. }
  7183. /**
  7184. * M501: Read settings from EEPROM
  7185. */
  7186. inline void gcode_M501() {
  7187. (void)settings.load();
  7188. }
  7189. /**
  7190. * M502: Revert to default settings
  7191. */
  7192. inline void gcode_M502() {
  7193. (void)settings.reset();
  7194. }
  7195. /**
  7196. * M503: print settings currently in memory
  7197. */
  7198. inline void gcode_M503() {
  7199. (void)settings.report(code_seen('S') && !code_value_bool());
  7200. }
  7201. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7202. /**
  7203. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7204. */
  7205. inline void gcode_M540() {
  7206. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7207. }
  7208. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7209. #if HAS_BED_PROBE
  7210. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7211. static float last_zoffset = NAN;
  7212. if (!isnan(last_zoffset)) {
  7213. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7214. const float diff = zprobe_zoffset - last_zoffset;
  7215. #endif
  7216. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7217. // Correct bilinear grid for new probe offset
  7218. if (diff) {
  7219. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7220. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7221. z_values[x][y] -= diff;
  7222. }
  7223. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7224. bed_level_virt_interpolate();
  7225. #endif
  7226. #endif
  7227. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7228. if (!no_babystep && planner.abl_enabled)
  7229. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7230. #else
  7231. UNUSED(no_babystep);
  7232. #endif
  7233. }
  7234. last_zoffset = zprobe_zoffset;
  7235. }
  7236. inline void gcode_M851() {
  7237. SERIAL_ECHO_START;
  7238. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7239. if (code_seen('Z')) {
  7240. const float value = code_value_linear_units();
  7241. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7242. zprobe_zoffset = value;
  7243. refresh_zprobe_zoffset();
  7244. SERIAL_ECHO(zprobe_zoffset);
  7245. }
  7246. else
  7247. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7248. }
  7249. else
  7250. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7251. SERIAL_EOL;
  7252. }
  7253. #endif // HAS_BED_PROBE
  7254. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7255. void filament_change_beep(const bool init=false) {
  7256. static millis_t next_buzz = 0;
  7257. static uint16_t runout_beep = 0;
  7258. if (init) next_buzz = runout_beep = 0;
  7259. const millis_t ms = millis();
  7260. if (ELAPSED(ms, next_buzz)) {
  7261. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7262. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7263. BUZZ(300, 2000);
  7264. runout_beep++;
  7265. }
  7266. }
  7267. }
  7268. static bool busy_doing_M600 = false;
  7269. /**
  7270. * M600: Pause for filament change
  7271. *
  7272. * E[distance] - Retract the filament this far (negative value)
  7273. * Z[distance] - Move the Z axis by this distance
  7274. * X[position] - Move to this X position, with Y
  7275. * Y[position] - Move to this Y position, with X
  7276. * L[distance] - Retract distance for removal (manual reload)
  7277. *
  7278. * Default values are used for omitted arguments.
  7279. *
  7280. */
  7281. inline void gcode_M600() {
  7282. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7283. SERIAL_ERROR_START;
  7284. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7285. return;
  7286. }
  7287. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7288. // Pause the print job timer
  7289. const bool job_running = print_job_timer.isRunning();
  7290. print_job_timer.pause();
  7291. // Show initial message and wait for synchronize steppers
  7292. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7293. stepper.synchronize();
  7294. // Save current position of all axes
  7295. float lastpos[XYZE];
  7296. COPY(lastpos, current_position);
  7297. set_destination_to_current();
  7298. // Initial retract before move to filament change position
  7299. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7300. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7301. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7302. #endif
  7303. ;
  7304. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7305. // Lift Z axis
  7306. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7307. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7308. FILAMENT_CHANGE_Z_ADD
  7309. #else
  7310. 0
  7311. #endif
  7312. ;
  7313. if (z_lift > 0) {
  7314. destination[Z_AXIS] += z_lift;
  7315. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7316. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7317. }
  7318. // Move XY axes to filament exchange position
  7319. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7320. #ifdef FILAMENT_CHANGE_X_POS
  7321. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7322. #endif
  7323. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7324. #ifdef FILAMENT_CHANGE_Y_POS
  7325. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7326. #endif
  7327. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7328. stepper.synchronize();
  7329. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7330. idle();
  7331. // Unload filament
  7332. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7333. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7334. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7335. #endif
  7336. ;
  7337. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7338. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7339. stepper.synchronize();
  7340. disable_e_steppers();
  7341. safe_delay(100);
  7342. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7343. bool nozzle_timed_out = false;
  7344. float temps[4];
  7345. // Wait for filament insert by user and press button
  7346. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7347. #if HAS_BUZZER
  7348. filament_change_beep(true);
  7349. #endif
  7350. idle();
  7351. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7352. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7353. wait_for_user = true; // LCD click or M108 will clear this
  7354. while (wait_for_user) {
  7355. if (nozzle_timed_out)
  7356. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7357. #if HAS_BUZZER
  7358. filament_change_beep();
  7359. #endif
  7360. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7361. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7362. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7363. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7364. }
  7365. idle(true);
  7366. }
  7367. KEEPALIVE_STATE(IN_HANDLER);
  7368. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7369. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7370. // Show "wait for heating"
  7371. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7372. wait_for_heatup = true;
  7373. while (wait_for_heatup) {
  7374. idle();
  7375. wait_for_heatup = false;
  7376. HOTEND_LOOP() {
  7377. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7378. wait_for_heatup = true;
  7379. break;
  7380. }
  7381. }
  7382. }
  7383. // Show "insert filament"
  7384. if (nozzle_timed_out)
  7385. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7386. #if HAS_BUZZER
  7387. filament_change_beep(true);
  7388. #endif
  7389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7390. wait_for_user = true; // LCD click or M108 will clear this
  7391. while (wait_for_user && nozzle_timed_out) {
  7392. #if HAS_BUZZER
  7393. filament_change_beep();
  7394. #endif
  7395. idle(true);
  7396. }
  7397. KEEPALIVE_STATE(IN_HANDLER);
  7398. // Show "load" message
  7399. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7400. // Load filament
  7401. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7402. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7403. + FILAMENT_CHANGE_LOAD_LENGTH
  7404. #endif
  7405. ;
  7406. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7407. stepper.synchronize();
  7408. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7409. do {
  7410. // "Wait for filament extrude"
  7411. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7412. // Extrude filament to get into hotend
  7413. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7414. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7415. stepper.synchronize();
  7416. // Show "Extrude More" / "Resume" menu and wait for reply
  7417. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7418. wait_for_user = false;
  7419. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7420. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7421. KEEPALIVE_STATE(IN_HANDLER);
  7422. // Keep looping if "Extrude More" was selected
  7423. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7424. #endif
  7425. // "Wait for print to resume"
  7426. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7427. // Set extruder to saved position
  7428. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7429. planner.set_e_position_mm(current_position[E_AXIS]);
  7430. #if IS_KINEMATIC
  7431. // Move XYZ to starting position
  7432. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7433. #else
  7434. // Move XY to starting position, then Z
  7435. destination[X_AXIS] = lastpos[X_AXIS];
  7436. destination[Y_AXIS] = lastpos[Y_AXIS];
  7437. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7438. destination[Z_AXIS] = lastpos[Z_AXIS];
  7439. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7440. #endif
  7441. stepper.synchronize();
  7442. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7443. filament_ran_out = false;
  7444. #endif
  7445. // Show status screen
  7446. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7447. // Resume the print job timer if it was running
  7448. if (job_running) print_job_timer.start();
  7449. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7450. }
  7451. #endif // FILAMENT_CHANGE_FEATURE
  7452. #if ENABLED(DUAL_X_CARRIAGE)
  7453. /**
  7454. * M605: Set dual x-carriage movement mode
  7455. *
  7456. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7457. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7458. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7459. * units x-offset and an optional differential hotend temperature of
  7460. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7461. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7462. *
  7463. * Note: the X axis should be homed after changing dual x-carriage mode.
  7464. */
  7465. inline void gcode_M605() {
  7466. stepper.synchronize();
  7467. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7468. switch (dual_x_carriage_mode) {
  7469. case DXC_FULL_CONTROL_MODE:
  7470. case DXC_AUTO_PARK_MODE:
  7471. break;
  7472. case DXC_DUPLICATION_MODE:
  7473. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7474. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7475. SERIAL_ECHO_START;
  7476. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7477. SERIAL_CHAR(' ');
  7478. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7479. SERIAL_CHAR(',');
  7480. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7481. SERIAL_CHAR(' ');
  7482. SERIAL_ECHO(duplicate_extruder_x_offset);
  7483. SERIAL_CHAR(',');
  7484. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7485. break;
  7486. default:
  7487. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7488. break;
  7489. }
  7490. active_extruder_parked = false;
  7491. extruder_duplication_enabled = false;
  7492. delayed_move_time = 0;
  7493. }
  7494. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7495. inline void gcode_M605() {
  7496. stepper.synchronize();
  7497. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7498. SERIAL_ECHO_START;
  7499. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7500. }
  7501. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7502. #if ENABLED(LIN_ADVANCE)
  7503. /**
  7504. * M900: Set and/or Get advance K factor and WH/D ratio
  7505. *
  7506. * K<factor> Set advance K factor
  7507. * R<ratio> Set ratio directly (overrides WH/D)
  7508. * W<width> H<height> D<diam> Set ratio from WH/D
  7509. */
  7510. inline void gcode_M900() {
  7511. stepper.synchronize();
  7512. const float newK = code_seen('K') ? code_value_float() : -1;
  7513. if (newK >= 0) planner.extruder_advance_k = newK;
  7514. float newR = code_seen('R') ? code_value_float() : -1;
  7515. if (newR < 0) {
  7516. const float newD = code_seen('D') ? code_value_float() : -1,
  7517. newW = code_seen('W') ? code_value_float() : -1,
  7518. newH = code_seen('H') ? code_value_float() : -1;
  7519. if (newD >= 0 && newW >= 0 && newH >= 0)
  7520. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7521. }
  7522. if (newR >= 0) planner.advance_ed_ratio = newR;
  7523. SERIAL_ECHO_START;
  7524. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7525. SERIAL_ECHOPGM(" E/D=");
  7526. const float ratio = planner.advance_ed_ratio;
  7527. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7528. SERIAL_EOL;
  7529. }
  7530. #endif // LIN_ADVANCE
  7531. #if ENABLED(HAVE_TMC2130)
  7532. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7533. SERIAL_CHAR(name);
  7534. SERIAL_ECHOPGM(" axis driver current: ");
  7535. SERIAL_ECHOLN(st.getCurrent());
  7536. }
  7537. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7538. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7539. tmc2130_get_current(st, name);
  7540. }
  7541. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7542. SERIAL_CHAR(name);
  7543. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7544. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7545. SERIAL_EOL;
  7546. }
  7547. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7548. st.clear_otpw();
  7549. SERIAL_CHAR(name);
  7550. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7551. }
  7552. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7553. SERIAL_CHAR(name);
  7554. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7555. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7556. }
  7557. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7558. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7559. tmc2130_get_pwmthrs(st, name, spmm);
  7560. }
  7561. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7562. SERIAL_CHAR(name);
  7563. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7564. SERIAL_ECHOLN(st.sgt());
  7565. }
  7566. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7567. st.sgt(sgt_val);
  7568. tmc2130_get_sgt(st, name);
  7569. }
  7570. /**
  7571. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7572. * Report driver currents when no axis specified
  7573. *
  7574. * S1: Enable automatic current control
  7575. * S0: Disable
  7576. */
  7577. inline void gcode_M906() {
  7578. uint16_t values[XYZE];
  7579. LOOP_XYZE(i)
  7580. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7581. #if ENABLED(X_IS_TMC2130)
  7582. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7583. else tmc2130_get_current(stepperX, 'X');
  7584. #endif
  7585. #if ENABLED(Y_IS_TMC2130)
  7586. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7587. else tmc2130_get_current(stepperY, 'Y');
  7588. #endif
  7589. #if ENABLED(Z_IS_TMC2130)
  7590. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7591. else tmc2130_get_current(stepperZ, 'Z');
  7592. #endif
  7593. #if ENABLED(E0_IS_TMC2130)
  7594. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7595. else tmc2130_get_current(stepperE0, 'E');
  7596. #endif
  7597. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7598. if (code_seen('S')) auto_current_control = code_value_bool();
  7599. #endif
  7600. }
  7601. /**
  7602. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7603. * The flag is held by the library and persist until manually cleared by M912
  7604. */
  7605. inline void gcode_M911() {
  7606. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7607. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7608. #if ENABLED(X_IS_TMC2130)
  7609. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7610. #endif
  7611. #if ENABLED(Y_IS_TMC2130)
  7612. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7613. #endif
  7614. #if ENABLED(Z_IS_TMC2130)
  7615. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7616. #endif
  7617. #if ENABLED(E0_IS_TMC2130)
  7618. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7619. #endif
  7620. }
  7621. /**
  7622. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7623. */
  7624. inline void gcode_M912() {
  7625. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7626. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7627. #if ENABLED(X_IS_TMC2130)
  7628. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7629. #endif
  7630. #if ENABLED(Y_IS_TMC2130)
  7631. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7632. #endif
  7633. #if ENABLED(Z_IS_TMC2130)
  7634. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7635. #endif
  7636. #if ENABLED(E0_IS_TMC2130)
  7637. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7638. #endif
  7639. }
  7640. /**
  7641. * M913: Set HYBRID_THRESHOLD speed.
  7642. */
  7643. #if ENABLED(HYBRID_THRESHOLD)
  7644. inline void gcode_M913() {
  7645. uint16_t values[XYZE];
  7646. LOOP_XYZE(i)
  7647. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7648. #if ENABLED(X_IS_TMC2130)
  7649. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7650. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7651. #endif
  7652. #if ENABLED(Y_IS_TMC2130)
  7653. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7654. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7655. #endif
  7656. #if ENABLED(Z_IS_TMC2130)
  7657. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7658. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7659. #endif
  7660. #if ENABLED(E0_IS_TMC2130)
  7661. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7662. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7663. #endif
  7664. }
  7665. #endif // HYBRID_THRESHOLD
  7666. /**
  7667. * M914: Set SENSORLESS_HOMING sensitivity.
  7668. */
  7669. #if ENABLED(SENSORLESS_HOMING)
  7670. inline void gcode_M914() {
  7671. #if ENABLED(X_IS_TMC2130)
  7672. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7673. else tmc2130_get_sgt(stepperX, 'X');
  7674. #endif
  7675. #if ENABLED(Y_IS_TMC2130)
  7676. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7677. else tmc2130_get_sgt(stepperY, 'Y');
  7678. #endif
  7679. }
  7680. #endif // SENSORLESS_HOMING
  7681. #endif // HAVE_TMC2130
  7682. /**
  7683. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7684. */
  7685. inline void gcode_M907() {
  7686. #if HAS_DIGIPOTSS
  7687. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7688. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7689. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7690. #elif HAS_MOTOR_CURRENT_PWM
  7691. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7692. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7693. #endif
  7694. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7695. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7696. #endif
  7697. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7698. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7699. #endif
  7700. #endif
  7701. #if ENABLED(DIGIPOT_I2C)
  7702. // this one uses actual amps in floating point
  7703. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7704. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7705. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7706. #endif
  7707. #if ENABLED(DAC_STEPPER_CURRENT)
  7708. if (code_seen('S')) {
  7709. const float dac_percent = code_value_float();
  7710. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7711. }
  7712. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7713. #endif
  7714. }
  7715. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7716. /**
  7717. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7718. */
  7719. inline void gcode_M908() {
  7720. #if HAS_DIGIPOTSS
  7721. stepper.digitalPotWrite(
  7722. code_seen('P') ? code_value_int() : 0,
  7723. code_seen('S') ? code_value_int() : 0
  7724. );
  7725. #endif
  7726. #ifdef DAC_STEPPER_CURRENT
  7727. dac_current_raw(
  7728. code_seen('P') ? code_value_byte() : -1,
  7729. code_seen('S') ? code_value_ushort() : 0
  7730. );
  7731. #endif
  7732. }
  7733. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7734. inline void gcode_M909() { dac_print_values(); }
  7735. inline void gcode_M910() { dac_commit_eeprom(); }
  7736. #endif
  7737. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7738. #if HAS_MICROSTEPS
  7739. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7740. inline void gcode_M350() {
  7741. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7742. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7743. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7744. stepper.microstep_readings();
  7745. }
  7746. /**
  7747. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7748. * S# determines MS1 or MS2, X# sets the pin high/low.
  7749. */
  7750. inline void gcode_M351() {
  7751. if (code_seen('S')) switch (code_value_byte()) {
  7752. case 1:
  7753. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7754. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7755. break;
  7756. case 2:
  7757. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7758. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7759. break;
  7760. }
  7761. stepper.microstep_readings();
  7762. }
  7763. #endif // HAS_MICROSTEPS
  7764. #if HAS_CASE_LIGHT
  7765. uint8_t case_light_brightness = 255;
  7766. void update_case_light() {
  7767. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7768. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7769. }
  7770. #endif // HAS_CASE_LIGHT
  7771. /**
  7772. * M355: Turn case lights on/off and set brightness
  7773. *
  7774. * S<bool> Turn case light on or off
  7775. * P<byte> Set case light brightness (PWM pin required)
  7776. */
  7777. inline void gcode_M355() {
  7778. #if HAS_CASE_LIGHT
  7779. if (code_seen('P')) case_light_brightness = code_value_byte();
  7780. if (code_seen('S')) case_light_on = code_value_bool();
  7781. update_case_light();
  7782. SERIAL_ECHO_START;
  7783. SERIAL_ECHOPGM("Case lights ");
  7784. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7785. #else
  7786. SERIAL_ERROR_START;
  7787. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7788. #endif // HAS_CASE_LIGHT
  7789. }
  7790. #if ENABLED(MIXING_EXTRUDER)
  7791. /**
  7792. * M163: Set a single mix factor for a mixing extruder
  7793. * This is called "weight" by some systems.
  7794. *
  7795. * S[index] The channel index to set
  7796. * P[float] The mix value
  7797. *
  7798. */
  7799. inline void gcode_M163() {
  7800. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7801. if (mix_index < MIXING_STEPPERS) {
  7802. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7803. NOLESS(mix_value, 0.0);
  7804. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7805. }
  7806. }
  7807. #if MIXING_VIRTUAL_TOOLS > 1
  7808. /**
  7809. * M164: Store the current mix factors as a virtual tool.
  7810. *
  7811. * S[index] The virtual tool to store
  7812. *
  7813. */
  7814. inline void gcode_M164() {
  7815. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7816. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7817. normalize_mix();
  7818. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7819. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7820. }
  7821. }
  7822. #endif
  7823. #if ENABLED(DIRECT_MIXING_IN_G1)
  7824. /**
  7825. * M165: Set multiple mix factors for a mixing extruder.
  7826. * Factors that are left out will be set to 0.
  7827. * All factors together must add up to 1.0.
  7828. *
  7829. * A[factor] Mix factor for extruder stepper 1
  7830. * B[factor] Mix factor for extruder stepper 2
  7831. * C[factor] Mix factor for extruder stepper 3
  7832. * D[factor] Mix factor for extruder stepper 4
  7833. * H[factor] Mix factor for extruder stepper 5
  7834. * I[factor] Mix factor for extruder stepper 6
  7835. *
  7836. */
  7837. inline void gcode_M165() { gcode_get_mix(); }
  7838. #endif
  7839. #endif // MIXING_EXTRUDER
  7840. /**
  7841. * M999: Restart after being stopped
  7842. *
  7843. * Default behaviour is to flush the serial buffer and request
  7844. * a resend to the host starting on the last N line received.
  7845. *
  7846. * Sending "M999 S1" will resume printing without flushing the
  7847. * existing command buffer.
  7848. *
  7849. */
  7850. inline void gcode_M999() {
  7851. Running = true;
  7852. lcd_reset_alert_level();
  7853. if (code_seen('S') && code_value_bool()) return;
  7854. // gcode_LastN = Stopped_gcode_LastN;
  7855. FlushSerialRequestResend();
  7856. }
  7857. #if ENABLED(SWITCHING_EXTRUDER)
  7858. inline void move_extruder_servo(uint8_t e) {
  7859. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7860. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7861. safe_delay(500);
  7862. }
  7863. #endif
  7864. inline void invalid_extruder_error(const uint8_t &e) {
  7865. SERIAL_ECHO_START;
  7866. SERIAL_CHAR('T');
  7867. SERIAL_ECHO_F(e, DEC);
  7868. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7869. }
  7870. /**
  7871. * Perform a tool-change, which may result in moving the
  7872. * previous tool out of the way and the new tool into place.
  7873. */
  7874. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7875. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7876. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7877. return invalid_extruder_error(tmp_extruder);
  7878. // T0-Tnnn: Switch virtual tool by changing the mix
  7879. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7880. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7881. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7882. #if HOTENDS > 1
  7883. if (tmp_extruder >= EXTRUDERS)
  7884. return invalid_extruder_error(tmp_extruder);
  7885. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7886. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7887. if (tmp_extruder != active_extruder) {
  7888. if (!no_move && axis_unhomed_error(true, true, true)) {
  7889. SERIAL_ECHOLNPGM("No move on toolchange");
  7890. no_move = true;
  7891. }
  7892. // Save current position to destination, for use later
  7893. set_destination_to_current();
  7894. #if ENABLED(DUAL_X_CARRIAGE)
  7895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7896. if (DEBUGGING(LEVELING)) {
  7897. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7898. switch (dual_x_carriage_mode) {
  7899. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7900. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7901. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7902. }
  7903. }
  7904. #endif
  7905. const float xhome = x_home_pos(active_extruder);
  7906. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7907. && IsRunning()
  7908. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7909. ) {
  7910. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7911. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7912. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7913. #endif
  7914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7915. if (DEBUGGING(LEVELING)) {
  7916. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7917. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7918. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7919. }
  7920. #endif
  7921. // Park old head: 1) raise 2) move to park position 3) lower
  7922. for (uint8_t i = 0; i < 3; i++)
  7923. planner.buffer_line(
  7924. i == 0 ? current_position[X_AXIS] : xhome,
  7925. current_position[Y_AXIS],
  7926. i == 2 ? current_position[Z_AXIS] : raised_z,
  7927. current_position[E_AXIS],
  7928. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7929. active_extruder
  7930. );
  7931. stepper.synchronize();
  7932. }
  7933. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7934. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7935. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7936. // Activate the new extruder
  7937. active_extruder = tmp_extruder;
  7938. // This function resets the max/min values - the current position may be overwritten below.
  7939. set_axis_is_at_home(X_AXIS);
  7940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7941. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7942. #endif
  7943. // Only when auto-parking are carriages safe to move
  7944. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7945. switch (dual_x_carriage_mode) {
  7946. case DXC_FULL_CONTROL_MODE:
  7947. // New current position is the position of the activated extruder
  7948. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7949. // Save the inactive extruder's position (from the old current_position)
  7950. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7951. break;
  7952. case DXC_AUTO_PARK_MODE:
  7953. // record raised toolhead position for use by unpark
  7954. COPY(raised_parked_position, current_position);
  7955. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7956. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7957. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7958. #endif
  7959. active_extruder_parked = true;
  7960. delayed_move_time = 0;
  7961. break;
  7962. case DXC_DUPLICATION_MODE:
  7963. // If the new extruder is the left one, set it "parked"
  7964. // This triggers the second extruder to move into the duplication position
  7965. active_extruder_parked = (active_extruder == 0);
  7966. if (active_extruder_parked)
  7967. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7968. else
  7969. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7970. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7971. extruder_duplication_enabled = false;
  7972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7973. if (DEBUGGING(LEVELING)) {
  7974. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  7975. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  7976. }
  7977. #endif
  7978. break;
  7979. }
  7980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7981. if (DEBUGGING(LEVELING)) {
  7982. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7983. DEBUG_POS("New extruder (parked)", current_position);
  7984. }
  7985. #endif
  7986. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7987. #else // !DUAL_X_CARRIAGE
  7988. #if ENABLED(SWITCHING_EXTRUDER)
  7989. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7990. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7991. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7992. // Always raise by some amount (destination copied from current_position earlier)
  7993. current_position[Z_AXIS] += z_raise;
  7994. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7995. stepper.synchronize();
  7996. move_extruder_servo(active_extruder);
  7997. #endif
  7998. /**
  7999. * Set current_position to the position of the new nozzle.
  8000. * Offsets are based on linear distance, so we need to get
  8001. * the resulting position in coordinate space.
  8002. *
  8003. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8004. * - With mesh leveling, update Z for the new position
  8005. * - Otherwise, just use the raw linear distance
  8006. *
  8007. * Software endstops are altered here too. Consider a case where:
  8008. * E0 at X=0 ... E1 at X=10
  8009. * When we switch to E1 now X=10, but E1 can't move left.
  8010. * To express this we apply the change in XY to the software endstops.
  8011. * E1 can move farther right than E0, so the right limit is extended.
  8012. *
  8013. * Note that we don't adjust the Z software endstops. Why not?
  8014. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8015. * because the bed is 1mm lower at the new position. As long as
  8016. * the first nozzle is out of the way, the carriage should be
  8017. * allowed to move 1mm lower. This technically "breaks" the
  8018. * Z software endstop. But this is technically correct (and
  8019. * there is no viable alternative).
  8020. */
  8021. #if ABL_PLANAR
  8022. // Offset extruder, make sure to apply the bed level rotation matrix
  8023. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8024. hotend_offset[Y_AXIS][tmp_extruder],
  8025. 0),
  8026. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8027. hotend_offset[Y_AXIS][active_extruder],
  8028. 0),
  8029. offset_vec = tmp_offset_vec - act_offset_vec;
  8030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8031. if (DEBUGGING(LEVELING)) {
  8032. tmp_offset_vec.debug("tmp_offset_vec");
  8033. act_offset_vec.debug("act_offset_vec");
  8034. offset_vec.debug("offset_vec (BEFORE)");
  8035. }
  8036. #endif
  8037. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8039. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8040. #endif
  8041. // Adjustments to the current position
  8042. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8043. current_position[Z_AXIS] += offset_vec.z;
  8044. #else // !ABL_PLANAR
  8045. const float xydiff[2] = {
  8046. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8047. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8048. };
  8049. #if ENABLED(MESH_BED_LEVELING)
  8050. if (mbl.active()) {
  8051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8052. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8053. #endif
  8054. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8055. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8056. z1 = current_position[Z_AXIS], z2 = z1;
  8057. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8058. planner.apply_leveling(x2, y2, z2);
  8059. current_position[Z_AXIS] += z2 - z1;
  8060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8061. if (DEBUGGING(LEVELING))
  8062. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8063. #endif
  8064. }
  8065. #endif // MESH_BED_LEVELING
  8066. #endif // !HAS_ABL
  8067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8068. if (DEBUGGING(LEVELING)) {
  8069. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8070. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8071. SERIAL_ECHOLNPGM(" }");
  8072. }
  8073. #endif
  8074. // The newly-selected extruder XY is actually at...
  8075. current_position[X_AXIS] += xydiff[X_AXIS];
  8076. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8077. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8078. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8079. #if HAS_POSITION_SHIFT
  8080. position_shift[i] += xydiff[i];
  8081. #endif
  8082. update_software_endstops((AxisEnum)i);
  8083. }
  8084. #endif
  8085. // Set the new active extruder
  8086. active_extruder = tmp_extruder;
  8087. #endif // !DUAL_X_CARRIAGE
  8088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8089. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8090. #endif
  8091. // Tell the planner the new "current position"
  8092. SYNC_PLAN_POSITION_KINEMATIC();
  8093. // Move to the "old position" (move the extruder into place)
  8094. if (!no_move && IsRunning()) {
  8095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8096. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8097. #endif
  8098. prepare_move_to_destination();
  8099. }
  8100. #if ENABLED(SWITCHING_EXTRUDER)
  8101. // Move back down, if needed. (Including when the new tool is higher.)
  8102. if (z_raise != z_diff) {
  8103. destination[Z_AXIS] += z_diff;
  8104. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8105. prepare_move_to_destination();
  8106. }
  8107. #endif
  8108. } // (tmp_extruder != active_extruder)
  8109. stepper.synchronize();
  8110. #if ENABLED(EXT_SOLENOID)
  8111. disable_all_solenoids();
  8112. enable_solenoid_on_active_extruder();
  8113. #endif // EXT_SOLENOID
  8114. feedrate_mm_s = old_feedrate_mm_s;
  8115. #else // HOTENDS <= 1
  8116. // Set the new active extruder
  8117. active_extruder = tmp_extruder;
  8118. UNUSED(fr_mm_s);
  8119. UNUSED(no_move);
  8120. #endif // HOTENDS <= 1
  8121. SERIAL_ECHO_START;
  8122. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8123. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8124. }
  8125. /**
  8126. * T0-T3: Switch tool, usually switching extruders
  8127. *
  8128. * F[units/min] Set the movement feedrate
  8129. * S1 Don't move the tool in XY after change
  8130. */
  8131. inline void gcode_T(uint8_t tmp_extruder) {
  8132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8133. if (DEBUGGING(LEVELING)) {
  8134. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8135. SERIAL_CHAR(')');
  8136. SERIAL_EOL;
  8137. DEBUG_POS("BEFORE", current_position);
  8138. }
  8139. #endif
  8140. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8141. tool_change(tmp_extruder);
  8142. #elif HOTENDS > 1
  8143. tool_change(
  8144. tmp_extruder,
  8145. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8146. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8147. );
  8148. #endif
  8149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8150. if (DEBUGGING(LEVELING)) {
  8151. DEBUG_POS("AFTER", current_position);
  8152. SERIAL_ECHOLNPGM("<<< gcode_T");
  8153. }
  8154. #endif
  8155. }
  8156. /**
  8157. * Process a single command and dispatch it to its handler
  8158. * This is called from the main loop()
  8159. */
  8160. void process_next_command() {
  8161. current_command = command_queue[cmd_queue_index_r];
  8162. if (DEBUGGING(ECHO)) {
  8163. SERIAL_ECHO_START;
  8164. SERIAL_ECHOLN(current_command);
  8165. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8166. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8167. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8168. #endif
  8169. }
  8170. // Sanitize the current command:
  8171. // - Skip leading spaces
  8172. // - Bypass N[-0-9][0-9]*[ ]*
  8173. // - Overwrite * with nul to mark the end
  8174. while (*current_command == ' ') ++current_command;
  8175. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8176. current_command += 2; // skip N[-0-9]
  8177. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8178. while (*current_command == ' ') ++current_command; // skip [ ]*
  8179. }
  8180. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8181. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8182. char *cmd_ptr = current_command;
  8183. // Get the command code, which must be G, M, or T
  8184. char command_code = *cmd_ptr++;
  8185. // Skip spaces to get the numeric part
  8186. while (*cmd_ptr == ' ') cmd_ptr++;
  8187. // Allow for decimal point in command
  8188. #if ENABLED(G38_PROBE_TARGET)
  8189. uint8_t subcode = 0;
  8190. #endif
  8191. uint16_t codenum = 0; // define ahead of goto
  8192. // Bail early if there's no code
  8193. bool code_is_good = NUMERIC(*cmd_ptr);
  8194. if (!code_is_good) goto ExitUnknownCommand;
  8195. // Get and skip the code number
  8196. do {
  8197. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8198. cmd_ptr++;
  8199. } while (NUMERIC(*cmd_ptr));
  8200. // Allow for decimal point in command
  8201. #if ENABLED(G38_PROBE_TARGET)
  8202. if (*cmd_ptr == '.') {
  8203. cmd_ptr++;
  8204. while (NUMERIC(*cmd_ptr))
  8205. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8206. }
  8207. #endif
  8208. // Skip all spaces to get to the first argument, or nul
  8209. while (*cmd_ptr == ' ') cmd_ptr++;
  8210. // The command's arguments (if any) start here, for sure!
  8211. current_command_args = cmd_ptr;
  8212. KEEPALIVE_STATE(IN_HANDLER);
  8213. // Handle a known G, M, or T
  8214. switch (command_code) {
  8215. case 'G': switch (codenum) {
  8216. // G0, G1
  8217. case 0:
  8218. case 1:
  8219. #if IS_SCARA
  8220. gcode_G0_G1(codenum == 0);
  8221. #else
  8222. gcode_G0_G1();
  8223. #endif
  8224. break;
  8225. // G2, G3
  8226. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8227. case 2: // G2 - CW ARC
  8228. case 3: // G3 - CCW ARC
  8229. gcode_G2_G3(codenum == 2);
  8230. break;
  8231. #endif
  8232. // G4 Dwell
  8233. case 4:
  8234. gcode_G4();
  8235. break;
  8236. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8237. // G5
  8238. case 5: // G5 - Cubic B_spline
  8239. gcode_G5();
  8240. break;
  8241. #endif // BEZIER_CURVE_SUPPORT
  8242. #if ENABLED(FWRETRACT)
  8243. case 10: // G10: retract
  8244. case 11: // G11: retract_recover
  8245. gcode_G10_G11(codenum == 10);
  8246. break;
  8247. #endif // FWRETRACT
  8248. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8249. case 12:
  8250. gcode_G12(); // G12: Nozzle Clean
  8251. break;
  8252. #endif // NOZZLE_CLEAN_FEATURE
  8253. #if ENABLED(INCH_MODE_SUPPORT)
  8254. case 20: //G20: Inch Mode
  8255. gcode_G20();
  8256. break;
  8257. case 21: //G21: MM Mode
  8258. gcode_G21();
  8259. break;
  8260. #endif // INCH_MODE_SUPPORT
  8261. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8262. case 26: // G26: Mesh Validation Pattern generation
  8263. gcode_G26();
  8264. break;
  8265. #endif // AUTO_BED_LEVELING_UBL
  8266. #if ENABLED(NOZZLE_PARK_FEATURE)
  8267. case 27: // G27: Nozzle Park
  8268. gcode_G27();
  8269. break;
  8270. #endif // NOZZLE_PARK_FEATURE
  8271. case 28: // G28: Home all axes, one at a time
  8272. gcode_G28();
  8273. break;
  8274. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8275. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8276. // or provides access to the UBL System if enabled.
  8277. gcode_G29();
  8278. break;
  8279. #endif // PLANNER_LEVELING
  8280. #if HAS_BED_PROBE
  8281. case 30: // G30 Single Z probe
  8282. gcode_G30();
  8283. break;
  8284. #if ENABLED(Z_PROBE_SLED)
  8285. case 31: // G31: dock the sled
  8286. gcode_G31();
  8287. break;
  8288. case 32: // G32: undock the sled
  8289. gcode_G32();
  8290. break;
  8291. #endif // Z_PROBE_SLED
  8292. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8293. case 33: // G33: Delta Auto Calibrate
  8294. gcode_G33();
  8295. break;
  8296. #endif // DELTA_AUTO_CALIBRATION
  8297. #endif // HAS_BED_PROBE
  8298. #if ENABLED(G38_PROBE_TARGET)
  8299. case 38: // G38.2 & G38.3
  8300. if (subcode == 2 || subcode == 3)
  8301. gcode_G38(subcode == 2);
  8302. break;
  8303. #endif
  8304. case 90: // G90
  8305. relative_mode = false;
  8306. break;
  8307. case 91: // G91
  8308. relative_mode = true;
  8309. break;
  8310. case 92: // G92
  8311. gcode_G92();
  8312. break;
  8313. }
  8314. break;
  8315. case 'M': switch (codenum) {
  8316. #if HAS_RESUME_CONTINUE
  8317. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8318. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8319. gcode_M0_M1();
  8320. break;
  8321. #endif // ULTIPANEL
  8322. case 17: // M17: Enable all stepper motors
  8323. gcode_M17();
  8324. break;
  8325. #if ENABLED(SDSUPPORT)
  8326. case 20: // M20: list SD card
  8327. gcode_M20(); break;
  8328. case 21: // M21: init SD card
  8329. gcode_M21(); break;
  8330. case 22: // M22: release SD card
  8331. gcode_M22(); break;
  8332. case 23: // M23: Select file
  8333. gcode_M23(); break;
  8334. case 24: // M24: Start SD print
  8335. gcode_M24(); break;
  8336. case 25: // M25: Pause SD print
  8337. gcode_M25(); break;
  8338. case 26: // M26: Set SD index
  8339. gcode_M26(); break;
  8340. case 27: // M27: Get SD status
  8341. gcode_M27(); break;
  8342. case 28: // M28: Start SD write
  8343. gcode_M28(); break;
  8344. case 29: // M29: Stop SD write
  8345. gcode_M29(); break;
  8346. case 30: // M30 <filename> Delete File
  8347. gcode_M30(); break;
  8348. case 32: // M32: Select file and start SD print
  8349. gcode_M32(); break;
  8350. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8351. case 33: // M33: Get the long full path to a file or folder
  8352. gcode_M33(); break;
  8353. #endif
  8354. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8355. case 34: //M34 - Set SD card sorting options
  8356. gcode_M34(); break;
  8357. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8358. case 928: // M928: Start SD write
  8359. gcode_M928(); break;
  8360. #endif //SDSUPPORT
  8361. case 31: // M31: Report time since the start of SD print or last M109
  8362. gcode_M31(); break;
  8363. case 42: // M42: Change pin state
  8364. gcode_M42(); break;
  8365. #if ENABLED(PINS_DEBUGGING)
  8366. case 43: // M43: Read pin state
  8367. gcode_M43(); break;
  8368. #endif
  8369. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8370. case 48: // M48: Z probe repeatability test
  8371. gcode_M48();
  8372. break;
  8373. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8374. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8375. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8376. gcode_M49();
  8377. break;
  8378. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8379. case 75: // M75: Start print timer
  8380. gcode_M75(); break;
  8381. case 76: // M76: Pause print timer
  8382. gcode_M76(); break;
  8383. case 77: // M77: Stop print timer
  8384. gcode_M77(); break;
  8385. #if ENABLED(PRINTCOUNTER)
  8386. case 78: // M78: Show print statistics
  8387. gcode_M78(); break;
  8388. #endif
  8389. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8390. case 100: // M100: Free Memory Report
  8391. gcode_M100();
  8392. break;
  8393. #endif
  8394. case 104: // M104: Set hot end temperature
  8395. gcode_M104();
  8396. break;
  8397. case 110: // M110: Set Current Line Number
  8398. gcode_M110();
  8399. break;
  8400. case 111: // M111: Set debug level
  8401. gcode_M111();
  8402. break;
  8403. #if DISABLED(EMERGENCY_PARSER)
  8404. case 108: // M108: Cancel Waiting
  8405. gcode_M108();
  8406. break;
  8407. case 112: // M112: Emergency Stop
  8408. gcode_M112();
  8409. break;
  8410. case 410: // M410 quickstop - Abort all the planned moves.
  8411. gcode_M410();
  8412. break;
  8413. #endif
  8414. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8415. case 113: // M113: Set Host Keepalive interval
  8416. gcode_M113();
  8417. break;
  8418. #endif
  8419. case 140: // M140: Set bed temperature
  8420. gcode_M140();
  8421. break;
  8422. case 105: // M105: Report current temperature
  8423. gcode_M105();
  8424. KEEPALIVE_STATE(NOT_BUSY);
  8425. return; // "ok" already printed
  8426. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8427. case 155: // M155: Set temperature auto-report interval
  8428. gcode_M155();
  8429. break;
  8430. #endif
  8431. case 109: // M109: Wait for hotend temperature to reach target
  8432. gcode_M109();
  8433. break;
  8434. #if HAS_TEMP_BED
  8435. case 190: // M190: Wait for bed temperature to reach target
  8436. gcode_M190();
  8437. break;
  8438. #endif // HAS_TEMP_BED
  8439. #if FAN_COUNT > 0
  8440. case 106: // M106: Fan On
  8441. gcode_M106();
  8442. break;
  8443. case 107: // M107: Fan Off
  8444. gcode_M107();
  8445. break;
  8446. #endif // FAN_COUNT > 0
  8447. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8448. case 125: // M125: Store current position and move to filament change position
  8449. gcode_M125(); break;
  8450. #endif
  8451. #if ENABLED(BARICUDA)
  8452. // PWM for HEATER_1_PIN
  8453. #if HAS_HEATER_1
  8454. case 126: // M126: valve open
  8455. gcode_M126();
  8456. break;
  8457. case 127: // M127: valve closed
  8458. gcode_M127();
  8459. break;
  8460. #endif // HAS_HEATER_1
  8461. // PWM for HEATER_2_PIN
  8462. #if HAS_HEATER_2
  8463. case 128: // M128: valve open
  8464. gcode_M128();
  8465. break;
  8466. case 129: // M129: valve closed
  8467. gcode_M129();
  8468. break;
  8469. #endif // HAS_HEATER_2
  8470. #endif // BARICUDA
  8471. #if HAS_POWER_SWITCH
  8472. case 80: // M80: Turn on Power Supply
  8473. gcode_M80();
  8474. break;
  8475. #endif // HAS_POWER_SWITCH
  8476. case 81: // M81: Turn off Power, including Power Supply, if possible
  8477. gcode_M81();
  8478. break;
  8479. case 82: // M83: Set E axis normal mode (same as other axes)
  8480. gcode_M82();
  8481. break;
  8482. case 83: // M83: Set E axis relative mode
  8483. gcode_M83();
  8484. break;
  8485. case 18: // M18 => M84
  8486. case 84: // M84: Disable all steppers or set timeout
  8487. gcode_M18_M84();
  8488. break;
  8489. case 85: // M85: Set inactivity stepper shutdown timeout
  8490. gcode_M85();
  8491. break;
  8492. case 92: // M92: Set the steps-per-unit for one or more axes
  8493. gcode_M92();
  8494. break;
  8495. case 114: // M114: Report current position
  8496. gcode_M114();
  8497. break;
  8498. case 115: // M115: Report capabilities
  8499. gcode_M115();
  8500. break;
  8501. case 117: // M117: Set LCD message text, if possible
  8502. gcode_M117();
  8503. break;
  8504. case 119: // M119: Report endstop states
  8505. gcode_M119();
  8506. break;
  8507. case 120: // M120: Enable endstops
  8508. gcode_M120();
  8509. break;
  8510. case 121: // M121: Disable endstops
  8511. gcode_M121();
  8512. break;
  8513. #if ENABLED(ULTIPANEL)
  8514. case 145: // M145: Set material heatup parameters
  8515. gcode_M145();
  8516. break;
  8517. #endif
  8518. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8519. case 149: // M149: Set temperature units
  8520. gcode_M149();
  8521. break;
  8522. #endif
  8523. #if HAS_COLOR_LEDS
  8524. case 150: // M150: Set Status LED Color
  8525. gcode_M150();
  8526. break;
  8527. #endif // BLINKM
  8528. #if ENABLED(MIXING_EXTRUDER)
  8529. case 163: // M163: Set a component weight for mixing extruder
  8530. gcode_M163();
  8531. break;
  8532. #if MIXING_VIRTUAL_TOOLS > 1
  8533. case 164: // M164: Save current mix as a virtual extruder
  8534. gcode_M164();
  8535. break;
  8536. #endif
  8537. #if ENABLED(DIRECT_MIXING_IN_G1)
  8538. case 165: // M165: Set multiple mix weights
  8539. gcode_M165();
  8540. break;
  8541. #endif
  8542. #endif
  8543. case 200: // M200: Set filament diameter, E to cubic units
  8544. gcode_M200();
  8545. break;
  8546. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8547. gcode_M201();
  8548. break;
  8549. #if 0 // Not used for Sprinter/grbl gen6
  8550. case 202: // M202
  8551. gcode_M202();
  8552. break;
  8553. #endif
  8554. case 203: // M203: Set max feedrate (units/sec)
  8555. gcode_M203();
  8556. break;
  8557. case 204: // M204: Set acceleration
  8558. gcode_M204();
  8559. break;
  8560. case 205: //M205: Set advanced settings
  8561. gcode_M205();
  8562. break;
  8563. #if HAS_M206_COMMAND
  8564. case 206: // M206: Set home offsets
  8565. gcode_M206();
  8566. break;
  8567. #endif
  8568. #if ENABLED(DELTA)
  8569. case 665: // M665: Set delta configurations
  8570. gcode_M665();
  8571. break;
  8572. #endif
  8573. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8574. case 666: // M666: Set delta or dual endstop adjustment
  8575. gcode_M666();
  8576. break;
  8577. #endif
  8578. #if ENABLED(FWRETRACT)
  8579. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8580. gcode_M207();
  8581. break;
  8582. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8583. gcode_M208();
  8584. break;
  8585. case 209: // M209: Turn Automatic Retract Detection on/off
  8586. gcode_M209();
  8587. break;
  8588. #endif // FWRETRACT
  8589. case 211: // M211: Enable, Disable, and/or Report software endstops
  8590. gcode_M211();
  8591. break;
  8592. #if HOTENDS > 1
  8593. case 218: // M218: Set a tool offset
  8594. gcode_M218();
  8595. break;
  8596. #endif
  8597. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8598. gcode_M220();
  8599. break;
  8600. case 221: // M221: Set Flow Percentage
  8601. gcode_M221();
  8602. break;
  8603. case 226: // M226: Wait until a pin reaches a state
  8604. gcode_M226();
  8605. break;
  8606. #if HAS_SERVOS
  8607. case 280: // M280: Set servo position absolute
  8608. gcode_M280();
  8609. break;
  8610. #endif // HAS_SERVOS
  8611. #if HAS_BUZZER
  8612. case 300: // M300: Play beep tone
  8613. gcode_M300();
  8614. break;
  8615. #endif // HAS_BUZZER
  8616. #if ENABLED(PIDTEMP)
  8617. case 301: // M301: Set hotend PID parameters
  8618. gcode_M301();
  8619. break;
  8620. #endif // PIDTEMP
  8621. #if ENABLED(PIDTEMPBED)
  8622. case 304: // M304: Set bed PID parameters
  8623. gcode_M304();
  8624. break;
  8625. #endif // PIDTEMPBED
  8626. #if defined(CHDK) || HAS_PHOTOGRAPH
  8627. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8628. gcode_M240();
  8629. break;
  8630. #endif // CHDK || PHOTOGRAPH_PIN
  8631. #if HAS_LCD_CONTRAST
  8632. case 250: // M250: Set LCD contrast
  8633. gcode_M250();
  8634. break;
  8635. #endif // HAS_LCD_CONTRAST
  8636. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8637. case 260: // M260: Send data to an i2c slave
  8638. gcode_M260();
  8639. break;
  8640. case 261: // M261: Request data from an i2c slave
  8641. gcode_M261();
  8642. break;
  8643. #endif // EXPERIMENTAL_I2CBUS
  8644. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8645. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8646. gcode_M302();
  8647. break;
  8648. #endif // PREVENT_COLD_EXTRUSION
  8649. case 303: // M303: PID autotune
  8650. gcode_M303();
  8651. break;
  8652. #if ENABLED(MORGAN_SCARA)
  8653. case 360: // M360: SCARA Theta pos1
  8654. if (gcode_M360()) return;
  8655. break;
  8656. case 361: // M361: SCARA Theta pos2
  8657. if (gcode_M361()) return;
  8658. break;
  8659. case 362: // M362: SCARA Psi pos1
  8660. if (gcode_M362()) return;
  8661. break;
  8662. case 363: // M363: SCARA Psi pos2
  8663. if (gcode_M363()) return;
  8664. break;
  8665. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8666. if (gcode_M364()) return;
  8667. break;
  8668. #endif // SCARA
  8669. case 400: // M400: Finish all moves
  8670. gcode_M400();
  8671. break;
  8672. #if HAS_BED_PROBE
  8673. case 401: // M401: Deploy probe
  8674. gcode_M401();
  8675. break;
  8676. case 402: // M402: Stow probe
  8677. gcode_M402();
  8678. break;
  8679. #endif // HAS_BED_PROBE
  8680. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8681. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8682. gcode_M404();
  8683. break;
  8684. case 405: // M405: Turn on filament sensor for control
  8685. gcode_M405();
  8686. break;
  8687. case 406: // M406: Turn off filament sensor for control
  8688. gcode_M406();
  8689. break;
  8690. case 407: // M407: Display measured filament diameter
  8691. gcode_M407();
  8692. break;
  8693. #endif // FILAMENT_WIDTH_SENSOR
  8694. #if PLANNER_LEVELING
  8695. case 420: // M420: Enable/Disable Bed Leveling
  8696. gcode_M420();
  8697. break;
  8698. #endif
  8699. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8700. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8701. gcode_M421();
  8702. break;
  8703. #endif
  8704. #if HAS_M206_COMMAND
  8705. case 428: // M428: Apply current_position to home_offset
  8706. gcode_M428();
  8707. break;
  8708. #endif
  8709. case 500: // M500: Store settings in EEPROM
  8710. gcode_M500();
  8711. break;
  8712. case 501: // M501: Read settings from EEPROM
  8713. gcode_M501();
  8714. break;
  8715. case 502: // M502: Revert to default settings
  8716. gcode_M502();
  8717. break;
  8718. case 503: // M503: print settings currently in memory
  8719. gcode_M503();
  8720. break;
  8721. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8722. case 540: // M540: Set abort on endstop hit for SD printing
  8723. gcode_M540();
  8724. break;
  8725. #endif
  8726. #if HAS_BED_PROBE
  8727. case 851: // M851: Set Z Probe Z Offset
  8728. gcode_M851();
  8729. break;
  8730. #endif // HAS_BED_PROBE
  8731. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8732. case 600: // M600: Pause for filament change
  8733. gcode_M600();
  8734. break;
  8735. #endif // FILAMENT_CHANGE_FEATURE
  8736. #if ENABLED(DUAL_X_CARRIAGE)
  8737. case 605: // M605: Set Dual X Carriage movement mode
  8738. gcode_M605();
  8739. break;
  8740. #endif // DUAL_X_CARRIAGE
  8741. #if ENABLED(LIN_ADVANCE)
  8742. case 900: // M900: Set advance K factor.
  8743. gcode_M900();
  8744. break;
  8745. #endif
  8746. #if ENABLED(HAVE_TMC2130)
  8747. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8748. gcode_M906();
  8749. break;
  8750. #endif
  8751. case 907: // M907: Set digital trimpot motor current using axis codes.
  8752. gcode_M907();
  8753. break;
  8754. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8755. case 908: // M908: Control digital trimpot directly.
  8756. gcode_M908();
  8757. break;
  8758. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8759. case 909: // M909: Print digipot/DAC current value
  8760. gcode_M909();
  8761. break;
  8762. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8763. gcode_M910();
  8764. break;
  8765. #endif
  8766. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8767. #if ENABLED(HAVE_TMC2130)
  8768. case 911: // M911: Report TMC2130 prewarn triggered flags
  8769. gcode_M911();
  8770. break;
  8771. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8772. gcode_M912();
  8773. break;
  8774. #if ENABLED(HYBRID_THRESHOLD)
  8775. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8776. gcode_M913();
  8777. break;
  8778. #endif
  8779. #if ENABLED(SENSORLESS_HOMING)
  8780. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8781. gcode_M914();
  8782. break;
  8783. #endif
  8784. #endif
  8785. #if HAS_MICROSTEPS
  8786. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8787. gcode_M350();
  8788. break;
  8789. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8790. gcode_M351();
  8791. break;
  8792. #endif // HAS_MICROSTEPS
  8793. case 355: // M355 Turn case lights on/off
  8794. gcode_M355();
  8795. break;
  8796. case 999: // M999: Restart after being Stopped
  8797. gcode_M999();
  8798. break;
  8799. }
  8800. break;
  8801. case 'T':
  8802. gcode_T(codenum);
  8803. break;
  8804. default: code_is_good = false;
  8805. }
  8806. KEEPALIVE_STATE(NOT_BUSY);
  8807. ExitUnknownCommand:
  8808. // Still unknown command? Throw an error
  8809. if (!code_is_good) unknown_command_error();
  8810. ok_to_send();
  8811. }
  8812. /**
  8813. * Send a "Resend: nnn" message to the host to
  8814. * indicate that a command needs to be re-sent.
  8815. */
  8816. void FlushSerialRequestResend() {
  8817. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8818. MYSERIAL.flush();
  8819. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8820. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8821. ok_to_send();
  8822. }
  8823. /**
  8824. * Send an "ok" message to the host, indicating
  8825. * that a command was successfully processed.
  8826. *
  8827. * If ADVANCED_OK is enabled also include:
  8828. * N<int> Line number of the command, if any
  8829. * P<int> Planner space remaining
  8830. * B<int> Block queue space remaining
  8831. */
  8832. void ok_to_send() {
  8833. refresh_cmd_timeout();
  8834. if (!send_ok[cmd_queue_index_r]) return;
  8835. SERIAL_PROTOCOLPGM(MSG_OK);
  8836. #if ENABLED(ADVANCED_OK)
  8837. char* p = command_queue[cmd_queue_index_r];
  8838. if (*p == 'N') {
  8839. SERIAL_PROTOCOL(' ');
  8840. SERIAL_ECHO(*p++);
  8841. while (NUMERIC_SIGNED(*p))
  8842. SERIAL_ECHO(*p++);
  8843. }
  8844. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8845. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8846. #endif
  8847. SERIAL_EOL;
  8848. }
  8849. #if HAS_SOFTWARE_ENDSTOPS
  8850. /**
  8851. * Constrain the given coordinates to the software endstops.
  8852. */
  8853. void clamp_to_software_endstops(float target[XYZ]) {
  8854. if (!soft_endstops_enabled) return;
  8855. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8856. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8857. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8858. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8859. #endif
  8860. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8861. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8862. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8863. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8864. #endif
  8865. }
  8866. #endif
  8867. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8868. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8869. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8870. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8871. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8872. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8873. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8874. #else
  8875. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8876. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8877. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8878. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8879. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8880. #endif
  8881. // Get the Z adjustment for non-linear bed leveling
  8882. float bilinear_z_offset(const float logical[XYZ]) {
  8883. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8884. last_x = -999.999, last_y = -999.999;
  8885. // Whole units for the grid line indices. Constrained within bounds.
  8886. static int8_t gridx, gridy, nextx, nexty,
  8887. last_gridx = -99, last_gridy = -99;
  8888. // XY relative to the probed area
  8889. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8890. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8891. if (last_x != x) {
  8892. last_x = x;
  8893. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8894. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8895. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8896. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8897. gridx = gx;
  8898. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8899. }
  8900. if (last_y != y || last_gridx != gridx) {
  8901. if (last_y != y) {
  8902. last_y = y;
  8903. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8904. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8905. ratio_y -= gy;
  8906. NOLESS(ratio_y, 0);
  8907. gridy = gy;
  8908. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8909. }
  8910. if (last_gridx != gridx || last_gridy != gridy) {
  8911. last_gridx = gridx;
  8912. last_gridy = gridy;
  8913. // Z at the box corners
  8914. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8915. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8916. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8917. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8918. }
  8919. // Bilinear interpolate. Needed since y or gridx has changed.
  8920. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8921. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8922. D = R - L;
  8923. }
  8924. const float offset = L + ratio_x * D; // the offset almost always changes
  8925. /*
  8926. static float last_offset = 0;
  8927. if (fabs(last_offset - offset) > 0.2) {
  8928. SERIAL_ECHOPGM("Sudden Shift at ");
  8929. SERIAL_ECHOPAIR("x=", x);
  8930. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8931. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8932. SERIAL_ECHOPAIR(" y=", y);
  8933. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8934. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8935. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8936. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8937. SERIAL_ECHOPAIR(" z1=", z1);
  8938. SERIAL_ECHOPAIR(" z2=", z2);
  8939. SERIAL_ECHOPAIR(" z3=", z3);
  8940. SERIAL_ECHOLNPAIR(" z4=", z4);
  8941. SERIAL_ECHOPAIR(" L=", L);
  8942. SERIAL_ECHOPAIR(" R=", R);
  8943. SERIAL_ECHOLNPAIR(" offset=", offset);
  8944. }
  8945. last_offset = offset;
  8946. //*/
  8947. return offset;
  8948. }
  8949. #endif // AUTO_BED_LEVELING_BILINEAR
  8950. #if ENABLED(DELTA)
  8951. /**
  8952. * Recalculate factors used for delta kinematics whenever
  8953. * settings have been changed (e.g., by M665).
  8954. */
  8955. void recalc_delta_settings(float radius, float diagonal_rod) {
  8956. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8957. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8958. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8959. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8960. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8961. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8962. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8963. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8964. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8965. }
  8966. #if ENABLED(DELTA_FAST_SQRT)
  8967. /**
  8968. * Fast inverse sqrt from Quake III Arena
  8969. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8970. */
  8971. float Q_rsqrt(float number) {
  8972. long i;
  8973. float x2, y;
  8974. const float threehalfs = 1.5f;
  8975. x2 = number * 0.5f;
  8976. y = number;
  8977. i = * ( long * ) &y; // evil floating point bit level hacking
  8978. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  8979. y = * ( float * ) &i;
  8980. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8981. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8982. return y;
  8983. }
  8984. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8985. #else
  8986. #define _SQRT(n) sqrt(n)
  8987. #endif
  8988. /**
  8989. * Delta Inverse Kinematics
  8990. *
  8991. * Calculate the tower positions for a given logical
  8992. * position, storing the result in the delta[] array.
  8993. *
  8994. * This is an expensive calculation, requiring 3 square
  8995. * roots per segmented linear move, and strains the limits
  8996. * of a Mega2560 with a Graphical Display.
  8997. *
  8998. * Suggested optimizations include:
  8999. *
  9000. * - Disable the home_offset (M206) and/or position_shift (G92)
  9001. * features to remove up to 12 float additions.
  9002. *
  9003. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9004. * (see above)
  9005. */
  9006. // Macro to obtain the Z position of an individual tower
  9007. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9008. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9009. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9010. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9011. ) \
  9012. )
  9013. #define DELTA_RAW_IK() do { \
  9014. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9015. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9016. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9017. } while(0)
  9018. #define DELTA_LOGICAL_IK() do { \
  9019. const float raw[XYZ] = { \
  9020. RAW_X_POSITION(logical[X_AXIS]), \
  9021. RAW_Y_POSITION(logical[Y_AXIS]), \
  9022. RAW_Z_POSITION(logical[Z_AXIS]) \
  9023. }; \
  9024. DELTA_RAW_IK(); \
  9025. } while(0)
  9026. #define DELTA_DEBUG() do { \
  9027. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9028. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9029. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9030. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9031. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9032. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9033. } while(0)
  9034. void inverse_kinematics(const float logical[XYZ]) {
  9035. DELTA_LOGICAL_IK();
  9036. // DELTA_DEBUG();
  9037. }
  9038. /**
  9039. * Calculate the highest Z position where the
  9040. * effector has the full range of XY motion.
  9041. */
  9042. float delta_safe_distance_from_top() {
  9043. float cartesian[XYZ] = {
  9044. LOGICAL_X_POSITION(0),
  9045. LOGICAL_Y_POSITION(0),
  9046. LOGICAL_Z_POSITION(0)
  9047. };
  9048. inverse_kinematics(cartesian);
  9049. float distance = delta[A_AXIS];
  9050. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9051. inverse_kinematics(cartesian);
  9052. return abs(distance - delta[A_AXIS]);
  9053. }
  9054. /**
  9055. * Delta Forward Kinematics
  9056. *
  9057. * See the Wikipedia article "Trilateration"
  9058. * https://en.wikipedia.org/wiki/Trilateration
  9059. *
  9060. * Establish a new coordinate system in the plane of the
  9061. * three carriage points. This system has its origin at
  9062. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9063. * plane with a Z component of zero.
  9064. * We will define unit vectors in this coordinate system
  9065. * in our original coordinate system. Then when we calculate
  9066. * the Xnew, Ynew and Znew values, we can translate back into
  9067. * the original system by moving along those unit vectors
  9068. * by the corresponding values.
  9069. *
  9070. * Variable names matched to Marlin, c-version, and avoid the
  9071. * use of any vector library.
  9072. *
  9073. * by Andreas Hardtung 2016-06-07
  9074. * based on a Java function from "Delta Robot Kinematics V3"
  9075. * by Steve Graves
  9076. *
  9077. * The result is stored in the cartes[] array.
  9078. */
  9079. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9080. // Create a vector in old coordinates along x axis of new coordinate
  9081. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9082. // Get the Magnitude of vector.
  9083. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9084. // Create unit vector by dividing by magnitude.
  9085. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9086. // Get the vector from the origin of the new system to the third point.
  9087. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9088. // Use the dot product to find the component of this vector on the X axis.
  9089. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9090. // Create a vector along the x axis that represents the x component of p13.
  9091. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9092. // Subtract the X component from the original vector leaving only Y. We use the
  9093. // variable that will be the unit vector after we scale it.
  9094. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9095. // The magnitude of Y component
  9096. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9097. // Convert to a unit vector
  9098. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9099. // The cross product of the unit x and y is the unit z
  9100. // float[] ez = vectorCrossProd(ex, ey);
  9101. float ez[3] = {
  9102. ex[1] * ey[2] - ex[2] * ey[1],
  9103. ex[2] * ey[0] - ex[0] * ey[2],
  9104. ex[0] * ey[1] - ex[1] * ey[0]
  9105. };
  9106. // We now have the d, i and j values defined in Wikipedia.
  9107. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9108. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9109. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9110. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9111. // Start from the origin of the old coordinates and add vectors in the
  9112. // old coords that represent the Xnew, Ynew and Znew to find the point
  9113. // in the old system.
  9114. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9115. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9116. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9117. }
  9118. void forward_kinematics_DELTA(float point[ABC]) {
  9119. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9120. }
  9121. #endif // DELTA
  9122. /**
  9123. * Get the stepper positions in the cartes[] array.
  9124. * Forward kinematics are applied for DELTA and SCARA.
  9125. *
  9126. * The result is in the current coordinate space with
  9127. * leveling applied. The coordinates need to be run through
  9128. * unapply_leveling to obtain the "ideal" coordinates
  9129. * suitable for current_position, etc.
  9130. */
  9131. void get_cartesian_from_steppers() {
  9132. #if ENABLED(DELTA)
  9133. forward_kinematics_DELTA(
  9134. stepper.get_axis_position_mm(A_AXIS),
  9135. stepper.get_axis_position_mm(B_AXIS),
  9136. stepper.get_axis_position_mm(C_AXIS)
  9137. );
  9138. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9139. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9140. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9141. #elif IS_SCARA
  9142. forward_kinematics_SCARA(
  9143. stepper.get_axis_position_degrees(A_AXIS),
  9144. stepper.get_axis_position_degrees(B_AXIS)
  9145. );
  9146. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9147. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9148. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9149. #else
  9150. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9151. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9152. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9153. #endif
  9154. }
  9155. /**
  9156. * Set the current_position for an axis based on
  9157. * the stepper positions, removing any leveling that
  9158. * may have been applied.
  9159. */
  9160. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9161. get_cartesian_from_steppers();
  9162. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9163. planner.unapply_leveling(cartes);
  9164. #endif
  9165. if (axis == ALL_AXES)
  9166. COPY(current_position, cartes);
  9167. else
  9168. current_position[axis] = cartes[axis];
  9169. }
  9170. #if ENABLED(MESH_BED_LEVELING)
  9171. /**
  9172. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9173. * splitting the move where it crosses mesh borders.
  9174. */
  9175. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9176. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9177. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9178. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9179. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9180. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9181. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9182. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9183. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9184. if (cx1 == cx2 && cy1 == cy2) {
  9185. // Start and end on same mesh square
  9186. line_to_destination(fr_mm_s);
  9187. set_current_to_destination();
  9188. return;
  9189. }
  9190. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9191. float normalized_dist, end[XYZE];
  9192. // Split at the left/front border of the right/top square
  9193. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9194. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9195. COPY(end, destination);
  9196. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9197. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9198. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9199. CBI(x_splits, gcx);
  9200. }
  9201. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9202. COPY(end, destination);
  9203. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9204. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9205. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9206. CBI(y_splits, gcy);
  9207. }
  9208. else {
  9209. // Already split on a border
  9210. line_to_destination(fr_mm_s);
  9211. set_current_to_destination();
  9212. return;
  9213. }
  9214. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9215. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9216. // Do the split and look for more borders
  9217. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9218. // Restore destination from stack
  9219. COPY(destination, end);
  9220. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9221. }
  9222. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9223. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9224. /**
  9225. * Prepare a bilinear-leveled linear move on Cartesian,
  9226. * splitting the move where it crosses grid borders.
  9227. */
  9228. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9229. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9230. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9231. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9232. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9233. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9234. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9235. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9236. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9237. if (cx1 == cx2 && cy1 == cy2) {
  9238. // Start and end on same mesh square
  9239. line_to_destination(fr_mm_s);
  9240. set_current_to_destination();
  9241. return;
  9242. }
  9243. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9244. float normalized_dist, end[XYZE];
  9245. // Split at the left/front border of the right/top square
  9246. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9247. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9248. COPY(end, destination);
  9249. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9250. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9251. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9252. CBI(x_splits, gcx);
  9253. }
  9254. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9255. COPY(end, destination);
  9256. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9257. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9258. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9259. CBI(y_splits, gcy);
  9260. }
  9261. else {
  9262. // Already split on a border
  9263. line_to_destination(fr_mm_s);
  9264. set_current_to_destination();
  9265. return;
  9266. }
  9267. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9268. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9269. // Do the split and look for more borders
  9270. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9271. // Restore destination from stack
  9272. COPY(destination, end);
  9273. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9274. }
  9275. #endif // AUTO_BED_LEVELING_BILINEAR
  9276. #if IS_KINEMATIC
  9277. /**
  9278. * Prepare a linear move in a DELTA or SCARA setup.
  9279. *
  9280. * This calls planner.buffer_line several times, adding
  9281. * small incremental moves for DELTA or SCARA.
  9282. */
  9283. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9284. // Get the top feedrate of the move in the XY plane
  9285. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9286. // If the move is only in Z/E don't split up the move
  9287. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9288. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9289. return false;
  9290. }
  9291. // Get the cartesian distances moved in XYZE
  9292. float difference[XYZE];
  9293. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9294. // Get the linear distance in XYZ
  9295. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9296. // If the move is very short, check the E move distance
  9297. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9298. // No E move either? Game over.
  9299. if (UNEAR_ZERO(cartesian_mm)) return true;
  9300. // Minimum number of seconds to move the given distance
  9301. float seconds = cartesian_mm / _feedrate_mm_s;
  9302. // The number of segments-per-second times the duration
  9303. // gives the number of segments
  9304. uint16_t segments = delta_segments_per_second * seconds;
  9305. // For SCARA minimum segment size is 0.25mm
  9306. #if IS_SCARA
  9307. NOMORE(segments, cartesian_mm * 4);
  9308. #endif
  9309. // At least one segment is required
  9310. NOLESS(segments, 1);
  9311. // The approximate length of each segment
  9312. const float inv_segments = 1.0 / float(segments),
  9313. segment_distance[XYZE] = {
  9314. difference[X_AXIS] * inv_segments,
  9315. difference[Y_AXIS] * inv_segments,
  9316. difference[Z_AXIS] * inv_segments,
  9317. difference[E_AXIS] * inv_segments
  9318. };
  9319. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9320. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9321. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9322. #if IS_SCARA
  9323. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9324. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9325. feed_factor = inv_segment_length * _feedrate_mm_s;
  9326. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9327. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9328. #endif
  9329. // Get the logical current position as starting point
  9330. float logical[XYZE];
  9331. COPY(logical, current_position);
  9332. // Drop one segment so the last move is to the exact target.
  9333. // If there's only 1 segment, loops will be skipped entirely.
  9334. --segments;
  9335. // Calculate and execute the segments
  9336. for (uint16_t s = segments + 1; --s;) {
  9337. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9338. #if ENABLED(DELTA)
  9339. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9340. #else
  9341. inverse_kinematics(logical);
  9342. #endif
  9343. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9344. #if IS_SCARA
  9345. // For SCARA scale the feed rate from mm/s to degrees/s
  9346. // Use ratio between the length of the move and the larger angle change
  9347. const float adiff = abs(delta[A_AXIS] - oldA),
  9348. bdiff = abs(delta[B_AXIS] - oldB);
  9349. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9350. oldA = delta[A_AXIS];
  9351. oldB = delta[B_AXIS];
  9352. #else
  9353. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9354. #endif
  9355. }
  9356. // Since segment_distance is only approximate,
  9357. // the final move must be to the exact destination.
  9358. #if IS_SCARA
  9359. // For SCARA scale the feed rate from mm/s to degrees/s
  9360. // With segments > 1 length is 1 segment, otherwise total length
  9361. inverse_kinematics(ltarget);
  9362. ADJUST_DELTA(logical);
  9363. const float adiff = abs(delta[A_AXIS] - oldA),
  9364. bdiff = abs(delta[B_AXIS] - oldB);
  9365. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9366. #else
  9367. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9368. #endif
  9369. return false;
  9370. }
  9371. #else // !IS_KINEMATIC
  9372. /**
  9373. * Prepare a linear move in a Cartesian setup.
  9374. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9375. *
  9376. * Returns true if the caller didn't update current_position.
  9377. */
  9378. inline bool prepare_move_to_destination_cartesian() {
  9379. // Do not use feedrate_percentage for E or Z only moves
  9380. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9381. line_to_destination();
  9382. }
  9383. else {
  9384. #if ENABLED(MESH_BED_LEVELING)
  9385. if (mbl.active()) {
  9386. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9387. return true;
  9388. }
  9389. else
  9390. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9391. if (ubl.state.active) {
  9392. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9393. return true;
  9394. }
  9395. else
  9396. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9397. if (planner.abl_enabled) {
  9398. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9399. return true;
  9400. }
  9401. else
  9402. #endif
  9403. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9404. }
  9405. return false;
  9406. }
  9407. #endif // !IS_KINEMATIC
  9408. #if ENABLED(DUAL_X_CARRIAGE)
  9409. /**
  9410. * Prepare a linear move in a dual X axis setup
  9411. */
  9412. inline bool prepare_move_to_destination_dualx() {
  9413. if (active_extruder_parked) {
  9414. switch (dual_x_carriage_mode) {
  9415. case DXC_FULL_CONTROL_MODE:
  9416. break;
  9417. case DXC_AUTO_PARK_MODE:
  9418. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9419. // This is a travel move (with no extrusion)
  9420. // Skip it, but keep track of the current position
  9421. // (so it can be used as the start of the next non-travel move)
  9422. if (delayed_move_time != 0xFFFFFFFFUL) {
  9423. set_current_to_destination();
  9424. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9425. delayed_move_time = millis();
  9426. return true;
  9427. }
  9428. }
  9429. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9430. for (uint8_t i = 0; i < 3; i++)
  9431. planner.buffer_line(
  9432. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9433. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9434. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9435. current_position[E_AXIS],
  9436. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9437. active_extruder
  9438. );
  9439. delayed_move_time = 0;
  9440. active_extruder_parked = false;
  9441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9442. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9443. #endif
  9444. break;
  9445. case DXC_DUPLICATION_MODE:
  9446. if (active_extruder == 0) {
  9447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9448. if (DEBUGGING(LEVELING)) {
  9449. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9450. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9451. }
  9452. #endif
  9453. // move duplicate extruder into correct duplication position.
  9454. planner.set_position_mm(
  9455. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9456. current_position[Y_AXIS],
  9457. current_position[Z_AXIS],
  9458. current_position[E_AXIS]
  9459. );
  9460. planner.buffer_line(
  9461. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9462. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9463. planner.max_feedrate_mm_s[X_AXIS], 1
  9464. );
  9465. SYNC_PLAN_POSITION_KINEMATIC();
  9466. stepper.synchronize();
  9467. extruder_duplication_enabled = true;
  9468. active_extruder_parked = false;
  9469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9470. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9471. #endif
  9472. }
  9473. else {
  9474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9475. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9476. #endif
  9477. }
  9478. break;
  9479. }
  9480. }
  9481. return false;
  9482. }
  9483. #endif // DUAL_X_CARRIAGE
  9484. /**
  9485. * Prepare a single move and get ready for the next one
  9486. *
  9487. * This may result in several calls to planner.buffer_line to
  9488. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9489. */
  9490. void prepare_move_to_destination() {
  9491. clamp_to_software_endstops(destination);
  9492. refresh_cmd_timeout();
  9493. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9494. if (!DEBUGGING(DRYRUN)) {
  9495. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9496. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9497. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9498. SERIAL_ECHO_START;
  9499. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9500. }
  9501. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9502. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9503. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9504. SERIAL_ECHO_START;
  9505. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9506. }
  9507. #endif
  9508. }
  9509. }
  9510. #endif
  9511. #if IS_KINEMATIC
  9512. if (prepare_kinematic_move_to(destination)) return;
  9513. #else
  9514. #if ENABLED(DUAL_X_CARRIAGE)
  9515. if (prepare_move_to_destination_dualx()) return;
  9516. #endif
  9517. if (prepare_move_to_destination_cartesian()) return;
  9518. #endif
  9519. set_current_to_destination();
  9520. }
  9521. #if ENABLED(ARC_SUPPORT)
  9522. /**
  9523. * Plan an arc in 2 dimensions
  9524. *
  9525. * The arc is approximated by generating many small linear segments.
  9526. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9527. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9528. * larger segments will tend to be more efficient. Your slicer should have
  9529. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9530. */
  9531. void plan_arc(
  9532. float logical[XYZE], // Destination position
  9533. float *offset, // Center of rotation relative to current_position
  9534. uint8_t clockwise // Clockwise?
  9535. ) {
  9536. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9537. r_Y = -offset[Y_AXIS];
  9538. const float radius = HYPOT(r_X, r_Y),
  9539. center_X = current_position[X_AXIS] - r_X,
  9540. center_Y = current_position[Y_AXIS] - r_Y,
  9541. rt_X = logical[X_AXIS] - center_X,
  9542. rt_Y = logical[Y_AXIS] - center_Y,
  9543. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9544. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9545. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9546. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9547. if (angular_travel < 0) angular_travel += RADIANS(360);
  9548. if (clockwise) angular_travel -= RADIANS(360);
  9549. // Make a circle if the angular rotation is 0
  9550. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9551. angular_travel += RADIANS(360);
  9552. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9553. if (mm_of_travel < 0.001) return;
  9554. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9555. if (segments == 0) segments = 1;
  9556. /**
  9557. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9558. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9559. * r_T = [cos(phi) -sin(phi);
  9560. * sin(phi) cos(phi)] * r ;
  9561. *
  9562. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9563. * defined from the circle center to the initial position. Each line segment is formed by successive
  9564. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9565. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9566. * all double numbers are single precision on the Arduino. (True double precision will not have
  9567. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9568. * tool precision in some cases. Therefore, arc path correction is implemented.
  9569. *
  9570. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9571. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9572. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9573. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9574. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9575. * issue for CNC machines with the single precision Arduino calculations.
  9576. *
  9577. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9578. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9579. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9580. * This is important when there are successive arc motions.
  9581. */
  9582. // Vector rotation matrix values
  9583. float arc_target[XYZE];
  9584. const float theta_per_segment = angular_travel / segments,
  9585. linear_per_segment = linear_travel / segments,
  9586. extruder_per_segment = extruder_travel / segments,
  9587. sin_T = theta_per_segment,
  9588. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9589. // Initialize the linear axis
  9590. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9591. // Initialize the extruder axis
  9592. arc_target[E_AXIS] = current_position[E_AXIS];
  9593. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9594. millis_t next_idle_ms = millis() + 200UL;
  9595. int8_t count = 0;
  9596. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9597. thermalManager.manage_heater();
  9598. if (ELAPSED(millis(), next_idle_ms)) {
  9599. next_idle_ms = millis() + 200UL;
  9600. idle();
  9601. }
  9602. if (++count < N_ARC_CORRECTION) {
  9603. // Apply vector rotation matrix to previous r_X / 1
  9604. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9605. r_X = r_X * cos_T - r_Y * sin_T;
  9606. r_Y = r_new_Y;
  9607. }
  9608. else {
  9609. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9610. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9611. // To reduce stuttering, the sin and cos could be computed at different times.
  9612. // For now, compute both at the same time.
  9613. const float cos_Ti = cos(i * theta_per_segment),
  9614. sin_Ti = sin(i * theta_per_segment);
  9615. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9616. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9617. count = 0;
  9618. }
  9619. // Update arc_target location
  9620. arc_target[X_AXIS] = center_X + r_X;
  9621. arc_target[Y_AXIS] = center_Y + r_Y;
  9622. arc_target[Z_AXIS] += linear_per_segment;
  9623. arc_target[E_AXIS] += extruder_per_segment;
  9624. clamp_to_software_endstops(arc_target);
  9625. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9626. }
  9627. // Ensure last segment arrives at target location.
  9628. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9629. // As far as the parser is concerned, the position is now == target. In reality the
  9630. // motion control system might still be processing the action and the real tool position
  9631. // in any intermediate location.
  9632. set_current_to_destination();
  9633. }
  9634. #endif
  9635. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9636. void plan_cubic_move(const float offset[4]) {
  9637. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9638. // As far as the parser is concerned, the position is now == destination. In reality the
  9639. // motion control system might still be processing the action and the real tool position
  9640. // in any intermediate location.
  9641. set_current_to_destination();
  9642. }
  9643. #endif // BEZIER_CURVE_SUPPORT
  9644. #if HAS_CONTROLLERFAN
  9645. void controllerFan() {
  9646. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9647. nextMotorCheck = 0; // Last time the state was checked
  9648. const millis_t ms = millis();
  9649. if (ELAPSED(ms, nextMotorCheck)) {
  9650. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9651. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9652. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9653. #if E_STEPPERS > 1
  9654. || E1_ENABLE_READ == E_ENABLE_ON
  9655. #if HAS_X2_ENABLE
  9656. || X2_ENABLE_READ == X_ENABLE_ON
  9657. #endif
  9658. #if E_STEPPERS > 2
  9659. || E2_ENABLE_READ == E_ENABLE_ON
  9660. #if E_STEPPERS > 3
  9661. || E3_ENABLE_READ == E_ENABLE_ON
  9662. #if E_STEPPERS > 4
  9663. || E4_ENABLE_READ == E_ENABLE_ON
  9664. #endif // E_STEPPERS > 4
  9665. #endif // E_STEPPERS > 3
  9666. #endif // E_STEPPERS > 2
  9667. #endif // E_STEPPERS > 1
  9668. ) {
  9669. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9670. }
  9671. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9672. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9673. // allows digital or PWM fan output to be used (see M42 handling)
  9674. WRITE(CONTROLLERFAN_PIN, speed);
  9675. analogWrite(CONTROLLERFAN_PIN, speed);
  9676. }
  9677. }
  9678. #endif // HAS_CONTROLLERFAN
  9679. #if ENABLED(MORGAN_SCARA)
  9680. /**
  9681. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9682. * Maths and first version by QHARLEY.
  9683. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9684. */
  9685. void forward_kinematics_SCARA(const float &a, const float &b) {
  9686. float a_sin = sin(RADIANS(a)) * L1,
  9687. a_cos = cos(RADIANS(a)) * L1,
  9688. b_sin = sin(RADIANS(b)) * L2,
  9689. b_cos = cos(RADIANS(b)) * L2;
  9690. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9691. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9692. /*
  9693. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9694. SERIAL_ECHOPAIR(" b=", b);
  9695. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9696. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9697. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9698. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9699. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9700. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9701. //*/
  9702. }
  9703. /**
  9704. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9705. *
  9706. * See http://forums.reprap.org/read.php?185,283327
  9707. *
  9708. * Maths and first version by QHARLEY.
  9709. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9710. */
  9711. void inverse_kinematics(const float logical[XYZ]) {
  9712. static float C2, S2, SK1, SK2, THETA, PSI;
  9713. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9714. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9715. if (L1 == L2)
  9716. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9717. else
  9718. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9719. S2 = sqrt(sq(C2) - 1);
  9720. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9721. SK1 = L1 + L2 * C2;
  9722. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9723. SK2 = L2 * S2;
  9724. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9725. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9726. // Angle of Arm2
  9727. PSI = atan2(S2, C2);
  9728. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9729. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9730. delta[C_AXIS] = logical[Z_AXIS];
  9731. /*
  9732. DEBUG_POS("SCARA IK", logical);
  9733. DEBUG_POS("SCARA IK", delta);
  9734. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9735. SERIAL_ECHOPAIR(",", sy);
  9736. SERIAL_ECHOPAIR(" C2=", C2);
  9737. SERIAL_ECHOPAIR(" S2=", S2);
  9738. SERIAL_ECHOPAIR(" Theta=", THETA);
  9739. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9740. //*/
  9741. }
  9742. #endif // MORGAN_SCARA
  9743. #if ENABLED(TEMP_STAT_LEDS)
  9744. static bool red_led = false;
  9745. static millis_t next_status_led_update_ms = 0;
  9746. void handle_status_leds(void) {
  9747. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9748. next_status_led_update_ms += 500; // Update every 0.5s
  9749. float max_temp = 0.0;
  9750. #if HAS_TEMP_BED
  9751. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9752. #endif
  9753. HOTEND_LOOP() {
  9754. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9755. }
  9756. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9757. if (new_led != red_led) {
  9758. red_led = new_led;
  9759. #if PIN_EXISTS(STAT_LED_RED)
  9760. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9761. #if PIN_EXISTS(STAT_LED_BLUE)
  9762. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9763. #endif
  9764. #else
  9765. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9766. #endif
  9767. }
  9768. }
  9769. }
  9770. #endif
  9771. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9772. void handle_filament_runout() {
  9773. if (!filament_ran_out) {
  9774. filament_ran_out = true;
  9775. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9776. stepper.synchronize();
  9777. }
  9778. }
  9779. #endif // FILAMENT_RUNOUT_SENSOR
  9780. #if ENABLED(FAST_PWM_FAN)
  9781. void setPwmFrequency(uint8_t pin, int val) {
  9782. val &= 0x07;
  9783. switch (digitalPinToTimer(pin)) {
  9784. #ifdef TCCR0A
  9785. case TIMER0A:
  9786. case TIMER0B:
  9787. //_SET_CS(0, val);
  9788. break;
  9789. #endif
  9790. #ifdef TCCR1A
  9791. case TIMER1A:
  9792. case TIMER1B:
  9793. //_SET_CS(1, val);
  9794. break;
  9795. #endif
  9796. #ifdef TCCR2
  9797. case TIMER2:
  9798. case TIMER2:
  9799. _SET_CS(2, val);
  9800. break;
  9801. #endif
  9802. #ifdef TCCR2A
  9803. case TIMER2A:
  9804. case TIMER2B:
  9805. _SET_CS(2, val);
  9806. break;
  9807. #endif
  9808. #ifdef TCCR3A
  9809. case TIMER3A:
  9810. case TIMER3B:
  9811. case TIMER3C:
  9812. _SET_CS(3, val);
  9813. break;
  9814. #endif
  9815. #ifdef TCCR4A
  9816. case TIMER4A:
  9817. case TIMER4B:
  9818. case TIMER4C:
  9819. _SET_CS(4, val);
  9820. break;
  9821. #endif
  9822. #ifdef TCCR5A
  9823. case TIMER5A:
  9824. case TIMER5B:
  9825. case TIMER5C:
  9826. _SET_CS(5, val);
  9827. break;
  9828. #endif
  9829. }
  9830. }
  9831. #endif // FAST_PWM_FAN
  9832. float calculate_volumetric_multiplier(float diameter) {
  9833. if (!volumetric_enabled || diameter == 0) return 1.0;
  9834. return 1.0 / (M_PI * sq(diameter * 0.5));
  9835. }
  9836. void calculate_volumetric_multipliers() {
  9837. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9838. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9839. }
  9840. void enable_all_steppers() {
  9841. enable_X();
  9842. enable_Y();
  9843. enable_Z();
  9844. enable_E0();
  9845. enable_E1();
  9846. enable_E2();
  9847. enable_E3();
  9848. enable_E4();
  9849. }
  9850. void disable_e_steppers() {
  9851. disable_E0();
  9852. disable_E1();
  9853. disable_E2();
  9854. disable_E3();
  9855. disable_E4();
  9856. }
  9857. void disable_all_steppers() {
  9858. disable_X();
  9859. disable_Y();
  9860. disable_Z();
  9861. disable_e_steppers();
  9862. }
  9863. #if ENABLED(HAVE_TMC2130)
  9864. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9865. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9866. const bool is_otpw = st.checkOT();
  9867. // Report if a warning was triggered
  9868. static bool previous_otpw = false;
  9869. if (is_otpw && !previous_otpw) {
  9870. char timestamp[10];
  9871. duration_t elapsed = print_job_timer.duration();
  9872. const bool has_days = (elapsed.value > 60*60*24L);
  9873. (void)elapsed.toDigital(timestamp, has_days);
  9874. SERIAL_ECHO(timestamp);
  9875. SERIAL_ECHO(": ");
  9876. SERIAL_ECHO(axisID);
  9877. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9878. }
  9879. previous_otpw = is_otpw;
  9880. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9881. // Return if user has not enabled current control start with M906 S1.
  9882. if (!auto_current_control) return;
  9883. /**
  9884. * Decrease current if is_otpw is true.
  9885. * Bail out if driver is disabled.
  9886. * Increase current if OTPW has not been triggered yet.
  9887. */
  9888. uint16_t current = st.getCurrent();
  9889. if (is_otpw) {
  9890. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9891. #if ENABLED(REPORT_CURRENT_CHANGE)
  9892. SERIAL_ECHO(axisID);
  9893. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9894. #endif
  9895. }
  9896. else if (!st.isEnabled())
  9897. return;
  9898. else if (!is_otpw && !st.getOTPW()) {
  9899. current += CURRENT_STEP;
  9900. if (current <= AUTO_ADJUST_MAX) {
  9901. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9902. #if ENABLED(REPORT_CURRENT_CHANGE)
  9903. SERIAL_ECHO(axisID);
  9904. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9905. #endif
  9906. }
  9907. }
  9908. SERIAL_EOL;
  9909. #endif
  9910. }
  9911. void checkOverTemp() {
  9912. static millis_t next_cOT = 0;
  9913. if (ELAPSED(millis(), next_cOT)) {
  9914. next_cOT = millis() + 5000;
  9915. #if ENABLED(X_IS_TMC2130)
  9916. automatic_current_control(stepperX, "X");
  9917. #endif
  9918. #if ENABLED(Y_IS_TMC2130)
  9919. automatic_current_control(stepperY, "Y");
  9920. #endif
  9921. #if ENABLED(Z_IS_TMC2130)
  9922. automatic_current_control(stepperZ, "Z");
  9923. #endif
  9924. #if ENABLED(X2_IS_TMC2130)
  9925. automatic_current_control(stepperX2, "X2");
  9926. #endif
  9927. #if ENABLED(Y2_IS_TMC2130)
  9928. automatic_current_control(stepperY2, "Y2");
  9929. #endif
  9930. #if ENABLED(Z2_IS_TMC2130)
  9931. automatic_current_control(stepperZ2, "Z2");
  9932. #endif
  9933. #if ENABLED(E0_IS_TMC2130)
  9934. automatic_current_control(stepperE0, "E0");
  9935. #endif
  9936. #if ENABLED(E1_IS_TMC2130)
  9937. automatic_current_control(stepperE1, "E1");
  9938. #endif
  9939. #if ENABLED(E2_IS_TMC2130)
  9940. automatic_current_control(stepperE2, "E2");
  9941. #endif
  9942. #if ENABLED(E3_IS_TMC2130)
  9943. automatic_current_control(stepperE3, "E3");
  9944. #endif
  9945. #if ENABLED(E4_IS_TMC2130)
  9946. automatic_current_control(stepperE4, "E4");
  9947. #endif
  9948. #if ENABLED(E4_IS_TMC2130)
  9949. automatic_current_control(stepperE4);
  9950. #endif
  9951. }
  9952. }
  9953. #endif // HAVE_TMC2130
  9954. /**
  9955. * Manage several activities:
  9956. * - Check for Filament Runout
  9957. * - Keep the command buffer full
  9958. * - Check for maximum inactive time between commands
  9959. * - Check for maximum inactive time between stepper commands
  9960. * - Check if pin CHDK needs to go LOW
  9961. * - Check for KILL button held down
  9962. * - Check for HOME button held down
  9963. * - Check if cooling fan needs to be switched on
  9964. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9965. */
  9966. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9967. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9968. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9969. handle_filament_runout();
  9970. #endif
  9971. if (commands_in_queue < BUFSIZE) get_available_commands();
  9972. const millis_t ms = millis();
  9973. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9974. SERIAL_ERROR_START;
  9975. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9976. kill(PSTR(MSG_KILLED));
  9977. }
  9978. // Prevent steppers timing-out in the middle of M600
  9979. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9980. #define M600_TEST !busy_doing_M600
  9981. #else
  9982. #define M600_TEST true
  9983. #endif
  9984. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9985. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9986. #if ENABLED(DISABLE_INACTIVE_X)
  9987. disable_X();
  9988. #endif
  9989. #if ENABLED(DISABLE_INACTIVE_Y)
  9990. disable_Y();
  9991. #endif
  9992. #if ENABLED(DISABLE_INACTIVE_Z)
  9993. disable_Z();
  9994. #endif
  9995. #if ENABLED(DISABLE_INACTIVE_E)
  9996. disable_e_steppers();
  9997. #endif
  9998. }
  9999. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10000. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10001. chdkActive = false;
  10002. WRITE(CHDK, LOW);
  10003. }
  10004. #endif
  10005. #if HAS_KILL
  10006. // Check if the kill button was pressed and wait just in case it was an accidental
  10007. // key kill key press
  10008. // -------------------------------------------------------------------------------
  10009. static int killCount = 0; // make the inactivity button a bit less responsive
  10010. const int KILL_DELAY = 750;
  10011. if (!READ(KILL_PIN))
  10012. killCount++;
  10013. else if (killCount > 0)
  10014. killCount--;
  10015. // Exceeded threshold and we can confirm that it was not accidental
  10016. // KILL the machine
  10017. // ----------------------------------------------------------------
  10018. if (killCount >= KILL_DELAY) {
  10019. SERIAL_ERROR_START;
  10020. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10021. kill(PSTR(MSG_KILLED));
  10022. }
  10023. #endif
  10024. #if HAS_HOME
  10025. // Check to see if we have to home, use poor man's debouncer
  10026. // ---------------------------------------------------------
  10027. static int homeDebounceCount = 0; // poor man's debouncing count
  10028. const int HOME_DEBOUNCE_DELAY = 2500;
  10029. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10030. if (!homeDebounceCount) {
  10031. enqueue_and_echo_commands_P(PSTR("G28"));
  10032. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10033. }
  10034. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10035. homeDebounceCount++;
  10036. else
  10037. homeDebounceCount = 0;
  10038. }
  10039. #endif
  10040. #if HAS_CONTROLLERFAN
  10041. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10042. #endif
  10043. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10044. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10045. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10046. bool oldstatus;
  10047. #if ENABLED(SWITCHING_EXTRUDER)
  10048. oldstatus = E0_ENABLE_READ;
  10049. enable_E0();
  10050. #else // !SWITCHING_EXTRUDER
  10051. switch (active_extruder) {
  10052. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10053. #if E_STEPPERS > 1
  10054. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10055. #if E_STEPPERS > 2
  10056. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10057. #if E_STEPPERS > 3
  10058. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10059. #if E_STEPPERS > 4
  10060. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10061. #endif // E_STEPPERS > 4
  10062. #endif // E_STEPPERS > 3
  10063. #endif // E_STEPPERS > 2
  10064. #endif // E_STEPPERS > 1
  10065. }
  10066. #endif // !SWITCHING_EXTRUDER
  10067. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10068. const float olde = current_position[E_AXIS];
  10069. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10070. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10071. current_position[E_AXIS] = olde;
  10072. planner.set_e_position_mm(olde);
  10073. stepper.synchronize();
  10074. #if ENABLED(SWITCHING_EXTRUDER)
  10075. E0_ENABLE_WRITE(oldstatus);
  10076. #else
  10077. switch (active_extruder) {
  10078. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10079. #if E_STEPPERS > 1
  10080. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10081. #if E_STEPPERS > 2
  10082. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10083. #if E_STEPPERS > 3
  10084. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10085. #if E_STEPPERS > 4
  10086. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10087. #endif // E_STEPPERS > 4
  10088. #endif // E_STEPPERS > 3
  10089. #endif // E_STEPPERS > 2
  10090. #endif // E_STEPPERS > 1
  10091. }
  10092. #endif // !SWITCHING_EXTRUDER
  10093. }
  10094. #endif // EXTRUDER_RUNOUT_PREVENT
  10095. #if ENABLED(DUAL_X_CARRIAGE)
  10096. // handle delayed move timeout
  10097. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10098. // travel moves have been received so enact them
  10099. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10100. set_destination_to_current();
  10101. prepare_move_to_destination();
  10102. }
  10103. #endif
  10104. #if ENABLED(TEMP_STAT_LEDS)
  10105. handle_status_leds();
  10106. #endif
  10107. #if ENABLED(HAVE_TMC2130)
  10108. checkOverTemp();
  10109. #endif
  10110. planner.check_axes_activity();
  10111. }
  10112. /**
  10113. * Standard idle routine keeps the machine alive
  10114. */
  10115. void idle(
  10116. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10117. bool no_stepper_sleep/*=false*/
  10118. #endif
  10119. ) {
  10120. lcd_update();
  10121. host_keepalive();
  10122. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10123. auto_report_temperatures();
  10124. #endif
  10125. manage_inactivity(
  10126. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10127. no_stepper_sleep
  10128. #endif
  10129. );
  10130. thermalManager.manage_heater();
  10131. #if ENABLED(PRINTCOUNTER)
  10132. print_job_timer.tick();
  10133. #endif
  10134. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10135. buzzer.tick();
  10136. #endif
  10137. }
  10138. /**
  10139. * Kill all activity and lock the machine.
  10140. * After this the machine will need to be reset.
  10141. */
  10142. void kill(const char* lcd_msg) {
  10143. SERIAL_ERROR_START;
  10144. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10145. thermalManager.disable_all_heaters();
  10146. disable_all_steppers();
  10147. #if ENABLED(ULTRA_LCD)
  10148. kill_screen(lcd_msg);
  10149. #else
  10150. UNUSED(lcd_msg);
  10151. #endif
  10152. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10153. cli(); // Stop interrupts
  10154. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10155. thermalManager.disable_all_heaters(); //turn off heaters again
  10156. #if HAS_POWER_SWITCH
  10157. SET_INPUT(PS_ON_PIN);
  10158. #endif
  10159. suicide();
  10160. while (1) {
  10161. #if ENABLED(USE_WATCHDOG)
  10162. watchdog_reset();
  10163. #endif
  10164. } // Wait for reset
  10165. }
  10166. /**
  10167. * Turn off heaters and stop the print in progress
  10168. * After a stop the machine may be resumed with M999
  10169. */
  10170. void stop() {
  10171. thermalManager.disable_all_heaters();
  10172. if (IsRunning()) {
  10173. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10174. SERIAL_ERROR_START;
  10175. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10176. LCD_MESSAGEPGM(MSG_STOPPED);
  10177. safe_delay(350); // allow enough time for messages to get out before stopping
  10178. Running = false;
  10179. }
  10180. }
  10181. /**
  10182. * Marlin entry-point: Set up before the program loop
  10183. * - Set up the kill pin, filament runout, power hold
  10184. * - Start the serial port
  10185. * - Print startup messages and diagnostics
  10186. * - Get EEPROM or default settings
  10187. * - Initialize managers for:
  10188. * • temperature
  10189. * • planner
  10190. * • watchdog
  10191. * • stepper
  10192. * • photo pin
  10193. * • servos
  10194. * • LCD controller
  10195. * • Digipot I2C
  10196. * • Z probe sled
  10197. * • status LEDs
  10198. */
  10199. void setup() {
  10200. #ifdef DISABLE_JTAG
  10201. // Disable JTAG on AT90USB chips to free up pins for IO
  10202. MCUCR = 0x80;
  10203. MCUCR = 0x80;
  10204. #endif
  10205. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10206. setup_filrunoutpin();
  10207. #endif
  10208. setup_killpin();
  10209. setup_powerhold();
  10210. #if HAS_STEPPER_RESET
  10211. disableStepperDrivers();
  10212. #endif
  10213. MYSERIAL.begin(BAUDRATE);
  10214. SERIAL_PROTOCOLLNPGM("start");
  10215. SERIAL_ECHO_START;
  10216. // Check startup - does nothing if bootloader sets MCUSR to 0
  10217. byte mcu = MCUSR;
  10218. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10219. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10220. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10221. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10222. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10223. MCUSR = 0;
  10224. SERIAL_ECHOPGM(MSG_MARLIN);
  10225. SERIAL_CHAR(' ');
  10226. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10227. SERIAL_EOL;
  10228. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10229. SERIAL_ECHO_START;
  10230. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10231. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10232. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10233. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10234. #endif
  10235. SERIAL_ECHO_START;
  10236. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10237. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10238. // Send "ok" after commands by default
  10239. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10240. // Load data from EEPROM if available (or use defaults)
  10241. // This also updates variables in the planner, elsewhere
  10242. (void)settings.load();
  10243. #if HAS_M206_COMMAND
  10244. // Initialize current position based on home_offset
  10245. COPY(current_position, home_offset);
  10246. #else
  10247. ZERO(current_position);
  10248. #endif
  10249. // Vital to init stepper/planner equivalent for current_position
  10250. SYNC_PLAN_POSITION_KINEMATIC();
  10251. thermalManager.init(); // Initialize temperature loop
  10252. #if ENABLED(USE_WATCHDOG)
  10253. watchdog_init();
  10254. #endif
  10255. stepper.init(); // Initialize stepper, this enables interrupts!
  10256. servo_init();
  10257. #if HAS_PHOTOGRAPH
  10258. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10259. #endif
  10260. #if HAS_CASE_LIGHT
  10261. update_case_light();
  10262. #endif
  10263. #if HAS_BED_PROBE
  10264. endstops.enable_z_probe(false);
  10265. #endif
  10266. #if HAS_CONTROLLERFAN
  10267. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10268. #endif
  10269. #if HAS_STEPPER_RESET
  10270. enableStepperDrivers();
  10271. #endif
  10272. #if ENABLED(DIGIPOT_I2C)
  10273. digipot_i2c_init();
  10274. #endif
  10275. #if ENABLED(DAC_STEPPER_CURRENT)
  10276. dac_init();
  10277. #endif
  10278. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10279. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10280. #endif
  10281. setup_homepin();
  10282. #if PIN_EXISTS(STAT_LED_RED)
  10283. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10284. #endif
  10285. #if PIN_EXISTS(STAT_LED_BLUE)
  10286. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10287. #endif
  10288. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10289. SET_OUTPUT(RGB_LED_R_PIN);
  10290. SET_OUTPUT(RGB_LED_G_PIN);
  10291. SET_OUTPUT(RGB_LED_B_PIN);
  10292. #if ENABLED(RGBW_LED)
  10293. SET_OUTPUT(RGB_LED_W_PIN);
  10294. #endif
  10295. #endif
  10296. lcd_init();
  10297. #if ENABLED(SHOW_BOOTSCREEN)
  10298. #if ENABLED(DOGLCD)
  10299. safe_delay(BOOTSCREEN_TIMEOUT);
  10300. #elif ENABLED(ULTRA_LCD)
  10301. bootscreen();
  10302. #if DISABLED(SDSUPPORT)
  10303. lcd_init();
  10304. #endif
  10305. #endif
  10306. #endif
  10307. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10308. // Initialize mixing to 100% color 1
  10309. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10310. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10311. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10312. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10313. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10314. #endif
  10315. #if ENABLED(BLTOUCH)
  10316. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10317. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10318. set_bltouch_deployed(false); // error condition.
  10319. #endif
  10320. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10321. i2c.onReceive(i2c_on_receive);
  10322. i2c.onRequest(i2c_on_request);
  10323. #endif
  10324. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10325. setup_endstop_interrupts();
  10326. #endif
  10327. }
  10328. /**
  10329. * The main Marlin program loop
  10330. *
  10331. * - Save or log commands to SD
  10332. * - Process available commands (if not saving)
  10333. * - Call heater manager
  10334. * - Call inactivity manager
  10335. * - Call endstop manager
  10336. * - Call LCD update
  10337. */
  10338. void loop() {
  10339. if (commands_in_queue < BUFSIZE) get_available_commands();
  10340. #if ENABLED(SDSUPPORT)
  10341. card.checkautostart(false);
  10342. #endif
  10343. if (commands_in_queue) {
  10344. #if ENABLED(SDSUPPORT)
  10345. if (card.saving) {
  10346. char* command = command_queue[cmd_queue_index_r];
  10347. if (strstr_P(command, PSTR("M29"))) {
  10348. // M29 closes the file
  10349. card.closefile();
  10350. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10351. ok_to_send();
  10352. }
  10353. else {
  10354. // Write the string from the read buffer to SD
  10355. card.write_command(command);
  10356. if (card.logging)
  10357. process_next_command(); // The card is saving because it's logging
  10358. else
  10359. ok_to_send();
  10360. }
  10361. }
  10362. else
  10363. process_next_command();
  10364. #else
  10365. process_next_command();
  10366. #endif // SDSUPPORT
  10367. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10368. if (commands_in_queue) {
  10369. --commands_in_queue;
  10370. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10371. }
  10372. }
  10373. endstops.report_state();
  10374. idle();
  10375. }