My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 131KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M500 - stores parameters in EEPROM
  145. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  146. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  147. // M503 - print the current settings (from memory not from EEPROM)
  148. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  149. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  150. // M665 - set delta configurations
  151. // M666 - set delta endstop adjustment
  152. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  153. // M907 - Set digital trimpot motor current using axis codes.
  154. // M908 - Control digital trimpot directly.
  155. // M350 - Set microstepping mode.
  156. // M351 - Toggle MS1 MS2 pins directly.
  157. // M928 - Start SD logging (M928 filename.g) - ended by M29
  158. // M999 - Restart after being stopped by error
  159. //Stepper Movement Variables
  160. //===========================================================================
  161. //=============================imported variables============================
  162. //===========================================================================
  163. //===========================================================================
  164. //=============================public variables=============================
  165. //===========================================================================
  166. #ifdef SDSUPPORT
  167. CardReader card;
  168. #endif
  169. float homing_feedrate[] = HOMING_FEEDRATE;
  170. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  171. int feedmultiply=100; //100->1 200->2
  172. int saved_feedmultiply;
  173. int extrudemultiply=100; //100->1 200->2
  174. int extruder_multiply[EXTRUDERS] = {100
  175. #if EXTRUDERS > 1
  176. , 100
  177. #if EXTRUDERS > 2
  178. , 100
  179. #endif
  180. #endif
  181. };
  182. float volumetric_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. float add_homeing[3]={0,0,0};
  192. #ifdef DELTA
  193. float endstop_adj[3]={0,0,0};
  194. #endif
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. float zprobe_zoffset;
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #ifndef DUAL_X_CARRIAGE
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. #else
  204. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  205. #endif
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef SERVO_ENDSTOPS
  215. int servo_endstops[] = SERVO_ENDSTOPS;
  216. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  217. #endif
  218. #ifdef BARICUDA
  219. int ValvePressure=0;
  220. int EtoPPressure=0;
  221. #endif
  222. #ifdef FWRETRACT
  223. bool autoretract_enabled=false;
  224. bool retracted[EXTRUDERS]={false
  225. #if EXTRUDERS > 1
  226. , false
  227. #if EXTRUDERS > 2
  228. , false
  229. #endif
  230. #endif
  231. };
  232. bool retracted_swap[EXTRUDERS]={false
  233. #if EXTRUDERS > 1
  234. , false
  235. #if EXTRUDERS > 2
  236. , false
  237. #endif
  238. #endif
  239. };
  240. float retract_length = RETRACT_LENGTH;
  241. float retract_length_swap = RETRACT_LENGTH_SWAP;
  242. float retract_feedrate = RETRACT_FEEDRATE;
  243. float retract_zlift = RETRACT_ZLIFT;
  244. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  245. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  246. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  247. #endif
  248. #ifdef ULTIPANEL
  249. #ifdef PS_DEFAULT_OFF
  250. bool powersupply = false;
  251. #else
  252. bool powersupply = true;
  253. #endif
  254. #endif
  255. #ifdef DELTA
  256. float delta[3] = {0.0, 0.0, 0.0};
  257. #define SIN_60 0.8660254037844386
  258. #define COS_60 0.5
  259. // these are the default values, can be overriden with M665
  260. float delta_radius= DELTA_RADIUS;
  261. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  262. float delta_tower1_y= -COS_60*delta_radius;
  263. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  264. float delta_tower2_y= -COS_60*delta_radius;
  265. float delta_tower3_x= 0.0; // back middle tower
  266. float delta_tower3_y= delta_radius;
  267. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  268. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  269. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  270. #endif
  271. bool cancel_heatup = false ;
  272. //===========================================================================
  273. //=============================Private Variables=============================
  274. //===========================================================================
  275. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  276. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  277. static float offset[3] = {0.0, 0.0, 0.0};
  278. static bool home_all_axis = true;
  279. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  280. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  281. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  282. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  283. static bool fromsd[BUFSIZE];
  284. static int bufindr = 0;
  285. static int bufindw = 0;
  286. static int buflen = 0;
  287. //static int i = 0;
  288. static char serial_char;
  289. static int serial_count = 0;
  290. static boolean comment_mode = false;
  291. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  292. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  293. //static float tt = 0;
  294. //static float bt = 0;
  295. //Inactivity shutdown variables
  296. static unsigned long previous_millis_cmd = 0;
  297. static unsigned long max_inactive_time = 0;
  298. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  299. unsigned long starttime=0;
  300. unsigned long stoptime=0;
  301. static uint8_t tmp_extruder;
  302. bool Stopped=false;
  303. #if NUM_SERVOS > 0
  304. Servo servos[NUM_SERVOS];
  305. #endif
  306. bool CooldownNoWait = true;
  307. bool target_direction;
  308. //Insert variables if CHDK is defined
  309. #ifdef CHDK
  310. unsigned long chdkHigh = 0;
  311. boolean chdkActive = false;
  312. #endif
  313. //===========================================================================
  314. //=============================Routines======================================
  315. //===========================================================================
  316. void get_arc_coordinates();
  317. bool setTargetedHotend(int code);
  318. void serial_echopair_P(const char *s_P, float v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. void serial_echopair_P(const char *s_P, double v)
  321. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  322. void serial_echopair_P(const char *s_P, unsigned long v)
  323. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  324. extern "C"{
  325. extern unsigned int __bss_end;
  326. extern unsigned int __heap_start;
  327. extern void *__brkval;
  328. int freeMemory() {
  329. int free_memory;
  330. if((int)__brkval == 0)
  331. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  332. else
  333. free_memory = ((int)&free_memory) - ((int)__brkval);
  334. return free_memory;
  335. }
  336. }
  337. //adds an command to the main command buffer
  338. //thats really done in a non-safe way.
  339. //needs overworking someday
  340. void enquecommand(const char *cmd)
  341. {
  342. if(buflen < BUFSIZE)
  343. {
  344. //this is dangerous if a mixing of serial and this happens
  345. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  346. SERIAL_ECHO_START;
  347. SERIAL_ECHOPGM("enqueing \"");
  348. SERIAL_ECHO(cmdbuffer[bufindw]);
  349. SERIAL_ECHOLNPGM("\"");
  350. bufindw= (bufindw + 1)%BUFSIZE;
  351. buflen += 1;
  352. }
  353. }
  354. void enquecommand_P(const char *cmd)
  355. {
  356. if(buflen < BUFSIZE)
  357. {
  358. //this is dangerous if a mixing of serial and this happens
  359. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  360. SERIAL_ECHO_START;
  361. SERIAL_ECHOPGM("enqueing \"");
  362. SERIAL_ECHO(cmdbuffer[bufindw]);
  363. SERIAL_ECHOLNPGM("\"");
  364. bufindw= (bufindw + 1)%BUFSIZE;
  365. buflen += 1;
  366. }
  367. }
  368. void setup_killpin()
  369. {
  370. #if defined(KILL_PIN) && KILL_PIN > -1
  371. pinMode(KILL_PIN,INPUT);
  372. WRITE(KILL_PIN,HIGH);
  373. #endif
  374. }
  375. void setup_photpin()
  376. {
  377. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  378. SET_OUTPUT(PHOTOGRAPH_PIN);
  379. WRITE(PHOTOGRAPH_PIN, LOW);
  380. #endif
  381. }
  382. void setup_powerhold()
  383. {
  384. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  385. SET_OUTPUT(SUICIDE_PIN);
  386. WRITE(SUICIDE_PIN, HIGH);
  387. #endif
  388. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  389. SET_OUTPUT(PS_ON_PIN);
  390. #if defined(PS_DEFAULT_OFF)
  391. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  392. #else
  393. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  394. #endif
  395. #endif
  396. }
  397. void suicide()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, LOW);
  402. #endif
  403. }
  404. void servo_init()
  405. {
  406. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  407. servos[0].attach(SERVO0_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  410. servos[1].attach(SERVO1_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  413. servos[2].attach(SERVO2_PIN);
  414. #endif
  415. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  416. servos[3].attach(SERVO3_PIN);
  417. #endif
  418. #if (NUM_SERVOS >= 5)
  419. #error "TODO: enter initalisation code for more servos"
  420. #endif
  421. // Set position of Servo Endstops that are defined
  422. #ifdef SERVO_ENDSTOPS
  423. for(int8_t i = 0; i < 3; i++)
  424. {
  425. if(servo_endstops[i] > -1) {
  426. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  427. }
  428. }
  429. #endif
  430. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  431. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  432. servos[servo_endstops[Z_AXIS]].detach();
  433. #endif
  434. }
  435. void setup()
  436. {
  437. setup_killpin();
  438. setup_powerhold();
  439. MYSERIAL.begin(BAUDRATE);
  440. SERIAL_PROTOCOLLNPGM("start");
  441. SERIAL_ECHO_START;
  442. // Check startup - does nothing if bootloader sets MCUSR to 0
  443. byte mcu = MCUSR;
  444. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  445. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  446. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  447. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  448. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  449. MCUSR=0;
  450. SERIAL_ECHOPGM(MSG_MARLIN);
  451. SERIAL_ECHOLNPGM(VERSION_STRING);
  452. #ifdef STRING_VERSION_CONFIG_H
  453. #ifdef STRING_CONFIG_H_AUTHOR
  454. SERIAL_ECHO_START;
  455. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  456. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  457. SERIAL_ECHOPGM(MSG_AUTHOR);
  458. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  459. SERIAL_ECHOPGM("Compiled: ");
  460. SERIAL_ECHOLNPGM(__DATE__);
  461. #endif
  462. #endif
  463. SERIAL_ECHO_START;
  464. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  465. SERIAL_ECHO(freeMemory());
  466. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  467. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  468. for(int8_t i = 0; i < BUFSIZE; i++)
  469. {
  470. fromsd[i] = false;
  471. }
  472. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  473. Config_RetrieveSettings();
  474. tp_init(); // Initialize temperature loop
  475. plan_init(); // Initialize planner;
  476. watchdog_init();
  477. st_init(); // Initialize stepper, this enables interrupts!
  478. setup_photpin();
  479. servo_init();
  480. lcd_init();
  481. _delay_ms(1000); // wait 1sec to display the splash screen
  482. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  483. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  484. #endif
  485. #ifdef DIGIPOT_I2C
  486. digipot_i2c_init();
  487. #endif
  488. }
  489. void loop()
  490. {
  491. if(buflen < (BUFSIZE-1))
  492. get_command();
  493. #ifdef SDSUPPORT
  494. card.checkautostart(false);
  495. #endif
  496. if(buflen)
  497. {
  498. #ifdef SDSUPPORT
  499. if(card.saving)
  500. {
  501. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  502. {
  503. card.write_command(cmdbuffer[bufindr]);
  504. if(card.logging)
  505. {
  506. process_commands();
  507. }
  508. else
  509. {
  510. SERIAL_PROTOCOLLNPGM(MSG_OK);
  511. }
  512. }
  513. else
  514. {
  515. card.closefile();
  516. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  517. }
  518. }
  519. else
  520. {
  521. process_commands();
  522. }
  523. #else
  524. process_commands();
  525. #endif //SDSUPPORT
  526. buflen = (buflen-1);
  527. bufindr = (bufindr + 1)%BUFSIZE;
  528. }
  529. //check heater every n milliseconds
  530. manage_heater();
  531. manage_inactivity();
  532. checkHitEndstops();
  533. lcd_update();
  534. }
  535. void get_command()
  536. {
  537. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  538. serial_char = MYSERIAL.read();
  539. if(serial_char == '\n' ||
  540. serial_char == '\r' ||
  541. (serial_char == ':' && comment_mode == false) ||
  542. serial_count >= (MAX_CMD_SIZE - 1) )
  543. {
  544. if(!serial_count) { //if empty line
  545. comment_mode = false; //for new command
  546. return;
  547. }
  548. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  549. if(!comment_mode){
  550. comment_mode = false; //for new command
  551. fromsd[bufindw] = false;
  552. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  553. {
  554. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  555. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  556. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  557. SERIAL_ERROR_START;
  558. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  559. SERIAL_ERRORLN(gcode_LastN);
  560. //Serial.println(gcode_N);
  561. FlushSerialRequestResend();
  562. serial_count = 0;
  563. return;
  564. }
  565. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  566. {
  567. byte checksum = 0;
  568. byte count = 0;
  569. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  570. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  571. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  572. SERIAL_ERROR_START;
  573. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  574. SERIAL_ERRORLN(gcode_LastN);
  575. FlushSerialRequestResend();
  576. serial_count = 0;
  577. return;
  578. }
  579. //if no errors, continue parsing
  580. }
  581. else
  582. {
  583. SERIAL_ERROR_START;
  584. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  585. SERIAL_ERRORLN(gcode_LastN);
  586. FlushSerialRequestResend();
  587. serial_count = 0;
  588. return;
  589. }
  590. gcode_LastN = gcode_N;
  591. //if no errors, continue parsing
  592. }
  593. else // if we don't receive 'N' but still see '*'
  594. {
  595. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  596. {
  597. SERIAL_ERROR_START;
  598. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  599. SERIAL_ERRORLN(gcode_LastN);
  600. serial_count = 0;
  601. return;
  602. }
  603. }
  604. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  605. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  606. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  607. case 0:
  608. case 1:
  609. case 2:
  610. case 3:
  611. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  612. #ifdef SDSUPPORT
  613. if(card.saving)
  614. break;
  615. #endif //SDSUPPORT
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. else {
  619. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  620. LCD_MESSAGEPGM(MSG_STOPPED);
  621. }
  622. break;
  623. default:
  624. break;
  625. }
  626. }
  627. //If command was e-stop process now
  628. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  629. kill();
  630. bufindw = (bufindw + 1)%BUFSIZE;
  631. buflen += 1;
  632. }
  633. serial_count = 0; //clear buffer
  634. }
  635. else
  636. {
  637. if(serial_char == ';') comment_mode = true;
  638. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  639. }
  640. }
  641. #ifdef SDSUPPORT
  642. if(!card.sdprinting || serial_count!=0){
  643. return;
  644. }
  645. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  646. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  647. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  648. static bool stop_buffering=false;
  649. if(buflen==0) stop_buffering=false;
  650. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  651. int16_t n=card.get();
  652. serial_char = (char)n;
  653. if(serial_char == '\n' ||
  654. serial_char == '\r' ||
  655. (serial_char == '#' && comment_mode == false) ||
  656. (serial_char == ':' && comment_mode == false) ||
  657. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  658. {
  659. if(card.eof()){
  660. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  661. stoptime=millis();
  662. char time[30];
  663. unsigned long t=(stoptime-starttime)/1000;
  664. int hours, minutes;
  665. minutes=(t/60)%60;
  666. hours=t/60/60;
  667. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  668. SERIAL_ECHO_START;
  669. SERIAL_ECHOLN(time);
  670. lcd_setstatus(time);
  671. card.printingHasFinished();
  672. card.checkautostart(true);
  673. }
  674. if(serial_char=='#')
  675. stop_buffering=true;
  676. if(!serial_count)
  677. {
  678. comment_mode = false; //for new command
  679. return; //if empty line
  680. }
  681. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  682. // if(!comment_mode){
  683. fromsd[bufindw] = true;
  684. buflen += 1;
  685. bufindw = (bufindw + 1)%BUFSIZE;
  686. // }
  687. comment_mode = false; //for new command
  688. serial_count = 0; //clear buffer
  689. }
  690. else
  691. {
  692. if(serial_char == ';') comment_mode = true;
  693. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  694. }
  695. }
  696. #endif //SDSUPPORT
  697. }
  698. float code_value()
  699. {
  700. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  701. }
  702. long code_value_long()
  703. {
  704. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  705. }
  706. bool code_seen(char code)
  707. {
  708. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  709. return (strchr_pointer != NULL); //Return True if a character was found
  710. }
  711. #define DEFINE_PGM_READ_ANY(type, reader) \
  712. static inline type pgm_read_any(const type *p) \
  713. { return pgm_read_##reader##_near(p); }
  714. DEFINE_PGM_READ_ANY(float, float);
  715. DEFINE_PGM_READ_ANY(signed char, byte);
  716. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  717. static const PROGMEM type array##_P[3] = \
  718. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  719. static inline type array(int axis) \
  720. { return pgm_read_any(&array##_P[axis]); }
  721. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  722. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  723. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  724. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  725. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  726. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  727. #ifdef DUAL_X_CARRIAGE
  728. #if EXTRUDERS == 1 || defined(COREXY) \
  729. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  730. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  731. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  732. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  733. #endif
  734. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  735. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  736. #endif
  737. #define DXC_FULL_CONTROL_MODE 0
  738. #define DXC_AUTO_PARK_MODE 1
  739. #define DXC_DUPLICATION_MODE 2
  740. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  741. static float x_home_pos(int extruder) {
  742. if (extruder == 0)
  743. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  744. else
  745. // In dual carriage mode the extruder offset provides an override of the
  746. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  747. // This allow soft recalibration of the second extruder offset position without firmware reflash
  748. // (through the M218 command).
  749. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  750. }
  751. static int x_home_dir(int extruder) {
  752. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  753. }
  754. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  755. static bool active_extruder_parked = false; // used in mode 1 & 2
  756. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  757. static unsigned long delayed_move_time = 0; // used in mode 1
  758. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  759. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  760. bool extruder_duplication_enabled = false; // used in mode 2
  761. #endif //DUAL_X_CARRIAGE
  762. static void axis_is_at_home(int axis) {
  763. #ifdef DUAL_X_CARRIAGE
  764. if (axis == X_AXIS) {
  765. if (active_extruder != 0) {
  766. current_position[X_AXIS] = x_home_pos(active_extruder);
  767. min_pos[X_AXIS] = X2_MIN_POS;
  768. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  769. return;
  770. }
  771. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  772. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  773. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  774. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  775. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  776. return;
  777. }
  778. }
  779. #endif
  780. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  781. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  782. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  783. }
  784. #ifdef ENABLE_AUTO_BED_LEVELING
  785. #ifdef AUTO_BED_LEVELING_GRID
  786. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  787. {
  788. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  789. planeNormal.debug("planeNormal");
  790. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  791. //bedLevel.debug("bedLevel");
  792. //plan_bed_level_matrix.debug("bed level before");
  793. //vector_3 uncorrected_position = plan_get_position_mm();
  794. //uncorrected_position.debug("position before");
  795. vector_3 corrected_position = plan_get_position();
  796. // corrected_position.debug("position after");
  797. current_position[X_AXIS] = corrected_position.x;
  798. current_position[Y_AXIS] = corrected_position.y;
  799. current_position[Z_AXIS] = corrected_position.z;
  800. // put the bed at 0 so we don't go below it.
  801. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  803. }
  804. #else // not AUTO_BED_LEVELING_GRID
  805. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  806. plan_bed_level_matrix.set_to_identity();
  807. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  808. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  809. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  810. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  811. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  812. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  813. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  814. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  815. vector_3 corrected_position = plan_get_position();
  816. current_position[X_AXIS] = corrected_position.x;
  817. current_position[Y_AXIS] = corrected_position.y;
  818. current_position[Z_AXIS] = corrected_position.z;
  819. // put the bed at 0 so we don't go below it.
  820. current_position[Z_AXIS] = zprobe_zoffset;
  821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  822. }
  823. #endif // AUTO_BED_LEVELING_GRID
  824. static void run_z_probe() {
  825. plan_bed_level_matrix.set_to_identity();
  826. feedrate = homing_feedrate[Z_AXIS];
  827. // move down until you find the bed
  828. float zPosition = -10;
  829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  830. st_synchronize();
  831. // we have to let the planner know where we are right now as it is not where we said to go.
  832. zPosition = st_get_position_mm(Z_AXIS);
  833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  834. // move up the retract distance
  835. zPosition += home_retract_mm(Z_AXIS);
  836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  837. st_synchronize();
  838. // move back down slowly to find bed
  839. feedrate = homing_feedrate[Z_AXIS]/4;
  840. zPosition -= home_retract_mm(Z_AXIS) * 2;
  841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  842. st_synchronize();
  843. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  844. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  846. }
  847. static void do_blocking_move_to(float x, float y, float z) {
  848. float oldFeedRate = feedrate;
  849. feedrate = XY_TRAVEL_SPEED;
  850. current_position[X_AXIS] = x;
  851. current_position[Y_AXIS] = y;
  852. current_position[Z_AXIS] = z;
  853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  854. st_synchronize();
  855. feedrate = oldFeedRate;
  856. }
  857. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  858. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  859. }
  860. static void setup_for_endstop_move() {
  861. saved_feedrate = feedrate;
  862. saved_feedmultiply = feedmultiply;
  863. feedmultiply = 100;
  864. previous_millis_cmd = millis();
  865. enable_endstops(true);
  866. }
  867. static void clean_up_after_endstop_move() {
  868. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  869. enable_endstops(false);
  870. #endif
  871. feedrate = saved_feedrate;
  872. feedmultiply = saved_feedmultiply;
  873. previous_millis_cmd = millis();
  874. }
  875. static void engage_z_probe() {
  876. // Engage Z Servo endstop if enabled
  877. #ifdef SERVO_ENDSTOPS
  878. if (servo_endstops[Z_AXIS] > -1) {
  879. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  880. servos[servo_endstops[Z_AXIS]].attach(0);
  881. #endif
  882. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  883. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  884. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  885. servos[servo_endstops[Z_AXIS]].detach();
  886. #endif
  887. }
  888. #endif
  889. }
  890. static void retract_z_probe() {
  891. // Retract Z Servo endstop if enabled
  892. #ifdef SERVO_ENDSTOPS
  893. if (servo_endstops[Z_AXIS] > -1) {
  894. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  895. servos[servo_endstops[Z_AXIS]].attach(0);
  896. #endif
  897. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  898. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  899. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  900. servos[servo_endstops[Z_AXIS]].detach();
  901. #endif
  902. }
  903. #endif
  904. }
  905. /// Probe bed height at position (x,y), returns the measured z value
  906. static float probe_pt(float x, float y, float z_before) {
  907. // move to right place
  908. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  909. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  910. engage_z_probe(); // Engage Z Servo endstop if available
  911. run_z_probe();
  912. float measured_z = current_position[Z_AXIS];
  913. retract_z_probe();
  914. SERIAL_PROTOCOLPGM(MSG_BED);
  915. SERIAL_PROTOCOLPGM(" x: ");
  916. SERIAL_PROTOCOL(x);
  917. SERIAL_PROTOCOLPGM(" y: ");
  918. SERIAL_PROTOCOL(y);
  919. SERIAL_PROTOCOLPGM(" z: ");
  920. SERIAL_PROTOCOL(measured_z);
  921. SERIAL_PROTOCOLPGM("\n");
  922. return measured_z;
  923. }
  924. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  925. static void homeaxis(int axis) {
  926. #define HOMEAXIS_DO(LETTER) \
  927. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  928. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  929. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  930. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  931. 0) {
  932. int axis_home_dir = home_dir(axis);
  933. #ifdef DUAL_X_CARRIAGE
  934. if (axis == X_AXIS)
  935. axis_home_dir = x_home_dir(active_extruder);
  936. #endif
  937. current_position[axis] = 0;
  938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  939. // Engage Servo endstop if enabled
  940. #ifdef SERVO_ENDSTOPS
  941. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  942. if (axis==Z_AXIS) {
  943. engage_z_probe();
  944. }
  945. else
  946. #endif
  947. if (servo_endstops[axis] > -1) {
  948. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  949. }
  950. #endif
  951. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  952. feedrate = homing_feedrate[axis];
  953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  954. st_synchronize();
  955. current_position[axis] = 0;
  956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  957. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  959. st_synchronize();
  960. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  961. #ifdef DELTA
  962. feedrate = homing_feedrate[axis]/10;
  963. #else
  964. feedrate = homing_feedrate[axis]/2 ;
  965. #endif
  966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. #ifdef DELTA
  969. // retrace by the amount specified in endstop_adj
  970. if (endstop_adj[axis] * axis_home_dir < 0) {
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  972. destination[axis] = endstop_adj[axis];
  973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. }
  976. #endif
  977. axis_is_at_home(axis);
  978. destination[axis] = current_position[axis];
  979. feedrate = 0.0;
  980. endstops_hit_on_purpose();
  981. axis_known_position[axis] = true;
  982. // Retract Servo endstop if enabled
  983. #ifdef SERVO_ENDSTOPS
  984. if (servo_endstops[axis] > -1) {
  985. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  986. }
  987. #endif
  988. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  989. if (axis==Z_AXIS) retract_z_probe();
  990. #endif
  991. }
  992. }
  993. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  994. void refresh_cmd_timeout(void)
  995. {
  996. previous_millis_cmd = millis();
  997. }
  998. #ifdef FWRETRACT
  999. void retract(bool retracting, bool swapretract = false) {
  1000. if(retracting && !retracted[active_extruder]) {
  1001. destination[X_AXIS]=current_position[X_AXIS];
  1002. destination[Y_AXIS]=current_position[Y_AXIS];
  1003. destination[Z_AXIS]=current_position[Z_AXIS];
  1004. destination[E_AXIS]=current_position[E_AXIS];
  1005. if (swapretract) {
  1006. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1007. } else {
  1008. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1009. }
  1010. plan_set_e_position(current_position[E_AXIS]);
  1011. float oldFeedrate = feedrate;
  1012. feedrate=retract_feedrate*60;
  1013. retracted[active_extruder]=true;
  1014. prepare_move();
  1015. current_position[Z_AXIS]-=retract_zlift;
  1016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1017. prepare_move();
  1018. feedrate = oldFeedrate;
  1019. } else if(!retracting && retracted[active_extruder]) {
  1020. destination[X_AXIS]=current_position[X_AXIS];
  1021. destination[Y_AXIS]=current_position[Y_AXIS];
  1022. destination[Z_AXIS]=current_position[Z_AXIS];
  1023. destination[E_AXIS]=current_position[E_AXIS];
  1024. current_position[Z_AXIS]+=retract_zlift;
  1025. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1026. //prepare_move();
  1027. if (swapretract) {
  1028. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1029. } else {
  1030. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1031. }
  1032. plan_set_e_position(current_position[E_AXIS]);
  1033. float oldFeedrate = feedrate;
  1034. feedrate=retract_recover_feedrate*60;
  1035. retracted[active_extruder]=false;
  1036. prepare_move();
  1037. feedrate = oldFeedrate;
  1038. }
  1039. } //retract
  1040. #endif //FWRETRACT
  1041. void process_commands()
  1042. {
  1043. unsigned long codenum; //throw away variable
  1044. char *starpos = NULL;
  1045. #ifdef ENABLE_AUTO_BED_LEVELING
  1046. float x_tmp, y_tmp, z_tmp, real_z;
  1047. #endif
  1048. if(code_seen('G'))
  1049. {
  1050. switch((int)code_value())
  1051. {
  1052. case 0: // G0 -> G1
  1053. case 1: // G1
  1054. if(Stopped == false) {
  1055. get_coordinates(); // For X Y Z E F
  1056. #ifdef FWRETRACT
  1057. if(autoretract_enabled)
  1058. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1059. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1060. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1061. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1062. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1063. retract(!retracted);
  1064. return;
  1065. }
  1066. }
  1067. #endif //FWRETRACT
  1068. prepare_move();
  1069. //ClearToSend();
  1070. return;
  1071. }
  1072. break;
  1073. case 2: // G2 - CW ARC
  1074. if(Stopped == false) {
  1075. get_arc_coordinates();
  1076. prepare_arc_move(true);
  1077. return;
  1078. }
  1079. break;
  1080. case 3: // G3 - CCW ARC
  1081. if(Stopped == false) {
  1082. get_arc_coordinates();
  1083. prepare_arc_move(false);
  1084. return;
  1085. }
  1086. break;
  1087. case 4: // G4 dwell
  1088. LCD_MESSAGEPGM(MSG_DWELL);
  1089. codenum = 0;
  1090. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1091. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1092. st_synchronize();
  1093. codenum += millis(); // keep track of when we started waiting
  1094. previous_millis_cmd = millis();
  1095. while(millis() < codenum ){
  1096. manage_heater();
  1097. manage_inactivity();
  1098. lcd_update();
  1099. }
  1100. break;
  1101. #ifdef FWRETRACT
  1102. case 10: // G10 retract
  1103. #if EXTRUDERS > 1
  1104. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1105. retract(true,retracted_swap[active_extruder]);
  1106. #else
  1107. retract(true);
  1108. #endif
  1109. break;
  1110. case 11: // G11 retract_recover
  1111. #if EXTRUDERS > 1
  1112. retract(false,retracted_swap[active_extruder]);
  1113. #else
  1114. retract(false);
  1115. #endif
  1116. break;
  1117. #endif //FWRETRACT
  1118. case 28: //G28 Home all Axis one at a time
  1119. #ifdef ENABLE_AUTO_BED_LEVELING
  1120. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1121. #endif //ENABLE_AUTO_BED_LEVELING
  1122. saved_feedrate = feedrate;
  1123. saved_feedmultiply = feedmultiply;
  1124. feedmultiply = 100;
  1125. previous_millis_cmd = millis();
  1126. enable_endstops(true);
  1127. for(int8_t i=0; i < NUM_AXIS; i++) {
  1128. destination[i] = current_position[i];
  1129. }
  1130. feedrate = 0.0;
  1131. #ifdef DELTA
  1132. // A delta can only safely home all axis at the same time
  1133. // all axis have to home at the same time
  1134. // Move all carriages up together until the first endstop is hit.
  1135. current_position[X_AXIS] = 0;
  1136. current_position[Y_AXIS] = 0;
  1137. current_position[Z_AXIS] = 0;
  1138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1139. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1140. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1141. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1142. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1143. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1144. st_synchronize();
  1145. endstops_hit_on_purpose();
  1146. current_position[X_AXIS] = destination[X_AXIS];
  1147. current_position[Y_AXIS] = destination[Y_AXIS];
  1148. current_position[Z_AXIS] = destination[Z_AXIS];
  1149. // take care of back off and rehome now we are all at the top
  1150. HOMEAXIS(X);
  1151. HOMEAXIS(Y);
  1152. HOMEAXIS(Z);
  1153. calculate_delta(current_position);
  1154. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1155. #else // NOT DELTA
  1156. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1157. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1158. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1159. HOMEAXIS(Z);
  1160. }
  1161. #endif
  1162. #ifdef QUICK_HOME
  1163. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1164. {
  1165. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1166. #ifndef DUAL_X_CARRIAGE
  1167. int x_axis_home_dir = home_dir(X_AXIS);
  1168. #else
  1169. int x_axis_home_dir = x_home_dir(active_extruder);
  1170. extruder_duplication_enabled = false;
  1171. #endif
  1172. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1173. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1174. feedrate = homing_feedrate[X_AXIS];
  1175. if(homing_feedrate[Y_AXIS]<feedrate)
  1176. feedrate = homing_feedrate[Y_AXIS];
  1177. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1178. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1179. } else {
  1180. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1181. }
  1182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1183. st_synchronize();
  1184. axis_is_at_home(X_AXIS);
  1185. axis_is_at_home(Y_AXIS);
  1186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1187. destination[X_AXIS] = current_position[X_AXIS];
  1188. destination[Y_AXIS] = current_position[Y_AXIS];
  1189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1190. feedrate = 0.0;
  1191. st_synchronize();
  1192. endstops_hit_on_purpose();
  1193. current_position[X_AXIS] = destination[X_AXIS];
  1194. current_position[Y_AXIS] = destination[Y_AXIS];
  1195. current_position[Z_AXIS] = destination[Z_AXIS];
  1196. }
  1197. #endif
  1198. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1199. {
  1200. #ifdef DUAL_X_CARRIAGE
  1201. int tmp_extruder = active_extruder;
  1202. extruder_duplication_enabled = false;
  1203. active_extruder = !active_extruder;
  1204. HOMEAXIS(X);
  1205. inactive_extruder_x_pos = current_position[X_AXIS];
  1206. active_extruder = tmp_extruder;
  1207. HOMEAXIS(X);
  1208. // reset state used by the different modes
  1209. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1210. delayed_move_time = 0;
  1211. active_extruder_parked = true;
  1212. #else
  1213. HOMEAXIS(X);
  1214. #endif
  1215. }
  1216. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1217. HOMEAXIS(Y);
  1218. }
  1219. if(code_seen(axis_codes[X_AXIS]))
  1220. {
  1221. if(code_value_long() != 0) {
  1222. current_position[X_AXIS]=code_value()+add_homeing[0];
  1223. }
  1224. }
  1225. if(code_seen(axis_codes[Y_AXIS])) {
  1226. if(code_value_long() != 0) {
  1227. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1228. }
  1229. }
  1230. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1231. #ifndef Z_SAFE_HOMING
  1232. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1233. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1234. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1235. feedrate = max_feedrate[Z_AXIS];
  1236. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1237. st_synchronize();
  1238. #endif
  1239. HOMEAXIS(Z);
  1240. }
  1241. #else // Z Safe mode activated.
  1242. if(home_all_axis) {
  1243. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1244. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1245. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1246. feedrate = XY_TRAVEL_SPEED;
  1247. current_position[Z_AXIS] = 0;
  1248. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1250. st_synchronize();
  1251. current_position[X_AXIS] = destination[X_AXIS];
  1252. current_position[Y_AXIS] = destination[Y_AXIS];
  1253. HOMEAXIS(Z);
  1254. }
  1255. // Let's see if X and Y are homed and probe is inside bed area.
  1256. if(code_seen(axis_codes[Z_AXIS])) {
  1257. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1258. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1259. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1260. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1261. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1262. current_position[Z_AXIS] = 0;
  1263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1264. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1265. feedrate = max_feedrate[Z_AXIS];
  1266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1267. st_synchronize();
  1268. HOMEAXIS(Z);
  1269. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1270. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1271. SERIAL_ECHO_START;
  1272. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1273. } else {
  1274. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1275. SERIAL_ECHO_START;
  1276. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1277. }
  1278. }
  1279. #endif
  1280. #endif
  1281. if(code_seen(axis_codes[Z_AXIS])) {
  1282. if(code_value_long() != 0) {
  1283. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1284. }
  1285. }
  1286. #ifdef ENABLE_AUTO_BED_LEVELING
  1287. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1288. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1289. }
  1290. #endif
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. #endif // else DELTA
  1293. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1294. enable_endstops(false);
  1295. #endif
  1296. feedrate = saved_feedrate;
  1297. feedmultiply = saved_feedmultiply;
  1298. previous_millis_cmd = millis();
  1299. endstops_hit_on_purpose();
  1300. break;
  1301. #ifdef ENABLE_AUTO_BED_LEVELING
  1302. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1303. {
  1304. #if Z_MIN_PIN == -1
  1305. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1306. #endif
  1307. // Prevent user from running a G29 without first homing in X and Y
  1308. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1309. {
  1310. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1311. SERIAL_ECHO_START;
  1312. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1313. break; // abort G29, since we don't know where we are
  1314. }
  1315. st_synchronize();
  1316. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1317. //vector_3 corrected_position = plan_get_position_mm();
  1318. //corrected_position.debug("position before G29");
  1319. plan_bed_level_matrix.set_to_identity();
  1320. vector_3 uncorrected_position = plan_get_position();
  1321. //uncorrected_position.debug("position durring G29");
  1322. current_position[X_AXIS] = uncorrected_position.x;
  1323. current_position[Y_AXIS] = uncorrected_position.y;
  1324. current_position[Z_AXIS] = uncorrected_position.z;
  1325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. setup_for_endstop_move();
  1327. feedrate = homing_feedrate[Z_AXIS];
  1328. #ifdef AUTO_BED_LEVELING_GRID
  1329. // probe at the points of a lattice grid
  1330. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1331. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1332. // solve the plane equation ax + by + d = z
  1333. // A is the matrix with rows [x y 1] for all the probed points
  1334. // B is the vector of the Z positions
  1335. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1336. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1337. // "A" matrix of the linear system of equations
  1338. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1339. // "B" vector of Z points
  1340. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1341. int probePointCounter = 0;
  1342. bool zig = true;
  1343. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1344. {
  1345. int xProbe, xInc;
  1346. if (zig)
  1347. {
  1348. xProbe = LEFT_PROBE_BED_POSITION;
  1349. //xEnd = RIGHT_PROBE_BED_POSITION;
  1350. xInc = xGridSpacing;
  1351. zig = false;
  1352. } else // zag
  1353. {
  1354. xProbe = RIGHT_PROBE_BED_POSITION;
  1355. //xEnd = LEFT_PROBE_BED_POSITION;
  1356. xInc = -xGridSpacing;
  1357. zig = true;
  1358. }
  1359. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1360. {
  1361. float z_before;
  1362. if (probePointCounter == 0)
  1363. {
  1364. // raise before probing
  1365. z_before = Z_RAISE_BEFORE_PROBING;
  1366. } else
  1367. {
  1368. // raise extruder
  1369. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1370. }
  1371. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1372. eqnBVector[probePointCounter] = measured_z;
  1373. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1374. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1375. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1376. probePointCounter++;
  1377. xProbe += xInc;
  1378. }
  1379. }
  1380. clean_up_after_endstop_move();
  1381. // solve lsq problem
  1382. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1383. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1384. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1385. SERIAL_PROTOCOLPGM(" b: ");
  1386. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1387. SERIAL_PROTOCOLPGM(" d: ");
  1388. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1389. set_bed_level_equation_lsq(plane_equation_coefficients);
  1390. free(plane_equation_coefficients);
  1391. #else // AUTO_BED_LEVELING_GRID not defined
  1392. // Probe at 3 arbitrary points
  1393. // probe 1
  1394. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1395. // probe 2
  1396. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1397. // probe 3
  1398. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1399. clean_up_after_endstop_move();
  1400. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1401. #endif // AUTO_BED_LEVELING_GRID
  1402. st_synchronize();
  1403. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1404. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1405. // When the bed is uneven, this height must be corrected.
  1406. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1407. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1408. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1409. z_tmp = current_position[Z_AXIS];
  1410. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1411. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1413. }
  1414. break;
  1415. case 30: // G30 Single Z Probe
  1416. {
  1417. engage_z_probe(); // Engage Z Servo endstop if available
  1418. st_synchronize();
  1419. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1420. setup_for_endstop_move();
  1421. feedrate = homing_feedrate[Z_AXIS];
  1422. run_z_probe();
  1423. SERIAL_PROTOCOLPGM(MSG_BED);
  1424. SERIAL_PROTOCOLPGM(" X: ");
  1425. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1426. SERIAL_PROTOCOLPGM(" Y: ");
  1427. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1428. SERIAL_PROTOCOLPGM(" Z: ");
  1429. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1430. SERIAL_PROTOCOLPGM("\n");
  1431. clean_up_after_endstop_move();
  1432. retract_z_probe(); // Retract Z Servo endstop if available
  1433. }
  1434. break;
  1435. #endif // ENABLE_AUTO_BED_LEVELING
  1436. case 90: // G90
  1437. relative_mode = false;
  1438. break;
  1439. case 91: // G91
  1440. relative_mode = true;
  1441. break;
  1442. case 92: // G92
  1443. if(!code_seen(axis_codes[E_AXIS]))
  1444. st_synchronize();
  1445. for(int8_t i=0; i < NUM_AXIS; i++) {
  1446. if(code_seen(axis_codes[i])) {
  1447. if(i == E_AXIS) {
  1448. current_position[i] = code_value();
  1449. plan_set_e_position(current_position[E_AXIS]);
  1450. }
  1451. else {
  1452. current_position[i] = code_value()+add_homeing[i];
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. }
  1455. }
  1456. }
  1457. break;
  1458. }
  1459. }
  1460. else if(code_seen('M'))
  1461. {
  1462. switch( (int)code_value() )
  1463. {
  1464. #ifdef ULTIPANEL
  1465. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1466. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1467. {
  1468. LCD_MESSAGEPGM(MSG_USERWAIT);
  1469. codenum = 0;
  1470. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1471. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1472. st_synchronize();
  1473. previous_millis_cmd = millis();
  1474. if (codenum > 0){
  1475. codenum += millis(); // keep track of when we started waiting
  1476. while(millis() < codenum && !lcd_clicked()){
  1477. manage_heater();
  1478. manage_inactivity();
  1479. lcd_update();
  1480. }
  1481. }else{
  1482. while(!lcd_clicked()){
  1483. manage_heater();
  1484. manage_inactivity();
  1485. lcd_update();
  1486. }
  1487. }
  1488. LCD_MESSAGEPGM(MSG_RESUMING);
  1489. }
  1490. break;
  1491. #endif
  1492. case 17:
  1493. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1494. enable_x();
  1495. enable_y();
  1496. enable_z();
  1497. enable_e0();
  1498. enable_e1();
  1499. enable_e2();
  1500. break;
  1501. #ifdef SDSUPPORT
  1502. case 20: // M20 - list SD card
  1503. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1504. card.ls();
  1505. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1506. break;
  1507. case 21: // M21 - init SD card
  1508. card.initsd();
  1509. break;
  1510. case 22: //M22 - release SD card
  1511. card.release();
  1512. break;
  1513. case 23: //M23 - Select file
  1514. starpos = (strchr(strchr_pointer + 4,'*'));
  1515. if(starpos!=NULL)
  1516. *(starpos)='\0';
  1517. card.openFile(strchr_pointer + 4,true);
  1518. break;
  1519. case 24: //M24 - Start SD print
  1520. card.startFileprint();
  1521. starttime=millis();
  1522. break;
  1523. case 25: //M25 - Pause SD print
  1524. card.pauseSDPrint();
  1525. break;
  1526. case 26: //M26 - Set SD index
  1527. if(card.cardOK && code_seen('S')) {
  1528. card.setIndex(code_value_long());
  1529. }
  1530. break;
  1531. case 27: //M27 - Get SD status
  1532. card.getStatus();
  1533. break;
  1534. case 28: //M28 - Start SD write
  1535. starpos = (strchr(strchr_pointer + 4,'*'));
  1536. if(starpos != NULL){
  1537. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1538. strchr_pointer = strchr(npos,' ') + 1;
  1539. *(starpos) = '\0';
  1540. }
  1541. card.openFile(strchr_pointer+4,false);
  1542. break;
  1543. case 29: //M29 - Stop SD write
  1544. //processed in write to file routine above
  1545. //card,saving = false;
  1546. break;
  1547. case 30: //M30 <filename> Delete File
  1548. if (card.cardOK){
  1549. card.closefile();
  1550. starpos = (strchr(strchr_pointer + 4,'*'));
  1551. if(starpos != NULL){
  1552. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1553. strchr_pointer = strchr(npos,' ') + 1;
  1554. *(starpos) = '\0';
  1555. }
  1556. card.removeFile(strchr_pointer + 4);
  1557. }
  1558. break;
  1559. case 32: //M32 - Select file and start SD print
  1560. {
  1561. if(card.sdprinting) {
  1562. st_synchronize();
  1563. }
  1564. starpos = (strchr(strchr_pointer + 4,'*'));
  1565. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1566. if(namestartpos==NULL)
  1567. {
  1568. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1569. }
  1570. else
  1571. namestartpos++; //to skip the '!'
  1572. if(starpos!=NULL)
  1573. *(starpos)='\0';
  1574. bool call_procedure=(code_seen('P'));
  1575. if(strchr_pointer>namestartpos)
  1576. call_procedure=false; //false alert, 'P' found within filename
  1577. if( card.cardOK )
  1578. {
  1579. card.openFile(namestartpos,true,!call_procedure);
  1580. if(code_seen('S'))
  1581. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1582. card.setIndex(code_value_long());
  1583. card.startFileprint();
  1584. if(!call_procedure)
  1585. starttime=millis(); //procedure calls count as normal print time.
  1586. }
  1587. } break;
  1588. case 928: //M928 - Start SD write
  1589. starpos = (strchr(strchr_pointer + 5,'*'));
  1590. if(starpos != NULL){
  1591. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1592. strchr_pointer = strchr(npos,' ') + 1;
  1593. *(starpos) = '\0';
  1594. }
  1595. card.openLogFile(strchr_pointer+5);
  1596. break;
  1597. #endif //SDSUPPORT
  1598. case 31: //M31 take time since the start of the SD print or an M109 command
  1599. {
  1600. stoptime=millis();
  1601. char time[30];
  1602. unsigned long t=(stoptime-starttime)/1000;
  1603. int sec,min;
  1604. min=t/60;
  1605. sec=t%60;
  1606. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLN(time);
  1609. lcd_setstatus(time);
  1610. autotempShutdown();
  1611. }
  1612. break;
  1613. case 42: //M42 -Change pin status via gcode
  1614. if (code_seen('S'))
  1615. {
  1616. int pin_status = code_value();
  1617. int pin_number = LED_PIN;
  1618. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1619. pin_number = code_value();
  1620. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1621. {
  1622. if (sensitive_pins[i] == pin_number)
  1623. {
  1624. pin_number = -1;
  1625. break;
  1626. }
  1627. }
  1628. #if defined(FAN_PIN) && FAN_PIN > -1
  1629. if (pin_number == FAN_PIN)
  1630. fanSpeed = pin_status;
  1631. #endif
  1632. if (pin_number > -1)
  1633. {
  1634. pinMode(pin_number, OUTPUT);
  1635. digitalWrite(pin_number, pin_status);
  1636. analogWrite(pin_number, pin_status);
  1637. }
  1638. }
  1639. break;
  1640. // M48 Z-Probe repeatability measurement function.
  1641. //
  1642. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1643. //
  1644. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1645. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1646. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1647. // regenerated.
  1648. //
  1649. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1650. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1651. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1652. //
  1653. #ifdef ENABLE_AUTO_BED_LEVELING
  1654. #ifdef Z_PROBE_REPEATABILITY_TEST
  1655. case 48: // M48 Z-Probe repeatability
  1656. {
  1657. #if Z_MIN_PIN == -1
  1658. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1659. #endif
  1660. double sum=0.0;
  1661. double mean=0.0;
  1662. double sigma=0.0;
  1663. double sample_set[50];
  1664. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1665. double X_current, Y_current, Z_current;
  1666. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1667. if (code_seen('V') || code_seen('v')) {
  1668. verbose_level = code_value();
  1669. if (verbose_level<0 || verbose_level>4 ) {
  1670. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1671. goto Sigma_Exit;
  1672. }
  1673. }
  1674. if (verbose_level > 0) {
  1675. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1676. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1677. }
  1678. if (code_seen('n')) {
  1679. n_samples = code_value();
  1680. if (n_samples<4 || n_samples>50 ) {
  1681. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1682. goto Sigma_Exit;
  1683. }
  1684. }
  1685. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1686. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1687. Z_current = st_get_position_mm(Z_AXIS);
  1688. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1689. ext_position = st_get_position_mm(E_AXIS);
  1690. if (code_seen('E') || code_seen('e') )
  1691. engage_probe_for_each_reading++;
  1692. if (code_seen('X') || code_seen('x') ) {
  1693. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1694. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1695. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1696. goto Sigma_Exit;
  1697. }
  1698. }
  1699. if (code_seen('Y') || code_seen('y') ) {
  1700. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1701. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1702. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1703. goto Sigma_Exit;
  1704. }
  1705. }
  1706. if (code_seen('L') || code_seen('l') ) {
  1707. n_legs = code_value();
  1708. if ( n_legs==1 )
  1709. n_legs = 2;
  1710. if ( n_legs<0 || n_legs>15 ) {
  1711. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1712. goto Sigma_Exit;
  1713. }
  1714. }
  1715. //
  1716. // Do all the preliminary setup work. First raise the probe.
  1717. //
  1718. st_synchronize();
  1719. plan_bed_level_matrix.set_to_identity();
  1720. plan_buffer_line( X_current, Y_current, Z_start_location,
  1721. ext_position,
  1722. homing_feedrate[Z_AXIS]/60,
  1723. active_extruder);
  1724. st_synchronize();
  1725. //
  1726. // Now get everything to the specified probe point So we can safely do a probe to
  1727. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1728. // use that as a starting point for each probe.
  1729. //
  1730. if (verbose_level > 2)
  1731. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1732. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1733. ext_position,
  1734. homing_feedrate[X_AXIS]/60,
  1735. active_extruder);
  1736. st_synchronize();
  1737. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1738. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1739. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1740. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1741. //
  1742. // OK, do the inital probe to get us close to the bed.
  1743. // Then retrace the right amount and use that in subsequent probes
  1744. //
  1745. engage_z_probe();
  1746. setup_for_endstop_move();
  1747. run_z_probe();
  1748. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1749. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1750. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1751. ext_position,
  1752. homing_feedrate[X_AXIS]/60,
  1753. active_extruder);
  1754. st_synchronize();
  1755. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1756. if (engage_probe_for_each_reading)
  1757. retract_z_probe();
  1758. for( n=0; n<n_samples; n++) {
  1759. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1760. if ( n_legs) {
  1761. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1762. int rotational_direction, l;
  1763. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1764. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1765. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1766. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1767. //SERIAL_ECHOPAIR(" theta: ",theta);
  1768. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1769. //SERIAL_PROTOCOLLNPGM("");
  1770. for( l=0; l<n_legs-1; l++) {
  1771. if (rotational_direction==1)
  1772. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1773. else
  1774. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1775. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1776. if ( radius<0.0 )
  1777. radius = -radius;
  1778. X_current = X_probe_location + cos(theta) * radius;
  1779. Y_current = Y_probe_location + sin(theta) * radius;
  1780. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1781. X_current = X_MIN_POS;
  1782. if ( X_current>X_MAX_POS)
  1783. X_current = X_MAX_POS;
  1784. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1785. Y_current = Y_MIN_POS;
  1786. if ( Y_current>Y_MAX_POS)
  1787. Y_current = Y_MAX_POS;
  1788. if (verbose_level>3 ) {
  1789. SERIAL_ECHOPAIR("x: ", X_current);
  1790. SERIAL_ECHOPAIR("y: ", Y_current);
  1791. SERIAL_PROTOCOLLNPGM("");
  1792. }
  1793. do_blocking_move_to( X_current, Y_current, Z_current );
  1794. }
  1795. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1796. }
  1797. if (engage_probe_for_each_reading) {
  1798. engage_z_probe();
  1799. delay(1000);
  1800. }
  1801. setup_for_endstop_move();
  1802. run_z_probe();
  1803. sample_set[n] = current_position[Z_AXIS];
  1804. //
  1805. // Get the current mean for the data points we have so far
  1806. //
  1807. sum=0.0;
  1808. for( j=0; j<=n; j++) {
  1809. sum = sum + sample_set[j];
  1810. }
  1811. mean = sum / (double (n+1));
  1812. //
  1813. // Now, use that mean to calculate the standard deviation for the
  1814. // data points we have so far
  1815. //
  1816. sum=0.0;
  1817. for( j=0; j<=n; j++) {
  1818. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  1819. }
  1820. sigma = sqrt( sum / (double (n+1)) );
  1821. if (verbose_level > 1) {
  1822. SERIAL_PROTOCOL(n+1);
  1823. SERIAL_PROTOCOL(" of ");
  1824. SERIAL_PROTOCOL(n_samples);
  1825. SERIAL_PROTOCOLPGM(" z: ");
  1826. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  1827. }
  1828. if (verbose_level > 2) {
  1829. SERIAL_PROTOCOL(" mean: ");
  1830. SERIAL_PROTOCOL_F(mean,6);
  1831. SERIAL_PROTOCOL(" sigma: ");
  1832. SERIAL_PROTOCOL_F(sigma,6);
  1833. }
  1834. if (verbose_level > 0)
  1835. SERIAL_PROTOCOLPGM("\n");
  1836. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1837. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1838. st_synchronize();
  1839. if (engage_probe_for_each_reading) {
  1840. retract_z_probe();
  1841. delay(1000);
  1842. }
  1843. }
  1844. retract_z_probe();
  1845. delay(1000);
  1846. clean_up_after_endstop_move();
  1847. // enable_endstops(true);
  1848. if (verbose_level > 0) {
  1849. SERIAL_PROTOCOLPGM("Mean: ");
  1850. SERIAL_PROTOCOL_F(mean, 6);
  1851. SERIAL_PROTOCOLPGM("\n");
  1852. }
  1853. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  1854. SERIAL_PROTOCOL_F(sigma, 6);
  1855. SERIAL_PROTOCOLPGM("\n\n");
  1856. Sigma_Exit:
  1857. break;
  1858. }
  1859. #endif // Z_PROBE_REPEATABILITY_TEST
  1860. #endif // ENABLE_AUTO_BED_LEVELING
  1861. case 104: // M104
  1862. if(setTargetedHotend(104)){
  1863. break;
  1864. }
  1865. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1866. #ifdef DUAL_X_CARRIAGE
  1867. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1868. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1869. #endif
  1870. setWatch();
  1871. break;
  1872. case 112: // M112 -Emergency Stop
  1873. kill();
  1874. break;
  1875. case 140: // M140 set bed temp
  1876. if (code_seen('S')) setTargetBed(code_value());
  1877. break;
  1878. case 105 : // M105
  1879. if(setTargetedHotend(105)){
  1880. break;
  1881. }
  1882. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1883. SERIAL_PROTOCOLPGM("ok T:");
  1884. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1885. SERIAL_PROTOCOLPGM(" /");
  1886. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1887. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1888. SERIAL_PROTOCOLPGM(" B:");
  1889. SERIAL_PROTOCOL_F(degBed(),1);
  1890. SERIAL_PROTOCOLPGM(" /");
  1891. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1892. #endif //TEMP_BED_PIN
  1893. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1894. SERIAL_PROTOCOLPGM(" T");
  1895. SERIAL_PROTOCOL(cur_extruder);
  1896. SERIAL_PROTOCOLPGM(":");
  1897. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1898. SERIAL_PROTOCOLPGM(" /");
  1899. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1900. }
  1901. #else
  1902. SERIAL_ERROR_START;
  1903. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1904. #endif
  1905. SERIAL_PROTOCOLPGM(" @:");
  1906. #ifdef EXTRUDER_WATTS
  1907. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1908. SERIAL_PROTOCOLPGM("W");
  1909. #else
  1910. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1911. #endif
  1912. SERIAL_PROTOCOLPGM(" B@:");
  1913. #ifdef BED_WATTS
  1914. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1915. SERIAL_PROTOCOLPGM("W");
  1916. #else
  1917. SERIAL_PROTOCOL(getHeaterPower(-1));
  1918. #endif
  1919. #ifdef SHOW_TEMP_ADC_VALUES
  1920. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1921. SERIAL_PROTOCOLPGM(" ADC B:");
  1922. SERIAL_PROTOCOL_F(degBed(),1);
  1923. SERIAL_PROTOCOLPGM("C->");
  1924. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1925. #endif
  1926. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1927. SERIAL_PROTOCOLPGM(" T");
  1928. SERIAL_PROTOCOL(cur_extruder);
  1929. SERIAL_PROTOCOLPGM(":");
  1930. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1931. SERIAL_PROTOCOLPGM("C->");
  1932. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1933. }
  1934. #endif
  1935. SERIAL_PROTOCOLLN("");
  1936. return;
  1937. break;
  1938. case 109:
  1939. {// M109 - Wait for extruder heater to reach target.
  1940. if(setTargetedHotend(109)){
  1941. break;
  1942. }
  1943. LCD_MESSAGEPGM(MSG_HEATING);
  1944. #ifdef AUTOTEMP
  1945. autotemp_enabled=false;
  1946. #endif
  1947. if (code_seen('S')) {
  1948. setTargetHotend(code_value(), tmp_extruder);
  1949. #ifdef DUAL_X_CARRIAGE
  1950. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1951. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1952. #endif
  1953. CooldownNoWait = true;
  1954. } else if (code_seen('R')) {
  1955. setTargetHotend(code_value(), tmp_extruder);
  1956. #ifdef DUAL_X_CARRIAGE
  1957. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1958. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1959. #endif
  1960. CooldownNoWait = false;
  1961. }
  1962. #ifdef AUTOTEMP
  1963. if (code_seen('S')) autotemp_min=code_value();
  1964. if (code_seen('B')) autotemp_max=code_value();
  1965. if (code_seen('F'))
  1966. {
  1967. autotemp_factor=code_value();
  1968. autotemp_enabled=true;
  1969. }
  1970. #endif
  1971. setWatch();
  1972. codenum = millis();
  1973. /* See if we are heating up or cooling down */
  1974. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1975. cancel_heatup = false;
  1976. #ifdef TEMP_RESIDENCY_TIME
  1977. long residencyStart;
  1978. residencyStart = -1;
  1979. /* continue to loop until we have reached the target temp
  1980. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1981. while((!cancel_heatup)&&((residencyStart == -1) ||
  1982. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1983. #else
  1984. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1985. #endif //TEMP_RESIDENCY_TIME
  1986. if( (millis() - codenum) > 1000UL )
  1987. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1988. SERIAL_PROTOCOLPGM("T:");
  1989. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1990. SERIAL_PROTOCOLPGM(" E:");
  1991. SERIAL_PROTOCOL((int)tmp_extruder);
  1992. #ifdef TEMP_RESIDENCY_TIME
  1993. SERIAL_PROTOCOLPGM(" W:");
  1994. if(residencyStart > -1)
  1995. {
  1996. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1997. SERIAL_PROTOCOLLN( codenum );
  1998. }
  1999. else
  2000. {
  2001. SERIAL_PROTOCOLLN( "?" );
  2002. }
  2003. #else
  2004. SERIAL_PROTOCOLLN("");
  2005. #endif
  2006. codenum = millis();
  2007. }
  2008. manage_heater();
  2009. manage_inactivity();
  2010. lcd_update();
  2011. #ifdef TEMP_RESIDENCY_TIME
  2012. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2013. or when current temp falls outside the hysteresis after target temp was reached */
  2014. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2015. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2016. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2017. {
  2018. residencyStart = millis();
  2019. }
  2020. #endif //TEMP_RESIDENCY_TIME
  2021. }
  2022. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2023. starttime=millis();
  2024. previous_millis_cmd = millis();
  2025. }
  2026. break;
  2027. case 190: // M190 - Wait for bed heater to reach target.
  2028. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2029. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2030. if (code_seen('S')) {
  2031. setTargetBed(code_value());
  2032. CooldownNoWait = true;
  2033. } else if (code_seen('R')) {
  2034. setTargetBed(code_value());
  2035. CooldownNoWait = false;
  2036. }
  2037. codenum = millis();
  2038. cancel_heatup = false;
  2039. target_direction = isHeatingBed(); // true if heating, false if cooling
  2040. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2041. {
  2042. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2043. {
  2044. float tt=degHotend(active_extruder);
  2045. SERIAL_PROTOCOLPGM("T:");
  2046. SERIAL_PROTOCOL(tt);
  2047. SERIAL_PROTOCOLPGM(" E:");
  2048. SERIAL_PROTOCOL((int)active_extruder);
  2049. SERIAL_PROTOCOLPGM(" B:");
  2050. SERIAL_PROTOCOL_F(degBed(),1);
  2051. SERIAL_PROTOCOLLN("");
  2052. codenum = millis();
  2053. }
  2054. manage_heater();
  2055. manage_inactivity();
  2056. lcd_update();
  2057. }
  2058. LCD_MESSAGEPGM(MSG_BED_DONE);
  2059. previous_millis_cmd = millis();
  2060. #endif
  2061. break;
  2062. #if defined(FAN_PIN) && FAN_PIN > -1
  2063. case 106: //M106 Fan On
  2064. if (code_seen('S')){
  2065. fanSpeed=constrain(code_value(),0,255);
  2066. }
  2067. else {
  2068. fanSpeed=255;
  2069. }
  2070. break;
  2071. case 107: //M107 Fan Off
  2072. fanSpeed = 0;
  2073. break;
  2074. #endif //FAN_PIN
  2075. #ifdef BARICUDA
  2076. // PWM for HEATER_1_PIN
  2077. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2078. case 126: //M126 valve open
  2079. if (code_seen('S')){
  2080. ValvePressure=constrain(code_value(),0,255);
  2081. }
  2082. else {
  2083. ValvePressure=255;
  2084. }
  2085. break;
  2086. case 127: //M127 valve closed
  2087. ValvePressure = 0;
  2088. break;
  2089. #endif //HEATER_1_PIN
  2090. // PWM for HEATER_2_PIN
  2091. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2092. case 128: //M128 valve open
  2093. if (code_seen('S')){
  2094. EtoPPressure=constrain(code_value(),0,255);
  2095. }
  2096. else {
  2097. EtoPPressure=255;
  2098. }
  2099. break;
  2100. case 129: //M129 valve closed
  2101. EtoPPressure = 0;
  2102. break;
  2103. #endif //HEATER_2_PIN
  2104. #endif
  2105. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2106. case 80: // M80 - Turn on Power Supply
  2107. SET_OUTPUT(PS_ON_PIN); //GND
  2108. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2109. // If you have a switch on suicide pin, this is useful
  2110. // if you want to start another print with suicide feature after
  2111. // a print without suicide...
  2112. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2113. SET_OUTPUT(SUICIDE_PIN);
  2114. WRITE(SUICIDE_PIN, HIGH);
  2115. #endif
  2116. #ifdef ULTIPANEL
  2117. powersupply = true;
  2118. LCD_MESSAGEPGM(WELCOME_MSG);
  2119. lcd_update();
  2120. #endif
  2121. break;
  2122. #endif
  2123. case 81: // M81 - Turn off Power Supply
  2124. disable_heater();
  2125. st_synchronize();
  2126. disable_e0();
  2127. disable_e1();
  2128. disable_e2();
  2129. finishAndDisableSteppers();
  2130. fanSpeed = 0;
  2131. delay(1000); // Wait a little before to switch off
  2132. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2133. st_synchronize();
  2134. suicide();
  2135. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2136. SET_OUTPUT(PS_ON_PIN);
  2137. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2138. #endif
  2139. #ifdef ULTIPANEL
  2140. powersupply = false;
  2141. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2142. lcd_update();
  2143. #endif
  2144. break;
  2145. case 82:
  2146. axis_relative_modes[3] = false;
  2147. break;
  2148. case 83:
  2149. axis_relative_modes[3] = true;
  2150. break;
  2151. case 18: //compatibility
  2152. case 84: // M84
  2153. if(code_seen('S')){
  2154. stepper_inactive_time = code_value() * 1000;
  2155. }
  2156. else
  2157. {
  2158. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2159. if(all_axis)
  2160. {
  2161. st_synchronize();
  2162. disable_e0();
  2163. disable_e1();
  2164. disable_e2();
  2165. finishAndDisableSteppers();
  2166. }
  2167. else
  2168. {
  2169. st_synchronize();
  2170. if(code_seen('X')) disable_x();
  2171. if(code_seen('Y')) disable_y();
  2172. if(code_seen('Z')) disable_z();
  2173. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2174. if(code_seen('E')) {
  2175. disable_e0();
  2176. disable_e1();
  2177. disable_e2();
  2178. }
  2179. #endif
  2180. }
  2181. }
  2182. break;
  2183. case 85: // M85
  2184. if(code_seen('S')) {
  2185. max_inactive_time = code_value() * 1000;
  2186. }
  2187. break;
  2188. case 92: // M92
  2189. for(int8_t i=0; i < NUM_AXIS; i++)
  2190. {
  2191. if(code_seen(axis_codes[i]))
  2192. {
  2193. if(i == 3) { // E
  2194. float value = code_value();
  2195. if(value < 20.0) {
  2196. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2197. max_e_jerk *= factor;
  2198. max_feedrate[i] *= factor;
  2199. axis_steps_per_sqr_second[i] *= factor;
  2200. }
  2201. axis_steps_per_unit[i] = value;
  2202. }
  2203. else {
  2204. axis_steps_per_unit[i] = code_value();
  2205. }
  2206. }
  2207. }
  2208. break;
  2209. case 115: // M115
  2210. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2211. break;
  2212. case 117: // M117 display message
  2213. starpos = (strchr(strchr_pointer + 5,'*'));
  2214. if(starpos!=NULL)
  2215. *(starpos)='\0';
  2216. lcd_setstatus(strchr_pointer + 5);
  2217. break;
  2218. case 114: // M114
  2219. SERIAL_PROTOCOLPGM("X:");
  2220. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2221. SERIAL_PROTOCOLPGM(" Y:");
  2222. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2223. SERIAL_PROTOCOLPGM(" Z:");
  2224. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2225. SERIAL_PROTOCOLPGM(" E:");
  2226. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2227. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2228. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2229. SERIAL_PROTOCOLPGM(" Y:");
  2230. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2231. SERIAL_PROTOCOLPGM(" Z:");
  2232. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2233. SERIAL_PROTOCOLLN("");
  2234. break;
  2235. case 120: // M120
  2236. enable_endstops(false) ;
  2237. break;
  2238. case 121: // M121
  2239. enable_endstops(true) ;
  2240. break;
  2241. case 119: // M119
  2242. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2243. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2244. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2245. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2246. #endif
  2247. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2248. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2249. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2250. #endif
  2251. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2252. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2253. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2254. #endif
  2255. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2256. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2257. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2258. #endif
  2259. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2260. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2261. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2262. #endif
  2263. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2264. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2265. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2266. #endif
  2267. break;
  2268. //TODO: update for all axis, use for loop
  2269. #ifdef BLINKM
  2270. case 150: // M150
  2271. {
  2272. byte red;
  2273. byte grn;
  2274. byte blu;
  2275. if(code_seen('R')) red = code_value();
  2276. if(code_seen('U')) grn = code_value();
  2277. if(code_seen('B')) blu = code_value();
  2278. SendColors(red,grn,blu);
  2279. }
  2280. break;
  2281. #endif //BLINKM
  2282. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2283. {
  2284. float area = .0;
  2285. float radius = .0;
  2286. if(code_seen('D')) {
  2287. radius = (float)code_value() * .5;
  2288. if(radius == 0) {
  2289. area = 1;
  2290. } else {
  2291. area = M_PI * pow(radius, 2);
  2292. }
  2293. } else {
  2294. //reserved for setting filament diameter via UFID or filament measuring device
  2295. break;
  2296. }
  2297. tmp_extruder = active_extruder;
  2298. if(code_seen('T')) {
  2299. tmp_extruder = code_value();
  2300. if(tmp_extruder >= EXTRUDERS) {
  2301. SERIAL_ECHO_START;
  2302. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2303. break;
  2304. }
  2305. }
  2306. volumetric_multiplier[tmp_extruder] = 1 / area;
  2307. }
  2308. break;
  2309. case 201: // M201
  2310. for(int8_t i=0; i < NUM_AXIS; i++)
  2311. {
  2312. if(code_seen(axis_codes[i]))
  2313. {
  2314. max_acceleration_units_per_sq_second[i] = code_value();
  2315. }
  2316. }
  2317. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2318. reset_acceleration_rates();
  2319. break;
  2320. #if 0 // Not used for Sprinter/grbl gen6
  2321. case 202: // M202
  2322. for(int8_t i=0; i < NUM_AXIS; i++) {
  2323. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2324. }
  2325. break;
  2326. #endif
  2327. case 203: // M203 max feedrate mm/sec
  2328. for(int8_t i=0; i < NUM_AXIS; i++) {
  2329. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2330. }
  2331. break;
  2332. case 204: // M204 acclereration S normal moves T filmanent only moves
  2333. {
  2334. if(code_seen('S')) acceleration = code_value() ;
  2335. if(code_seen('T')) retract_acceleration = code_value() ;
  2336. }
  2337. break;
  2338. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2339. {
  2340. if(code_seen('S')) minimumfeedrate = code_value();
  2341. if(code_seen('T')) mintravelfeedrate = code_value();
  2342. if(code_seen('B')) minsegmenttime = code_value() ;
  2343. if(code_seen('X')) max_xy_jerk = code_value() ;
  2344. if(code_seen('Z')) max_z_jerk = code_value() ;
  2345. if(code_seen('E')) max_e_jerk = code_value() ;
  2346. }
  2347. break;
  2348. case 206: // M206 additional homeing offset
  2349. for(int8_t i=0; i < 3; i++)
  2350. {
  2351. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2352. }
  2353. break;
  2354. #ifdef DELTA
  2355. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2356. if(code_seen('L')) {
  2357. delta_diagonal_rod= code_value();
  2358. }
  2359. if(code_seen('R')) {
  2360. delta_radius= code_value();
  2361. }
  2362. if(code_seen('S')) {
  2363. delta_segments_per_second= code_value();
  2364. }
  2365. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2366. break;
  2367. case 666: // M666 set delta endstop adjustemnt
  2368. for(int8_t i=0; i < 3; i++)
  2369. {
  2370. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2371. }
  2372. break;
  2373. #endif
  2374. #ifdef FWRETRACT
  2375. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2376. {
  2377. if(code_seen('S'))
  2378. {
  2379. retract_length = code_value() ;
  2380. }
  2381. if(code_seen('F'))
  2382. {
  2383. retract_feedrate = code_value()/60 ;
  2384. }
  2385. if(code_seen('Z'))
  2386. {
  2387. retract_zlift = code_value() ;
  2388. }
  2389. }break;
  2390. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2391. {
  2392. if(code_seen('S'))
  2393. {
  2394. retract_recover_length = code_value() ;
  2395. }
  2396. if(code_seen('F'))
  2397. {
  2398. retract_recover_feedrate = code_value()/60 ;
  2399. }
  2400. }break;
  2401. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2402. {
  2403. if(code_seen('S'))
  2404. {
  2405. int t= code_value() ;
  2406. switch(t)
  2407. {
  2408. case 0:
  2409. {
  2410. autoretract_enabled=false;
  2411. retracted[0]=false;
  2412. #if EXTRUDERS > 1
  2413. retracted[1]=false;
  2414. #endif
  2415. #if EXTRUDERS > 2
  2416. retracted[2]=false;
  2417. #endif
  2418. }break;
  2419. case 1:
  2420. {
  2421. autoretract_enabled=true;
  2422. retracted[0]=false;
  2423. #if EXTRUDERS > 1
  2424. retracted[1]=false;
  2425. #endif
  2426. #if EXTRUDERS > 2
  2427. retracted[2]=false;
  2428. #endif
  2429. }break;
  2430. default:
  2431. SERIAL_ECHO_START;
  2432. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2433. SERIAL_ECHO(cmdbuffer[bufindr]);
  2434. SERIAL_ECHOLNPGM("\"");
  2435. }
  2436. }
  2437. }break;
  2438. #endif // FWRETRACT
  2439. #if EXTRUDERS > 1
  2440. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2441. {
  2442. if(setTargetedHotend(218)){
  2443. break;
  2444. }
  2445. if(code_seen('X'))
  2446. {
  2447. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2448. }
  2449. if(code_seen('Y'))
  2450. {
  2451. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2452. }
  2453. #ifdef DUAL_X_CARRIAGE
  2454. if(code_seen('Z'))
  2455. {
  2456. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2457. }
  2458. #endif
  2459. SERIAL_ECHO_START;
  2460. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2461. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2462. {
  2463. SERIAL_ECHO(" ");
  2464. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2465. SERIAL_ECHO(",");
  2466. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2467. #ifdef DUAL_X_CARRIAGE
  2468. SERIAL_ECHO(",");
  2469. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2470. #endif
  2471. }
  2472. SERIAL_ECHOLN("");
  2473. }break;
  2474. #endif
  2475. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2476. {
  2477. if(code_seen('S'))
  2478. {
  2479. feedmultiply = code_value() ;
  2480. }
  2481. }
  2482. break;
  2483. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2484. {
  2485. if(code_seen('S'))
  2486. {
  2487. int tmp_code = code_value();
  2488. if (code_seen('T'))
  2489. {
  2490. if(setTargetedHotend(221)){
  2491. break;
  2492. }
  2493. extruder_multiply[tmp_extruder] = tmp_code;
  2494. }
  2495. else
  2496. {
  2497. extrudemultiply = tmp_code ;
  2498. }
  2499. }
  2500. }
  2501. break;
  2502. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2503. {
  2504. if(code_seen('P')){
  2505. int pin_number = code_value(); // pin number
  2506. int pin_state = -1; // required pin state - default is inverted
  2507. if(code_seen('S')) pin_state = code_value(); // required pin state
  2508. if(pin_state >= -1 && pin_state <= 1){
  2509. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2510. {
  2511. if (sensitive_pins[i] == pin_number)
  2512. {
  2513. pin_number = -1;
  2514. break;
  2515. }
  2516. }
  2517. if (pin_number > -1)
  2518. {
  2519. st_synchronize();
  2520. pinMode(pin_number, INPUT);
  2521. int target;
  2522. switch(pin_state){
  2523. case 1:
  2524. target = HIGH;
  2525. break;
  2526. case 0:
  2527. target = LOW;
  2528. break;
  2529. case -1:
  2530. target = !digitalRead(pin_number);
  2531. break;
  2532. }
  2533. while(digitalRead(pin_number) != target){
  2534. manage_heater();
  2535. manage_inactivity();
  2536. lcd_update();
  2537. }
  2538. }
  2539. }
  2540. }
  2541. }
  2542. break;
  2543. #if NUM_SERVOS > 0
  2544. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2545. {
  2546. int servo_index = -1;
  2547. int servo_position = 0;
  2548. if (code_seen('P'))
  2549. servo_index = code_value();
  2550. if (code_seen('S')) {
  2551. servo_position = code_value();
  2552. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2553. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2554. servos[servo_index].attach(0);
  2555. #endif
  2556. servos[servo_index].write(servo_position);
  2557. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2558. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2559. servos[servo_index].detach();
  2560. #endif
  2561. }
  2562. else {
  2563. SERIAL_ECHO_START;
  2564. SERIAL_ECHO("Servo ");
  2565. SERIAL_ECHO(servo_index);
  2566. SERIAL_ECHOLN(" out of range");
  2567. }
  2568. }
  2569. else if (servo_index >= 0) {
  2570. SERIAL_PROTOCOL(MSG_OK);
  2571. SERIAL_PROTOCOL(" Servo ");
  2572. SERIAL_PROTOCOL(servo_index);
  2573. SERIAL_PROTOCOL(": ");
  2574. SERIAL_PROTOCOL(servos[servo_index].read());
  2575. SERIAL_PROTOCOLLN("");
  2576. }
  2577. }
  2578. break;
  2579. #endif // NUM_SERVOS > 0
  2580. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2581. case 300: // M300
  2582. {
  2583. int beepS = code_seen('S') ? code_value() : 110;
  2584. int beepP = code_seen('P') ? code_value() : 1000;
  2585. if (beepS > 0)
  2586. {
  2587. #if BEEPER > 0
  2588. tone(BEEPER, beepS);
  2589. delay(beepP);
  2590. noTone(BEEPER);
  2591. #elif defined(ULTRALCD)
  2592. lcd_buzz(beepS, beepP);
  2593. #elif defined(LCD_USE_I2C_BUZZER)
  2594. lcd_buzz(beepP, beepS);
  2595. #endif
  2596. }
  2597. else
  2598. {
  2599. delay(beepP);
  2600. }
  2601. }
  2602. break;
  2603. #endif // M300
  2604. #ifdef PIDTEMP
  2605. case 301: // M301
  2606. {
  2607. if(code_seen('P')) Kp = code_value();
  2608. if(code_seen('I')) Ki = scalePID_i(code_value());
  2609. if(code_seen('D')) Kd = scalePID_d(code_value());
  2610. #ifdef PID_ADD_EXTRUSION_RATE
  2611. if(code_seen('C')) Kc = code_value();
  2612. #endif
  2613. updatePID();
  2614. SERIAL_PROTOCOL(MSG_OK);
  2615. SERIAL_PROTOCOL(" p:");
  2616. SERIAL_PROTOCOL(Kp);
  2617. SERIAL_PROTOCOL(" i:");
  2618. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2619. SERIAL_PROTOCOL(" d:");
  2620. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2621. #ifdef PID_ADD_EXTRUSION_RATE
  2622. SERIAL_PROTOCOL(" c:");
  2623. //Kc does not have scaling applied above, or in resetting defaults
  2624. SERIAL_PROTOCOL(Kc);
  2625. #endif
  2626. SERIAL_PROTOCOLLN("");
  2627. }
  2628. break;
  2629. #endif //PIDTEMP
  2630. #ifdef PIDTEMPBED
  2631. case 304: // M304
  2632. {
  2633. if(code_seen('P')) bedKp = code_value();
  2634. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2635. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2636. updatePID();
  2637. SERIAL_PROTOCOL(MSG_OK);
  2638. SERIAL_PROTOCOL(" p:");
  2639. SERIAL_PROTOCOL(bedKp);
  2640. SERIAL_PROTOCOL(" i:");
  2641. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2642. SERIAL_PROTOCOL(" d:");
  2643. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2644. SERIAL_PROTOCOLLN("");
  2645. }
  2646. break;
  2647. #endif //PIDTEMP
  2648. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2649. {
  2650. #ifdef CHDK
  2651. SET_OUTPUT(CHDK);
  2652. WRITE(CHDK, HIGH);
  2653. chdkHigh = millis();
  2654. chdkActive = true;
  2655. #else
  2656. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2657. const uint8_t NUM_PULSES=16;
  2658. const float PULSE_LENGTH=0.01524;
  2659. for(int i=0; i < NUM_PULSES; i++) {
  2660. WRITE(PHOTOGRAPH_PIN, HIGH);
  2661. _delay_ms(PULSE_LENGTH);
  2662. WRITE(PHOTOGRAPH_PIN, LOW);
  2663. _delay_ms(PULSE_LENGTH);
  2664. }
  2665. delay(7.33);
  2666. for(int i=0; i < NUM_PULSES; i++) {
  2667. WRITE(PHOTOGRAPH_PIN, HIGH);
  2668. _delay_ms(PULSE_LENGTH);
  2669. WRITE(PHOTOGRAPH_PIN, LOW);
  2670. _delay_ms(PULSE_LENGTH);
  2671. }
  2672. #endif
  2673. #endif //chdk end if
  2674. }
  2675. break;
  2676. #ifdef DOGLCD
  2677. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2678. {
  2679. if (code_seen('C')) {
  2680. lcd_setcontrast( ((int)code_value())&63 );
  2681. }
  2682. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2683. SERIAL_PROTOCOL(lcd_contrast);
  2684. SERIAL_PROTOCOLLN("");
  2685. }
  2686. break;
  2687. #endif
  2688. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2689. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2690. {
  2691. float temp = .0;
  2692. if (code_seen('S')) temp=code_value();
  2693. set_extrude_min_temp(temp);
  2694. }
  2695. break;
  2696. #endif
  2697. case 303: // M303 PID autotune
  2698. {
  2699. float temp = 150.0;
  2700. int e=0;
  2701. int c=5;
  2702. if (code_seen('E')) e=code_value();
  2703. if (e<0)
  2704. temp=70;
  2705. if (code_seen('S')) temp=code_value();
  2706. if (code_seen('C')) c=code_value();
  2707. PID_autotune(temp, e, c);
  2708. }
  2709. break;
  2710. case 400: // M400 finish all moves
  2711. {
  2712. st_synchronize();
  2713. }
  2714. break;
  2715. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2716. case 401:
  2717. {
  2718. engage_z_probe(); // Engage Z Servo endstop if available
  2719. }
  2720. break;
  2721. case 402:
  2722. {
  2723. retract_z_probe(); // Retract Z Servo endstop if enabled
  2724. }
  2725. break;
  2726. #endif
  2727. case 500: // M500 Store settings in EEPROM
  2728. {
  2729. Config_StoreSettings();
  2730. }
  2731. break;
  2732. case 501: // M501 Read settings from EEPROM
  2733. {
  2734. Config_RetrieveSettings();
  2735. }
  2736. break;
  2737. case 502: // M502 Revert to default settings
  2738. {
  2739. Config_ResetDefault();
  2740. }
  2741. break;
  2742. case 503: // M503 print settings currently in memory
  2743. {
  2744. Config_PrintSettings();
  2745. }
  2746. break;
  2747. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2748. case 540:
  2749. {
  2750. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2751. }
  2752. break;
  2753. #endif
  2754. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2755. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2756. {
  2757. float value;
  2758. if (code_seen('Z'))
  2759. {
  2760. value = code_value();
  2761. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2762. {
  2763. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2764. SERIAL_ECHO_START;
  2765. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2766. SERIAL_PROTOCOLLN("");
  2767. }
  2768. else
  2769. {
  2770. SERIAL_ECHO_START;
  2771. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2772. SERIAL_ECHOPGM(MSG_Z_MIN);
  2773. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2774. SERIAL_ECHOPGM(MSG_Z_MAX);
  2775. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2776. SERIAL_PROTOCOLLN("");
  2777. }
  2778. }
  2779. else
  2780. {
  2781. SERIAL_ECHO_START;
  2782. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2783. SERIAL_ECHO(-zprobe_zoffset);
  2784. SERIAL_PROTOCOLLN("");
  2785. }
  2786. break;
  2787. }
  2788. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2789. #ifdef FILAMENTCHANGEENABLE
  2790. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2791. {
  2792. float target[4];
  2793. float lastpos[4];
  2794. target[X_AXIS]=current_position[X_AXIS];
  2795. target[Y_AXIS]=current_position[Y_AXIS];
  2796. target[Z_AXIS]=current_position[Z_AXIS];
  2797. target[E_AXIS]=current_position[E_AXIS];
  2798. lastpos[X_AXIS]=current_position[X_AXIS];
  2799. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2800. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2801. lastpos[E_AXIS]=current_position[E_AXIS];
  2802. //retract by E
  2803. if(code_seen('E'))
  2804. {
  2805. target[E_AXIS]+= code_value();
  2806. }
  2807. else
  2808. {
  2809. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2810. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2811. #endif
  2812. }
  2813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2814. //lift Z
  2815. if(code_seen('Z'))
  2816. {
  2817. target[Z_AXIS]+= code_value();
  2818. }
  2819. else
  2820. {
  2821. #ifdef FILAMENTCHANGE_ZADD
  2822. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2823. #endif
  2824. }
  2825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2826. //move xy
  2827. if(code_seen('X'))
  2828. {
  2829. target[X_AXIS]+= code_value();
  2830. }
  2831. else
  2832. {
  2833. #ifdef FILAMENTCHANGE_XPOS
  2834. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2835. #endif
  2836. }
  2837. if(code_seen('Y'))
  2838. {
  2839. target[Y_AXIS]= code_value();
  2840. }
  2841. else
  2842. {
  2843. #ifdef FILAMENTCHANGE_YPOS
  2844. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2845. #endif
  2846. }
  2847. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2848. if(code_seen('L'))
  2849. {
  2850. target[E_AXIS]+= code_value();
  2851. }
  2852. else
  2853. {
  2854. #ifdef FILAMENTCHANGE_FINALRETRACT
  2855. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2856. #endif
  2857. }
  2858. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2859. //finish moves
  2860. st_synchronize();
  2861. //disable extruder steppers so filament can be removed
  2862. disable_e0();
  2863. disable_e1();
  2864. disable_e2();
  2865. delay(100);
  2866. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2867. uint8_t cnt=0;
  2868. while(!lcd_clicked()){
  2869. cnt++;
  2870. manage_heater();
  2871. manage_inactivity();
  2872. lcd_update();
  2873. if(cnt==0)
  2874. {
  2875. #if BEEPER > 0
  2876. SET_OUTPUT(BEEPER);
  2877. WRITE(BEEPER,HIGH);
  2878. delay(3);
  2879. WRITE(BEEPER,LOW);
  2880. delay(3);
  2881. #else
  2882. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2883. lcd_buzz(1000/6,100);
  2884. #else
  2885. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2886. #endif
  2887. #endif
  2888. }
  2889. }
  2890. //return to normal
  2891. if(code_seen('L'))
  2892. {
  2893. target[E_AXIS]+= -code_value();
  2894. }
  2895. else
  2896. {
  2897. #ifdef FILAMENTCHANGE_FINALRETRACT
  2898. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2899. #endif
  2900. }
  2901. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2902. plan_set_e_position(current_position[E_AXIS]);
  2903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2904. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2905. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2906. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2907. }
  2908. break;
  2909. #endif //FILAMENTCHANGEENABLE
  2910. #ifdef DUAL_X_CARRIAGE
  2911. case 605: // Set dual x-carriage movement mode:
  2912. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2913. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2914. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2915. // millimeters x-offset and an optional differential hotend temperature of
  2916. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2917. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2918. //
  2919. // Note: the X axis should be homed after changing dual x-carriage mode.
  2920. {
  2921. st_synchronize();
  2922. if (code_seen('S'))
  2923. dual_x_carriage_mode = code_value();
  2924. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2925. {
  2926. if (code_seen('X'))
  2927. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2928. if (code_seen('R'))
  2929. duplicate_extruder_temp_offset = code_value();
  2930. SERIAL_ECHO_START;
  2931. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2932. SERIAL_ECHO(" ");
  2933. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2934. SERIAL_ECHO(",");
  2935. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2936. SERIAL_ECHO(" ");
  2937. SERIAL_ECHO(duplicate_extruder_x_offset);
  2938. SERIAL_ECHO(",");
  2939. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2940. }
  2941. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2942. {
  2943. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2944. }
  2945. active_extruder_parked = false;
  2946. extruder_duplication_enabled = false;
  2947. delayed_move_time = 0;
  2948. }
  2949. break;
  2950. #endif //DUAL_X_CARRIAGE
  2951. case 907: // M907 Set digital trimpot motor current using axis codes.
  2952. {
  2953. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2954. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2955. if(code_seen('B')) digipot_current(4,code_value());
  2956. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2957. #endif
  2958. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2959. if(code_seen('X')) digipot_current(0, code_value());
  2960. #endif
  2961. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2962. if(code_seen('Z')) digipot_current(1, code_value());
  2963. #endif
  2964. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2965. if(code_seen('E')) digipot_current(2, code_value());
  2966. #endif
  2967. #ifdef DIGIPOT_I2C
  2968. // this one uses actual amps in floating point
  2969. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2970. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2971. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2972. #endif
  2973. }
  2974. break;
  2975. case 908: // M908 Control digital trimpot directly.
  2976. {
  2977. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2978. uint8_t channel,current;
  2979. if(code_seen('P')) channel=code_value();
  2980. if(code_seen('S')) current=code_value();
  2981. digitalPotWrite(channel, current);
  2982. #endif
  2983. }
  2984. break;
  2985. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2986. {
  2987. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2988. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2989. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2990. if(code_seen('B')) microstep_mode(4,code_value());
  2991. microstep_readings();
  2992. #endif
  2993. }
  2994. break;
  2995. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2996. {
  2997. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2998. if(code_seen('S')) switch((int)code_value())
  2999. {
  3000. case 1:
  3001. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3002. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3003. break;
  3004. case 2:
  3005. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3006. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3007. break;
  3008. }
  3009. microstep_readings();
  3010. #endif
  3011. }
  3012. break;
  3013. case 999: // M999: Restart after being stopped
  3014. Stopped = false;
  3015. lcd_reset_alert_level();
  3016. gcode_LastN = Stopped_gcode_LastN;
  3017. FlushSerialRequestResend();
  3018. break;
  3019. }
  3020. }
  3021. else if(code_seen('T'))
  3022. {
  3023. tmp_extruder = code_value();
  3024. if(tmp_extruder >= EXTRUDERS) {
  3025. SERIAL_ECHO_START;
  3026. SERIAL_ECHO("T");
  3027. SERIAL_ECHO(tmp_extruder);
  3028. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3029. }
  3030. else {
  3031. boolean make_move = false;
  3032. if(code_seen('F')) {
  3033. make_move = true;
  3034. next_feedrate = code_value();
  3035. if(next_feedrate > 0.0) {
  3036. feedrate = next_feedrate;
  3037. }
  3038. }
  3039. #if EXTRUDERS > 1
  3040. if(tmp_extruder != active_extruder) {
  3041. // Save current position to return to after applying extruder offset
  3042. memcpy(destination, current_position, sizeof(destination));
  3043. #ifdef DUAL_X_CARRIAGE
  3044. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3045. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3046. {
  3047. // Park old head: 1) raise 2) move to park position 3) lower
  3048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3049. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3050. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3051. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3052. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3053. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3054. st_synchronize();
  3055. }
  3056. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3057. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3058. extruder_offset[Y_AXIS][active_extruder] +
  3059. extruder_offset[Y_AXIS][tmp_extruder];
  3060. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3061. extruder_offset[Z_AXIS][active_extruder] +
  3062. extruder_offset[Z_AXIS][tmp_extruder];
  3063. active_extruder = tmp_extruder;
  3064. // This function resets the max/min values - the current position may be overwritten below.
  3065. axis_is_at_home(X_AXIS);
  3066. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3067. {
  3068. current_position[X_AXIS] = inactive_extruder_x_pos;
  3069. inactive_extruder_x_pos = destination[X_AXIS];
  3070. }
  3071. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3072. {
  3073. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3074. if (active_extruder == 0 || active_extruder_parked)
  3075. current_position[X_AXIS] = inactive_extruder_x_pos;
  3076. else
  3077. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3078. inactive_extruder_x_pos = destination[X_AXIS];
  3079. extruder_duplication_enabled = false;
  3080. }
  3081. else
  3082. {
  3083. // record raised toolhead position for use by unpark
  3084. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3085. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3086. active_extruder_parked = true;
  3087. delayed_move_time = 0;
  3088. }
  3089. #else
  3090. // Offset extruder (only by XY)
  3091. int i;
  3092. for(i = 0; i < 2; i++) {
  3093. current_position[i] = current_position[i] -
  3094. extruder_offset[i][active_extruder] +
  3095. extruder_offset[i][tmp_extruder];
  3096. }
  3097. // Set the new active extruder and position
  3098. active_extruder = tmp_extruder;
  3099. #endif //else DUAL_X_CARRIAGE
  3100. #ifdef DELTA
  3101. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3102. //sent position to plan_set_position();
  3103. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3104. #else
  3105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3106. #endif
  3107. // Move to the old position if 'F' was in the parameters
  3108. if(make_move && Stopped == false) {
  3109. prepare_move();
  3110. }
  3111. }
  3112. #endif
  3113. SERIAL_ECHO_START;
  3114. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3115. SERIAL_PROTOCOLLN((int)active_extruder);
  3116. }
  3117. }
  3118. else
  3119. {
  3120. SERIAL_ECHO_START;
  3121. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3122. SERIAL_ECHO(cmdbuffer[bufindr]);
  3123. SERIAL_ECHOLNPGM("\"");
  3124. }
  3125. ClearToSend();
  3126. }
  3127. void FlushSerialRequestResend()
  3128. {
  3129. //char cmdbuffer[bufindr][100]="Resend:";
  3130. MYSERIAL.flush();
  3131. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3132. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3133. ClearToSend();
  3134. }
  3135. void ClearToSend()
  3136. {
  3137. previous_millis_cmd = millis();
  3138. #ifdef SDSUPPORT
  3139. if(fromsd[bufindr])
  3140. return;
  3141. #endif //SDSUPPORT
  3142. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3143. }
  3144. void get_coordinates()
  3145. {
  3146. bool seen[4]={false,false,false,false};
  3147. for(int8_t i=0; i < NUM_AXIS; i++) {
  3148. if(code_seen(axis_codes[i]))
  3149. {
  3150. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3151. seen[i]=true;
  3152. }
  3153. else destination[i] = current_position[i]; //Are these else lines really needed?
  3154. }
  3155. if(code_seen('F')) {
  3156. next_feedrate = code_value();
  3157. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3158. }
  3159. }
  3160. void get_arc_coordinates()
  3161. {
  3162. #ifdef SF_ARC_FIX
  3163. bool relative_mode_backup = relative_mode;
  3164. relative_mode = true;
  3165. #endif
  3166. get_coordinates();
  3167. #ifdef SF_ARC_FIX
  3168. relative_mode=relative_mode_backup;
  3169. #endif
  3170. if(code_seen('I')) {
  3171. offset[0] = code_value();
  3172. }
  3173. else {
  3174. offset[0] = 0.0;
  3175. }
  3176. if(code_seen('J')) {
  3177. offset[1] = code_value();
  3178. }
  3179. else {
  3180. offset[1] = 0.0;
  3181. }
  3182. }
  3183. void clamp_to_software_endstops(float target[3])
  3184. {
  3185. if (min_software_endstops) {
  3186. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3187. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3188. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3189. }
  3190. if (max_software_endstops) {
  3191. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3192. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3193. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3194. }
  3195. }
  3196. #ifdef DELTA
  3197. void recalc_delta_settings(float radius, float diagonal_rod)
  3198. {
  3199. delta_tower1_x= -SIN_60*radius; // front left tower
  3200. delta_tower1_y= -COS_60*radius;
  3201. delta_tower2_x= SIN_60*radius; // front right tower
  3202. delta_tower2_y= -COS_60*radius;
  3203. delta_tower3_x= 0.0; // back middle tower
  3204. delta_tower3_y= radius;
  3205. delta_diagonal_rod_2= sq(diagonal_rod);
  3206. }
  3207. void calculate_delta(float cartesian[3])
  3208. {
  3209. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3210. - sq(delta_tower1_x-cartesian[X_AXIS])
  3211. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3212. ) + cartesian[Z_AXIS];
  3213. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3214. - sq(delta_tower2_x-cartesian[X_AXIS])
  3215. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3216. ) + cartesian[Z_AXIS];
  3217. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3218. - sq(delta_tower3_x-cartesian[X_AXIS])
  3219. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3220. ) + cartesian[Z_AXIS];
  3221. /*
  3222. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3223. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3224. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3225. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3226. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3227. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3228. */
  3229. }
  3230. #endif
  3231. void prepare_move()
  3232. {
  3233. clamp_to_software_endstops(destination);
  3234. previous_millis_cmd = millis();
  3235. #ifdef DELTA
  3236. float difference[NUM_AXIS];
  3237. for (int8_t i=0; i < NUM_AXIS; i++) {
  3238. difference[i] = destination[i] - current_position[i];
  3239. }
  3240. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3241. sq(difference[Y_AXIS]) +
  3242. sq(difference[Z_AXIS]));
  3243. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3244. if (cartesian_mm < 0.000001) { return; }
  3245. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3246. int steps = max(1, int(delta_segments_per_second * seconds));
  3247. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3248. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3249. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3250. for (int s = 1; s <= steps; s++) {
  3251. float fraction = float(s) / float(steps);
  3252. for(int8_t i=0; i < NUM_AXIS; i++) {
  3253. destination[i] = current_position[i] + difference[i] * fraction;
  3254. }
  3255. calculate_delta(destination);
  3256. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3257. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3258. active_extruder);
  3259. }
  3260. #else
  3261. #ifdef DUAL_X_CARRIAGE
  3262. if (active_extruder_parked)
  3263. {
  3264. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3265. {
  3266. // move duplicate extruder into correct duplication position.
  3267. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3268. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3269. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3271. st_synchronize();
  3272. extruder_duplication_enabled = true;
  3273. active_extruder_parked = false;
  3274. }
  3275. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3276. {
  3277. if (current_position[E_AXIS] == destination[E_AXIS])
  3278. {
  3279. // this is a travel move - skit it but keep track of current position (so that it can later
  3280. // be used as start of first non-travel move)
  3281. if (delayed_move_time != 0xFFFFFFFFUL)
  3282. {
  3283. memcpy(current_position, destination, sizeof(current_position));
  3284. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3285. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3286. delayed_move_time = millis();
  3287. return;
  3288. }
  3289. }
  3290. delayed_move_time = 0;
  3291. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3292. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3294. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3296. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3297. active_extruder_parked = false;
  3298. }
  3299. }
  3300. #endif //DUAL_X_CARRIAGE
  3301. // Do not use feedmultiply for E or Z only moves
  3302. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3304. }
  3305. else {
  3306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3307. }
  3308. #endif //else DELTA
  3309. for(int8_t i=0; i < NUM_AXIS; i++) {
  3310. current_position[i] = destination[i];
  3311. }
  3312. }
  3313. void prepare_arc_move(char isclockwise) {
  3314. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3315. // Trace the arc
  3316. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3317. // As far as the parser is concerned, the position is now == target. In reality the
  3318. // motion control system might still be processing the action and the real tool position
  3319. // in any intermediate location.
  3320. for(int8_t i=0; i < NUM_AXIS; i++) {
  3321. current_position[i] = destination[i];
  3322. }
  3323. previous_millis_cmd = millis();
  3324. }
  3325. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3326. #if defined(FAN_PIN)
  3327. #if CONTROLLERFAN_PIN == FAN_PIN
  3328. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3329. #endif
  3330. #endif
  3331. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3332. unsigned long lastMotorCheck = 0;
  3333. void controllerFan()
  3334. {
  3335. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3336. {
  3337. lastMotorCheck = millis();
  3338. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3339. #if EXTRUDERS > 2
  3340. || !READ(E2_ENABLE_PIN)
  3341. #endif
  3342. #if EXTRUDER > 1
  3343. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3344. || !READ(X2_ENABLE_PIN)
  3345. #endif
  3346. || !READ(E1_ENABLE_PIN)
  3347. #endif
  3348. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3349. {
  3350. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3351. }
  3352. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3353. {
  3354. digitalWrite(CONTROLLERFAN_PIN, 0);
  3355. analogWrite(CONTROLLERFAN_PIN, 0);
  3356. }
  3357. else
  3358. {
  3359. // allows digital or PWM fan output to be used (see M42 handling)
  3360. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3361. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3362. }
  3363. }
  3364. }
  3365. #endif
  3366. #ifdef TEMP_STAT_LEDS
  3367. static bool blue_led = false;
  3368. static bool red_led = false;
  3369. static uint32_t stat_update = 0;
  3370. void handle_status_leds(void) {
  3371. float max_temp = 0.0;
  3372. if(millis() > stat_update) {
  3373. stat_update += 500; // Update every 0.5s
  3374. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3375. max_temp = max(max_temp, degHotend(cur_extruder));
  3376. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3377. }
  3378. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3379. max_temp = max(max_temp, degTargetBed());
  3380. max_temp = max(max_temp, degBed());
  3381. #endif
  3382. if((max_temp > 55.0) && (red_led == false)) {
  3383. digitalWrite(STAT_LED_RED, 1);
  3384. digitalWrite(STAT_LED_BLUE, 0);
  3385. red_led = true;
  3386. blue_led = false;
  3387. }
  3388. if((max_temp < 54.0) && (blue_led == false)) {
  3389. digitalWrite(STAT_LED_RED, 0);
  3390. digitalWrite(STAT_LED_BLUE, 1);
  3391. red_led = false;
  3392. blue_led = true;
  3393. }
  3394. }
  3395. }
  3396. #endif
  3397. void manage_inactivity()
  3398. {
  3399. if(buflen < (BUFSIZE-1))
  3400. get_command();
  3401. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3402. if(max_inactive_time)
  3403. kill();
  3404. if(stepper_inactive_time) {
  3405. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3406. {
  3407. if(blocks_queued() == false) {
  3408. disable_x();
  3409. disable_y();
  3410. disable_z();
  3411. disable_e0();
  3412. disable_e1();
  3413. disable_e2();
  3414. }
  3415. }
  3416. }
  3417. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3418. if (chdkActive)
  3419. {
  3420. chdkActive = false;
  3421. if (millis()-chdkHigh < CHDK_DELAY) return;
  3422. WRITE(CHDK, LOW);
  3423. }
  3424. #endif
  3425. #if defined(KILL_PIN) && KILL_PIN > -1
  3426. if( 0 == READ(KILL_PIN) )
  3427. kill();
  3428. #endif
  3429. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3430. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3431. #endif
  3432. #ifdef EXTRUDER_RUNOUT_PREVENT
  3433. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3434. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3435. {
  3436. bool oldstatus=READ(E0_ENABLE_PIN);
  3437. enable_e0();
  3438. float oldepos=current_position[E_AXIS];
  3439. float oldedes=destination[E_AXIS];
  3440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3441. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3442. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3443. current_position[E_AXIS]=oldepos;
  3444. destination[E_AXIS]=oldedes;
  3445. plan_set_e_position(oldepos);
  3446. previous_millis_cmd=millis();
  3447. st_synchronize();
  3448. WRITE(E0_ENABLE_PIN,oldstatus);
  3449. }
  3450. #endif
  3451. #if defined(DUAL_X_CARRIAGE)
  3452. // handle delayed move timeout
  3453. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3454. {
  3455. // travel moves have been received so enact them
  3456. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3457. memcpy(destination,current_position,sizeof(destination));
  3458. prepare_move();
  3459. }
  3460. #endif
  3461. #ifdef TEMP_STAT_LEDS
  3462. handle_status_leds();
  3463. #endif
  3464. check_axes_activity();
  3465. }
  3466. void kill()
  3467. {
  3468. cli(); // Stop interrupts
  3469. disable_heater();
  3470. disable_x();
  3471. disable_y();
  3472. disable_z();
  3473. disable_e0();
  3474. disable_e1();
  3475. disable_e2();
  3476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3477. pinMode(PS_ON_PIN,INPUT);
  3478. #endif
  3479. SERIAL_ERROR_START;
  3480. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3481. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3482. suicide();
  3483. while(1) { /* Intentionally left empty */ } // Wait for reset
  3484. }
  3485. void Stop()
  3486. {
  3487. disable_heater();
  3488. if(Stopped == false) {
  3489. Stopped = true;
  3490. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3491. SERIAL_ERROR_START;
  3492. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3493. LCD_MESSAGEPGM(MSG_STOPPED);
  3494. }
  3495. }
  3496. bool IsStopped() { return Stopped; };
  3497. #ifdef FAST_PWM_FAN
  3498. void setPwmFrequency(uint8_t pin, int val)
  3499. {
  3500. val &= 0x07;
  3501. switch(digitalPinToTimer(pin))
  3502. {
  3503. #if defined(TCCR0A)
  3504. case TIMER0A:
  3505. case TIMER0B:
  3506. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3507. // TCCR0B |= val;
  3508. break;
  3509. #endif
  3510. #if defined(TCCR1A)
  3511. case TIMER1A:
  3512. case TIMER1B:
  3513. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3514. // TCCR1B |= val;
  3515. break;
  3516. #endif
  3517. #if defined(TCCR2)
  3518. case TIMER2:
  3519. case TIMER2:
  3520. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3521. TCCR2 |= val;
  3522. break;
  3523. #endif
  3524. #if defined(TCCR2A)
  3525. case TIMER2A:
  3526. case TIMER2B:
  3527. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3528. TCCR2B |= val;
  3529. break;
  3530. #endif
  3531. #if defined(TCCR3A)
  3532. case TIMER3A:
  3533. case TIMER3B:
  3534. case TIMER3C:
  3535. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3536. TCCR3B |= val;
  3537. break;
  3538. #endif
  3539. #if defined(TCCR4A)
  3540. case TIMER4A:
  3541. case TIMER4B:
  3542. case TIMER4C:
  3543. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3544. TCCR4B |= val;
  3545. break;
  3546. #endif
  3547. #if defined(TCCR5A)
  3548. case TIMER5A:
  3549. case TIMER5B:
  3550. case TIMER5C:
  3551. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3552. TCCR5B |= val;
  3553. break;
  3554. #endif
  3555. }
  3556. }
  3557. #endif //FAST_PWM_FAN
  3558. bool setTargetedHotend(int code){
  3559. tmp_extruder = active_extruder;
  3560. if(code_seen('T')) {
  3561. tmp_extruder = code_value();
  3562. if(tmp_extruder >= EXTRUDERS) {
  3563. SERIAL_ECHO_START;
  3564. switch(code){
  3565. case 104:
  3566. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3567. break;
  3568. case 105:
  3569. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3570. break;
  3571. case 109:
  3572. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3573. break;
  3574. case 218:
  3575. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3576. break;
  3577. case 221:
  3578. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3579. break;
  3580. }
  3581. SERIAL_ECHOLN(tmp_extruder);
  3582. return true;
  3583. }
  3584. }
  3585. return false;
  3586. }