My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  68. bool abort_on_endstop_hit = false;
  69. #endif
  70. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  71. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  72. #endif
  73. #if HAS_X_MIN
  74. static bool old_x_min_endstop = false;
  75. #endif
  76. #if HAS_X_MAX
  77. static bool old_x_max_endstop = false;
  78. #endif
  79. #if HAS_Y_MIN
  80. static bool old_y_min_endstop = false;
  81. #endif
  82. #if HAS_Y_MAX
  83. static bool old_y_max_endstop = false;
  84. #endif
  85. static bool old_z_min_endstop = false;
  86. static bool old_z_max_endstop = false;
  87. #ifdef Z_DUAL_ENDSTOPS
  88. static bool old_z2_min_endstop = false;
  89. static bool old_z2_max_endstop = false;
  90. #endif
  91. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  92. static bool old_z_probe_endstop = false;
  93. #endif
  94. static bool check_endstops = true;
  95. volatile long count_position[NUM_AXIS] = { 0 };
  96. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. //===========================================================================
  98. //================================ functions ================================
  99. //===========================================================================
  100. #ifdef DUAL_X_CARRIAGE
  101. #define X_APPLY_DIR(v,ALWAYS) \
  102. if (extruder_duplication_enabled || ALWAYS) { \
  103. X_DIR_WRITE(v); \
  104. X2_DIR_WRITE(v); \
  105. } \
  106. else { \
  107. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  108. }
  109. #define X_APPLY_STEP(v,ALWAYS) \
  110. if (extruder_duplication_enabled || ALWAYS) { \
  111. X_STEP_WRITE(v); \
  112. X2_STEP_WRITE(v); \
  113. } \
  114. else { \
  115. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  116. }
  117. #else
  118. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  119. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  120. #endif
  121. #ifdef Y_DUAL_STEPPER_DRIVERS
  122. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  123. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  124. #else
  125. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  126. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  127. #endif
  128. #ifdef Z_DUAL_STEPPER_DRIVERS
  129. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  130. #ifdef Z_DUAL_ENDSTOPS
  131. #define Z_APPLY_STEP(v,Q) \
  132. if (performing_homing) { \
  133. if (Z_HOME_DIR > 0) {\
  134. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  135. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  136. } else {\
  137. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  138. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  139. } \
  140. } else { \
  141. Z_STEP_WRITE(v); \
  142. Z2_STEP_WRITE(v); \
  143. }
  144. #else
  145. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  146. #endif
  147. #else
  148. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  149. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  150. #endif
  151. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  152. // intRes = intIn1 * intIn2 >> 16
  153. // uses:
  154. // r26 to store 0
  155. // r27 to store the byte 1 of the 24 bit result
  156. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  157. asm volatile ( \
  158. "clr r26 \n\t" \
  159. "mul %A1, %B2 \n\t" \
  160. "movw %A0, r0 \n\t" \
  161. "mul %A1, %A2 \n\t" \
  162. "add %A0, r1 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "lsr r0 \n\t" \
  165. "adc %A0, r26 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "clr r1 \n\t" \
  168. : \
  169. "=&r" (intRes) \
  170. : \
  171. "d" (charIn1), \
  172. "d" (intIn2) \
  173. : \
  174. "r26" \
  175. )
  176. // intRes = longIn1 * longIn2 >> 24
  177. // uses:
  178. // r26 to store 0
  179. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  180. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  181. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  182. // B0 A0 are bits 24-39 and are the returned value
  183. // C1 B1 A1 is longIn1
  184. // D2 C2 B2 A2 is longIn2
  185. //
  186. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "mul %D2, %A1 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %D2, %B1 \n\t" \
  221. "add %B0, r0 \n\t" \
  222. "clr r1 \n\t" \
  223. : \
  224. "=&r" (intRes) \
  225. : \
  226. "d" (longIn1), \
  227. "d" (longIn2) \
  228. : \
  229. "r26" , "r27" \
  230. )
  231. // Some useful constants
  232. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  233. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  234. void endstops_hit_on_purpose() {
  235. endstop_hit_bits = 0;
  236. }
  237. void checkHitEndstops() {
  238. if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
  239. SERIAL_ECHO_START;
  240. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  241. if (endstop_hit_bits & BIT(X_MIN)) {
  242. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  244. }
  245. if (endstop_hit_bits & BIT(Y_MIN)) {
  246. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  247. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  248. }
  249. if (endstop_hit_bits & BIT(Z_MIN)) {
  250. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  251. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  252. }
  253. #ifdef Z_PROBE_ENDSTOP
  254. if (endstop_hit_bits & BIT(Z_PROBE)) {
  255. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  256. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  257. }
  258. #endif
  259. SERIAL_EOL;
  260. endstops_hit_on_purpose();
  261. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  262. if (abort_on_endstop_hit) {
  263. card.sdprinting = false;
  264. card.closefile();
  265. quickStop();
  266. disable_all_heaters(); // switch off all heaters.
  267. }
  268. #endif
  269. }
  270. }
  271. void enable_endstops(bool check) { check_endstops = check; }
  272. // __________________________
  273. // /| |\ _________________ ^
  274. // / | | \ /| |\ |
  275. // / | | \ / | | \ s
  276. // / | | | | | \ p
  277. // / | | | | | \ e
  278. // +-----+------------------------+---+--+---------------+----+ e
  279. // | BLOCK 1 | BLOCK 2 | d
  280. //
  281. // time ----->
  282. //
  283. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  284. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  285. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  286. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  287. void st_wake_up() {
  288. // TCNT1 = 0;
  289. ENABLE_STEPPER_DRIVER_INTERRUPT();
  290. }
  291. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  292. unsigned short timer;
  293. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  294. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  295. step_rate = (step_rate >> 2) & 0x3fff;
  296. step_loops = 4;
  297. }
  298. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  299. step_rate = (step_rate >> 1) & 0x7fff;
  300. step_loops = 2;
  301. }
  302. else {
  303. step_loops = 1;
  304. }
  305. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  306. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  307. if (step_rate >= (8 * 256)) { // higher step rate
  308. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  309. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  310. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  311. MultiU16X8toH16(timer, tmp_step_rate, gain);
  312. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  313. }
  314. else { // lower step rates
  315. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  316. table_address += ((step_rate)>>1) & 0xfffc;
  317. timer = (unsigned short)pgm_read_word_near(table_address);
  318. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  319. }
  320. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  321. return timer;
  322. }
  323. // set the stepper direction of each axis
  324. void set_stepper_direction() {
  325. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  326. if (TEST(out_bits, X_AXIS)) {
  327. X_APPLY_DIR(INVERT_X_DIR,0);
  328. count_direction[X_AXIS] = -1;
  329. }
  330. else {
  331. X_APPLY_DIR(!INVERT_X_DIR,0);
  332. count_direction[X_AXIS] = 1;
  333. }
  334. if (TEST(out_bits, Y_AXIS)) {
  335. Y_APPLY_DIR(INVERT_Y_DIR,0);
  336. count_direction[Y_AXIS] = -1;
  337. }
  338. else {
  339. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  340. count_direction[Y_AXIS] = 1;
  341. }
  342. if (TEST(out_bits, Z_AXIS)) {
  343. Z_APPLY_DIR(INVERT_Z_DIR,0);
  344. count_direction[Z_AXIS] = -1;
  345. }
  346. else {
  347. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  348. count_direction[Z_AXIS] = 1;
  349. }
  350. #ifndef ADVANCE
  351. if (TEST(out_bits, E_AXIS)) {
  352. REV_E_DIR();
  353. count_direction[E_AXIS] = -1;
  354. }
  355. else {
  356. NORM_E_DIR();
  357. count_direction[E_AXIS] = 1;
  358. }
  359. #endif //!ADVANCE
  360. }
  361. // Initializes the trapezoid generator from the current block. Called whenever a new
  362. // block begins.
  363. FORCE_INLINE void trapezoid_generator_reset() {
  364. if (current_block->direction_bits != out_bits) {
  365. out_bits = current_block->direction_bits;
  366. set_stepper_direction();
  367. }
  368. #ifdef ADVANCE
  369. advance = current_block->initial_advance;
  370. final_advance = current_block->final_advance;
  371. // Do E steps + advance steps
  372. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  373. old_advance = advance >>8;
  374. #endif
  375. deceleration_time = 0;
  376. // step_rate to timer interval
  377. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  378. // make a note of the number of step loops required at nominal speed
  379. step_loops_nominal = step_loops;
  380. acc_step_rate = current_block->initial_rate;
  381. acceleration_time = calc_timer(acc_step_rate);
  382. OCR1A = acceleration_time;
  383. // SERIAL_ECHO_START;
  384. // SERIAL_ECHOPGM("advance :");
  385. // SERIAL_ECHO(current_block->advance/256.0);
  386. // SERIAL_ECHOPGM("advance rate :");
  387. // SERIAL_ECHO(current_block->advance_rate/256.0);
  388. // SERIAL_ECHOPGM("initial advance :");
  389. // SERIAL_ECHO(current_block->initial_advance/256.0);
  390. // SERIAL_ECHOPGM("final advance :");
  391. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  392. }
  393. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  394. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  395. ISR(TIMER1_COMPA_vect) {
  396. if(cleaning_buffer_counter)
  397. {
  398. current_block = NULL;
  399. plan_discard_current_block();
  400. #ifdef SD_FINISHED_RELEASECOMMAND
  401. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  402. #endif
  403. cleaning_buffer_counter--;
  404. OCR1A = 200;
  405. return;
  406. }
  407. // If there is no current block, attempt to pop one from the buffer
  408. if (!current_block) {
  409. // Anything in the buffer?
  410. current_block = plan_get_current_block();
  411. if (current_block) {
  412. current_block->busy = true;
  413. trapezoid_generator_reset();
  414. counter_x = -(current_block->step_event_count >> 1);
  415. counter_y = counter_z = counter_e = counter_x;
  416. step_events_completed = 0;
  417. #ifdef Z_LATE_ENABLE
  418. if (current_block->steps[Z_AXIS] > 0) {
  419. enable_z();
  420. OCR1A = 2000; //1ms wait
  421. return;
  422. }
  423. #endif
  424. // #ifdef ADVANCE
  425. // e_steps[current_block->active_extruder] = 0;
  426. // #endif
  427. }
  428. else {
  429. OCR1A = 2000; // 1kHz.
  430. }
  431. }
  432. if (current_block != NULL) {
  433. // Check endstops
  434. if (check_endstops) {
  435. #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
  436. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  437. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  438. #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
  439. #define _AXIS(AXIS) AXIS ##_AXIS
  440. #define _HIT_BIT(AXIS) AXIS ##_MIN
  441. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
  442. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  443. bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
  444. if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  445. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  446. _ENDSTOP_HIT(AXIS); \
  447. step_events_completed = current_block->step_event_count; \
  448. } \
  449. _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
  450. #ifdef COREXY
  451. // Head direction in -X axis for CoreXY bots.
  452. // If DeltaX == -DeltaY, the movement is only in Y axis
  453. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  454. if (TEST(out_bits, X_HEAD))
  455. #else
  456. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  457. #endif
  458. { // -direction
  459. #ifdef DUAL_X_CARRIAGE
  460. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  461. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  462. #endif
  463. {
  464. #if HAS_X_MIN
  465. UPDATE_ENDSTOP(x, X, min, MIN);
  466. #endif
  467. }
  468. }
  469. else { // +direction
  470. #ifdef DUAL_X_CARRIAGE
  471. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  472. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  473. #endif
  474. {
  475. #if HAS_X_MAX
  476. UPDATE_ENDSTOP(x, X, max, MAX);
  477. #endif
  478. }
  479. }
  480. #ifdef COREXY
  481. }
  482. // Head direction in -Y axis for CoreXY bots.
  483. // If DeltaX == DeltaY, the movement is only in X axis
  484. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  485. if (TEST(out_bits, Y_HEAD))
  486. #else
  487. if (TEST(out_bits, Y_AXIS)) // -direction
  488. #endif
  489. { // -direction
  490. #if HAS_Y_MIN
  491. UPDATE_ENDSTOP(y, Y, min, MIN);
  492. #endif
  493. }
  494. else { // +direction
  495. #if HAS_Y_MAX
  496. UPDATE_ENDSTOP(y, Y, max, MAX);
  497. #endif
  498. }
  499. #ifdef COREXY
  500. }
  501. #endif
  502. if (TEST(out_bits, Z_AXIS)) { // z -direction
  503. #if HAS_Z_MIN
  504. #ifdef Z_DUAL_ENDSTOPS
  505. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  506. z2_min_endstop =
  507. #if HAS_Z2_MIN
  508. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  509. #else
  510. z_min_endstop
  511. #endif
  512. ;
  513. bool z_min_both = z_min_endstop && old_z_min_endstop,
  514. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  515. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  516. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  517. endstop_hit_bits |= BIT(Z_MIN);
  518. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  519. step_events_completed = current_block->step_event_count;
  520. }
  521. old_z_min_endstop = z_min_endstop;
  522. old_z2_min_endstop = z2_min_endstop;
  523. #else // !Z_DUAL_ENDSTOPS
  524. UPDATE_ENDSTOP(z, Z, min, MIN);
  525. #endif // !Z_DUAL_ENDSTOPS
  526. #endif // Z_MIN_PIN
  527. #ifdef Z_PROBE_ENDSTOP
  528. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  529. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  530. if(z_probe_endstop && old_z_probe_endstop)
  531. {
  532. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  533. endstop_hit_bits |= BIT(Z_PROBE);
  534. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  535. }
  536. old_z_probe_endstop = z_probe_endstop;
  537. #endif
  538. }
  539. else { // z +direction
  540. #if HAS_Z_MAX
  541. #ifdef Z_DUAL_ENDSTOPS
  542. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  543. z2_max_endstop =
  544. #if HAS_Z2_MAX
  545. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  546. #else
  547. z_max_endstop
  548. #endif
  549. ;
  550. bool z_max_both = z_max_endstop && old_z_max_endstop,
  551. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  552. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  553. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  554. endstop_hit_bits |= BIT(Z_MIN);
  555. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  556. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  557. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  558. step_events_completed = current_block->step_event_count;
  559. }
  560. old_z_max_endstop = z_max_endstop;
  561. old_z2_max_endstop = z2_max_endstop;
  562. #else // !Z_DUAL_ENDSTOPS
  563. UPDATE_ENDSTOP(z, Z, max, MAX);
  564. #endif // !Z_DUAL_ENDSTOPS
  565. #endif // Z_MAX_PIN
  566. #ifdef Z_PROBE_ENDSTOP
  567. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  568. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  569. if(z_probe_endstop && old_z_probe_endstop)
  570. {
  571. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  572. endstop_hit_bits |= BIT(Z_PROBE);
  573. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  574. }
  575. old_z_probe_endstop = z_probe_endstop;
  576. #endif
  577. }
  578. }
  579. // Take multiple steps per interrupt (For high speed moves)
  580. for (int8_t i = 0; i < step_loops; i++) {
  581. #ifndef AT90USB
  582. MSerial.checkRx(); // Check for serial chars.
  583. #endif
  584. #ifdef ADVANCE
  585. counter_e += current_block->steps[E_AXIS];
  586. if (counter_e > 0) {
  587. counter_e -= current_block->step_event_count;
  588. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  589. }
  590. #endif //ADVANCE
  591. #define _COUNTER(axis) counter_## axis
  592. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  593. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  594. #define STEP_ADD(axis, AXIS) \
  595. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  596. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  597. STEP_ADD(x,X);
  598. STEP_ADD(y,Y);
  599. STEP_ADD(z,Z);
  600. #ifndef ADVANCE
  601. STEP_ADD(e,E);
  602. #endif
  603. #define STEP_IF_COUNTER(axis, AXIS) \
  604. if (_COUNTER(axis) > 0) { \
  605. _COUNTER(axis) -= current_block->step_event_count; \
  606. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  607. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  608. }
  609. STEP_IF_COUNTER(x, X);
  610. STEP_IF_COUNTER(y, Y);
  611. STEP_IF_COUNTER(z, Z);
  612. #ifndef ADVANCE
  613. STEP_IF_COUNTER(e, E);
  614. #endif
  615. step_events_completed++;
  616. if (step_events_completed >= current_block->step_event_count) break;
  617. }
  618. // Calculate new timer value
  619. unsigned short timer;
  620. unsigned short step_rate;
  621. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  622. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  623. acc_step_rate += current_block->initial_rate;
  624. // upper limit
  625. if (acc_step_rate > current_block->nominal_rate)
  626. acc_step_rate = current_block->nominal_rate;
  627. // step_rate to timer interval
  628. timer = calc_timer(acc_step_rate);
  629. OCR1A = timer;
  630. acceleration_time += timer;
  631. #ifdef ADVANCE
  632. for(int8_t i=0; i < step_loops; i++) {
  633. advance += advance_rate;
  634. }
  635. //if (advance > current_block->advance) advance = current_block->advance;
  636. // Do E steps + advance steps
  637. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  638. old_advance = advance >>8;
  639. #endif
  640. }
  641. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  642. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  643. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  644. step_rate = current_block->final_rate;
  645. }
  646. else {
  647. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  648. }
  649. // lower limit
  650. if (step_rate < current_block->final_rate)
  651. step_rate = current_block->final_rate;
  652. // step_rate to timer interval
  653. timer = calc_timer(step_rate);
  654. OCR1A = timer;
  655. deceleration_time += timer;
  656. #ifdef ADVANCE
  657. for(int8_t i=0; i < step_loops; i++) {
  658. advance -= advance_rate;
  659. }
  660. if (advance < final_advance) advance = final_advance;
  661. // Do E steps + advance steps
  662. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  663. old_advance = advance >>8;
  664. #endif //ADVANCE
  665. }
  666. else {
  667. OCR1A = OCR1A_nominal;
  668. // ensure we're running at the correct step rate, even if we just came off an acceleration
  669. step_loops = step_loops_nominal;
  670. }
  671. // If current block is finished, reset pointer
  672. if (step_events_completed >= current_block->step_event_count) {
  673. current_block = NULL;
  674. plan_discard_current_block();
  675. }
  676. }
  677. }
  678. #ifdef ADVANCE
  679. unsigned char old_OCR0A;
  680. // Timer interrupt for E. e_steps is set in the main routine;
  681. // Timer 0 is shared with millies
  682. ISR(TIMER0_COMPA_vect)
  683. {
  684. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  685. OCR0A = old_OCR0A;
  686. // Set E direction (Depends on E direction + advance)
  687. for(unsigned char i=0; i<4;i++) {
  688. if (e_steps[0] != 0) {
  689. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  690. if (e_steps[0] < 0) {
  691. E0_DIR_WRITE(INVERT_E0_DIR);
  692. e_steps[0]++;
  693. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  694. }
  695. else if (e_steps[0] > 0) {
  696. E0_DIR_WRITE(!INVERT_E0_DIR);
  697. e_steps[0]--;
  698. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  699. }
  700. }
  701. #if EXTRUDERS > 1
  702. if (e_steps[1] != 0) {
  703. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  704. if (e_steps[1] < 0) {
  705. E1_DIR_WRITE(INVERT_E1_DIR);
  706. e_steps[1]++;
  707. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  708. }
  709. else if (e_steps[1] > 0) {
  710. E1_DIR_WRITE(!INVERT_E1_DIR);
  711. e_steps[1]--;
  712. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  713. }
  714. }
  715. #endif
  716. #if EXTRUDERS > 2
  717. if (e_steps[2] != 0) {
  718. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  719. if (e_steps[2] < 0) {
  720. E2_DIR_WRITE(INVERT_E2_DIR);
  721. e_steps[2]++;
  722. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  723. }
  724. else if (e_steps[2] > 0) {
  725. E2_DIR_WRITE(!INVERT_E2_DIR);
  726. e_steps[2]--;
  727. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  728. }
  729. }
  730. #endif
  731. #if EXTRUDERS > 3
  732. if (e_steps[3] != 0) {
  733. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  734. if (e_steps[3] < 0) {
  735. E3_DIR_WRITE(INVERT_E3_DIR);
  736. e_steps[3]++;
  737. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  738. }
  739. else if (e_steps[3] > 0) {
  740. E3_DIR_WRITE(!INVERT_E3_DIR);
  741. e_steps[3]--;
  742. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  743. }
  744. }
  745. #endif
  746. }
  747. }
  748. #endif // ADVANCE
  749. void st_init() {
  750. digipot_init(); //Initialize Digipot Motor Current
  751. microstep_init(); //Initialize Microstepping Pins
  752. // initialise TMC Steppers
  753. #ifdef HAVE_TMCDRIVER
  754. tmc_init();
  755. #endif
  756. // initialise L6470 Steppers
  757. #ifdef HAVE_L6470DRIVER
  758. L6470_init();
  759. #endif
  760. // Initialize Dir Pins
  761. #if HAS_X_DIR
  762. X_DIR_INIT;
  763. #endif
  764. #if HAS_X2_DIR
  765. X2_DIR_INIT;
  766. #endif
  767. #if HAS_Y_DIR
  768. Y_DIR_INIT;
  769. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  770. Y2_DIR_INIT;
  771. #endif
  772. #endif
  773. #if HAS_Z_DIR
  774. Z_DIR_INIT;
  775. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  776. Z2_DIR_INIT;
  777. #endif
  778. #endif
  779. #if HAS_E0_DIR
  780. E0_DIR_INIT;
  781. #endif
  782. #if HAS_E1_DIR
  783. E1_DIR_INIT;
  784. #endif
  785. #if HAS_E2_DIR
  786. E2_DIR_INIT;
  787. #endif
  788. #if HAS_E3_DIR
  789. E3_DIR_INIT;
  790. #endif
  791. //Initialize Enable Pins - steppers default to disabled.
  792. #if HAS_X_ENABLE
  793. X_ENABLE_INIT;
  794. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if HAS_X2_ENABLE
  797. X2_ENABLE_INIT;
  798. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  799. #endif
  800. #if HAS_Y_ENABLE
  801. Y_ENABLE_INIT;
  802. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  803. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  804. Y2_ENABLE_INIT;
  805. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #endif
  808. #if HAS_Z_ENABLE
  809. Z_ENABLE_INIT;
  810. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  811. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  812. Z2_ENABLE_INIT;
  813. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  814. #endif
  815. #endif
  816. #if HAS_E0_ENABLE
  817. E0_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E1_ENABLE
  821. E1_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E2_ENABLE
  825. E2_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  827. #endif
  828. #if HAS_E3_ENABLE
  829. E3_ENABLE_INIT;
  830. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  831. #endif
  832. //endstops and pullups
  833. #if HAS_X_MIN
  834. SET_INPUT(X_MIN_PIN);
  835. #ifdef ENDSTOPPULLUP_XMIN
  836. WRITE(X_MIN_PIN,HIGH);
  837. #endif
  838. #endif
  839. #if HAS_Y_MIN
  840. SET_INPUT(Y_MIN_PIN);
  841. #ifdef ENDSTOPPULLUP_YMIN
  842. WRITE(Y_MIN_PIN,HIGH);
  843. #endif
  844. #endif
  845. #if HAS_Z_MIN
  846. SET_INPUT(Z_MIN_PIN);
  847. #ifdef ENDSTOPPULLUP_ZMIN
  848. WRITE(Z_MIN_PIN,HIGH);
  849. #endif
  850. #endif
  851. #if HAS_X_MAX
  852. SET_INPUT(X_MAX_PIN);
  853. #ifdef ENDSTOPPULLUP_XMAX
  854. WRITE(X_MAX_PIN,HIGH);
  855. #endif
  856. #endif
  857. #if HAS_Y_MAX
  858. SET_INPUT(Y_MAX_PIN);
  859. #ifdef ENDSTOPPULLUP_YMAX
  860. WRITE(Y_MAX_PIN,HIGH);
  861. #endif
  862. #endif
  863. #if HAS_Z_MAX
  864. SET_INPUT(Z_MAX_PIN);
  865. #ifdef ENDSTOPPULLUP_ZMAX
  866. WRITE(Z_MAX_PIN,HIGH);
  867. #endif
  868. #endif
  869. #if HAS_Z2_MAX
  870. SET_INPUT(Z2_MAX_PIN);
  871. #ifdef ENDSTOPPULLUP_ZMAX
  872. WRITE(Z2_MAX_PIN,HIGH);
  873. #endif
  874. #endif
  875. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  876. SET_INPUT(Z_PROBE_PIN);
  877. #ifdef ENDSTOPPULLUP_ZPROBE
  878. WRITE(Z_PROBE_PIN,HIGH);
  879. #endif
  880. #endif
  881. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  882. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  883. #define _DISABLE(axis) disable_## axis()
  884. #define AXIS_INIT(axis, AXIS, PIN) \
  885. _STEP_INIT(AXIS); \
  886. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  887. _DISABLE(axis)
  888. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  889. // Initialize Step Pins
  890. #if HAS_X_STEP
  891. AXIS_INIT(x, X, X);
  892. #endif
  893. #if HAS_X2_STEP
  894. AXIS_INIT(x, X2, X);
  895. #endif
  896. #if HAS_Y_STEP
  897. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  898. Y2_STEP_INIT;
  899. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  900. #endif
  901. AXIS_INIT(y, Y, Y);
  902. #endif
  903. #if HAS_Z_STEP
  904. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  905. Z2_STEP_INIT;
  906. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  907. #endif
  908. AXIS_INIT(z, Z, Z);
  909. #endif
  910. #if HAS_E0_STEP
  911. E_AXIS_INIT(0);
  912. #endif
  913. #if HAS_E1_STEP
  914. E_AXIS_INIT(1);
  915. #endif
  916. #if HAS_E2_STEP
  917. E_AXIS_INIT(2);
  918. #endif
  919. #if HAS_E3_STEP
  920. E_AXIS_INIT(3);
  921. #endif
  922. // waveform generation = 0100 = CTC
  923. TCCR1B &= ~BIT(WGM13);
  924. TCCR1B |= BIT(WGM12);
  925. TCCR1A &= ~BIT(WGM11);
  926. TCCR1A &= ~BIT(WGM10);
  927. // output mode = 00 (disconnected)
  928. TCCR1A &= ~(3<<COM1A0);
  929. TCCR1A &= ~(3<<COM1B0);
  930. // Set the timer pre-scaler
  931. // Generally we use a divider of 8, resulting in a 2MHz timer
  932. // frequency on a 16MHz MCU. If you are going to change this, be
  933. // sure to regenerate speed_lookuptable.h with
  934. // create_speed_lookuptable.py
  935. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  936. OCR1A = 0x4000;
  937. TCNT1 = 0;
  938. ENABLE_STEPPER_DRIVER_INTERRUPT();
  939. #ifdef ADVANCE
  940. #if defined(TCCR0A) && defined(WGM01)
  941. TCCR0A &= ~BIT(WGM01);
  942. TCCR0A &= ~BIT(WGM00);
  943. #endif
  944. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  945. TIMSK0 |= BIT(OCIE0A);
  946. #endif //ADVANCE
  947. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  948. sei();
  949. set_stepper_direction(); // Init directions to out_bits = 0
  950. }
  951. // Block until all buffered steps are executed
  952. void st_synchronize() {
  953. while (blocks_queued()) {
  954. manage_heater();
  955. manage_inactivity();
  956. lcd_update();
  957. }
  958. }
  959. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  960. CRITICAL_SECTION_START;
  961. count_position[X_AXIS] = x;
  962. count_position[Y_AXIS] = y;
  963. count_position[Z_AXIS] = z;
  964. count_position[E_AXIS] = e;
  965. CRITICAL_SECTION_END;
  966. }
  967. void st_set_e_position(const long &e) {
  968. CRITICAL_SECTION_START;
  969. count_position[E_AXIS] = e;
  970. CRITICAL_SECTION_END;
  971. }
  972. long st_get_position(uint8_t axis) {
  973. long count_pos;
  974. CRITICAL_SECTION_START;
  975. count_pos = count_position[axis];
  976. CRITICAL_SECTION_END;
  977. return count_pos;
  978. }
  979. #ifdef ENABLE_AUTO_BED_LEVELING
  980. float st_get_position_mm(AxisEnum axis) {
  981. return st_get_position(axis) / axis_steps_per_unit[axis];
  982. }
  983. #endif // ENABLE_AUTO_BED_LEVELING
  984. void finishAndDisableSteppers() {
  985. st_synchronize();
  986. disable_all_steppers();
  987. }
  988. void quickStop() {
  989. cleaning_buffer_counter = 5000;
  990. DISABLE_STEPPER_DRIVER_INTERRUPT();
  991. while (blocks_queued()) plan_discard_current_block();
  992. current_block = NULL;
  993. ENABLE_STEPPER_DRIVER_INTERRUPT();
  994. }
  995. #ifdef BABYSTEPPING
  996. // MUST ONLY BE CALLED BY AN ISR,
  997. // No other ISR should ever interrupt this!
  998. void babystep(const uint8_t axis, const bool direction) {
  999. #define _ENABLE(axis) enable_## axis()
  1000. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1001. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1002. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1003. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1004. _ENABLE(axis); \
  1005. uint8_t old_pin = _READ_DIR(AXIS); \
  1006. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1007. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1008. delayMicroseconds(2); \
  1009. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1010. _APPLY_DIR(AXIS, old_pin); \
  1011. }
  1012. switch(axis) {
  1013. case X_AXIS:
  1014. BABYSTEP_AXIS(x, X, false);
  1015. break;
  1016. case Y_AXIS:
  1017. BABYSTEP_AXIS(y, Y, false);
  1018. break;
  1019. case Z_AXIS: {
  1020. #ifndef DELTA
  1021. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1022. #else // DELTA
  1023. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1024. enable_x();
  1025. enable_y();
  1026. enable_z();
  1027. uint8_t old_x_dir_pin = X_DIR_READ,
  1028. old_y_dir_pin = Y_DIR_READ,
  1029. old_z_dir_pin = Z_DIR_READ;
  1030. //setup new step
  1031. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1032. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1033. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1034. //perform step
  1035. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1036. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1037. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1038. delayMicroseconds(2);
  1039. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1040. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1041. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1042. //get old pin state back.
  1043. X_DIR_WRITE(old_x_dir_pin);
  1044. Y_DIR_WRITE(old_y_dir_pin);
  1045. Z_DIR_WRITE(old_z_dir_pin);
  1046. #endif
  1047. } break;
  1048. default: break;
  1049. }
  1050. }
  1051. #endif //BABYSTEPPING
  1052. // From Arduino DigitalPotControl example
  1053. void digitalPotWrite(int address, int value) {
  1054. #if HAS_DIGIPOTSS
  1055. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1056. SPI.transfer(address); // send in the address and value via SPI:
  1057. SPI.transfer(value);
  1058. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1059. //delay(10);
  1060. #endif
  1061. }
  1062. // Initialize Digipot Motor Current
  1063. void digipot_init() {
  1064. #if HAS_DIGIPOTSS
  1065. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1066. SPI.begin();
  1067. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1068. for (int i = 0; i <= 4; i++) {
  1069. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1070. digipot_current(i,digipot_motor_current[i]);
  1071. }
  1072. #endif
  1073. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1074. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1075. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1076. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1077. digipot_current(0, motor_current_setting[0]);
  1078. digipot_current(1, motor_current_setting[1]);
  1079. digipot_current(2, motor_current_setting[2]);
  1080. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1081. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1082. #endif
  1083. }
  1084. void digipot_current(uint8_t driver, int current) {
  1085. #if HAS_DIGIPOTSS
  1086. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1087. digitalPotWrite(digipot_ch[driver], current);
  1088. #endif
  1089. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1090. switch(driver) {
  1091. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1092. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1093. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1094. }
  1095. #endif
  1096. }
  1097. void microstep_init() {
  1098. #if HAS_MICROSTEPS_E1
  1099. pinMode(E1_MS1_PIN,OUTPUT);
  1100. pinMode(E1_MS2_PIN,OUTPUT);
  1101. #endif
  1102. #if HAS_MICROSTEPS
  1103. pinMode(X_MS1_PIN,OUTPUT);
  1104. pinMode(X_MS2_PIN,OUTPUT);
  1105. pinMode(Y_MS1_PIN,OUTPUT);
  1106. pinMode(Y_MS2_PIN,OUTPUT);
  1107. pinMode(Z_MS1_PIN,OUTPUT);
  1108. pinMode(Z_MS2_PIN,OUTPUT);
  1109. pinMode(E0_MS1_PIN,OUTPUT);
  1110. pinMode(E0_MS2_PIN,OUTPUT);
  1111. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1112. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1113. microstep_mode(i, microstep_modes[i]);
  1114. #endif
  1115. }
  1116. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1117. if (ms1 >= 0) switch(driver) {
  1118. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1119. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1120. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1121. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1122. #if HAS_MICROSTEPS_E1
  1123. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1124. #endif
  1125. }
  1126. if (ms2 >= 0) switch(driver) {
  1127. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1128. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1129. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1130. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1131. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1132. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1133. #endif
  1134. }
  1135. }
  1136. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1137. switch(stepping_mode) {
  1138. case 1: microstep_ms(driver,MICROSTEP1); break;
  1139. case 2: microstep_ms(driver,MICROSTEP2); break;
  1140. case 4: microstep_ms(driver,MICROSTEP4); break;
  1141. case 8: microstep_ms(driver,MICROSTEP8); break;
  1142. case 16: microstep_ms(driver,MICROSTEP16); break;
  1143. }
  1144. }
  1145. void microstep_readings() {
  1146. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1147. SERIAL_PROTOCOLPGM("X: ");
  1148. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1149. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1150. SERIAL_PROTOCOLPGM("Y: ");
  1151. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1152. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1153. SERIAL_PROTOCOLPGM("Z: ");
  1154. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1155. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1156. SERIAL_PROTOCOLPGM("E0: ");
  1157. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1158. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1159. #if HAS_MICROSTEPS_E1
  1160. SERIAL_PROTOCOLPGM("E1: ");
  1161. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1162. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1163. #endif
  1164. }
  1165. #ifdef Z_DUAL_ENDSTOPS
  1166. void In_Homing_Process(bool state) { performing_homing = state; }
  1167. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1168. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1169. #endif