My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #if ENABLED(Z_DUAL_ENDSTOPS)
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #if ENABLED(ADVANCE)
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  67. #if DISABLED(Z_DUAL_ENDSTOPS)
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  73. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #if ENABLED(DUAL_X_CARRIAGE)
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #if ENABLED(Z_DUAL_ENDSTOPS)
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  239. if (endstop_hit_bits & BIT(Z_MIN_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // Check endstops
  258. inline void update_endstops() {
  259. #if ENABLED(Z_DUAL_ENDSTOPS)
  260. uint16_t
  261. #else
  262. byte
  263. #endif
  264. current_endstop_bits = 0;
  265. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  266. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  267. #define _AXIS(AXIS) AXIS ##_AXIS
  268. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  269. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  270. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  271. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  272. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  273. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  274. // TEST_ENDSTOP: test the old and the current status of an endstop
  275. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  276. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  277. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  278. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  279. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  280. _ENDSTOP_HIT(AXIS); \
  281. step_events_completed = current_block->step_event_count; \
  282. }
  283. #if ENABLED(COREXY)
  284. // Head direction in -X axis for CoreXY bots.
  285. // If DeltaX == -DeltaY, the movement is only in Y axis
  286. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  287. if (TEST(out_bits, X_HEAD))
  288. #elif ENABLED(COREXZ)
  289. // Head direction in -X axis for CoreXZ bots.
  290. // If DeltaX == -DeltaZ, the movement is only in Z axis
  291. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
  292. if (TEST(out_bits, X_HEAD))
  293. #else
  294. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  295. #endif
  296. { // -direction
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  299. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  300. #endif
  301. {
  302. #if HAS_X_MIN
  303. UPDATE_ENDSTOP(X, MIN);
  304. #endif
  305. }
  306. }
  307. else { // +direction
  308. #if ENABLED(DUAL_X_CARRIAGE)
  309. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  310. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  311. #endif
  312. {
  313. #if HAS_X_MAX
  314. UPDATE_ENDSTOP(X, MAX);
  315. #endif
  316. }
  317. }
  318. #if ENABLED(COREXY) || ENABLED(COREXZ)
  319. }
  320. #endif
  321. #if ENABLED(COREXY)
  322. // Head direction in -Y axis for CoreXY bots.
  323. // If DeltaX == DeltaY, the movement is only in X axis
  324. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  325. if (TEST(out_bits, Y_HEAD))
  326. #else
  327. if (TEST(out_bits, Y_AXIS)) // -direction
  328. #endif
  329. { // -direction
  330. #if HAS_Y_MIN
  331. UPDATE_ENDSTOP(Y, MIN);
  332. #endif
  333. }
  334. else { // +direction
  335. #if HAS_Y_MAX
  336. UPDATE_ENDSTOP(Y, MAX);
  337. #endif
  338. }
  339. #if ENABLED(COREXY)
  340. }
  341. #endif
  342. #if ENABLED(COREXZ)
  343. // Head direction in -Z axis for CoreXZ bots.
  344. // If DeltaX == DeltaZ, the movement is only in X axis
  345. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  346. if (TEST(out_bits, Z_HEAD))
  347. #else
  348. if (TEST(out_bits, Z_AXIS))
  349. #endif
  350. { // z -direction
  351. #if HAS_Z_MIN
  352. #if ENABLED(Z_DUAL_ENDSTOPS)
  353. SET_ENDSTOP_BIT(Z, MIN);
  354. #if HAS_Z2_MIN
  355. SET_ENDSTOP_BIT(Z2, MIN);
  356. #else
  357. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  358. #endif
  359. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  360. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  361. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  362. endstop_hit_bits |= BIT(Z_MIN);
  363. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  364. step_events_completed = current_block->step_event_count;
  365. }
  366. #else // !Z_DUAL_ENDSTOPS
  367. UPDATE_ENDSTOP(Z, MIN);
  368. #endif // !Z_DUAL_ENDSTOPS
  369. #endif // Z_MIN_PIN
  370. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  371. UPDATE_ENDSTOP(Z, MIN_PROBE);
  372. if (TEST_ENDSTOP(Z_MIN_PROBE)) {
  373. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  374. endstop_hit_bits |= BIT(Z_MIN_PROBE);
  375. }
  376. #endif
  377. }
  378. else { // z +direction
  379. #if HAS_Z_MAX
  380. #if ENABLED(Z_DUAL_ENDSTOPS)
  381. SET_ENDSTOP_BIT(Z, MAX);
  382. #if HAS_Z2_MAX
  383. SET_ENDSTOP_BIT(Z2, MAX);
  384. #else
  385. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  386. #endif
  387. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  388. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  389. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  390. endstop_hit_bits |= BIT(Z_MIN);
  391. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  392. step_events_completed = current_block->step_event_count;
  393. }
  394. #else // !Z_DUAL_ENDSTOPS
  395. UPDATE_ENDSTOP(Z, MAX);
  396. #endif // !Z_DUAL_ENDSTOPS
  397. #endif // Z_MAX_PIN
  398. }
  399. #if ENABLED(COREXZ)
  400. }
  401. #endif
  402. old_endstop_bits = current_endstop_bits;
  403. }
  404. // __________________________
  405. // /| |\ _________________ ^
  406. // / | | \ /| |\ |
  407. // / | | \ / | | \ s
  408. // / | | | | | \ p
  409. // / | | | | | \ e
  410. // +-----+------------------------+---+--+---------------+----+ e
  411. // | BLOCK 1 | BLOCK 2 | d
  412. //
  413. // time ----->
  414. //
  415. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  416. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  417. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  418. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  419. void st_wake_up() {
  420. // TCNT1 = 0;
  421. ENABLE_STEPPER_DRIVER_INTERRUPT();
  422. }
  423. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  424. unsigned short timer;
  425. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  426. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  427. step_rate = (step_rate >> 2) & 0x3fff;
  428. step_loops = 4;
  429. }
  430. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  431. step_rate = (step_rate >> 1) & 0x7fff;
  432. step_loops = 2;
  433. }
  434. else {
  435. step_loops = 1;
  436. }
  437. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  438. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  439. if (step_rate >= (8 * 256)) { // higher step rate
  440. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  441. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  442. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  443. MultiU16X8toH16(timer, tmp_step_rate, gain);
  444. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  445. }
  446. else { // lower step rates
  447. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  448. table_address += ((step_rate) >> 1) & 0xfffc;
  449. timer = (unsigned short)pgm_read_word_near(table_address);
  450. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  451. }
  452. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  453. return timer;
  454. }
  455. /**
  456. * Set the stepper direction of each axis
  457. *
  458. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  459. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  460. */
  461. void set_stepper_direction() {
  462. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  463. X_APPLY_DIR(INVERT_X_DIR, 0);
  464. count_direction[X_AXIS] = -1;
  465. }
  466. else {
  467. X_APPLY_DIR(!INVERT_X_DIR, 0);
  468. count_direction[X_AXIS] = 1;
  469. }
  470. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  471. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  472. count_direction[Y_AXIS] = -1;
  473. }
  474. else {
  475. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  476. count_direction[Y_AXIS] = 1;
  477. }
  478. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  479. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  480. count_direction[Z_AXIS] = -1;
  481. }
  482. else {
  483. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  484. count_direction[Z_AXIS] = 1;
  485. }
  486. #if DISABLED(ADVANCE)
  487. if (TEST(out_bits, E_AXIS)) {
  488. REV_E_DIR();
  489. count_direction[E_AXIS] = -1;
  490. }
  491. else {
  492. NORM_E_DIR();
  493. count_direction[E_AXIS] = 1;
  494. }
  495. #endif //!ADVANCE
  496. }
  497. // Initializes the trapezoid generator from the current block. Called whenever a new
  498. // block begins.
  499. FORCE_INLINE void trapezoid_generator_reset() {
  500. if (current_block->direction_bits != out_bits) {
  501. out_bits = current_block->direction_bits;
  502. set_stepper_direction();
  503. }
  504. #if ENABLED(ADVANCE)
  505. advance = current_block->initial_advance;
  506. final_advance = current_block->final_advance;
  507. // Do E steps + advance steps
  508. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  509. old_advance = advance >>8;
  510. #endif
  511. deceleration_time = 0;
  512. // step_rate to timer interval
  513. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  514. // make a note of the number of step loops required at nominal speed
  515. step_loops_nominal = step_loops;
  516. acc_step_rate = current_block->initial_rate;
  517. acceleration_time = calc_timer(acc_step_rate);
  518. OCR1A = acceleration_time;
  519. // SERIAL_ECHO_START;
  520. // SERIAL_ECHOPGM("advance :");
  521. // SERIAL_ECHO(current_block->advance/256.0);
  522. // SERIAL_ECHOPGM("advance rate :");
  523. // SERIAL_ECHO(current_block->advance_rate/256.0);
  524. // SERIAL_ECHOPGM("initial advance :");
  525. // SERIAL_ECHO(current_block->initial_advance/256.0);
  526. // SERIAL_ECHOPGM("final advance :");
  527. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  528. }
  529. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  530. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  531. ISR(TIMER1_COMPA_vect) {
  532. if (cleaning_buffer_counter) {
  533. current_block = NULL;
  534. plan_discard_current_block();
  535. #ifdef SD_FINISHED_RELEASECOMMAND
  536. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  537. #endif
  538. cleaning_buffer_counter--;
  539. OCR1A = 200;
  540. return;
  541. }
  542. // If there is no current block, attempt to pop one from the buffer
  543. if (!current_block) {
  544. // Anything in the buffer?
  545. current_block = plan_get_current_block();
  546. if (current_block) {
  547. current_block->busy = true;
  548. trapezoid_generator_reset();
  549. counter_x = -(current_block->step_event_count >> 1);
  550. counter_y = counter_z = counter_e = counter_x;
  551. step_events_completed = 0;
  552. #if ENABLED(Z_LATE_ENABLE)
  553. if (current_block->steps[Z_AXIS] > 0) {
  554. enable_z();
  555. OCR1A = 2000; //1ms wait
  556. return;
  557. }
  558. #endif
  559. // #if ENABLED(ADVANCE)
  560. // e_steps[current_block->active_extruder] = 0;
  561. // #endif
  562. }
  563. else {
  564. OCR1A = 2000; // 1kHz.
  565. }
  566. }
  567. if (current_block != NULL) {
  568. // Update endstops state, if enabled
  569. if (check_endstops) update_endstops();
  570. // Take multiple steps per interrupt (For high speed moves)
  571. for (int8_t i = 0; i < step_loops; i++) {
  572. #ifndef USBCON
  573. customizedSerial.checkRx(); // Check for serial chars.
  574. #endif
  575. #if ENABLED(ADVANCE)
  576. counter_e += current_block->steps[E_AXIS];
  577. if (counter_e > 0) {
  578. counter_e -= current_block->step_event_count;
  579. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  580. }
  581. #endif //ADVANCE
  582. #define _COUNTER(axis) counter_## axis
  583. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  584. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  585. #define STEP_ADD(axis, AXIS) \
  586. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  587. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  588. STEP_ADD(x,X);
  589. STEP_ADD(y,Y);
  590. STEP_ADD(z,Z);
  591. #if DISABLED(ADVANCE)
  592. STEP_ADD(e,E);
  593. #endif
  594. #define STEP_IF_COUNTER(axis, AXIS) \
  595. if (_COUNTER(axis) > 0) { \
  596. _COUNTER(axis) -= current_block->step_event_count; \
  597. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  598. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  599. }
  600. STEP_IF_COUNTER(x, X);
  601. STEP_IF_COUNTER(y, Y);
  602. STEP_IF_COUNTER(z, Z);
  603. #if DISABLED(ADVANCE)
  604. STEP_IF_COUNTER(e, E);
  605. #endif
  606. step_events_completed++;
  607. if (step_events_completed >= current_block->step_event_count) break;
  608. }
  609. // Calculate new timer value
  610. unsigned short timer;
  611. unsigned short step_rate;
  612. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  613. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  614. acc_step_rate += current_block->initial_rate;
  615. // upper limit
  616. if (acc_step_rate > current_block->nominal_rate)
  617. acc_step_rate = current_block->nominal_rate;
  618. // step_rate to timer interval
  619. timer = calc_timer(acc_step_rate);
  620. OCR1A = timer;
  621. acceleration_time += timer;
  622. #if ENABLED(ADVANCE)
  623. for (int8_t i = 0; i < step_loops; i++) {
  624. advance += advance_rate;
  625. }
  626. //if (advance > current_block->advance) advance = current_block->advance;
  627. // Do E steps + advance steps
  628. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  629. old_advance = advance >> 8;
  630. #endif //ADVANCE
  631. }
  632. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  633. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  634. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  635. step_rate = current_block->final_rate;
  636. }
  637. else {
  638. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  639. }
  640. // lower limit
  641. if (step_rate < current_block->final_rate)
  642. step_rate = current_block->final_rate;
  643. // step_rate to timer interval
  644. timer = calc_timer(step_rate);
  645. OCR1A = timer;
  646. deceleration_time += timer;
  647. #if ENABLED(ADVANCE)
  648. for (int8_t i = 0; i < step_loops; i++) {
  649. advance -= advance_rate;
  650. }
  651. if (advance < final_advance) advance = final_advance;
  652. // Do E steps + advance steps
  653. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  654. old_advance = advance >> 8;
  655. #endif //ADVANCE
  656. }
  657. else {
  658. OCR1A = OCR1A_nominal;
  659. // ensure we're running at the correct step rate, even if we just came off an acceleration
  660. step_loops = step_loops_nominal;
  661. }
  662. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  663. // If current block is finished, reset pointer
  664. if (step_events_completed >= current_block->step_event_count) {
  665. current_block = NULL;
  666. plan_discard_current_block();
  667. }
  668. }
  669. }
  670. #if ENABLED(ADVANCE)
  671. unsigned char old_OCR0A;
  672. // Timer interrupt for E. e_steps is set in the main routine;
  673. // Timer 0 is shared with millies
  674. ISR(TIMER0_COMPA_vect) {
  675. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  676. OCR0A = old_OCR0A;
  677. // Set E direction (Depends on E direction + advance)
  678. for (unsigned char i = 0; i < 4; i++) {
  679. if (e_steps[0] != 0) {
  680. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  681. if (e_steps[0] < 0) {
  682. E0_DIR_WRITE(INVERT_E0_DIR);
  683. e_steps[0]++;
  684. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  685. }
  686. else if (e_steps[0] > 0) {
  687. E0_DIR_WRITE(!INVERT_E0_DIR);
  688. e_steps[0]--;
  689. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  690. }
  691. }
  692. #if EXTRUDERS > 1
  693. if (e_steps[1] != 0) {
  694. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  695. if (e_steps[1] < 0) {
  696. E1_DIR_WRITE(INVERT_E1_DIR);
  697. e_steps[1]++;
  698. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  699. }
  700. else if (e_steps[1] > 0) {
  701. E1_DIR_WRITE(!INVERT_E1_DIR);
  702. e_steps[1]--;
  703. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  704. }
  705. }
  706. #endif
  707. #if EXTRUDERS > 2
  708. if (e_steps[2] != 0) {
  709. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  710. if (e_steps[2] < 0) {
  711. E2_DIR_WRITE(INVERT_E2_DIR);
  712. e_steps[2]++;
  713. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  714. }
  715. else if (e_steps[2] > 0) {
  716. E2_DIR_WRITE(!INVERT_E2_DIR);
  717. e_steps[2]--;
  718. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  719. }
  720. }
  721. #endif
  722. #if EXTRUDERS > 3
  723. if (e_steps[3] != 0) {
  724. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  725. if (e_steps[3] < 0) {
  726. E3_DIR_WRITE(INVERT_E3_DIR);
  727. e_steps[3]++;
  728. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  729. }
  730. else if (e_steps[3] > 0) {
  731. E3_DIR_WRITE(!INVERT_E3_DIR);
  732. e_steps[3]--;
  733. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  734. }
  735. }
  736. #endif
  737. }
  738. }
  739. #endif // ADVANCE
  740. void st_init() {
  741. digipot_init(); //Initialize Digipot Motor Current
  742. microstep_init(); //Initialize Microstepping Pins
  743. // initialise TMC Steppers
  744. #if ENABLED(HAVE_TMCDRIVER)
  745. tmc_init();
  746. #endif
  747. // initialise L6470 Steppers
  748. #if ENABLED(HAVE_L6470DRIVER)
  749. L6470_init();
  750. #endif
  751. // Initialize Dir Pins
  752. #if HAS_X_DIR
  753. X_DIR_INIT;
  754. #endif
  755. #if HAS_X2_DIR
  756. X2_DIR_INIT;
  757. #endif
  758. #if HAS_Y_DIR
  759. Y_DIR_INIT;
  760. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  761. Y2_DIR_INIT;
  762. #endif
  763. #endif
  764. #if HAS_Z_DIR
  765. Z_DIR_INIT;
  766. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  767. Z2_DIR_INIT;
  768. #endif
  769. #endif
  770. #if HAS_E0_DIR
  771. E0_DIR_INIT;
  772. #endif
  773. #if HAS_E1_DIR
  774. E1_DIR_INIT;
  775. #endif
  776. #if HAS_E2_DIR
  777. E2_DIR_INIT;
  778. #endif
  779. #if HAS_E3_DIR
  780. E3_DIR_INIT;
  781. #endif
  782. //Initialize Enable Pins - steppers default to disabled.
  783. #if HAS_X_ENABLE
  784. X_ENABLE_INIT;
  785. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  786. #endif
  787. #if HAS_X2_ENABLE
  788. X2_ENABLE_INIT;
  789. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  790. #endif
  791. #if HAS_Y_ENABLE
  792. Y_ENABLE_INIT;
  793. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  794. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  795. Y2_ENABLE_INIT;
  796. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  797. #endif
  798. #endif
  799. #if HAS_Z_ENABLE
  800. Z_ENABLE_INIT;
  801. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  802. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  803. Z2_ENABLE_INIT;
  804. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  805. #endif
  806. #endif
  807. #if HAS_E0_ENABLE
  808. E0_ENABLE_INIT;
  809. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  810. #endif
  811. #if HAS_E1_ENABLE
  812. E1_ENABLE_INIT;
  813. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  814. #endif
  815. #if HAS_E2_ENABLE
  816. E2_ENABLE_INIT;
  817. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  818. #endif
  819. #if HAS_E3_ENABLE
  820. E3_ENABLE_INIT;
  821. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  822. #endif
  823. //endstops and pullups
  824. #if HAS_X_MIN
  825. SET_INPUT(X_MIN_PIN);
  826. #if ENABLED(ENDSTOPPULLUP_XMIN)
  827. WRITE(X_MIN_PIN,HIGH);
  828. #endif
  829. #endif
  830. #if HAS_Y_MIN
  831. SET_INPUT(Y_MIN_PIN);
  832. #if ENABLED(ENDSTOPPULLUP_YMIN)
  833. WRITE(Y_MIN_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if HAS_Z_MIN
  837. SET_INPUT(Z_MIN_PIN);
  838. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  839. WRITE(Z_MIN_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if HAS_X_MAX
  843. SET_INPUT(X_MAX_PIN);
  844. #if ENABLED(ENDSTOPPULLUP_XMAX)
  845. WRITE(X_MAX_PIN,HIGH);
  846. #endif
  847. #endif
  848. #if HAS_Y_MAX
  849. SET_INPUT(Y_MAX_PIN);
  850. #if ENABLED(ENDSTOPPULLUP_YMAX)
  851. WRITE(Y_MAX_PIN,HIGH);
  852. #endif
  853. #endif
  854. #if HAS_Z_MAX
  855. SET_INPUT(Z_MAX_PIN);
  856. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  857. WRITE(Z_MAX_PIN,HIGH);
  858. #endif
  859. #endif
  860. #if HAS_Z2_MAX
  861. SET_INPUT(Z2_MAX_PIN);
  862. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  863. WRITE(Z2_MAX_PIN,HIGH);
  864. #endif
  865. #endif
  866. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  867. SET_INPUT(Z_MIN_PROBE_PIN);
  868. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  869. WRITE(Z_MIN_PROBE_PIN,HIGH);
  870. #endif
  871. #endif
  872. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  873. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  874. #define _DISABLE(axis) disable_## axis()
  875. #define AXIS_INIT(axis, AXIS, PIN) \
  876. _STEP_INIT(AXIS); \
  877. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  878. _DISABLE(axis)
  879. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  880. // Initialize Step Pins
  881. #if HAS_X_STEP
  882. AXIS_INIT(x, X, X);
  883. #endif
  884. #if HAS_X2_STEP
  885. AXIS_INIT(x, X2, X);
  886. #endif
  887. #if HAS_Y_STEP
  888. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  889. Y2_STEP_INIT;
  890. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  891. #endif
  892. AXIS_INIT(y, Y, Y);
  893. #endif
  894. #if HAS_Z_STEP
  895. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  896. Z2_STEP_INIT;
  897. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  898. #endif
  899. AXIS_INIT(z, Z, Z);
  900. #endif
  901. #if HAS_E0_STEP
  902. E_AXIS_INIT(0);
  903. #endif
  904. #if HAS_E1_STEP
  905. E_AXIS_INIT(1);
  906. #endif
  907. #if HAS_E2_STEP
  908. E_AXIS_INIT(2);
  909. #endif
  910. #if HAS_E3_STEP
  911. E_AXIS_INIT(3);
  912. #endif
  913. // waveform generation = 0100 = CTC
  914. TCCR1B &= ~BIT(WGM13);
  915. TCCR1B |= BIT(WGM12);
  916. TCCR1A &= ~BIT(WGM11);
  917. TCCR1A &= ~BIT(WGM10);
  918. // output mode = 00 (disconnected)
  919. TCCR1A &= ~(3 << COM1A0);
  920. TCCR1A &= ~(3 << COM1B0);
  921. // Set the timer pre-scaler
  922. // Generally we use a divider of 8, resulting in a 2MHz timer
  923. // frequency on a 16MHz MCU. If you are going to change this, be
  924. // sure to regenerate speed_lookuptable.h with
  925. // create_speed_lookuptable.py
  926. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  927. OCR1A = 0x4000;
  928. TCNT1 = 0;
  929. ENABLE_STEPPER_DRIVER_INTERRUPT();
  930. #if ENABLED(ADVANCE)
  931. #if defined(TCCR0A) && defined(WGM01)
  932. TCCR0A &= ~BIT(WGM01);
  933. TCCR0A &= ~BIT(WGM00);
  934. #endif
  935. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  936. TIMSK0 |= BIT(OCIE0A);
  937. #endif //ADVANCE
  938. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  939. sei();
  940. set_stepper_direction(); // Init directions to out_bits = 0
  941. }
  942. /**
  943. * Block until all buffered steps are executed
  944. */
  945. void st_synchronize() { while (blocks_queued()) idle(); }
  946. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  947. CRITICAL_SECTION_START;
  948. count_position[X_AXIS] = x;
  949. count_position[Y_AXIS] = y;
  950. count_position[Z_AXIS] = z;
  951. count_position[E_AXIS] = e;
  952. CRITICAL_SECTION_END;
  953. }
  954. void st_set_e_position(const long& e) {
  955. CRITICAL_SECTION_START;
  956. count_position[E_AXIS] = e;
  957. CRITICAL_SECTION_END;
  958. }
  959. long st_get_position(uint8_t axis) {
  960. long count_pos;
  961. CRITICAL_SECTION_START;
  962. count_pos = count_position[axis];
  963. CRITICAL_SECTION_END;
  964. return count_pos;
  965. }
  966. float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
  967. void finishAndDisableSteppers() {
  968. st_synchronize();
  969. disable_all_steppers();
  970. }
  971. void quickStop() {
  972. cleaning_buffer_counter = 5000;
  973. DISABLE_STEPPER_DRIVER_INTERRUPT();
  974. while (blocks_queued()) plan_discard_current_block();
  975. current_block = NULL;
  976. ENABLE_STEPPER_DRIVER_INTERRUPT();
  977. }
  978. #if ENABLED(BABYSTEPPING)
  979. // MUST ONLY BE CALLED BY AN ISR,
  980. // No other ISR should ever interrupt this!
  981. void babystep(const uint8_t axis, const bool direction) {
  982. #define _ENABLE(axis) enable_## axis()
  983. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  984. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  985. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  986. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  987. _ENABLE(axis); \
  988. uint8_t old_pin = _READ_DIR(AXIS); \
  989. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  990. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  991. delayMicroseconds(2); \
  992. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  993. _APPLY_DIR(AXIS, old_pin); \
  994. }
  995. switch (axis) {
  996. case X_AXIS:
  997. BABYSTEP_AXIS(x, X, false);
  998. break;
  999. case Y_AXIS:
  1000. BABYSTEP_AXIS(y, Y, false);
  1001. break;
  1002. case Z_AXIS: {
  1003. #if DISABLED(DELTA)
  1004. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1005. #else // DELTA
  1006. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1007. enable_x();
  1008. enable_y();
  1009. enable_z();
  1010. uint8_t old_x_dir_pin = X_DIR_READ,
  1011. old_y_dir_pin = Y_DIR_READ,
  1012. old_z_dir_pin = Z_DIR_READ;
  1013. //setup new step
  1014. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1015. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1016. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1017. //perform step
  1018. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1019. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1020. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1021. delayMicroseconds(2);
  1022. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1023. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1024. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1025. //get old pin state back.
  1026. X_DIR_WRITE(old_x_dir_pin);
  1027. Y_DIR_WRITE(old_y_dir_pin);
  1028. Z_DIR_WRITE(old_z_dir_pin);
  1029. #endif
  1030. } break;
  1031. default: break;
  1032. }
  1033. }
  1034. #endif //BABYSTEPPING
  1035. // From Arduino DigitalPotControl example
  1036. void digitalPotWrite(int address, int value) {
  1037. #if HAS_DIGIPOTSS
  1038. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1039. SPI.transfer(address); // send in the address and value via SPI:
  1040. SPI.transfer(value);
  1041. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1042. //delay(10);
  1043. #else
  1044. UNUSED(address);
  1045. UNUSED(value);
  1046. #endif
  1047. }
  1048. // Initialize Digipot Motor Current
  1049. void digipot_init() {
  1050. #if HAS_DIGIPOTSS
  1051. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1052. SPI.begin();
  1053. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1054. for (int i = 0; i <= 4; i++) {
  1055. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1056. digipot_current(i, digipot_motor_current[i]);
  1057. }
  1058. #endif
  1059. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1060. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1061. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1062. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1063. digipot_current(0, motor_current_setting[0]);
  1064. digipot_current(1, motor_current_setting[1]);
  1065. digipot_current(2, motor_current_setting[2]);
  1066. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1067. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1068. #endif
  1069. }
  1070. void digipot_current(uint8_t driver, int current) {
  1071. #if HAS_DIGIPOTSS
  1072. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1073. digitalPotWrite(digipot_ch[driver], current);
  1074. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1075. switch (driver) {
  1076. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1077. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1078. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1079. }
  1080. #else
  1081. UNUSED(driver);
  1082. UNUSED(current);
  1083. #endif
  1084. }
  1085. void microstep_init() {
  1086. #if HAS_MICROSTEPS_E1
  1087. pinMode(E1_MS1_PIN, OUTPUT);
  1088. pinMode(E1_MS2_PIN, OUTPUT);
  1089. #endif
  1090. #if HAS_MICROSTEPS
  1091. pinMode(X_MS1_PIN, OUTPUT);
  1092. pinMode(X_MS2_PIN, OUTPUT);
  1093. pinMode(Y_MS1_PIN, OUTPUT);
  1094. pinMode(Y_MS2_PIN, OUTPUT);
  1095. pinMode(Z_MS1_PIN, OUTPUT);
  1096. pinMode(Z_MS2_PIN, OUTPUT);
  1097. pinMode(E0_MS1_PIN, OUTPUT);
  1098. pinMode(E0_MS2_PIN, OUTPUT);
  1099. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1100. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1101. microstep_mode(i, microstep_modes[i]);
  1102. #endif
  1103. }
  1104. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1105. if (ms1 >= 0) switch (driver) {
  1106. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1107. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1108. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1109. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1110. #if HAS_MICROSTEPS_E1
  1111. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1112. #endif
  1113. }
  1114. if (ms2 >= 0) switch (driver) {
  1115. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1116. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1117. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1118. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1119. #if PIN_EXISTS(E1_MS2)
  1120. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1121. #endif
  1122. }
  1123. }
  1124. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1125. switch (stepping_mode) {
  1126. case 1: microstep_ms(driver, MICROSTEP1); break;
  1127. case 2: microstep_ms(driver, MICROSTEP2); break;
  1128. case 4: microstep_ms(driver, MICROSTEP4); break;
  1129. case 8: microstep_ms(driver, MICROSTEP8); break;
  1130. case 16: microstep_ms(driver, MICROSTEP16); break;
  1131. }
  1132. }
  1133. void microstep_readings() {
  1134. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1135. SERIAL_PROTOCOLPGM("X: ");
  1136. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1137. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1138. SERIAL_PROTOCOLPGM("Y: ");
  1139. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1140. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1141. SERIAL_PROTOCOLPGM("Z: ");
  1142. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1143. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1144. SERIAL_PROTOCOLPGM("E0: ");
  1145. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1146. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1147. #if HAS_MICROSTEPS_E1
  1148. SERIAL_PROTOCOLPGM("E1: ");
  1149. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1150. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1151. #endif
  1152. }
  1153. #if ENABLED(Z_DUAL_ENDSTOPS)
  1154. void In_Homing_Process(bool state) { performing_homing = state; }
  1155. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1156. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1157. #endif