My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

ubl_G29.cpp 70KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include "stepper.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. extern float destination[XYZE];
  35. extern float current_position[XYZE];
  36. void lcd_return_to_status();
  37. bool lcd_clicked();
  38. void lcd_implementation_clear();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. float lcd_z_offset_edit();
  43. extern float meshedit_done;
  44. extern long babysteps_done;
  45. extern float code_value_float();
  46. extern uint8_t code_value_byte();
  47. extern bool code_value_bool();
  48. extern bool code_has_value();
  49. extern float probe_pt(float x, float y, bool, int);
  50. extern bool set_probe_deployed(bool);
  51. void smart_fill_mesh();
  52. float measure_business_card_thickness(float &in_height);
  53. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  54. bool ProbeStay = true;
  55. #define SIZE_OF_LITTLE_RAISE 1
  56. #define BIG_RAISE_NOT_NEEDED 0
  57. extern void lcd_status_screen();
  58. typedef void (*screenFunc_t)();
  59. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  60. /**
  61. * G29: Unified Bed Leveling by Roxy
  62. *
  63. * Parameters understood by this leveling system:
  64. *
  65. * A Activate Activate the Unified Bed Leveling system.
  66. *
  67. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  68. * G29 P2 B. The mode of G29 P2 allows you to use a business card or recipe card
  69. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  70. * can easily feel the nozzle getting to the same height by the amount of resistance
  71. * the business card exhibits to movement. You should try to achieve the same amount
  72. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  73. * You should be very careful not to drive the nozzle into the business card with a
  74. * lot of force as it is very possible to cause damage to your printer if your are
  75. * careless. If you use the B option with G29 P2 B you can omit the numeric value
  76. * on first use to measure the business card's thickness. Subsequent usage of 'B'
  77. * will apply the previously-measured thickness as the default.
  78. * Note: A non-compressible Spark Gap feeler gauge is recommended over a Business Card.
  79. *
  80. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  81. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  82. * continue the generation of a partially constructed Mesh without invalidating what has
  83. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  84. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  85. * it indicates to use the current location instead of defaulting to the center of the print bed.
  86. *
  87. * D Disable Disable the Unified Bed Leveling system.
  88. *
  89. * E Stow_probe Stow the probe after each sampled point.
  90. *
  91. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  92. * specified height, no correction is applied and natural printer kenimatics take over. If no
  93. * number is specified for the command, 10mm is assumed to be reasonable.
  94. *
  95. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  96. * default is 5mm.
  97. *
  98. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  99. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  100. * point to the location is invalidated. The 'T' parameter is also available to produce
  101. * a map after the operation. This command is useful to invalidate a portion of the
  102. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  103. * attempting to invalidate an isolated bad point in the mesh, the 'T' option will indicate
  104. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  105. * the bed and use this feature to select the center of the area (or cell) you want to
  106. * invalidate.
  107. *
  108. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  109. * Not specifying a grid size will invoke the 3-Point leveling function.
  110. *
  111. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  112. * command literally performs a diff between two Meshes.
  113. *
  114. * L Load Load Mesh from the previously activated location in the EEPROM.
  115. *
  116. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  117. * for subsequent Load and Store operations.
  118. *
  119. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  120. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  121. * each additional Phase that processes it.
  122. *
  123. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  124. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  125. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  126. * a subsequent G or T leveling operation for backward compatibility.
  127. *
  128. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  129. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  130. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  131. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  132. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  133. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  134. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  135. * parameter can be given to prioritize where the command should be trying to measure points.
  136. * If the X and Y parameters are not specified the current probe position is used.
  137. * P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
  138. * P1 also watches for the LCD Panel Encoder Switch to be held down, and will suspend
  139. * generation of the Mesh in that case. (Note: This check is only done between probe points,
  140. * so you must press and hold the switch until the Phase 1 command detects it.)
  141. *
  142. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  143. * parameter to control the height between Mesh points. The default height for movement
  144. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  145. * calibration less time consuming. You will be running the nozzle down until it just barely
  146. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  147. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  148. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  149. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  150. *
  151. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  152. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  153. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  154. * area you are manually probing. Note that the command tries to start you in a corner
  155. * of the bed where movement will be predictable. You can force the location to be used in
  156. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  157. * print out a Mesh Map (G29 T) to understand where the mesh is invalidated and where
  158. * the nozzle will need to move in order to complete the command. The C parameter is
  159. * available on the Phase 2 command also and indicates the search for points to measure should
  160. * be done based on the current location of the nozzle.
  161. *
  162. * A B parameter is also available for this command and described up above. It places the
  163. * manual probe subsystem into Business Card mode where the thickness of a business card is
  164. * measured and then used to accurately set the nozzle height in all manual probing for the
  165. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  166. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  167. * better results if you use a flexible Shim that does not compress very much. That makes it
  168. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  169. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  170. * to get it to grasp the shim with the same force as when you measured the thickness of the
  171. * shim at the start of the command.
  172. *
  173. * Phase 2 allows the T (Map) parameter to be specified. This helps the user see the progression
  174. * of the Mesh being built.
  175. *
  176. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  177. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  178. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  179. * parameter with the C version of the command.
  180. *
  181. * A second version of the fill command is available if no C constant is specified. Not
  182. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  183. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  184. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  185. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  186. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  187. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  188. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  189. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  190. * numbers. You should use some scrutiny and caution.
  191. *
  192. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
  193. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  194. * (More work and details on doing this later!)
  195. * The System will search for the closest Mesh Point to the nozzle. It will move the
  196. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  197. * so it is just barely touching the bed. When the user clicks the control, the System
  198. * will lock in that height for that point in the Mesh Compensation System.
  199. *
  200. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  201. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  202. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  203. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  204. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  205. * The command can be terminated early (or after the area of interest has been edited) by
  206. * pressing and holding the encoder wheel until the system recognizes the exit request.
  207. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  208. *
  209. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  210. * information left on the printer's bed from the G26 command it is very straight forward
  211. * and easy to fine tune the Mesh. One concept that is important to remember and that
  212. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  213. * If you have too little clearance and not much plastic was extruded in an area, you want to
  214. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  215. * RAISE the Mesh Point at that location.
  216. *
  217. *
  218. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  219. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  220. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  221. * execute a G29 P6 C <mean height>.
  222. *
  223. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  224. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  225. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  226. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  227. * 0.000 at the Z Home location.
  228. *
  229. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  230. * command is not anticipated to be of much value to the typical user. It is intended
  231. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  232. *
  233. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  234. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  235. *
  236. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  237. * current state of the Unified Bed Leveling system in the EEPROM.
  238. *
  239. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  240. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  241. * extend to a limit related to the available EEPROM storage.
  242. *
  243. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  244. * at a later date. The GCode output can be saved and later replayed by the host software
  245. * to reconstruct the current mesh on another machine.
  246. *
  247. * T Topology Display the Mesh Map Topology.
  248. * 'T' can be used alone (e.g., G29 T) or in combination with some of the other commands.
  249. * This option works with all Phase commands (e.g., G29 P4 R 5 X 50 Y100 C -.1 O)
  250. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  251. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  252. *
  253. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  254. * Only used for G29 P1 O U. This speeds up the probing of the edge of the bed. Useful
  255. * when the entire bed doesn't need to be probed because it will be adjusted.
  256. *
  257. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  258. *
  259. * W What? Display valuable Unified Bed Leveling System data.
  260. *
  261. * X # X Location for this command
  262. *
  263. * Y # Y Location for this command
  264. *
  265. *
  266. * Release Notes:
  267. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  268. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  269. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  270. * respectively.)
  271. *
  272. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  273. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  274. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  275. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  276. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  277. * perform a small print and check out your settings quicker. You do not need to populate the
  278. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  279. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  280. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  281. *
  282. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  283. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  284. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  285. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  286. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  287. * this is going to be helpful to the users!)
  288. *
  289. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  290. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  291. * we now have the functionality and features of all three systems combined.
  292. */
  293. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  294. static int g29_verbose_level, phase_value, repetition_cnt,
  295. storage_slot = 0, map_type, grid_size;
  296. static bool repeat_flag, c_flag, x_flag, y_flag;
  297. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  298. extern void lcd_setstatus(const char* message, const bool persist);
  299. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  300. void __attribute__((optimize("O0"))) gcode_G29() {
  301. if (ubl.eeprom_start < 0) {
  302. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  303. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  304. return;
  305. }
  306. // Don't allow auto-leveling without homing first
  307. if (axis_unhomed_error()) {
  308. if (code_seen('P') && !code_seen('P6') || code_seen('J')) {
  309. home_all_axes();
  310. }
  311. }
  312. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  313. // Invalidate Mesh Points. This command is a little bit asymetrical because
  314. // it directly specifies the repetition count and does not use the 'R' parameter.
  315. if (code_seen('I')) {
  316. uint8_t cnt = 0;
  317. repetition_cnt = code_has_value() ? code_value_int() : 1;
  318. while (repetition_cnt--) {
  319. if (cnt > 20) { cnt = 0; idle(); }
  320. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  321. if (location.x_index < 0) {
  322. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  323. break; // No more invalid Mesh Points to populate
  324. }
  325. ubl.z_values[location.x_index][location.y_index] = NAN;
  326. cnt++;
  327. }
  328. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  329. }
  330. if (code_seen('Q')) {
  331. const int test_pattern = code_has_value() ? code_value_int() : -99;
  332. if (!WITHIN(test_pattern, -1, 2)) {
  333. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  334. return;
  335. }
  336. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  337. switch (test_pattern) {
  338. case -1:
  339. g29_eeprom_dump();
  340. break;
  341. case 0:
  342. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  343. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  344. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  345. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  346. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  347. }
  348. }
  349. break;
  350. case 1:
  351. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  352. ubl.z_values[x][x] += 9.999;
  353. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  354. }
  355. break;
  356. case 2:
  357. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  358. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  359. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  360. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  361. break;
  362. }
  363. }
  364. if (code_seen('J')) {
  365. if (grid_size) { // if not 0 it is a normal n x n grid being probed
  366. ubl.save_ubl_active_state_and_disable();
  367. ubl.tilt_mesh_based_on_probed_grid(code_seen('T'));
  368. ubl.restore_ubl_active_state_and_leave();
  369. } else { // grid_size==0 which means a 3-Point leveling has been requested
  370. float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
  371. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
  372. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  373. if ( isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  374. SERIAL_ERROR_START;
  375. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  376. goto LEAVE;
  377. }
  378. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  379. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  380. ubl.save_ubl_active_state_and_disable();
  381. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  382. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  383. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  384. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  385. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  386. ubl.restore_ubl_active_state_and_leave();
  387. }
  388. }
  389. if (code_seen('P')) {
  390. if (WITHIN(phase_value, 0, 1) && ubl.state.eeprom_storage_slot == -1) {
  391. ubl.state.eeprom_storage_slot = 0;
  392. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.\n");
  393. }
  394. switch (phase_value) {
  395. case 0:
  396. //
  397. // Zero Mesh Data
  398. //
  399. ubl.reset();
  400. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  401. break;
  402. case 1:
  403. //
  404. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  405. //
  406. if (!code_seen('C')) {
  407. ubl.invalidate();
  408. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  409. }
  410. if (g29_verbose_level > 1) {
  411. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  412. SERIAL_PROTOCOLCHAR(',');
  413. SERIAL_PROTOCOL(y_pos);
  414. SERIAL_PROTOCOLLNPGM(").\n");
  415. }
  416. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  417. code_seen('T'), code_seen('E'), code_seen('U'));
  418. break;
  419. case 2: {
  420. //
  421. // Manually Probe Mesh in areas that can't be reached by the probe
  422. //
  423. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  424. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  425. if (!x_flag && !y_flag) {
  426. /**
  427. * Use a good default location for the path.
  428. * The flipped > and < operators in these comparisons is intentional.
  429. * It should cause the probed points to follow a nice path on Cartesian printers.
  430. * It may make sense to have Delta printers default to the center of the bed.
  431. * Until that is decided, this can be forced with the X and Y parameters.
  432. */
  433. #if IS_KINEMATIC
  434. x_pos = X_HOME_POS;
  435. y_pos = Y_HOME_POS;
  436. #else // cartesian
  437. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  438. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  439. #endif
  440. }
  441. if (code_seen('C')) {
  442. x_pos = current_position[X_AXIS];
  443. y_pos = current_position[Y_AXIS];
  444. }
  445. float height = Z_CLEARANCE_BETWEEN_PROBES;
  446. if (code_seen('B')) {
  447. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  448. if (fabs(card_thickness) > 1.5) {
  449. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  450. return;
  451. }
  452. }
  453. if (code_seen('H') && code_has_value()) height = code_value_float();
  454. if ( !position_is_reachable_xy( x_pos, y_pos )) {
  455. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  456. return;
  457. }
  458. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('T'));
  459. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  460. } break;
  461. case 3: {
  462. /**
  463. * Populate invalid mesh areas. Proceed with caution.
  464. * Two choices are available:
  465. * - Specify a constant with the 'C' parameter.
  466. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  467. */
  468. if (c_flag) {
  469. if (repetition_cnt >= GRID_MAX_POINTS) {
  470. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
  471. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
  472. ubl.z_values[x][y] = ubl_constant;
  473. }
  474. }
  475. }
  476. else {
  477. while (repetition_cnt--) { // this only populates reachable mesh points near
  478. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  479. if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
  480. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  481. }
  482. }
  483. } else {
  484. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  485. }
  486. break;
  487. }
  488. case 4:
  489. //
  490. // Fine Tune (i.e., Edit) the Mesh
  491. //
  492. fine_tune_mesh(x_pos, y_pos, code_seen('T'));
  493. break;
  494. case 5: ubl.find_mean_mesh_height(); break;
  495. case 6: ubl.shift_mesh_height(); break;
  496. }
  497. }
  498. //
  499. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  500. // good to have the extra information. Soon... we prune this to just a few items
  501. //
  502. if (code_seen('W')) ubl.g29_what_command();
  503. //
  504. // When we are fully debugged, this may go away. But there are some valid
  505. // use cases for the users. So we can wait and see what to do with it.
  506. //
  507. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  508. g29_compare_current_mesh_to_stored_mesh();
  509. //
  510. // Load a Mesh from the EEPROM
  511. //
  512. if (code_seen('L')) { // Load Current Mesh Data
  513. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  514. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  515. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  516. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  517. return;
  518. }
  519. ubl.load_mesh(storage_slot);
  520. ubl.state.eeprom_storage_slot = storage_slot;
  521. SERIAL_PROTOCOLLNPGM("Done.\n");
  522. }
  523. //
  524. // Store a Mesh in the EEPROM
  525. //
  526. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  527. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  528. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  529. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  530. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  531. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  532. if (!isnan(ubl.z_values[x][y])) {
  533. SERIAL_ECHOPAIR("M421 I ", x);
  534. SERIAL_ECHOPAIR(" J ", y);
  535. SERIAL_ECHOPGM(" Z ");
  536. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  537. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  538. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  539. SERIAL_EOL;
  540. }
  541. return;
  542. }
  543. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  544. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  545. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  546. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  547. goto LEAVE;
  548. }
  549. ubl.store_mesh(storage_slot);
  550. ubl.state.eeprom_storage_slot = storage_slot;
  551. SERIAL_PROTOCOLLNPGM("Done.\n");
  552. }
  553. if (code_seen('T'))
  554. ubl.display_map(code_has_value() ? code_value_int() : 0);
  555. /*
  556. * This code may not be needed... Prepare for its removal...
  557. *
  558. if (code_seen('Z')) {
  559. if (code_has_value())
  560. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  561. else {
  562. ubl.save_ubl_active_state_and_disable();
  563. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  564. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  565. measured_z = 1.5;
  566. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  567. // The user is not going to be locking in a new Z-Offset very often so
  568. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  569. lcd_implementation_clear();
  570. lcd_z_offset_edit_setup(measured_z);
  571. KEEPALIVE_STATE(PAUSED_FOR_USER);
  572. do {
  573. measured_z = lcd_z_offset_edit();
  574. idle();
  575. do_blocking_move_to_z(measured_z);
  576. } while (!ubl_lcd_clicked());
  577. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  578. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  579. // or here. So, until we are done looking for a long Encoder Wheel Press,
  580. // we need to take control of the panel
  581. KEEPALIVE_STATE(IN_HANDLER);
  582. lcd_return_to_status();
  583. const millis_t nxt = millis() + 1500UL;
  584. while (ubl_lcd_clicked()) { // debounce and watch for abort
  585. idle();
  586. if (ELAPSED(millis(), nxt)) {
  587. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  588. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  589. LCD_MESSAGEPGM("Z-Offset Stopped");
  590. ubl.restore_ubl_active_state_and_leave();
  591. goto LEAVE;
  592. }
  593. }
  594. ubl.has_control_of_lcd_panel = false;
  595. safe_delay(20); // We don't want any switch noise.
  596. ubl.state.z_offset = measured_z;
  597. lcd_implementation_clear();
  598. ubl.restore_ubl_active_state_and_leave();
  599. }
  600. }
  601. */
  602. LEAVE:
  603. lcd_reset_alert_level();
  604. LCD_MESSAGEPGM("");
  605. lcd_quick_feedback();
  606. ubl.has_control_of_lcd_panel = false;
  607. }
  608. void unified_bed_leveling::find_mean_mesh_height() {
  609. float sum = 0.0;
  610. int n = 0;
  611. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  612. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  613. if (!isnan(ubl.z_values[x][y])) {
  614. sum += ubl.z_values[x][y];
  615. n++;
  616. }
  617. const float mean = sum / n;
  618. //
  619. // Now do the sumation of the squares of difference from mean
  620. //
  621. float sum_of_diff_squared = 0.0;
  622. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  623. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  624. if (!isnan(ubl.z_values[x][y]))
  625. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  626. SERIAL_ECHOLNPAIR("# of samples: ", n);
  627. SERIAL_ECHOPGM("Mean Mesh Height: ");
  628. SERIAL_ECHO_F(mean, 6);
  629. SERIAL_EOL;
  630. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  631. SERIAL_ECHOPGM("Standard Deviation: ");
  632. SERIAL_ECHO_F(sigma, 6);
  633. SERIAL_EOL;
  634. if (c_flag)
  635. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  636. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  637. if (!isnan(ubl.z_values[x][y]))
  638. ubl.z_values[x][y] -= mean + ubl_constant;
  639. }
  640. void unified_bed_leveling::shift_mesh_height() {
  641. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  642. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  643. if (!isnan(ubl.z_values[x][y]))
  644. ubl.z_values[x][y] += ubl_constant;
  645. }
  646. /**
  647. * Probe all invalidated locations of the mesh that can be reached by the probe.
  648. * This attempts to fill in locations closest to the nozzle's start location first.
  649. */
  650. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  651. mesh_index_pair location;
  652. ubl.has_control_of_lcd_panel = true;
  653. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  654. DEPLOY_PROBE();
  655. uint16_t max_iterations = GRID_MAX_POINTS;
  656. do {
  657. if (ubl_lcd_clicked()) {
  658. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  659. lcd_quick_feedback();
  660. STOW_PROBE();
  661. while (ubl_lcd_clicked()) idle();
  662. ubl.has_control_of_lcd_panel = false;
  663. ubl.restore_ubl_active_state_and_leave();
  664. safe_delay(50); // Debounce the Encoder wheel
  665. return;
  666. }
  667. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
  668. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  669. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  670. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  671. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  672. ubl.z_values[location.x_index][location.y_index] = measured_z;
  673. }
  674. if (do_ubl_mesh_map) ubl.display_map(map_type);
  675. } while ((location.x_index >= 0) && (--max_iterations));
  676. STOW_PROBE();
  677. ubl.restore_ubl_active_state_and_leave();
  678. do_blocking_move_to_xy(
  679. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  680. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  681. );
  682. }
  683. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  684. matrix_3x3 rotation;
  685. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  686. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  687. (z1 - z2) ),
  688. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  689. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  690. (z3 - z2) ),
  691. normal = vector_3::cross(v1, v2);
  692. normal = normal.get_normal();
  693. /**
  694. * This vector is normal to the tilted plane.
  695. * However, we don't know its direction. We need it to point up. So if
  696. * Z is negative, we need to invert the sign of all components of the vector
  697. */
  698. if (normal.z < 0.0) {
  699. normal.x = -normal.x;
  700. normal.y = -normal.y;
  701. normal.z = -normal.z;
  702. }
  703. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  704. if (g29_verbose_level > 2) {
  705. SERIAL_ECHOPGM("bed plane normal = [");
  706. SERIAL_PROTOCOL_F(normal.x, 7);
  707. SERIAL_PROTOCOLCHAR(',');
  708. SERIAL_PROTOCOL_F(normal.y, 7);
  709. SERIAL_PROTOCOLCHAR(',');
  710. SERIAL_PROTOCOL_F(normal.z, 7);
  711. SERIAL_ECHOLNPGM("]");
  712. rotation.debug(PSTR("rotation matrix:"));
  713. }
  714. //
  715. // All of 3 of these points should give us the same d constant
  716. //
  717. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  718. d = t + normal.z * z1;
  719. if (g29_verbose_level>2) {
  720. SERIAL_ECHOPGM("D constant: ");
  721. SERIAL_PROTOCOL_F(d, 7);
  722. SERIAL_ECHOLNPGM(" ");
  723. }
  724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  725. if (DEBUGGING(LEVELING)) {
  726. SERIAL_ECHOPGM("d from 1st point: ");
  727. SERIAL_ECHO_F(d, 6);
  728. SERIAL_EOL;
  729. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  730. d = t + normal.z * z2;
  731. SERIAL_ECHOPGM("d from 2nd point: ");
  732. SERIAL_ECHO_F(d, 6);
  733. SERIAL_EOL;
  734. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  735. d = t + normal.z * z3;
  736. SERIAL_ECHOPGM("d from 3rd point: ");
  737. SERIAL_ECHO_F(d, 6);
  738. SERIAL_EOL;
  739. }
  740. #endif
  741. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  742. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  743. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  744. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  745. z_tmp = ubl.z_values[i][j];
  746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  747. if (DEBUGGING(LEVELING)) {
  748. SERIAL_ECHOPGM("before rotation = [");
  749. SERIAL_PROTOCOL_F(x_tmp, 7);
  750. SERIAL_PROTOCOLCHAR(',');
  751. SERIAL_PROTOCOL_F(y_tmp, 7);
  752. SERIAL_PROTOCOLCHAR(',');
  753. SERIAL_PROTOCOL_F(z_tmp, 7);
  754. SERIAL_ECHOPGM("] ---> ");
  755. safe_delay(20);
  756. }
  757. #endif
  758. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  760. if (DEBUGGING(LEVELING)) {
  761. SERIAL_ECHOPGM("after rotation = [");
  762. SERIAL_PROTOCOL_F(x_tmp, 7);
  763. SERIAL_PROTOCOLCHAR(',');
  764. SERIAL_PROTOCOL_F(y_tmp, 7);
  765. SERIAL_PROTOCOLCHAR(',');
  766. SERIAL_PROTOCOL_F(z_tmp, 7);
  767. SERIAL_ECHOLNPGM("]");
  768. safe_delay(55);
  769. }
  770. #endif
  771. ubl.z_values[i][j] += z_tmp - d;
  772. }
  773. }
  774. }
  775. float use_encoder_wheel_to_measure_point() {
  776. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  777. delay(50); // debounce
  778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  779. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  780. idle();
  781. if (ubl.encoder_diff) {
  782. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  783. ubl.encoder_diff = 0;
  784. }
  785. }
  786. KEEPALIVE_STATE(IN_HANDLER);
  787. return current_position[Z_AXIS];
  788. }
  789. static void say_and_take_a_measurement() {
  790. SERIAL_PROTOCOLLNPGM(" and take a measurement.");
  791. }
  792. float measure_business_card_thickness(float &in_height) {
  793. ubl.has_control_of_lcd_panel = true;
  794. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  795. do_blocking_move_to_z(in_height);
  796. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  797. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  798. stepper.synchronize();
  799. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  800. LCD_MESSAGEPGM("Place shim & measure");
  801. lcd_goto_screen(lcd_status_screen);
  802. say_and_take_a_measurement();
  803. const float z1 = use_encoder_wheel_to_measure_point();
  804. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  805. stepper.synchronize();
  806. SERIAL_PROTOCOLPGM("Remove shim");
  807. LCD_MESSAGEPGM("Remove & measure bed");
  808. say_and_take_a_measurement();
  809. const float z2 = use_encoder_wheel_to_measure_point();
  810. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  811. const float thickness = abs(z1 - z2);
  812. if (g29_verbose_level > 1) {
  813. SERIAL_PROTOCOLPGM("Business Card is ");
  814. SERIAL_PROTOCOL_F(thickness, 4);
  815. SERIAL_PROTOCOLLNPGM("mm thick.");
  816. }
  817. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  818. ubl.has_control_of_lcd_panel = false;
  819. ubl.restore_ubl_active_state_and_leave();
  820. return thickness;
  821. }
  822. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  823. ubl.has_control_of_lcd_panel = true;
  824. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  825. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  826. do_blocking_move_to_xy(lx, ly);
  827. lcd_goto_screen(lcd_status_screen);
  828. mesh_index_pair location;
  829. do {
  830. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  831. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  832. if (location.x_index < 0 && location.y_index < 0) continue;
  833. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  834. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
  835. xProbe = LOGICAL_X_POSITION(rawx),
  836. yProbe = LOGICAL_Y_POSITION(rawy);
  837. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  838. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  839. LCD_MESSAGEPGM("Moving to next");
  840. do_blocking_move_to_xy(xProbe, yProbe);
  841. do_blocking_move_to_z(z_clearance);
  842. KEEPALIVE_STATE(PAUSED_FOR_USER);
  843. ubl.has_control_of_lcd_panel = true;
  844. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  845. if (code_seen('B')) {LCD_MESSAGEPGM("Place shim & measure");}
  846. else {LCD_MESSAGEPGM("Measure");}
  847. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  848. delay(50); // debounce
  849. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  850. idle();
  851. if (ubl.encoder_diff) {
  852. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  853. ubl.encoder_diff = 0;
  854. }
  855. }
  856. const millis_t nxt = millis() + 1500L;
  857. while (ubl_lcd_clicked()) { // debounce and watch for abort
  858. idle();
  859. if (ELAPSED(millis(), nxt)) {
  860. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  861. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  862. lcd_quick_feedback();
  863. while (ubl_lcd_clicked()) idle();
  864. ubl.has_control_of_lcd_panel = false;
  865. KEEPALIVE_STATE(IN_HANDLER);
  866. ubl.restore_ubl_active_state_and_leave();
  867. return;
  868. }
  869. }
  870. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  871. if (g29_verbose_level > 2) {
  872. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  873. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  874. SERIAL_EOL;
  875. }
  876. } while (location.x_index >= 0 && location.y_index >= 0);
  877. if (do_ubl_mesh_map) ubl.display_map(map_type);
  878. LEAVE:
  879. ubl.restore_ubl_active_state_and_leave();
  880. KEEPALIVE_STATE(IN_HANDLER);
  881. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  882. do_blocking_move_to_xy(lx, ly);
  883. }
  884. static void say_ubl_name() {
  885. SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
  886. }
  887. static void report_ubl_state() {
  888. say_ubl_name();
  889. SERIAL_PROTOCOLPGM("System ");
  890. if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
  891. SERIAL_PROTOCOLLNPGM("activated.\n");
  892. }
  893. bool g29_parameter_parsing() {
  894. bool err_flag = false;
  895. LCD_MESSAGEPGM("Doing G29 UBL!");
  896. lcd_quick_feedback();
  897. ubl_constant = 0.0;
  898. repetition_cnt = 0;
  899. x_flag = code_seen('X') && code_has_value();
  900. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  901. y_flag = code_seen('Y') && code_has_value();
  902. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  903. repeat_flag = code_seen('R');
  904. if (repeat_flag) {
  905. repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
  906. NOMORE(repetition_cnt, GRID_MAX_POINTS);
  907. if (repetition_cnt < 1) {
  908. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  909. return UBL_ERR;
  910. }
  911. }
  912. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  913. if (!WITHIN(g29_verbose_level, 0, 4)) {
  914. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  915. err_flag = true;
  916. }
  917. if (code_seen('P')) {
  918. phase_value = code_value_int();
  919. if (!WITHIN(phase_value, 0, 6)) {
  920. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  921. err_flag = true;
  922. }
  923. }
  924. if (code_seen('J')) {
  925. grid_size = code_has_value() ? code_value_int() : 0;
  926. if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) {
  927. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  928. err_flag = true;
  929. }
  930. }
  931. if (x_flag != y_flag) {
  932. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  933. err_flag = true;
  934. }
  935. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  936. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  937. err_flag = true;
  938. }
  939. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  940. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  941. err_flag = true;
  942. }
  943. if (err_flag) return UBL_ERR;
  944. // Activate or deactivate UBL
  945. if (code_seen('A')) {
  946. if (code_seen('D')) {
  947. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  948. return UBL_ERR;
  949. }
  950. ubl.state.active = 1;
  951. report_ubl_state();
  952. }
  953. else if (code_seen('D')) {
  954. ubl.state.active = 0;
  955. report_ubl_state();
  956. }
  957. // Set global 'C' flag and its value
  958. if ((c_flag = code_seen('C')))
  959. ubl_constant = code_value_float();
  960. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  961. if (code_seen('F') && code_has_value()) {
  962. const float fh = code_value_float();
  963. if (!WITHIN(fh, 0.0, 100.0)) {
  964. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  965. return UBL_ERR;
  966. }
  967. set_z_fade_height(fh);
  968. }
  969. #endif
  970. map_type = code_seen('T') && code_has_value() ? code_value_int() : 0;
  971. if (!WITHIN(map_type, 0, 1)) {
  972. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  973. return UBL_ERR;
  974. }
  975. return UBL_OK;
  976. }
  977. static int ubl_state_at_invocation = 0,
  978. ubl_state_recursion_chk = 0;
  979. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  980. ubl_state_recursion_chk++;
  981. if (ubl_state_recursion_chk != 1) {
  982. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  983. LCD_MESSAGEPGM("save_UBL_active() error");
  984. lcd_quick_feedback();
  985. return;
  986. }
  987. ubl_state_at_invocation = ubl.state.active;
  988. ubl.state.active = 0;
  989. }
  990. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  991. if (--ubl_state_recursion_chk) {
  992. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  993. LCD_MESSAGEPGM("restore_UBL_active() error");
  994. lcd_quick_feedback();
  995. return;
  996. }
  997. ubl.state.active = ubl_state_at_invocation;
  998. }
  999. /**
  1000. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1001. * good to have the extra information. Soon... we prune this to just a few items
  1002. */
  1003. void unified_bed_leveling::g29_what_command() {
  1004. const uint16_t k = E2END - ubl.eeprom_start;
  1005. say_ubl_name();
  1006. SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
  1007. if (state.active)
  1008. SERIAL_PROTOCOLCHAR('A');
  1009. else
  1010. SERIAL_PROTOCOLPGM("Ina");
  1011. SERIAL_PROTOCOLLNPGM("ctive.\n");
  1012. safe_delay(50);
  1013. if (state.eeprom_storage_slot == -1)
  1014. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1015. else {
  1016. SERIAL_PROTOCOLPAIR("Mesh ", state.eeprom_storage_slot);
  1017. SERIAL_PROTOCOLPGM(" Loaded.");
  1018. }
  1019. SERIAL_EOL;
  1020. safe_delay(50);
  1021. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1022. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1023. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1024. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1025. SERIAL_EOL;
  1026. #endif
  1027. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1028. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1029. SERIAL_EOL;
  1030. SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)eeprom_start));
  1031. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1032. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1033. safe_delay(25);
  1034. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1035. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1036. safe_delay(25);
  1037. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1038. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1039. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&mesh_index_to_xpos[i])), 3);
  1040. SERIAL_PROTOCOLPGM(" ");
  1041. safe_delay(25);
  1042. }
  1043. SERIAL_EOL;
  1044. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1045. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1046. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&mesh_index_to_ypos[i])), 3);
  1047. SERIAL_PROTOCOLPGM(" ");
  1048. safe_delay(25);
  1049. }
  1050. SERIAL_EOL;
  1051. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)eeprom_start));
  1052. SERIAL_PROTOCOLLNPAIR("end of EEPROM: ", hex_address((void*)E2END));
  1053. safe_delay(25);
  1054. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(state));
  1055. SERIAL_EOL;
  1056. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1057. SERIAL_EOL;
  1058. safe_delay(25);
  1059. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
  1060. safe_delay(25);
  1061. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values));
  1062. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1063. safe_delay(25);
  1064. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1065. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1066. safe_delay(25);
  1067. SERIAL_EOL;
  1068. SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1069. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
  1070. SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1071. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
  1072. safe_delay(25);
  1073. SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1074. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
  1075. SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1076. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
  1077. safe_delay(25);
  1078. if (!sanity_check()) {
  1079. say_ubl_name();
  1080. SERIAL_PROTOCOLLNPGM("sanity checks passed.");
  1081. }
  1082. }
  1083. /**
  1084. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1085. * right now, it is good to have the extra information. Soon... we prune this.
  1086. */
  1087. void g29_eeprom_dump() {
  1088. unsigned char cccc;
  1089. uint16_t kkkk;
  1090. SERIAL_ECHO_START;
  1091. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1092. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1093. if (!(i & 0x3)) idle();
  1094. print_hex_word(i);
  1095. SERIAL_ECHOPGM(": ");
  1096. for (uint16_t j = 0; j < 16; j++) {
  1097. kkkk = i + j;
  1098. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1099. print_hex_byte(cccc);
  1100. SERIAL_ECHO(' ');
  1101. }
  1102. SERIAL_EOL;
  1103. }
  1104. SERIAL_EOL;
  1105. }
  1106. /**
  1107. * When we are fully debugged, this may go away. But there are some valid
  1108. * use cases for the users. So we can wait and see what to do with it.
  1109. */
  1110. void g29_compare_current_mesh_to_stored_mesh() {
  1111. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1112. if (!code_has_value()) {
  1113. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1114. return;
  1115. }
  1116. storage_slot = code_value_int();
  1117. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
  1118. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  1119. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1120. return;
  1121. }
  1122. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1123. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1124. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1125. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
  1126. // the address in the EEPROM where the Mesh is stored.
  1127. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1128. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1129. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1130. }
  1131. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1132. mesh_index_pair out_mesh;
  1133. out_mesh.x_index = out_mesh.y_index = -1;
  1134. // Get our reference position. Either the nozzle or probe location.
  1135. const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1136. py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1137. raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
  1138. float closest = far_flag ? -99999.99 : 99999.99;
  1139. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1140. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1141. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1142. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1143. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1144. ) {
  1145. // We only get here if we found a Mesh Point of the specified type
  1146. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
  1147. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1148. // If using the probe as the reference there are some unreachable locations.
  1149. // Also for round beds, there are grid points outside the bed that nozzle can't reach.
  1150. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1151. if ((probe_as_reference && position_is_reachable_by_probe_raw_xy(mx, my)) || position_is_reachable_raw_xy(mx, my))
  1152. continue;
  1153. // Reachable. Check if it's the closest location to the nozzle.
  1154. // Add in a weighting factor that considers the current location of the nozzle.
  1155. float distance = HYPOT(px - mx, py - my) + HYPOT(raw_x - mx, raw_y - my) * 0.1;
  1156. /**
  1157. * If doing the far_flag action, we want to be as far as possible
  1158. * from the starting point and from any other probed points. We
  1159. * want the next point spread out and filling in any blank spaces
  1160. * in the mesh. So we add in some of the distance to every probed
  1161. * point we can find.
  1162. */
  1163. if (far_flag) {
  1164. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1165. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1166. if (!isnan(ubl.z_values[k][l])) {
  1167. distance += sq(i - k) * (MESH_X_DIST) * .05
  1168. + sq(j - l) * (MESH_Y_DIST) * .05;
  1169. }
  1170. }
  1171. }
  1172. }
  1173. // if far_flag, look for farthest point
  1174. if (far_flag == (distance > closest) && distance != closest) {
  1175. closest = distance; // We found a closer/farther location with
  1176. out_mesh.x_index = i; // the specified type of mesh value.
  1177. out_mesh.y_index = j;
  1178. out_mesh.distance = closest;
  1179. }
  1180. }
  1181. } // for j
  1182. } // for i
  1183. return out_mesh;
  1184. }
  1185. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1186. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1187. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1188. mesh_index_pair location;
  1189. uint16_t not_done[16];
  1190. int32_t round_off;
  1191. if ( ! position_is_reachable_xy( lx, ly )) {
  1192. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1193. return;
  1194. }
  1195. ubl.save_ubl_active_state_and_disable();
  1196. memset(not_done, 0xFF, sizeof(not_done));
  1197. LCD_MESSAGEPGM("Fine Tuning Mesh");
  1198. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1199. do_blocking_move_to_xy(lx, ly);
  1200. do {
  1201. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1202. if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
  1203. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1204. // different location the next time through the loop
  1205. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1206. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1207. if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1208. break;
  1209. }
  1210. float new_z = ubl.z_values[location.x_index][location.y_index];
  1211. if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
  1212. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1213. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1214. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1215. new_z = float(round_off) / 1000.0;
  1216. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1217. ubl.has_control_of_lcd_panel = true;
  1218. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1219. lcd_implementation_clear();
  1220. lcd_mesh_edit_setup(new_z);
  1221. do {
  1222. new_z = lcd_mesh_edit();
  1223. idle();
  1224. } while (!ubl_lcd_clicked());
  1225. lcd_return_to_status();
  1226. // There is a race condition for the Encoder Wheel getting clicked.
  1227. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1228. // or here.
  1229. ubl.has_control_of_lcd_panel = true;
  1230. }
  1231. const millis_t nxt = millis() + 1500UL;
  1232. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1233. idle();
  1234. if (ELAPSED(millis(), nxt)) {
  1235. lcd_return_to_status();
  1236. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1237. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1238. LCD_MESSAGEPGM("Mesh Editing Stopped");
  1239. while (ubl_lcd_clicked()) idle();
  1240. goto FINE_TUNE_EXIT;
  1241. }
  1242. }
  1243. safe_delay(20); // We don't want any switch noise.
  1244. ubl.z_values[location.x_index][location.y_index] = new_z;
  1245. lcd_implementation_clear();
  1246. } while (( location.x_index >= 0 ) && (--repetition_cnt>0));
  1247. FINE_TUNE_EXIT:
  1248. ubl.has_control_of_lcd_panel = false;
  1249. KEEPALIVE_STATE(IN_HANDLER);
  1250. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1251. ubl.restore_ubl_active_state_and_leave();
  1252. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1253. do_blocking_move_to_xy(lx, ly);
  1254. LCD_MESSAGEPGM("Done Editing Mesh");
  1255. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1256. }
  1257. /**
  1258. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1259. * If an invalid location is found, use the next two points (if valid) to
  1260. * calculate a 'reasonable' value for the unprobed mesh point.
  1261. */
  1262. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1263. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1264. y1 = y + ydir, y2 = y1 + ydir;
  1265. // A NAN next to a pair of real values?
  1266. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1267. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1268. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1269. else
  1270. ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
  1271. return true;
  1272. }
  1273. return false;
  1274. }
  1275. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1276. void smart_fill_mesh() {
  1277. const smart_fill_info info[] = {
  1278. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1279. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1280. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1281. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1282. };
  1283. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1284. const smart_fill_info &f = info[i];
  1285. if (f.yfirst) {
  1286. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1287. for (uint8_t y = f.sy; y != f.ey; ++y)
  1288. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1289. if (smart_fill_one(x, y, dir, 0)) break;
  1290. }
  1291. else {
  1292. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1293. for (uint8_t x = f.sx; x != f.ex; ++x)
  1294. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1295. if (smart_fill_one(x, y, 0, dir)) break;
  1296. }
  1297. }
  1298. }
  1299. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1300. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1301. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1302. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1303. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1304. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1305. dy = float(y_max - y_min) / (grid_size - 1.0);
  1306. struct linear_fit_data lsf_results;
  1307. incremental_LSF_reset(&lsf_results);
  1308. bool zig_zag = false;
  1309. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1310. const float x = float(x_min) + ix * dx;
  1311. for (int8_t iy = 0; iy < grid_size; iy++) {
  1312. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1313. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) {
  1316. SERIAL_CHAR('(');
  1317. SERIAL_PROTOCOL_F(x, 7);
  1318. SERIAL_CHAR(',');
  1319. SERIAL_PROTOCOL_F(y, 7);
  1320. SERIAL_ECHOPGM(") logical: ");
  1321. SERIAL_CHAR('(');
  1322. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1323. SERIAL_CHAR(',');
  1324. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1325. SERIAL_ECHOPGM(") measured: ");
  1326. SERIAL_PROTOCOL_F(measured_z, 7);
  1327. SERIAL_ECHOPGM(" correction: ");
  1328. SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1329. }
  1330. #endif
  1331. measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1333. if (DEBUGGING(LEVELING)) {
  1334. SERIAL_ECHOPGM(" final >>>---> ");
  1335. SERIAL_PROTOCOL_F(measured_z, 7);
  1336. SERIAL_EOL;
  1337. }
  1338. #endif
  1339. incremental_LSF(&lsf_results, x, y, measured_z);
  1340. }
  1341. zig_zag ^= true;
  1342. }
  1343. if (finish_incremental_LSF(&lsf_results)) {
  1344. SERIAL_ECHOPGM("Could not complete LSF!");
  1345. return;
  1346. }
  1347. if (g29_verbose_level > 3) {
  1348. SERIAL_ECHOPGM("LSF Results A=");
  1349. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1350. SERIAL_ECHOPGM(" B=");
  1351. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1352. SERIAL_ECHOPGM(" D=");
  1353. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1354. SERIAL_EOL;
  1355. }
  1356. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1357. if (g29_verbose_level > 2) {
  1358. SERIAL_ECHOPGM("bed plane normal = [");
  1359. SERIAL_PROTOCOL_F(normal.x, 7);
  1360. SERIAL_PROTOCOLCHAR(',');
  1361. SERIAL_PROTOCOL_F(normal.y, 7);
  1362. SERIAL_PROTOCOLCHAR(',');
  1363. SERIAL_PROTOCOL_F(normal.z, 7);
  1364. SERIAL_ECHOLNPGM("]");
  1365. }
  1366. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1367. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1368. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1369. float x_tmp = pgm_read_float(&mesh_index_to_xpos[i]),
  1370. y_tmp = pgm_read_float(&mesh_index_to_ypos[j]),
  1371. z_tmp = z_values[i][j];
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) {
  1374. SERIAL_ECHOPGM("before rotation = [");
  1375. SERIAL_PROTOCOL_F(x_tmp, 7);
  1376. SERIAL_PROTOCOLCHAR(',');
  1377. SERIAL_PROTOCOL_F(y_tmp, 7);
  1378. SERIAL_PROTOCOLCHAR(',');
  1379. SERIAL_PROTOCOL_F(z_tmp, 7);
  1380. SERIAL_ECHOPGM("] ---> ");
  1381. safe_delay(20);
  1382. }
  1383. #endif
  1384. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) {
  1387. SERIAL_ECHOPGM("after rotation = [");
  1388. SERIAL_PROTOCOL_F(x_tmp, 7);
  1389. SERIAL_PROTOCOLCHAR(',');
  1390. SERIAL_PROTOCOL_F(y_tmp, 7);
  1391. SERIAL_PROTOCOLCHAR(',');
  1392. SERIAL_PROTOCOL_F(z_tmp, 7);
  1393. SERIAL_ECHOLNPGM("]");
  1394. safe_delay(55);
  1395. }
  1396. #endif
  1397. z_values[i][j] += z_tmp - lsf_results.D;
  1398. }
  1399. }
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) {
  1402. rotation.debug(PSTR("rotation matrix:"));
  1403. SERIAL_ECHOPGM("LSF Results A=");
  1404. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1405. SERIAL_ECHOPGM(" B=");
  1406. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1407. SERIAL_ECHOPGM(" D=");
  1408. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1409. SERIAL_EOL;
  1410. safe_delay(55);
  1411. SERIAL_ECHOPGM("bed plane normal = [");
  1412. SERIAL_PROTOCOL_F(normal.x, 7);
  1413. SERIAL_PROTOCOLCHAR(',');
  1414. SERIAL_PROTOCOL_F(normal.y, 7);
  1415. SERIAL_PROTOCOLCHAR(',');
  1416. SERIAL_PROTOCOL_F(normal.z, 7);
  1417. SERIAL_ECHOPGM("]\n");
  1418. SERIAL_EOL;
  1419. }
  1420. #endif
  1421. }
  1422. #endif // AUTO_BED_LEVELING_UBL