My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 187KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #if defined(MESH_BED_LEVELING)
  35. #include "mesh_bed_leveling.h"
  36. #endif // MESH_BED_LEVELING
  37. #include "ultralcd.h"
  38. #include "planner.h"
  39. #include "stepper.h"
  40. #include "temperature.h"
  41. #include "motion_control.h"
  42. #include "cardreader.h"
  43. #include "watchdog.h"
  44. #include "ConfigurationStore.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if HAS_DIGIPOTSS
  56. #include <SPI.h>
  57. #endif
  58. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  59. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. //Implemented Codes
  61. //-------------------
  62. // G0 -> G1
  63. // G1 - Coordinated Movement X Y Z E
  64. // G2 - CW ARC
  65. // G3 - CCW ARC
  66. // G4 - Dwell S<seconds> or P<milliseconds>
  67. // G10 - retract filament according to settings of M207
  68. // G11 - retract recover filament according to settings of M208
  69. // G28 - Home all Axis
  70. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  71. // G30 - Single Z Probe, probes bed at current XY location.
  72. // G31 - Dock sled (Z_PROBE_SLED only)
  73. // G32 - Undock sled (Z_PROBE_SLED only)
  74. // G90 - Use Absolute Coordinates
  75. // G91 - Use Relative Coordinates
  76. // G92 - Set current position to coordinates given
  77. // M Codes
  78. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  79. // M1 - Same as M0
  80. // M17 - Enable/Power all stepper motors
  81. // M18 - Disable all stepper motors; same as M84
  82. // M20 - List SD card
  83. // M21 - Init SD card
  84. // M22 - Release SD card
  85. // M23 - Select SD file (M23 filename.g)
  86. // M24 - Start/resume SD print
  87. // M25 - Pause SD print
  88. // M26 - Set SD position in bytes (M26 S12345)
  89. // M27 - Report SD print status
  90. // M28 - Start SD write (M28 filename.g)
  91. // M29 - Stop SD write
  92. // M30 - Delete file from SD (M30 filename.g)
  93. // M31 - Output time since last M109 or SD card start to serial
  94. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  95. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  96. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  97. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  99. // M80 - Turn on Power Supply
  100. // M81 - Turn off Power Supply
  101. // M82 - Set E codes absolute (default)
  102. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  103. // M84 - Disable steppers until next move,
  104. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  105. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. // M92 - Set axis_steps_per_unit - same syntax as G92
  107. // M104 - Set extruder target temp
  108. // M105 - Read current temp
  109. // M106 - Fan on
  110. // M107 - Fan off
  111. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. // M112 - Emergency stop
  115. // M114 - Output current position to serial port
  116. // M115 - Capabilities string
  117. // M117 - display message
  118. // M119 - Output Endstop status to serial port
  119. // M120 - Enable endstop detection
  120. // M121 - Disable endstop detection
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - Set additional homing offset
  136. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M380 - Activate solenoid on active extruder
  152. // M381 - Disable all solenoids
  153. // M400 - Finish all moves
  154. // M401 - Lower z-probe if present
  155. // M402 - Raise z-probe if present
  156. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  157. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  158. // M406 - Turn off Filament Sensor extrusion control
  159. // M407 - Displays measured filament diameter
  160. // M500 - Store parameters in EEPROM
  161. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  162. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  163. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  164. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  165. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  166. // M665 - Set delta configurations
  167. // M666 - Set delta endstop adjustment
  168. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  169. // M907 - Set digital trimpot motor current using axis codes.
  170. // M908 - Control digital trimpot directly.
  171. // M350 - Set microstepping mode.
  172. // M351 - Toggle MS1 MS2 pins directly.
  173. // ************ SCARA Specific - This can change to suit future G-code regulations
  174. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  175. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  176. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  177. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  178. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  179. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  180. //************* SCARA End ***************
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. #ifdef SDSUPPORT
  184. CardReader card;
  185. #endif
  186. float homing_feedrate[] = HOMING_FEEDRATE;
  187. #ifdef ENABLE_AUTO_BED_LEVELING
  188. int xy_travel_speed = XY_TRAVEL_SPEED;
  189. #endif
  190. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  191. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  192. int feedmultiply = 100; //100->1 200->2
  193. int saved_feedmultiply;
  194. int extrudemultiply = 100; //100->1 200->2
  195. int extruder_multiply[EXTRUDERS] = { 100
  196. #if EXTRUDERS > 1
  197. , 100
  198. #if EXTRUDERS > 2
  199. , 100
  200. #if EXTRUDERS > 3
  201. , 100
  202. #endif
  203. #endif
  204. #endif
  205. };
  206. bool volumetric_enabled = false;
  207. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 1
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 2
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #if EXTRUDERS > 3
  213. , DEFAULT_NOMINAL_FILAMENT_DIA
  214. #endif
  215. #endif
  216. #endif
  217. };
  218. float volumetric_multiplier[EXTRUDERS] = {1.0
  219. #if EXTRUDERS > 1
  220. , 1.0
  221. #if EXTRUDERS > 2
  222. , 1.0
  223. #if EXTRUDERS > 3
  224. , 1.0
  225. #endif
  226. #endif
  227. #endif
  228. };
  229. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  230. float add_homing[3] = { 0, 0, 0 };
  231. #ifdef DELTA
  232. float endstop_adj[3] = { 0, 0, 0 };
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = { false, false, false };
  237. float zprobe_zoffset;
  238. // Extruder offset
  239. #if EXTRUDERS > 1
  240. #ifndef DUAL_X_CARRIAGE
  241. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  242. #else
  243. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  244. #endif
  245. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  246. #if defined(EXTRUDER_OFFSET_X)
  247. EXTRUDER_OFFSET_X
  248. #else
  249. 0
  250. #endif
  251. ,
  252. #if defined(EXTRUDER_OFFSET_Y)
  253. EXTRUDER_OFFSET_Y
  254. #else
  255. 0
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed = 0;
  261. #ifdef SERVO_ENDSTOPS
  262. int servo_endstops[] = SERVO_ENDSTOPS;
  263. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  264. #endif
  265. #ifdef BARICUDA
  266. int ValvePressure = 0;
  267. int EtoPPressure = 0;
  268. #endif
  269. #ifdef FWRETRACT
  270. bool autoretract_enabled = false;
  271. bool retracted[EXTRUDERS] = { false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #if EXTRUDERS > 3
  277. , false
  278. #endif
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS] = { false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #if EXTRUDERS > 3
  288. , false
  289. #endif
  290. #endif
  291. #endif
  292. };
  293. float retract_length = RETRACT_LENGTH;
  294. float retract_length_swap = RETRACT_LENGTH_SWAP;
  295. float retract_feedrate = RETRACT_FEEDRATE;
  296. float retract_zlift = RETRACT_ZLIFT;
  297. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  298. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  299. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  300. #endif // FWRETRACT
  301. #ifdef ULTIPANEL
  302. bool powersupply =
  303. #ifdef PS_DEFAULT_OFF
  304. false
  305. #else
  306. true
  307. #endif
  308. ;
  309. #endif
  310. #ifdef DELTA
  311. float delta[3] = { 0, 0, 0 };
  312. #define SIN_60 0.8660254037844386
  313. #define COS_60 0.5
  314. // these are the default values, can be overriden with M665
  315. float delta_radius = DELTA_RADIUS;
  316. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  317. float delta_tower1_y = -COS_60 * delta_radius;
  318. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  319. float delta_tower2_y = -COS_60 * delta_radius;
  320. float delta_tower3_x = 0; // back middle tower
  321. float delta_tower3_y = delta_radius;
  322. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  323. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  324. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  325. #ifdef ENABLE_AUTO_BED_LEVELING
  326. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  327. #endif
  328. #endif
  329. #ifdef SCARA
  330. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. #ifndef DELTA
  352. static float delta[3] = { 0, 0, 0 };
  353. #endif
  354. static float offset[3] = { 0, 0, 0 };
  355. static bool home_all_axis = true;
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  358. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  359. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  360. static bool fromsd[BUFSIZE];
  361. static int bufindr = 0;
  362. static int bufindw = 0;
  363. static int buflen = 0;
  364. static char serial_char;
  365. static int serial_count = 0;
  366. static boolean comment_mode = false;
  367. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  368. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  369. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  370. // Inactivity shutdown
  371. static unsigned long previous_millis_cmd = 0;
  372. static unsigned long max_inactive_time = 0;
  373. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  374. unsigned long starttime = 0; ///< Print job start time
  375. unsigned long stoptime = 0; ///< Print job stop time
  376. static uint8_t tmp_extruder;
  377. bool Stopped = false;
  378. #if NUM_SERVOS > 0
  379. Servo servos[NUM_SERVOS];
  380. #endif
  381. bool CooldownNoWait = true;
  382. bool target_direction;
  383. #ifdef CHDK
  384. unsigned long chdkHigh = 0;
  385. boolean chdkActive = false;
  386. #endif
  387. //===========================================================================
  388. //=============================Routines======================================
  389. //===========================================================================
  390. void get_arc_coordinates();
  391. bool setTargetedHotend(int code);
  392. void serial_echopair_P(const char *s_P, float v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, double v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. void serial_echopair_P(const char *s_P, unsigned long v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. #ifdef SDSUPPORT
  399. #include "SdFatUtil.h"
  400. int freeMemory() { return SdFatUtil::FreeRam(); }
  401. #else
  402. extern "C" {
  403. extern unsigned int __bss_end;
  404. extern unsigned int __heap_start;
  405. extern void *__brkval;
  406. int freeMemory() {
  407. int free_memory;
  408. if ((int)__brkval == 0)
  409. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  410. else
  411. free_memory = ((int)&free_memory) - ((int)__brkval);
  412. return free_memory;
  413. }
  414. }
  415. #endif //!SDSUPPORT
  416. //Injects the next command from the pending sequence of commands, when possible
  417. //Return false if and only if no command was pending
  418. static bool drain_queued_commands_P()
  419. {
  420. char cmd[30];
  421. if(!queued_commands_P)
  422. return false;
  423. // Get the next 30 chars from the sequence of gcodes to run
  424. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  425. cmd[sizeof(cmd)-1]= 0;
  426. // Look for the end of line, or the end of sequence
  427. size_t i= 0;
  428. char c;
  429. while( (c= cmd[i]) && c!='\n' )
  430. ++i; // look for the end of this gcode command
  431. cmd[i]= 0;
  432. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  433. {
  434. if(c)
  435. queued_commands_P+= i+1; // move to next command
  436. else
  437. queued_commands_P= NULL; // will have no more commands in the sequence
  438. }
  439. return true;
  440. }
  441. //Record one or many commands to run from program memory.
  442. //Aborts the current queue, if any.
  443. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  444. void enquecommands_P(const char* pgcode)
  445. {
  446. queued_commands_P= pgcode;
  447. drain_queued_commands_P(); // first command exectuted asap (when possible)
  448. }
  449. //adds a single command to the main command buffer, from RAM
  450. //that is really done in a non-safe way.
  451. //needs overworking someday
  452. //Returns false if it failed to do so
  453. bool enquecommand(const char *cmd)
  454. {
  455. if(*cmd==';')
  456. return false;
  457. if(buflen >= BUFSIZE)
  458. return false;
  459. //this is dangerous if a mixing of serial and this happens
  460. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  461. SERIAL_ECHO_START;
  462. SERIAL_ECHOPGM(MSG_Enqueing);
  463. SERIAL_ECHO(cmdbuffer[bufindw]);
  464. SERIAL_ECHOLNPGM("\"");
  465. bufindw= (bufindw + 1)%BUFSIZE;
  466. buflen += 1;
  467. return true;
  468. }
  469. void setup_killpin()
  470. {
  471. #if defined(KILL_PIN) && KILL_PIN > -1
  472. SET_INPUT(KILL_PIN);
  473. WRITE(KILL_PIN,HIGH);
  474. #endif
  475. }
  476. void setup_filrunoutpin()
  477. {
  478. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  479. pinMode(FILRUNOUT_PIN,INPUT);
  480. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  481. WRITE(FILLRUNOUT_PIN,HIGH);
  482. #endif
  483. #endif
  484. }
  485. // Set home pin
  486. void setup_homepin(void)
  487. {
  488. #if defined(HOME_PIN) && HOME_PIN > -1
  489. SET_INPUT(HOME_PIN);
  490. WRITE(HOME_PIN,HIGH);
  491. #endif
  492. }
  493. void setup_photpin()
  494. {
  495. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  496. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  497. #endif
  498. }
  499. void setup_powerhold()
  500. {
  501. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  502. OUT_WRITE(SUICIDE_PIN, HIGH);
  503. #endif
  504. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  505. #if defined(PS_DEFAULT_OFF)
  506. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  507. #else
  508. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  509. #endif
  510. #endif
  511. }
  512. void suicide()
  513. {
  514. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  515. OUT_WRITE(SUICIDE_PIN, LOW);
  516. #endif
  517. }
  518. void servo_init()
  519. {
  520. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  521. servos[0].attach(SERVO0_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  524. servos[1].attach(SERVO1_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  527. servos[2].attach(SERVO2_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  530. servos[3].attach(SERVO3_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 5)
  533. #error "TODO: enter initalisation code for more servos"
  534. #endif
  535. // Set position of Servo Endstops that are defined
  536. #ifdef SERVO_ENDSTOPS
  537. for(int8_t i = 0; i < 3; i++)
  538. {
  539. if(servo_endstops[i] > -1) {
  540. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  541. }
  542. }
  543. #endif
  544. #if SERVO_LEVELING
  545. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  546. servos[servo_endstops[Z_AXIS]].detach();
  547. #endif
  548. }
  549. void setup()
  550. {
  551. setup_killpin();
  552. setup_filrunoutpin();
  553. setup_powerhold();
  554. MYSERIAL.begin(BAUDRATE);
  555. SERIAL_PROTOCOLLNPGM("start");
  556. SERIAL_ECHO_START;
  557. // Check startup - does nothing if bootloader sets MCUSR to 0
  558. byte mcu = MCUSR;
  559. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  560. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  561. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  562. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  563. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  564. MCUSR=0;
  565. SERIAL_ECHOPGM(MSG_MARLIN);
  566. SERIAL_ECHOLNPGM(STRING_VERSION);
  567. #ifdef STRING_VERSION_CONFIG_H
  568. #ifdef STRING_CONFIG_H_AUTHOR
  569. SERIAL_ECHO_START;
  570. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  571. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  572. SERIAL_ECHOPGM(MSG_AUTHOR);
  573. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  574. SERIAL_ECHOPGM("Compiled: ");
  575. SERIAL_ECHOLNPGM(__DATE__);
  576. #endif // STRING_CONFIG_H_AUTHOR
  577. #endif // STRING_VERSION_CONFIG_H
  578. SERIAL_ECHO_START;
  579. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  580. SERIAL_ECHO(freeMemory());
  581. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  582. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  583. for(int8_t i = 0; i < BUFSIZE; i++)
  584. {
  585. fromsd[i] = false;
  586. }
  587. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  588. Config_RetrieveSettings();
  589. tp_init(); // Initialize temperature loop
  590. plan_init(); // Initialize planner;
  591. watchdog_init();
  592. st_init(); // Initialize stepper, this enables interrupts!
  593. setup_photpin();
  594. servo_init();
  595. lcd_init();
  596. _delay_ms(1000); // wait 1sec to display the splash screen
  597. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  598. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  599. #endif
  600. #ifdef DIGIPOT_I2C
  601. digipot_i2c_init();
  602. #endif
  603. #ifdef Z_PROBE_SLED
  604. pinMode(SERVO0_PIN, OUTPUT);
  605. digitalWrite(SERVO0_PIN, LOW); // turn it off
  606. #endif // Z_PROBE_SLED
  607. setup_homepin();
  608. #ifdef STAT_LED_RED
  609. pinMode(STAT_LED_RED, OUTPUT);
  610. digitalWrite(STAT_LED_RED, LOW); // turn it off
  611. #endif
  612. #ifdef STAT_LED_BLUE
  613. pinMode(STAT_LED_BLUE, OUTPUT);
  614. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  615. #endif
  616. }
  617. void loop()
  618. {
  619. if(buflen < (BUFSIZE-1))
  620. get_command();
  621. #ifdef SDSUPPORT
  622. card.checkautostart(false);
  623. #endif
  624. if(buflen)
  625. {
  626. #ifdef SDSUPPORT
  627. if(card.saving)
  628. {
  629. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  630. {
  631. card.write_command(cmdbuffer[bufindr]);
  632. if(card.logging)
  633. {
  634. process_commands();
  635. }
  636. else
  637. {
  638. SERIAL_PROTOCOLLNPGM(MSG_OK);
  639. }
  640. }
  641. else
  642. {
  643. card.closefile();
  644. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  645. }
  646. }
  647. else
  648. {
  649. process_commands();
  650. }
  651. #else
  652. process_commands();
  653. #endif //SDSUPPORT
  654. buflen = (buflen-1);
  655. bufindr = (bufindr + 1)%BUFSIZE;
  656. }
  657. //check heater every n milliseconds
  658. manage_heater();
  659. manage_inactivity();
  660. checkHitEndstops();
  661. lcd_update();
  662. }
  663. void get_command()
  664. {
  665. if(drain_queued_commands_P()) // priority is given to non-serial commands
  666. return;
  667. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  668. serial_char = MYSERIAL.read();
  669. if(serial_char == '\n' ||
  670. serial_char == '\r' ||
  671. serial_count >= (MAX_CMD_SIZE - 1) )
  672. {
  673. // end of line == end of comment
  674. comment_mode = false;
  675. if(!serial_count) {
  676. // short cut for empty lines
  677. return;
  678. }
  679. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  680. fromsd[bufindw] = false;
  681. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  682. {
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  684. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  685. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  686. SERIAL_ERROR_START;
  687. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  688. SERIAL_ERRORLN(gcode_LastN);
  689. //Serial.println(gcode_N);
  690. FlushSerialRequestResend();
  691. serial_count = 0;
  692. return;
  693. }
  694. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  695. {
  696. byte checksum = 0;
  697. byte count = 0;
  698. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  699. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  700. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  701. SERIAL_ERROR_START;
  702. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  703. SERIAL_ERRORLN(gcode_LastN);
  704. FlushSerialRequestResend();
  705. serial_count = 0;
  706. return;
  707. }
  708. //if no errors, continue parsing
  709. }
  710. else
  711. {
  712. SERIAL_ERROR_START;
  713. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  714. SERIAL_ERRORLN(gcode_LastN);
  715. FlushSerialRequestResend();
  716. serial_count = 0;
  717. return;
  718. }
  719. gcode_LastN = gcode_N;
  720. //if no errors, continue parsing
  721. }
  722. else // if we don't receive 'N' but still see '*'
  723. {
  724. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  725. {
  726. SERIAL_ERROR_START;
  727. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  728. SERIAL_ERRORLN(gcode_LastN);
  729. serial_count = 0;
  730. return;
  731. }
  732. }
  733. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  734. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  735. switch(strtol(strchr_pointer + 1, NULL, 10)){
  736. case 0:
  737. case 1:
  738. case 2:
  739. case 3:
  740. if (Stopped == true) {
  741. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  742. LCD_MESSAGEPGM(MSG_STOPPED);
  743. }
  744. break;
  745. default:
  746. break;
  747. }
  748. }
  749. //If command was e-stop process now
  750. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  751. kill();
  752. bufindw = (bufindw + 1)%BUFSIZE;
  753. buflen += 1;
  754. serial_count = 0; //clear buffer
  755. }
  756. else if(serial_char == '\\') { //Handle escapes
  757. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  758. // if we have one more character, copy it over
  759. serial_char = MYSERIAL.read();
  760. cmdbuffer[bufindw][serial_count++] = serial_char;
  761. }
  762. //otherwise do nothing
  763. }
  764. else { // its not a newline, carriage return or escape char
  765. if(serial_char == ';') comment_mode = true;
  766. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  767. }
  768. }
  769. #ifdef SDSUPPORT
  770. if(!card.sdprinting || serial_count!=0){
  771. return;
  772. }
  773. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  774. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  775. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  776. static bool stop_buffering=false;
  777. if(buflen==0) stop_buffering=false;
  778. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  779. int16_t n=card.get();
  780. serial_char = (char)n;
  781. if(serial_char == '\n' ||
  782. serial_char == '\r' ||
  783. (serial_char == '#' && comment_mode == false) ||
  784. (serial_char == ':' && comment_mode == false) ||
  785. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  786. {
  787. if(card.eof()){
  788. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  789. stoptime=millis();
  790. char time[30];
  791. unsigned long t=(stoptime-starttime)/1000;
  792. int hours, minutes;
  793. minutes=(t/60)%60;
  794. hours=t/60/60;
  795. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  796. SERIAL_ECHO_START;
  797. SERIAL_ECHOLN(time);
  798. lcd_setstatus(time);
  799. card.printingHasFinished();
  800. card.checkautostart(true);
  801. }
  802. if(serial_char=='#')
  803. stop_buffering=true;
  804. if(!serial_count)
  805. {
  806. comment_mode = false; //for new command
  807. return; //if empty line
  808. }
  809. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  810. // if(!comment_mode){
  811. fromsd[bufindw] = true;
  812. buflen += 1;
  813. bufindw = (bufindw + 1)%BUFSIZE;
  814. // }
  815. comment_mode = false; //for new command
  816. serial_count = 0; //clear buffer
  817. }
  818. else
  819. {
  820. if(serial_char == ';') comment_mode = true;
  821. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  822. }
  823. }
  824. #endif //SDSUPPORT
  825. }
  826. float code_value()
  827. {
  828. return (strtod(strchr_pointer + 1, NULL));
  829. }
  830. long code_value_long()
  831. {
  832. return (strtol(strchr_pointer + 1, NULL, 10));
  833. }
  834. bool code_seen(char code)
  835. {
  836. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  837. return (strchr_pointer != NULL); //Return True if a character was found
  838. }
  839. #define DEFINE_PGM_READ_ANY(type, reader) \
  840. static inline type pgm_read_any(const type *p) \
  841. { return pgm_read_##reader##_near(p); }
  842. DEFINE_PGM_READ_ANY(float, float);
  843. DEFINE_PGM_READ_ANY(signed char, byte);
  844. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  845. static const PROGMEM type array##_P[3] = \
  846. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  847. static inline type array(int axis) \
  848. { return pgm_read_any(&array##_P[axis]); }
  849. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  850. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  851. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  852. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  853. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  854. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  855. #ifdef DUAL_X_CARRIAGE
  856. #if EXTRUDERS == 1 || defined(COREXY) \
  857. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  858. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  859. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  860. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  861. #endif
  862. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  863. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  864. #endif
  865. #define DXC_FULL_CONTROL_MODE 0
  866. #define DXC_AUTO_PARK_MODE 1
  867. #define DXC_DUPLICATION_MODE 2
  868. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  869. static float x_home_pos(int extruder) {
  870. if (extruder == 0)
  871. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  872. else
  873. // In dual carriage mode the extruder offset provides an override of the
  874. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  875. // This allow soft recalibration of the second extruder offset position without firmware reflash
  876. // (through the M218 command).
  877. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  878. }
  879. static int x_home_dir(int extruder) {
  880. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  881. }
  882. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  883. static bool active_extruder_parked = false; // used in mode 1 & 2
  884. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  885. static unsigned long delayed_move_time = 0; // used in mode 1
  886. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  887. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  888. bool extruder_duplication_enabled = false; // used in mode 2
  889. #endif //DUAL_X_CARRIAGE
  890. static void axis_is_at_home(int axis) {
  891. #ifdef DUAL_X_CARRIAGE
  892. if (axis == X_AXIS) {
  893. if (active_extruder != 0) {
  894. current_position[X_AXIS] = x_home_pos(active_extruder);
  895. min_pos[X_AXIS] = X2_MIN_POS;
  896. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  897. return;
  898. }
  899. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  900. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  901. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  902. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  903. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  904. return;
  905. }
  906. }
  907. #endif
  908. #ifdef SCARA
  909. float homeposition[3];
  910. char i;
  911. if (axis < 2)
  912. {
  913. for (i=0; i<3; i++)
  914. {
  915. homeposition[i] = base_home_pos(i);
  916. }
  917. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  918. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  919. // Works out real Homeposition angles using inverse kinematics,
  920. // and calculates homing offset using forward kinematics
  921. calculate_delta(homeposition);
  922. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  923. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  924. for (i=0; i<2; i++)
  925. {
  926. delta[i] -= add_homing[i];
  927. }
  928. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  929. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  930. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  931. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  932. calculate_SCARA_forward_Transform(delta);
  933. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  934. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  935. current_position[axis] = delta[axis];
  936. // SCARA home positions are based on configuration since the actual limits are determined by the
  937. // inverse kinematic transform.
  938. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  939. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  940. }
  941. else
  942. {
  943. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  944. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  945. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  946. }
  947. #else
  948. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  949. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  950. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  951. #endif
  952. }
  953. #ifdef ENABLE_AUTO_BED_LEVELING
  954. #ifdef AUTO_BED_LEVELING_GRID
  955. #ifndef DELTA
  956. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  957. {
  958. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  959. planeNormal.debug("planeNormal");
  960. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  961. //bedLevel.debug("bedLevel");
  962. //plan_bed_level_matrix.debug("bed level before");
  963. //vector_3 uncorrected_position = plan_get_position_mm();
  964. //uncorrected_position.debug("position before");
  965. vector_3 corrected_position = plan_get_position();
  966. // corrected_position.debug("position after");
  967. current_position[X_AXIS] = corrected_position.x;
  968. current_position[Y_AXIS] = corrected_position.y;
  969. current_position[Z_AXIS] = corrected_position.z;
  970. // put the bed at 0 so we don't go below it.
  971. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  973. }
  974. #endif
  975. #else // not AUTO_BED_LEVELING_GRID
  976. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  977. plan_bed_level_matrix.set_to_identity();
  978. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  979. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  980. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  981. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  982. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  983. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  984. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  985. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  986. vector_3 corrected_position = plan_get_position();
  987. current_position[X_AXIS] = corrected_position.x;
  988. current_position[Y_AXIS] = corrected_position.y;
  989. current_position[Z_AXIS] = corrected_position.z;
  990. // put the bed at 0 so we don't go below it.
  991. current_position[Z_AXIS] = zprobe_zoffset;
  992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  993. }
  994. #endif // AUTO_BED_LEVELING_GRID
  995. static void run_z_probe() {
  996. #ifdef DELTA
  997. float start_z = current_position[Z_AXIS];
  998. long start_steps = st_get_position(Z_AXIS);
  999. // move down slowly until you find the bed
  1000. feedrate = homing_feedrate[Z_AXIS] / 4;
  1001. destination[Z_AXIS] = -10;
  1002. prepare_move_raw();
  1003. st_synchronize();
  1004. endstops_hit_on_purpose();
  1005. // we have to let the planner know where we are right now as it is not where we said to go.
  1006. long stop_steps = st_get_position(Z_AXIS);
  1007. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1008. current_position[Z_AXIS] = mm;
  1009. calculate_delta(current_position);
  1010. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1011. #else
  1012. plan_bed_level_matrix.set_to_identity();
  1013. feedrate = homing_feedrate[Z_AXIS];
  1014. // move down until you find the bed
  1015. float zPosition = -10;
  1016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1017. st_synchronize();
  1018. // we have to let the planner know where we are right now as it is not where we said to go.
  1019. zPosition = st_get_position_mm(Z_AXIS);
  1020. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1021. // move up the retract distance
  1022. zPosition += home_retract_mm(Z_AXIS);
  1023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1024. st_synchronize();
  1025. // move back down slowly to find bed
  1026. if (homing_bump_divisor[Z_AXIS] >= 1)
  1027. {
  1028. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1029. }
  1030. else
  1031. {
  1032. feedrate = homing_feedrate[Z_AXIS]/10;
  1033. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1034. }
  1035. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1037. st_synchronize();
  1038. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1039. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1040. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1041. #endif
  1042. }
  1043. static void do_blocking_move_to(float x, float y, float z) {
  1044. float oldFeedRate = feedrate;
  1045. #ifdef DELTA
  1046. feedrate = XY_TRAVEL_SPEED;
  1047. destination[X_AXIS] = x;
  1048. destination[Y_AXIS] = y;
  1049. destination[Z_AXIS] = z;
  1050. prepare_move_raw();
  1051. st_synchronize();
  1052. #else
  1053. feedrate = homing_feedrate[Z_AXIS];
  1054. current_position[Z_AXIS] = z;
  1055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1056. st_synchronize();
  1057. feedrate = xy_travel_speed;
  1058. current_position[X_AXIS] = x;
  1059. current_position[Y_AXIS] = y;
  1060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1061. st_synchronize();
  1062. #endif
  1063. feedrate = oldFeedRate;
  1064. }
  1065. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1066. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1067. }
  1068. static void setup_for_endstop_move() {
  1069. saved_feedrate = feedrate;
  1070. saved_feedmultiply = feedmultiply;
  1071. feedmultiply = 100;
  1072. previous_millis_cmd = millis();
  1073. enable_endstops(true);
  1074. }
  1075. static void clean_up_after_endstop_move() {
  1076. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1077. enable_endstops(false);
  1078. #endif
  1079. feedrate = saved_feedrate;
  1080. feedmultiply = saved_feedmultiply;
  1081. previous_millis_cmd = millis();
  1082. }
  1083. static void engage_z_probe() {
  1084. // Engage Z Servo endstop if enabled
  1085. #ifdef SERVO_ENDSTOPS
  1086. if (servo_endstops[Z_AXIS] > -1) {
  1087. #if SERVO_LEVELING
  1088. servos[servo_endstops[Z_AXIS]].attach(0);
  1089. #endif
  1090. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1091. #if SERVO_LEVELING
  1092. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1093. servos[servo_endstops[Z_AXIS]].detach();
  1094. #endif
  1095. }
  1096. #elif defined(Z_PROBE_ALLEN_KEY)
  1097. feedrate = homing_feedrate[X_AXIS];
  1098. // Move to the start position to initiate deployment
  1099. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1100. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1101. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1102. prepare_move_raw();
  1103. // Home X to touch the belt
  1104. feedrate = homing_feedrate[X_AXIS]/10;
  1105. destination[X_AXIS] = 0;
  1106. prepare_move_raw();
  1107. // Home Y for safety
  1108. feedrate = homing_feedrate[X_AXIS]/2;
  1109. destination[Y_AXIS] = 0;
  1110. prepare_move_raw();
  1111. st_synchronize();
  1112. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1113. if (z_min_endstop)
  1114. {
  1115. if (!Stopped)
  1116. {
  1117. SERIAL_ERROR_START;
  1118. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1119. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1120. }
  1121. Stop();
  1122. }
  1123. #endif
  1124. }
  1125. static void retract_z_probe() {
  1126. // Retract Z Servo endstop if enabled
  1127. #ifdef SERVO_ENDSTOPS
  1128. if (servo_endstops[Z_AXIS] > -1) {
  1129. #if SERVO_LEVELING
  1130. servos[servo_endstops[Z_AXIS]].attach(0);
  1131. #endif
  1132. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1133. #if SERVO_LEVELING
  1134. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1135. servos[servo_endstops[Z_AXIS]].detach();
  1136. #endif
  1137. }
  1138. #elif defined(Z_PROBE_ALLEN_KEY)
  1139. // Move up for safety
  1140. feedrate = homing_feedrate[X_AXIS];
  1141. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1142. prepare_move_raw();
  1143. // Move to the start position to initiate retraction
  1144. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1145. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1146. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1147. prepare_move_raw();
  1148. // Move the nozzle down to push the probe into retracted position
  1149. feedrate = homing_feedrate[Z_AXIS]/10;
  1150. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1151. prepare_move_raw();
  1152. // Move up for safety
  1153. feedrate = homing_feedrate[Z_AXIS]/2;
  1154. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1155. prepare_move_raw();
  1156. // Home XY for safety
  1157. feedrate = homing_feedrate[X_AXIS]/2;
  1158. destination[X_AXIS] = 0;
  1159. destination[Y_AXIS] = 0;
  1160. prepare_move_raw();
  1161. st_synchronize();
  1162. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1163. if (!z_min_endstop)
  1164. {
  1165. if (!Stopped)
  1166. {
  1167. SERIAL_ERROR_START;
  1168. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1169. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1170. }
  1171. Stop();
  1172. }
  1173. #endif
  1174. }
  1175. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1176. /// Probe bed height at position (x,y), returns the measured z value
  1177. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1178. // move to right place
  1179. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1180. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1181. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1182. if (retract_action & ProbeEngage) engage_z_probe();
  1183. #endif
  1184. run_z_probe();
  1185. float measured_z = current_position[Z_AXIS];
  1186. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1187. if (retract_action & ProbeRetract) retract_z_probe();
  1188. #endif
  1189. if (verbose_level > 2) {
  1190. SERIAL_PROTOCOLPGM(MSG_BED);
  1191. SERIAL_PROTOCOLPGM(" X: ");
  1192. SERIAL_PROTOCOL(x + 0.0001);
  1193. SERIAL_PROTOCOLPGM(" Y: ");
  1194. SERIAL_PROTOCOL(y + 0.0001);
  1195. SERIAL_PROTOCOLPGM(" Z: ");
  1196. SERIAL_PROTOCOL(measured_z + 0.0001);
  1197. SERIAL_EOL;
  1198. }
  1199. return measured_z;
  1200. }
  1201. #ifdef DELTA
  1202. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1203. if (bed_level[x][y] != 0.0) {
  1204. return; // Don't overwrite good values.
  1205. }
  1206. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1207. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1208. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1209. float median = c; // Median is robust (ignores outliers).
  1210. if (a < b) {
  1211. if (b < c) median = b;
  1212. if (c < a) median = a;
  1213. } else { // b <= a
  1214. if (c < b) median = b;
  1215. if (a < c) median = a;
  1216. }
  1217. bed_level[x][y] = median;
  1218. }
  1219. // Fill in the unprobed points (corners of circular print surface)
  1220. // using linear extrapolation, away from the center.
  1221. static void extrapolate_unprobed_bed_level() {
  1222. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1223. for (int y = 0; y <= half; y++) {
  1224. for (int x = 0; x <= half; x++) {
  1225. if (x + y < 3) continue;
  1226. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1227. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1228. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1229. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1230. }
  1231. }
  1232. }
  1233. // Print calibration results for plotting or manual frame adjustment.
  1234. static void print_bed_level() {
  1235. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1236. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1237. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1238. SERIAL_PROTOCOLPGM(" ");
  1239. }
  1240. SERIAL_ECHOLN("");
  1241. }
  1242. }
  1243. // Reset calibration results to zero.
  1244. void reset_bed_level() {
  1245. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1246. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1247. bed_level[x][y] = 0.0;
  1248. }
  1249. }
  1250. }
  1251. #endif // DELTA
  1252. #endif // ENABLE_AUTO_BED_LEVELING
  1253. static void homeaxis(int axis) {
  1254. #define HOMEAXIS_DO(LETTER) \
  1255. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1256. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1257. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1258. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1259. 0) {
  1260. int axis_home_dir = home_dir(axis);
  1261. #ifdef DUAL_X_CARRIAGE
  1262. if (axis == X_AXIS)
  1263. axis_home_dir = x_home_dir(active_extruder);
  1264. #endif
  1265. current_position[axis] = 0;
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. #ifndef Z_PROBE_SLED
  1268. // Engage Servo endstop if enabled
  1269. #ifdef SERVO_ENDSTOPS
  1270. #if SERVO_LEVELING
  1271. if (axis==Z_AXIS) {
  1272. engage_z_probe();
  1273. }
  1274. else
  1275. #endif
  1276. if (servo_endstops[axis] > -1) {
  1277. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1278. }
  1279. #endif
  1280. #endif // Z_PROBE_SLED
  1281. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1282. feedrate = homing_feedrate[axis];
  1283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1284. st_synchronize();
  1285. current_position[axis] = 0;
  1286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1287. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1288. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1289. st_synchronize();
  1290. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1291. if (homing_bump_divisor[axis] >= 1)
  1292. {
  1293. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1294. }
  1295. else
  1296. {
  1297. feedrate = homing_feedrate[axis]/10;
  1298. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1299. }
  1300. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. #ifdef DELTA
  1303. // retrace by the amount specified in endstop_adj
  1304. if (endstop_adj[axis] * axis_home_dir < 0) {
  1305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. destination[axis] = endstop_adj[axis];
  1307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. }
  1310. #endif
  1311. axis_is_at_home(axis);
  1312. destination[axis] = current_position[axis];
  1313. feedrate = 0.0;
  1314. endstops_hit_on_purpose();
  1315. axis_known_position[axis] = true;
  1316. // Retract Servo endstop if enabled
  1317. #ifdef SERVO_ENDSTOPS
  1318. if (servo_endstops[axis] > -1) {
  1319. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1320. }
  1321. #endif
  1322. #if SERVO_LEVELING
  1323. #ifndef Z_PROBE_SLED
  1324. if (axis==Z_AXIS) retract_z_probe();
  1325. #endif
  1326. #endif
  1327. }
  1328. }
  1329. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1330. void refresh_cmd_timeout(void)
  1331. {
  1332. previous_millis_cmd = millis();
  1333. }
  1334. #ifdef FWRETRACT
  1335. void retract(bool retracting, bool swapretract = false) {
  1336. if(retracting && !retracted[active_extruder]) {
  1337. destination[X_AXIS]=current_position[X_AXIS];
  1338. destination[Y_AXIS]=current_position[Y_AXIS];
  1339. destination[Z_AXIS]=current_position[Z_AXIS];
  1340. destination[E_AXIS]=current_position[E_AXIS];
  1341. if (swapretract) {
  1342. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1343. } else {
  1344. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1345. }
  1346. plan_set_e_position(current_position[E_AXIS]);
  1347. float oldFeedrate = feedrate;
  1348. feedrate=retract_feedrate*60;
  1349. retracted[active_extruder]=true;
  1350. prepare_move();
  1351. if(retract_zlift > 0.01) {
  1352. current_position[Z_AXIS]-=retract_zlift;
  1353. #ifdef DELTA
  1354. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1355. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1356. #else
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. #endif
  1359. prepare_move();
  1360. }
  1361. feedrate = oldFeedrate;
  1362. } else if(!retracting && retracted[active_extruder]) {
  1363. destination[X_AXIS]=current_position[X_AXIS];
  1364. destination[Y_AXIS]=current_position[Y_AXIS];
  1365. destination[Z_AXIS]=current_position[Z_AXIS];
  1366. destination[E_AXIS]=current_position[E_AXIS];
  1367. if(retract_zlift > 0.01) {
  1368. current_position[Z_AXIS]+=retract_zlift;
  1369. #ifdef DELTA
  1370. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1371. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1372. #else
  1373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1374. #endif
  1375. //prepare_move();
  1376. }
  1377. if (swapretract) {
  1378. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1379. } else {
  1380. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1381. }
  1382. plan_set_e_position(current_position[E_AXIS]);
  1383. float oldFeedrate = feedrate;
  1384. feedrate=retract_recover_feedrate*60;
  1385. retracted[active_extruder]=false;
  1386. prepare_move();
  1387. feedrate = oldFeedrate;
  1388. }
  1389. } //retract
  1390. #endif //FWRETRACT
  1391. #ifdef Z_PROBE_SLED
  1392. #ifndef SLED_DOCKING_OFFSET
  1393. #define SLED_DOCKING_OFFSET 0
  1394. #endif
  1395. //
  1396. // Method to dock/undock a sled designed by Charles Bell.
  1397. //
  1398. // dock[in] If true, move to MAX_X and engage the electromagnet
  1399. // offset[in] The additional distance to move to adjust docking location
  1400. //
  1401. static void dock_sled(bool dock, int offset=0) {
  1402. int z_loc;
  1403. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1404. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1405. SERIAL_ECHO_START;
  1406. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1407. return;
  1408. }
  1409. if (dock) {
  1410. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1411. current_position[Y_AXIS],
  1412. current_position[Z_AXIS]);
  1413. // turn off magnet
  1414. digitalWrite(SERVO0_PIN, LOW);
  1415. } else {
  1416. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1417. z_loc = Z_RAISE_BEFORE_PROBING;
  1418. else
  1419. z_loc = current_position[Z_AXIS];
  1420. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1421. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1422. // turn on magnet
  1423. digitalWrite(SERVO0_PIN, HIGH);
  1424. }
  1425. }
  1426. #endif
  1427. /**
  1428. *
  1429. * G-Code Handler functions
  1430. *
  1431. */
  1432. /**
  1433. * G0, G1: Coordinated movement of X Y Z E axes
  1434. */
  1435. inline void gcode_G0_G1() {
  1436. if (!Stopped) {
  1437. get_coordinates(); // For X Y Z E F
  1438. #ifdef FWRETRACT
  1439. if (autoretract_enabled)
  1440. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1441. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1442. // Is this move an attempt to retract or recover?
  1443. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1444. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1445. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1446. retract(!retracted[active_extruder]);
  1447. return;
  1448. }
  1449. }
  1450. #endif //FWRETRACT
  1451. prepare_move();
  1452. //ClearToSend();
  1453. }
  1454. }
  1455. /**
  1456. * G2: Clockwise Arc
  1457. * G3: Counterclockwise Arc
  1458. */
  1459. inline void gcode_G2_G3(bool clockwise) {
  1460. if (!Stopped) {
  1461. get_arc_coordinates();
  1462. prepare_arc_move(clockwise);
  1463. }
  1464. }
  1465. /**
  1466. * G4: Dwell S<seconds> or P<milliseconds>
  1467. */
  1468. inline void gcode_G4() {
  1469. unsigned long codenum;
  1470. LCD_MESSAGEPGM(MSG_DWELL);
  1471. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1472. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1473. st_synchronize();
  1474. previous_millis_cmd = millis();
  1475. codenum += previous_millis_cmd; // keep track of when we started waiting
  1476. while(millis() < codenum) {
  1477. manage_heater();
  1478. manage_inactivity();
  1479. lcd_update();
  1480. }
  1481. }
  1482. #ifdef FWRETRACT
  1483. /**
  1484. * G10 - Retract filament according to settings of M207
  1485. * G11 - Recover filament according to settings of M208
  1486. */
  1487. inline void gcode_G10_G11(bool doRetract=false) {
  1488. #if EXTRUDERS > 1
  1489. if (doRetract) {
  1490. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1491. }
  1492. #endif
  1493. retract(doRetract
  1494. #if EXTRUDERS > 1
  1495. , retracted_swap[active_extruder]
  1496. #endif
  1497. );
  1498. }
  1499. #endif //FWRETRACT
  1500. /**
  1501. * G28: Home all axes, one at a time
  1502. */
  1503. inline void gcode_G28() {
  1504. #ifdef ENABLE_AUTO_BED_LEVELING
  1505. #ifdef DELTA
  1506. reset_bed_level();
  1507. #else
  1508. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1509. #endif
  1510. #endif
  1511. #if defined(MESH_BED_LEVELING)
  1512. uint8_t mbl_was_active = mbl.active;
  1513. mbl.active = 0;
  1514. #endif // MESH_BED_LEVELING
  1515. saved_feedrate = feedrate;
  1516. saved_feedmultiply = feedmultiply;
  1517. feedmultiply = 100;
  1518. previous_millis_cmd = millis();
  1519. enable_endstops(true);
  1520. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1521. feedrate = 0.0;
  1522. #ifdef DELTA
  1523. // A delta can only safely home all axis at the same time
  1524. // all axis have to home at the same time
  1525. // Move all carriages up together until the first endstop is hit.
  1526. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1528. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1529. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. endstops_hit_on_purpose();
  1533. // Destination reached
  1534. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1535. // take care of back off and rehome now we are all at the top
  1536. HOMEAXIS(X);
  1537. HOMEAXIS(Y);
  1538. HOMEAXIS(Z);
  1539. calculate_delta(current_position);
  1540. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1541. #else // NOT DELTA
  1542. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1543. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1544. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1545. HOMEAXIS(Z);
  1546. }
  1547. #endif
  1548. #ifdef QUICK_HOME
  1549. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1550. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1551. #ifndef DUAL_X_CARRIAGE
  1552. int x_axis_home_dir = home_dir(X_AXIS);
  1553. #else
  1554. int x_axis_home_dir = x_home_dir(active_extruder);
  1555. extruder_duplication_enabled = false;
  1556. #endif
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1559. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1560. feedrate = homing_feedrate[X_AXIS];
  1561. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1562. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1563. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1564. } else {
  1565. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1566. }
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. axis_is_at_home(X_AXIS);
  1570. axis_is_at_home(Y_AXIS);
  1571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. destination[X_AXIS] = current_position[X_AXIS];
  1573. destination[Y_AXIS] = current_position[Y_AXIS];
  1574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1575. feedrate = 0.0;
  1576. st_synchronize();
  1577. endstops_hit_on_purpose();
  1578. current_position[X_AXIS] = destination[X_AXIS];
  1579. current_position[Y_AXIS] = destination[Y_AXIS];
  1580. #ifndef SCARA
  1581. current_position[Z_AXIS] = destination[Z_AXIS];
  1582. #endif
  1583. }
  1584. #endif //QUICK_HOME
  1585. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1586. #ifdef DUAL_X_CARRIAGE
  1587. int tmp_extruder = active_extruder;
  1588. extruder_duplication_enabled = false;
  1589. active_extruder = !active_extruder;
  1590. HOMEAXIS(X);
  1591. inactive_extruder_x_pos = current_position[X_AXIS];
  1592. active_extruder = tmp_extruder;
  1593. HOMEAXIS(X);
  1594. // reset state used by the different modes
  1595. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1596. delayed_move_time = 0;
  1597. active_extruder_parked = true;
  1598. #else
  1599. HOMEAXIS(X);
  1600. #endif
  1601. }
  1602. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1603. if (code_seen(axis_codes[X_AXIS])) {
  1604. if (code_value_long() != 0) {
  1605. current_position[X_AXIS] = code_value()
  1606. #ifndef SCARA
  1607. + add_homing[X_AXIS]
  1608. #endif
  1609. ;
  1610. }
  1611. }
  1612. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1613. current_position[Y_AXIS] = code_value()
  1614. #ifndef SCARA
  1615. + add_homing[Y_AXIS]
  1616. #endif
  1617. ;
  1618. }
  1619. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1620. #ifndef Z_SAFE_HOMING
  1621. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1622. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1623. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1624. feedrate = max_feedrate[Z_AXIS];
  1625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1626. st_synchronize();
  1627. #endif
  1628. HOMEAXIS(Z);
  1629. }
  1630. #else // Z_SAFE_HOMING
  1631. if (home_all_axis) {
  1632. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1633. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1634. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1635. feedrate = XY_TRAVEL_SPEED / 60;
  1636. current_position[Z_AXIS] = 0;
  1637. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1639. st_synchronize();
  1640. current_position[X_AXIS] = destination[X_AXIS];
  1641. current_position[Y_AXIS] = destination[Y_AXIS];
  1642. HOMEAXIS(Z);
  1643. }
  1644. // Let's see if X and Y are homed and probe is inside bed area.
  1645. if (code_seen(axis_codes[Z_AXIS])) {
  1646. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1647. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1648. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1649. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1650. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1651. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1652. current_position[Z_AXIS] = 0;
  1653. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1654. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1655. feedrate = max_feedrate[Z_AXIS];
  1656. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1657. st_synchronize();
  1658. HOMEAXIS(Z);
  1659. }
  1660. else {
  1661. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1662. SERIAL_ECHO_START;
  1663. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1664. }
  1665. }
  1666. else {
  1667. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1668. SERIAL_ECHO_START;
  1669. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1670. }
  1671. }
  1672. #endif // Z_SAFE_HOMING
  1673. #endif // Z_HOME_DIR < 0
  1674. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1675. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1676. #ifdef ENABLE_AUTO_BED_LEVELING
  1677. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1678. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1679. #endif
  1680. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1681. #endif // else DELTA
  1682. #ifdef SCARA
  1683. calculate_delta(current_position);
  1684. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1685. #endif
  1686. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1687. enable_endstops(false);
  1688. #endif
  1689. #if defined(MESH_BED_LEVELING)
  1690. if (mbl_was_active) {
  1691. current_position[X_AXIS] = mbl.get_x(0);
  1692. current_position[Y_AXIS] = mbl.get_y(0);
  1693. destination[X_AXIS] = current_position[X_AXIS];
  1694. destination[Y_AXIS] = current_position[Y_AXIS];
  1695. destination[Z_AXIS] = current_position[Z_AXIS];
  1696. destination[E_AXIS] = current_position[E_AXIS];
  1697. feedrate = homing_feedrate[X_AXIS];
  1698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1699. st_synchronize();
  1700. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1701. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1702. mbl.active = 1;
  1703. }
  1704. #endif
  1705. feedrate = saved_feedrate;
  1706. feedmultiply = saved_feedmultiply;
  1707. previous_millis_cmd = millis();
  1708. endstops_hit_on_purpose();
  1709. }
  1710. #ifdef ENABLE_AUTO_BED_LEVELING
  1711. // Define the possible boundaries for probing based on set limits
  1712. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1713. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1714. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1715. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1716. #ifdef AUTO_BED_LEVELING_GRID
  1717. // Make sure probing points are reachable
  1718. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1719. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1720. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1721. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1722. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1723. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1724. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1725. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1726. #endif
  1727. #else // !AUTO_BED_LEVELING_GRID
  1728. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1729. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1730. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1731. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1732. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1733. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1734. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1735. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1736. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1737. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1738. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1739. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1740. #endif
  1741. #endif // !AUTO_BED_LEVELING_GRID
  1742. /**
  1743. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1744. * Will fail if the printer has not been homed with G28.
  1745. *
  1746. * Enhanced G29 Auto Bed Leveling Probe Routine
  1747. *
  1748. * Parameters With AUTO_BED_LEVELING_GRID:
  1749. *
  1750. * P Set the size of the grid that will be probed (P x P points).
  1751. * Not supported by non-linear delta printer bed leveling.
  1752. * Example: "G29 P4"
  1753. *
  1754. * S Set the XY travel speed between probe points (in mm/min)
  1755. *
  1756. * V Set the verbose level (0-4). Example: "G29 V3"
  1757. *
  1758. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1759. * This is useful for manual bed leveling and finding flaws in the bed (to
  1760. * assist with part placement).
  1761. * Not supported by non-linear delta printer bed leveling.
  1762. *
  1763. * F Set the Front limit of the probing grid
  1764. * B Set the Back limit of the probing grid
  1765. * L Set the Left limit of the probing grid
  1766. * R Set the Right limit of the probing grid
  1767. *
  1768. * Global Parameters:
  1769. *
  1770. * E/e By default G29 engages / disengages the probe for each point.
  1771. * Include "E" to engage and disengage the probe just once.
  1772. * There's no extra effect if you have a fixed probe.
  1773. * Usage: "G29 E" or "G29 e"
  1774. *
  1775. */
  1776. inline void gcode_G29() {
  1777. // Prevent user from running a G29 without first homing in X and Y
  1778. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1779. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1780. SERIAL_ECHO_START;
  1781. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1782. return;
  1783. }
  1784. int verbose_level = 1;
  1785. float x_tmp, y_tmp, z_tmp, real_z;
  1786. if (code_seen('V') || code_seen('v')) {
  1787. verbose_level = code_value_long();
  1788. if (verbose_level < 0 || verbose_level > 4) {
  1789. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1790. return;
  1791. }
  1792. }
  1793. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1794. #ifdef AUTO_BED_LEVELING_GRID
  1795. #ifndef DELTA
  1796. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1797. #endif
  1798. if (verbose_level > 0)
  1799. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1800. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1801. #ifndef DELTA
  1802. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1803. if (auto_bed_leveling_grid_points < 2) {
  1804. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1805. return;
  1806. }
  1807. #endif
  1808. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1809. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1810. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1811. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1812. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1813. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1814. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1815. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1816. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1817. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1818. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1819. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1820. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1821. if (left_out || right_out || front_out || back_out) {
  1822. if (left_out) {
  1823. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1824. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1825. }
  1826. if (right_out) {
  1827. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1828. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1829. }
  1830. if (front_out) {
  1831. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1832. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1833. }
  1834. if (back_out) {
  1835. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1836. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1837. }
  1838. return;
  1839. }
  1840. #endif // AUTO_BED_LEVELING_GRID
  1841. #ifdef Z_PROBE_SLED
  1842. dock_sled(false); // engage (un-dock) the probe
  1843. #elif not defined(SERVO_ENDSTOPS)
  1844. engage_z_probe();
  1845. #endif
  1846. st_synchronize();
  1847. #ifdef DELTA
  1848. reset_bed_level();
  1849. #else
  1850. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1851. //vector_3 corrected_position = plan_get_position_mm();
  1852. //corrected_position.debug("position before G29");
  1853. plan_bed_level_matrix.set_to_identity();
  1854. vector_3 uncorrected_position = plan_get_position();
  1855. //uncorrected_position.debug("position during G29");
  1856. current_position[X_AXIS] = uncorrected_position.x;
  1857. current_position[Y_AXIS] = uncorrected_position.y;
  1858. current_position[Z_AXIS] = uncorrected_position.z;
  1859. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1860. #endif
  1861. setup_for_endstop_move();
  1862. feedrate = homing_feedrate[Z_AXIS];
  1863. #ifdef AUTO_BED_LEVELING_GRID
  1864. // probe at the points of a lattice grid
  1865. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1866. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1867. #ifndef DELTA
  1868. // solve the plane equation ax + by + d = z
  1869. // A is the matrix with rows [x y 1] for all the probed points
  1870. // B is the vector of the Z positions
  1871. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1872. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1873. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1874. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1875. eqnBVector[abl2], // "B" vector of Z points
  1876. mean = 0.0;
  1877. #else
  1878. delta_grid_spacing[0] = xGridSpacing;
  1879. delta_grid_spacing[1] = yGridSpacing;
  1880. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1881. if (code_seen(axis_codes[Z_AXIS])) {
  1882. z_offset += code_value();
  1883. }
  1884. #endif
  1885. int probePointCounter = 0;
  1886. bool zig = true;
  1887. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1888. {
  1889. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1890. int xStart, xStop, xInc;
  1891. if (zig)
  1892. {
  1893. xStart = 0;
  1894. xStop = auto_bed_leveling_grid_points;
  1895. xInc = 1;
  1896. zig = false;
  1897. }
  1898. else
  1899. {
  1900. xStart = auto_bed_leveling_grid_points - 1;
  1901. xStop = -1;
  1902. xInc = -1;
  1903. zig = true;
  1904. }
  1905. #ifndef DELTA
  1906. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1907. // This gets the probe points in more readable order.
  1908. if (!topo_flag) zig = !zig;
  1909. #endif
  1910. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1911. {
  1912. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1913. // raise extruder
  1914. float measured_z,
  1915. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1916. #ifdef DELTA
  1917. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1918. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1919. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1920. continue;
  1921. #endif //DELTA
  1922. // Enhanced G29 - Do not retract servo between probes
  1923. ProbeAction act;
  1924. if (enhanced_g29) {
  1925. if (yProbe == front_probe_bed_position && xCount == 0)
  1926. act = ProbeEngage;
  1927. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1928. act = ProbeRetract;
  1929. else
  1930. act = ProbeStay;
  1931. }
  1932. else
  1933. act = ProbeEngageRetract;
  1934. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1935. #ifndef DELTA
  1936. mean += measured_z;
  1937. eqnBVector[probePointCounter] = measured_z;
  1938. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1939. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1940. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1941. #else
  1942. bed_level[xCount][yCount] = measured_z + z_offset;
  1943. #endif
  1944. probePointCounter++;
  1945. } //xProbe
  1946. } //yProbe
  1947. clean_up_after_endstop_move();
  1948. #ifndef DELTA
  1949. // solve lsq problem
  1950. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1951. mean /= abl2;
  1952. if (verbose_level) {
  1953. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1954. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1955. SERIAL_PROTOCOLPGM(" b: ");
  1956. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1957. SERIAL_PROTOCOLPGM(" d: ");
  1958. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1959. SERIAL_EOL;
  1960. if (verbose_level > 2) {
  1961. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1962. SERIAL_PROTOCOL_F(mean, 8);
  1963. SERIAL_EOL;
  1964. }
  1965. }
  1966. if (topo_flag) {
  1967. int xx, yy;
  1968. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1969. #if TOPO_ORIGIN == OriginFrontLeft
  1970. SERIAL_PROTOCOLPGM("+-----------+\n");
  1971. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1972. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1973. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1974. SERIAL_PROTOCOLPGM("+-----------+\n");
  1975. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1976. #else
  1977. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1978. #endif
  1979. {
  1980. #if TOPO_ORIGIN == OriginBackRight
  1981. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1982. #else
  1983. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1984. #endif
  1985. {
  1986. int ind =
  1987. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1988. yy * auto_bed_leveling_grid_points + xx
  1989. #elif TOPO_ORIGIN == OriginBackLeft
  1990. xx * auto_bed_leveling_grid_points + yy
  1991. #elif TOPO_ORIGIN == OriginFrontRight
  1992. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1993. #endif
  1994. ;
  1995. float diff = eqnBVector[ind] - mean;
  1996. if (diff >= 0.0)
  1997. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1998. else
  1999. SERIAL_PROTOCOLPGM(" ");
  2000. SERIAL_PROTOCOL_F(diff, 5);
  2001. } // xx
  2002. SERIAL_EOL;
  2003. } // yy
  2004. SERIAL_EOL;
  2005. } //topo_flag
  2006. set_bed_level_equation_lsq(plane_equation_coefficients);
  2007. free(plane_equation_coefficients);
  2008. #else
  2009. extrapolate_unprobed_bed_level();
  2010. print_bed_level();
  2011. #endif
  2012. #else // !AUTO_BED_LEVELING_GRID
  2013. // Probe at 3 arbitrary points
  2014. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2015. if (enhanced_g29) {
  2016. // Basic Enhanced G29
  2017. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2018. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2019. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2020. }
  2021. else {
  2022. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  2023. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  2024. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  2025. }
  2026. clean_up_after_endstop_move();
  2027. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2028. #endif // !AUTO_BED_LEVELING_GRID
  2029. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  2030. st_synchronize();
  2031. #ifndef DELTA
  2032. if (verbose_level > 0)
  2033. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2034. // Correct the Z height difference from z-probe position and hotend tip position.
  2035. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2036. // When the bed is uneven, this height must be corrected.
  2037. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2038. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2039. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2040. z_tmp = current_position[Z_AXIS];
  2041. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2042. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2043. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2044. #endif
  2045. #ifdef Z_PROBE_SLED
  2046. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2047. #elif not defined(SERVO_ENDSTOPS)
  2048. retract_z_probe();
  2049. #endif
  2050. #ifdef Z_PROBE_END_SCRIPT
  2051. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2052. st_synchronize();
  2053. #endif
  2054. }
  2055. #ifndef Z_PROBE_SLED
  2056. inline void gcode_G30() {
  2057. engage_z_probe(); // Engage Z Servo endstop if available
  2058. st_synchronize();
  2059. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2060. setup_for_endstop_move();
  2061. feedrate = homing_feedrate[Z_AXIS];
  2062. run_z_probe();
  2063. SERIAL_PROTOCOLPGM(MSG_BED);
  2064. SERIAL_PROTOCOLPGM(" X: ");
  2065. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2066. SERIAL_PROTOCOLPGM(" Y: ");
  2067. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2068. SERIAL_PROTOCOLPGM(" Z: ");
  2069. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2070. SERIAL_EOL;
  2071. clean_up_after_endstop_move();
  2072. retract_z_probe(); // Retract Z Servo endstop if available
  2073. }
  2074. #endif //!Z_PROBE_SLED
  2075. #endif //ENABLE_AUTO_BED_LEVELING
  2076. /**
  2077. * G92: Set current position to given X Y Z E
  2078. */
  2079. inline void gcode_G92() {
  2080. if (!code_seen(axis_codes[E_AXIS]))
  2081. st_synchronize();
  2082. for (int i=0;i<NUM_AXIS;i++) {
  2083. if (code_seen(axis_codes[i])) {
  2084. if (i == E_AXIS) {
  2085. current_position[i] = code_value();
  2086. plan_set_e_position(current_position[E_AXIS]);
  2087. }
  2088. else {
  2089. current_position[i] = code_value() +
  2090. #ifdef SCARA
  2091. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2092. #else
  2093. add_homing[i]
  2094. #endif
  2095. ;
  2096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2097. }
  2098. }
  2099. }
  2100. }
  2101. #ifdef ULTIPANEL
  2102. /**
  2103. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2104. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2105. */
  2106. inline void gcode_M0_M1() {
  2107. char *src = strchr_pointer + 2;
  2108. unsigned long codenum = 0;
  2109. bool hasP = false, hasS = false;
  2110. if (code_seen('P')) {
  2111. codenum = code_value(); // milliseconds to wait
  2112. hasP = codenum > 0;
  2113. }
  2114. if (code_seen('S')) {
  2115. codenum = code_value() * 1000; // seconds to wait
  2116. hasS = codenum > 0;
  2117. }
  2118. char* starpos = strchr(src, '*');
  2119. if (starpos != NULL) *(starpos) = '\0';
  2120. while (*src == ' ') ++src;
  2121. if (!hasP && !hasS && *src != '\0')
  2122. lcd_setstatus(src);
  2123. else
  2124. LCD_MESSAGEPGM(MSG_USERWAIT);
  2125. lcd_ignore_click();
  2126. st_synchronize();
  2127. previous_millis_cmd = millis();
  2128. if (codenum > 0) {
  2129. codenum += previous_millis_cmd; // keep track of when we started waiting
  2130. while(millis() < codenum && !lcd_clicked()) {
  2131. manage_heater();
  2132. manage_inactivity();
  2133. lcd_update();
  2134. }
  2135. lcd_ignore_click(false);
  2136. }
  2137. else {
  2138. if (!lcd_detected()) return;
  2139. while (!lcd_clicked()) {
  2140. manage_heater();
  2141. manage_inactivity();
  2142. lcd_update();
  2143. }
  2144. }
  2145. if (IS_SD_PRINTING)
  2146. LCD_MESSAGEPGM(MSG_RESUMING);
  2147. else
  2148. LCD_MESSAGEPGM(WELCOME_MSG);
  2149. }
  2150. #endif // ULTIPANEL
  2151. /**
  2152. * M17: Enable power on all stepper motors
  2153. */
  2154. inline void gcode_M17() {
  2155. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2156. enable_x();
  2157. enable_y();
  2158. enable_z();
  2159. enable_e0();
  2160. enable_e1();
  2161. enable_e2();
  2162. enable_e3();
  2163. }
  2164. #ifdef SDSUPPORT
  2165. /**
  2166. * M20: List SD card to serial output
  2167. */
  2168. inline void gcode_M20() {
  2169. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2170. card.ls();
  2171. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2172. }
  2173. /**
  2174. * M21: Init SD Card
  2175. */
  2176. inline void gcode_M21() {
  2177. card.initsd();
  2178. }
  2179. /**
  2180. * M22: Release SD Card
  2181. */
  2182. inline void gcode_M22() {
  2183. card.release();
  2184. }
  2185. /**
  2186. * M23: Select a file
  2187. */
  2188. inline void gcode_M23() {
  2189. char* codepos = strchr_pointer + 4;
  2190. char* starpos = strchr(codepos, '*');
  2191. if (starpos) *starpos = '\0';
  2192. card.openFile(codepos, true);
  2193. }
  2194. /**
  2195. * M24: Start SD Print
  2196. */
  2197. inline void gcode_M24() {
  2198. card.startFileprint();
  2199. starttime = millis();
  2200. }
  2201. /**
  2202. * M25: Pause SD Print
  2203. */
  2204. inline void gcode_M25() {
  2205. card.pauseSDPrint();
  2206. }
  2207. /**
  2208. * M26: Set SD Card file index
  2209. */
  2210. inline void gcode_M26() {
  2211. if (card.cardOK && code_seen('S'))
  2212. card.setIndex(code_value_long());
  2213. }
  2214. /**
  2215. * M27: Get SD Card status
  2216. */
  2217. inline void gcode_M27() {
  2218. card.getStatus();
  2219. }
  2220. /**
  2221. * M28: Start SD Write
  2222. */
  2223. inline void gcode_M28() {
  2224. char* codepos = strchr_pointer + 4;
  2225. char* starpos = strchr(strchr_pointer + 4, '*');
  2226. if (starpos) {
  2227. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2228. strchr_pointer = strchr(npos, ' ') + 1;
  2229. *(starpos) = '\0';
  2230. }
  2231. card.openFile(strchr_pointer + 4, false);
  2232. }
  2233. /**
  2234. * M29: Stop SD Write
  2235. * Processed in write to file routine above
  2236. */
  2237. inline void gcode_M29() {
  2238. // card.saving = false;
  2239. }
  2240. /**
  2241. * M30 <filename>: Delete SD Card file
  2242. */
  2243. inline void gcode_M30() {
  2244. if (card.cardOK) {
  2245. card.closefile();
  2246. char* starpos = strchr(strchr_pointer + 4, '*');
  2247. if (starpos) {
  2248. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2249. strchr_pointer = strchr(npos, ' ') + 1;
  2250. *(starpos) = '\0';
  2251. }
  2252. card.removeFile(strchr_pointer + 4);
  2253. }
  2254. }
  2255. #endif
  2256. /**
  2257. * M31: Get the time since the start of SD Print (or last M109)
  2258. */
  2259. inline void gcode_M31() {
  2260. stoptime = millis();
  2261. unsigned long t = (stoptime - starttime) / 1000;
  2262. int min = t / 60, sec = t % 60;
  2263. char time[30];
  2264. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2265. SERIAL_ECHO_START;
  2266. SERIAL_ECHOLN(time);
  2267. lcd_setstatus(time);
  2268. autotempShutdown();
  2269. }
  2270. #ifdef SDSUPPORT
  2271. /**
  2272. * M32: Select file and start SD Print
  2273. */
  2274. inline void gcode_M32() {
  2275. if (card.sdprinting)
  2276. st_synchronize();
  2277. char* codepos = strchr_pointer + 4;
  2278. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2279. if (! namestartpos)
  2280. namestartpos = codepos; //default name position, 4 letters after the M
  2281. else
  2282. namestartpos++; //to skip the '!'
  2283. char* starpos = strchr(codepos, '*');
  2284. if (starpos) *(starpos) = '\0';
  2285. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2286. if (card.cardOK) {
  2287. card.openFile(namestartpos, true, !call_procedure);
  2288. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2289. card.setIndex(code_value_long());
  2290. card.startFileprint();
  2291. if (!call_procedure)
  2292. starttime = millis(); //procedure calls count as normal print time.
  2293. }
  2294. }
  2295. /**
  2296. * M928: Start SD Write
  2297. */
  2298. inline void gcode_M928() {
  2299. char* starpos = strchr(strchr_pointer + 5, '*');
  2300. if (starpos) {
  2301. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2302. strchr_pointer = strchr(npos, ' ') + 1;
  2303. *(starpos) = '\0';
  2304. }
  2305. card.openLogFile(strchr_pointer + 5);
  2306. }
  2307. #endif // SDSUPPORT
  2308. /**
  2309. * M42: Change pin status via GCode
  2310. */
  2311. inline void gcode_M42() {
  2312. if (code_seen('S')) {
  2313. int pin_status = code_value(),
  2314. pin_number = LED_PIN;
  2315. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2316. pin_number = code_value();
  2317. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2318. if (sensitive_pins[i] == pin_number) {
  2319. pin_number = -1;
  2320. break;
  2321. }
  2322. }
  2323. #if defined(FAN_PIN) && FAN_PIN > -1
  2324. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2325. #endif
  2326. if (pin_number > -1) {
  2327. pinMode(pin_number, OUTPUT);
  2328. digitalWrite(pin_number, pin_status);
  2329. analogWrite(pin_number, pin_status);
  2330. }
  2331. } // code_seen('S')
  2332. }
  2333. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2334. #if Z_MIN_PIN == -1
  2335. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2336. #endif
  2337. /**
  2338. * M48: Z-Probe repeatability measurement function.
  2339. *
  2340. * Usage:
  2341. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2342. * n = Number of samples (4-50, default 10)
  2343. * X = Sample X position
  2344. * Y = Sample Y position
  2345. * V = Verbose level (0-4, default=1)
  2346. * E = Engage probe for each reading
  2347. * L = Number of legs of movement before probe
  2348. *
  2349. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2350. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2351. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2352. * regenerated.
  2353. *
  2354. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2355. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2356. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2357. */
  2358. inline void gcode_M48() {
  2359. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2360. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2361. double X_current, Y_current, Z_current;
  2362. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2363. if (code_seen('V') || code_seen('v')) {
  2364. verbose_level = code_value();
  2365. if (verbose_level < 0 || verbose_level > 4 ) {
  2366. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2367. return;
  2368. }
  2369. }
  2370. if (verbose_level > 0)
  2371. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2372. if (code_seen('n')) {
  2373. n_samples = code_value();
  2374. if (n_samples < 4 || n_samples > 50) {
  2375. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2376. return;
  2377. }
  2378. }
  2379. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2380. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2381. Z_current = st_get_position_mm(Z_AXIS);
  2382. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2383. ext_position = st_get_position_mm(E_AXIS);
  2384. if (code_seen('E') || code_seen('e'))
  2385. engage_probe_for_each_reading++;
  2386. if (code_seen('X') || code_seen('x')) {
  2387. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2388. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2389. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2390. return;
  2391. }
  2392. }
  2393. if (code_seen('Y') || code_seen('y')) {
  2394. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2395. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2396. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2397. return;
  2398. }
  2399. }
  2400. if (code_seen('L') || code_seen('l')) {
  2401. n_legs = code_value();
  2402. if (n_legs == 1) n_legs = 2;
  2403. if (n_legs < 0 || n_legs > 15) {
  2404. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2405. return;
  2406. }
  2407. }
  2408. //
  2409. // Do all the preliminary setup work. First raise the probe.
  2410. //
  2411. st_synchronize();
  2412. plan_bed_level_matrix.set_to_identity();
  2413. plan_buffer_line(X_current, Y_current, Z_start_location,
  2414. ext_position,
  2415. homing_feedrate[Z_AXIS] / 60,
  2416. active_extruder);
  2417. st_synchronize();
  2418. //
  2419. // Now get everything to the specified probe point So we can safely do a probe to
  2420. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2421. // use that as a starting point for each probe.
  2422. //
  2423. if (verbose_level > 2)
  2424. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2425. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2426. ext_position,
  2427. homing_feedrate[X_AXIS]/60,
  2428. active_extruder);
  2429. st_synchronize();
  2430. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2431. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2432. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2433. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2434. //
  2435. // OK, do the inital probe to get us close to the bed.
  2436. // Then retrace the right amount and use that in subsequent probes
  2437. //
  2438. engage_z_probe();
  2439. setup_for_endstop_move();
  2440. run_z_probe();
  2441. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2442. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2443. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2444. ext_position,
  2445. homing_feedrate[X_AXIS]/60,
  2446. active_extruder);
  2447. st_synchronize();
  2448. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2449. if (engage_probe_for_each_reading) retract_z_probe();
  2450. for (n=0; n < n_samples; n++) {
  2451. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2452. if (n_legs) {
  2453. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2454. int l;
  2455. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2456. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2457. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2458. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2459. //SERIAL_ECHOPAIR(" theta: ",theta);
  2460. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2461. //SERIAL_PROTOCOLLNPGM("");
  2462. float dir = rotational_direction ? 1 : -1;
  2463. for (l = 0; l < n_legs - 1; l++) {
  2464. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2465. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2466. if (radius < 0.0) radius = -radius;
  2467. X_current = X_probe_location + cos(theta) * radius;
  2468. Y_current = Y_probe_location + sin(theta) * radius;
  2469. // Make sure our X & Y are sane
  2470. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2471. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2472. if (verbose_level > 3) {
  2473. SERIAL_ECHOPAIR("x: ", X_current);
  2474. SERIAL_ECHOPAIR("y: ", Y_current);
  2475. SERIAL_PROTOCOLLNPGM("");
  2476. }
  2477. do_blocking_move_to( X_current, Y_current, Z_current );
  2478. }
  2479. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2480. }
  2481. if (engage_probe_for_each_reading) {
  2482. engage_z_probe();
  2483. delay(1000);
  2484. }
  2485. setup_for_endstop_move();
  2486. run_z_probe();
  2487. sample_set[n] = current_position[Z_AXIS];
  2488. //
  2489. // Get the current mean for the data points we have so far
  2490. //
  2491. sum = 0.0;
  2492. for (j=0; j<=n; j++) sum += sample_set[j];
  2493. mean = sum / (double (n+1));
  2494. //
  2495. // Now, use that mean to calculate the standard deviation for the
  2496. // data points we have so far
  2497. //
  2498. sum = 0.0;
  2499. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2500. sigma = sqrt( sum / (double (n+1)) );
  2501. if (verbose_level > 1) {
  2502. SERIAL_PROTOCOL(n+1);
  2503. SERIAL_PROTOCOL(" of ");
  2504. SERIAL_PROTOCOL(n_samples);
  2505. SERIAL_PROTOCOLPGM(" z: ");
  2506. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2507. }
  2508. if (verbose_level > 2) {
  2509. SERIAL_PROTOCOL(" mean: ");
  2510. SERIAL_PROTOCOL_F(mean,6);
  2511. SERIAL_PROTOCOL(" sigma: ");
  2512. SERIAL_PROTOCOL_F(sigma,6);
  2513. }
  2514. if (verbose_level > 0) SERIAL_EOL;
  2515. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2516. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2517. st_synchronize();
  2518. if (engage_probe_for_each_reading) {
  2519. retract_z_probe();
  2520. delay(1000);
  2521. }
  2522. }
  2523. retract_z_probe();
  2524. delay(1000);
  2525. clean_up_after_endstop_move();
  2526. // enable_endstops(true);
  2527. if (verbose_level > 0) {
  2528. SERIAL_PROTOCOLPGM("Mean: ");
  2529. SERIAL_PROTOCOL_F(mean, 6);
  2530. SERIAL_EOL;
  2531. }
  2532. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2533. SERIAL_PROTOCOL_F(sigma, 6);
  2534. SERIAL_EOL; SERIAL_EOL;
  2535. }
  2536. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2537. /**
  2538. * M104: Set hot end temperature
  2539. */
  2540. inline void gcode_M104() {
  2541. if (setTargetedHotend(104)) return;
  2542. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2543. #ifdef DUAL_X_CARRIAGE
  2544. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2545. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2546. #endif
  2547. setWatch();
  2548. }
  2549. /**
  2550. * M105: Read hot end and bed temperature
  2551. */
  2552. inline void gcode_M105() {
  2553. if (setTargetedHotend(105)) return;
  2554. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2555. SERIAL_PROTOCOLPGM("ok T:");
  2556. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2557. SERIAL_PROTOCOLPGM(" /");
  2558. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2559. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2560. SERIAL_PROTOCOLPGM(" B:");
  2561. SERIAL_PROTOCOL_F(degBed(),1);
  2562. SERIAL_PROTOCOLPGM(" /");
  2563. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2564. #endif //TEMP_BED_PIN
  2565. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2566. SERIAL_PROTOCOLPGM(" T");
  2567. SERIAL_PROTOCOL(cur_extruder);
  2568. SERIAL_PROTOCOLPGM(":");
  2569. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2570. SERIAL_PROTOCOLPGM(" /");
  2571. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2572. }
  2573. #else
  2574. SERIAL_ERROR_START;
  2575. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2576. #endif
  2577. SERIAL_PROTOCOLPGM(" @:");
  2578. #ifdef EXTRUDER_WATTS
  2579. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2580. SERIAL_PROTOCOLPGM("W");
  2581. #else
  2582. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2583. #endif
  2584. SERIAL_PROTOCOLPGM(" B@:");
  2585. #ifdef BED_WATTS
  2586. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2587. SERIAL_PROTOCOLPGM("W");
  2588. #else
  2589. SERIAL_PROTOCOL(getHeaterPower(-1));
  2590. #endif
  2591. #ifdef SHOW_TEMP_ADC_VALUES
  2592. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2593. SERIAL_PROTOCOLPGM(" ADC B:");
  2594. SERIAL_PROTOCOL_F(degBed(),1);
  2595. SERIAL_PROTOCOLPGM("C->");
  2596. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2597. #endif
  2598. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2599. SERIAL_PROTOCOLPGM(" T");
  2600. SERIAL_PROTOCOL(cur_extruder);
  2601. SERIAL_PROTOCOLPGM(":");
  2602. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2603. SERIAL_PROTOCOLPGM("C->");
  2604. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2605. }
  2606. #endif
  2607. SERIAL_PROTOCOLLN("");
  2608. }
  2609. #if defined(FAN_PIN) && FAN_PIN > -1
  2610. /**
  2611. * M106: Set Fan Speed
  2612. */
  2613. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2614. /**
  2615. * M107: Fan Off
  2616. */
  2617. inline void gcode_M107() { fanSpeed = 0; }
  2618. #endif //FAN_PIN
  2619. /**
  2620. * M109: Wait for extruder(s) to reach temperature
  2621. */
  2622. inline void gcode_M109() {
  2623. if (setTargetedHotend(109)) return;
  2624. LCD_MESSAGEPGM(MSG_HEATING);
  2625. CooldownNoWait = code_seen('S');
  2626. if (CooldownNoWait || code_seen('R')) {
  2627. setTargetHotend(code_value(), tmp_extruder);
  2628. #ifdef DUAL_X_CARRIAGE
  2629. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2630. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2631. #endif
  2632. }
  2633. #ifdef AUTOTEMP
  2634. autotemp_enabled = code_seen('F');
  2635. if (autotemp_enabled) autotemp_factor = code_value();
  2636. if (code_seen('S')) autotemp_min = code_value();
  2637. if (code_seen('B')) autotemp_max = code_value();
  2638. #endif
  2639. setWatch();
  2640. unsigned long timetemp = millis();
  2641. /* See if we are heating up or cooling down */
  2642. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2643. cancel_heatup = false;
  2644. #ifdef TEMP_RESIDENCY_TIME
  2645. long residencyStart = -1;
  2646. /* continue to loop until we have reached the target temp
  2647. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2648. while((!cancel_heatup)&&((residencyStart == -1) ||
  2649. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2650. #else
  2651. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2652. #endif //TEMP_RESIDENCY_TIME
  2653. { // while loop
  2654. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2655. SERIAL_PROTOCOLPGM("T:");
  2656. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2657. SERIAL_PROTOCOLPGM(" E:");
  2658. SERIAL_PROTOCOL((int)tmp_extruder);
  2659. #ifdef TEMP_RESIDENCY_TIME
  2660. SERIAL_PROTOCOLPGM(" W:");
  2661. if (residencyStart > -1) {
  2662. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2663. SERIAL_PROTOCOLLN( timetemp );
  2664. }
  2665. else {
  2666. SERIAL_PROTOCOLLN( "?" );
  2667. }
  2668. #else
  2669. SERIAL_PROTOCOLLN("");
  2670. #endif
  2671. timetemp = millis();
  2672. }
  2673. manage_heater();
  2674. manage_inactivity();
  2675. lcd_update();
  2676. #ifdef TEMP_RESIDENCY_TIME
  2677. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2678. // or when current temp falls outside the hysteresis after target temp was reached
  2679. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2680. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2681. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2682. {
  2683. residencyStart = millis();
  2684. }
  2685. #endif //TEMP_RESIDENCY_TIME
  2686. }
  2687. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2688. starttime = previous_millis_cmd = millis();
  2689. }
  2690. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2691. /**
  2692. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2693. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2694. */
  2695. inline void gcode_M190() {
  2696. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2697. CooldownNoWait = code_seen('S');
  2698. if (CooldownNoWait || code_seen('R'))
  2699. setTargetBed(code_value());
  2700. unsigned long timetemp = millis();
  2701. cancel_heatup = false;
  2702. target_direction = isHeatingBed(); // true if heating, false if cooling
  2703. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2704. unsigned long ms = millis();
  2705. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2706. timetemp = ms;
  2707. float tt = degHotend(active_extruder);
  2708. SERIAL_PROTOCOLPGM("T:");
  2709. SERIAL_PROTOCOL(tt);
  2710. SERIAL_PROTOCOLPGM(" E:");
  2711. SERIAL_PROTOCOL((int)active_extruder);
  2712. SERIAL_PROTOCOLPGM(" B:");
  2713. SERIAL_PROTOCOL_F(degBed(), 1);
  2714. SERIAL_PROTOCOLLN("");
  2715. }
  2716. manage_heater();
  2717. manage_inactivity();
  2718. lcd_update();
  2719. }
  2720. LCD_MESSAGEPGM(MSG_BED_DONE);
  2721. previous_millis_cmd = millis();
  2722. }
  2723. #endif // TEMP_BED_PIN > -1
  2724. /**
  2725. * M112: Emergency Stop
  2726. */
  2727. inline void gcode_M112() {
  2728. kill();
  2729. }
  2730. #ifdef BARICUDA
  2731. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2732. /**
  2733. * M126: Heater 1 valve open
  2734. */
  2735. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2736. /**
  2737. * M127: Heater 1 valve close
  2738. */
  2739. inline void gcode_M127() { ValvePressure = 0; }
  2740. #endif
  2741. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2742. /**
  2743. * M128: Heater 2 valve open
  2744. */
  2745. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2746. /**
  2747. * M129: Heater 2 valve close
  2748. */
  2749. inline void gcode_M129() { EtoPPressure = 0; }
  2750. #endif
  2751. #endif //BARICUDA
  2752. /**
  2753. * M140: Set bed temperature
  2754. */
  2755. inline void gcode_M140() {
  2756. if (code_seen('S')) setTargetBed(code_value());
  2757. }
  2758. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2759. /**
  2760. * M80: Turn on Power Supply
  2761. */
  2762. inline void gcode_M80() {
  2763. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2764. // If you have a switch on suicide pin, this is useful
  2765. // if you want to start another print with suicide feature after
  2766. // a print without suicide...
  2767. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2768. OUT_WRITE(SUICIDE_PIN, HIGH);
  2769. #endif
  2770. #ifdef ULTIPANEL
  2771. powersupply = true;
  2772. LCD_MESSAGEPGM(WELCOME_MSG);
  2773. lcd_update();
  2774. #endif
  2775. }
  2776. #endif // PS_ON_PIN
  2777. /**
  2778. * M81: Turn off Power Supply
  2779. */
  2780. inline void gcode_M81() {
  2781. disable_heater();
  2782. st_synchronize();
  2783. disable_e0();
  2784. disable_e1();
  2785. disable_e2();
  2786. disable_e3();
  2787. finishAndDisableSteppers();
  2788. fanSpeed = 0;
  2789. delay(1000); // Wait 1 second before switching off
  2790. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2791. st_synchronize();
  2792. suicide();
  2793. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2794. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2795. #endif
  2796. #ifdef ULTIPANEL
  2797. powersupply = false;
  2798. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2799. lcd_update();
  2800. #endif
  2801. }
  2802. /**
  2803. * M82: Set E codes absolute (default)
  2804. */
  2805. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2806. /**
  2807. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2808. */
  2809. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2810. /**
  2811. * M18, M84: Disable all stepper motors
  2812. */
  2813. inline void gcode_M18_M84() {
  2814. if (code_seen('S')) {
  2815. stepper_inactive_time = code_value() * 1000;
  2816. }
  2817. else {
  2818. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2819. if (all_axis) {
  2820. st_synchronize();
  2821. disable_e0();
  2822. disable_e1();
  2823. disable_e2();
  2824. disable_e3();
  2825. finishAndDisableSteppers();
  2826. }
  2827. else {
  2828. st_synchronize();
  2829. if (code_seen('X')) disable_x();
  2830. if (code_seen('Y')) disable_y();
  2831. if (code_seen('Z')) disable_z();
  2832. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2833. if (code_seen('E')) {
  2834. disable_e0();
  2835. disable_e1();
  2836. disable_e2();
  2837. disable_e3();
  2838. }
  2839. #endif
  2840. }
  2841. }
  2842. }
  2843. /**
  2844. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2845. */
  2846. inline void gcode_M85() {
  2847. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2848. }
  2849. /**
  2850. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2851. */
  2852. inline void gcode_M92() {
  2853. for(int8_t i=0; i < NUM_AXIS; i++) {
  2854. if (code_seen(axis_codes[i])) {
  2855. if (i == E_AXIS) {
  2856. float value = code_value();
  2857. if (value < 20.0) {
  2858. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2859. max_e_jerk *= factor;
  2860. max_feedrate[i] *= factor;
  2861. axis_steps_per_sqr_second[i] *= factor;
  2862. }
  2863. axis_steps_per_unit[i] = value;
  2864. }
  2865. else {
  2866. axis_steps_per_unit[i] = code_value();
  2867. }
  2868. }
  2869. }
  2870. }
  2871. /**
  2872. * M114: Output current position to serial port
  2873. */
  2874. inline void gcode_M114() {
  2875. SERIAL_PROTOCOLPGM("X:");
  2876. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2877. SERIAL_PROTOCOLPGM(" Y:");
  2878. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2879. SERIAL_PROTOCOLPGM(" Z:");
  2880. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2881. SERIAL_PROTOCOLPGM(" E:");
  2882. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2883. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2884. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2885. SERIAL_PROTOCOLPGM(" Y:");
  2886. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2887. SERIAL_PROTOCOLPGM(" Z:");
  2888. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2889. SERIAL_PROTOCOLLN("");
  2890. #ifdef SCARA
  2891. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2892. SERIAL_PROTOCOL(delta[X_AXIS]);
  2893. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2894. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2895. SERIAL_PROTOCOLLN("");
  2896. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2897. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2898. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2899. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2900. SERIAL_PROTOCOLLN("");
  2901. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2902. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2903. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2904. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2905. SERIAL_PROTOCOLLN("");
  2906. SERIAL_PROTOCOLLN("");
  2907. #endif
  2908. }
  2909. /**
  2910. * M115: Capabilities string
  2911. */
  2912. inline void gcode_M115() {
  2913. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2914. }
  2915. /**
  2916. * M117: Set LCD Status Message
  2917. */
  2918. inline void gcode_M117() {
  2919. char* codepos = strchr_pointer + 5;
  2920. char* starpos = strchr(codepos, '*');
  2921. if (starpos) *starpos = '\0';
  2922. lcd_setstatus(codepos);
  2923. }
  2924. /**
  2925. * M119: Output endstop states to serial output
  2926. */
  2927. inline void gcode_M119() {
  2928. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2929. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2930. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2931. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2932. #endif
  2933. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2934. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2935. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2936. #endif
  2937. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2938. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2939. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2940. #endif
  2941. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2942. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2943. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2944. #endif
  2945. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2946. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2947. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2948. #endif
  2949. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2950. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2951. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2952. #endif
  2953. }
  2954. /**
  2955. * M120: Enable endstops
  2956. */
  2957. inline void gcode_M120() { enable_endstops(false); }
  2958. /**
  2959. * M121: Disable endstops
  2960. */
  2961. inline void gcode_M121() { enable_endstops(true); }
  2962. #ifdef BLINKM
  2963. /**
  2964. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2965. */
  2966. inline void gcode_M150() {
  2967. SendColors(
  2968. code_seen('R') ? (byte)code_value() : 0,
  2969. code_seen('U') ? (byte)code_value() : 0,
  2970. code_seen('B') ? (byte)code_value() : 0
  2971. );
  2972. }
  2973. #endif // BLINKM
  2974. /**
  2975. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2976. * T<extruder>
  2977. * D<millimeters>
  2978. */
  2979. inline void gcode_M200() {
  2980. tmp_extruder = active_extruder;
  2981. if (code_seen('T')) {
  2982. tmp_extruder = code_value();
  2983. if (tmp_extruder >= EXTRUDERS) {
  2984. SERIAL_ECHO_START;
  2985. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2986. return;
  2987. }
  2988. }
  2989. float area = .0;
  2990. if (code_seen('D')) {
  2991. float diameter = code_value();
  2992. // setting any extruder filament size disables volumetric on the assumption that
  2993. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2994. // for all extruders
  2995. volumetric_enabled = (diameter != 0.0);
  2996. if (volumetric_enabled) {
  2997. filament_size[tmp_extruder] = diameter;
  2998. // make sure all extruders have some sane value for the filament size
  2999. for (int i=0; i<EXTRUDERS; i++)
  3000. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3001. }
  3002. }
  3003. else {
  3004. //reserved for setting filament diameter via UFID or filament measuring device
  3005. return;
  3006. }
  3007. calculate_volumetric_multipliers();
  3008. }
  3009. /**
  3010. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3011. */
  3012. inline void gcode_M201() {
  3013. for (int8_t i=0; i < NUM_AXIS; i++) {
  3014. if (code_seen(axis_codes[i])) {
  3015. max_acceleration_units_per_sq_second[i] = code_value();
  3016. }
  3017. }
  3018. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3019. reset_acceleration_rates();
  3020. }
  3021. #if 0 // Not used for Sprinter/grbl gen6
  3022. inline void gcode_M202() {
  3023. for(int8_t i=0; i < NUM_AXIS; i++) {
  3024. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3025. }
  3026. }
  3027. #endif
  3028. /**
  3029. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3030. */
  3031. inline void gcode_M203() {
  3032. for (int8_t i=0; i < NUM_AXIS; i++) {
  3033. if (code_seen(axis_codes[i])) {
  3034. max_feedrate[i] = code_value();
  3035. }
  3036. }
  3037. }
  3038. /**
  3039. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3040. *
  3041. * P = Printing moves
  3042. * R = Retract only (no X, Y, Z) moves
  3043. * T = Travel (non printing) moves
  3044. *
  3045. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3046. */
  3047. inline void gcode_M204() {
  3048. if (code_seen('P'))
  3049. {
  3050. acceleration = code_value();
  3051. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3052. SERIAL_EOL;
  3053. }
  3054. if (code_seen('R'))
  3055. {
  3056. retract_acceleration = code_value();
  3057. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3058. SERIAL_EOL;
  3059. }
  3060. if (code_seen('T'))
  3061. {
  3062. travel_acceleration = code_value();
  3063. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3064. SERIAL_EOL;
  3065. }
  3066. }
  3067. /**
  3068. * M205: Set Advanced Settings
  3069. *
  3070. * S = Min Feed Rate (mm/s)
  3071. * T = Min Travel Feed Rate (mm/s)
  3072. * B = Min Segment Time (µs)
  3073. * X = Max XY Jerk (mm/s/s)
  3074. * Z = Max Z Jerk (mm/s/s)
  3075. * E = Max E Jerk (mm/s/s)
  3076. */
  3077. inline void gcode_M205() {
  3078. if (code_seen('S')) minimumfeedrate = code_value();
  3079. if (code_seen('T')) mintravelfeedrate = code_value();
  3080. if (code_seen('B')) minsegmenttime = code_value();
  3081. if (code_seen('X')) max_xy_jerk = code_value();
  3082. if (code_seen('Z')) max_z_jerk = code_value();
  3083. if (code_seen('E')) max_e_jerk = code_value();
  3084. }
  3085. /**
  3086. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3087. */
  3088. inline void gcode_M206() {
  3089. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3090. if (code_seen(axis_codes[i])) {
  3091. add_homing[i] = code_value();
  3092. }
  3093. }
  3094. #ifdef SCARA
  3095. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3096. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3097. #endif
  3098. }
  3099. #ifdef DELTA
  3100. /**
  3101. * M665: Set delta configurations
  3102. *
  3103. * L = diagonal rod
  3104. * R = delta radius
  3105. * S = segments per second
  3106. */
  3107. inline void gcode_M665() {
  3108. if (code_seen('L')) delta_diagonal_rod = code_value();
  3109. if (code_seen('R')) delta_radius = code_value();
  3110. if (code_seen('S')) delta_segments_per_second = code_value();
  3111. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3112. }
  3113. /**
  3114. * M666: Set delta endstop adjustment
  3115. */
  3116. inline void gcode_M666() {
  3117. for (int8_t i = 0; i < 3; i++) {
  3118. if (code_seen(axis_codes[i])) {
  3119. endstop_adj[i] = code_value();
  3120. }
  3121. }
  3122. }
  3123. #endif // DELTA
  3124. #ifdef FWRETRACT
  3125. /**
  3126. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3127. */
  3128. inline void gcode_M207() {
  3129. if (code_seen('S')) retract_length = code_value();
  3130. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3131. if (code_seen('Z')) retract_zlift = code_value();
  3132. }
  3133. /**
  3134. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3135. */
  3136. inline void gcode_M208() {
  3137. if (code_seen('S')) retract_recover_length = code_value();
  3138. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3139. }
  3140. /**
  3141. * M209: Enable automatic retract (M209 S1)
  3142. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3143. */
  3144. inline void gcode_M209() {
  3145. if (code_seen('S')) {
  3146. int t = code_value();
  3147. switch(t) {
  3148. case 0:
  3149. autoretract_enabled = false;
  3150. break;
  3151. case 1:
  3152. autoretract_enabled = true;
  3153. break;
  3154. default:
  3155. SERIAL_ECHO_START;
  3156. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3157. SERIAL_ECHO(cmdbuffer[bufindr]);
  3158. SERIAL_ECHOLNPGM("\"");
  3159. return;
  3160. }
  3161. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3162. }
  3163. }
  3164. #endif // FWRETRACT
  3165. #if EXTRUDERS > 1
  3166. /**
  3167. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3168. */
  3169. inline void gcode_M218() {
  3170. if (setTargetedHotend(218)) return;
  3171. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3172. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3173. #ifdef DUAL_X_CARRIAGE
  3174. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3175. #endif
  3176. SERIAL_ECHO_START;
  3177. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3178. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3179. SERIAL_ECHO(" ");
  3180. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3181. SERIAL_ECHO(",");
  3182. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3183. #ifdef DUAL_X_CARRIAGE
  3184. SERIAL_ECHO(",");
  3185. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3186. #endif
  3187. }
  3188. SERIAL_EOL;
  3189. }
  3190. #endif // EXTRUDERS > 1
  3191. /**
  3192. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3193. */
  3194. inline void gcode_M220() {
  3195. if (code_seen('S')) feedmultiply = code_value();
  3196. }
  3197. /**
  3198. * M221: Set extrusion percentage (M221 T0 S95)
  3199. */
  3200. inline void gcode_M221() {
  3201. if (code_seen('S')) {
  3202. int sval = code_value();
  3203. if (code_seen('T')) {
  3204. if (setTargetedHotend(221)) return;
  3205. extruder_multiply[tmp_extruder] = sval;
  3206. }
  3207. else {
  3208. extrudemultiply = sval;
  3209. }
  3210. }
  3211. }
  3212. /**
  3213. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3214. */
  3215. inline void gcode_M226() {
  3216. if (code_seen('P')) {
  3217. int pin_number = code_value();
  3218. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3219. if (pin_state >= -1 && pin_state <= 1) {
  3220. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3221. if (sensitive_pins[i] == pin_number) {
  3222. pin_number = -1;
  3223. break;
  3224. }
  3225. }
  3226. if (pin_number > -1) {
  3227. int target = LOW;
  3228. st_synchronize();
  3229. pinMode(pin_number, INPUT);
  3230. switch(pin_state){
  3231. case 1:
  3232. target = HIGH;
  3233. break;
  3234. case 0:
  3235. target = LOW;
  3236. break;
  3237. case -1:
  3238. target = !digitalRead(pin_number);
  3239. break;
  3240. }
  3241. while(digitalRead(pin_number) != target) {
  3242. manage_heater();
  3243. manage_inactivity();
  3244. lcd_update();
  3245. }
  3246. } // pin_number > -1
  3247. } // pin_state -1 0 1
  3248. } // code_seen('P')
  3249. }
  3250. #if NUM_SERVOS > 0
  3251. /**
  3252. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3253. */
  3254. inline void gcode_M280() {
  3255. int servo_index = code_seen('P') ? code_value() : -1;
  3256. int servo_position = 0;
  3257. if (code_seen('S')) {
  3258. servo_position = code_value();
  3259. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3260. #if SERVO_LEVELING
  3261. servos[servo_index].attach(0);
  3262. #endif
  3263. servos[servo_index].write(servo_position);
  3264. #if SERVO_LEVELING
  3265. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3266. servos[servo_index].detach();
  3267. #endif
  3268. }
  3269. else {
  3270. SERIAL_ECHO_START;
  3271. SERIAL_ECHO("Servo ");
  3272. SERIAL_ECHO(servo_index);
  3273. SERIAL_ECHOLN(" out of range");
  3274. }
  3275. }
  3276. else if (servo_index >= 0) {
  3277. SERIAL_PROTOCOL(MSG_OK);
  3278. SERIAL_PROTOCOL(" Servo ");
  3279. SERIAL_PROTOCOL(servo_index);
  3280. SERIAL_PROTOCOL(": ");
  3281. SERIAL_PROTOCOL(servos[servo_index].read());
  3282. SERIAL_PROTOCOLLN("");
  3283. }
  3284. }
  3285. #endif // NUM_SERVOS > 0
  3286. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3287. /**
  3288. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3289. */
  3290. inline void gcode_M300() {
  3291. int beepS = code_seen('S') ? code_value() : 110;
  3292. int beepP = code_seen('P') ? code_value() : 1000;
  3293. if (beepS > 0) {
  3294. #if BEEPER > 0
  3295. tone(BEEPER, beepS);
  3296. delay(beepP);
  3297. noTone(BEEPER);
  3298. #elif defined(ULTRALCD)
  3299. lcd_buzz(beepS, beepP);
  3300. #elif defined(LCD_USE_I2C_BUZZER)
  3301. lcd_buzz(beepP, beepS);
  3302. #endif
  3303. }
  3304. else {
  3305. delay(beepP);
  3306. }
  3307. }
  3308. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3309. #ifdef PIDTEMP
  3310. /**
  3311. * M301: Set PID parameters P I D (and optionally C)
  3312. */
  3313. inline void gcode_M301() {
  3314. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3315. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3316. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3317. if (e < EXTRUDERS) { // catch bad input value
  3318. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3319. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3320. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3321. #ifdef PID_ADD_EXTRUSION_RATE
  3322. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3323. #endif
  3324. updatePID();
  3325. SERIAL_PROTOCOL(MSG_OK);
  3326. #ifdef PID_PARAMS_PER_EXTRUDER
  3327. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3328. SERIAL_PROTOCOL(e);
  3329. #endif // PID_PARAMS_PER_EXTRUDER
  3330. SERIAL_PROTOCOL(" p:");
  3331. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3332. SERIAL_PROTOCOL(" i:");
  3333. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3334. SERIAL_PROTOCOL(" d:");
  3335. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3336. #ifdef PID_ADD_EXTRUSION_RATE
  3337. SERIAL_PROTOCOL(" c:");
  3338. //Kc does not have scaling applied above, or in resetting defaults
  3339. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3340. #endif
  3341. SERIAL_PROTOCOLLN("");
  3342. }
  3343. else {
  3344. SERIAL_ECHO_START;
  3345. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3346. }
  3347. }
  3348. #endif // PIDTEMP
  3349. #ifdef PIDTEMPBED
  3350. inline void gcode_M304() {
  3351. if (code_seen('P')) bedKp = code_value();
  3352. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3353. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3354. updatePID();
  3355. SERIAL_PROTOCOL(MSG_OK);
  3356. SERIAL_PROTOCOL(" p:");
  3357. SERIAL_PROTOCOL(bedKp);
  3358. SERIAL_PROTOCOL(" i:");
  3359. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3360. SERIAL_PROTOCOL(" d:");
  3361. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3362. SERIAL_PROTOCOLLN("");
  3363. }
  3364. #endif // PIDTEMPBED
  3365. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3366. /**
  3367. * M240: Trigger a camera by emulating a Canon RC-1
  3368. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3369. */
  3370. inline void gcode_M240() {
  3371. #ifdef CHDK
  3372. OUT_WRITE(CHDK, HIGH);
  3373. chdkHigh = millis();
  3374. chdkActive = true;
  3375. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3376. const uint8_t NUM_PULSES = 16;
  3377. const float PULSE_LENGTH = 0.01524;
  3378. for (int i = 0; i < NUM_PULSES; i++) {
  3379. WRITE(PHOTOGRAPH_PIN, HIGH);
  3380. _delay_ms(PULSE_LENGTH);
  3381. WRITE(PHOTOGRAPH_PIN, LOW);
  3382. _delay_ms(PULSE_LENGTH);
  3383. }
  3384. delay(7.33);
  3385. for (int i = 0; i < NUM_PULSES; i++) {
  3386. WRITE(PHOTOGRAPH_PIN, HIGH);
  3387. _delay_ms(PULSE_LENGTH);
  3388. WRITE(PHOTOGRAPH_PIN, LOW);
  3389. _delay_ms(PULSE_LENGTH);
  3390. }
  3391. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3392. }
  3393. #endif // CHDK || PHOTOGRAPH_PIN
  3394. #ifdef DOGLCD
  3395. /**
  3396. * M250: Read and optionally set the LCD contrast
  3397. */
  3398. inline void gcode_M250() {
  3399. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3400. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3401. SERIAL_PROTOCOL(lcd_contrast);
  3402. SERIAL_PROTOCOLLN("");
  3403. }
  3404. #endif // DOGLCD
  3405. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3406. /**
  3407. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3408. */
  3409. inline void gcode_M302() {
  3410. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3411. }
  3412. #endif // PREVENT_DANGEROUS_EXTRUDE
  3413. /**
  3414. * M303: PID relay autotune
  3415. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3416. * E<extruder> (-1 for the bed)
  3417. * C<cycles>
  3418. */
  3419. inline void gcode_M303() {
  3420. int e = code_seen('E') ? code_value_long() : 0;
  3421. int c = code_seen('C') ? code_value_long() : 5;
  3422. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3423. PID_autotune(temp, e, c);
  3424. }
  3425. #ifdef SCARA
  3426. /**
  3427. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3428. */
  3429. inline bool gcode_M360() {
  3430. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3431. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3432. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3433. if (! Stopped) {
  3434. //get_coordinates(); // For X Y Z E F
  3435. delta[X_AXIS] = 0;
  3436. delta[Y_AXIS] = 120;
  3437. calculate_SCARA_forward_Transform(delta);
  3438. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3439. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3440. prepare_move();
  3441. //ClearToSend();
  3442. return true;
  3443. }
  3444. return false;
  3445. }
  3446. /**
  3447. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3448. */
  3449. inline bool gcode_M361() {
  3450. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3451. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3452. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3453. if (! Stopped) {
  3454. //get_coordinates(); // For X Y Z E F
  3455. delta[X_AXIS] = 90;
  3456. delta[Y_AXIS] = 130;
  3457. calculate_SCARA_forward_Transform(delta);
  3458. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3459. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3460. prepare_move();
  3461. //ClearToSend();
  3462. return true;
  3463. }
  3464. return false;
  3465. }
  3466. /**
  3467. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3468. */
  3469. inline bool gcode_M362() {
  3470. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3471. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3472. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3473. if (! Stopped) {
  3474. //get_coordinates(); // For X Y Z E F
  3475. delta[X_AXIS] = 60;
  3476. delta[Y_AXIS] = 180;
  3477. calculate_SCARA_forward_Transform(delta);
  3478. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3479. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3480. prepare_move();
  3481. //ClearToSend();
  3482. return true;
  3483. }
  3484. return false;
  3485. }
  3486. /**
  3487. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3488. */
  3489. inline bool gcode_M363() {
  3490. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3491. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3492. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3493. if (! Stopped) {
  3494. //get_coordinates(); // For X Y Z E F
  3495. delta[X_AXIS] = 50;
  3496. delta[Y_AXIS] = 90;
  3497. calculate_SCARA_forward_Transform(delta);
  3498. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3499. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3500. prepare_move();
  3501. //ClearToSend();
  3502. return true;
  3503. }
  3504. return false;
  3505. }
  3506. /**
  3507. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3508. */
  3509. inline bool gcode_M364() {
  3510. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3511. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3512. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3513. if (! Stopped) {
  3514. //get_coordinates(); // For X Y Z E F
  3515. delta[X_AXIS] = 45;
  3516. delta[Y_AXIS] = 135;
  3517. calculate_SCARA_forward_Transform(delta);
  3518. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3519. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3520. prepare_move();
  3521. //ClearToSend();
  3522. return true;
  3523. }
  3524. return false;
  3525. }
  3526. /**
  3527. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3528. */
  3529. inline void gcode_M365() {
  3530. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3531. if (code_seen(axis_codes[i])) {
  3532. axis_scaling[i] = code_value();
  3533. }
  3534. }
  3535. }
  3536. #endif // SCARA
  3537. #ifdef EXT_SOLENOID
  3538. void enable_solenoid(uint8_t num) {
  3539. switch(num) {
  3540. case 0:
  3541. OUT_WRITE(SOL0_PIN, HIGH);
  3542. break;
  3543. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3544. case 1:
  3545. OUT_WRITE(SOL1_PIN, HIGH);
  3546. break;
  3547. #endif
  3548. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3549. case 2:
  3550. OUT_WRITE(SOL2_PIN, HIGH);
  3551. break;
  3552. #endif
  3553. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3554. case 3:
  3555. OUT_WRITE(SOL3_PIN, HIGH);
  3556. break;
  3557. #endif
  3558. default:
  3559. SERIAL_ECHO_START;
  3560. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3561. break;
  3562. }
  3563. }
  3564. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3565. void disable_all_solenoids() {
  3566. OUT_WRITE(SOL0_PIN, LOW);
  3567. OUT_WRITE(SOL1_PIN, LOW);
  3568. OUT_WRITE(SOL2_PIN, LOW);
  3569. OUT_WRITE(SOL3_PIN, LOW);
  3570. }
  3571. /**
  3572. * M380: Enable solenoid on the active extruder
  3573. */
  3574. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3575. /**
  3576. * M381: Disable all solenoids
  3577. */
  3578. inline void gcode_M381() { disable_all_solenoids(); }
  3579. #endif // EXT_SOLENOID
  3580. /**
  3581. * M400: Finish all moves
  3582. */
  3583. inline void gcode_M400() { st_synchronize(); }
  3584. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3585. /**
  3586. * M401: Engage Z Servo endstop if available
  3587. */
  3588. inline void gcode_M401() { engage_z_probe(); }
  3589. /**
  3590. * M402: Retract Z Servo endstop if enabled
  3591. */
  3592. inline void gcode_M402() { retract_z_probe(); }
  3593. #endif
  3594. #ifdef FILAMENT_SENSOR
  3595. /**
  3596. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3597. */
  3598. inline void gcode_M404() {
  3599. #if FILWIDTH_PIN > -1
  3600. if (code_seen('W')) {
  3601. filament_width_nominal = code_value();
  3602. }
  3603. else {
  3604. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3605. SERIAL_PROTOCOLLN(filament_width_nominal);
  3606. }
  3607. #endif
  3608. }
  3609. /**
  3610. * M405: Turn on filament sensor for control
  3611. */
  3612. inline void gcode_M405() {
  3613. if (code_seen('D')) meas_delay_cm = code_value();
  3614. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3615. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3616. int temp_ratio = widthFil_to_size_ratio();
  3617. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3618. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3619. delay_index1 = delay_index2 = 0;
  3620. }
  3621. filament_sensor = true;
  3622. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3623. //SERIAL_PROTOCOL(filament_width_meas);
  3624. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3625. //SERIAL_PROTOCOL(extrudemultiply);
  3626. }
  3627. /**
  3628. * M406: Turn off filament sensor for control
  3629. */
  3630. inline void gcode_M406() { filament_sensor = false; }
  3631. /**
  3632. * M407: Get measured filament diameter on serial output
  3633. */
  3634. inline void gcode_M407() {
  3635. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3636. SERIAL_PROTOCOLLN(filament_width_meas);
  3637. }
  3638. #endif // FILAMENT_SENSOR
  3639. /**
  3640. * M500: Store settings in EEPROM
  3641. */
  3642. inline void gcode_M500() {
  3643. Config_StoreSettings();
  3644. }
  3645. /**
  3646. * M501: Read settings from EEPROM
  3647. */
  3648. inline void gcode_M501() {
  3649. Config_RetrieveSettings();
  3650. }
  3651. /**
  3652. * M502: Revert to default settings
  3653. */
  3654. inline void gcode_M502() {
  3655. Config_ResetDefault();
  3656. }
  3657. /**
  3658. * M503: print settings currently in memory
  3659. */
  3660. inline void gcode_M503() {
  3661. Config_PrintSettings(code_seen('S') && code_value == 0);
  3662. }
  3663. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3664. /**
  3665. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3666. */
  3667. inline void gcode_M540() {
  3668. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3669. }
  3670. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3671. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3672. inline void gcode_SET_Z_PROBE_OFFSET() {
  3673. float value;
  3674. if (code_seen('Z')) {
  3675. value = code_value();
  3676. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3677. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3678. SERIAL_ECHO_START;
  3679. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3680. SERIAL_PROTOCOLLN("");
  3681. }
  3682. else {
  3683. SERIAL_ECHO_START;
  3684. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3685. SERIAL_ECHOPGM(MSG_Z_MIN);
  3686. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3687. SERIAL_ECHOPGM(MSG_Z_MAX);
  3688. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3689. SERIAL_PROTOCOLLN("");
  3690. }
  3691. }
  3692. else {
  3693. SERIAL_ECHO_START;
  3694. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3695. SERIAL_ECHO(-zprobe_zoffset);
  3696. SERIAL_PROTOCOLLN("");
  3697. }
  3698. }
  3699. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3700. #ifdef FILAMENTCHANGEENABLE
  3701. /**
  3702. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3703. */
  3704. inline void gcode_M600() {
  3705. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3706. for (int i=0; i<NUM_AXIS; i++)
  3707. target[i] = lastpos[i] = current_position[i];
  3708. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3709. #ifdef DELTA
  3710. #define RUNPLAN calculate_delta(target); BASICPLAN
  3711. #else
  3712. #define RUNPLAN BASICPLAN
  3713. #endif
  3714. //retract by E
  3715. if (code_seen('E')) target[E_AXIS] += code_value();
  3716. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3717. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3718. #endif
  3719. RUNPLAN;
  3720. //lift Z
  3721. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3722. #ifdef FILAMENTCHANGE_ZADD
  3723. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3724. #endif
  3725. RUNPLAN;
  3726. //move xy
  3727. if (code_seen('X')) target[X_AXIS] = code_value();
  3728. #ifdef FILAMENTCHANGE_XPOS
  3729. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3730. #endif
  3731. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3732. #ifdef FILAMENTCHANGE_YPOS
  3733. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3734. #endif
  3735. RUNPLAN;
  3736. if (code_seen('L')) target[E_AXIS] += code_value();
  3737. #ifdef FILAMENTCHANGE_FINALRETRACT
  3738. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3739. #endif
  3740. RUNPLAN;
  3741. //finish moves
  3742. st_synchronize();
  3743. //disable extruder steppers so filament can be removed
  3744. disable_e0();
  3745. disable_e1();
  3746. disable_e2();
  3747. disable_e3();
  3748. delay(100);
  3749. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3750. uint8_t cnt = 0;
  3751. while (!lcd_clicked()) {
  3752. cnt++;
  3753. manage_heater();
  3754. manage_inactivity(true);
  3755. lcd_update();
  3756. if (cnt == 0) {
  3757. #if BEEPER > 0
  3758. OUT_WRITE(BEEPER,HIGH);
  3759. delay(3);
  3760. WRITE(BEEPER,LOW);
  3761. delay(3);
  3762. #else
  3763. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3764. lcd_buzz(1000/6, 100);
  3765. #else
  3766. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3767. #endif
  3768. #endif
  3769. }
  3770. } // while(!lcd_clicked)
  3771. //return to normal
  3772. if (code_seen('L')) target[E_AXIS] -= code_value();
  3773. #ifdef FILAMENTCHANGE_FINALRETRACT
  3774. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3775. #endif
  3776. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3777. plan_set_e_position(current_position[E_AXIS]);
  3778. RUNPLAN; //should do nothing
  3779. lcd_reset_alert_level();
  3780. #ifdef DELTA
  3781. calculate_delta(lastpos);
  3782. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3783. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3784. #else
  3785. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3786. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3787. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3788. #endif
  3789. #ifdef FILAMENT_RUNOUT_SENSOR
  3790. filrunoutEnqued = false;
  3791. #endif
  3792. }
  3793. #endif // FILAMENTCHANGEENABLE
  3794. #ifdef DUAL_X_CARRIAGE
  3795. /**
  3796. * M605: Set dual x-carriage movement mode
  3797. *
  3798. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3799. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3800. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3801. * millimeters x-offset and an optional differential hotend temperature of
  3802. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3803. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3804. *
  3805. * Note: the X axis should be homed after changing dual x-carriage mode.
  3806. */
  3807. inline void gcode_M605() {
  3808. st_synchronize();
  3809. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3810. switch(dual_x_carriage_mode) {
  3811. case DXC_DUPLICATION_MODE:
  3812. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3813. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3814. SERIAL_ECHO_START;
  3815. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3816. SERIAL_ECHO(" ");
  3817. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3818. SERIAL_ECHO(",");
  3819. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3820. SERIAL_ECHO(" ");
  3821. SERIAL_ECHO(duplicate_extruder_x_offset);
  3822. SERIAL_ECHO(",");
  3823. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3824. break;
  3825. case DXC_FULL_CONTROL_MODE:
  3826. case DXC_AUTO_PARK_MODE:
  3827. break;
  3828. default:
  3829. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3830. break;
  3831. }
  3832. active_extruder_parked = false;
  3833. extruder_duplication_enabled = false;
  3834. delayed_move_time = 0;
  3835. }
  3836. #endif // DUAL_X_CARRIAGE
  3837. /**
  3838. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3839. */
  3840. inline void gcode_M907() {
  3841. #if HAS_DIGIPOTSS
  3842. for (int i=0;i<NUM_AXIS;i++)
  3843. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3844. if (code_seen('B')) digipot_current(4, code_value());
  3845. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3846. #endif
  3847. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3848. if (code_seen('X')) digipot_current(0, code_value());
  3849. #endif
  3850. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3851. if (code_seen('Z')) digipot_current(1, code_value());
  3852. #endif
  3853. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3854. if (code_seen('E')) digipot_current(2, code_value());
  3855. #endif
  3856. #ifdef DIGIPOT_I2C
  3857. // this one uses actual amps in floating point
  3858. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3859. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3860. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3861. #endif
  3862. }
  3863. #if HAS_DIGIPOTSS
  3864. /**
  3865. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3866. */
  3867. inline void gcode_M908() {
  3868. digitalPotWrite(
  3869. code_seen('P') ? code_value() : 0,
  3870. code_seen('S') ? code_value() : 0
  3871. );
  3872. }
  3873. #endif // HAS_DIGIPOTSS
  3874. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3875. inline void gcode_M350() {
  3876. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3877. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3878. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3879. if(code_seen('B')) microstep_mode(4,code_value());
  3880. microstep_readings();
  3881. #endif
  3882. }
  3883. /**
  3884. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3885. * S# determines MS1 or MS2, X# sets the pin high/low.
  3886. */
  3887. inline void gcode_M351() {
  3888. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3889. if (code_seen('S')) switch(code_value_long()) {
  3890. case 1:
  3891. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3892. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3893. break;
  3894. case 2:
  3895. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3896. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3897. break;
  3898. }
  3899. microstep_readings();
  3900. #endif
  3901. }
  3902. /**
  3903. * M999: Restart after being stopped
  3904. */
  3905. inline void gcode_M999() {
  3906. Stopped = false;
  3907. lcd_reset_alert_level();
  3908. gcode_LastN = Stopped_gcode_LastN;
  3909. FlushSerialRequestResend();
  3910. }
  3911. inline void gcode_T() {
  3912. tmp_extruder = code_value();
  3913. if (tmp_extruder >= EXTRUDERS) {
  3914. SERIAL_ECHO_START;
  3915. SERIAL_ECHO("T");
  3916. SERIAL_ECHO(tmp_extruder);
  3917. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3918. }
  3919. else {
  3920. boolean make_move = false;
  3921. if (code_seen('F')) {
  3922. make_move = true;
  3923. next_feedrate = code_value();
  3924. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3925. }
  3926. #if EXTRUDERS > 1
  3927. if (tmp_extruder != active_extruder) {
  3928. // Save current position to return to after applying extruder offset
  3929. memcpy(destination, current_position, sizeof(destination));
  3930. #ifdef DUAL_X_CARRIAGE
  3931. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3932. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3933. // Park old head: 1) raise 2) move to park position 3) lower
  3934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3935. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3936. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3937. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3938. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3939. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3940. st_synchronize();
  3941. }
  3942. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3943. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3944. extruder_offset[Y_AXIS][active_extruder] +
  3945. extruder_offset[Y_AXIS][tmp_extruder];
  3946. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3947. extruder_offset[Z_AXIS][active_extruder] +
  3948. extruder_offset[Z_AXIS][tmp_extruder];
  3949. active_extruder = tmp_extruder;
  3950. // This function resets the max/min values - the current position may be overwritten below.
  3951. axis_is_at_home(X_AXIS);
  3952. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3953. current_position[X_AXIS] = inactive_extruder_x_pos;
  3954. inactive_extruder_x_pos = destination[X_AXIS];
  3955. }
  3956. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3957. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3958. if (active_extruder == 0 || active_extruder_parked)
  3959. current_position[X_AXIS] = inactive_extruder_x_pos;
  3960. else
  3961. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3962. inactive_extruder_x_pos = destination[X_AXIS];
  3963. extruder_duplication_enabled = false;
  3964. }
  3965. else {
  3966. // record raised toolhead position for use by unpark
  3967. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3968. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3969. active_extruder_parked = true;
  3970. delayed_move_time = 0;
  3971. }
  3972. #else // !DUAL_X_CARRIAGE
  3973. // Offset extruder (only by XY)
  3974. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3975. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3976. // Set the new active extruder and position
  3977. active_extruder = tmp_extruder;
  3978. #endif // !DUAL_X_CARRIAGE
  3979. #ifdef DELTA
  3980. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3981. //sent position to plan_set_position();
  3982. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3983. #else
  3984. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3985. #endif
  3986. // Move to the old position if 'F' was in the parameters
  3987. if (make_move && !Stopped) prepare_move();
  3988. }
  3989. #ifdef EXT_SOLENOID
  3990. st_synchronize();
  3991. disable_all_solenoids();
  3992. enable_solenoid_on_active_extruder();
  3993. #endif // EXT_SOLENOID
  3994. #endif // EXTRUDERS > 1
  3995. SERIAL_ECHO_START;
  3996. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3997. SERIAL_PROTOCOLLN((int)active_extruder);
  3998. }
  3999. }
  4000. /**
  4001. * Process Commands and dispatch them to handlers
  4002. */
  4003. void process_commands() {
  4004. if (code_seen('G')) {
  4005. int gCode = code_value_long();
  4006. switch(gCode) {
  4007. // G0, G1
  4008. case 0:
  4009. case 1:
  4010. gcode_G0_G1();
  4011. break;
  4012. // G2, G3
  4013. #ifndef SCARA
  4014. case 2: // G2 - CW ARC
  4015. case 3: // G3 - CCW ARC
  4016. gcode_G2_G3(gCode == 2);
  4017. break;
  4018. #endif
  4019. // G4 Dwell
  4020. case 4:
  4021. gcode_G4();
  4022. break;
  4023. #ifdef FWRETRACT
  4024. case 10: // G10: retract
  4025. case 11: // G11: retract_recover
  4026. gcode_G10_G11(gCode == 10);
  4027. break;
  4028. #endif //FWRETRACT
  4029. case 28: // G28: Home all axes, one at a time
  4030. gcode_G28();
  4031. break;
  4032. #ifdef ENABLE_AUTO_BED_LEVELING
  4033. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4034. gcode_G29();
  4035. break;
  4036. #ifndef Z_PROBE_SLED
  4037. case 30: // G30 Single Z Probe
  4038. gcode_G30();
  4039. break;
  4040. #else // Z_PROBE_SLED
  4041. case 31: // G31: dock the sled
  4042. case 32: // G32: undock the sled
  4043. dock_sled(gCode == 31);
  4044. break;
  4045. #endif // Z_PROBE_SLED
  4046. #endif // ENABLE_AUTO_BED_LEVELING
  4047. case 90: // G90
  4048. relative_mode = false;
  4049. break;
  4050. case 91: // G91
  4051. relative_mode = true;
  4052. break;
  4053. case 92: // G92
  4054. gcode_G92();
  4055. break;
  4056. }
  4057. }
  4058. else if (code_seen('M')) {
  4059. switch( code_value_long() ) {
  4060. #ifdef ULTIPANEL
  4061. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4062. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4063. gcode_M0_M1();
  4064. break;
  4065. #endif // ULTIPANEL
  4066. case 17:
  4067. gcode_M17();
  4068. break;
  4069. #ifdef SDSUPPORT
  4070. case 20: // M20 - list SD card
  4071. gcode_M20(); break;
  4072. case 21: // M21 - init SD card
  4073. gcode_M21(); break;
  4074. case 22: //M22 - release SD card
  4075. gcode_M22(); break;
  4076. case 23: //M23 - Select file
  4077. gcode_M23(); break;
  4078. case 24: //M24 - Start SD print
  4079. gcode_M24(); break;
  4080. case 25: //M25 - Pause SD print
  4081. gcode_M25(); break;
  4082. case 26: //M26 - Set SD index
  4083. gcode_M26(); break;
  4084. case 27: //M27 - Get SD status
  4085. gcode_M27(); break;
  4086. case 28: //M28 - Start SD write
  4087. gcode_M28(); break;
  4088. case 29: //M29 - Stop SD write
  4089. gcode_M29(); break;
  4090. case 30: //M30 <filename> Delete File
  4091. gcode_M30(); break;
  4092. case 32: //M32 - Select file and start SD print
  4093. gcode_M32(); break;
  4094. case 928: //M928 - Start SD write
  4095. gcode_M928(); break;
  4096. #endif //SDSUPPORT
  4097. case 31: //M31 take time since the start of the SD print or an M109 command
  4098. gcode_M31();
  4099. break;
  4100. case 42: //M42 -Change pin status via gcode
  4101. gcode_M42();
  4102. break;
  4103. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4104. case 48: // M48 Z-Probe repeatability
  4105. gcode_M48();
  4106. break;
  4107. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4108. case 104: // M104
  4109. gcode_M104();
  4110. break;
  4111. case 112: // M112 Emergency Stop
  4112. gcode_M112();
  4113. break;
  4114. case 140: // M140 Set bed temp
  4115. gcode_M140();
  4116. break;
  4117. case 105: // M105 Read current temperature
  4118. gcode_M105();
  4119. return;
  4120. break;
  4121. case 109: // M109 Wait for temperature
  4122. gcode_M109();
  4123. break;
  4124. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4125. case 190: // M190 - Wait for bed heater to reach target.
  4126. gcode_M190();
  4127. break;
  4128. #endif //TEMP_BED_PIN
  4129. #if defined(FAN_PIN) && FAN_PIN > -1
  4130. case 106: //M106 Fan On
  4131. gcode_M106();
  4132. break;
  4133. case 107: //M107 Fan Off
  4134. gcode_M107();
  4135. break;
  4136. #endif //FAN_PIN
  4137. #ifdef BARICUDA
  4138. // PWM for HEATER_1_PIN
  4139. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4140. case 126: // M126 valve open
  4141. gcode_M126();
  4142. break;
  4143. case 127: // M127 valve closed
  4144. gcode_M127();
  4145. break;
  4146. #endif //HEATER_1_PIN
  4147. // PWM for HEATER_2_PIN
  4148. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4149. case 128: // M128 valve open
  4150. gcode_M128();
  4151. break;
  4152. case 129: // M129 valve closed
  4153. gcode_M129();
  4154. break;
  4155. #endif //HEATER_2_PIN
  4156. #endif //BARICUDA
  4157. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4158. case 80: // M80 - Turn on Power Supply
  4159. gcode_M80();
  4160. break;
  4161. #endif // PS_ON_PIN
  4162. case 81: // M81 - Turn off Power Supply
  4163. gcode_M81();
  4164. break;
  4165. case 82:
  4166. gcode_M82();
  4167. break;
  4168. case 83:
  4169. gcode_M83();
  4170. break;
  4171. case 18: //compatibility
  4172. case 84: // M84
  4173. gcode_M18_M84();
  4174. break;
  4175. case 85: // M85
  4176. gcode_M85();
  4177. break;
  4178. case 92: // M92
  4179. gcode_M92();
  4180. break;
  4181. case 115: // M115
  4182. gcode_M115();
  4183. break;
  4184. case 117: // M117 display message
  4185. gcode_M117();
  4186. break;
  4187. case 114: // M114
  4188. gcode_M114();
  4189. break;
  4190. case 120: // M120
  4191. gcode_M120();
  4192. break;
  4193. case 121: // M121
  4194. gcode_M121();
  4195. break;
  4196. case 119: // M119
  4197. gcode_M119();
  4198. break;
  4199. //TODO: update for all axis, use for loop
  4200. #ifdef BLINKM
  4201. case 150: // M150
  4202. gcode_M150();
  4203. break;
  4204. #endif //BLINKM
  4205. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4206. gcode_M200();
  4207. break;
  4208. case 201: // M201
  4209. gcode_M201();
  4210. break;
  4211. #if 0 // Not used for Sprinter/grbl gen6
  4212. case 202: // M202
  4213. gcode_M202();
  4214. break;
  4215. #endif
  4216. case 203: // M203 max feedrate mm/sec
  4217. gcode_M203();
  4218. break;
  4219. case 204: // M204 acclereration S normal moves T filmanent only moves
  4220. gcode_M204();
  4221. break;
  4222. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4223. gcode_M205();
  4224. break;
  4225. case 206: // M206 additional homing offset
  4226. gcode_M206();
  4227. break;
  4228. #ifdef DELTA
  4229. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4230. gcode_M665();
  4231. break;
  4232. case 666: // M666 set delta endstop adjustment
  4233. gcode_M666();
  4234. break;
  4235. #endif // DELTA
  4236. #ifdef FWRETRACT
  4237. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4238. gcode_M207();
  4239. break;
  4240. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4241. gcode_M208();
  4242. break;
  4243. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4244. gcode_M209();
  4245. break;
  4246. #endif // FWRETRACT
  4247. #if EXTRUDERS > 1
  4248. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4249. gcode_M218();
  4250. break;
  4251. #endif
  4252. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4253. gcode_M220();
  4254. break;
  4255. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4256. gcode_M221();
  4257. break;
  4258. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4259. gcode_M226();
  4260. break;
  4261. #if NUM_SERVOS > 0
  4262. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4263. gcode_M280();
  4264. break;
  4265. #endif // NUM_SERVOS > 0
  4266. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4267. case 300: // M300 - Play beep tone
  4268. gcode_M300();
  4269. break;
  4270. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4271. #ifdef PIDTEMP
  4272. case 301: // M301
  4273. gcode_M301();
  4274. break;
  4275. #endif // PIDTEMP
  4276. #ifdef PIDTEMPBED
  4277. case 304: // M304
  4278. gcode_M304();
  4279. break;
  4280. #endif // PIDTEMPBED
  4281. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4282. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4283. gcode_M240();
  4284. break;
  4285. #endif // CHDK || PHOTOGRAPH_PIN
  4286. #ifdef DOGLCD
  4287. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4288. gcode_M250();
  4289. break;
  4290. #endif // DOGLCD
  4291. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4292. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4293. gcode_M302();
  4294. break;
  4295. #endif // PREVENT_DANGEROUS_EXTRUDE
  4296. case 303: // M303 PID autotune
  4297. gcode_M303();
  4298. break;
  4299. #ifdef SCARA
  4300. case 360: // M360 SCARA Theta pos1
  4301. if (gcode_M360()) return;
  4302. break;
  4303. case 361: // M361 SCARA Theta pos2
  4304. if (gcode_M361()) return;
  4305. break;
  4306. case 362: // M362 SCARA Psi pos1
  4307. if (gcode_M362()) return;
  4308. break;
  4309. case 363: // M363 SCARA Psi pos2
  4310. if (gcode_M363()) return;
  4311. break;
  4312. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4313. if (gcode_M364()) return;
  4314. break;
  4315. case 365: // M365 Set SCARA scaling for X Y Z
  4316. gcode_M365();
  4317. break;
  4318. #endif // SCARA
  4319. case 400: // M400 finish all moves
  4320. gcode_M400();
  4321. break;
  4322. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4323. case 401:
  4324. gcode_M401();
  4325. break;
  4326. case 402:
  4327. gcode_M402();
  4328. break;
  4329. #endif
  4330. #ifdef FILAMENT_SENSOR
  4331. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4332. gcode_M404();
  4333. break;
  4334. case 405: //M405 Turn on filament sensor for control
  4335. gcode_M405();
  4336. break;
  4337. case 406: //M406 Turn off filament sensor for control
  4338. gcode_M406();
  4339. break;
  4340. case 407: //M407 Display measured filament diameter
  4341. gcode_M407();
  4342. break;
  4343. #endif // FILAMENT_SENSOR
  4344. case 500: // M500 Store settings in EEPROM
  4345. gcode_M500();
  4346. break;
  4347. case 501: // M501 Read settings from EEPROM
  4348. gcode_M501();
  4349. break;
  4350. case 502: // M502 Revert to default settings
  4351. gcode_M502();
  4352. break;
  4353. case 503: // M503 print settings currently in memory
  4354. gcode_M503();
  4355. break;
  4356. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4357. case 540:
  4358. gcode_M540();
  4359. break;
  4360. #endif
  4361. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4362. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4363. gcode_SET_Z_PROBE_OFFSET();
  4364. break;
  4365. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4366. #ifdef FILAMENTCHANGEENABLE
  4367. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4368. gcode_M600();
  4369. break;
  4370. #endif // FILAMENTCHANGEENABLE
  4371. #ifdef DUAL_X_CARRIAGE
  4372. case 605:
  4373. gcode_M605();
  4374. break;
  4375. #endif // DUAL_X_CARRIAGE
  4376. case 907: // M907 Set digital trimpot motor current using axis codes.
  4377. gcode_M907();
  4378. break;
  4379. #if HAS_DIGIPOTSS
  4380. case 908: // M908 Control digital trimpot directly.
  4381. gcode_M908();
  4382. break;
  4383. #endif // HAS_DIGIPOTSS
  4384. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4385. gcode_M350();
  4386. break;
  4387. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4388. gcode_M351();
  4389. break;
  4390. case 999: // M999: Restart after being Stopped
  4391. gcode_M999();
  4392. break;
  4393. }
  4394. }
  4395. else if (code_seen('T')) {
  4396. gcode_T();
  4397. }
  4398. else {
  4399. SERIAL_ECHO_START;
  4400. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4401. SERIAL_ECHO(cmdbuffer[bufindr]);
  4402. SERIAL_ECHOLNPGM("\"");
  4403. }
  4404. ClearToSend();
  4405. }
  4406. void FlushSerialRequestResend()
  4407. {
  4408. //char cmdbuffer[bufindr][100]="Resend:";
  4409. MYSERIAL.flush();
  4410. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4411. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4412. ClearToSend();
  4413. }
  4414. void ClearToSend()
  4415. {
  4416. previous_millis_cmd = millis();
  4417. #ifdef SDSUPPORT
  4418. if(fromsd[bufindr])
  4419. return;
  4420. #endif //SDSUPPORT
  4421. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4422. }
  4423. void get_coordinates()
  4424. {
  4425. bool seen[4]={false,false,false,false};
  4426. for(int8_t i=0; i < NUM_AXIS; i++) {
  4427. if(code_seen(axis_codes[i]))
  4428. {
  4429. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4430. seen[i]=true;
  4431. }
  4432. else destination[i] = current_position[i]; //Are these else lines really needed?
  4433. }
  4434. if(code_seen('F')) {
  4435. next_feedrate = code_value();
  4436. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4437. }
  4438. }
  4439. void get_arc_coordinates()
  4440. {
  4441. #ifdef SF_ARC_FIX
  4442. bool relative_mode_backup = relative_mode;
  4443. relative_mode = true;
  4444. #endif
  4445. get_coordinates();
  4446. #ifdef SF_ARC_FIX
  4447. relative_mode=relative_mode_backup;
  4448. #endif
  4449. if(code_seen('I')) {
  4450. offset[0] = code_value();
  4451. }
  4452. else {
  4453. offset[0] = 0.0;
  4454. }
  4455. if(code_seen('J')) {
  4456. offset[1] = code_value();
  4457. }
  4458. else {
  4459. offset[1] = 0.0;
  4460. }
  4461. }
  4462. void clamp_to_software_endstops(float target[3])
  4463. {
  4464. if (min_software_endstops) {
  4465. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4466. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4467. float negative_z_offset = 0;
  4468. #ifdef ENABLE_AUTO_BED_LEVELING
  4469. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4470. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4471. #endif
  4472. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4473. }
  4474. if (max_software_endstops) {
  4475. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4476. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4477. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4478. }
  4479. }
  4480. #ifdef DELTA
  4481. void recalc_delta_settings(float radius, float diagonal_rod)
  4482. {
  4483. delta_tower1_x= -SIN_60*radius; // front left tower
  4484. delta_tower1_y= -COS_60*radius;
  4485. delta_tower2_x= SIN_60*radius; // front right tower
  4486. delta_tower2_y= -COS_60*radius;
  4487. delta_tower3_x= 0.0; // back middle tower
  4488. delta_tower3_y= radius;
  4489. delta_diagonal_rod_2= sq(diagonal_rod);
  4490. }
  4491. void calculate_delta(float cartesian[3])
  4492. {
  4493. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4494. - sq(delta_tower1_x-cartesian[X_AXIS])
  4495. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4496. ) + cartesian[Z_AXIS];
  4497. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4498. - sq(delta_tower2_x-cartesian[X_AXIS])
  4499. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4500. ) + cartesian[Z_AXIS];
  4501. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4502. - sq(delta_tower3_x-cartesian[X_AXIS])
  4503. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4504. ) + cartesian[Z_AXIS];
  4505. /*
  4506. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4507. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4508. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4509. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4510. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4511. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4512. */
  4513. }
  4514. #ifdef ENABLE_AUTO_BED_LEVELING
  4515. // Adjust print surface height by linear interpolation over the bed_level array.
  4516. int delta_grid_spacing[2] = { 0, 0 };
  4517. void adjust_delta(float cartesian[3])
  4518. {
  4519. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4520. return; // G29 not done
  4521. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4522. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4523. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4524. int floor_x = floor(grid_x);
  4525. int floor_y = floor(grid_y);
  4526. float ratio_x = grid_x - floor_x;
  4527. float ratio_y = grid_y - floor_y;
  4528. float z1 = bed_level[floor_x+half][floor_y+half];
  4529. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4530. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4531. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4532. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4533. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4534. float offset = (1-ratio_x)*left + ratio_x*right;
  4535. delta[X_AXIS] += offset;
  4536. delta[Y_AXIS] += offset;
  4537. delta[Z_AXIS] += offset;
  4538. /*
  4539. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4540. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4541. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4542. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4543. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4544. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4545. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4546. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4547. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4548. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4549. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4550. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4551. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4552. */
  4553. }
  4554. #endif //ENABLE_AUTO_BED_LEVELING
  4555. void prepare_move_raw()
  4556. {
  4557. previous_millis_cmd = millis();
  4558. calculate_delta(destination);
  4559. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4560. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4561. active_extruder);
  4562. for(int8_t i=0; i < NUM_AXIS; i++) {
  4563. current_position[i] = destination[i];
  4564. }
  4565. }
  4566. #endif //DELTA
  4567. #if defined(MESH_BED_LEVELING)
  4568. #if !defined(MIN)
  4569. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4570. #endif // ! MIN
  4571. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4572. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4573. {
  4574. if (!mbl.active) {
  4575. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4576. for(int8_t i=0; i < NUM_AXIS; i++) {
  4577. current_position[i] = destination[i];
  4578. }
  4579. return;
  4580. }
  4581. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4582. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4583. int ix = mbl.select_x_index(x);
  4584. int iy = mbl.select_y_index(y);
  4585. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4586. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4587. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4588. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4589. if (ix > pix && (x_splits)&(1<<ix)) {
  4590. float nx = mbl.get_x(ix);
  4591. float normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4592. float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4593. float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4594. x_splits ^= 1 << ix;
  4595. destination[X_AXIS] = nx;
  4596. destination[Y_AXIS] = ny;
  4597. destination[E_AXIS] = ne;
  4598. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4599. destination[X_AXIS] = x;
  4600. destination[Y_AXIS] = y;
  4601. destination[E_AXIS] = e;
  4602. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4603. return;
  4604. } else if (ix < pix && (x_splits)&(1<<pix)) {
  4605. float nx = mbl.get_x(pix);
  4606. float normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4607. float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4608. float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4609. x_splits ^= 1 << pix;
  4610. destination[X_AXIS] = nx;
  4611. destination[Y_AXIS] = ny;
  4612. destination[E_AXIS] = ne;
  4613. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4614. destination[X_AXIS] = x;
  4615. destination[Y_AXIS] = y;
  4616. destination[E_AXIS] = e;
  4617. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4618. return;
  4619. } else if (iy > piy && (y_splits)&(1<<iy)) {
  4620. float ny = mbl.get_y(iy);
  4621. float normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4622. float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4623. float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4624. y_splits ^= 1 << iy;
  4625. destination[X_AXIS] = nx;
  4626. destination[Y_AXIS] = ny;
  4627. destination[E_AXIS] = ne;
  4628. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4629. destination[X_AXIS] = x;
  4630. destination[Y_AXIS] = y;
  4631. destination[E_AXIS] = e;
  4632. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4633. return;
  4634. } else if (iy < piy && (y_splits)&(1<<piy)) {
  4635. float ny = mbl.get_y(piy);
  4636. float normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4637. float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4638. float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4639. y_splits ^= 1 << piy;
  4640. destination[X_AXIS] = nx;
  4641. destination[Y_AXIS] = ny;
  4642. destination[E_AXIS] = ne;
  4643. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4644. destination[X_AXIS] = x;
  4645. destination[Y_AXIS] = y;
  4646. destination[E_AXIS] = e;
  4647. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4648. return;
  4649. }
  4650. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4651. for(int8_t i=0; i < NUM_AXIS; i++) {
  4652. current_position[i] = destination[i];
  4653. }
  4654. }
  4655. #endif // MESH_BED_LEVELING
  4656. void prepare_move()
  4657. {
  4658. clamp_to_software_endstops(destination);
  4659. previous_millis_cmd = millis();
  4660. #ifdef SCARA //for now same as delta-code
  4661. float difference[NUM_AXIS];
  4662. for (int8_t i=0; i < NUM_AXIS; i++) {
  4663. difference[i] = destination[i] - current_position[i];
  4664. }
  4665. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4666. sq(difference[Y_AXIS]) +
  4667. sq(difference[Z_AXIS]));
  4668. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4669. if (cartesian_mm < 0.000001) { return; }
  4670. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4671. int steps = max(1, int(scara_segments_per_second * seconds));
  4672. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4673. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4674. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4675. for (int s = 1; s <= steps; s++) {
  4676. float fraction = float(s) / float(steps);
  4677. for(int8_t i=0; i < NUM_AXIS; i++) {
  4678. destination[i] = current_position[i] + difference[i] * fraction;
  4679. }
  4680. calculate_delta(destination);
  4681. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4682. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4683. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4684. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4685. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4686. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4687. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4688. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4689. active_extruder);
  4690. }
  4691. #endif // SCARA
  4692. #ifdef DELTA
  4693. float difference[NUM_AXIS];
  4694. for (int8_t i=0; i < NUM_AXIS; i++) {
  4695. difference[i] = destination[i] - current_position[i];
  4696. }
  4697. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4698. sq(difference[Y_AXIS]) +
  4699. sq(difference[Z_AXIS]));
  4700. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4701. if (cartesian_mm < 0.000001) { return; }
  4702. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4703. int steps = max(1, int(delta_segments_per_second * seconds));
  4704. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4705. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4706. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4707. for (int s = 1; s <= steps; s++) {
  4708. float fraction = float(s) / float(steps);
  4709. for(int8_t i=0; i < NUM_AXIS; i++) {
  4710. destination[i] = current_position[i] + difference[i] * fraction;
  4711. }
  4712. calculate_delta(destination);
  4713. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4714. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4715. active_extruder);
  4716. }
  4717. #endif // DELTA
  4718. #ifdef DUAL_X_CARRIAGE
  4719. if (active_extruder_parked)
  4720. {
  4721. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4722. {
  4723. // move duplicate extruder into correct duplication position.
  4724. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4725. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4726. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4727. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4728. st_synchronize();
  4729. extruder_duplication_enabled = true;
  4730. active_extruder_parked = false;
  4731. }
  4732. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4733. {
  4734. if (current_position[E_AXIS] == destination[E_AXIS])
  4735. {
  4736. // this is a travel move - skit it but keep track of current position (so that it can later
  4737. // be used as start of first non-travel move)
  4738. if (delayed_move_time != 0xFFFFFFFFUL)
  4739. {
  4740. memcpy(current_position, destination, sizeof(current_position));
  4741. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4742. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4743. delayed_move_time = millis();
  4744. return;
  4745. }
  4746. }
  4747. delayed_move_time = 0;
  4748. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4749. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4751. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4753. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4754. active_extruder_parked = false;
  4755. }
  4756. }
  4757. #endif //DUAL_X_CARRIAGE
  4758. #if ! (defined DELTA || defined SCARA)
  4759. // Do not use feedmultiply for E or Z only moves
  4760. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4761. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4762. } else {
  4763. #if defined(MESH_BED_LEVELING)
  4764. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4765. return;
  4766. #else
  4767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4768. #endif // MESH_BED_LEVELING
  4769. }
  4770. #endif // !(DELTA || SCARA)
  4771. for(int8_t i=0; i < NUM_AXIS; i++) {
  4772. current_position[i] = destination[i];
  4773. }
  4774. }
  4775. void prepare_arc_move(char isclockwise) {
  4776. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4777. // Trace the arc
  4778. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4779. // As far as the parser is concerned, the position is now == target. In reality the
  4780. // motion control system might still be processing the action and the real tool position
  4781. // in any intermediate location.
  4782. for(int8_t i=0; i < NUM_AXIS; i++) {
  4783. current_position[i] = destination[i];
  4784. }
  4785. previous_millis_cmd = millis();
  4786. }
  4787. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4788. #if defined(FAN_PIN)
  4789. #if CONTROLLERFAN_PIN == FAN_PIN
  4790. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4791. #endif
  4792. #endif
  4793. unsigned long lastMotor = 0; // Last time a motor was turned on
  4794. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4795. void controllerFan() {
  4796. uint32_t ms = millis();
  4797. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4798. lastMotorCheck = ms;
  4799. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4800. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4801. #if EXTRUDERS > 1
  4802. || E1_ENABLE_READ == E_ENABLE_ON
  4803. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4804. || X2_ENABLE_READ == X_ENABLE_ON
  4805. #endif
  4806. #if EXTRUDERS > 2
  4807. || E2_ENABLE_READ == E_ENABLE_ON
  4808. #if EXTRUDERS > 3
  4809. || E3_ENABLE_READ == E_ENABLE_ON
  4810. #endif
  4811. #endif
  4812. #endif
  4813. ) {
  4814. lastMotor = ms; //... set time to NOW so the fan will turn on
  4815. }
  4816. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4817. // allows digital or PWM fan output to be used (see M42 handling)
  4818. digitalWrite(CONTROLLERFAN_PIN, speed);
  4819. analogWrite(CONTROLLERFAN_PIN, speed);
  4820. }
  4821. }
  4822. #endif
  4823. #ifdef SCARA
  4824. void calculate_SCARA_forward_Transform(float f_scara[3])
  4825. {
  4826. // Perform forward kinematics, and place results in delta[3]
  4827. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4828. float x_sin, x_cos, y_sin, y_cos;
  4829. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4830. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4831. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4832. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4833. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4834. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4835. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4836. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4837. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4838. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4839. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4840. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4841. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4842. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4843. }
  4844. void calculate_delta(float cartesian[3]){
  4845. //reverse kinematics.
  4846. // Perform reversed kinematics, and place results in delta[3]
  4847. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4848. float SCARA_pos[2];
  4849. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4850. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4851. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4852. #if (Linkage_1 == Linkage_2)
  4853. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4854. #else
  4855. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4856. #endif
  4857. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4858. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4859. SCARA_K2 = Linkage_2 * SCARA_S2;
  4860. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4861. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4862. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4863. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4864. delta[Z_AXIS] = cartesian[Z_AXIS];
  4865. /*
  4866. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4867. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4868. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4869. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4870. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4871. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4872. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4873. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4874. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4875. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4876. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4877. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4878. SERIAL_ECHOLN(" ");*/
  4879. }
  4880. #endif
  4881. #ifdef TEMP_STAT_LEDS
  4882. static bool blue_led = false;
  4883. static bool red_led = false;
  4884. static uint32_t stat_update = 0;
  4885. void handle_status_leds(void) {
  4886. float max_temp = 0.0;
  4887. if(millis() > stat_update) {
  4888. stat_update += 500; // Update every 0.5s
  4889. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4890. max_temp = max(max_temp, degHotend(cur_extruder));
  4891. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4892. }
  4893. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4894. max_temp = max(max_temp, degTargetBed());
  4895. max_temp = max(max_temp, degBed());
  4896. #endif
  4897. if((max_temp > 55.0) && (red_led == false)) {
  4898. digitalWrite(STAT_LED_RED, 1);
  4899. digitalWrite(STAT_LED_BLUE, 0);
  4900. red_led = true;
  4901. blue_led = false;
  4902. }
  4903. if((max_temp < 54.0) && (blue_led == false)) {
  4904. digitalWrite(STAT_LED_RED, 0);
  4905. digitalWrite(STAT_LED_BLUE, 1);
  4906. red_led = false;
  4907. blue_led = true;
  4908. }
  4909. }
  4910. }
  4911. #endif
  4912. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4913. {
  4914. #if defined(KILL_PIN) && KILL_PIN > -1
  4915. static int killCount = 0; // make the inactivity button a bit less responsive
  4916. const int KILL_DELAY = 10000;
  4917. #endif
  4918. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4919. if(card.sdprinting) {
  4920. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4921. filrunout(); }
  4922. #endif
  4923. #if defined(HOME_PIN) && HOME_PIN > -1
  4924. static int homeDebounceCount = 0; // poor man's debouncing count
  4925. const int HOME_DEBOUNCE_DELAY = 10000;
  4926. #endif
  4927. if(buflen < (BUFSIZE-1))
  4928. get_command();
  4929. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4930. if(max_inactive_time)
  4931. kill();
  4932. if(stepper_inactive_time) {
  4933. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4934. {
  4935. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4936. disable_x();
  4937. disable_y();
  4938. disable_z();
  4939. disable_e0();
  4940. disable_e1();
  4941. disable_e2();
  4942. disable_e3();
  4943. }
  4944. }
  4945. }
  4946. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4947. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4948. {
  4949. chdkActive = false;
  4950. WRITE(CHDK, LOW);
  4951. }
  4952. #endif
  4953. #if defined(KILL_PIN) && KILL_PIN > -1
  4954. // Check if the kill button was pressed and wait just in case it was an accidental
  4955. // key kill key press
  4956. // -------------------------------------------------------------------------------
  4957. if( 0 == READ(KILL_PIN) )
  4958. {
  4959. killCount++;
  4960. }
  4961. else if (killCount > 0)
  4962. {
  4963. killCount--;
  4964. }
  4965. // Exceeded threshold and we can confirm that it was not accidental
  4966. // KILL the machine
  4967. // ----------------------------------------------------------------
  4968. if ( killCount >= KILL_DELAY)
  4969. {
  4970. kill();
  4971. }
  4972. #endif
  4973. #if defined(HOME_PIN) && HOME_PIN > -1
  4974. // Check to see if we have to home, use poor man's debouncer
  4975. // ---------------------------------------------------------
  4976. if ( 0 == READ(HOME_PIN) )
  4977. {
  4978. if (homeDebounceCount == 0)
  4979. {
  4980. enquecommands_P((PSTR("G28")));
  4981. homeDebounceCount++;
  4982. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4983. }
  4984. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4985. {
  4986. homeDebounceCount++;
  4987. }
  4988. else
  4989. {
  4990. homeDebounceCount = 0;
  4991. }
  4992. }
  4993. #endif
  4994. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4995. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4996. #endif
  4997. #ifdef EXTRUDER_RUNOUT_PREVENT
  4998. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4999. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5000. {
  5001. bool oldstatus=E0_ENABLE_READ;
  5002. enable_e0();
  5003. float oldepos=current_position[E_AXIS];
  5004. float oldedes=destination[E_AXIS];
  5005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5006. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5007. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5008. current_position[E_AXIS]=oldepos;
  5009. destination[E_AXIS]=oldedes;
  5010. plan_set_e_position(oldepos);
  5011. previous_millis_cmd=millis();
  5012. st_synchronize();
  5013. E0_ENABLE_WRITE(oldstatus);
  5014. }
  5015. #endif
  5016. #if defined(DUAL_X_CARRIAGE)
  5017. // handle delayed move timeout
  5018. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5019. {
  5020. // travel moves have been received so enact them
  5021. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5022. memcpy(destination,current_position,sizeof(destination));
  5023. prepare_move();
  5024. }
  5025. #endif
  5026. #ifdef TEMP_STAT_LEDS
  5027. handle_status_leds();
  5028. #endif
  5029. check_axes_activity();
  5030. }
  5031. void kill()
  5032. {
  5033. cli(); // Stop interrupts
  5034. disable_heater();
  5035. disable_x();
  5036. disable_y();
  5037. disable_z();
  5038. disable_e0();
  5039. disable_e1();
  5040. disable_e2();
  5041. disable_e3();
  5042. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5043. pinMode(PS_ON_PIN,INPUT);
  5044. #endif
  5045. SERIAL_ERROR_START;
  5046. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5047. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5048. // FMC small patch to update the LCD before ending
  5049. sei(); // enable interrupts
  5050. for ( int i=5; i--; lcd_update())
  5051. {
  5052. delay(200);
  5053. }
  5054. cli(); // disable interrupts
  5055. suicide();
  5056. while(1) { /* Intentionally left empty */ } // Wait for reset
  5057. }
  5058. #ifdef FILAMENT_RUNOUT_SENSOR
  5059. void filrunout()
  5060. {
  5061. if filrunoutEnqued == false {
  5062. filrunoutEnqued = true;
  5063. enquecommand("M600");
  5064. }
  5065. }
  5066. #endif
  5067. void Stop()
  5068. {
  5069. disable_heater();
  5070. if(Stopped == false) {
  5071. Stopped = true;
  5072. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5073. SERIAL_ERROR_START;
  5074. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5075. LCD_MESSAGEPGM(MSG_STOPPED);
  5076. }
  5077. }
  5078. bool IsStopped() { return Stopped; };
  5079. #ifdef FAST_PWM_FAN
  5080. void setPwmFrequency(uint8_t pin, int val)
  5081. {
  5082. val &= 0x07;
  5083. switch(digitalPinToTimer(pin))
  5084. {
  5085. #if defined(TCCR0A)
  5086. case TIMER0A:
  5087. case TIMER0B:
  5088. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5089. // TCCR0B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR1A)
  5093. case TIMER1A:
  5094. case TIMER1B:
  5095. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5096. // TCCR1B |= val;
  5097. break;
  5098. #endif
  5099. #if defined(TCCR2)
  5100. case TIMER2:
  5101. case TIMER2:
  5102. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5103. TCCR2 |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR2A)
  5107. case TIMER2A:
  5108. case TIMER2B:
  5109. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5110. TCCR2B |= val;
  5111. break;
  5112. #endif
  5113. #if defined(TCCR3A)
  5114. case TIMER3A:
  5115. case TIMER3B:
  5116. case TIMER3C:
  5117. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5118. TCCR3B |= val;
  5119. break;
  5120. #endif
  5121. #if defined(TCCR4A)
  5122. case TIMER4A:
  5123. case TIMER4B:
  5124. case TIMER4C:
  5125. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5126. TCCR4B |= val;
  5127. break;
  5128. #endif
  5129. #if defined(TCCR5A)
  5130. case TIMER5A:
  5131. case TIMER5B:
  5132. case TIMER5C:
  5133. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5134. TCCR5B |= val;
  5135. break;
  5136. #endif
  5137. }
  5138. }
  5139. #endif //FAST_PWM_FAN
  5140. bool setTargetedHotend(int code){
  5141. tmp_extruder = active_extruder;
  5142. if(code_seen('T')) {
  5143. tmp_extruder = code_value();
  5144. if(tmp_extruder >= EXTRUDERS) {
  5145. SERIAL_ECHO_START;
  5146. switch(code){
  5147. case 104:
  5148. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5149. break;
  5150. case 105:
  5151. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5152. break;
  5153. case 109:
  5154. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5155. break;
  5156. case 218:
  5157. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5158. break;
  5159. case 221:
  5160. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5161. break;
  5162. }
  5163. SERIAL_ECHOLN(tmp_extruder);
  5164. return true;
  5165. }
  5166. }
  5167. return false;
  5168. }
  5169. float calculate_volumetric_multiplier(float diameter) {
  5170. if (!volumetric_enabled || diameter == 0) return 1.0;
  5171. float d2 = diameter * 0.5;
  5172. return 1.0 / (M_PI * d2 * d2);
  5173. }
  5174. void calculate_volumetric_multipliers() {
  5175. for (int i=0; i<EXTRUDERS; i++)
  5176. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5177. }