My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 281KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. pinMode(FIL_RUNOUT_PIN, INPUT);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. pinMode(STEPPER_RESET_PIN, OUTPUT);
  746. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  747. }
  748. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  749. #endif
  750. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  751. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  752. i2c.receive(bytes);
  753. }
  754. void i2c_on_request() { // just send dummy data for now
  755. i2c.reply("Hello World!\n");
  756. }
  757. #endif
  758. void gcode_line_error(const char* err, bool doFlush = true) {
  759. SERIAL_ERROR_START;
  760. serialprintPGM(err);
  761. SERIAL_ERRORLN(gcode_LastN);
  762. //Serial.println(gcode_N);
  763. if (doFlush) FlushSerialRequestResend();
  764. serial_count = 0;
  765. }
  766. inline void get_serial_commands() {
  767. static char serial_line_buffer[MAX_CMD_SIZE];
  768. static boolean serial_comment_mode = false;
  769. // If the command buffer is empty for too long,
  770. // send "wait" to indicate Marlin is still waiting.
  771. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  772. static millis_t last_command_time = 0;
  773. millis_t ms = millis();
  774. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  775. SERIAL_ECHOLNPGM(MSG_WAIT);
  776. last_command_time = ms;
  777. }
  778. #endif
  779. /**
  780. * Loop while serial characters are incoming and the queue is not full
  781. */
  782. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  783. char serial_char = MYSERIAL.read();
  784. /**
  785. * If the character ends the line
  786. */
  787. if (serial_char == '\n' || serial_char == '\r') {
  788. serial_comment_mode = false; // end of line == end of comment
  789. if (!serial_count) continue; // skip empty lines
  790. serial_line_buffer[serial_count] = 0; // terminate string
  791. serial_count = 0; //reset buffer
  792. char* command = serial_line_buffer;
  793. while (*command == ' ') command++; // skip any leading spaces
  794. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  795. char* apos = strchr(command, '*');
  796. if (npos) {
  797. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  798. if (M110) {
  799. char* n2pos = strchr(command + 4, 'N');
  800. if (n2pos) npos = n2pos;
  801. }
  802. gcode_N = strtol(npos + 1, NULL, 10);
  803. if (gcode_N != gcode_LastN + 1 && !M110) {
  804. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  805. return;
  806. }
  807. if (apos) {
  808. byte checksum = 0, count = 0;
  809. while (command[count] != '*') checksum ^= command[count++];
  810. if (strtol(apos + 1, NULL, 10) != checksum) {
  811. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  812. return;
  813. }
  814. // if no errors, continue parsing
  815. }
  816. else {
  817. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  818. return;
  819. }
  820. gcode_LastN = gcode_N;
  821. // if no errors, continue parsing
  822. }
  823. else if (apos) { // No '*' without 'N'
  824. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  825. return;
  826. }
  827. // Movement commands alert when stopped
  828. if (IsStopped()) {
  829. char* gpos = strchr(command, 'G');
  830. if (gpos) {
  831. int codenum = strtol(gpos + 1, NULL, 10);
  832. switch (codenum) {
  833. case 0:
  834. case 1:
  835. case 2:
  836. case 3:
  837. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  838. LCD_MESSAGEPGM(MSG_STOPPED);
  839. break;
  840. }
  841. }
  842. }
  843. #if DISABLED(EMERGENCY_PARSER)
  844. // If command was e-stop process now
  845. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  846. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  847. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  848. #endif
  849. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  850. last_command_time = ms;
  851. #endif
  852. // Add the command to the queue
  853. _enqueuecommand(serial_line_buffer, true);
  854. }
  855. else if (serial_count >= MAX_CMD_SIZE - 1) {
  856. // Keep fetching, but ignore normal characters beyond the max length
  857. // The command will be injected when EOL is reached
  858. }
  859. else if (serial_char == '\\') { // Handle escapes
  860. if (MYSERIAL.available() > 0) {
  861. // if we have one more character, copy it over
  862. serial_char = MYSERIAL.read();
  863. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  864. }
  865. // otherwise do nothing
  866. }
  867. else { // it's not a newline, carriage return or escape char
  868. if (serial_char == ';') serial_comment_mode = true;
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. } // queue has space, serial has data
  872. }
  873. #if ENABLED(SDSUPPORT)
  874. inline void get_sdcard_commands() {
  875. static bool stop_buffering = false,
  876. sd_comment_mode = false;
  877. if (!card.sdprinting) return;
  878. /**
  879. * '#' stops reading from SD to the buffer prematurely, so procedural
  880. * macro calls are possible. If it occurs, stop_buffering is triggered
  881. * and the buffer is run dry; this character _can_ occur in serial com
  882. * due to checksums, however, no checksums are used in SD printing.
  883. */
  884. if (commands_in_queue == 0) stop_buffering = false;
  885. uint16_t sd_count = 0;
  886. bool card_eof = card.eof();
  887. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  888. int16_t n = card.get();
  889. char sd_char = (char)n;
  890. card_eof = card.eof();
  891. if (card_eof || n == -1
  892. || sd_char == '\n' || sd_char == '\r'
  893. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  894. ) {
  895. if (card_eof) {
  896. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  897. card.printingHasFinished();
  898. card.checkautostart(true);
  899. }
  900. else if (n == -1) {
  901. SERIAL_ERROR_START;
  902. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  903. }
  904. if (sd_char == '#') stop_buffering = true;
  905. sd_comment_mode = false; //for new command
  906. if (!sd_count) continue; //skip empty lines
  907. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  908. sd_count = 0; //clear buffer
  909. _commit_command(false);
  910. }
  911. else if (sd_count >= MAX_CMD_SIZE - 1) {
  912. /**
  913. * Keep fetching, but ignore normal characters beyond the max length
  914. * The command will be injected when EOL is reached
  915. */
  916. }
  917. else {
  918. if (sd_char == ';') sd_comment_mode = true;
  919. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  920. }
  921. }
  922. }
  923. #endif // SDSUPPORT
  924. /**
  925. * Add to the circular command queue the next command from:
  926. * - The command-injection queue (queued_commands_P)
  927. * - The active serial input (usually USB)
  928. * - The SD card file being actively printed
  929. */
  930. void get_available_commands() {
  931. // if any immediate commands remain, don't get other commands yet
  932. if (drain_queued_commands_P()) return;
  933. get_serial_commands();
  934. #if ENABLED(SDSUPPORT)
  935. get_sdcard_commands();
  936. #endif
  937. }
  938. inline bool code_has_value() {
  939. int i = 1;
  940. char c = seen_pointer[i];
  941. while (c == ' ') c = seen_pointer[++i];
  942. if (c == '-' || c == '+') c = seen_pointer[++i];
  943. if (c == '.') c = seen_pointer[++i];
  944. return NUMERIC(c);
  945. }
  946. inline float code_value_float() {
  947. float ret;
  948. char* e = strchr(seen_pointer, 'E');
  949. if (e) {
  950. *e = 0;
  951. ret = strtod(seen_pointer + 1, NULL);
  952. *e = 'E';
  953. }
  954. else
  955. ret = strtod(seen_pointer + 1, NULL);
  956. return ret;
  957. }
  958. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  959. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  960. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  961. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  962. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  963. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  964. #if ENABLED(INCH_MODE_SUPPORT)
  965. inline void set_input_linear_units(LinearUnit units) {
  966. switch (units) {
  967. case LINEARUNIT_INCH:
  968. linear_unit_factor = 25.4;
  969. break;
  970. case LINEARUNIT_MM:
  971. default:
  972. linear_unit_factor = 1.0;
  973. break;
  974. }
  975. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  976. }
  977. inline float axis_unit_factor(int axis) {
  978. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  979. }
  980. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  981. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  982. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  983. #else
  984. inline float code_value_linear_units() { return code_value_float(); }
  985. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  986. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  987. #endif
  988. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  989. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  990. float code_value_temp_abs() {
  991. switch (input_temp_units) {
  992. case TEMPUNIT_C:
  993. return code_value_float();
  994. case TEMPUNIT_F:
  995. return (code_value_float() - 32) * 0.5555555556;
  996. case TEMPUNIT_K:
  997. return code_value_float() - 272.15;
  998. default:
  999. return code_value_float();
  1000. }
  1001. }
  1002. float code_value_temp_diff() {
  1003. switch (input_temp_units) {
  1004. case TEMPUNIT_C:
  1005. case TEMPUNIT_K:
  1006. return code_value_float();
  1007. case TEMPUNIT_F:
  1008. return code_value_float() * 0.5555555556;
  1009. default:
  1010. return code_value_float();
  1011. }
  1012. }
  1013. #else
  1014. float code_value_temp_abs() { return code_value_float(); }
  1015. float code_value_temp_diff() { return code_value_float(); }
  1016. #endif
  1017. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1018. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1019. bool code_seen(char code) {
  1020. seen_pointer = strchr(current_command_args, code);
  1021. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1022. }
  1023. /**
  1024. * Set target_extruder from the T parameter or the active_extruder
  1025. *
  1026. * Returns TRUE if the target is invalid
  1027. */
  1028. bool get_target_extruder_from_command(int code) {
  1029. if (code_seen('T')) {
  1030. if (code_value_byte() >= EXTRUDERS) {
  1031. SERIAL_ECHO_START;
  1032. SERIAL_CHAR('M');
  1033. SERIAL_ECHO(code);
  1034. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1035. return true;
  1036. }
  1037. target_extruder = code_value_byte();
  1038. }
  1039. else
  1040. target_extruder = active_extruder;
  1041. return false;
  1042. }
  1043. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1044. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1045. #endif
  1046. #if ENABLED(DUAL_X_CARRIAGE)
  1047. #define DXC_FULL_CONTROL_MODE 0
  1048. #define DXC_AUTO_PARK_MODE 1
  1049. #define DXC_DUPLICATION_MODE 2
  1050. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1051. static float x_home_pos(int extruder) {
  1052. if (extruder == 0)
  1053. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1054. else
  1055. /**
  1056. * In dual carriage mode the extruder offset provides an override of the
  1057. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1058. * This allow soft recalibration of the second extruder offset position
  1059. * without firmware reflash (through the M218 command).
  1060. */
  1061. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1062. }
  1063. static int x_home_dir(int extruder) {
  1064. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1065. }
  1066. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1067. static bool active_extruder_parked = false; // used in mode 1 & 2
  1068. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1069. static millis_t delayed_move_time = 0; // used in mode 1
  1070. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1071. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1072. #endif //DUAL_X_CARRIAGE
  1073. /**
  1074. * Software endstops can be used to monitor the open end of
  1075. * an axis that has a hardware endstop on the other end. Or
  1076. * they can prevent axes from moving past endstops and grinding.
  1077. *
  1078. * To keep doing their job as the coordinate system changes,
  1079. * the software endstop positions must be refreshed to remain
  1080. * at the same positions relative to the machine.
  1081. */
  1082. void update_software_endstops(AxisEnum axis) {
  1083. float offs = LOGICAL_POSITION(0, axis);
  1084. #if ENABLED(DUAL_X_CARRIAGE)
  1085. if (axis == X_AXIS) {
  1086. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1087. if (active_extruder != 0) {
  1088. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1089. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1090. return;
  1091. }
  1092. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1093. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1094. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1095. return;
  1096. }
  1097. }
  1098. else
  1099. #endif
  1100. {
  1101. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1102. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1103. }
  1104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1105. if (DEBUGGING(LEVELING)) {
  1106. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1107. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1108. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1109. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1110. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1111. }
  1112. #endif
  1113. #if ENABLED(DELTA)
  1114. if (axis == Z_AXIS)
  1115. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1116. #endif
  1117. }
  1118. /**
  1119. * Change the home offset for an axis, update the current
  1120. * position and the software endstops to retain the same
  1121. * relative distance to the new home.
  1122. *
  1123. * Since this changes the current_position, code should
  1124. * call sync_plan_position soon after this.
  1125. */
  1126. static void set_home_offset(AxisEnum axis, float v) {
  1127. current_position[axis] += v - home_offset[axis];
  1128. home_offset[axis] = v;
  1129. update_software_endstops(axis);
  1130. }
  1131. /**
  1132. * Set an axis' current position to its home position (after homing).
  1133. *
  1134. * For Core and Cartesian robots this applies one-to-one when an
  1135. * individual axis has been homed.
  1136. *
  1137. * DELTA should wait until all homing is done before setting the XYZ
  1138. * current_position to home, because homing is a single operation.
  1139. * In the case where the axis positions are already known and previously
  1140. * homed, DELTA could home to X or Y individually by moving either one
  1141. * to the center. However, homing Z always homes XY and Z.
  1142. *
  1143. * SCARA should wait until all XY homing is done before setting the XY
  1144. * current_position to home, because neither X nor Y is at home until
  1145. * both are at home. Z can however be homed individually.
  1146. *
  1147. */
  1148. static void set_axis_is_at_home(AxisEnum axis) {
  1149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1150. if (DEBUGGING(LEVELING)) {
  1151. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1152. SERIAL_ECHOLNPGM(")");
  1153. }
  1154. #endif
  1155. position_shift[axis] = 0;
  1156. #if ENABLED(DUAL_X_CARRIAGE)
  1157. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1158. if (active_extruder != 0)
  1159. current_position[X_AXIS] = x_home_pos(active_extruder);
  1160. else
  1161. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1162. update_software_endstops(X_AXIS);
  1163. return;
  1164. }
  1165. #endif
  1166. #if ENABLED(MORGAN_SCARA)
  1167. if (axis == X_AXIS || axis == Y_AXIS) {
  1168. float homeposition[XYZ];
  1169. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1170. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1171. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1172. /**
  1173. * Get Home position SCARA arm angles using inverse kinematics,
  1174. * and calculate homing offset using forward kinematics
  1175. */
  1176. inverse_kinematics(homeposition);
  1177. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1178. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1179. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1180. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1181. /**
  1182. * SCARA home positions are based on configuration since the actual
  1183. * limits are determined by the inverse kinematic transform.
  1184. */
  1185. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1186. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1187. }
  1188. else
  1189. #endif
  1190. {
  1191. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1192. update_software_endstops(axis);
  1193. if (axis == Z_AXIS) {
  1194. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1195. #if HOMING_Z_WITH_PROBE
  1196. current_position[Z_AXIS] -= zprobe_zoffset;
  1197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1198. if (DEBUGGING(LEVELING)) {
  1199. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1200. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1201. }
  1202. #endif
  1203. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING))
  1205. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1206. #endif
  1207. #endif
  1208. }
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (DEBUGGING(LEVELING)) {
  1211. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1212. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1213. DEBUG_POS("", current_position);
  1214. }
  1215. #endif
  1216. }
  1217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1218. if (DEBUGGING(LEVELING)) {
  1219. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1220. SERIAL_ECHOLNPGM(")");
  1221. }
  1222. #endif
  1223. axis_known_position[axis] = axis_homed[axis] = true;
  1224. }
  1225. /**
  1226. * Some planner shorthand inline functions
  1227. */
  1228. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1229. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1230. int hbd = homing_bump_divisor[axis];
  1231. if (hbd < 1) {
  1232. hbd = 10;
  1233. SERIAL_ECHO_START;
  1234. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1235. }
  1236. return homing_feedrate_mm_s[axis] / hbd;
  1237. }
  1238. //
  1239. // line_to_current_position
  1240. // Move the planner to the current position from wherever it last moved
  1241. // (or from wherever it has been told it is located).
  1242. //
  1243. inline void line_to_current_position() {
  1244. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1245. }
  1246. inline void line_to_z(float zPosition) {
  1247. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1248. }
  1249. //
  1250. // line_to_destination
  1251. // Move the planner, not necessarily synced with current_position
  1252. //
  1253. inline void line_to_destination(float fr_mm_s) {
  1254. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1255. }
  1256. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1257. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1258. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1259. #if ENABLED(DELTA)
  1260. /**
  1261. * Calculate delta, start a line, and set current_position to destination
  1262. */
  1263. void prepare_move_to_destination_raw() {
  1264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1265. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1266. #endif
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_move_to_destination_raw(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_move_to_destination_raw(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_move_to_destination_raw(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_move_to_destination_raw(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1330. #endif
  1331. #else
  1332. // If Z needs to raise, do it before moving XY
  1333. if (current_position[Z_AXIS] < z) {
  1334. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1335. current_position[Z_AXIS] = z;
  1336. line_to_current_position();
  1337. }
  1338. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1339. current_position[X_AXIS] = x;
  1340. current_position[Y_AXIS] = y;
  1341. line_to_current_position();
  1342. // If Z needs to lower, do it after moving XY
  1343. if (current_position[Z_AXIS] > z) {
  1344. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1345. current_position[Z_AXIS] = z;
  1346. line_to_current_position();
  1347. }
  1348. #endif
  1349. stepper.synchronize();
  1350. feedrate_mm_s = old_feedrate_mm_s;
  1351. }
  1352. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1353. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1354. }
  1355. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1356. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1357. }
  1358. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1359. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1360. }
  1361. //
  1362. // Prepare to do endstop or probe moves
  1363. // with custom feedrates.
  1364. //
  1365. // - Save current feedrates
  1366. // - Reset the rate multiplier
  1367. // - Reset the command timeout
  1368. // - Enable the endstops (for endstop moves)
  1369. //
  1370. static void setup_for_endstop_or_probe_move() {
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1373. #endif
  1374. saved_feedrate_mm_s = feedrate_mm_s;
  1375. saved_feedrate_percentage = feedrate_percentage;
  1376. feedrate_percentage = 100;
  1377. refresh_cmd_timeout();
  1378. }
  1379. static void clean_up_after_endstop_or_probe_move() {
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1382. #endif
  1383. feedrate_mm_s = saved_feedrate_mm_s;
  1384. feedrate_percentage = saved_feedrate_percentage;
  1385. refresh_cmd_timeout();
  1386. }
  1387. #if HAS_BED_PROBE
  1388. /**
  1389. * Raise Z to a minimum height to make room for a probe to move
  1390. */
  1391. inline void do_probe_raise(float z_raise) {
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) {
  1394. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1395. SERIAL_ECHOLNPGM(")");
  1396. }
  1397. #endif
  1398. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1399. if (z_dest > current_position[Z_AXIS])
  1400. do_blocking_move_to_z(z_dest);
  1401. }
  1402. #endif //HAS_BED_PROBE
  1403. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1404. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1405. const bool xx = x && !axis_homed[X_AXIS],
  1406. yy = y && !axis_homed[Y_AXIS],
  1407. zz = z && !axis_homed[Z_AXIS];
  1408. if (xx || yy || zz) {
  1409. SERIAL_ECHO_START;
  1410. SERIAL_ECHOPGM(MSG_HOME " ");
  1411. if (xx) SERIAL_ECHOPGM(MSG_X);
  1412. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1413. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1414. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1415. #if ENABLED(ULTRA_LCD)
  1416. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1417. strcat_P(message, PSTR(MSG_HOME " "));
  1418. if (xx) strcat_P(message, PSTR(MSG_X));
  1419. if (yy) strcat_P(message, PSTR(MSG_Y));
  1420. if (zz) strcat_P(message, PSTR(MSG_Z));
  1421. strcat_P(message, PSTR(" " MSG_FIRST));
  1422. lcd_setstatus(message);
  1423. #endif
  1424. return true;
  1425. }
  1426. return false;
  1427. }
  1428. #endif
  1429. #if ENABLED(Z_PROBE_SLED)
  1430. #ifndef SLED_DOCKING_OFFSET
  1431. #define SLED_DOCKING_OFFSET 0
  1432. #endif
  1433. /**
  1434. * Method to dock/undock a sled designed by Charles Bell.
  1435. *
  1436. * stow[in] If false, move to MAX_X and engage the solenoid
  1437. * If true, move to MAX_X and release the solenoid
  1438. */
  1439. static void dock_sled(bool stow) {
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) {
  1442. SERIAL_ECHOPAIR("dock_sled(", stow);
  1443. SERIAL_ECHOLNPGM(")");
  1444. }
  1445. #endif
  1446. // Dock sled a bit closer to ensure proper capturing
  1447. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1448. #if PIN_EXISTS(SLED)
  1449. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1450. #endif
  1451. }
  1452. #endif // Z_PROBE_SLED
  1453. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1454. void run_deploy_moves_script() {
  1455. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1456. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1457. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1458. #endif
  1459. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1460. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1461. #endif
  1462. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1463. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1464. #endif
  1465. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1466. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1467. #endif
  1468. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1469. #endif
  1470. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1471. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1472. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1473. #endif
  1474. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1475. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1476. #endif
  1477. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1478. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1479. #endif
  1480. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1481. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1482. #endif
  1483. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1484. #endif
  1485. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1486. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1487. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1488. #endif
  1489. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1490. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1491. #endif
  1492. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1493. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1494. #endif
  1495. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1496. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1497. #endif
  1498. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1499. #endif
  1500. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1501. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1502. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1503. #endif
  1504. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1505. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1506. #endif
  1507. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1508. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1509. #endif
  1510. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1511. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1512. #endif
  1513. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1514. #endif
  1515. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1516. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1517. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1518. #endif
  1519. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1520. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1523. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1526. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1527. #endif
  1528. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1529. #endif
  1530. }
  1531. void run_stow_moves_script() {
  1532. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1533. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1534. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1535. #endif
  1536. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1537. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1540. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1543. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1544. #endif
  1545. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1546. #endif
  1547. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1548. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1549. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1550. #endif
  1551. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1552. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1555. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1558. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1559. #endif
  1560. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1561. #endif
  1562. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1563. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1564. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1567. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1570. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1573. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1574. #endif
  1575. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1576. #endif
  1577. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1578. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1579. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1582. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1585. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1588. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1589. #endif
  1590. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1591. #endif
  1592. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1593. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1594. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1597. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1600. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1603. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1604. #endif
  1605. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1606. #endif
  1607. }
  1608. #endif
  1609. #if HAS_BED_PROBE
  1610. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1611. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1612. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1613. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1614. #else
  1615. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1616. #endif
  1617. #endif
  1618. #define DEPLOY_PROBE() set_probe_deployed(true)
  1619. #define STOW_PROBE() set_probe_deployed(false)
  1620. // returns false for ok and true for failure
  1621. static bool set_probe_deployed(bool deploy) {
  1622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1623. if (DEBUGGING(LEVELING)) {
  1624. DEBUG_POS("set_probe_deployed", current_position);
  1625. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1626. }
  1627. #endif
  1628. if (endstops.z_probe_enabled == deploy) return false;
  1629. // Make room for probe
  1630. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1631. // Check BLTOUCH probe status for an error
  1632. #if ENABLED(BLTOUCH)
  1633. if (servo[Z_ENDSTOP_SERVO_NR].read() == BLTouchState_Error) { stop(); return true; }
  1634. #endif
  1635. #if ENABLED(Z_PROBE_SLED)
  1636. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1637. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1638. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1639. #endif
  1640. float oldXpos = current_position[X_AXIS],
  1641. oldYpos = current_position[Y_AXIS];
  1642. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1643. // If endstop is already false, the Z probe is deployed
  1644. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1645. // Would a goto be less ugly?
  1646. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1647. // for a triggered when stowed manual probe.
  1648. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1649. // otherwise an Allen-Key probe can't be stowed.
  1650. #endif
  1651. #if ENABLED(Z_PROBE_SLED)
  1652. dock_sled(!deploy);
  1653. #elif HAS_Z_SERVO_ENDSTOP
  1654. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1655. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1656. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1657. #endif
  1658. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1659. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1660. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1661. if (IsRunning()) {
  1662. SERIAL_ERROR_START;
  1663. SERIAL_ERRORLNPGM("Z-Probe failed");
  1664. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1665. }
  1666. stop();
  1667. return true;
  1668. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1669. #endif
  1670. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1671. endstops.enable_z_probe(deploy);
  1672. return false;
  1673. }
  1674. static void do_probe_move(float z, float fr_mm_m) {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1677. #endif
  1678. // Move down until probe triggered
  1679. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1680. // Clear endstop flags
  1681. endstops.hit_on_purpose();
  1682. // Get Z where the steppers were interrupted
  1683. set_current_from_steppers_for_axis(Z_AXIS);
  1684. // Tell the planner where we actually are
  1685. SYNC_PLAN_POSITION_KINEMATIC();
  1686. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1687. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1688. #endif
  1689. }
  1690. // Do a single Z probe and return with current_position[Z_AXIS]
  1691. // at the height where the probe triggered.
  1692. static float run_z_probe() {
  1693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1694. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1695. #endif
  1696. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1697. refresh_cmd_timeout();
  1698. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1699. // Do a first probe at the fast speed
  1700. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1701. // move up by the bump distance
  1702. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1703. #else
  1704. // If the nozzle is above the travel height then
  1705. // move down quickly before doing the slow probe
  1706. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1707. if (z < current_position[Z_AXIS])
  1708. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1709. #endif
  1710. // move down slowly to find bed
  1711. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1713. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1714. #endif
  1715. return current_position[Z_AXIS];
  1716. }
  1717. //
  1718. // - Move to the given XY
  1719. // - Deploy the probe, if not already deployed
  1720. // - Probe the bed, get the Z position
  1721. // - Depending on the 'stow' flag
  1722. // - Stow the probe, or
  1723. // - Raise to the BETWEEN height
  1724. // - Return the probed Z position
  1725. //
  1726. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1728. if (DEBUGGING(LEVELING)) {
  1729. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1730. SERIAL_ECHOPAIR(", ", y);
  1731. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1732. SERIAL_ECHOLNPGM(")");
  1733. DEBUG_POS("", current_position);
  1734. }
  1735. #endif
  1736. float old_feedrate_mm_s = feedrate_mm_s;
  1737. // Ensure a minimum height before moving the probe
  1738. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1739. // Move to the XY where we shall probe
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) {
  1742. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1743. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1744. SERIAL_ECHOLNPGM(")");
  1745. }
  1746. #endif
  1747. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1748. // Move the probe to the given XY
  1749. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1750. if (DEPLOY_PROBE()) return NAN;
  1751. float measured_z = run_z_probe();
  1752. if (stow) {
  1753. if (STOW_PROBE()) return NAN;
  1754. }
  1755. else {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1758. #endif
  1759. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1760. }
  1761. if (verbose_level > 2) {
  1762. SERIAL_PROTOCOLPGM("Bed X: ");
  1763. SERIAL_PROTOCOL_F(x, 3);
  1764. SERIAL_PROTOCOLPGM(" Y: ");
  1765. SERIAL_PROTOCOL_F(y, 3);
  1766. SERIAL_PROTOCOLPGM(" Z: ");
  1767. SERIAL_PROTOCOL_F(measured_z, 3);
  1768. SERIAL_EOL;
  1769. }
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1772. #endif
  1773. feedrate_mm_s = old_feedrate_mm_s;
  1774. return measured_z;
  1775. }
  1776. #endif // HAS_BED_PROBE
  1777. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1778. /**
  1779. * Reset calibration results to zero.
  1780. */
  1781. void reset_bed_level() {
  1782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1783. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1784. #endif
  1785. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1786. planner.bed_level_matrix.set_to_identity();
  1787. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1788. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1789. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1790. #endif
  1791. }
  1792. #endif // AUTO_BED_LEVELING_FEATURE
  1793. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1794. /**
  1795. * Get the stepper positions, apply the rotation matrix
  1796. * using the home XY and Z0 position as the fulcrum.
  1797. */
  1798. vector_3 untilted_stepper_position() {
  1799. get_cartesian_from_steppers();
  1800. vector_3 pos = vector_3(
  1801. cartes[X_AXIS] - X_TILT_FULCRUM,
  1802. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1803. cartes[Z_AXIS]
  1804. );
  1805. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1806. //pos.debug("untilted_stepper_position offset");
  1807. //bed_level_matrix.debug("untilted_stepper_position");
  1808. //inverse.debug("in untilted_stepper_position");
  1809. pos.apply_rotation(inverse);
  1810. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1811. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1812. pos.z = LOGICAL_Z_POSITION(pos.z);
  1813. //pos.debug("after rotation and reorientation");
  1814. return pos;
  1815. }
  1816. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1817. /**
  1818. * Extrapolate a single point from its neighbors
  1819. */
  1820. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1821. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1822. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1823. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1824. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1825. // Median is robust (ignores outliers).
  1826. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1827. : ((c < b) ? b : (a < c) ? a : c);
  1828. }
  1829. /**
  1830. * Fill in the unprobed points (corners of circular print surface)
  1831. * using linear extrapolation, away from the center.
  1832. */
  1833. static void extrapolate_unprobed_bed_level() {
  1834. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1835. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1836. for (uint8_t y = 0; y <= half_y; y++) {
  1837. for (uint8_t x = 0; x <= half_x; x++) {
  1838. if (x + y < 3) continue;
  1839. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1840. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1841. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1842. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1843. }
  1844. }
  1845. }
  1846. /**
  1847. * Print calibration results for plotting or manual frame adjustment.
  1848. */
  1849. static void print_bed_level() {
  1850. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1851. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1852. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1853. SERIAL_PROTOCOLCHAR(' ');
  1854. }
  1855. SERIAL_EOL;
  1856. }
  1857. }
  1858. #endif // AUTO_BED_LEVELING_NONLINEAR
  1859. /**
  1860. * Home an individual linear axis
  1861. */
  1862. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1863. current_position[axis] = 0;
  1864. sync_plan_position();
  1865. current_position[axis] = where;
  1866. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1867. stepper.synchronize();
  1868. endstops.hit_on_purpose();
  1869. }
  1870. /**
  1871. * Home an individual "raw axis" to its endstop.
  1872. * This applies to XYZ on Cartesian and Core robots, and
  1873. * to the individual ABC steppers on DELTA and SCARA.
  1874. *
  1875. * At the end of the procedure the axis is marked as
  1876. * homed and the current position of that axis is updated.
  1877. * Kinematic robots should wait till all axes are homed
  1878. * before updating the current position.
  1879. */
  1880. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1881. static void homeaxis(AxisEnum axis) {
  1882. #define CAN_HOME(A) \
  1883. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1884. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) {
  1887. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1888. SERIAL_ECHOLNPGM(")");
  1889. }
  1890. #endif
  1891. int axis_home_dir =
  1892. #if ENABLED(DUAL_X_CARRIAGE)
  1893. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1894. #endif
  1895. home_dir(axis);
  1896. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1897. #if HOMING_Z_WITH_PROBE
  1898. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1899. #endif
  1900. // Set a flag for Z motor locking
  1901. #if ENABLED(Z_DUAL_ENDSTOPS)
  1902. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1903. #endif
  1904. // Move towards the endstop until an endstop is triggered
  1905. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1907. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1908. #endif
  1909. // Move away from the endstop by the axis HOME_BUMP_MM
  1910. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1911. // Move slowly towards the endstop until triggered
  1912. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1913. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1914. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1915. #endif
  1916. #if ENABLED(Z_DUAL_ENDSTOPS)
  1917. if (axis == Z_AXIS) {
  1918. float adj = fabs(z_endstop_adj);
  1919. bool lockZ1;
  1920. if (axis_home_dir > 0) {
  1921. adj = -adj;
  1922. lockZ1 = (z_endstop_adj > 0);
  1923. }
  1924. else
  1925. lockZ1 = (z_endstop_adj < 0);
  1926. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1927. // Move to the adjusted endstop height
  1928. do_homing_move(axis, adj);
  1929. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1930. stepper.set_homing_flag(false);
  1931. } // Z_AXIS
  1932. #endif
  1933. // Delta has already moved all three towers up in G28
  1934. // so here it re-homes each tower in turn.
  1935. // Delta homing treats the axes as normal linear axes.
  1936. #if ENABLED(DELTA)
  1937. // retrace by the amount specified in endstop_adj
  1938. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) {
  1941. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1942. DEBUG_POS("", current_position);
  1943. }
  1944. #endif
  1945. do_homing_move(axis, endstop_adj[axis]);
  1946. }
  1947. #else
  1948. // Set the axis position to its home position (plus home offsets)
  1949. set_axis_is_at_home(axis);
  1950. sync_plan_position();
  1951. destination[axis] = current_position[axis];
  1952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1953. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1954. #endif
  1955. #endif
  1956. // Put away the Z probe
  1957. #if HOMING_Z_WITH_PROBE
  1958. if (axis == Z_AXIS && STOW_PROBE()) return;
  1959. #endif
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) {
  1962. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1963. SERIAL_ECHOLNPGM(")");
  1964. }
  1965. #endif
  1966. } // homeaxis()
  1967. #if ENABLED(FWRETRACT)
  1968. void retract(bool retracting, bool swapping = false) {
  1969. if (retracting == retracted[active_extruder]) return;
  1970. float old_feedrate_mm_s = feedrate_mm_s;
  1971. set_destination_to_current();
  1972. if (retracting) {
  1973. feedrate_mm_s = retract_feedrate_mm_s;
  1974. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1975. sync_plan_position_e();
  1976. prepare_move_to_destination();
  1977. if (retract_zlift > 0.01) {
  1978. current_position[Z_AXIS] -= retract_zlift;
  1979. SYNC_PLAN_POSITION_KINEMATIC();
  1980. prepare_move_to_destination();
  1981. }
  1982. }
  1983. else {
  1984. if (retract_zlift > 0.01) {
  1985. current_position[Z_AXIS] += retract_zlift;
  1986. SYNC_PLAN_POSITION_KINEMATIC();
  1987. }
  1988. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1989. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1990. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1991. sync_plan_position_e();
  1992. prepare_move_to_destination();
  1993. }
  1994. feedrate_mm_s = old_feedrate_mm_s;
  1995. retracted[active_extruder] = retracting;
  1996. } // retract()
  1997. #endif // FWRETRACT
  1998. #if ENABLED(MIXING_EXTRUDER)
  1999. void normalize_mix() {
  2000. float mix_total = 0.0;
  2001. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2002. float v = mixing_factor[i];
  2003. if (v < 0) v = mixing_factor[i] = 0;
  2004. mix_total += v;
  2005. }
  2006. // Scale all values if they don't add up to ~1.0
  2007. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2008. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2009. float mix_scale = 1.0 / mix_total;
  2010. for (int i = 0; i < MIXING_STEPPERS; i++)
  2011. mixing_factor[i] *= mix_scale;
  2012. }
  2013. }
  2014. #if ENABLED(DIRECT_MIXING_IN_G1)
  2015. // Get mixing parameters from the GCode
  2016. // Factors that are left out are set to 0
  2017. // The total "must" be 1.0 (but it will be normalized)
  2018. void gcode_get_mix() {
  2019. const char* mixing_codes = "ABCDHI";
  2020. for (int i = 0; i < MIXING_STEPPERS; i++)
  2021. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2022. normalize_mix();
  2023. }
  2024. #endif
  2025. #endif
  2026. /**
  2027. * ***************************************************************************
  2028. * ***************************** G-CODE HANDLING *****************************
  2029. * ***************************************************************************
  2030. */
  2031. /**
  2032. * Set XYZE destination and feedrate from the current GCode command
  2033. *
  2034. * - Set destination from included axis codes
  2035. * - Set to current for missing axis codes
  2036. * - Set the feedrate, if included
  2037. */
  2038. void gcode_get_destination() {
  2039. LOOP_XYZE(i) {
  2040. if (code_seen(axis_codes[i]))
  2041. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2042. else
  2043. destination[i] = current_position[i];
  2044. }
  2045. if (code_seen('F') && code_value_linear_units() > 0.0)
  2046. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2047. #if ENABLED(PRINTCOUNTER)
  2048. if (!DEBUGGING(DRYRUN))
  2049. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2050. #endif
  2051. // Get ABCDHI mixing factors
  2052. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2053. gcode_get_mix();
  2054. #endif
  2055. }
  2056. void unknown_command_error() {
  2057. SERIAL_ECHO_START;
  2058. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2059. SERIAL_ECHOLNPGM("\"");
  2060. }
  2061. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2062. /**
  2063. * Output a "busy" message at regular intervals
  2064. * while the machine is not accepting commands.
  2065. */
  2066. void host_keepalive() {
  2067. millis_t ms = millis();
  2068. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2069. if (PENDING(ms, next_busy_signal_ms)) return;
  2070. switch (busy_state) {
  2071. case IN_HANDLER:
  2072. case IN_PROCESS:
  2073. SERIAL_ECHO_START;
  2074. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2075. break;
  2076. case PAUSED_FOR_USER:
  2077. SERIAL_ECHO_START;
  2078. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2079. break;
  2080. case PAUSED_FOR_INPUT:
  2081. SERIAL_ECHO_START;
  2082. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2083. break;
  2084. default:
  2085. break;
  2086. }
  2087. }
  2088. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2089. }
  2090. #endif //HOST_KEEPALIVE_FEATURE
  2091. bool position_is_reachable(float target[XYZ]) {
  2092. float dx = RAW_X_POSITION(target[X_AXIS]),
  2093. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2094. #if ENABLED(DELTA)
  2095. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2096. #else
  2097. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2098. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2099. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2100. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2101. #endif
  2102. }
  2103. /**************************************************
  2104. ***************** GCode Handlers *****************
  2105. **************************************************/
  2106. /**
  2107. * G0, G1: Coordinated movement of X Y Z E axes
  2108. */
  2109. inline void gcode_G0_G1() {
  2110. if (IsRunning()) {
  2111. gcode_get_destination(); // For X Y Z E F
  2112. #if ENABLED(FWRETRACT)
  2113. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2114. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2115. // Is this move an attempt to retract or recover?
  2116. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2117. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2118. sync_plan_position_e(); // AND from the planner
  2119. retract(!retracted[active_extruder]);
  2120. return;
  2121. }
  2122. }
  2123. #endif //FWRETRACT
  2124. prepare_move_to_destination();
  2125. }
  2126. }
  2127. /**
  2128. * G2: Clockwise Arc
  2129. * G3: Counterclockwise Arc
  2130. */
  2131. #if ENABLED(ARC_SUPPORT)
  2132. inline void gcode_G2_G3(bool clockwise) {
  2133. if (IsRunning()) {
  2134. #if ENABLED(SF_ARC_FIX)
  2135. bool relative_mode_backup = relative_mode;
  2136. relative_mode = true;
  2137. #endif
  2138. gcode_get_destination();
  2139. #if ENABLED(SF_ARC_FIX)
  2140. relative_mode = relative_mode_backup;
  2141. #endif
  2142. // Center of arc as offset from current_position
  2143. float arc_offset[2] = {
  2144. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2145. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2146. };
  2147. // Send an arc to the planner
  2148. plan_arc(destination, arc_offset, clockwise);
  2149. refresh_cmd_timeout();
  2150. }
  2151. }
  2152. #endif
  2153. /**
  2154. * G4: Dwell S<seconds> or P<milliseconds>
  2155. */
  2156. inline void gcode_G4() {
  2157. millis_t dwell_ms = 0;
  2158. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2159. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2160. stepper.synchronize();
  2161. refresh_cmd_timeout();
  2162. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2163. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2164. while (PENDING(millis(), dwell_ms)) idle();
  2165. }
  2166. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2167. /**
  2168. * Parameters interpreted according to:
  2169. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2170. * However I, J omission is not supported at this point; all
  2171. * parameters can be omitted and default to zero.
  2172. */
  2173. /**
  2174. * G5: Cubic B-spline
  2175. */
  2176. inline void gcode_G5() {
  2177. if (IsRunning()) {
  2178. gcode_get_destination();
  2179. float offset[] = {
  2180. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2181. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2182. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2183. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2184. };
  2185. plan_cubic_move(offset);
  2186. }
  2187. }
  2188. #endif // BEZIER_CURVE_SUPPORT
  2189. #if ENABLED(FWRETRACT)
  2190. /**
  2191. * G10 - Retract filament according to settings of M207
  2192. * G11 - Recover filament according to settings of M208
  2193. */
  2194. inline void gcode_G10_G11(bool doRetract=false) {
  2195. #if EXTRUDERS > 1
  2196. if (doRetract) {
  2197. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2198. }
  2199. #endif
  2200. retract(doRetract
  2201. #if EXTRUDERS > 1
  2202. , retracted_swap[active_extruder]
  2203. #endif
  2204. );
  2205. }
  2206. #endif //FWRETRACT
  2207. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2208. /**
  2209. * G12: Clean the nozzle
  2210. */
  2211. inline void gcode_G12() {
  2212. // Don't allow nozzle cleaning without homing first
  2213. if (axis_unhomed_error(true, true, true)) { return; }
  2214. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2215. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2216. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2217. Nozzle::clean(pattern, strokes, objects);
  2218. }
  2219. #endif
  2220. #if ENABLED(INCH_MODE_SUPPORT)
  2221. /**
  2222. * G20: Set input mode to inches
  2223. */
  2224. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2225. /**
  2226. * G21: Set input mode to millimeters
  2227. */
  2228. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2229. #endif
  2230. #if ENABLED(NOZZLE_PARK_FEATURE)
  2231. /**
  2232. * G27: Park the nozzle
  2233. */
  2234. inline void gcode_G27() {
  2235. // Don't allow nozzle parking without homing first
  2236. if (axis_unhomed_error(true, true, true)) { return; }
  2237. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2238. Nozzle::park(z_action);
  2239. }
  2240. #endif // NOZZLE_PARK_FEATURE
  2241. #if ENABLED(QUICK_HOME)
  2242. static void quick_home_xy() {
  2243. // Pretend the current position is 0,0
  2244. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2245. sync_plan_position();
  2246. int x_axis_home_dir =
  2247. #if ENABLED(DUAL_X_CARRIAGE)
  2248. x_home_dir(active_extruder)
  2249. #else
  2250. home_dir(X_AXIS)
  2251. #endif
  2252. ;
  2253. float mlx = max_length(X_AXIS),
  2254. mly = max_length(Y_AXIS),
  2255. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2256. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2257. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2258. endstops.hit_on_purpose(); // clear endstop hit flags
  2259. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2260. }
  2261. #endif // QUICK_HOME
  2262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2263. void log_machine_info() {
  2264. SERIAL_ECHOPGM("Machine Type: ");
  2265. #if ENABLED(DELTA)
  2266. SERIAL_ECHOLNPGM("Delta");
  2267. #elif IS_SCARA
  2268. SERIAL_ECHOLNPGM("SCARA");
  2269. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2270. SERIAL_ECHOLNPGM("Core");
  2271. #else
  2272. SERIAL_ECHOLNPGM("Cartesian");
  2273. #endif
  2274. SERIAL_ECHOPGM("Probe: ");
  2275. #if ENABLED(FIX_MOUNTED_PROBE)
  2276. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2277. #elif HAS_Z_SERVO_ENDSTOP
  2278. SERIAL_ECHOLNPGM("SERVO PROBE");
  2279. #elif ENABLED(BLTOUCH)
  2280. SERIAL_ECHOLNPGM("BLTOUCH");
  2281. #elif ENABLED(Z_PROBE_SLED)
  2282. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2283. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2284. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2285. #else
  2286. SERIAL_ECHOLNPGM("NONE");
  2287. #endif
  2288. #if HAS_BED_PROBE
  2289. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2290. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2291. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2292. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2293. SERIAL_ECHOPGM(" (Right");
  2294. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2295. SERIAL_ECHOPGM(" (Left");
  2296. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2297. SERIAL_ECHOPGM(" (Middle");
  2298. #else
  2299. SERIAL_ECHOPGM(" (Aligned With");
  2300. #endif
  2301. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2302. SERIAL_ECHOPGM("-Back");
  2303. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2304. SERIAL_ECHOPGM("-Front");
  2305. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2306. SERIAL_ECHOPGM("-Center");
  2307. #endif
  2308. if (zprobe_zoffset < 0)
  2309. SERIAL_ECHOPGM(" & Below");
  2310. else if (zprobe_zoffset > 0)
  2311. SERIAL_ECHOPGM(" & Above");
  2312. else
  2313. SERIAL_ECHOPGM(" & Same Z as");
  2314. SERIAL_ECHOLNPGM(" Nozzle)");
  2315. #endif
  2316. }
  2317. #endif // DEBUG_LEVELING_FEATURE
  2318. #if ENABLED(DELTA)
  2319. /**
  2320. * A delta can only safely home all axes at the same time
  2321. * This is like quick_home_xy() but for 3 towers.
  2322. */
  2323. inline void home_delta() {
  2324. // Init the current position of all carriages to 0,0,0
  2325. memset(current_position, 0, sizeof(current_position));
  2326. sync_plan_position();
  2327. // Move all carriages together linearly until an endstop is hit.
  2328. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2329. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2330. line_to_current_position();
  2331. stepper.synchronize();
  2332. endstops.hit_on_purpose(); // clear endstop hit flags
  2333. // Probably not needed. Double-check this line:
  2334. memset(current_position, 0, sizeof(current_position));
  2335. // At least one carriage has reached the top.
  2336. // Now back off and re-home each carriage separately.
  2337. HOMEAXIS(A);
  2338. HOMEAXIS(B);
  2339. HOMEAXIS(C);
  2340. // Set all carriages to their home positions
  2341. // Do this here all at once for Delta, because
  2342. // XYZ isn't ABC. Applying this per-tower would
  2343. // give the impression that they are the same.
  2344. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2345. SYNC_PLAN_POSITION_KINEMATIC();
  2346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2347. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2348. #endif
  2349. }
  2350. #endif // DELTA
  2351. #if ENABLED(Z_SAFE_HOMING)
  2352. inline void home_z_safely() {
  2353. // Disallow Z homing if X or Y are unknown
  2354. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2355. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2356. SERIAL_ECHO_START;
  2357. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2358. return;
  2359. }
  2360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2361. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2362. #endif
  2363. SYNC_PLAN_POSITION_KINEMATIC();
  2364. /**
  2365. * Move the Z probe (or just the nozzle) to the safe homing point
  2366. */
  2367. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2368. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2369. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2370. #if HAS_BED_PROBE
  2371. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2372. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2373. #endif
  2374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2375. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2376. #endif
  2377. if (position_is_reachable(destination)) {
  2378. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2379. HOMEAXIS(Z);
  2380. }
  2381. else {
  2382. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2383. SERIAL_ECHO_START;
  2384. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2385. }
  2386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2387. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2388. #endif
  2389. }
  2390. #endif // Z_SAFE_HOMING
  2391. /**
  2392. * G28: Home all axes according to settings
  2393. *
  2394. * Parameters
  2395. *
  2396. * None Home to all axes with no parameters.
  2397. * With QUICK_HOME enabled XY will home together, then Z.
  2398. *
  2399. * Cartesian parameters
  2400. *
  2401. * X Home to the X endstop
  2402. * Y Home to the Y endstop
  2403. * Z Home to the Z endstop
  2404. *
  2405. */
  2406. inline void gcode_G28() {
  2407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2408. if (DEBUGGING(LEVELING)) {
  2409. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2410. log_machine_info();
  2411. }
  2412. #endif
  2413. // Wait for planner moves to finish!
  2414. stepper.synchronize();
  2415. // For auto bed leveling, clear the level matrix
  2416. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2417. reset_bed_level();
  2418. #endif
  2419. // Always home with tool 0 active
  2420. #if HOTENDS > 1
  2421. uint8_t old_tool_index = active_extruder;
  2422. tool_change(0, 0, true);
  2423. #endif
  2424. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2425. extruder_duplication_enabled = false;
  2426. #endif
  2427. /**
  2428. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2429. * on again when homing all axis
  2430. */
  2431. #if ENABLED(MESH_BED_LEVELING)
  2432. float pre_home_z = MESH_HOME_SEARCH_Z;
  2433. if (mbl.active()) {
  2434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2435. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2436. #endif
  2437. // Save known Z position if already homed
  2438. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2439. pre_home_z = current_position[Z_AXIS];
  2440. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2441. }
  2442. mbl.set_active(false);
  2443. current_position[Z_AXIS] = pre_home_z;
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2446. #endif
  2447. }
  2448. #endif
  2449. setup_for_endstop_or_probe_move();
  2450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2451. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2452. #endif
  2453. endstops.enable(true); // Enable endstops for next homing move
  2454. #if ENABLED(DELTA)
  2455. home_delta();
  2456. #else // NOT DELTA
  2457. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2458. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2459. set_destination_to_current();
  2460. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2461. if (home_all_axis || homeZ) {
  2462. HOMEAXIS(Z);
  2463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2464. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2465. #endif
  2466. }
  2467. #else
  2468. if (home_all_axis || homeX || homeY) {
  2469. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2470. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2471. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2473. if (DEBUGGING(LEVELING))
  2474. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2475. #endif
  2476. do_blocking_move_to_z(destination[Z_AXIS]);
  2477. }
  2478. }
  2479. #endif
  2480. #if ENABLED(QUICK_HOME)
  2481. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2482. #endif
  2483. #if ENABLED(HOME_Y_BEFORE_X)
  2484. // Home Y
  2485. if (home_all_axis || homeY) {
  2486. HOMEAXIS(Y);
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2489. #endif
  2490. }
  2491. #endif
  2492. // Home X
  2493. if (home_all_axis || homeX) {
  2494. #if ENABLED(DUAL_X_CARRIAGE)
  2495. int tmp_extruder = active_extruder;
  2496. active_extruder = !active_extruder;
  2497. HOMEAXIS(X);
  2498. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2499. active_extruder = tmp_extruder;
  2500. HOMEAXIS(X);
  2501. // reset state used by the different modes
  2502. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2503. delayed_move_time = 0;
  2504. active_extruder_parked = true;
  2505. #else
  2506. HOMEAXIS(X);
  2507. #endif
  2508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2509. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2510. #endif
  2511. }
  2512. #if DISABLED(HOME_Y_BEFORE_X)
  2513. // Home Y
  2514. if (home_all_axis || homeY) {
  2515. HOMEAXIS(Y);
  2516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2517. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2518. #endif
  2519. }
  2520. #endif
  2521. // Home Z last if homing towards the bed
  2522. #if Z_HOME_DIR < 0
  2523. if (home_all_axis || homeZ) {
  2524. #if ENABLED(Z_SAFE_HOMING)
  2525. home_z_safely();
  2526. #else
  2527. HOMEAXIS(Z);
  2528. #endif
  2529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2530. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2531. #endif
  2532. } // home_all_axis || homeZ
  2533. #endif // Z_HOME_DIR < 0
  2534. SYNC_PLAN_POSITION_KINEMATIC();
  2535. #endif // !DELTA (gcode_G28)
  2536. endstops.not_homing();
  2537. // Enable mesh leveling again
  2538. #if ENABLED(MESH_BED_LEVELING)
  2539. if (mbl.has_mesh()) {
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2542. #endif
  2543. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2545. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2546. #endif
  2547. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2548. #if Z_HOME_DIR > 0
  2549. + Z_MAX_POS
  2550. #endif
  2551. ;
  2552. SYNC_PLAN_POSITION_KINEMATIC();
  2553. mbl.set_active(true);
  2554. #if ENABLED(MESH_G28_REST_ORIGIN)
  2555. current_position[Z_AXIS] = 0.0;
  2556. set_destination_to_current();
  2557. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2558. line_to_destination();
  2559. stepper.synchronize();
  2560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2561. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2562. #endif
  2563. #else
  2564. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2565. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2566. #if Z_HOME_DIR > 0
  2567. + Z_MAX_POS
  2568. #endif
  2569. ;
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2572. #endif
  2573. #endif
  2574. }
  2575. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2576. current_position[Z_AXIS] = pre_home_z;
  2577. SYNC_PLAN_POSITION_KINEMATIC();
  2578. mbl.set_active(true);
  2579. current_position[Z_AXIS] = pre_home_z -
  2580. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2582. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2583. #endif
  2584. }
  2585. }
  2586. #endif
  2587. #if ENABLED(DELTA)
  2588. // move to a height where we can use the full xy-area
  2589. do_blocking_move_to_z(delta_clip_start_height);
  2590. #endif
  2591. clean_up_after_endstop_or_probe_move();
  2592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2593. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2594. #endif
  2595. // Restore the active tool after homing
  2596. #if HOTENDS > 1
  2597. tool_change(old_tool_index, 0, true);
  2598. #endif
  2599. report_current_position();
  2600. }
  2601. #if HAS_PROBING_PROCEDURE
  2602. void out_of_range_error(const char* p_edge) {
  2603. SERIAL_PROTOCOLPGM("?Probe ");
  2604. serialprintPGM(p_edge);
  2605. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2606. }
  2607. #endif
  2608. #if ENABLED(MESH_BED_LEVELING)
  2609. inline void _mbl_goto_xy(float x, float y) {
  2610. float old_feedrate_mm_s = feedrate_mm_s;
  2611. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2612. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2613. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2614. + Z_PROBE_TRAVEL_HEIGHT
  2615. #elif Z_HOMING_HEIGHT > 0
  2616. + Z_HOMING_HEIGHT
  2617. #endif
  2618. ;
  2619. line_to_current_position();
  2620. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2621. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2622. line_to_current_position();
  2623. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2624. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2625. line_to_current_position();
  2626. #endif
  2627. feedrate_mm_s = old_feedrate_mm_s;
  2628. stepper.synchronize();
  2629. }
  2630. /**
  2631. * G29: Mesh-based Z probe, probes a grid and produces a
  2632. * mesh to compensate for variable bed height
  2633. *
  2634. * Parameters With MESH_BED_LEVELING:
  2635. *
  2636. * S0 Produce a mesh report
  2637. * S1 Start probing mesh points
  2638. * S2 Probe the next mesh point
  2639. * S3 Xn Yn Zn.nn Manually modify a single point
  2640. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2641. * S5 Reset and disable mesh
  2642. *
  2643. * The S0 report the points as below
  2644. *
  2645. * +----> X-axis 1-n
  2646. * |
  2647. * |
  2648. * v Y-axis 1-n
  2649. *
  2650. */
  2651. inline void gcode_G29() {
  2652. static int probe_point = -1;
  2653. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2654. if (state < 0 || state > 5) {
  2655. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2656. return;
  2657. }
  2658. int8_t px, py;
  2659. switch (state) {
  2660. case MeshReport:
  2661. if (mbl.has_mesh()) {
  2662. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2663. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2664. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2665. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2666. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2667. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2668. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2669. SERIAL_PROTOCOLPGM(" ");
  2670. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2671. }
  2672. SERIAL_EOL;
  2673. }
  2674. }
  2675. else
  2676. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2677. break;
  2678. case MeshStart:
  2679. mbl.reset();
  2680. probe_point = 0;
  2681. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2682. break;
  2683. case MeshNext:
  2684. if (probe_point < 0) {
  2685. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2686. return;
  2687. }
  2688. // For each G29 S2...
  2689. if (probe_point == 0) {
  2690. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2691. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2692. #if Z_HOME_DIR > 0
  2693. + Z_MAX_POS
  2694. #endif
  2695. ;
  2696. SYNC_PLAN_POSITION_KINEMATIC();
  2697. }
  2698. else {
  2699. // For G29 S2 after adjusting Z.
  2700. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2701. }
  2702. // If there's another point to sample, move there with optional lift.
  2703. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2704. mbl.zigzag(probe_point, px, py);
  2705. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2706. probe_point++;
  2707. }
  2708. else {
  2709. // One last "return to the bed" (as originally coded) at completion
  2710. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2711. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2712. + Z_PROBE_TRAVEL_HEIGHT
  2713. #elif Z_HOMING_HEIGHT > 0
  2714. + Z_HOMING_HEIGHT
  2715. #endif
  2716. ;
  2717. line_to_current_position();
  2718. stepper.synchronize();
  2719. // After recording the last point, activate the mbl and home
  2720. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2721. probe_point = -1;
  2722. mbl.set_has_mesh(true);
  2723. enqueue_and_echo_commands_P(PSTR("G28"));
  2724. }
  2725. break;
  2726. case MeshSet:
  2727. if (code_seen('X')) {
  2728. px = code_value_int() - 1;
  2729. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2730. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2731. return;
  2732. }
  2733. }
  2734. else {
  2735. SERIAL_PROTOCOLLNPGM("X not entered.");
  2736. return;
  2737. }
  2738. if (code_seen('Y')) {
  2739. py = code_value_int() - 1;
  2740. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2741. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2742. return;
  2743. }
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2747. return;
  2748. }
  2749. if (code_seen('Z')) {
  2750. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2751. }
  2752. else {
  2753. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2754. return;
  2755. }
  2756. break;
  2757. case MeshSetZOffset:
  2758. if (code_seen('Z')) {
  2759. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2760. }
  2761. else {
  2762. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2763. return;
  2764. }
  2765. break;
  2766. case MeshReset:
  2767. if (mbl.active()) {
  2768. current_position[Z_AXIS] +=
  2769. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2770. mbl.reset();
  2771. SYNC_PLAN_POSITION_KINEMATIC();
  2772. }
  2773. else
  2774. mbl.reset();
  2775. } // switch(state)
  2776. report_current_position();
  2777. }
  2778. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2779. /**
  2780. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2781. * Will fail if the printer has not been homed with G28.
  2782. *
  2783. * Enhanced G29 Auto Bed Leveling Probe Routine
  2784. *
  2785. * Parameters With AUTO_BED_LEVELING_GRID:
  2786. *
  2787. * P Set the size of the grid that will be probed (P x P points).
  2788. * Not supported by non-linear delta printer bed leveling.
  2789. * Example: "G29 P4"
  2790. *
  2791. * S Set the XY travel speed between probe points (in units/min)
  2792. *
  2793. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2794. * or clean the rotation Matrix. Useful to check the topology
  2795. * after a first run of G29.
  2796. *
  2797. * V Set the verbose level (0-4). Example: "G29 V3"
  2798. *
  2799. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2800. * This is useful for manual bed leveling and finding flaws in the bed (to
  2801. * assist with part placement).
  2802. * Not supported by non-linear delta printer bed leveling.
  2803. *
  2804. * F Set the Front limit of the probing grid
  2805. * B Set the Back limit of the probing grid
  2806. * L Set the Left limit of the probing grid
  2807. * R Set the Right limit of the probing grid
  2808. *
  2809. * Global Parameters:
  2810. *
  2811. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2812. * Include "E" to engage/disengage the Z probe for each sample.
  2813. * There's no extra effect if you have a fixed Z probe.
  2814. * Usage: "G29 E" or "G29 e"
  2815. *
  2816. */
  2817. inline void gcode_G29() {
  2818. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2819. if (DEBUGGING(LEVELING)) {
  2820. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2821. DEBUG_POS("", current_position);
  2822. log_machine_info();
  2823. }
  2824. #endif
  2825. // Don't allow auto-leveling without homing first
  2826. if (axis_unhomed_error(true, true, true)) return;
  2827. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2828. if (verbose_level < 0 || verbose_level > 4) {
  2829. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2830. return;
  2831. }
  2832. bool dryrun = code_seen('D'),
  2833. stow_probe_after_each = code_seen('E');
  2834. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2835. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2836. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2837. #endif
  2838. if (verbose_level > 0) {
  2839. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2840. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2841. }
  2842. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2843. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2844. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2845. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2846. if (abl_grid_points_x < 2) {
  2847. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2848. return;
  2849. }
  2850. #endif
  2851. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2852. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2853. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2854. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2855. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2856. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2857. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2858. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2859. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2860. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2861. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2862. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2863. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2864. if (left_out || right_out || front_out || back_out) {
  2865. if (left_out) {
  2866. out_of_range_error(PSTR("(L)eft"));
  2867. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2868. }
  2869. if (right_out) {
  2870. out_of_range_error(PSTR("(R)ight"));
  2871. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2872. }
  2873. if (front_out) {
  2874. out_of_range_error(PSTR("(F)ront"));
  2875. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2876. }
  2877. if (back_out) {
  2878. out_of_range_error(PSTR("(B)ack"));
  2879. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2880. }
  2881. return;
  2882. }
  2883. #endif // AUTO_BED_LEVELING_GRID
  2884. stepper.synchronize();
  2885. if (!dryrun) {
  2886. // Reset the bed_level_matrix because leveling
  2887. // needs to be done without leveling enabled.
  2888. reset_bed_level();
  2889. //
  2890. // Re-orient the current position without leveling
  2891. // based on where the steppers are positioned.
  2892. //
  2893. #if IS_KINEMATIC
  2894. // For DELTA/SCARA we need to apply forward kinematics.
  2895. // This returns raw positions and we remap to the space.
  2896. get_cartesian_from_steppers();
  2897. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i);
  2898. #else
  2899. // For cartesian/core the steppers are already mapped to
  2900. // the coordinate space by design.
  2901. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2902. #endif // !DELTA
  2903. // Inform the planner about the new coordinates
  2904. SYNC_PLAN_POSITION_KINEMATIC();
  2905. }
  2906. setup_for_endstop_or_probe_move();
  2907. // Deploy the probe. Probe will raise if needed.
  2908. if (DEPLOY_PROBE()) return;
  2909. float xProbe, yProbe, measured_z = 0;
  2910. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2911. // probe at the points of a lattice grid
  2912. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  2913. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  2914. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2915. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2916. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2917. float zoffset = zprobe_zoffset;
  2918. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2919. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  2920. /**
  2921. * solve the plane equation ax + by + d = z
  2922. * A is the matrix with rows [x y 1] for all the probed points
  2923. * B is the vector of the Z positions
  2924. * the normal vector to the plane is formed by the coefficients of the
  2925. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2926. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2927. */
  2928. int abl2 = abl_grid_points_x * abl_grid_points_y;
  2929. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2930. eqnBVector[abl2], // "B" vector of Z points
  2931. mean = 0.0;
  2932. int indexIntoAB[abl_grid_points_x][abl_grid_points_y];
  2933. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  2934. int probePointCounter = 0;
  2935. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2936. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  2937. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  2938. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2939. int8_t xStart, xStop, xInc;
  2940. if (zig) {
  2941. xStart = 0;
  2942. xStop = abl_grid_points_x;
  2943. xInc = 1;
  2944. }
  2945. else {
  2946. xStart = abl_grid_points_x - 1;
  2947. xStop = -1;
  2948. xInc = -1;
  2949. }
  2950. zig = !zig;
  2951. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  2952. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  2953. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2954. #if ENABLED(DELTA)
  2955. // Avoid probing outside the round or hexagonal area of a delta printer
  2956. if (HYPOT2(xProbe, yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2957. #endif
  2958. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2959. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  2960. mean += measured_z;
  2961. eqnBVector[probePointCounter] = measured_z;
  2962. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2963. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2964. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2965. indexIntoAB[xCount][yCount] = probePointCounter;
  2966. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2967. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  2968. #endif
  2969. probePointCounter++;
  2970. idle();
  2971. } //xProbe
  2972. } //yProbe
  2973. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2975. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2976. #endif
  2977. // Probe at 3 arbitrary points
  2978. vector_3 points[3] = {
  2979. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  2980. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  2981. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  2982. };
  2983. for (uint8_t i = 0; i < 3; ++i) {
  2984. // Retain the last probe position
  2985. xProbe = LOGICAL_X_POSITION(points[i].x);
  2986. yProbe = LOGICAL_Y_POSITION(points[i].y);
  2987. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2988. }
  2989. if (!dryrun) {
  2990. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  2991. if (planeNormal.z < 0) {
  2992. planeNormal.x *= -1;
  2993. planeNormal.y *= -1;
  2994. planeNormal.z *= -1;
  2995. }
  2996. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  2997. }
  2998. #endif // AUTO_BED_LEVELING_3POINT
  2999. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3000. if (STOW_PROBE()) return;
  3001. // Restore state after probing
  3002. clean_up_after_endstop_or_probe_move();
  3003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3004. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3005. #endif
  3006. // Calculate leveling, print reports, correct the position
  3007. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3008. if (!dryrun) extrapolate_unprobed_bed_level();
  3009. print_bed_level();
  3010. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3011. // For LINEAR leveling calculate matrix, print reports, correct the position
  3012. // solve lsq problem
  3013. double plane_equation_coefficients[3];
  3014. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3015. mean /= abl2;
  3016. if (verbose_level) {
  3017. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3018. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3019. SERIAL_PROTOCOLPGM(" b: ");
  3020. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3021. SERIAL_PROTOCOLPGM(" d: ");
  3022. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3023. SERIAL_EOL;
  3024. if (verbose_level > 2) {
  3025. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3026. SERIAL_PROTOCOL_F(mean, 8);
  3027. SERIAL_EOL;
  3028. }
  3029. }
  3030. // Create the matrix but don't correct the position yet
  3031. if (!dryrun) {
  3032. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3033. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3034. );
  3035. }
  3036. // Show the Topography map if enabled
  3037. if (do_topography_map) {
  3038. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3039. " +--- BACK --+\n"
  3040. " | |\n"
  3041. " L | (+) | R\n"
  3042. " E | | I\n"
  3043. " F | (-) N (+) | G\n"
  3044. " T | | H\n"
  3045. " | (-) | T\n"
  3046. " | |\n"
  3047. " O-- FRONT --+\n"
  3048. " (0,0)");
  3049. float min_diff = 999;
  3050. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3051. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3052. int ind = indexIntoAB[xx][yy];
  3053. float diff = eqnBVector[ind] - mean,
  3054. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3055. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3056. z_tmp = 0;
  3057. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3058. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3059. if (diff >= 0.0)
  3060. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3061. else
  3062. SERIAL_PROTOCOLCHAR(' ');
  3063. SERIAL_PROTOCOL_F(diff, 5);
  3064. } // xx
  3065. SERIAL_EOL;
  3066. } // yy
  3067. SERIAL_EOL;
  3068. if (verbose_level > 3) {
  3069. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3070. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3071. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3072. int ind = indexIntoAB[xx][yy];
  3073. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3074. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3075. z_tmp = 0;
  3076. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3077. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3078. if (diff >= 0.0)
  3079. SERIAL_PROTOCOLPGM(" +");
  3080. // Include + for column alignment
  3081. else
  3082. SERIAL_PROTOCOLCHAR(' ');
  3083. SERIAL_PROTOCOL_F(diff, 5);
  3084. } // xx
  3085. SERIAL_EOL;
  3086. } // yy
  3087. SERIAL_EOL;
  3088. }
  3089. } //do_topography_map
  3090. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3091. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3092. // For LINEAR and 3POINT leveling correct the current position
  3093. if (verbose_level > 0)
  3094. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3095. if (!dryrun) {
  3096. //
  3097. // Correct the current XYZ position based on the tilted plane.
  3098. //
  3099. // 1. Get the distance from the current position to the reference point.
  3100. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3101. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3102. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3103. z_zero = 0;
  3104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3105. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3106. #endif
  3107. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3108. // 2. Apply the inverse matrix to the distance
  3109. // from the reference point to X, Y, and zero.
  3110. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3111. // 3. Get the matrix-based corrected Z.
  3112. // (Even if not used, get it for comparison.)
  3113. float new_z = z_real + z_zero;
  3114. // 4. Use the last measured distance to the bed, if possible
  3115. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3116. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3117. ) {
  3118. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3120. if (DEBUGGING(LEVELING)) {
  3121. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3122. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3123. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3124. }
  3125. #endif
  3126. new_z = simple_z;
  3127. }
  3128. // 5. The rotated XY and corrected Z are now current_position
  3129. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3130. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3131. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3132. SYNC_PLAN_POSITION_KINEMATIC();
  3133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3134. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3135. #endif
  3136. }
  3137. #endif // AUTO_BED_LEVELING_LINEAR
  3138. #ifdef Z_PROBE_END_SCRIPT
  3139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3140. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3141. #endif
  3142. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3143. stepper.synchronize();
  3144. #endif
  3145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3146. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3147. #endif
  3148. report_current_position();
  3149. KEEPALIVE_STATE(IN_HANDLER);
  3150. }
  3151. #endif // AUTO_BED_LEVELING_FEATURE
  3152. #if HAS_BED_PROBE
  3153. /**
  3154. * G30: Do a single Z probe at the current XY
  3155. */
  3156. inline void gcode_G30() {
  3157. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3158. reset_bed_level();
  3159. #endif
  3160. setup_for_endstop_or_probe_move();
  3161. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3162. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3163. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3164. true, 1);
  3165. SERIAL_PROTOCOLPGM("Bed X: ");
  3166. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3167. SERIAL_PROTOCOLPGM(" Y: ");
  3168. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3169. SERIAL_PROTOCOLPGM(" Z: ");
  3170. SERIAL_PROTOCOL(measured_z + 0.0001);
  3171. SERIAL_EOL;
  3172. clean_up_after_endstop_or_probe_move();
  3173. report_current_position();
  3174. }
  3175. #if ENABLED(Z_PROBE_SLED)
  3176. /**
  3177. * G31: Deploy the Z probe
  3178. */
  3179. inline void gcode_G31() { DEPLOY_PROBE(); }
  3180. /**
  3181. * G32: Stow the Z probe
  3182. */
  3183. inline void gcode_G32() { STOW_PROBE(); }
  3184. #endif // Z_PROBE_SLED
  3185. #endif // HAS_BED_PROBE
  3186. /**
  3187. * G92: Set current position to given X Y Z E
  3188. */
  3189. inline void gcode_G92() {
  3190. bool didXYZ = false,
  3191. didE = code_seen('E');
  3192. if (!didE) stepper.synchronize();
  3193. LOOP_XYZE(i) {
  3194. if (code_seen(axis_codes[i])) {
  3195. float p = current_position[i],
  3196. v = code_value_axis_units(i);
  3197. current_position[i] = v;
  3198. if (i != E_AXIS) {
  3199. position_shift[i] += v - p; // Offset the coordinate space
  3200. update_software_endstops((AxisEnum)i);
  3201. didXYZ = true;
  3202. }
  3203. }
  3204. }
  3205. if (didXYZ)
  3206. SYNC_PLAN_POSITION_KINEMATIC();
  3207. else if (didE)
  3208. sync_plan_position_e();
  3209. }
  3210. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3211. /**
  3212. * M0: Unconditional stop - Wait for user button press on LCD
  3213. * M1: Conditional stop - Wait for user button press on LCD
  3214. */
  3215. inline void gcode_M0_M1() {
  3216. char* args = current_command_args;
  3217. millis_t codenum = 0;
  3218. bool hasP = false, hasS = false;
  3219. if (code_seen('P')) {
  3220. codenum = code_value_millis(); // milliseconds to wait
  3221. hasP = codenum > 0;
  3222. }
  3223. if (code_seen('S')) {
  3224. codenum = code_value_millis_from_seconds(); // seconds to wait
  3225. hasS = codenum > 0;
  3226. }
  3227. #if ENABLED(ULTIPANEL)
  3228. if (!hasP && !hasS && *args != '\0')
  3229. lcd_setstatus(args, true);
  3230. else {
  3231. LCD_MESSAGEPGM(MSG_USERWAIT);
  3232. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3233. dontExpireStatus();
  3234. #endif
  3235. }
  3236. lcd_ignore_click();
  3237. #else
  3238. if (!hasP && !hasS && *args != '\0') {
  3239. SERIAL_ECHO_START;
  3240. SERIAL_ECHOLN(args);
  3241. }
  3242. #endif
  3243. stepper.synchronize();
  3244. refresh_cmd_timeout();
  3245. #if ENABLED(ULTIPANEL)
  3246. if (codenum > 0) {
  3247. codenum += previous_cmd_ms; // wait until this time for a click
  3248. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3249. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3250. lcd_ignore_click(false);
  3251. }
  3252. else if (lcd_detected()) {
  3253. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3254. while (!lcd_clicked()) idle();
  3255. }
  3256. else return;
  3257. if (IS_SD_PRINTING)
  3258. LCD_MESSAGEPGM(MSG_RESUMING);
  3259. else
  3260. LCD_MESSAGEPGM(WELCOME_MSG);
  3261. #else
  3262. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3263. wait_for_user = true;
  3264. if (codenum > 0) {
  3265. codenum += previous_cmd_ms; // wait until this time for an M108
  3266. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3267. }
  3268. else while (wait_for_user) idle();
  3269. wait_for_user = false;
  3270. #endif
  3271. KEEPALIVE_STATE(IN_HANDLER);
  3272. }
  3273. #endif // ULTIPANEL || EMERGENCY_PARSER
  3274. /**
  3275. * M17: Enable power on all stepper motors
  3276. */
  3277. inline void gcode_M17() {
  3278. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3279. enable_all_steppers();
  3280. }
  3281. #if ENABLED(SDSUPPORT)
  3282. /**
  3283. * M20: List SD card to serial output
  3284. */
  3285. inline void gcode_M20() {
  3286. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3287. card.ls();
  3288. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3289. }
  3290. /**
  3291. * M21: Init SD Card
  3292. */
  3293. inline void gcode_M21() { card.initsd(); }
  3294. /**
  3295. * M22: Release SD Card
  3296. */
  3297. inline void gcode_M22() { card.release(); }
  3298. /**
  3299. * M23: Open a file
  3300. */
  3301. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3302. /**
  3303. * M24: Start SD Print
  3304. */
  3305. inline void gcode_M24() {
  3306. card.startFileprint();
  3307. print_job_timer.start();
  3308. }
  3309. /**
  3310. * M25: Pause SD Print
  3311. */
  3312. inline void gcode_M25() { card.pauseSDPrint(); }
  3313. /**
  3314. * M26: Set SD Card file index
  3315. */
  3316. inline void gcode_M26() {
  3317. if (card.cardOK && code_seen('S'))
  3318. card.setIndex(code_value_long());
  3319. }
  3320. /**
  3321. * M27: Get SD Card status
  3322. */
  3323. inline void gcode_M27() { card.getStatus(); }
  3324. /**
  3325. * M28: Start SD Write
  3326. */
  3327. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3328. /**
  3329. * M29: Stop SD Write
  3330. * Processed in write to file routine above
  3331. */
  3332. inline void gcode_M29() {
  3333. // card.saving = false;
  3334. }
  3335. /**
  3336. * M30 <filename>: Delete SD Card file
  3337. */
  3338. inline void gcode_M30() {
  3339. if (card.cardOK) {
  3340. card.closefile();
  3341. card.removeFile(current_command_args);
  3342. }
  3343. }
  3344. #endif // SDSUPPORT
  3345. /**
  3346. * M31: Get the time since the start of SD Print (or last M109)
  3347. */
  3348. inline void gcode_M31() {
  3349. char buffer[21];
  3350. duration_t elapsed = print_job_timer.duration();
  3351. elapsed.toString(buffer);
  3352. lcd_setstatus(buffer);
  3353. SERIAL_ECHO_START;
  3354. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3355. thermalManager.autotempShutdown();
  3356. }
  3357. #if ENABLED(SDSUPPORT)
  3358. /**
  3359. * M32: Select file and start SD Print
  3360. */
  3361. inline void gcode_M32() {
  3362. if (card.sdprinting)
  3363. stepper.synchronize();
  3364. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3365. if (!namestartpos)
  3366. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3367. else
  3368. namestartpos++; //to skip the '!'
  3369. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3370. if (card.cardOK) {
  3371. card.openFile(namestartpos, true, call_procedure);
  3372. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3373. card.setIndex(code_value_long());
  3374. card.startFileprint();
  3375. // Procedure calls count as normal print time.
  3376. if (!call_procedure) print_job_timer.start();
  3377. }
  3378. }
  3379. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3380. /**
  3381. * M33: Get the long full path of a file or folder
  3382. *
  3383. * Parameters:
  3384. * <dospath> Case-insensitive DOS-style path to a file or folder
  3385. *
  3386. * Example:
  3387. * M33 miscel~1/armchair/armcha~1.gco
  3388. *
  3389. * Output:
  3390. * /Miscellaneous/Armchair/Armchair.gcode
  3391. */
  3392. inline void gcode_M33() {
  3393. card.printLongPath(current_command_args);
  3394. }
  3395. #endif
  3396. /**
  3397. * M928: Start SD Write
  3398. */
  3399. inline void gcode_M928() {
  3400. card.openLogFile(current_command_args);
  3401. }
  3402. #endif // SDSUPPORT
  3403. /**
  3404. * M42: Change pin status via GCode
  3405. *
  3406. * P<pin> Pin number (LED if omitted)
  3407. * S<byte> Pin status from 0 - 255
  3408. */
  3409. inline void gcode_M42() {
  3410. if (!code_seen('S')) return;
  3411. int pin_status = code_value_int();
  3412. if (pin_status < 0 || pin_status > 255) return;
  3413. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3414. if (pin_number < 0) return;
  3415. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3416. if (pin_number == sensitive_pins[i]) return;
  3417. pinMode(pin_number, OUTPUT);
  3418. digitalWrite(pin_number, pin_status);
  3419. analogWrite(pin_number, pin_status);
  3420. #if FAN_COUNT > 0
  3421. switch (pin_number) {
  3422. #if HAS_FAN0
  3423. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3424. #endif
  3425. #if HAS_FAN1
  3426. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3427. #endif
  3428. #if HAS_FAN2
  3429. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3430. #endif
  3431. }
  3432. #endif
  3433. }
  3434. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3435. /**
  3436. * M48: Z probe repeatability measurement function.
  3437. *
  3438. * Usage:
  3439. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3440. * P = Number of sampled points (4-50, default 10)
  3441. * X = Sample X position
  3442. * Y = Sample Y position
  3443. * V = Verbose level (0-4, default=1)
  3444. * E = Engage Z probe for each reading
  3445. * L = Number of legs of movement before probe
  3446. * S = Schizoid (Or Star if you prefer)
  3447. *
  3448. * This function assumes the bed has been homed. Specifically, that a G28 command
  3449. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3450. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3451. * regenerated.
  3452. */
  3453. inline void gcode_M48() {
  3454. if (axis_unhomed_error(true, true, true)) return;
  3455. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3456. if (verbose_level < 0 || verbose_level > 4) {
  3457. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3458. return;
  3459. }
  3460. if (verbose_level > 0)
  3461. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3462. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3463. if (n_samples < 4 || n_samples > 50) {
  3464. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3465. return;
  3466. }
  3467. float X_current = current_position[X_AXIS],
  3468. Y_current = current_position[Y_AXIS];
  3469. bool stow_probe_after_each = code_seen('E');
  3470. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3471. #if DISABLED(DELTA)
  3472. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3473. out_of_range_error(PSTR("X"));
  3474. return;
  3475. }
  3476. #endif
  3477. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3478. #if DISABLED(DELTA)
  3479. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3480. out_of_range_error(PSTR("Y"));
  3481. return;
  3482. }
  3483. #else
  3484. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3485. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3486. return;
  3487. }
  3488. #endif
  3489. bool seen_L = code_seen('L');
  3490. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3491. if (n_legs > 15) {
  3492. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3493. return;
  3494. }
  3495. if (n_legs == 1) n_legs = 2;
  3496. bool schizoid_flag = code_seen('S');
  3497. if (schizoid_flag && !seen_L) n_legs = 7;
  3498. /**
  3499. * Now get everything to the specified probe point So we can safely do a
  3500. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3501. * we don't want to use that as a starting point for each probe.
  3502. */
  3503. if (verbose_level > 2)
  3504. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3505. // Disable bed level correction in M48 because we want the raw data when we probe
  3506. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3507. reset_bed_level();
  3508. #endif
  3509. setup_for_endstop_or_probe_move();
  3510. // Move to the first point, deploy, and probe
  3511. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3512. randomSeed(millis());
  3513. double mean = 0, sigma = 0, sample_set[n_samples];
  3514. for (uint8_t n = 0; n < n_samples; n++) {
  3515. if (n_legs) {
  3516. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3517. float angle = random(0.0, 360.0),
  3518. radius = random(
  3519. #if ENABLED(DELTA)
  3520. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3521. #else
  3522. 5, X_MAX_LENGTH / 8
  3523. #endif
  3524. );
  3525. if (verbose_level > 3) {
  3526. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3527. SERIAL_ECHOPAIR(" angle: ", angle);
  3528. SERIAL_ECHOPGM(" Direction: ");
  3529. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3530. SERIAL_ECHOLNPGM("Clockwise");
  3531. }
  3532. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3533. double delta_angle;
  3534. if (schizoid_flag)
  3535. // The points of a 5 point star are 72 degrees apart. We need to
  3536. // skip a point and go to the next one on the star.
  3537. delta_angle = dir * 2.0 * 72.0;
  3538. else
  3539. // If we do this line, we are just trying to move further
  3540. // around the circle.
  3541. delta_angle = dir * (float) random(25, 45);
  3542. angle += delta_angle;
  3543. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3544. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3545. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3546. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3547. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3548. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3549. #if DISABLED(DELTA)
  3550. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3551. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3552. #else
  3553. // If we have gone out too far, we can do a simple fix and scale the numbers
  3554. // back in closer to the origin.
  3555. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3556. X_current /= 1.25;
  3557. Y_current /= 1.25;
  3558. if (verbose_level > 3) {
  3559. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3560. SERIAL_ECHOLNPAIR(", ", Y_current);
  3561. }
  3562. }
  3563. #endif
  3564. if (verbose_level > 3) {
  3565. SERIAL_PROTOCOLPGM("Going to:");
  3566. SERIAL_ECHOPAIR(" X", X_current);
  3567. SERIAL_ECHOPAIR(" Y", Y_current);
  3568. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3569. }
  3570. do_blocking_move_to_xy(X_current, Y_current);
  3571. } // n_legs loop
  3572. } // n_legs
  3573. // Probe a single point
  3574. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3575. /**
  3576. * Get the current mean for the data points we have so far
  3577. */
  3578. double sum = 0.0;
  3579. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3580. mean = sum / (n + 1);
  3581. /**
  3582. * Now, use that mean to calculate the standard deviation for the
  3583. * data points we have so far
  3584. */
  3585. sum = 0.0;
  3586. for (uint8_t j = 0; j <= n; j++)
  3587. sum += sq(sample_set[j] - mean);
  3588. sigma = sqrt(sum / (n + 1));
  3589. if (verbose_level > 0) {
  3590. if (verbose_level > 1) {
  3591. SERIAL_PROTOCOL(n + 1);
  3592. SERIAL_PROTOCOLPGM(" of ");
  3593. SERIAL_PROTOCOL((int)n_samples);
  3594. SERIAL_PROTOCOLPGM(" z: ");
  3595. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3596. if (verbose_level > 2) {
  3597. SERIAL_PROTOCOLPGM(" mean: ");
  3598. SERIAL_PROTOCOL_F(mean, 6);
  3599. SERIAL_PROTOCOLPGM(" sigma: ");
  3600. SERIAL_PROTOCOL_F(sigma, 6);
  3601. }
  3602. }
  3603. SERIAL_EOL;
  3604. }
  3605. } // End of probe loop
  3606. if (STOW_PROBE()) return;
  3607. if (verbose_level > 0) {
  3608. SERIAL_PROTOCOLPGM("Mean: ");
  3609. SERIAL_PROTOCOL_F(mean, 6);
  3610. SERIAL_EOL;
  3611. }
  3612. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3613. SERIAL_PROTOCOL_F(sigma, 6);
  3614. SERIAL_EOL; SERIAL_EOL;
  3615. clean_up_after_endstop_or_probe_move();
  3616. report_current_position();
  3617. }
  3618. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3619. /**
  3620. * M75: Start print timer
  3621. */
  3622. inline void gcode_M75() { print_job_timer.start(); }
  3623. /**
  3624. * M76: Pause print timer
  3625. */
  3626. inline void gcode_M76() { print_job_timer.pause(); }
  3627. /**
  3628. * M77: Stop print timer
  3629. */
  3630. inline void gcode_M77() { print_job_timer.stop(); }
  3631. #if ENABLED(PRINTCOUNTER)
  3632. /**
  3633. * M78: Show print statistics
  3634. */
  3635. inline void gcode_M78() {
  3636. // "M78 S78" will reset the statistics
  3637. if (code_seen('S') && code_value_int() == 78)
  3638. print_job_timer.initStats();
  3639. else
  3640. print_job_timer.showStats();
  3641. }
  3642. #endif
  3643. /**
  3644. * M104: Set hot end temperature
  3645. */
  3646. inline void gcode_M104() {
  3647. if (get_target_extruder_from_command(104)) return;
  3648. if (DEBUGGING(DRYRUN)) return;
  3649. #if ENABLED(SINGLENOZZLE)
  3650. if (target_extruder != active_extruder) return;
  3651. #endif
  3652. if (code_seen('S')) {
  3653. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3654. #if ENABLED(DUAL_X_CARRIAGE)
  3655. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3656. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3657. #endif
  3658. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3659. /**
  3660. * Stop the timer at the end of print, starting is managed by
  3661. * 'heat and wait' M109.
  3662. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3663. * stand by mode, for instance in a dual extruder setup, without affecting
  3664. * the running print timer.
  3665. */
  3666. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3667. print_job_timer.stop();
  3668. LCD_MESSAGEPGM(WELCOME_MSG);
  3669. }
  3670. #endif
  3671. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3672. }
  3673. }
  3674. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3675. void print_heaterstates() {
  3676. #if HAS_TEMP_HOTEND
  3677. SERIAL_PROTOCOLPGM(" T:");
  3678. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3679. SERIAL_PROTOCOLPGM(" /");
  3680. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3681. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3682. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3683. SERIAL_CHAR(')');
  3684. #endif
  3685. #endif
  3686. #if HAS_TEMP_BED
  3687. SERIAL_PROTOCOLPGM(" B:");
  3688. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3689. SERIAL_PROTOCOLPGM(" /");
  3690. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3691. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3692. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3693. SERIAL_CHAR(')');
  3694. #endif
  3695. #endif
  3696. #if HOTENDS > 1
  3697. HOTEND_LOOP() {
  3698. SERIAL_PROTOCOLPAIR(" T", e);
  3699. SERIAL_PROTOCOLCHAR(':');
  3700. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3701. SERIAL_PROTOCOLPGM(" /");
  3702. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3703. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3704. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3705. SERIAL_CHAR(')');
  3706. #endif
  3707. }
  3708. #endif
  3709. SERIAL_PROTOCOLPGM(" @:");
  3710. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3711. #if HAS_TEMP_BED
  3712. SERIAL_PROTOCOLPGM(" B@:");
  3713. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3714. #endif
  3715. #if HOTENDS > 1
  3716. HOTEND_LOOP() {
  3717. SERIAL_PROTOCOLPAIR(" @", e);
  3718. SERIAL_PROTOCOLCHAR(':');
  3719. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3720. }
  3721. #endif
  3722. }
  3723. #endif
  3724. /**
  3725. * M105: Read hot end and bed temperature
  3726. */
  3727. inline void gcode_M105() {
  3728. if (get_target_extruder_from_command(105)) return;
  3729. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3730. SERIAL_PROTOCOLPGM(MSG_OK);
  3731. print_heaterstates();
  3732. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3733. SERIAL_ERROR_START;
  3734. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3735. #endif
  3736. SERIAL_EOL;
  3737. }
  3738. #if FAN_COUNT > 0
  3739. /**
  3740. * M106: Set Fan Speed
  3741. *
  3742. * S<int> Speed between 0-255
  3743. * P<index> Fan index, if more than one fan
  3744. */
  3745. inline void gcode_M106() {
  3746. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3747. p = code_seen('P') ? code_value_ushort() : 0;
  3748. NOMORE(s, 255);
  3749. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3750. }
  3751. /**
  3752. * M107: Fan Off
  3753. */
  3754. inline void gcode_M107() {
  3755. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3756. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3757. }
  3758. #endif // FAN_COUNT > 0
  3759. #if DISABLED(EMERGENCY_PARSER)
  3760. /**
  3761. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3762. */
  3763. inline void gcode_M108() { wait_for_heatup = false; }
  3764. /**
  3765. * M112: Emergency Stop
  3766. */
  3767. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3768. /**
  3769. * M410: Quickstop - Abort all planned moves
  3770. *
  3771. * This will stop the carriages mid-move, so most likely they
  3772. * will be out of sync with the stepper position after this.
  3773. */
  3774. inline void gcode_M410() { quickstop_stepper(); }
  3775. #endif
  3776. #ifndef MIN_COOLING_SLOPE_DEG
  3777. #define MIN_COOLING_SLOPE_DEG 1.50
  3778. #endif
  3779. #ifndef MIN_COOLING_SLOPE_TIME
  3780. #define MIN_COOLING_SLOPE_TIME 60
  3781. #endif
  3782. /**
  3783. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3784. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3785. */
  3786. inline void gcode_M109() {
  3787. if (get_target_extruder_from_command(109)) return;
  3788. if (DEBUGGING(DRYRUN)) return;
  3789. #if ENABLED(SINGLENOZZLE)
  3790. if (target_extruder != active_extruder) return;
  3791. #endif
  3792. bool no_wait_for_cooling = code_seen('S');
  3793. if (no_wait_for_cooling || code_seen('R')) {
  3794. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3795. #if ENABLED(DUAL_X_CARRIAGE)
  3796. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3797. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3798. #endif
  3799. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3800. /**
  3801. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3802. * stand by mode, for instance in a dual extruder setup, without affecting
  3803. * the running print timer.
  3804. */
  3805. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3806. print_job_timer.stop();
  3807. LCD_MESSAGEPGM(WELCOME_MSG);
  3808. }
  3809. /**
  3810. * We do not check if the timer is already running because this check will
  3811. * be done for us inside the Stopwatch::start() method thus a running timer
  3812. * will not restart.
  3813. */
  3814. else print_job_timer.start();
  3815. #endif
  3816. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3817. }
  3818. #if ENABLED(AUTOTEMP)
  3819. planner.autotemp_M109();
  3820. #endif
  3821. #if TEMP_RESIDENCY_TIME > 0
  3822. millis_t residency_start_ms = 0;
  3823. // Loop until the temperature has stabilized
  3824. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3825. #else
  3826. // Loop until the temperature is very close target
  3827. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3828. #endif //TEMP_RESIDENCY_TIME > 0
  3829. float theTarget = -1.0, old_temp = 9999.0;
  3830. bool wants_to_cool = false;
  3831. wait_for_heatup = true;
  3832. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3833. KEEPALIVE_STATE(NOT_BUSY);
  3834. do {
  3835. // Target temperature might be changed during the loop
  3836. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3837. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3838. theTarget = thermalManager.degTargetHotend(target_extruder);
  3839. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3840. if (no_wait_for_cooling && wants_to_cool) break;
  3841. }
  3842. now = millis();
  3843. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3844. next_temp_ms = now + 1000UL;
  3845. print_heaterstates();
  3846. #if TEMP_RESIDENCY_TIME > 0
  3847. SERIAL_PROTOCOLPGM(" W:");
  3848. if (residency_start_ms) {
  3849. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3850. SERIAL_PROTOCOLLN(rem);
  3851. }
  3852. else {
  3853. SERIAL_PROTOCOLLNPGM("?");
  3854. }
  3855. #else
  3856. SERIAL_EOL;
  3857. #endif
  3858. }
  3859. idle();
  3860. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3861. float temp = thermalManager.degHotend(target_extruder);
  3862. #if TEMP_RESIDENCY_TIME > 0
  3863. float temp_diff = fabs(theTarget - temp);
  3864. if (!residency_start_ms) {
  3865. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3866. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3867. }
  3868. else if (temp_diff > TEMP_HYSTERESIS) {
  3869. // Restart the timer whenever the temperature falls outside the hysteresis.
  3870. residency_start_ms = now;
  3871. }
  3872. #endif //TEMP_RESIDENCY_TIME > 0
  3873. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3874. if (wants_to_cool) {
  3875. // break after MIN_COOLING_SLOPE_TIME seconds
  3876. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3877. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3878. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3879. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3880. old_temp = temp;
  3881. }
  3882. }
  3883. } while (wait_for_heatup && TEMP_CONDITIONS);
  3884. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3885. KEEPALIVE_STATE(IN_HANDLER);
  3886. }
  3887. #if HAS_TEMP_BED
  3888. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3889. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3890. #endif
  3891. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3892. #define MIN_COOLING_SLOPE_TIME_BED 60
  3893. #endif
  3894. /**
  3895. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3896. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3897. */
  3898. inline void gcode_M190() {
  3899. if (DEBUGGING(DRYRUN)) return;
  3900. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3901. bool no_wait_for_cooling = code_seen('S');
  3902. if (no_wait_for_cooling || code_seen('R')) {
  3903. thermalManager.setTargetBed(code_value_temp_abs());
  3904. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3905. if (code_value_temp_abs() > BED_MINTEMP) {
  3906. /**
  3907. * We start the timer when 'heating and waiting' command arrives, LCD
  3908. * functions never wait. Cooling down managed by extruders.
  3909. *
  3910. * We do not check if the timer is already running because this check will
  3911. * be done for us inside the Stopwatch::start() method thus a running timer
  3912. * will not restart.
  3913. */
  3914. print_job_timer.start();
  3915. }
  3916. #endif
  3917. }
  3918. #if TEMP_BED_RESIDENCY_TIME > 0
  3919. millis_t residency_start_ms = 0;
  3920. // Loop until the temperature has stabilized
  3921. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3922. #else
  3923. // Loop until the temperature is very close target
  3924. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3925. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3926. float theTarget = -1.0, old_temp = 9999.0;
  3927. bool wants_to_cool = false;
  3928. wait_for_heatup = true;
  3929. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3930. KEEPALIVE_STATE(NOT_BUSY);
  3931. target_extruder = active_extruder; // for print_heaterstates
  3932. do {
  3933. // Target temperature might be changed during the loop
  3934. if (theTarget != thermalManager.degTargetBed()) {
  3935. wants_to_cool = thermalManager.isCoolingBed();
  3936. theTarget = thermalManager.degTargetBed();
  3937. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3938. if (no_wait_for_cooling && wants_to_cool) break;
  3939. }
  3940. now = millis();
  3941. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3942. next_temp_ms = now + 1000UL;
  3943. print_heaterstates();
  3944. #if TEMP_BED_RESIDENCY_TIME > 0
  3945. SERIAL_PROTOCOLPGM(" W:");
  3946. if (residency_start_ms) {
  3947. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3948. SERIAL_PROTOCOLLN(rem);
  3949. }
  3950. else {
  3951. SERIAL_PROTOCOLLNPGM("?");
  3952. }
  3953. #else
  3954. SERIAL_EOL;
  3955. #endif
  3956. }
  3957. idle();
  3958. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3959. float temp = thermalManager.degBed();
  3960. #if TEMP_BED_RESIDENCY_TIME > 0
  3961. float temp_diff = fabs(theTarget - temp);
  3962. if (!residency_start_ms) {
  3963. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3964. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3965. }
  3966. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3967. // Restart the timer whenever the temperature falls outside the hysteresis.
  3968. residency_start_ms = now;
  3969. }
  3970. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3971. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3972. if (wants_to_cool) {
  3973. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3974. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3975. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3976. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3977. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3978. old_temp = temp;
  3979. }
  3980. }
  3981. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3982. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3983. KEEPALIVE_STATE(IN_HANDLER);
  3984. }
  3985. #endif // HAS_TEMP_BED
  3986. /**
  3987. * M110: Set Current Line Number
  3988. */
  3989. inline void gcode_M110() {
  3990. if (code_seen('N')) gcode_N = code_value_long();
  3991. }
  3992. /**
  3993. * M111: Set the debug level
  3994. */
  3995. inline void gcode_M111() {
  3996. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3997. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3998. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3999. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4000. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4001. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4003. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4004. #endif
  4005. const static char* const debug_strings[] PROGMEM = {
  4006. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4008. str_debug_32
  4009. #endif
  4010. };
  4011. SERIAL_ECHO_START;
  4012. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4013. if (marlin_debug_flags) {
  4014. uint8_t comma = 0;
  4015. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4016. if (TEST(marlin_debug_flags, i)) {
  4017. if (comma++) SERIAL_CHAR(',');
  4018. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4019. }
  4020. }
  4021. }
  4022. else {
  4023. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4024. }
  4025. SERIAL_EOL;
  4026. }
  4027. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4028. /**
  4029. * M113: Get or set Host Keepalive interval (0 to disable)
  4030. *
  4031. * S<seconds> Optional. Set the keepalive interval.
  4032. */
  4033. inline void gcode_M113() {
  4034. if (code_seen('S')) {
  4035. host_keepalive_interval = code_value_byte();
  4036. NOMORE(host_keepalive_interval, 60);
  4037. }
  4038. else {
  4039. SERIAL_ECHO_START;
  4040. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4041. }
  4042. }
  4043. #endif
  4044. #if ENABLED(BARICUDA)
  4045. #if HAS_HEATER_1
  4046. /**
  4047. * M126: Heater 1 valve open
  4048. */
  4049. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4050. /**
  4051. * M127: Heater 1 valve close
  4052. */
  4053. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4054. #endif
  4055. #if HAS_HEATER_2
  4056. /**
  4057. * M128: Heater 2 valve open
  4058. */
  4059. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4060. /**
  4061. * M129: Heater 2 valve close
  4062. */
  4063. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4064. #endif
  4065. #endif //BARICUDA
  4066. /**
  4067. * M140: Set bed temperature
  4068. */
  4069. inline void gcode_M140() {
  4070. if (DEBUGGING(DRYRUN)) return;
  4071. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4072. }
  4073. #if ENABLED(ULTIPANEL)
  4074. /**
  4075. * M145: Set the heatup state for a material in the LCD menu
  4076. * S<material> (0=PLA, 1=ABS)
  4077. * H<hotend temp>
  4078. * B<bed temp>
  4079. * F<fan speed>
  4080. */
  4081. inline void gcode_M145() {
  4082. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4083. if (material < 0 || material > 1) {
  4084. SERIAL_ERROR_START;
  4085. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4086. }
  4087. else {
  4088. int v;
  4089. switch (material) {
  4090. case 0:
  4091. if (code_seen('H')) {
  4092. v = code_value_int();
  4093. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4094. }
  4095. if (code_seen('F')) {
  4096. v = code_value_int();
  4097. preheatFanSpeed1 = constrain(v, 0, 255);
  4098. }
  4099. #if TEMP_SENSOR_BED != 0
  4100. if (code_seen('B')) {
  4101. v = code_value_int();
  4102. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4103. }
  4104. #endif
  4105. break;
  4106. case 1:
  4107. if (code_seen('H')) {
  4108. v = code_value_int();
  4109. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4110. }
  4111. if (code_seen('F')) {
  4112. v = code_value_int();
  4113. preheatFanSpeed2 = constrain(v, 0, 255);
  4114. }
  4115. #if TEMP_SENSOR_BED != 0
  4116. if (code_seen('B')) {
  4117. v = code_value_int();
  4118. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4119. }
  4120. #endif
  4121. break;
  4122. }
  4123. }
  4124. }
  4125. #endif // ULTIPANEL
  4126. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4127. /**
  4128. * M149: Set temperature units
  4129. */
  4130. inline void gcode_M149() {
  4131. if (code_seen('C')) {
  4132. set_input_temp_units(TEMPUNIT_C);
  4133. } else if (code_seen('K')) {
  4134. set_input_temp_units(TEMPUNIT_K);
  4135. } else if (code_seen('F')) {
  4136. set_input_temp_units(TEMPUNIT_F);
  4137. }
  4138. }
  4139. #endif
  4140. #if HAS_POWER_SWITCH
  4141. /**
  4142. * M80: Turn on Power Supply
  4143. */
  4144. inline void gcode_M80() {
  4145. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4146. /**
  4147. * If you have a switch on suicide pin, this is useful
  4148. * if you want to start another print with suicide feature after
  4149. * a print without suicide...
  4150. */
  4151. #if HAS_SUICIDE
  4152. OUT_WRITE(SUICIDE_PIN, HIGH);
  4153. #endif
  4154. #if ENABLED(ULTIPANEL)
  4155. powersupply = true;
  4156. LCD_MESSAGEPGM(WELCOME_MSG);
  4157. lcd_update();
  4158. #endif
  4159. }
  4160. #endif // HAS_POWER_SWITCH
  4161. /**
  4162. * M81: Turn off Power, including Power Supply, if there is one.
  4163. *
  4164. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4165. */
  4166. inline void gcode_M81() {
  4167. thermalManager.disable_all_heaters();
  4168. stepper.finish_and_disable();
  4169. #if FAN_COUNT > 0
  4170. #if FAN_COUNT > 1
  4171. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4172. #else
  4173. fanSpeeds[0] = 0;
  4174. #endif
  4175. #endif
  4176. delay(1000); // Wait 1 second before switching off
  4177. #if HAS_SUICIDE
  4178. stepper.synchronize();
  4179. suicide();
  4180. #elif HAS_POWER_SWITCH
  4181. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4182. #endif
  4183. #if ENABLED(ULTIPANEL)
  4184. #if HAS_POWER_SWITCH
  4185. powersupply = false;
  4186. #endif
  4187. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4188. lcd_update();
  4189. #endif
  4190. }
  4191. /**
  4192. * M82: Set E codes absolute (default)
  4193. */
  4194. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4195. /**
  4196. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4197. */
  4198. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4199. /**
  4200. * M18, M84: Disable all stepper motors
  4201. */
  4202. inline void gcode_M18_M84() {
  4203. if (code_seen('S')) {
  4204. stepper_inactive_time = code_value_millis_from_seconds();
  4205. }
  4206. else {
  4207. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4208. if (all_axis) {
  4209. stepper.finish_and_disable();
  4210. }
  4211. else {
  4212. stepper.synchronize();
  4213. if (code_seen('X')) disable_x();
  4214. if (code_seen('Y')) disable_y();
  4215. if (code_seen('Z')) disable_z();
  4216. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4217. if (code_seen('E')) {
  4218. disable_e0();
  4219. disable_e1();
  4220. disable_e2();
  4221. disable_e3();
  4222. }
  4223. #endif
  4224. }
  4225. }
  4226. }
  4227. /**
  4228. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4229. */
  4230. inline void gcode_M85() {
  4231. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4232. }
  4233. /**
  4234. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4235. * (Follows the same syntax as G92)
  4236. */
  4237. inline void gcode_M92() {
  4238. LOOP_XYZE(i) {
  4239. if (code_seen(axis_codes[i])) {
  4240. if (i == E_AXIS) {
  4241. float value = code_value_per_axis_unit(i);
  4242. if (value < 20.0) {
  4243. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4244. planner.max_e_jerk *= factor;
  4245. planner.max_feedrate_mm_s[i] *= factor;
  4246. planner.max_acceleration_steps_per_s2[i] *= factor;
  4247. }
  4248. planner.axis_steps_per_mm[i] = value;
  4249. }
  4250. else {
  4251. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4252. }
  4253. }
  4254. }
  4255. planner.refresh_positioning();
  4256. }
  4257. /**
  4258. * Output the current position to serial
  4259. */
  4260. static void report_current_position() {
  4261. SERIAL_PROTOCOLPGM("X:");
  4262. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4263. SERIAL_PROTOCOLPGM(" Y:");
  4264. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4265. SERIAL_PROTOCOLPGM(" Z:");
  4266. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4267. SERIAL_PROTOCOLPGM(" E:");
  4268. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4269. stepper.report_positions();
  4270. #if IS_SCARA
  4271. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4272. SERIAL_PROTOCOL(delta[A_AXIS]);
  4273. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4274. SERIAL_PROTOCOLLN(delta[B_AXIS]);
  4275. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4276. SERIAL_PROTOCOL(delta[A_AXIS]);
  4277. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4278. SERIAL_PROTOCOLLN(delta[B_AXIS] - delta[A_AXIS] - 90);
  4279. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4280. SERIAL_PROTOCOL(delta[A_AXIS] / 90 * planner.axis_steps_per_mm[A_AXIS]);
  4281. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4282. SERIAL_PROTOCOLLN((delta[B_AXIS] - delta[A_AXIS]) / 90 * planner.axis_steps_per_mm[A_AXIS]);
  4283. SERIAL_EOL;
  4284. #endif
  4285. }
  4286. /**
  4287. * M114: Output current position to serial port
  4288. */
  4289. inline void gcode_M114() { report_current_position(); }
  4290. /**
  4291. * M115: Capabilities string
  4292. */
  4293. inline void gcode_M115() {
  4294. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4295. }
  4296. /**
  4297. * M117: Set LCD Status Message
  4298. */
  4299. inline void gcode_M117() {
  4300. lcd_setstatus(current_command_args);
  4301. }
  4302. /**
  4303. * M119: Output endstop states to serial output
  4304. */
  4305. inline void gcode_M119() { endstops.M119(); }
  4306. /**
  4307. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4308. */
  4309. inline void gcode_M120() { endstops.enable_globally(true); }
  4310. /**
  4311. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4312. */
  4313. inline void gcode_M121() { endstops.enable_globally(false); }
  4314. #if ENABLED(BLINKM)
  4315. /**
  4316. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4317. */
  4318. inline void gcode_M150() {
  4319. SendColors(
  4320. code_seen('R') ? code_value_byte() : 0,
  4321. code_seen('U') ? code_value_byte() : 0,
  4322. code_seen('B') ? code_value_byte() : 0
  4323. );
  4324. }
  4325. #endif // BLINKM
  4326. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4327. /**
  4328. * M155: Send data to a I2C slave device
  4329. *
  4330. * This is a PoC, the formating and arguments for the GCODE will
  4331. * change to be more compatible, the current proposal is:
  4332. *
  4333. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4334. *
  4335. * M155 B<byte-1 value in base 10>
  4336. * M155 B<byte-2 value in base 10>
  4337. * M155 B<byte-3 value in base 10>
  4338. *
  4339. * M155 S1 ; Send the buffered data and reset the buffer
  4340. * M155 R1 ; Reset the buffer without sending data
  4341. *
  4342. */
  4343. inline void gcode_M155() {
  4344. // Set the target address
  4345. if (code_seen('A')) i2c.address(code_value_byte());
  4346. // Add a new byte to the buffer
  4347. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4348. // Flush the buffer to the bus
  4349. if (code_seen('S')) i2c.send();
  4350. // Reset and rewind the buffer
  4351. else if (code_seen('R')) i2c.reset();
  4352. }
  4353. /**
  4354. * M156: Request X bytes from I2C slave device
  4355. *
  4356. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4357. */
  4358. inline void gcode_M156() {
  4359. if (code_seen('A')) i2c.address(code_value_byte());
  4360. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4361. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4362. i2c.relay(bytes);
  4363. }
  4364. else {
  4365. SERIAL_ERROR_START;
  4366. SERIAL_ERRORLN("Bad i2c request");
  4367. }
  4368. }
  4369. #endif // EXPERIMENTAL_I2CBUS
  4370. /**
  4371. * M200: Set filament diameter and set E axis units to cubic units
  4372. *
  4373. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4374. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4375. */
  4376. inline void gcode_M200() {
  4377. if (get_target_extruder_from_command(200)) return;
  4378. if (code_seen('D')) {
  4379. // setting any extruder filament size disables volumetric on the assumption that
  4380. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4381. // for all extruders
  4382. volumetric_enabled = (code_value_linear_units() != 0.0);
  4383. if (volumetric_enabled) {
  4384. filament_size[target_extruder] = code_value_linear_units();
  4385. // make sure all extruders have some sane value for the filament size
  4386. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4387. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4388. }
  4389. }
  4390. else {
  4391. //reserved for setting filament diameter via UFID or filament measuring device
  4392. return;
  4393. }
  4394. calculate_volumetric_multipliers();
  4395. }
  4396. /**
  4397. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4398. */
  4399. inline void gcode_M201() {
  4400. LOOP_XYZE(i) {
  4401. if (code_seen(axis_codes[i])) {
  4402. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4403. }
  4404. }
  4405. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4406. planner.reset_acceleration_rates();
  4407. }
  4408. #if 0 // Not used for Sprinter/grbl gen6
  4409. inline void gcode_M202() {
  4410. LOOP_XYZE(i) {
  4411. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4412. }
  4413. }
  4414. #endif
  4415. /**
  4416. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4417. */
  4418. inline void gcode_M203() {
  4419. LOOP_XYZE(i)
  4420. if (code_seen(axis_codes[i]))
  4421. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4422. }
  4423. /**
  4424. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4425. *
  4426. * P = Printing moves
  4427. * R = Retract only (no X, Y, Z) moves
  4428. * T = Travel (non printing) moves
  4429. *
  4430. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4431. */
  4432. inline void gcode_M204() {
  4433. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4434. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4435. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4436. }
  4437. if (code_seen('P')) {
  4438. planner.acceleration = code_value_linear_units();
  4439. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4440. }
  4441. if (code_seen('R')) {
  4442. planner.retract_acceleration = code_value_linear_units();
  4443. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4444. }
  4445. if (code_seen('T')) {
  4446. planner.travel_acceleration = code_value_linear_units();
  4447. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4448. }
  4449. }
  4450. /**
  4451. * M205: Set Advanced Settings
  4452. *
  4453. * S = Min Feed Rate (units/s)
  4454. * T = Min Travel Feed Rate (units/s)
  4455. * B = Min Segment Time (µs)
  4456. * X = Max XY Jerk (units/sec^2)
  4457. * Z = Max Z Jerk (units/sec^2)
  4458. * E = Max E Jerk (units/sec^2)
  4459. */
  4460. inline void gcode_M205() {
  4461. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4462. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4463. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4464. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4465. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4466. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4467. }
  4468. /**
  4469. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4470. */
  4471. inline void gcode_M206() {
  4472. LOOP_XYZ(i)
  4473. if (code_seen(axis_codes[i]))
  4474. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4475. #if ENABLED(MORGAN_SCARA)
  4476. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4477. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4478. #endif
  4479. SYNC_PLAN_POSITION_KINEMATIC();
  4480. report_current_position();
  4481. }
  4482. #if ENABLED(DELTA)
  4483. /**
  4484. * M665: Set delta configurations
  4485. *
  4486. * L = diagonal rod
  4487. * R = delta radius
  4488. * S = segments per second
  4489. * A = Alpha (Tower 1) diagonal rod trim
  4490. * B = Beta (Tower 2) diagonal rod trim
  4491. * C = Gamma (Tower 3) diagonal rod trim
  4492. */
  4493. inline void gcode_M665() {
  4494. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4495. if (code_seen('R')) delta_radius = code_value_linear_units();
  4496. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4497. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4498. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4499. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4500. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4501. }
  4502. /**
  4503. * M666: Set delta endstop adjustment
  4504. */
  4505. inline void gcode_M666() {
  4506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4507. if (DEBUGGING(LEVELING)) {
  4508. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4509. }
  4510. #endif
  4511. LOOP_XYZ(i) {
  4512. if (code_seen(axis_codes[i])) {
  4513. endstop_adj[i] = code_value_axis_units(i);
  4514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4515. if (DEBUGGING(LEVELING)) {
  4516. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4517. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4518. }
  4519. #endif
  4520. }
  4521. }
  4522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4523. if (DEBUGGING(LEVELING)) {
  4524. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4525. }
  4526. #endif
  4527. }
  4528. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4529. /**
  4530. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4531. */
  4532. inline void gcode_M666() {
  4533. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4534. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4535. }
  4536. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4537. #if ENABLED(FWRETRACT)
  4538. /**
  4539. * M207: Set firmware retraction values
  4540. *
  4541. * S[+units] retract_length
  4542. * W[+units] retract_length_swap (multi-extruder)
  4543. * F[units/min] retract_feedrate_mm_s
  4544. * Z[units] retract_zlift
  4545. */
  4546. inline void gcode_M207() {
  4547. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4548. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4549. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4550. #if EXTRUDERS > 1
  4551. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4552. #endif
  4553. }
  4554. /**
  4555. * M208: Set firmware un-retraction values
  4556. *
  4557. * S[+units] retract_recover_length (in addition to M207 S*)
  4558. * W[+units] retract_recover_length_swap (multi-extruder)
  4559. * F[units/min] retract_recover_feedrate_mm_s
  4560. */
  4561. inline void gcode_M208() {
  4562. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4563. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4564. #if EXTRUDERS > 1
  4565. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4566. #endif
  4567. }
  4568. /**
  4569. * M209: Enable automatic retract (M209 S1)
  4570. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4571. */
  4572. inline void gcode_M209() {
  4573. if (code_seen('S')) {
  4574. autoretract_enabled = code_value_bool();
  4575. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4576. }
  4577. }
  4578. #endif // FWRETRACT
  4579. /**
  4580. * M211: Enable, Disable, and/or Report software endstops
  4581. *
  4582. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4583. */
  4584. inline void gcode_M211() {
  4585. SERIAL_ECHO_START;
  4586. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4587. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4588. #endif
  4589. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4590. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4591. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4592. #else
  4593. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4594. SERIAL_ECHOPGM(MSG_OFF);
  4595. #endif
  4596. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4597. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4598. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4599. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4600. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4601. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4602. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4603. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4604. }
  4605. #if HOTENDS > 1
  4606. /**
  4607. * M218 - set hotend offset (in linear units)
  4608. *
  4609. * T<tool>
  4610. * X<xoffset>
  4611. * Y<yoffset>
  4612. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4613. */
  4614. inline void gcode_M218() {
  4615. if (get_target_extruder_from_command(218)) return;
  4616. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4617. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4618. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4619. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4620. #endif
  4621. SERIAL_ECHO_START;
  4622. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4623. HOTEND_LOOP() {
  4624. SERIAL_CHAR(' ');
  4625. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4626. SERIAL_CHAR(',');
  4627. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4628. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4629. SERIAL_CHAR(',');
  4630. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4631. #endif
  4632. }
  4633. SERIAL_EOL;
  4634. }
  4635. #endif // HOTENDS > 1
  4636. /**
  4637. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4638. */
  4639. inline void gcode_M220() {
  4640. if (code_seen('S')) feedrate_percentage = code_value_int();
  4641. }
  4642. /**
  4643. * M221: Set extrusion percentage (M221 T0 S95)
  4644. */
  4645. inline void gcode_M221() {
  4646. if (get_target_extruder_from_command(221)) return;
  4647. if (code_seen('S'))
  4648. flow_percentage[target_extruder] = code_value_int();
  4649. }
  4650. /**
  4651. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4652. */
  4653. inline void gcode_M226() {
  4654. if (code_seen('P')) {
  4655. int pin_number = code_value_int();
  4656. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4657. if (pin_state >= -1 && pin_state <= 1) {
  4658. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4659. if (sensitive_pins[i] == pin_number) {
  4660. pin_number = -1;
  4661. break;
  4662. }
  4663. }
  4664. if (pin_number > -1) {
  4665. int target = LOW;
  4666. stepper.synchronize();
  4667. pinMode(pin_number, INPUT);
  4668. switch (pin_state) {
  4669. case 1:
  4670. target = HIGH;
  4671. break;
  4672. case 0:
  4673. target = LOW;
  4674. break;
  4675. case -1:
  4676. target = !digitalRead(pin_number);
  4677. break;
  4678. }
  4679. while (digitalRead(pin_number) != target) idle();
  4680. } // pin_number > -1
  4681. } // pin_state -1 0 1
  4682. } // code_seen('P')
  4683. }
  4684. #if HAS_SERVOS
  4685. /**
  4686. * M280: Get or set servo position. P<index> [S<angle>]
  4687. */
  4688. inline void gcode_M280() {
  4689. if (!code_seen('P')) return;
  4690. int servo_index = code_value_int();
  4691. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4692. if (code_seen('S'))
  4693. MOVE_SERVO(servo_index, code_value_int());
  4694. else {
  4695. SERIAL_ECHO_START;
  4696. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4697. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4698. }
  4699. }
  4700. else {
  4701. SERIAL_ERROR_START;
  4702. SERIAL_ECHOPAIR("Servo ", servo_index);
  4703. SERIAL_ECHOLNPGM(" out of range");
  4704. }
  4705. }
  4706. #endif // HAS_SERVOS
  4707. #if HAS_BUZZER
  4708. /**
  4709. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4710. */
  4711. inline void gcode_M300() {
  4712. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4713. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4714. // Limits the tone duration to 0-5 seconds.
  4715. NOMORE(duration, 5000);
  4716. BUZZ(duration, frequency);
  4717. }
  4718. #endif // HAS_BUZZER
  4719. #if ENABLED(PIDTEMP)
  4720. /**
  4721. * M301: Set PID parameters P I D (and optionally C, L)
  4722. *
  4723. * P[float] Kp term
  4724. * I[float] Ki term (unscaled)
  4725. * D[float] Kd term (unscaled)
  4726. *
  4727. * With PID_EXTRUSION_SCALING:
  4728. *
  4729. * C[float] Kc term
  4730. * L[float] LPQ length
  4731. */
  4732. inline void gcode_M301() {
  4733. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4734. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4735. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4736. if (e < HOTENDS) { // catch bad input value
  4737. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4738. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4739. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4740. #if ENABLED(PID_EXTRUSION_SCALING)
  4741. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4742. if (code_seen('L')) lpq_len = code_value_float();
  4743. NOMORE(lpq_len, LPQ_MAX_LEN);
  4744. #endif
  4745. thermalManager.updatePID();
  4746. SERIAL_ECHO_START;
  4747. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4748. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4749. #endif // PID_PARAMS_PER_HOTEND
  4750. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4751. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4752. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4753. #if ENABLED(PID_EXTRUSION_SCALING)
  4754. //Kc does not have scaling applied above, or in resetting defaults
  4755. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4756. #endif
  4757. SERIAL_EOL;
  4758. }
  4759. else {
  4760. SERIAL_ERROR_START;
  4761. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4762. }
  4763. }
  4764. #endif // PIDTEMP
  4765. #if ENABLED(PIDTEMPBED)
  4766. inline void gcode_M304() {
  4767. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4768. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4769. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4770. thermalManager.updatePID();
  4771. SERIAL_ECHO_START;
  4772. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4773. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4774. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4775. }
  4776. #endif // PIDTEMPBED
  4777. #if defined(CHDK) || HAS_PHOTOGRAPH
  4778. /**
  4779. * M240: Trigger a camera by emulating a Canon RC-1
  4780. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4781. */
  4782. inline void gcode_M240() {
  4783. #ifdef CHDK
  4784. OUT_WRITE(CHDK, HIGH);
  4785. chdkHigh = millis();
  4786. chdkActive = true;
  4787. #elif HAS_PHOTOGRAPH
  4788. const uint8_t NUM_PULSES = 16;
  4789. const float PULSE_LENGTH = 0.01524;
  4790. for (int i = 0; i < NUM_PULSES; i++) {
  4791. WRITE(PHOTOGRAPH_PIN, HIGH);
  4792. _delay_ms(PULSE_LENGTH);
  4793. WRITE(PHOTOGRAPH_PIN, LOW);
  4794. _delay_ms(PULSE_LENGTH);
  4795. }
  4796. delay(7.33);
  4797. for (int i = 0; i < NUM_PULSES; i++) {
  4798. WRITE(PHOTOGRAPH_PIN, HIGH);
  4799. _delay_ms(PULSE_LENGTH);
  4800. WRITE(PHOTOGRAPH_PIN, LOW);
  4801. _delay_ms(PULSE_LENGTH);
  4802. }
  4803. #endif // !CHDK && HAS_PHOTOGRAPH
  4804. }
  4805. #endif // CHDK || PHOTOGRAPH_PIN
  4806. #if HAS_LCD_CONTRAST
  4807. /**
  4808. * M250: Read and optionally set the LCD contrast
  4809. */
  4810. inline void gcode_M250() {
  4811. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4812. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4813. SERIAL_PROTOCOL(lcd_contrast);
  4814. SERIAL_EOL;
  4815. }
  4816. #endif // HAS_LCD_CONTRAST
  4817. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4818. /**
  4819. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4820. *
  4821. * S<temperature> sets the minimum extrude temperature
  4822. * P<bool> enables (1) or disables (0) cold extrusion
  4823. *
  4824. * Examples:
  4825. *
  4826. * M302 ; report current cold extrusion state
  4827. * M302 P0 ; enable cold extrusion checking
  4828. * M302 P1 ; disables cold extrusion checking
  4829. * M302 S0 ; always allow extrusion (disables checking)
  4830. * M302 S170 ; only allow extrusion above 170
  4831. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4832. */
  4833. inline void gcode_M302() {
  4834. bool seen_S = code_seen('S');
  4835. if (seen_S) {
  4836. thermalManager.extrude_min_temp = code_value_temp_abs();
  4837. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4838. }
  4839. if (code_seen('P'))
  4840. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4841. else if (!seen_S) {
  4842. // Report current state
  4843. SERIAL_ECHO_START;
  4844. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4845. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4846. SERIAL_ECHOLNPGM("C)");
  4847. }
  4848. }
  4849. #endif // PREVENT_COLD_EXTRUSION
  4850. /**
  4851. * M303: PID relay autotune
  4852. *
  4853. * S<temperature> sets the target temperature. (default 150C)
  4854. * E<extruder> (-1 for the bed) (default 0)
  4855. * C<cycles>
  4856. * U<bool> with a non-zero value will apply the result to current settings
  4857. */
  4858. inline void gcode_M303() {
  4859. #if HAS_PID_HEATING
  4860. int e = code_seen('E') ? code_value_int() : 0;
  4861. int c = code_seen('C') ? code_value_int() : 5;
  4862. bool u = code_seen('U') && code_value_bool();
  4863. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4864. if (e >= 0 && e < HOTENDS)
  4865. target_extruder = e;
  4866. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4867. thermalManager.PID_autotune(temp, e, c, u);
  4868. KEEPALIVE_STATE(IN_HANDLER);
  4869. #else
  4870. SERIAL_ERROR_START;
  4871. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4872. #endif
  4873. }
  4874. #if ENABLED(MORGAN_SCARA)
  4875. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4876. if (IsRunning()) {
  4877. //gcode_get_destination(); // For X Y Z E F
  4878. forward_kinematics_SCARA(delta_a, delta_b);
  4879. destination[X_AXIS] = cartes[X_AXIS];
  4880. destination[Y_AXIS] = cartes[Y_AXIS];
  4881. destination[Z_AXIS] = current_position[Z_AXIS];
  4882. prepare_move_to_destination();
  4883. return true;
  4884. }
  4885. return false;
  4886. }
  4887. /**
  4888. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4889. */
  4890. inline bool gcode_M360() {
  4891. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4892. return SCARA_move_to_cal(0, 120);
  4893. }
  4894. /**
  4895. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4896. */
  4897. inline bool gcode_M361() {
  4898. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4899. return SCARA_move_to_cal(90, 130);
  4900. }
  4901. /**
  4902. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4903. */
  4904. inline bool gcode_M362() {
  4905. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4906. return SCARA_move_to_cal(60, 180);
  4907. }
  4908. /**
  4909. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4910. */
  4911. inline bool gcode_M363() {
  4912. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4913. return SCARA_move_to_cal(50, 90);
  4914. }
  4915. /**
  4916. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4917. */
  4918. inline bool gcode_M364() {
  4919. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4920. return SCARA_move_to_cal(45, 135);
  4921. }
  4922. #endif // SCARA
  4923. #if ENABLED(EXT_SOLENOID)
  4924. void enable_solenoid(uint8_t num) {
  4925. switch (num) {
  4926. case 0:
  4927. OUT_WRITE(SOL0_PIN, HIGH);
  4928. break;
  4929. #if HAS_SOLENOID_1
  4930. case 1:
  4931. OUT_WRITE(SOL1_PIN, HIGH);
  4932. break;
  4933. #endif
  4934. #if HAS_SOLENOID_2
  4935. case 2:
  4936. OUT_WRITE(SOL2_PIN, HIGH);
  4937. break;
  4938. #endif
  4939. #if HAS_SOLENOID_3
  4940. case 3:
  4941. OUT_WRITE(SOL3_PIN, HIGH);
  4942. break;
  4943. #endif
  4944. default:
  4945. SERIAL_ECHO_START;
  4946. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4947. break;
  4948. }
  4949. }
  4950. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4951. void disable_all_solenoids() {
  4952. OUT_WRITE(SOL0_PIN, LOW);
  4953. OUT_WRITE(SOL1_PIN, LOW);
  4954. OUT_WRITE(SOL2_PIN, LOW);
  4955. OUT_WRITE(SOL3_PIN, LOW);
  4956. }
  4957. /**
  4958. * M380: Enable solenoid on the active extruder
  4959. */
  4960. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4961. /**
  4962. * M381: Disable all solenoids
  4963. */
  4964. inline void gcode_M381() { disable_all_solenoids(); }
  4965. #endif // EXT_SOLENOID
  4966. /**
  4967. * M400: Finish all moves
  4968. */
  4969. inline void gcode_M400() { stepper.synchronize(); }
  4970. #if HAS_BED_PROBE
  4971. /**
  4972. * M401: Engage Z Servo endstop if available
  4973. */
  4974. inline void gcode_M401() { DEPLOY_PROBE(); }
  4975. /**
  4976. * M402: Retract Z Servo endstop if enabled
  4977. */
  4978. inline void gcode_M402() { STOW_PROBE(); }
  4979. #endif // HAS_BED_PROBE
  4980. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4981. /**
  4982. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  4983. */
  4984. inline void gcode_M404() {
  4985. if (code_seen('W')) {
  4986. filament_width_nominal = code_value_linear_units();
  4987. }
  4988. else {
  4989. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4990. SERIAL_PROTOCOLLN(filament_width_nominal);
  4991. }
  4992. }
  4993. /**
  4994. * M405: Turn on filament sensor for control
  4995. */
  4996. inline void gcode_M405() {
  4997. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4998. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4999. if (code_seen('D')) meas_delay_cm = code_value_int();
  5000. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5001. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5002. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5003. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5004. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5005. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5006. }
  5007. filament_sensor = true;
  5008. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5009. //SERIAL_PROTOCOL(filament_width_meas);
  5010. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5011. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5012. }
  5013. /**
  5014. * M406: Turn off filament sensor for control
  5015. */
  5016. inline void gcode_M406() { filament_sensor = false; }
  5017. /**
  5018. * M407: Get measured filament diameter on serial output
  5019. */
  5020. inline void gcode_M407() {
  5021. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5022. SERIAL_PROTOCOLLN(filament_width_meas);
  5023. }
  5024. #endif // FILAMENT_WIDTH_SENSOR
  5025. void quickstop_stepper() {
  5026. stepper.quick_stop();
  5027. #if DISABLED(SCARA)
  5028. stepper.synchronize();
  5029. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5030. SYNC_PLAN_POSITION_KINEMATIC();
  5031. #endif
  5032. }
  5033. #if ENABLED(MESH_BED_LEVELING)
  5034. /**
  5035. * M420: Enable/Disable Mesh Bed Leveling
  5036. */
  5037. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5038. /**
  5039. * M421: Set a single Mesh Bed Leveling Z coordinate
  5040. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5041. */
  5042. inline void gcode_M421() {
  5043. int8_t px = 0, py = 0;
  5044. float z = 0;
  5045. bool hasX, hasY, hasZ, hasI, hasJ;
  5046. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5047. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5048. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5049. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5050. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5051. if (hasX && hasY && hasZ) {
  5052. if (px >= 0 && py >= 0)
  5053. mbl.set_z(px, py, z);
  5054. else {
  5055. SERIAL_ERROR_START;
  5056. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5057. }
  5058. }
  5059. else if (hasI && hasJ && hasZ) {
  5060. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5061. mbl.set_z(px, py, z);
  5062. else {
  5063. SERIAL_ERROR_START;
  5064. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5065. }
  5066. }
  5067. else {
  5068. SERIAL_ERROR_START;
  5069. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5070. }
  5071. }
  5072. #endif
  5073. /**
  5074. * M428: Set home_offset based on the distance between the
  5075. * current_position and the nearest "reference point."
  5076. * If an axis is past center its endstop position
  5077. * is the reference-point. Otherwise it uses 0. This allows
  5078. * the Z offset to be set near the bed when using a max endstop.
  5079. *
  5080. * M428 can't be used more than 2cm away from 0 or an endstop.
  5081. *
  5082. * Use M206 to set these values directly.
  5083. */
  5084. inline void gcode_M428() {
  5085. bool err = false;
  5086. LOOP_XYZ(i) {
  5087. if (axis_homed[i]) {
  5088. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5089. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5090. if (diff > -20 && diff < 20) {
  5091. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5092. }
  5093. else {
  5094. SERIAL_ERROR_START;
  5095. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5096. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5097. BUZZ(200, 40);
  5098. err = true;
  5099. break;
  5100. }
  5101. }
  5102. }
  5103. if (!err) {
  5104. SYNC_PLAN_POSITION_KINEMATIC();
  5105. report_current_position();
  5106. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5107. BUZZ(200, 659);
  5108. BUZZ(200, 698);
  5109. }
  5110. }
  5111. /**
  5112. * M500: Store settings in EEPROM
  5113. */
  5114. inline void gcode_M500() {
  5115. Config_StoreSettings();
  5116. }
  5117. /**
  5118. * M501: Read settings from EEPROM
  5119. */
  5120. inline void gcode_M501() {
  5121. Config_RetrieveSettings();
  5122. }
  5123. /**
  5124. * M502: Revert to default settings
  5125. */
  5126. inline void gcode_M502() {
  5127. Config_ResetDefault();
  5128. }
  5129. /**
  5130. * M503: print settings currently in memory
  5131. */
  5132. inline void gcode_M503() {
  5133. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5134. }
  5135. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5136. /**
  5137. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5138. */
  5139. inline void gcode_M540() {
  5140. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5141. }
  5142. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5143. #if HAS_BED_PROBE
  5144. inline void gcode_M851() {
  5145. SERIAL_ECHO_START;
  5146. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5147. SERIAL_CHAR(' ');
  5148. if (code_seen('Z')) {
  5149. float value = code_value_axis_units(Z_AXIS);
  5150. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5151. zprobe_zoffset = value;
  5152. SERIAL_ECHO(zprobe_zoffset);
  5153. }
  5154. else {
  5155. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5156. SERIAL_CHAR(' ');
  5157. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5158. }
  5159. }
  5160. else {
  5161. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5162. }
  5163. SERIAL_EOL;
  5164. }
  5165. #endif // HAS_BED_PROBE
  5166. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5167. /**
  5168. * M600: Pause for filament change
  5169. *
  5170. * E[distance] - Retract the filament this far (negative value)
  5171. * Z[distance] - Move the Z axis by this distance
  5172. * X[position] - Move to this X position, with Y
  5173. * Y[position] - Move to this Y position, with X
  5174. * L[distance] - Retract distance for removal (manual reload)
  5175. *
  5176. * Default values are used for omitted arguments.
  5177. *
  5178. */
  5179. inline void gcode_M600() {
  5180. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5181. SERIAL_ERROR_START;
  5182. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5183. return;
  5184. }
  5185. // Show initial message and wait for synchronize steppers
  5186. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5187. stepper.synchronize();
  5188. float lastpos[NUM_AXIS];
  5189. // Save current position of all axes
  5190. LOOP_XYZE(i)
  5191. lastpos[i] = destination[i] = current_position[i];
  5192. // Define runplan for move axes
  5193. #if IS_KINEMATIC
  5194. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5195. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5196. #else
  5197. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5198. #endif
  5199. KEEPALIVE_STATE(IN_HANDLER);
  5200. // Initial retract before move to filament change position
  5201. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5202. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5203. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5204. #endif
  5205. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5206. // Lift Z axis
  5207. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5208. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5209. FILAMENT_CHANGE_Z_ADD
  5210. #else
  5211. 0
  5212. #endif
  5213. ;
  5214. if (z_lift > 0) {
  5215. destination[Z_AXIS] += z_lift;
  5216. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5217. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5218. }
  5219. // Move XY axes to filament exchange position
  5220. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5221. #ifdef FILAMENT_CHANGE_X_POS
  5222. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5223. #endif
  5224. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5225. #ifdef FILAMENT_CHANGE_Y_POS
  5226. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5227. #endif
  5228. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5229. stepper.synchronize();
  5230. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5231. // Unload filament
  5232. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5233. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5234. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5235. #endif
  5236. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5237. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5238. stepper.synchronize();
  5239. disable_e0();
  5240. disable_e1();
  5241. disable_e2();
  5242. disable_e3();
  5243. delay(100);
  5244. #if HAS_BUZZER
  5245. millis_t next_tick = 0;
  5246. #endif
  5247. // Wait for filament insert by user and press button
  5248. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5249. while (!lcd_clicked()) {
  5250. #if HAS_BUZZER
  5251. millis_t ms = millis();
  5252. if (ms >= next_tick) {
  5253. BUZZ(300, 2000);
  5254. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5255. }
  5256. #endif
  5257. idle(true);
  5258. }
  5259. delay(100);
  5260. while (lcd_clicked()) idle(true);
  5261. delay(100);
  5262. // Show load message
  5263. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5264. // Load filament
  5265. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5266. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5267. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5268. #endif
  5269. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5270. stepper.synchronize();
  5271. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5272. do {
  5273. // Extrude filament to get into hotend
  5274. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5275. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5276. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5277. stepper.synchronize();
  5278. // Ask user if more filament should be extruded
  5279. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5280. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5281. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5282. KEEPALIVE_STATE(IN_HANDLER);
  5283. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5284. #endif
  5285. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5286. KEEPALIVE_STATE(IN_HANDLER);
  5287. // Set extruder to saved position
  5288. current_position[E_AXIS] = lastpos[E_AXIS];
  5289. destination[E_AXIS] = lastpos[E_AXIS];
  5290. planner.set_e_position_mm(current_position[E_AXIS]);
  5291. #if IS_KINEMATIC
  5292. // Move XYZ to starting position, then E
  5293. inverse_kinematics(lastpos);
  5294. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5295. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5296. #else
  5297. // Move XY to starting position, then Z, then E
  5298. destination[X_AXIS] = lastpos[X_AXIS];
  5299. destination[Y_AXIS] = lastpos[Y_AXIS];
  5300. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5301. destination[Z_AXIS] = lastpos[Z_AXIS];
  5302. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5303. #endif
  5304. stepper.synchronize();
  5305. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5306. filament_ran_out = false;
  5307. #endif
  5308. // Show status screen
  5309. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5310. }
  5311. #endif // FILAMENT_CHANGE_FEATURE
  5312. #if ENABLED(DUAL_X_CARRIAGE)
  5313. /**
  5314. * M605: Set dual x-carriage movement mode
  5315. *
  5316. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5317. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5318. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5319. * units x-offset and an optional differential hotend temperature of
  5320. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5321. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5322. *
  5323. * Note: the X axis should be homed after changing dual x-carriage mode.
  5324. */
  5325. inline void gcode_M605() {
  5326. stepper.synchronize();
  5327. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5328. switch (dual_x_carriage_mode) {
  5329. case DXC_DUPLICATION_MODE:
  5330. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5331. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5332. SERIAL_ECHO_START;
  5333. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5334. SERIAL_CHAR(' ');
  5335. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5336. SERIAL_CHAR(',');
  5337. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5338. SERIAL_CHAR(' ');
  5339. SERIAL_ECHO(duplicate_extruder_x_offset);
  5340. SERIAL_CHAR(',');
  5341. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5342. break;
  5343. case DXC_FULL_CONTROL_MODE:
  5344. case DXC_AUTO_PARK_MODE:
  5345. break;
  5346. default:
  5347. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5348. break;
  5349. }
  5350. active_extruder_parked = false;
  5351. extruder_duplication_enabled = false;
  5352. delayed_move_time = 0;
  5353. }
  5354. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5355. inline void gcode_M605() {
  5356. stepper.synchronize();
  5357. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5358. SERIAL_ECHO_START;
  5359. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5360. }
  5361. #endif // M605
  5362. #if ENABLED(LIN_ADVANCE)
  5363. /**
  5364. * M905: Set advance factor
  5365. */
  5366. inline void gcode_M905() {
  5367. stepper.synchronize();
  5368. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5369. }
  5370. #endif
  5371. /**
  5372. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5373. */
  5374. inline void gcode_M907() {
  5375. #if HAS_DIGIPOTSS
  5376. LOOP_XYZE(i)
  5377. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5378. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5379. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5380. #endif
  5381. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5382. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5383. #endif
  5384. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5385. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5386. #endif
  5387. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5388. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5389. #endif
  5390. #if ENABLED(DIGIPOT_I2C)
  5391. // this one uses actual amps in floating point
  5392. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5393. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5394. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5395. #endif
  5396. #if ENABLED(DAC_STEPPER_CURRENT)
  5397. if (code_seen('S')) {
  5398. float dac_percent = code_value_float();
  5399. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5400. }
  5401. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5402. #endif
  5403. }
  5404. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5405. /**
  5406. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5407. */
  5408. inline void gcode_M908() {
  5409. #if HAS_DIGIPOTSS
  5410. stepper.digitalPotWrite(
  5411. code_seen('P') ? code_value_int() : 0,
  5412. code_seen('S') ? code_value_int() : 0
  5413. );
  5414. #endif
  5415. #ifdef DAC_STEPPER_CURRENT
  5416. dac_current_raw(
  5417. code_seen('P') ? code_value_byte() : -1,
  5418. code_seen('S') ? code_value_ushort() : 0
  5419. );
  5420. #endif
  5421. }
  5422. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5423. inline void gcode_M909() { dac_print_values(); }
  5424. inline void gcode_M910() { dac_commit_eeprom(); }
  5425. #endif
  5426. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5427. #if HAS_MICROSTEPS
  5428. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5429. inline void gcode_M350() {
  5430. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5431. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5432. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5433. stepper.microstep_readings();
  5434. }
  5435. /**
  5436. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5437. * S# determines MS1 or MS2, X# sets the pin high/low.
  5438. */
  5439. inline void gcode_M351() {
  5440. if (code_seen('S')) switch (code_value_byte()) {
  5441. case 1:
  5442. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5443. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5444. break;
  5445. case 2:
  5446. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5447. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5448. break;
  5449. }
  5450. stepper.microstep_readings();
  5451. }
  5452. #endif // HAS_MICROSTEPS
  5453. #if ENABLED(MIXING_EXTRUDER)
  5454. /**
  5455. * M163: Set a single mix factor for a mixing extruder
  5456. * This is called "weight" by some systems.
  5457. *
  5458. * S[index] The channel index to set
  5459. * P[float] The mix value
  5460. *
  5461. */
  5462. inline void gcode_M163() {
  5463. int mix_index = code_seen('S') ? code_value_int() : 0;
  5464. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5465. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5466. }
  5467. #if MIXING_VIRTUAL_TOOLS > 1
  5468. /**
  5469. * M164: Store the current mix factors as a virtual tool.
  5470. *
  5471. * S[index] The virtual tool to store
  5472. *
  5473. */
  5474. inline void gcode_M164() {
  5475. int tool_index = code_seen('S') ? code_value_int() : 0;
  5476. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5477. normalize_mix();
  5478. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5479. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5480. }
  5481. }
  5482. #endif
  5483. #if ENABLED(DIRECT_MIXING_IN_G1)
  5484. /**
  5485. * M165: Set multiple mix factors for a mixing extruder.
  5486. * Factors that are left out will be set to 0.
  5487. * All factors together must add up to 1.0.
  5488. *
  5489. * A[factor] Mix factor for extruder stepper 1
  5490. * B[factor] Mix factor for extruder stepper 2
  5491. * C[factor] Mix factor for extruder stepper 3
  5492. * D[factor] Mix factor for extruder stepper 4
  5493. * H[factor] Mix factor for extruder stepper 5
  5494. * I[factor] Mix factor for extruder stepper 6
  5495. *
  5496. */
  5497. inline void gcode_M165() { gcode_get_mix(); }
  5498. #endif
  5499. #endif // MIXING_EXTRUDER
  5500. /**
  5501. * M999: Restart after being stopped
  5502. *
  5503. * Default behaviour is to flush the serial buffer and request
  5504. * a resend to the host starting on the last N line received.
  5505. *
  5506. * Sending "M999 S1" will resume printing without flushing the
  5507. * existing command buffer.
  5508. *
  5509. */
  5510. inline void gcode_M999() {
  5511. Running = true;
  5512. lcd_reset_alert_level();
  5513. if (code_seen('S') && code_value_bool()) return;
  5514. // gcode_LastN = Stopped_gcode_LastN;
  5515. FlushSerialRequestResend();
  5516. }
  5517. #if ENABLED(SWITCHING_EXTRUDER)
  5518. inline void move_extruder_servo(uint8_t e) {
  5519. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5520. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5521. }
  5522. #endif
  5523. inline void invalid_extruder_error(const uint8_t &e) {
  5524. SERIAL_ECHO_START;
  5525. SERIAL_CHAR('T');
  5526. SERIAL_PROTOCOL_F(e, DEC);
  5527. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5528. }
  5529. /**
  5530. * Perform a tool-change, which may result in moving the
  5531. * previous tool out of the way and the new tool into place.
  5532. */
  5533. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5534. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5535. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5536. invalid_extruder_error(tmp_extruder);
  5537. return;
  5538. }
  5539. // T0-Tnnn: Switch virtual tool by changing the mix
  5540. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5541. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5542. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5543. #if HOTENDS > 1
  5544. if (tmp_extruder >= EXTRUDERS) {
  5545. invalid_extruder_error(tmp_extruder);
  5546. return;
  5547. }
  5548. float old_feedrate_mm_s = feedrate_mm_s;
  5549. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5550. if (tmp_extruder != active_extruder) {
  5551. if (!no_move && axis_unhomed_error(true, true, true)) {
  5552. SERIAL_ECHOLNPGM("No move on toolchange");
  5553. no_move = true;
  5554. }
  5555. // Save current position to destination, for use later
  5556. set_destination_to_current();
  5557. #if ENABLED(DUAL_X_CARRIAGE)
  5558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5559. if (DEBUGGING(LEVELING)) {
  5560. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5561. switch (dual_x_carriage_mode) {
  5562. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5563. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5564. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5565. }
  5566. }
  5567. #endif
  5568. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5569. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5570. ) {
  5571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5572. if (DEBUGGING(LEVELING)) {
  5573. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5574. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5575. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5576. }
  5577. #endif
  5578. // Park old head: 1) raise 2) move to park position 3) lower
  5579. for (uint8_t i = 0; i < 3; i++)
  5580. planner.buffer_line(
  5581. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5582. current_position[Y_AXIS],
  5583. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5584. current_position[E_AXIS],
  5585. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5586. active_extruder
  5587. );
  5588. stepper.synchronize();
  5589. }
  5590. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5591. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5592. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5593. active_extruder = tmp_extruder;
  5594. // This function resets the max/min values - the current position may be overwritten below.
  5595. set_axis_is_at_home(X_AXIS);
  5596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5597. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5598. #endif
  5599. switch (dual_x_carriage_mode) {
  5600. case DXC_FULL_CONTROL_MODE:
  5601. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5602. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5603. break;
  5604. case DXC_DUPLICATION_MODE:
  5605. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5606. if (active_extruder_parked)
  5607. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5608. else
  5609. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5610. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5611. extruder_duplication_enabled = false;
  5612. break;
  5613. default:
  5614. // record raised toolhead position for use by unpark
  5615. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5616. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5617. active_extruder_parked = true;
  5618. delayed_move_time = 0;
  5619. break;
  5620. }
  5621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5622. if (DEBUGGING(LEVELING)) {
  5623. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5624. DEBUG_POS("New extruder (parked)", current_position);
  5625. }
  5626. #endif
  5627. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5628. #else // !DUAL_X_CARRIAGE
  5629. #if ENABLED(SWITCHING_EXTRUDER)
  5630. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5631. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5632. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5633. // Always raise by some amount
  5634. planner.buffer_line(
  5635. current_position[X_AXIS],
  5636. current_position[Y_AXIS],
  5637. current_position[Z_AXIS] + z_raise,
  5638. current_position[E_AXIS],
  5639. planner.max_feedrate_mm_s[Z_AXIS],
  5640. active_extruder
  5641. );
  5642. stepper.synchronize();
  5643. move_extruder_servo(active_extruder);
  5644. delay(500);
  5645. // Move back down, if needed
  5646. if (z_raise != z_diff) {
  5647. planner.buffer_line(
  5648. current_position[X_AXIS],
  5649. current_position[Y_AXIS],
  5650. current_position[Z_AXIS] + z_diff,
  5651. current_position[E_AXIS],
  5652. planner.max_feedrate_mm_s[Z_AXIS],
  5653. active_extruder
  5654. );
  5655. stepper.synchronize();
  5656. }
  5657. #endif
  5658. /**
  5659. * Set current_position to the position of the new nozzle.
  5660. * Offsets are based on linear distance, so we need to get
  5661. * the resulting position in coordinate space.
  5662. *
  5663. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5664. * - With mesh leveling, update Z for the new position
  5665. * - Otherwise, just use the raw linear distance
  5666. *
  5667. * Software endstops are altered here too. Consider a case where:
  5668. * E0 at X=0 ... E1 at X=10
  5669. * When we switch to E1 now X=10, but E1 can't move left.
  5670. * To express this we apply the change in XY to the software endstops.
  5671. * E1 can move farther right than E0, so the right limit is extended.
  5672. *
  5673. * Note that we don't adjust the Z software endstops. Why not?
  5674. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5675. * because the bed is 1mm lower at the new position. As long as
  5676. * the first nozzle is out of the way, the carriage should be
  5677. * allowed to move 1mm lower. This technically "breaks" the
  5678. * Z software endstop. But this is technically correct (and
  5679. * there is no viable alternative).
  5680. */
  5681. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5682. // Offset extruder, make sure to apply the bed level rotation matrix
  5683. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5684. hotend_offset[Y_AXIS][tmp_extruder],
  5685. 0),
  5686. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5687. hotend_offset[Y_AXIS][active_extruder],
  5688. 0),
  5689. offset_vec = tmp_offset_vec - act_offset_vec;
  5690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5691. if (DEBUGGING(LEVELING)) {
  5692. tmp_offset_vec.debug("tmp_offset_vec");
  5693. act_offset_vec.debug("act_offset_vec");
  5694. offset_vec.debug("offset_vec (BEFORE)");
  5695. }
  5696. #endif
  5697. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5699. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5700. #endif
  5701. // Adjustments to the current position
  5702. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5703. current_position[Z_AXIS] += offset_vec.z;
  5704. #else // !AUTO_BED_LEVELING_LINEAR
  5705. float xydiff[2] = {
  5706. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5707. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5708. };
  5709. #if ENABLED(MESH_BED_LEVELING)
  5710. if (mbl.active()) {
  5711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5712. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5713. #endif
  5714. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5715. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5716. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5718. if (DEBUGGING(LEVELING))
  5719. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5720. #endif
  5721. }
  5722. #endif // MESH_BED_LEVELING
  5723. #endif // !AUTO_BED_LEVELING_FEATURE
  5724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5725. if (DEBUGGING(LEVELING)) {
  5726. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5727. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5728. SERIAL_ECHOLNPGM(" }");
  5729. }
  5730. #endif
  5731. // The newly-selected extruder XY is actually at...
  5732. current_position[X_AXIS] += xydiff[X_AXIS];
  5733. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5734. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5735. position_shift[i] += xydiff[i];
  5736. update_software_endstops((AxisEnum)i);
  5737. }
  5738. // Set the new active extruder
  5739. active_extruder = tmp_extruder;
  5740. #endif // !DUAL_X_CARRIAGE
  5741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5742. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5743. #endif
  5744. // Tell the planner the new "current position"
  5745. SYNC_PLAN_POSITION_KINEMATIC();
  5746. // Move to the "old position" (move the extruder into place)
  5747. if (!no_move && IsRunning()) {
  5748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5749. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5750. #endif
  5751. prepare_move_to_destination();
  5752. }
  5753. } // (tmp_extruder != active_extruder)
  5754. stepper.synchronize();
  5755. #if ENABLED(EXT_SOLENOID)
  5756. disable_all_solenoids();
  5757. enable_solenoid_on_active_extruder();
  5758. #endif // EXT_SOLENOID
  5759. feedrate_mm_s = old_feedrate_mm_s;
  5760. #else // HOTENDS <= 1
  5761. // Set the new active extruder
  5762. active_extruder = tmp_extruder;
  5763. UNUSED(fr_mm_s);
  5764. UNUSED(no_move);
  5765. #endif // HOTENDS <= 1
  5766. SERIAL_ECHO_START;
  5767. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5768. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5769. }
  5770. /**
  5771. * T0-T3: Switch tool, usually switching extruders
  5772. *
  5773. * F[units/min] Set the movement feedrate
  5774. * S1 Don't move the tool in XY after change
  5775. */
  5776. inline void gcode_T(uint8_t tmp_extruder) {
  5777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5778. if (DEBUGGING(LEVELING)) {
  5779. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5780. SERIAL_ECHOLNPGM(")");
  5781. DEBUG_POS("BEFORE", current_position);
  5782. }
  5783. #endif
  5784. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5785. tool_change(tmp_extruder);
  5786. #elif HOTENDS > 1
  5787. tool_change(
  5788. tmp_extruder,
  5789. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5790. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5791. );
  5792. #endif
  5793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5794. if (DEBUGGING(LEVELING)) {
  5795. DEBUG_POS("AFTER", current_position);
  5796. SERIAL_ECHOLNPGM("<<< gcode_T");
  5797. }
  5798. #endif
  5799. }
  5800. /**
  5801. * Process a single command and dispatch it to its handler
  5802. * This is called from the main loop()
  5803. */
  5804. void process_next_command() {
  5805. current_command = command_queue[cmd_queue_index_r];
  5806. if (DEBUGGING(ECHO)) {
  5807. SERIAL_ECHO_START;
  5808. SERIAL_ECHOLN(current_command);
  5809. }
  5810. // Sanitize the current command:
  5811. // - Skip leading spaces
  5812. // - Bypass N[-0-9][0-9]*[ ]*
  5813. // - Overwrite * with nul to mark the end
  5814. while (*current_command == ' ') ++current_command;
  5815. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5816. current_command += 2; // skip N[-0-9]
  5817. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5818. while (*current_command == ' ') ++current_command; // skip [ ]*
  5819. }
  5820. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5821. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5822. char *cmd_ptr = current_command;
  5823. // Get the command code, which must be G, M, or T
  5824. char command_code = *cmd_ptr++;
  5825. // Skip spaces to get the numeric part
  5826. while (*cmd_ptr == ' ') cmd_ptr++;
  5827. uint16_t codenum = 0; // define ahead of goto
  5828. // Bail early if there's no code
  5829. bool code_is_good = NUMERIC(*cmd_ptr);
  5830. if (!code_is_good) goto ExitUnknownCommand;
  5831. // Get and skip the code number
  5832. do {
  5833. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5834. cmd_ptr++;
  5835. } while (NUMERIC(*cmd_ptr));
  5836. // Skip all spaces to get to the first argument, or nul
  5837. while (*cmd_ptr == ' ') cmd_ptr++;
  5838. // The command's arguments (if any) start here, for sure!
  5839. current_command_args = cmd_ptr;
  5840. KEEPALIVE_STATE(IN_HANDLER);
  5841. // Handle a known G, M, or T
  5842. switch (command_code) {
  5843. case 'G': switch (codenum) {
  5844. // G0, G1
  5845. case 0:
  5846. case 1:
  5847. gcode_G0_G1();
  5848. break;
  5849. // G2, G3
  5850. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5851. case 2: // G2 - CW ARC
  5852. case 3: // G3 - CCW ARC
  5853. gcode_G2_G3(codenum == 2);
  5854. break;
  5855. #endif
  5856. // G4 Dwell
  5857. case 4:
  5858. gcode_G4();
  5859. break;
  5860. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5861. // G5
  5862. case 5: // G5 - Cubic B_spline
  5863. gcode_G5();
  5864. break;
  5865. #endif // BEZIER_CURVE_SUPPORT
  5866. #if ENABLED(FWRETRACT)
  5867. case 10: // G10: retract
  5868. case 11: // G11: retract_recover
  5869. gcode_G10_G11(codenum == 10);
  5870. break;
  5871. #endif // FWRETRACT
  5872. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5873. case 12:
  5874. gcode_G12(); // G12: Nozzle Clean
  5875. break;
  5876. #endif // NOZZLE_CLEAN_FEATURE
  5877. #if ENABLED(INCH_MODE_SUPPORT)
  5878. case 20: //G20: Inch Mode
  5879. gcode_G20();
  5880. break;
  5881. case 21: //G21: MM Mode
  5882. gcode_G21();
  5883. break;
  5884. #endif // INCH_MODE_SUPPORT
  5885. #if ENABLED(NOZZLE_PARK_FEATURE)
  5886. case 27: // G27: Nozzle Park
  5887. gcode_G27();
  5888. break;
  5889. #endif // NOZZLE_PARK_FEATURE
  5890. case 28: // G28: Home all axes, one at a time
  5891. gcode_G28();
  5892. break;
  5893. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5894. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5895. gcode_G29();
  5896. break;
  5897. #endif // AUTO_BED_LEVELING_FEATURE
  5898. #if HAS_BED_PROBE
  5899. case 30: // G30 Single Z probe
  5900. gcode_G30();
  5901. break;
  5902. #if ENABLED(Z_PROBE_SLED)
  5903. case 31: // G31: dock the sled
  5904. gcode_G31();
  5905. break;
  5906. case 32: // G32: undock the sled
  5907. gcode_G32();
  5908. break;
  5909. #endif // Z_PROBE_SLED
  5910. #endif // HAS_BED_PROBE
  5911. case 90: // G90
  5912. relative_mode = false;
  5913. break;
  5914. case 91: // G91
  5915. relative_mode = true;
  5916. break;
  5917. case 92: // G92
  5918. gcode_G92();
  5919. break;
  5920. }
  5921. break;
  5922. case 'M': switch (codenum) {
  5923. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  5924. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5925. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5926. gcode_M0_M1();
  5927. break;
  5928. #endif // ULTIPANEL
  5929. case 17:
  5930. gcode_M17();
  5931. break;
  5932. #if ENABLED(SDSUPPORT)
  5933. case 20: // M20 - list SD card
  5934. gcode_M20(); break;
  5935. case 21: // M21 - init SD card
  5936. gcode_M21(); break;
  5937. case 22: //M22 - release SD card
  5938. gcode_M22(); break;
  5939. case 23: //M23 - Select file
  5940. gcode_M23(); break;
  5941. case 24: //M24 - Start SD print
  5942. gcode_M24(); break;
  5943. case 25: //M25 - Pause SD print
  5944. gcode_M25(); break;
  5945. case 26: //M26 - Set SD index
  5946. gcode_M26(); break;
  5947. case 27: //M27 - Get SD status
  5948. gcode_M27(); break;
  5949. case 28: //M28 - Start SD write
  5950. gcode_M28(); break;
  5951. case 29: //M29 - Stop SD write
  5952. gcode_M29(); break;
  5953. case 30: //M30 <filename> Delete File
  5954. gcode_M30(); break;
  5955. case 32: //M32 - Select file and start SD print
  5956. gcode_M32(); break;
  5957. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5958. case 33: //M33 - Get the long full path to a file or folder
  5959. gcode_M33(); break;
  5960. #endif // LONG_FILENAME_HOST_SUPPORT
  5961. case 928: //M928 - Start SD write
  5962. gcode_M928(); break;
  5963. #endif //SDSUPPORT
  5964. case 31: //M31 take time since the start of the SD print or an M109 command
  5965. gcode_M31();
  5966. break;
  5967. case 42: //M42 -Change pin status via gcode
  5968. gcode_M42();
  5969. break;
  5970. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5971. case 48: // M48 Z probe repeatability
  5972. gcode_M48();
  5973. break;
  5974. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5975. case 75: // Start print timer
  5976. gcode_M75();
  5977. break;
  5978. case 76: // Pause print timer
  5979. gcode_M76();
  5980. break;
  5981. case 77: // Stop print timer
  5982. gcode_M77();
  5983. break;
  5984. #if ENABLED(PRINTCOUNTER)
  5985. case 78: // Show print statistics
  5986. gcode_M78();
  5987. break;
  5988. #endif
  5989. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5990. case 100:
  5991. gcode_M100();
  5992. break;
  5993. #endif
  5994. case 104: // M104
  5995. gcode_M104();
  5996. break;
  5997. case 110: // M110: Set Current Line Number
  5998. gcode_M110();
  5999. break;
  6000. case 111: // M111: Set debug level
  6001. gcode_M111();
  6002. break;
  6003. #if DISABLED(EMERGENCY_PARSER)
  6004. case 108: // M108: Cancel Waiting
  6005. gcode_M108();
  6006. break;
  6007. case 112: // M112: Emergency Stop
  6008. gcode_M112();
  6009. break;
  6010. case 410: // M410 quickstop - Abort all the planned moves.
  6011. gcode_M410();
  6012. break;
  6013. #endif
  6014. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6015. case 113: // M113: Set Host Keepalive interval
  6016. gcode_M113();
  6017. break;
  6018. #endif
  6019. case 140: // M140: Set bed temp
  6020. gcode_M140();
  6021. break;
  6022. case 105: // M105: Read current temperature
  6023. gcode_M105();
  6024. KEEPALIVE_STATE(NOT_BUSY);
  6025. return; // "ok" already printed
  6026. case 109: // M109: Wait for temperature
  6027. gcode_M109();
  6028. break;
  6029. #if HAS_TEMP_BED
  6030. case 190: // M190: Wait for bed heater to reach target
  6031. gcode_M190();
  6032. break;
  6033. #endif // HAS_TEMP_BED
  6034. #if FAN_COUNT > 0
  6035. case 106: // M106: Fan On
  6036. gcode_M106();
  6037. break;
  6038. case 107: // M107: Fan Off
  6039. gcode_M107();
  6040. break;
  6041. #endif // FAN_COUNT > 0
  6042. #if ENABLED(BARICUDA)
  6043. // PWM for HEATER_1_PIN
  6044. #if HAS_HEATER_1
  6045. case 126: // M126: valve open
  6046. gcode_M126();
  6047. break;
  6048. case 127: // M127: valve closed
  6049. gcode_M127();
  6050. break;
  6051. #endif // HAS_HEATER_1
  6052. // PWM for HEATER_2_PIN
  6053. #if HAS_HEATER_2
  6054. case 128: // M128: valve open
  6055. gcode_M128();
  6056. break;
  6057. case 129: // M129: valve closed
  6058. gcode_M129();
  6059. break;
  6060. #endif // HAS_HEATER_2
  6061. #endif // BARICUDA
  6062. #if HAS_POWER_SWITCH
  6063. case 80: // M80: Turn on Power Supply
  6064. gcode_M80();
  6065. break;
  6066. #endif // HAS_POWER_SWITCH
  6067. case 81: // M81: Turn off Power, including Power Supply, if possible
  6068. gcode_M81();
  6069. break;
  6070. case 82:
  6071. gcode_M82();
  6072. break;
  6073. case 83:
  6074. gcode_M83();
  6075. break;
  6076. case 18: // (for compatibility)
  6077. case 84: // M84
  6078. gcode_M18_M84();
  6079. break;
  6080. case 85: // M85
  6081. gcode_M85();
  6082. break;
  6083. case 92: // M92: Set the steps-per-unit for one or more axes
  6084. gcode_M92();
  6085. break;
  6086. case 115: // M115: Report capabilities
  6087. gcode_M115();
  6088. break;
  6089. case 117: // M117: Set LCD message text, if possible
  6090. gcode_M117();
  6091. break;
  6092. case 114: // M114: Report current position
  6093. gcode_M114();
  6094. break;
  6095. case 120: // M120: Enable endstops
  6096. gcode_M120();
  6097. break;
  6098. case 121: // M121: Disable endstops
  6099. gcode_M121();
  6100. break;
  6101. case 119: // M119: Report endstop states
  6102. gcode_M119();
  6103. break;
  6104. #if ENABLED(ULTIPANEL)
  6105. case 145: // M145: Set material heatup parameters
  6106. gcode_M145();
  6107. break;
  6108. #endif
  6109. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6110. case 149:
  6111. gcode_M149();
  6112. break;
  6113. #endif
  6114. #if ENABLED(BLINKM)
  6115. case 150: // M150
  6116. gcode_M150();
  6117. break;
  6118. #endif //BLINKM
  6119. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6120. case 155:
  6121. gcode_M155();
  6122. break;
  6123. case 156:
  6124. gcode_M156();
  6125. break;
  6126. #endif //EXPERIMENTAL_I2CBUS
  6127. #if ENABLED(MIXING_EXTRUDER)
  6128. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6129. gcode_M163();
  6130. break;
  6131. #if MIXING_VIRTUAL_TOOLS > 1
  6132. case 164: // M164 S<int> save current mix as a virtual extruder
  6133. gcode_M164();
  6134. break;
  6135. #endif
  6136. #if ENABLED(DIRECT_MIXING_IN_G1)
  6137. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6138. gcode_M165();
  6139. break;
  6140. #endif
  6141. #endif
  6142. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6143. gcode_M200();
  6144. break;
  6145. case 201: // M201
  6146. gcode_M201();
  6147. break;
  6148. #if 0 // Not used for Sprinter/grbl gen6
  6149. case 202: // M202
  6150. gcode_M202();
  6151. break;
  6152. #endif
  6153. case 203: // M203 max feedrate units/sec
  6154. gcode_M203();
  6155. break;
  6156. case 204: // M204 acclereration S normal moves T filmanent only moves
  6157. gcode_M204();
  6158. break;
  6159. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6160. gcode_M205();
  6161. break;
  6162. case 206: // M206 additional homing offset
  6163. gcode_M206();
  6164. break;
  6165. #if ENABLED(DELTA)
  6166. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6167. gcode_M665();
  6168. break;
  6169. #endif
  6170. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6171. case 666: // M666 set delta / dual endstop adjustment
  6172. gcode_M666();
  6173. break;
  6174. #endif
  6175. #if ENABLED(FWRETRACT)
  6176. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6177. gcode_M207();
  6178. break;
  6179. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6180. gcode_M208();
  6181. break;
  6182. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6183. gcode_M209();
  6184. break;
  6185. #endif // FWRETRACT
  6186. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6187. gcode_M211();
  6188. break;
  6189. #if HOTENDS > 1
  6190. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6191. gcode_M218();
  6192. break;
  6193. #endif
  6194. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6195. gcode_M220();
  6196. break;
  6197. case 221: // M221 - Set Flow Percentage: S<percent>
  6198. gcode_M221();
  6199. break;
  6200. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6201. gcode_M226();
  6202. break;
  6203. #if HAS_SERVOS
  6204. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6205. gcode_M280();
  6206. break;
  6207. #endif // HAS_SERVOS
  6208. #if HAS_BUZZER
  6209. case 300: // M300 - Play beep tone
  6210. gcode_M300();
  6211. break;
  6212. #endif // HAS_BUZZER
  6213. #if ENABLED(PIDTEMP)
  6214. case 301: // M301
  6215. gcode_M301();
  6216. break;
  6217. #endif // PIDTEMP
  6218. #if ENABLED(PIDTEMPBED)
  6219. case 304: // M304
  6220. gcode_M304();
  6221. break;
  6222. #endif // PIDTEMPBED
  6223. #if defined(CHDK) || HAS_PHOTOGRAPH
  6224. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6225. gcode_M240();
  6226. break;
  6227. #endif // CHDK || PHOTOGRAPH_PIN
  6228. #if HAS_LCD_CONTRAST
  6229. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6230. gcode_M250();
  6231. break;
  6232. #endif // HAS_LCD_CONTRAST
  6233. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6234. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6235. gcode_M302();
  6236. break;
  6237. #endif // PREVENT_COLD_EXTRUSION
  6238. case 303: // M303 PID autotune
  6239. gcode_M303();
  6240. break;
  6241. #if ENABLED(MORGAN_SCARA)
  6242. case 360: // M360 SCARA Theta pos1
  6243. if (gcode_M360()) return;
  6244. break;
  6245. case 361: // M361 SCARA Theta pos2
  6246. if (gcode_M361()) return;
  6247. break;
  6248. case 362: // M362 SCARA Psi pos1
  6249. if (gcode_M362()) return;
  6250. break;
  6251. case 363: // M363 SCARA Psi pos2
  6252. if (gcode_M363()) return;
  6253. break;
  6254. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6255. if (gcode_M364()) return;
  6256. break;
  6257. #endif // SCARA
  6258. case 400: // M400 finish all moves
  6259. gcode_M400();
  6260. break;
  6261. #if HAS_BED_PROBE
  6262. case 401:
  6263. gcode_M401();
  6264. break;
  6265. case 402:
  6266. gcode_M402();
  6267. break;
  6268. #endif // HAS_BED_PROBE
  6269. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6270. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6271. gcode_M404();
  6272. break;
  6273. case 405: //M405 Turn on filament sensor for control
  6274. gcode_M405();
  6275. break;
  6276. case 406: //M406 Turn off filament sensor for control
  6277. gcode_M406();
  6278. break;
  6279. case 407: //M407 Display measured filament diameter
  6280. gcode_M407();
  6281. break;
  6282. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6283. #if ENABLED(MESH_BED_LEVELING)
  6284. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6285. gcode_M420();
  6286. break;
  6287. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6288. gcode_M421();
  6289. break;
  6290. #endif
  6291. case 428: // M428 Apply current_position to home_offset
  6292. gcode_M428();
  6293. break;
  6294. case 500: // M500 Store settings in EEPROM
  6295. gcode_M500();
  6296. break;
  6297. case 501: // M501 Read settings from EEPROM
  6298. gcode_M501();
  6299. break;
  6300. case 502: // M502 Revert to default settings
  6301. gcode_M502();
  6302. break;
  6303. case 503: // M503 print settings currently in memory
  6304. gcode_M503();
  6305. break;
  6306. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6307. case 540:
  6308. gcode_M540();
  6309. break;
  6310. #endif
  6311. #if HAS_BED_PROBE
  6312. case 851:
  6313. gcode_M851();
  6314. break;
  6315. #endif // HAS_BED_PROBE
  6316. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6317. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6318. gcode_M600();
  6319. break;
  6320. #endif // FILAMENT_CHANGE_FEATURE
  6321. #if ENABLED(DUAL_X_CARRIAGE)
  6322. case 605:
  6323. gcode_M605();
  6324. break;
  6325. #endif // DUAL_X_CARRIAGE
  6326. #if ENABLED(LIN_ADVANCE)
  6327. case 905: // M905 Set advance factor.
  6328. gcode_M905();
  6329. break;
  6330. #endif
  6331. case 907: // M907 Set digital trimpot motor current using axis codes.
  6332. gcode_M907();
  6333. break;
  6334. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6335. case 908: // M908 Control digital trimpot directly.
  6336. gcode_M908();
  6337. break;
  6338. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6339. case 909: // M909 Print digipot/DAC current value
  6340. gcode_M909();
  6341. break;
  6342. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6343. gcode_M910();
  6344. break;
  6345. #endif
  6346. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6347. #if HAS_MICROSTEPS
  6348. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6349. gcode_M350();
  6350. break;
  6351. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6352. gcode_M351();
  6353. break;
  6354. #endif // HAS_MICROSTEPS
  6355. case 999: // M999: Restart after being Stopped
  6356. gcode_M999();
  6357. break;
  6358. }
  6359. break;
  6360. case 'T':
  6361. gcode_T(codenum);
  6362. break;
  6363. default: code_is_good = false;
  6364. }
  6365. KEEPALIVE_STATE(NOT_BUSY);
  6366. ExitUnknownCommand:
  6367. // Still unknown command? Throw an error
  6368. if (!code_is_good) unknown_command_error();
  6369. ok_to_send();
  6370. }
  6371. /**
  6372. * Send a "Resend: nnn" message to the host to
  6373. * indicate that a command needs to be re-sent.
  6374. */
  6375. void FlushSerialRequestResend() {
  6376. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6377. MYSERIAL.flush();
  6378. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6379. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6380. ok_to_send();
  6381. }
  6382. /**
  6383. * Send an "ok" message to the host, indicating
  6384. * that a command was successfully processed.
  6385. *
  6386. * If ADVANCED_OK is enabled also include:
  6387. * N<int> Line number of the command, if any
  6388. * P<int> Planner space remaining
  6389. * B<int> Block queue space remaining
  6390. */
  6391. void ok_to_send() {
  6392. refresh_cmd_timeout();
  6393. if (!send_ok[cmd_queue_index_r]) return;
  6394. SERIAL_PROTOCOLPGM(MSG_OK);
  6395. #if ENABLED(ADVANCED_OK)
  6396. char* p = command_queue[cmd_queue_index_r];
  6397. if (*p == 'N') {
  6398. SERIAL_PROTOCOL(' ');
  6399. SERIAL_ECHO(*p++);
  6400. while (NUMERIC_SIGNED(*p))
  6401. SERIAL_ECHO(*p++);
  6402. }
  6403. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6404. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6405. #endif
  6406. SERIAL_EOL;
  6407. }
  6408. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6409. /**
  6410. * Constrain the given coordinates to the software endstops.
  6411. */
  6412. void clamp_to_software_endstops(float target[XYZ]) {
  6413. #if ENABLED(min_software_endstops)
  6414. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6415. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6416. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6417. #endif
  6418. #if ENABLED(max_software_endstops)
  6419. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6420. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6421. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6422. #endif
  6423. }
  6424. #endif
  6425. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6426. // Get the Z adjustment for non-linear bed leveling
  6427. float nonlinear_z_offset(float cartesian[XYZ]) {
  6428. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
  6429. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6430. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6431. float hx2 = half_x - 0.001, hx1 = -hx2,
  6432. hy2 = half_y - 0.001, hy1 = -hy2,
  6433. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6434. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6435. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6436. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6437. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6438. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6439. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6440. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6441. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6442. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6443. /*
  6444. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6445. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6446. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6447. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6448. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6449. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6450. SERIAL_ECHOPAIR(" z1=", z1);
  6451. SERIAL_ECHOPAIR(" z2=", z2);
  6452. SERIAL_ECHOPAIR(" z3=", z3);
  6453. SERIAL_ECHOPAIR(" z4=", z4);
  6454. SERIAL_ECHOPAIR(" left=", left);
  6455. SERIAL_ECHOPAIR(" right=", right);
  6456. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6457. //*/
  6458. return (1 - ratio_x) * left + ratio_x * right;
  6459. }
  6460. #endif // AUTO_BED_LEVELING_NONLINEAR
  6461. #if ENABLED(DELTA)
  6462. /**
  6463. * Recalculate factors used for delta kinematics whenever
  6464. * settings have been changed (e.g., by M665).
  6465. */
  6466. void recalc_delta_settings(float radius, float diagonal_rod) {
  6467. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6468. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6469. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6470. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6471. delta_tower3_x = 0.0; // back middle tower
  6472. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6473. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6474. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6475. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6476. }
  6477. #if ENABLED(DELTA_FAST_SQRT)
  6478. /**
  6479. * Fast inverse sqrt from Quake III Arena
  6480. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6481. */
  6482. float Q_rsqrt(float number) {
  6483. long i;
  6484. float x2, y;
  6485. const float threehalfs = 1.5f;
  6486. x2 = number * 0.5f;
  6487. y = number;
  6488. i = * ( long * ) &y; // evil floating point bit level hacking
  6489. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6490. y = * ( float * ) &i;
  6491. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6492. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6493. return y;
  6494. }
  6495. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6496. #else
  6497. #define _SQRT(n) sqrt(n)
  6498. #endif
  6499. /**
  6500. * Delta Inverse Kinematics
  6501. *
  6502. * Calculate the tower positions for a given logical
  6503. * position, storing the result in the delta[] array.
  6504. *
  6505. * This is an expensive calculation, requiring 3 square
  6506. * roots per segmented linear move, and strains the limits
  6507. * of a Mega2560 with a Graphical Display.
  6508. *
  6509. * Suggested optimizations include:
  6510. *
  6511. * - Disable the home_offset (M206) and/or position_shift (G92)
  6512. * features to remove up to 12 float additions.
  6513. *
  6514. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6515. * (see above)
  6516. */
  6517. void inverse_kinematics(const float logical[XYZ]) {
  6518. const float cartesian[XYZ] = {
  6519. RAW_X_POSITION(logical[X_AXIS]),
  6520. RAW_Y_POSITION(logical[Y_AXIS]),
  6521. RAW_Z_POSITION(logical[Z_AXIS])
  6522. };
  6523. // Macro to obtain the Z position of an individual tower
  6524. #define DELTA_Z(T) cartesian[Z_AXIS] + _SQRT( \
  6525. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6526. delta_tower##T##_x - cartesian[X_AXIS], \
  6527. delta_tower##T##_y - cartesian[Y_AXIS] \
  6528. ) \
  6529. )
  6530. delta[A_AXIS] = DELTA_Z(1);
  6531. delta[B_AXIS] = DELTA_Z(2);
  6532. delta[C_AXIS] = DELTA_Z(3);
  6533. /*
  6534. SERIAL_ECHOPAIR("cartesian X:", cartesian[X_AXIS]);
  6535. SERIAL_ECHOPAIR(" Y:", cartesian[Y_AXIS]);
  6536. SERIAL_ECHOLNPAIR(" Z:", cartesian[Z_AXIS]);
  6537. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);
  6538. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);
  6539. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);
  6540. //*/
  6541. }
  6542. /**
  6543. * Calculate the highest Z position where the
  6544. * effector has the full range of XY motion.
  6545. */
  6546. float delta_safe_distance_from_top() {
  6547. float cartesian[XYZ] = {
  6548. LOGICAL_X_POSITION(0),
  6549. LOGICAL_Y_POSITION(0),
  6550. LOGICAL_Z_POSITION(0)
  6551. };
  6552. inverse_kinematics(cartesian);
  6553. float distance = delta[A_AXIS];
  6554. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6555. inverse_kinematics(cartesian);
  6556. return abs(distance - delta[A_AXIS]);
  6557. }
  6558. /**
  6559. * Delta Forward Kinematics
  6560. *
  6561. * See the Wikipedia article "Trilateration"
  6562. * https://en.wikipedia.org/wiki/Trilateration
  6563. *
  6564. * Establish a new coordinate system in the plane of the
  6565. * three carriage points. This system has its origin at
  6566. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6567. * plane with a Z component of zero.
  6568. * We will define unit vectors in this coordinate system
  6569. * in our original coordinate system. Then when we calculate
  6570. * the Xnew, Ynew and Znew values, we can translate back into
  6571. * the original system by moving along those unit vectors
  6572. * by the corresponding values.
  6573. *
  6574. * Variable names matched to Marlin, c-version, and avoid the
  6575. * use of any vector library.
  6576. *
  6577. * by Andreas Hardtung 2016-06-07
  6578. * based on a Java function from "Delta Robot Kinematics V3"
  6579. * by Steve Graves
  6580. *
  6581. * The result is stored in the cartes[] array.
  6582. */
  6583. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6584. // Create a vector in old coordinates along x axis of new coordinate
  6585. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6586. // Get the Magnitude of vector.
  6587. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6588. // Create unit vector by dividing by magnitude.
  6589. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6590. // Get the vector from the origin of the new system to the third point.
  6591. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6592. // Use the dot product to find the component of this vector on the X axis.
  6593. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6594. // Create a vector along the x axis that represents the x component of p13.
  6595. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6596. // Subtract the X component from the original vector leaving only Y. We use the
  6597. // variable that will be the unit vector after we scale it.
  6598. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6599. // The magnitude of Y component
  6600. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6601. // Convert to a unit vector
  6602. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6603. // The cross product of the unit x and y is the unit z
  6604. // float[] ez = vectorCrossProd(ex, ey);
  6605. float ez[3] = {
  6606. ex[1] * ey[2] - ex[2] * ey[1],
  6607. ex[2] * ey[0] - ex[0] * ey[2],
  6608. ex[0] * ey[1] - ex[1] * ey[0]
  6609. };
  6610. // We now have the d, i and j values defined in Wikipedia.
  6611. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6612. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6613. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6614. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6615. // Start from the origin of the old coordinates and add vectors in the
  6616. // old coords that represent the Xnew, Ynew and Znew to find the point
  6617. // in the old system.
  6618. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6619. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6620. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6621. };
  6622. void forward_kinematics_DELTA(float point[ABC]) {
  6623. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6624. }
  6625. #endif // DELTA
  6626. /**
  6627. * Get the stepper positions in the cartes[] array.
  6628. * Forward kinematics are applied for DELTA and SCARA.
  6629. *
  6630. * The result is in the current coordinate space with
  6631. * leveling applied. The coordinates need to be run through
  6632. * unapply_leveling to obtain the "ideal" coordinates
  6633. * suitable for current_position, etc.
  6634. */
  6635. void get_cartesian_from_steppers() {
  6636. #if ENABLED(DELTA)
  6637. forward_kinematics_DELTA(
  6638. stepper.get_axis_position_mm(A_AXIS),
  6639. stepper.get_axis_position_mm(B_AXIS),
  6640. stepper.get_axis_position_mm(C_AXIS)
  6641. );
  6642. #elif IS_SCARA
  6643. forward_kinematics_SCARA(
  6644. stepper.get_axis_position_degrees(A_AXIS),
  6645. stepper.get_axis_position_degrees(B_AXIS)
  6646. );
  6647. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6648. #else
  6649. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6650. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6651. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6652. #endif
  6653. }
  6654. /**
  6655. * Set the current_position for an axis based on
  6656. * the stepper positions, removing any leveling that
  6657. * may have been applied.
  6658. *
  6659. * << INCOMPLETE! Still needs to unapply leveling! >>
  6660. */
  6661. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6662. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6663. vector_3 pos = untilted_stepper_position();
  6664. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6665. #elif IS_KINEMATIC
  6666. get_cartesian_from_steppers();
  6667. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6668. #else
  6669. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6670. #endif
  6671. }
  6672. #if ENABLED(MESH_BED_LEVELING)
  6673. /**
  6674. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6675. * splitting the move where it crosses mesh borders.
  6676. */
  6677. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6678. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6679. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6680. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6681. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6682. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6683. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6684. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6685. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6686. if (cx1 == cx2 && cy1 == cy2) {
  6687. // Start and end on same mesh square
  6688. line_to_destination(fr_mm_s);
  6689. set_current_to_destination();
  6690. return;
  6691. }
  6692. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6693. float normalized_dist, end[NUM_AXIS];
  6694. // Split at the left/front border of the right/top square
  6695. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6696. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6697. memcpy(end, destination, sizeof(end));
  6698. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6699. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6700. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6701. CBI(x_splits, gcx);
  6702. }
  6703. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6704. memcpy(end, destination, sizeof(end));
  6705. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6706. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6707. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6708. CBI(y_splits, gcy);
  6709. }
  6710. else {
  6711. // Already split on a border
  6712. line_to_destination(fr_mm_s);
  6713. set_current_to_destination();
  6714. return;
  6715. }
  6716. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6717. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6718. // Do the split and look for more borders
  6719. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6720. // Restore destination from stack
  6721. memcpy(destination, end, sizeof(end));
  6722. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6723. }
  6724. #endif // MESH_BED_LEVELING
  6725. #if IS_KINEMATIC
  6726. /**
  6727. * Prepare a linear move in a DELTA or SCARA setup.
  6728. *
  6729. * This calls planner.buffer_line several times, adding
  6730. * small incremental moves for DELTA or SCARA.
  6731. */
  6732. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6733. float difference[NUM_AXIS];
  6734. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6735. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6736. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6737. if (UNEAR_ZERO(cartesian_mm)) return false;
  6738. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6739. float seconds = cartesian_mm / _feedrate_mm_s;
  6740. int steps = max(1, int(delta_segments_per_second * seconds));
  6741. float inv_steps = 1.0/steps;
  6742. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6743. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6744. // SERIAL_ECHOLNPAIR(" steps=", steps);
  6745. for (int s = 1; s <= steps; s++) {
  6746. float fraction = float(s) * inv_steps;
  6747. LOOP_XYZE(i)
  6748. logical[i] = current_position[i] + difference[i] * fraction;
  6749. inverse_kinematics(logical);
  6750. //DEBUG_POS("prepare_kinematic_move_to", logical);
  6751. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6752. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6753. }
  6754. return true;
  6755. }
  6756. #else
  6757. /**
  6758. * Prepare a linear move in a Cartesian setup.
  6759. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6760. */
  6761. inline bool prepare_move_to_destination_cartesian() {
  6762. // Do not use feedrate_percentage for E or Z only moves
  6763. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6764. line_to_destination();
  6765. }
  6766. else {
  6767. #if ENABLED(MESH_BED_LEVELING)
  6768. if (mbl.active()) {
  6769. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6770. return false;
  6771. }
  6772. else
  6773. #endif
  6774. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6775. }
  6776. return true;
  6777. }
  6778. #endif // !IS_KINEMATIC
  6779. #if ENABLED(DUAL_X_CARRIAGE)
  6780. /**
  6781. * Prepare a linear move in a dual X axis setup
  6782. */
  6783. inline bool prepare_move_to_destination_dualx() {
  6784. if (active_extruder_parked) {
  6785. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6786. // move duplicate extruder into correct duplication position.
  6787. planner.set_position_mm(
  6788. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6789. current_position[Y_AXIS],
  6790. current_position[Z_AXIS],
  6791. current_position[E_AXIS]
  6792. );
  6793. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6794. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6795. SYNC_PLAN_POSITION_KINEMATIC();
  6796. stepper.synchronize();
  6797. extruder_duplication_enabled = true;
  6798. active_extruder_parked = false;
  6799. }
  6800. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6801. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6802. // This is a travel move (with no extrusion)
  6803. // Skip it, but keep track of the current position
  6804. // (so it can be used as the start of the next non-travel move)
  6805. if (delayed_move_time != 0xFFFFFFFFUL) {
  6806. set_current_to_destination();
  6807. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6808. delayed_move_time = millis();
  6809. return false;
  6810. }
  6811. }
  6812. delayed_move_time = 0;
  6813. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6814. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6815. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6816. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6817. active_extruder_parked = false;
  6818. }
  6819. }
  6820. return true;
  6821. }
  6822. #endif // DUAL_X_CARRIAGE
  6823. /**
  6824. * Prepare a single move and get ready for the next one
  6825. *
  6826. * This may result in several calls to planner.buffer_line to
  6827. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6828. */
  6829. void prepare_move_to_destination() {
  6830. clamp_to_software_endstops(destination);
  6831. refresh_cmd_timeout();
  6832. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6833. if (!DEBUGGING(DRYRUN)) {
  6834. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6835. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6836. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6837. SERIAL_ECHO_START;
  6838. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6839. }
  6840. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6841. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  6842. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6843. SERIAL_ECHO_START;
  6844. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6845. }
  6846. #endif
  6847. }
  6848. }
  6849. #endif
  6850. #if IS_KINEMATIC
  6851. if (!prepare_kinematic_move_to(destination)) return;
  6852. #else
  6853. #if ENABLED(DUAL_X_CARRIAGE)
  6854. if (!prepare_move_to_destination_dualx()) return;
  6855. #endif
  6856. if (!prepare_move_to_destination_cartesian()) return;
  6857. #endif
  6858. set_current_to_destination();
  6859. }
  6860. #if ENABLED(ARC_SUPPORT)
  6861. /**
  6862. * Plan an arc in 2 dimensions
  6863. *
  6864. * The arc is approximated by generating many small linear segments.
  6865. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6866. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6867. * larger segments will tend to be more efficient. Your slicer should have
  6868. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6869. */
  6870. void plan_arc(
  6871. float logical[NUM_AXIS], // Destination position
  6872. float* offset, // Center of rotation relative to current_position
  6873. uint8_t clockwise // Clockwise?
  6874. ) {
  6875. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6876. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6877. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6878. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  6879. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  6880. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6881. r_Y = -offset[Y_AXIS],
  6882. rt_X = logical[X_AXIS] - center_X,
  6883. rt_Y = logical[Y_AXIS] - center_Y;
  6884. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6885. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6886. if (angular_travel < 0) angular_travel += RADIANS(360);
  6887. if (clockwise) angular_travel -= RADIANS(360);
  6888. // Make a circle if the angular rotation is 0
  6889. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  6890. angular_travel += RADIANS(360);
  6891. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6892. if (mm_of_travel < 0.001) return;
  6893. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6894. if (segments == 0) segments = 1;
  6895. float theta_per_segment = angular_travel / segments;
  6896. float linear_per_segment = linear_travel / segments;
  6897. float extruder_per_segment = extruder_travel / segments;
  6898. /**
  6899. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6900. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6901. * r_T = [cos(phi) -sin(phi);
  6902. * sin(phi) cos(phi] * r ;
  6903. *
  6904. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6905. * defined from the circle center to the initial position. Each line segment is formed by successive
  6906. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6907. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6908. * all double numbers are single precision on the Arduino. (True double precision will not have
  6909. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6910. * tool precision in some cases. Therefore, arc path correction is implemented.
  6911. *
  6912. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6913. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6914. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6915. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6916. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6917. * issue for CNC machines with the single precision Arduino calculations.
  6918. *
  6919. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6920. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6921. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6922. * This is important when there are successive arc motions.
  6923. */
  6924. // Vector rotation matrix values
  6925. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6926. float sin_T = theta_per_segment;
  6927. float arc_target[NUM_AXIS];
  6928. float sin_Ti, cos_Ti, r_new_Y;
  6929. uint16_t i;
  6930. int8_t count = 0;
  6931. // Initialize the linear axis
  6932. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6933. // Initialize the extruder axis
  6934. arc_target[E_AXIS] = current_position[E_AXIS];
  6935. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6936. millis_t next_idle_ms = millis() + 200UL;
  6937. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6938. thermalManager.manage_heater();
  6939. millis_t now = millis();
  6940. if (ELAPSED(now, next_idle_ms)) {
  6941. next_idle_ms = now + 200UL;
  6942. idle();
  6943. }
  6944. if (++count < N_ARC_CORRECTION) {
  6945. // Apply vector rotation matrix to previous r_X / 1
  6946. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6947. r_X = r_X * cos_T - r_Y * sin_T;
  6948. r_Y = r_new_Y;
  6949. }
  6950. else {
  6951. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6952. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6953. // To reduce stuttering, the sin and cos could be computed at different times.
  6954. // For now, compute both at the same time.
  6955. cos_Ti = cos(i * theta_per_segment);
  6956. sin_Ti = sin(i * theta_per_segment);
  6957. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6958. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6959. count = 0;
  6960. }
  6961. // Update arc_target location
  6962. arc_target[X_AXIS] = center_X + r_X;
  6963. arc_target[Y_AXIS] = center_Y + r_Y;
  6964. arc_target[Z_AXIS] += linear_per_segment;
  6965. arc_target[E_AXIS] += extruder_per_segment;
  6966. clamp_to_software_endstops(arc_target);
  6967. #if IS_KINEMATIC
  6968. inverse_kinematics(arc_target);
  6969. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6970. #else
  6971. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6972. #endif
  6973. }
  6974. // Ensure last segment arrives at target location.
  6975. #if IS_KINEMATIC
  6976. inverse_kinematics(logical);
  6977. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6978. #else
  6979. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6980. #endif
  6981. // As far as the parser is concerned, the position is now == target. In reality the
  6982. // motion control system might still be processing the action and the real tool position
  6983. // in any intermediate location.
  6984. set_current_to_destination();
  6985. }
  6986. #endif
  6987. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6988. void plan_cubic_move(const float offset[4]) {
  6989. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6990. // As far as the parser is concerned, the position is now == destination. In reality the
  6991. // motion control system might still be processing the action and the real tool position
  6992. // in any intermediate location.
  6993. set_current_to_destination();
  6994. }
  6995. #endif // BEZIER_CURVE_SUPPORT
  6996. #if HAS_CONTROLLERFAN
  6997. void controllerFan() {
  6998. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6999. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7000. millis_t ms = millis();
  7001. if (ELAPSED(ms, nextMotorCheck)) {
  7002. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7003. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7004. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7005. #if E_STEPPERS > 1
  7006. || E1_ENABLE_READ == E_ENABLE_ON
  7007. #if HAS_X2_ENABLE
  7008. || X2_ENABLE_READ == X_ENABLE_ON
  7009. #endif
  7010. #if E_STEPPERS > 2
  7011. || E2_ENABLE_READ == E_ENABLE_ON
  7012. #if E_STEPPERS > 3
  7013. || E3_ENABLE_READ == E_ENABLE_ON
  7014. #endif
  7015. #endif
  7016. #endif
  7017. ) {
  7018. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7019. }
  7020. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7021. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7022. // allows digital or PWM fan output to be used (see M42 handling)
  7023. digitalWrite(CONTROLLERFAN_PIN, speed);
  7024. analogWrite(CONTROLLERFAN_PIN, speed);
  7025. }
  7026. }
  7027. #endif // HAS_CONTROLLERFAN
  7028. #if ENABLED(MORGAN_SCARA)
  7029. /**
  7030. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7031. * Maths and first version by QHARLEY.
  7032. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7033. */
  7034. void forward_kinematics_SCARA(const float &a, const float &b) {
  7035. float a_sin = sin(RADIANS(a)) * L1,
  7036. a_cos = cos(RADIANS(a)) * L1,
  7037. b_sin = sin(RADIANS(b)) * L2,
  7038. b_cos = cos(RADIANS(b)) * L2;
  7039. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7040. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7041. /*
  7042. SERIAL_ECHOPAIR("Angle a=", a);
  7043. SERIAL_ECHOPAIR(" b=", b);
  7044. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7045. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7046. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7047. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7048. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7049. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7050. //*/
  7051. }
  7052. /**
  7053. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7054. *
  7055. * See http://forums.reprap.org/read.php?185,283327
  7056. *
  7057. * Maths and first version by QHARLEY.
  7058. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7059. */
  7060. void inverse_kinematics(const float logical[XYZ]) {
  7061. static float C2, S2, SK1, SK2, THETA, PSI;
  7062. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7063. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7064. if (L1 == L2)
  7065. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7066. else
  7067. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7068. S2 = sqrt(sq(C2) - 1);
  7069. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7070. SK1 = L1 + L2 * C2;
  7071. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7072. SK2 = L2 * S2;
  7073. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7074. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7075. // Angle of Arm2
  7076. PSI = atan2(S2, C2);
  7077. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7078. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7079. delta[C_AXIS] = logical[Z_AXIS];
  7080. /*
  7081. DEBUG_POS("SCARA IK", logical);
  7082. DEBUG_POS("SCARA IK", delta);
  7083. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7084. SERIAL_ECHOPAIR(",", sy);
  7085. SERIAL_ECHOPAIR(" C2=", C2);
  7086. SERIAL_ECHOPAIR(" S2=", S2);
  7087. SERIAL_ECHOPAIR(" Theta=", THETA);
  7088. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7089. //*/
  7090. }
  7091. #endif // MORGAN_SCARA
  7092. #if ENABLED(TEMP_STAT_LEDS)
  7093. static bool red_led = false;
  7094. static millis_t next_status_led_update_ms = 0;
  7095. void handle_status_leds(void) {
  7096. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7097. next_status_led_update_ms += 500; // Update every 0.5s
  7098. float max_temp = 0.0;
  7099. #if HAS_TEMP_BED
  7100. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7101. #endif
  7102. HOTEND_LOOP() {
  7103. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7104. }
  7105. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7106. if (new_led != red_led) {
  7107. red_led = new_led;
  7108. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7109. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7110. }
  7111. }
  7112. }
  7113. #endif
  7114. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7115. void handle_filament_runout() {
  7116. if (!filament_ran_out) {
  7117. filament_ran_out = true;
  7118. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7119. stepper.synchronize();
  7120. }
  7121. }
  7122. #endif // FILAMENT_RUNOUT_SENSOR
  7123. #if ENABLED(FAST_PWM_FAN)
  7124. void setPwmFrequency(uint8_t pin, int val) {
  7125. val &= 0x07;
  7126. switch (digitalPinToTimer(pin)) {
  7127. #if defined(TCCR0A)
  7128. case TIMER0A:
  7129. case TIMER0B:
  7130. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7131. // TCCR0B |= val;
  7132. break;
  7133. #endif
  7134. #if defined(TCCR1A)
  7135. case TIMER1A:
  7136. case TIMER1B:
  7137. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7138. // TCCR1B |= val;
  7139. break;
  7140. #endif
  7141. #if defined(TCCR2)
  7142. case TIMER2:
  7143. case TIMER2:
  7144. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7145. TCCR2 |= val;
  7146. break;
  7147. #endif
  7148. #if defined(TCCR2A)
  7149. case TIMER2A:
  7150. case TIMER2B:
  7151. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7152. TCCR2B |= val;
  7153. break;
  7154. #endif
  7155. #if defined(TCCR3A)
  7156. case TIMER3A:
  7157. case TIMER3B:
  7158. case TIMER3C:
  7159. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7160. TCCR3B |= val;
  7161. break;
  7162. #endif
  7163. #if defined(TCCR4A)
  7164. case TIMER4A:
  7165. case TIMER4B:
  7166. case TIMER4C:
  7167. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7168. TCCR4B |= val;
  7169. break;
  7170. #endif
  7171. #if defined(TCCR5A)
  7172. case TIMER5A:
  7173. case TIMER5B:
  7174. case TIMER5C:
  7175. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7176. TCCR5B |= val;
  7177. break;
  7178. #endif
  7179. }
  7180. }
  7181. #endif // FAST_PWM_FAN
  7182. float calculate_volumetric_multiplier(float diameter) {
  7183. if (!volumetric_enabled || diameter == 0) return 1.0;
  7184. float d2 = diameter * 0.5;
  7185. return 1.0 / (M_PI * d2 * d2);
  7186. }
  7187. void calculate_volumetric_multipliers() {
  7188. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7189. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7190. }
  7191. void enable_all_steppers() {
  7192. enable_x();
  7193. enable_y();
  7194. enable_z();
  7195. enable_e0();
  7196. enable_e1();
  7197. enable_e2();
  7198. enable_e3();
  7199. }
  7200. void disable_all_steppers() {
  7201. disable_x();
  7202. disable_y();
  7203. disable_z();
  7204. disable_e0();
  7205. disable_e1();
  7206. disable_e2();
  7207. disable_e3();
  7208. }
  7209. /**
  7210. * Manage several activities:
  7211. * - Check for Filament Runout
  7212. * - Keep the command buffer full
  7213. * - Check for maximum inactive time between commands
  7214. * - Check for maximum inactive time between stepper commands
  7215. * - Check if pin CHDK needs to go LOW
  7216. * - Check for KILL button held down
  7217. * - Check for HOME button held down
  7218. * - Check if cooling fan needs to be switched on
  7219. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7220. */
  7221. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7222. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7223. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7224. handle_filament_runout();
  7225. #endif
  7226. if (commands_in_queue < BUFSIZE) get_available_commands();
  7227. millis_t ms = millis();
  7228. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7229. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7230. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7231. #if ENABLED(DISABLE_INACTIVE_X)
  7232. disable_x();
  7233. #endif
  7234. #if ENABLED(DISABLE_INACTIVE_Y)
  7235. disable_y();
  7236. #endif
  7237. #if ENABLED(DISABLE_INACTIVE_Z)
  7238. disable_z();
  7239. #endif
  7240. #if ENABLED(DISABLE_INACTIVE_E)
  7241. disable_e0();
  7242. disable_e1();
  7243. disable_e2();
  7244. disable_e3();
  7245. #endif
  7246. }
  7247. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7248. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7249. chdkActive = false;
  7250. WRITE(CHDK, LOW);
  7251. }
  7252. #endif
  7253. #if HAS_KILL
  7254. // Check if the kill button was pressed and wait just in case it was an accidental
  7255. // key kill key press
  7256. // -------------------------------------------------------------------------------
  7257. static int killCount = 0; // make the inactivity button a bit less responsive
  7258. const int KILL_DELAY = 750;
  7259. if (!READ(KILL_PIN))
  7260. killCount++;
  7261. else if (killCount > 0)
  7262. killCount--;
  7263. // Exceeded threshold and we can confirm that it was not accidental
  7264. // KILL the machine
  7265. // ----------------------------------------------------------------
  7266. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7267. #endif
  7268. #if HAS_HOME
  7269. // Check to see if we have to home, use poor man's debouncer
  7270. // ---------------------------------------------------------
  7271. static int homeDebounceCount = 0; // poor man's debouncing count
  7272. const int HOME_DEBOUNCE_DELAY = 2500;
  7273. if (!READ(HOME_PIN)) {
  7274. if (!homeDebounceCount) {
  7275. enqueue_and_echo_commands_P(PSTR("G28"));
  7276. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7277. }
  7278. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7279. homeDebounceCount++;
  7280. else
  7281. homeDebounceCount = 0;
  7282. }
  7283. #endif
  7284. #if HAS_CONTROLLERFAN
  7285. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7286. #endif
  7287. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7288. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7289. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7290. bool oldstatus;
  7291. #if ENABLED(SWITCHING_EXTRUDER)
  7292. oldstatus = E0_ENABLE_READ;
  7293. enable_e0();
  7294. #else // !SWITCHING_EXTRUDER
  7295. switch (active_extruder) {
  7296. case 0:
  7297. oldstatus = E0_ENABLE_READ;
  7298. enable_e0();
  7299. break;
  7300. #if E_STEPPERS > 1
  7301. case 1:
  7302. oldstatus = E1_ENABLE_READ;
  7303. enable_e1();
  7304. break;
  7305. #if E_STEPPERS > 2
  7306. case 2:
  7307. oldstatus = E2_ENABLE_READ;
  7308. enable_e2();
  7309. break;
  7310. #if E_STEPPERS > 3
  7311. case 3:
  7312. oldstatus = E3_ENABLE_READ;
  7313. enable_e3();
  7314. break;
  7315. #endif
  7316. #endif
  7317. #endif
  7318. }
  7319. #endif // !SWITCHING_EXTRUDER
  7320. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7321. planner.buffer_line(
  7322. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7323. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7324. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7325. );
  7326. stepper.synchronize();
  7327. planner.set_e_position_mm(current_position[E_AXIS]);
  7328. #if ENABLED(SWITCHING_EXTRUDER)
  7329. E0_ENABLE_WRITE(oldstatus);
  7330. #else
  7331. switch (active_extruder) {
  7332. case 0:
  7333. E0_ENABLE_WRITE(oldstatus);
  7334. break;
  7335. #if E_STEPPERS > 1
  7336. case 1:
  7337. E1_ENABLE_WRITE(oldstatus);
  7338. break;
  7339. #if E_STEPPERS > 2
  7340. case 2:
  7341. E2_ENABLE_WRITE(oldstatus);
  7342. break;
  7343. #if E_STEPPERS > 3
  7344. case 3:
  7345. E3_ENABLE_WRITE(oldstatus);
  7346. break;
  7347. #endif
  7348. #endif
  7349. #endif
  7350. }
  7351. #endif // !SWITCHING_EXTRUDER
  7352. }
  7353. #endif // EXTRUDER_RUNOUT_PREVENT
  7354. #if ENABLED(DUAL_X_CARRIAGE)
  7355. // handle delayed move timeout
  7356. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7357. // travel moves have been received so enact them
  7358. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7359. set_destination_to_current();
  7360. prepare_move_to_destination();
  7361. }
  7362. #endif
  7363. #if ENABLED(TEMP_STAT_LEDS)
  7364. handle_status_leds();
  7365. #endif
  7366. planner.check_axes_activity();
  7367. }
  7368. /**
  7369. * Standard idle routine keeps the machine alive
  7370. */
  7371. void idle(
  7372. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7373. bool no_stepper_sleep/*=false*/
  7374. #endif
  7375. ) {
  7376. lcd_update();
  7377. host_keepalive();
  7378. manage_inactivity(
  7379. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7380. no_stepper_sleep
  7381. #endif
  7382. );
  7383. thermalManager.manage_heater();
  7384. #if ENABLED(PRINTCOUNTER)
  7385. print_job_timer.tick();
  7386. #endif
  7387. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7388. buzzer.tick();
  7389. #endif
  7390. }
  7391. /**
  7392. * Kill all activity and lock the machine.
  7393. * After this the machine will need to be reset.
  7394. */
  7395. void kill(const char* lcd_msg) {
  7396. SERIAL_ERROR_START;
  7397. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7398. #if ENABLED(ULTRA_LCD)
  7399. kill_screen(lcd_msg);
  7400. #else
  7401. UNUSED(lcd_msg);
  7402. #endif
  7403. delay(500); // Wait a short time
  7404. cli(); // Stop interrupts
  7405. thermalManager.disable_all_heaters();
  7406. disable_all_steppers();
  7407. #if HAS_POWER_SWITCH
  7408. pinMode(PS_ON_PIN, INPUT);
  7409. #endif
  7410. suicide();
  7411. while (1) {
  7412. #if ENABLED(USE_WATCHDOG)
  7413. watchdog_reset();
  7414. #endif
  7415. } // Wait for reset
  7416. }
  7417. /**
  7418. * Turn off heaters and stop the print in progress
  7419. * After a stop the machine may be resumed with M999
  7420. */
  7421. void stop() {
  7422. thermalManager.disable_all_heaters();
  7423. if (IsRunning()) {
  7424. Running = false;
  7425. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7426. SERIAL_ERROR_START;
  7427. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7428. LCD_MESSAGEPGM(MSG_STOPPED);
  7429. }
  7430. }
  7431. /**
  7432. * Marlin entry-point: Set up before the program loop
  7433. * - Set up the kill pin, filament runout, power hold
  7434. * - Start the serial port
  7435. * - Print startup messages and diagnostics
  7436. * - Get EEPROM or default settings
  7437. * - Initialize managers for:
  7438. * • temperature
  7439. * • planner
  7440. * • watchdog
  7441. * • stepper
  7442. * • photo pin
  7443. * • servos
  7444. * • LCD controller
  7445. * • Digipot I2C
  7446. * • Z probe sled
  7447. * • status LEDs
  7448. */
  7449. void setup() {
  7450. #ifdef DISABLE_JTAG
  7451. // Disable JTAG on AT90USB chips to free up pins for IO
  7452. MCUCR = 0x80;
  7453. MCUCR = 0x80;
  7454. #endif
  7455. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7456. setup_filrunoutpin();
  7457. #endif
  7458. setup_killpin();
  7459. setup_powerhold();
  7460. #if HAS_STEPPER_RESET
  7461. disableStepperDrivers();
  7462. #endif
  7463. MYSERIAL.begin(BAUDRATE);
  7464. SERIAL_PROTOCOLLNPGM("start");
  7465. SERIAL_ECHO_START;
  7466. // Check startup - does nothing if bootloader sets MCUSR to 0
  7467. byte mcu = MCUSR;
  7468. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7469. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7470. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7471. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7472. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7473. MCUSR = 0;
  7474. SERIAL_ECHOPGM(MSG_MARLIN);
  7475. SERIAL_CHAR(' ');
  7476. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7477. SERIAL_EOL;
  7478. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7479. SERIAL_ECHO_START;
  7480. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7481. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7482. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7483. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7484. #endif
  7485. SERIAL_ECHO_START;
  7486. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7487. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7488. // Send "ok" after commands by default
  7489. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7490. // Load data from EEPROM if available (or use defaults)
  7491. // This also updates variables in the planner, elsewhere
  7492. Config_RetrieveSettings();
  7493. // Initialize current position based on home_offset
  7494. memcpy(current_position, home_offset, sizeof(home_offset));
  7495. // Vital to init stepper/planner equivalent for current_position
  7496. SYNC_PLAN_POSITION_KINEMATIC();
  7497. thermalManager.init(); // Initialize temperature loop
  7498. #if ENABLED(USE_WATCHDOG)
  7499. watchdog_init();
  7500. #endif
  7501. stepper.init(); // Initialize stepper, this enables interrupts!
  7502. setup_photpin();
  7503. servo_init();
  7504. #if HAS_BED_PROBE
  7505. endstops.enable_z_probe(false);
  7506. #endif
  7507. #if HAS_CONTROLLERFAN
  7508. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7509. #endif
  7510. #if HAS_STEPPER_RESET
  7511. enableStepperDrivers();
  7512. #endif
  7513. #if ENABLED(DIGIPOT_I2C)
  7514. digipot_i2c_init();
  7515. #endif
  7516. #if ENABLED(DAC_STEPPER_CURRENT)
  7517. dac_init();
  7518. #endif
  7519. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7520. pinMode(SLED_PIN, OUTPUT);
  7521. digitalWrite(SLED_PIN, LOW); // turn it off
  7522. #endif // Z_PROBE_SLED
  7523. setup_homepin();
  7524. #ifdef STAT_LED_RED
  7525. pinMode(STAT_LED_RED, OUTPUT);
  7526. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7527. #endif
  7528. #ifdef STAT_LED_BLUE
  7529. pinMode(STAT_LED_BLUE, OUTPUT);
  7530. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7531. #endif
  7532. lcd_init();
  7533. #if ENABLED(SHOW_BOOTSCREEN)
  7534. #if ENABLED(DOGLCD)
  7535. safe_delay(BOOTSCREEN_TIMEOUT);
  7536. #elif ENABLED(ULTRA_LCD)
  7537. bootscreen();
  7538. lcd_init();
  7539. #endif
  7540. #endif
  7541. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7542. // Initialize mixing to 100% color 1
  7543. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7544. mixing_factor[i] = (i == 0) ? 1 : 0;
  7545. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7546. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7547. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7548. #endif
  7549. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7550. i2c.onReceive(i2c_on_receive);
  7551. i2c.onRequest(i2c_on_request);
  7552. #endif
  7553. }
  7554. /**
  7555. * The main Marlin program loop
  7556. *
  7557. * - Save or log commands to SD
  7558. * - Process available commands (if not saving)
  7559. * - Call heater manager
  7560. * - Call inactivity manager
  7561. * - Call endstop manager
  7562. * - Call LCD update
  7563. */
  7564. void loop() {
  7565. if (commands_in_queue < BUFSIZE) get_available_commands();
  7566. #if ENABLED(SDSUPPORT)
  7567. card.checkautostart(false);
  7568. #endif
  7569. if (commands_in_queue) {
  7570. #if ENABLED(SDSUPPORT)
  7571. if (card.saving) {
  7572. char* command = command_queue[cmd_queue_index_r];
  7573. if (strstr_P(command, PSTR("M29"))) {
  7574. // M29 closes the file
  7575. card.closefile();
  7576. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7577. ok_to_send();
  7578. }
  7579. else {
  7580. // Write the string from the read buffer to SD
  7581. card.write_command(command);
  7582. if (card.logging)
  7583. process_next_command(); // The card is saving because it's logging
  7584. else
  7585. ok_to_send();
  7586. }
  7587. }
  7588. else
  7589. process_next_command();
  7590. #else
  7591. process_next_command();
  7592. #endif // SDSUPPORT
  7593. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7594. if (commands_in_queue) {
  7595. --commands_in_queue;
  7596. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7597. }
  7598. }
  7599. endstops.report_state();
  7600. idle();
  7601. }