My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 181KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply = 100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply = 100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = { 100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #if EXTRUDERS > 3
  194. , 100
  195. #endif
  196. #endif
  197. #endif
  198. };
  199. bool volumetric_enabled = false;
  200. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  201. #if EXTRUDERS > 1
  202. , DEFAULT_NOMINAL_FILAMENT_DIA
  203. #if EXTRUDERS > 2
  204. , DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 3
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #endif
  208. #endif
  209. #endif
  210. };
  211. float volumetric_multiplier[EXTRUDERS] = {1.0
  212. #if EXTRUDERS > 1
  213. , 1.0
  214. #if EXTRUDERS > 2
  215. , 1.0
  216. #if EXTRUDERS > 3
  217. , 1.0
  218. #endif
  219. #endif
  220. #endif
  221. };
  222. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  223. float add_homing[3] = { 0, 0, 0 };
  224. #ifdef DELTA
  225. float endstop_adj[3] = { 0, 0, 0 };
  226. #endif
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. bool axis_known_position[3] = { false, false, false };
  230. float zprobe_zoffset;
  231. // Extruder offset
  232. #if EXTRUDERS > 1
  233. #ifndef DUAL_X_CARRIAGE
  234. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  235. #else
  236. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  237. #endif
  238. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  239. #if defined(EXTRUDER_OFFSET_X)
  240. EXTRUDER_OFFSET_X
  241. #else
  242. 0
  243. #endif
  244. ,
  245. #if defined(EXTRUDER_OFFSET_Y)
  246. EXTRUDER_OFFSET_Y
  247. #else
  248. 0
  249. #endif
  250. };
  251. #endif
  252. uint8_t active_extruder = 0;
  253. int fanSpeed = 0;
  254. #ifdef SERVO_ENDSTOPS
  255. int servo_endstops[] = SERVO_ENDSTOPS;
  256. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  257. #endif
  258. #ifdef BARICUDA
  259. int ValvePressure = 0;
  260. int EtoPPressure = 0;
  261. #endif
  262. #ifdef FWRETRACT
  263. bool autoretract_enabled = false;
  264. bool retracted[EXTRUDERS] = { false
  265. #if EXTRUDERS > 1
  266. , false
  267. #if EXTRUDERS > 2
  268. , false
  269. #if EXTRUDERS > 3
  270. , false
  271. #endif
  272. #endif
  273. #endif
  274. };
  275. bool retracted_swap[EXTRUDERS] = { false
  276. #if EXTRUDERS > 1
  277. , false
  278. #if EXTRUDERS > 2
  279. , false
  280. #if EXTRUDERS > 3
  281. , false
  282. #endif
  283. #endif
  284. #endif
  285. };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif // FWRETRACT
  294. #ifdef ULTIPANEL
  295. bool powersupply =
  296. #ifdef PS_DEFAULT_OFF
  297. false
  298. #else
  299. true
  300. #endif
  301. ;
  302. #endif
  303. #ifdef DELTA
  304. float delta[3] = { 0, 0, 0 };
  305. #define SIN_60 0.8660254037844386
  306. #define COS_60 0.5
  307. // these are the default values, can be overriden with M665
  308. float delta_radius = DELTA_RADIUS;
  309. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  310. float delta_tower1_y = -COS_60 * delta_radius;
  311. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  312. float delta_tower2_y = -COS_60 * delta_radius;
  313. float delta_tower3_x = 0; // back middle tower
  314. float delta_tower3_y = delta_radius;
  315. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  316. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  317. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  318. #ifdef ENABLE_AUTO_BED_LEVELING
  319. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  320. #endif
  321. #endif
  322. #ifdef SCARA
  323. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  324. #endif
  325. bool cancel_heatup = false;
  326. #ifdef FILAMENT_SENSOR
  327. //Variables for Filament Sensor input
  328. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  329. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  330. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  331. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  332. int delay_index1=0; //index into ring buffer
  333. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  334. float delay_dist=0; //delay distance counter
  335. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  336. #endif
  337. const char errormagic[] PROGMEM = "Error:";
  338. const char echomagic[] PROGMEM = "echo:";
  339. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  340. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  341. #ifndef DELTA
  342. static float delta[3] = { 0, 0, 0 };
  343. #endif
  344. static float offset[3] = { 0, 0, 0 };
  345. static bool home_all_axis = true;
  346. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  347. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  348. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  349. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  350. static bool fromsd[BUFSIZE];
  351. static int bufindr = 0;
  352. static int bufindw = 0;
  353. static int buflen = 0;
  354. static char serial_char;
  355. static int serial_count = 0;
  356. static boolean comment_mode = false;
  357. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  358. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  359. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  360. // Inactivity shutdown
  361. static unsigned long previous_millis_cmd = 0;
  362. static unsigned long max_inactive_time = 0;
  363. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  364. unsigned long starttime = 0; ///< Print job start time
  365. unsigned long stoptime = 0; ///< Print job stop time
  366. static uint8_t tmp_extruder;
  367. bool Stopped = false;
  368. #if NUM_SERVOS > 0
  369. Servo servos[NUM_SERVOS];
  370. #endif
  371. bool CooldownNoWait = true;
  372. bool target_direction;
  373. #ifdef CHDK
  374. unsigned long chdkHigh = 0;
  375. boolean chdkActive = false;
  376. #endif
  377. //===========================================================================
  378. //=============================Routines======================================
  379. //===========================================================================
  380. void get_arc_coordinates();
  381. bool setTargetedHotend(int code);
  382. void serial_echopair_P(const char *s_P, float v)
  383. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. void serial_echopair_P(const char *s_P, double v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. void serial_echopair_P(const char *s_P, unsigned long v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. #ifdef SDSUPPORT
  389. #include "SdFatUtil.h"
  390. int freeMemory() { return SdFatUtil::FreeRam(); }
  391. #else
  392. extern "C" {
  393. extern unsigned int __bss_end;
  394. extern unsigned int __heap_start;
  395. extern void *__brkval;
  396. int freeMemory() {
  397. int free_memory;
  398. if ((int)__brkval == 0)
  399. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  400. else
  401. free_memory = ((int)&free_memory) - ((int)__brkval);
  402. return free_memory;
  403. }
  404. }
  405. #endif //!SDSUPPORT
  406. //Injects the next command from the pending sequence of commands, when possible
  407. //Return false if and only if no command was pending
  408. static bool drain_queued_commands_P()
  409. {
  410. char cmd[30];
  411. if(!queued_commands_P)
  412. return false;
  413. // Get the next 30 chars from the sequence of gcodes to run
  414. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  415. cmd[sizeof(cmd)-1]= 0;
  416. // Look for the end of line, or the end of sequence
  417. size_t i= 0;
  418. char c;
  419. while( (c= cmd[i]) && c!='\n' )
  420. ++i; // look for the end of this gcode command
  421. cmd[i]= 0;
  422. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  423. {
  424. if(c)
  425. queued_commands_P+= i+1; // move to next command
  426. else
  427. queued_commands_P= NULL; // will have no more commands in the sequence
  428. }
  429. return true;
  430. }
  431. //Record one or many commands to run from program memory.
  432. //Aborts the current queue, if any.
  433. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  434. void enquecommands_P(const char* pgcode)
  435. {
  436. queued_commands_P= pgcode;
  437. drain_queued_commands_P(); // first command exectuted asap (when possible)
  438. }
  439. //adds a single command to the main command buffer, from RAM
  440. //that is really done in a non-safe way.
  441. //needs overworking someday
  442. //Returns false if it failed to do so
  443. bool enquecommand(const char *cmd)
  444. {
  445. if(*cmd==';')
  446. return false;
  447. if(buflen >= BUFSIZE)
  448. return false;
  449. //this is dangerous if a mixing of serial and this happens
  450. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  451. SERIAL_ECHO_START;
  452. SERIAL_ECHOPGM(MSG_Enqueing);
  453. SERIAL_ECHO(cmdbuffer[bufindw]);
  454. SERIAL_ECHOLNPGM("\"");
  455. bufindw= (bufindw + 1)%BUFSIZE;
  456. buflen += 1;
  457. return true;
  458. }
  459. void setup_killpin()
  460. {
  461. #if defined(KILL_PIN) && KILL_PIN > -1
  462. SET_INPUT(KILL_PIN);
  463. WRITE(KILL_PIN,HIGH);
  464. #endif
  465. }
  466. // Set home pin
  467. void setup_homepin(void)
  468. {
  469. #if defined(HOME_PIN) && HOME_PIN > -1
  470. SET_INPUT(HOME_PIN);
  471. WRITE(HOME_PIN,HIGH);
  472. #endif
  473. }
  474. void setup_photpin()
  475. {
  476. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  477. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  478. #endif
  479. }
  480. void setup_powerhold()
  481. {
  482. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  483. OUT_WRITE(SUICIDE_PIN, HIGH);
  484. #endif
  485. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  486. #if defined(PS_DEFAULT_OFF)
  487. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  488. #else
  489. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  490. #endif
  491. #endif
  492. }
  493. void suicide()
  494. {
  495. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  496. OUT_WRITE(SUICIDE_PIN, LOW);
  497. #endif
  498. }
  499. void servo_init()
  500. {
  501. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  502. servos[0].attach(SERVO0_PIN);
  503. #endif
  504. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  505. servos[1].attach(SERVO1_PIN);
  506. #endif
  507. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  508. servos[2].attach(SERVO2_PIN);
  509. #endif
  510. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  511. servos[3].attach(SERVO3_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 5)
  514. #error "TODO: enter initalisation code for more servos"
  515. #endif
  516. // Set position of Servo Endstops that are defined
  517. #ifdef SERVO_ENDSTOPS
  518. for(int8_t i = 0; i < 3; i++)
  519. {
  520. if(servo_endstops[i] > -1) {
  521. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  522. }
  523. }
  524. #endif
  525. #if SERVO_LEVELING
  526. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  527. servos[servo_endstops[Z_AXIS]].detach();
  528. #endif
  529. }
  530. void setup()
  531. {
  532. setup_killpin();
  533. setup_powerhold();
  534. MYSERIAL.begin(BAUDRATE);
  535. SERIAL_PROTOCOLLNPGM("start");
  536. SERIAL_ECHO_START;
  537. // Check startup - does nothing if bootloader sets MCUSR to 0
  538. byte mcu = MCUSR;
  539. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  540. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  541. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  542. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  543. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  544. MCUSR=0;
  545. SERIAL_ECHOPGM(MSG_MARLIN);
  546. SERIAL_ECHOLNPGM(STRING_VERSION);
  547. #ifdef STRING_VERSION_CONFIG_H
  548. #ifdef STRING_CONFIG_H_AUTHOR
  549. SERIAL_ECHO_START;
  550. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  551. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  552. SERIAL_ECHOPGM(MSG_AUTHOR);
  553. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  554. SERIAL_ECHOPGM("Compiled: ");
  555. SERIAL_ECHOLNPGM(__DATE__);
  556. #endif // STRING_CONFIG_H_AUTHOR
  557. #endif // STRING_VERSION_CONFIG_H
  558. SERIAL_ECHO_START;
  559. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  560. SERIAL_ECHO(freeMemory());
  561. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  562. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  563. for(int8_t i = 0; i < BUFSIZE; i++)
  564. {
  565. fromsd[i] = false;
  566. }
  567. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  568. Config_RetrieveSettings();
  569. tp_init(); // Initialize temperature loop
  570. plan_init(); // Initialize planner;
  571. watchdog_init();
  572. st_init(); // Initialize stepper, this enables interrupts!
  573. setup_photpin();
  574. servo_init();
  575. lcd_init();
  576. _delay_ms(1000); // wait 1sec to display the splash screen
  577. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  578. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  579. #endif
  580. #ifdef DIGIPOT_I2C
  581. digipot_i2c_init();
  582. #endif
  583. #ifdef Z_PROBE_SLED
  584. pinMode(SERVO0_PIN, OUTPUT);
  585. digitalWrite(SERVO0_PIN, LOW); // turn it off
  586. #endif // Z_PROBE_SLED
  587. setup_homepin();
  588. #ifdef STAT_LED_RED
  589. pinMode(STAT_LED_RED, OUTPUT);
  590. digitalWrite(STAT_LED_RED, LOW); // turn it off
  591. #endif
  592. #ifdef STAT_LED_BLUE
  593. pinMode(STAT_LED_BLUE, OUTPUT);
  594. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  595. #endif
  596. }
  597. void loop()
  598. {
  599. if(buflen < (BUFSIZE-1))
  600. get_command();
  601. #ifdef SDSUPPORT
  602. card.checkautostart(false);
  603. #endif
  604. if(buflen)
  605. {
  606. #ifdef SDSUPPORT
  607. if(card.saving)
  608. {
  609. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  610. {
  611. card.write_command(cmdbuffer[bufindr]);
  612. if(card.logging)
  613. {
  614. process_commands();
  615. }
  616. else
  617. {
  618. SERIAL_PROTOCOLLNPGM(MSG_OK);
  619. }
  620. }
  621. else
  622. {
  623. card.closefile();
  624. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  625. }
  626. }
  627. else
  628. {
  629. process_commands();
  630. }
  631. #else
  632. process_commands();
  633. #endif //SDSUPPORT
  634. buflen = (buflen-1);
  635. bufindr = (bufindr + 1)%BUFSIZE;
  636. }
  637. //check heater every n milliseconds
  638. manage_heater();
  639. manage_inactivity();
  640. checkHitEndstops();
  641. lcd_update();
  642. }
  643. void get_command()
  644. {
  645. if(drain_queued_commands_P()) // priority is given to non-serial commands
  646. return;
  647. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  648. serial_char = MYSERIAL.read();
  649. if(serial_char == '\n' ||
  650. serial_char == '\r' ||
  651. serial_count >= (MAX_CMD_SIZE - 1) )
  652. {
  653. // end of line == end of comment
  654. comment_mode = false;
  655. if(!serial_count) {
  656. // short cut for empty lines
  657. return;
  658. }
  659. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  660. fromsd[bufindw] = false;
  661. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  662. {
  663. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  664. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  665. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  666. SERIAL_ERROR_START;
  667. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  668. SERIAL_ERRORLN(gcode_LastN);
  669. //Serial.println(gcode_N);
  670. FlushSerialRequestResend();
  671. serial_count = 0;
  672. return;
  673. }
  674. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  675. {
  676. byte checksum = 0;
  677. byte count = 0;
  678. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  679. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  680. if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
  681. SERIAL_ERROR_START;
  682. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  683. SERIAL_ERRORLN(gcode_LastN);
  684. FlushSerialRequestResend();
  685. serial_count = 0;
  686. return;
  687. }
  688. //if no errors, continue parsing
  689. }
  690. else
  691. {
  692. SERIAL_ERROR_START;
  693. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  694. SERIAL_ERRORLN(gcode_LastN);
  695. FlushSerialRequestResend();
  696. serial_count = 0;
  697. return;
  698. }
  699. gcode_LastN = gcode_N;
  700. //if no errors, continue parsing
  701. }
  702. else // if we don't receive 'N' but still see '*'
  703. {
  704. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  705. {
  706. SERIAL_ERROR_START;
  707. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  708. SERIAL_ERRORLN(gcode_LastN);
  709. serial_count = 0;
  710. return;
  711. }
  712. }
  713. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  714. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  715. switch((int)((strtod(strchr_pointer + 1, NULL)))){
  716. case 0:
  717. case 1:
  718. case 2:
  719. case 3:
  720. if (Stopped == true) {
  721. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  722. LCD_MESSAGEPGM(MSG_STOPPED);
  723. }
  724. break;
  725. default:
  726. break;
  727. }
  728. }
  729. //If command was e-stop process now
  730. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  731. kill();
  732. bufindw = (bufindw + 1)%BUFSIZE;
  733. buflen += 1;
  734. serial_count = 0; //clear buffer
  735. }
  736. else if(serial_char == '\\') { //Handle escapes
  737. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  738. // if we have one more character, copy it over
  739. serial_char = MYSERIAL.read();
  740. cmdbuffer[bufindw][serial_count++] = serial_char;
  741. }
  742. //otherwise do nothing
  743. }
  744. else { // its not a newline, carriage return or escape char
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #ifdef SDSUPPORT
  750. if(!card.sdprinting || serial_count!=0){
  751. return;
  752. }
  753. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  754. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  755. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  756. static bool stop_buffering=false;
  757. if(buflen==0) stop_buffering=false;
  758. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  759. int16_t n=card.get();
  760. serial_char = (char)n;
  761. if(serial_char == '\n' ||
  762. serial_char == '\r' ||
  763. (serial_char == '#' && comment_mode == false) ||
  764. (serial_char == ':' && comment_mode == false) ||
  765. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  766. {
  767. if(card.eof()){
  768. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  769. stoptime=millis();
  770. char time[30];
  771. unsigned long t=(stoptime-starttime)/1000;
  772. int hours, minutes;
  773. minutes=(t/60)%60;
  774. hours=t/60/60;
  775. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  776. SERIAL_ECHO_START;
  777. SERIAL_ECHOLN(time);
  778. lcd_setstatus(time);
  779. card.printingHasFinished();
  780. card.checkautostart(true);
  781. }
  782. if(serial_char=='#')
  783. stop_buffering=true;
  784. if(!serial_count)
  785. {
  786. comment_mode = false; //for new command
  787. return; //if empty line
  788. }
  789. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  790. // if(!comment_mode){
  791. fromsd[bufindw] = true;
  792. buflen += 1;
  793. bufindw = (bufindw + 1)%BUFSIZE;
  794. // }
  795. comment_mode = false; //for new command
  796. serial_count = 0; //clear buffer
  797. }
  798. else
  799. {
  800. if(serial_char == ';') comment_mode = true;
  801. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  802. }
  803. }
  804. #endif //SDSUPPORT
  805. }
  806. float code_value()
  807. {
  808. return (strtod(strchr_pointer + 1, NULL));
  809. }
  810. long code_value_long()
  811. {
  812. return (strtol(strchr_pointer + 1, NULL, 10));
  813. }
  814. bool code_seen(char code)
  815. {
  816. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  817. return (strchr_pointer != NULL); //Return True if a character was found
  818. }
  819. #define DEFINE_PGM_READ_ANY(type, reader) \
  820. static inline type pgm_read_any(const type *p) \
  821. { return pgm_read_##reader##_near(p); }
  822. DEFINE_PGM_READ_ANY(float, float);
  823. DEFINE_PGM_READ_ANY(signed char, byte);
  824. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  825. static const PROGMEM type array##_P[3] = \
  826. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  827. static inline type array(int axis) \
  828. { return pgm_read_any(&array##_P[axis]); }
  829. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  830. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  831. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  833. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  834. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  835. #ifdef DUAL_X_CARRIAGE
  836. #if EXTRUDERS == 1 || defined(COREXY) \
  837. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  838. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  839. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  840. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  841. #endif
  842. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  843. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  844. #endif
  845. #define DXC_FULL_CONTROL_MODE 0
  846. #define DXC_AUTO_PARK_MODE 1
  847. #define DXC_DUPLICATION_MODE 2
  848. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  849. static float x_home_pos(int extruder) {
  850. if (extruder == 0)
  851. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  852. else
  853. // In dual carriage mode the extruder offset provides an override of the
  854. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  855. // This allow soft recalibration of the second extruder offset position without firmware reflash
  856. // (through the M218 command).
  857. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  858. }
  859. static int x_home_dir(int extruder) {
  860. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  861. }
  862. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  863. static bool active_extruder_parked = false; // used in mode 1 & 2
  864. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  865. static unsigned long delayed_move_time = 0; // used in mode 1
  866. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  867. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  868. bool extruder_duplication_enabled = false; // used in mode 2
  869. #endif //DUAL_X_CARRIAGE
  870. static void axis_is_at_home(int axis) {
  871. #ifdef DUAL_X_CARRIAGE
  872. if (axis == X_AXIS) {
  873. if (active_extruder != 0) {
  874. current_position[X_AXIS] = x_home_pos(active_extruder);
  875. min_pos[X_AXIS] = X2_MIN_POS;
  876. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  877. return;
  878. }
  879. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  880. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  881. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  882. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  883. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  884. return;
  885. }
  886. }
  887. #endif
  888. #ifdef SCARA
  889. float homeposition[3];
  890. char i;
  891. if (axis < 2)
  892. {
  893. for (i=0; i<3; i++)
  894. {
  895. homeposition[i] = base_home_pos(i);
  896. }
  897. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  898. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  899. // Works out real Homeposition angles using inverse kinematics,
  900. // and calculates homing offset using forward kinematics
  901. calculate_delta(homeposition);
  902. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. for (i=0; i<2; i++)
  905. {
  906. delta[i] -= add_homing[i];
  907. }
  908. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  909. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  910. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  911. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  912. calculate_SCARA_forward_Transform(delta);
  913. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  914. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  915. current_position[axis] = delta[axis];
  916. // SCARA home positions are based on configuration since the actual limits are determined by the
  917. // inverse kinematic transform.
  918. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  919. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  920. }
  921. else
  922. {
  923. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  924. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  925. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  926. }
  927. #else
  928. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  929. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  930. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  931. #endif
  932. }
  933. #ifdef ENABLE_AUTO_BED_LEVELING
  934. #ifdef AUTO_BED_LEVELING_GRID
  935. #ifndef DELTA
  936. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  937. {
  938. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  939. planeNormal.debug("planeNormal");
  940. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  941. //bedLevel.debug("bedLevel");
  942. //plan_bed_level_matrix.debug("bed level before");
  943. //vector_3 uncorrected_position = plan_get_position_mm();
  944. //uncorrected_position.debug("position before");
  945. vector_3 corrected_position = plan_get_position();
  946. // corrected_position.debug("position after");
  947. current_position[X_AXIS] = corrected_position.x;
  948. current_position[Y_AXIS] = corrected_position.y;
  949. current_position[Z_AXIS] = corrected_position.z;
  950. // put the bed at 0 so we don't go below it.
  951. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  953. }
  954. #endif
  955. #else // not AUTO_BED_LEVELING_GRID
  956. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  957. plan_bed_level_matrix.set_to_identity();
  958. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  959. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  960. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  961. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  962. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  963. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  964. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  965. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  966. vector_3 corrected_position = plan_get_position();
  967. current_position[X_AXIS] = corrected_position.x;
  968. current_position[Y_AXIS] = corrected_position.y;
  969. current_position[Z_AXIS] = corrected_position.z;
  970. // put the bed at 0 so we don't go below it.
  971. current_position[Z_AXIS] = zprobe_zoffset;
  972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  973. }
  974. #endif // AUTO_BED_LEVELING_GRID
  975. static void run_z_probe() {
  976. #ifdef DELTA
  977. float start_z = current_position[Z_AXIS];
  978. long start_steps = st_get_position(Z_AXIS);
  979. // move down slowly until you find the bed
  980. feedrate = homing_feedrate[Z_AXIS] / 4;
  981. destination[Z_AXIS] = -10;
  982. prepare_move_raw();
  983. st_synchronize();
  984. endstops_hit_on_purpose();
  985. // we have to let the planner know where we are right now as it is not where we said to go.
  986. long stop_steps = st_get_position(Z_AXIS);
  987. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  988. current_position[Z_AXIS] = mm;
  989. calculate_delta(current_position);
  990. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  991. #else
  992. plan_bed_level_matrix.set_to_identity();
  993. feedrate = homing_feedrate[Z_AXIS];
  994. // move down until you find the bed
  995. float zPosition = -10;
  996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  997. st_synchronize();
  998. // we have to let the planner know where we are right now as it is not where we said to go.
  999. zPosition = st_get_position_mm(Z_AXIS);
  1000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1001. // move up the retract distance
  1002. zPosition += home_retract_mm(Z_AXIS);
  1003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1004. st_synchronize();
  1005. // move back down slowly to find bed
  1006. feedrate = homing_feedrate[Z_AXIS]/4;
  1007. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1009. st_synchronize();
  1010. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1011. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1013. #endif
  1014. }
  1015. static void do_blocking_move_to(float x, float y, float z) {
  1016. float oldFeedRate = feedrate;
  1017. #ifdef DELTA
  1018. feedrate = XY_TRAVEL_SPEED;
  1019. destination[X_AXIS] = x;
  1020. destination[Y_AXIS] = y;
  1021. destination[Z_AXIS] = z;
  1022. prepare_move_raw();
  1023. st_synchronize();
  1024. #else
  1025. feedrate = homing_feedrate[Z_AXIS];
  1026. current_position[Z_AXIS] = z;
  1027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1028. st_synchronize();
  1029. feedrate = XY_TRAVEL_SPEED;
  1030. current_position[X_AXIS] = x;
  1031. current_position[Y_AXIS] = y;
  1032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1033. st_synchronize();
  1034. #endif
  1035. feedrate = oldFeedRate;
  1036. }
  1037. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1038. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1039. }
  1040. static void setup_for_endstop_move() {
  1041. saved_feedrate = feedrate;
  1042. saved_feedmultiply = feedmultiply;
  1043. feedmultiply = 100;
  1044. previous_millis_cmd = millis();
  1045. enable_endstops(true);
  1046. }
  1047. static void clean_up_after_endstop_move() {
  1048. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1049. enable_endstops(false);
  1050. #endif
  1051. feedrate = saved_feedrate;
  1052. feedmultiply = saved_feedmultiply;
  1053. previous_millis_cmd = millis();
  1054. }
  1055. static void engage_z_probe() {
  1056. // Engage Z Servo endstop if enabled
  1057. #ifdef SERVO_ENDSTOPS
  1058. if (servo_endstops[Z_AXIS] > -1) {
  1059. #if SERVO_LEVELING
  1060. servos[servo_endstops[Z_AXIS]].attach(0);
  1061. #endif
  1062. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1063. #if SERVO_LEVELING
  1064. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1065. servos[servo_endstops[Z_AXIS]].detach();
  1066. #endif
  1067. }
  1068. #elif defined(Z_PROBE_ALLEN_KEY)
  1069. feedrate = homing_feedrate[X_AXIS];
  1070. // Move to the start position to initiate deployment
  1071. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1072. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1073. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1074. prepare_move_raw();
  1075. // Home X to touch the belt
  1076. feedrate = homing_feedrate[X_AXIS]/10;
  1077. destination[X_AXIS] = 0;
  1078. prepare_move_raw();
  1079. // Home Y for safety
  1080. feedrate = homing_feedrate[X_AXIS]/2;
  1081. destination[Y_AXIS] = 0;
  1082. prepare_move_raw();
  1083. st_synchronize();
  1084. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1085. if (z_min_endstop)
  1086. {
  1087. if (!Stopped)
  1088. {
  1089. SERIAL_ERROR_START;
  1090. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1091. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1092. }
  1093. Stop();
  1094. }
  1095. #endif
  1096. }
  1097. static void retract_z_probe() {
  1098. // Retract Z Servo endstop if enabled
  1099. #ifdef SERVO_ENDSTOPS
  1100. if (servo_endstops[Z_AXIS] > -1) {
  1101. #if SERVO_LEVELING
  1102. servos[servo_endstops[Z_AXIS]].attach(0);
  1103. #endif
  1104. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1105. #if SERVO_LEVELING
  1106. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1107. servos[servo_endstops[Z_AXIS]].detach();
  1108. #endif
  1109. }
  1110. #elif defined(Z_PROBE_ALLEN_KEY)
  1111. // Move up for safety
  1112. feedrate = homing_feedrate[X_AXIS];
  1113. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1114. prepare_move_raw();
  1115. // Move to the start position to initiate retraction
  1116. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1117. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1118. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1119. prepare_move_raw();
  1120. // Move the nozzle down to push the probe into retracted position
  1121. feedrate = homing_feedrate[Z_AXIS]/10;
  1122. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1123. prepare_move_raw();
  1124. // Move up for safety
  1125. feedrate = homing_feedrate[Z_AXIS]/2;
  1126. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1127. prepare_move_raw();
  1128. // Home XY for safety
  1129. feedrate = homing_feedrate[X_AXIS]/2;
  1130. destination[X_AXIS] = 0;
  1131. destination[Y_AXIS] = 0;
  1132. prepare_move_raw();
  1133. st_synchronize();
  1134. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1135. if (!z_min_endstop)
  1136. {
  1137. if (!Stopped)
  1138. {
  1139. SERIAL_ERROR_START;
  1140. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1141. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1142. }
  1143. Stop();
  1144. }
  1145. #endif
  1146. }
  1147. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1148. /// Probe bed height at position (x,y), returns the measured z value
  1149. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1150. // move to right place
  1151. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1152. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1153. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1154. if (retract_action & ProbeEngage) engage_z_probe();
  1155. #endif
  1156. run_z_probe();
  1157. float measured_z = current_position[Z_AXIS];
  1158. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1159. if (retract_action & ProbeRetract) retract_z_probe();
  1160. #endif
  1161. if (verbose_level > 2) {
  1162. SERIAL_PROTOCOLPGM(MSG_BED);
  1163. SERIAL_PROTOCOLPGM(" X: ");
  1164. SERIAL_PROTOCOL(x + 0.0001);
  1165. SERIAL_PROTOCOLPGM(" Y: ");
  1166. SERIAL_PROTOCOL(y + 0.0001);
  1167. SERIAL_PROTOCOLPGM(" Z: ");
  1168. SERIAL_PROTOCOL(measured_z + 0.0001);
  1169. SERIAL_EOL;
  1170. }
  1171. return measured_z;
  1172. }
  1173. #ifdef DELTA
  1174. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1175. if (bed_level[x][y] != 0.0) {
  1176. return; // Don't overwrite good values.
  1177. }
  1178. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1179. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1180. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1181. float median = c; // Median is robust (ignores outliers).
  1182. if (a < b) {
  1183. if (b < c) median = b;
  1184. if (c < a) median = a;
  1185. } else { // b <= a
  1186. if (c < b) median = b;
  1187. if (a < c) median = a;
  1188. }
  1189. bed_level[x][y] = median;
  1190. }
  1191. // Fill in the unprobed points (corners of circular print surface)
  1192. // using linear extrapolation, away from the center.
  1193. static void extrapolate_unprobed_bed_level() {
  1194. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1195. for (int y = 0; y <= half; y++) {
  1196. for (int x = 0; x <= half; x++) {
  1197. if (x + y < 3) continue;
  1198. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1199. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1200. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1201. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1202. }
  1203. }
  1204. }
  1205. // Print calibration results for plotting or manual frame adjustment.
  1206. static void print_bed_level() {
  1207. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1208. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1209. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1210. SERIAL_PROTOCOLPGM(" ");
  1211. }
  1212. SERIAL_ECHOLN("");
  1213. }
  1214. }
  1215. // Reset calibration results to zero.
  1216. void reset_bed_level() {
  1217. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1218. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1219. bed_level[x][y] = 0.0;
  1220. }
  1221. }
  1222. }
  1223. #endif // DELTA
  1224. #endif // ENABLE_AUTO_BED_LEVELING
  1225. static void homeaxis(int axis) {
  1226. #define HOMEAXIS_DO(LETTER) \
  1227. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1228. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1229. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1230. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1231. 0) {
  1232. int axis_home_dir = home_dir(axis);
  1233. #ifdef DUAL_X_CARRIAGE
  1234. if (axis == X_AXIS)
  1235. axis_home_dir = x_home_dir(active_extruder);
  1236. #endif
  1237. current_position[axis] = 0;
  1238. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1239. #ifndef Z_PROBE_SLED
  1240. // Engage Servo endstop if enabled
  1241. #ifdef SERVO_ENDSTOPS
  1242. #if SERVO_LEVELING
  1243. if (axis==Z_AXIS) {
  1244. engage_z_probe();
  1245. }
  1246. else
  1247. #endif
  1248. if (servo_endstops[axis] > -1) {
  1249. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1250. }
  1251. #endif
  1252. #endif // Z_PROBE_SLED
  1253. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1254. feedrate = homing_feedrate[axis];
  1255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1256. st_synchronize();
  1257. current_position[axis] = 0;
  1258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1259. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1261. st_synchronize();
  1262. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1263. #ifdef DELTA
  1264. feedrate = homing_feedrate[axis]/10;
  1265. #else
  1266. feedrate = homing_feedrate[axis]/2 ;
  1267. #endif
  1268. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1269. st_synchronize();
  1270. #ifdef DELTA
  1271. // retrace by the amount specified in endstop_adj
  1272. if (endstop_adj[axis] * axis_home_dir < 0) {
  1273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1274. destination[axis] = endstop_adj[axis];
  1275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1276. st_synchronize();
  1277. }
  1278. #endif
  1279. axis_is_at_home(axis);
  1280. destination[axis] = current_position[axis];
  1281. feedrate = 0.0;
  1282. endstops_hit_on_purpose();
  1283. axis_known_position[axis] = true;
  1284. // Retract Servo endstop if enabled
  1285. #ifdef SERVO_ENDSTOPS
  1286. if (servo_endstops[axis] > -1) {
  1287. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1288. }
  1289. #endif
  1290. #if SERVO_LEVELING
  1291. #ifndef Z_PROBE_SLED
  1292. if (axis==Z_AXIS) retract_z_probe();
  1293. #endif
  1294. #endif
  1295. }
  1296. }
  1297. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1298. void refresh_cmd_timeout(void)
  1299. {
  1300. previous_millis_cmd = millis();
  1301. }
  1302. #ifdef FWRETRACT
  1303. void retract(bool retracting, bool swapretract = false) {
  1304. if(retracting && !retracted[active_extruder]) {
  1305. destination[X_AXIS]=current_position[X_AXIS];
  1306. destination[Y_AXIS]=current_position[Y_AXIS];
  1307. destination[Z_AXIS]=current_position[Z_AXIS];
  1308. destination[E_AXIS]=current_position[E_AXIS];
  1309. if (swapretract) {
  1310. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1311. } else {
  1312. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1313. }
  1314. plan_set_e_position(current_position[E_AXIS]);
  1315. float oldFeedrate = feedrate;
  1316. feedrate=retract_feedrate*60;
  1317. retracted[active_extruder]=true;
  1318. prepare_move();
  1319. if(retract_zlift > 0.01) {
  1320. current_position[Z_AXIS]-=retract_zlift;
  1321. #ifdef DELTA
  1322. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1323. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1324. #else
  1325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. #endif
  1327. prepare_move();
  1328. }
  1329. feedrate = oldFeedrate;
  1330. } else if(!retracting && retracted[active_extruder]) {
  1331. destination[X_AXIS]=current_position[X_AXIS];
  1332. destination[Y_AXIS]=current_position[Y_AXIS];
  1333. destination[Z_AXIS]=current_position[Z_AXIS];
  1334. destination[E_AXIS]=current_position[E_AXIS];
  1335. if(retract_zlift > 0.01) {
  1336. current_position[Z_AXIS]+=retract_zlift;
  1337. #ifdef DELTA
  1338. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1339. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1340. #else
  1341. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1342. #endif
  1343. //prepare_move();
  1344. }
  1345. if (swapretract) {
  1346. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1347. } else {
  1348. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1349. }
  1350. plan_set_e_position(current_position[E_AXIS]);
  1351. float oldFeedrate = feedrate;
  1352. feedrate=retract_recover_feedrate*60;
  1353. retracted[active_extruder]=false;
  1354. prepare_move();
  1355. feedrate = oldFeedrate;
  1356. }
  1357. } //retract
  1358. #endif //FWRETRACT
  1359. #ifdef Z_PROBE_SLED
  1360. #ifndef SLED_DOCKING_OFFSET
  1361. #define SLED_DOCKING_OFFSET 0
  1362. #endif
  1363. //
  1364. // Method to dock/undock a sled designed by Charles Bell.
  1365. //
  1366. // dock[in] If true, move to MAX_X and engage the electromagnet
  1367. // offset[in] The additional distance to move to adjust docking location
  1368. //
  1369. static void dock_sled(bool dock, int offset=0) {
  1370. int z_loc;
  1371. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1372. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1373. SERIAL_ECHO_START;
  1374. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1375. return;
  1376. }
  1377. if (dock) {
  1378. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1379. current_position[Y_AXIS],
  1380. current_position[Z_AXIS]);
  1381. // turn off magnet
  1382. digitalWrite(SERVO0_PIN, LOW);
  1383. } else {
  1384. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1385. z_loc = Z_RAISE_BEFORE_PROBING;
  1386. else
  1387. z_loc = current_position[Z_AXIS];
  1388. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1389. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1390. // turn on magnet
  1391. digitalWrite(SERVO0_PIN, HIGH);
  1392. }
  1393. }
  1394. #endif
  1395. /**
  1396. *
  1397. * G-Code Handler functions
  1398. *
  1399. */
  1400. /**
  1401. * G0, G1: Coordinated movement of X Y Z E axes
  1402. */
  1403. inline void gcode_G0_G1() {
  1404. if (!Stopped) {
  1405. get_coordinates(); // For X Y Z E F
  1406. #ifdef FWRETRACT
  1407. if (autoretract_enabled)
  1408. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1409. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1410. // Is this move an attempt to retract or recover?
  1411. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1412. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1413. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1414. retract(!retracted[active_extruder]);
  1415. return;
  1416. }
  1417. }
  1418. #endif //FWRETRACT
  1419. prepare_move();
  1420. //ClearToSend();
  1421. }
  1422. }
  1423. /**
  1424. * G2: Clockwise Arc
  1425. * G3: Counterclockwise Arc
  1426. */
  1427. inline void gcode_G2_G3(bool clockwise) {
  1428. if (!Stopped) {
  1429. get_arc_coordinates();
  1430. prepare_arc_move(clockwise);
  1431. }
  1432. }
  1433. /**
  1434. * G4: Dwell S<seconds> or P<milliseconds>
  1435. */
  1436. inline void gcode_G4() {
  1437. unsigned long codenum;
  1438. LCD_MESSAGEPGM(MSG_DWELL);
  1439. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1440. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1441. st_synchronize();
  1442. previous_millis_cmd = millis();
  1443. codenum += previous_millis_cmd; // keep track of when we started waiting
  1444. while(millis() < codenum) {
  1445. manage_heater();
  1446. manage_inactivity();
  1447. lcd_update();
  1448. }
  1449. }
  1450. #ifdef FWRETRACT
  1451. /**
  1452. * G10 - Retract filament according to settings of M207
  1453. * G11 - Recover filament according to settings of M208
  1454. */
  1455. inline void gcode_G10_G11(bool doRetract=false) {
  1456. #if EXTRUDERS > 1
  1457. if (doRetract) {
  1458. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1459. }
  1460. #endif
  1461. retract(doRetract
  1462. #if EXTRUDERS > 1
  1463. , retracted_swap[active_extruder]
  1464. #endif
  1465. );
  1466. }
  1467. #endif //FWRETRACT
  1468. /**
  1469. * G28: Home all axes, one at a time
  1470. */
  1471. inline void gcode_G28() {
  1472. #ifdef ENABLE_AUTO_BED_LEVELING
  1473. #ifdef DELTA
  1474. reset_bed_level();
  1475. #else
  1476. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1477. #endif
  1478. #endif
  1479. saved_feedrate = feedrate;
  1480. saved_feedmultiply = feedmultiply;
  1481. feedmultiply = 100;
  1482. previous_millis_cmd = millis();
  1483. enable_endstops(true);
  1484. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1485. feedrate = 0.0;
  1486. #ifdef DELTA
  1487. // A delta can only safely home all axis at the same time
  1488. // all axis have to home at the same time
  1489. // Move all carriages up together until the first endstop is hit.
  1490. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1491. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1492. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1493. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1494. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1495. st_synchronize();
  1496. endstops_hit_on_purpose();
  1497. // Destination reached
  1498. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1499. // take care of back off and rehome now we are all at the top
  1500. HOMEAXIS(X);
  1501. HOMEAXIS(Y);
  1502. HOMEAXIS(Z);
  1503. calculate_delta(current_position);
  1504. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1505. #else // NOT DELTA
  1506. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1507. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1508. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1509. HOMEAXIS(Z);
  1510. }
  1511. #endif
  1512. #ifdef QUICK_HOME
  1513. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1514. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1515. #ifndef DUAL_X_CARRIAGE
  1516. int x_axis_home_dir = home_dir(X_AXIS);
  1517. #else
  1518. int x_axis_home_dir = x_home_dir(active_extruder);
  1519. extruder_duplication_enabled = false;
  1520. #endif
  1521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1522. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1523. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1524. feedrate = homing_feedrate[X_AXIS];
  1525. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1526. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1527. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1528. } else {
  1529. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1530. }
  1531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1532. st_synchronize();
  1533. axis_is_at_home(X_AXIS);
  1534. axis_is_at_home(Y_AXIS);
  1535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1536. destination[X_AXIS] = current_position[X_AXIS];
  1537. destination[Y_AXIS] = current_position[Y_AXIS];
  1538. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1539. feedrate = 0.0;
  1540. st_synchronize();
  1541. endstops_hit_on_purpose();
  1542. current_position[X_AXIS] = destination[X_AXIS];
  1543. current_position[Y_AXIS] = destination[Y_AXIS];
  1544. #ifndef SCARA
  1545. current_position[Z_AXIS] = destination[Z_AXIS];
  1546. #endif
  1547. }
  1548. #endif //QUICK_HOME
  1549. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1550. #ifdef DUAL_X_CARRIAGE
  1551. int tmp_extruder = active_extruder;
  1552. extruder_duplication_enabled = false;
  1553. active_extruder = !active_extruder;
  1554. HOMEAXIS(X);
  1555. inactive_extruder_x_pos = current_position[X_AXIS];
  1556. active_extruder = tmp_extruder;
  1557. HOMEAXIS(X);
  1558. // reset state used by the different modes
  1559. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1560. delayed_move_time = 0;
  1561. active_extruder_parked = true;
  1562. #else
  1563. HOMEAXIS(X);
  1564. #endif
  1565. }
  1566. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1567. if (code_seen(axis_codes[X_AXIS])) {
  1568. if (code_value_long() != 0) {
  1569. current_position[X_AXIS] = code_value()
  1570. #ifndef SCARA
  1571. + add_homing[X_AXIS]
  1572. #endif
  1573. ;
  1574. }
  1575. }
  1576. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1577. current_position[Y_AXIS] = code_value()
  1578. #ifndef SCARA
  1579. + add_homing[Y_AXIS]
  1580. #endif
  1581. ;
  1582. }
  1583. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1584. #ifndef Z_SAFE_HOMING
  1585. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1586. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1587. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1588. feedrate = max_feedrate[Z_AXIS];
  1589. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1590. st_synchronize();
  1591. #endif
  1592. HOMEAXIS(Z);
  1593. }
  1594. #else // Z_SAFE_HOMING
  1595. if (home_all_axis) {
  1596. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1597. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1598. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1599. feedrate = XY_TRAVEL_SPEED / 60;
  1600. current_position[Z_AXIS] = 0;
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1603. st_synchronize();
  1604. current_position[X_AXIS] = destination[X_AXIS];
  1605. current_position[Y_AXIS] = destination[Y_AXIS];
  1606. HOMEAXIS(Z);
  1607. }
  1608. // Let's see if X and Y are homed and probe is inside bed area.
  1609. if (code_seen(axis_codes[Z_AXIS])) {
  1610. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1611. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1612. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1613. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1614. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1615. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1616. current_position[Z_AXIS] = 0;
  1617. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1618. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1619. feedrate = max_feedrate[Z_AXIS];
  1620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1621. st_synchronize();
  1622. HOMEAXIS(Z);
  1623. }
  1624. else {
  1625. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1626. SERIAL_ECHO_START;
  1627. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1628. }
  1629. }
  1630. else {
  1631. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1632. SERIAL_ECHO_START;
  1633. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1634. }
  1635. }
  1636. #endif // Z_SAFE_HOMING
  1637. #endif // Z_HOME_DIR < 0
  1638. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1639. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1640. #ifdef ENABLE_AUTO_BED_LEVELING
  1641. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1642. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1643. #endif
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1645. #endif // else DELTA
  1646. #ifdef SCARA
  1647. calculate_delta(current_position);
  1648. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1649. #endif
  1650. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1651. enable_endstops(false);
  1652. #endif
  1653. feedrate = saved_feedrate;
  1654. feedmultiply = saved_feedmultiply;
  1655. previous_millis_cmd = millis();
  1656. endstops_hit_on_purpose();
  1657. }
  1658. #ifdef ENABLE_AUTO_BED_LEVELING
  1659. // Define the possible boundaries for probing based on set limits
  1660. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1661. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1662. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1663. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1664. #ifdef AUTO_BED_LEVELING_GRID
  1665. #define MIN_PROBE_EDGE 20 // The probe square sides can be no smaller than this
  1666. // Make sure probing points are reachable
  1667. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1668. #error The given LEFT_PROBE_BED_POSITION can't be reached by the probe.
  1669. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1670. #error The given RIGHT_PROBE_BED_POSITION can't be reached by the probe.
  1671. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1672. #error The given FRONT_PROBE_BED_POSITION can't be reached by the probe.
  1673. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1674. #error The given BACK_PROBE_BED_POSITION can't be reached by the probe.
  1675. // Check if Probe_Offset * Grid Points is greater than Probing Range
  1676. #elif abs(X_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION
  1677. #error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
  1678. #elif abs(Y_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION
  1679. #error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
  1680. #endif
  1681. #else // !AUTO_BED_LEVELING_GRID
  1682. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1683. #error The given ABL_PROBE_PT_1_X can't be reached by the probe.
  1684. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1685. #error The given ABL_PROBE_PT_2_X can't be reached by the probe.
  1686. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1687. #error The given ABL_PROBE_PT_3_X can't be reached by the probe.
  1688. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1689. #error The given ABL_PROBE_PT_1_Y can't be reached by the probe.
  1690. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1691. #error The given ABL_PROBE_PT_2_Y can't be reached by the probe.
  1692. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1693. #error The given ABL_PROBE_PT_3_Y can't be reached by the probe.
  1694. #endif
  1695. #endif // !AUTO_BED_LEVELING_GRID
  1696. /**
  1697. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1698. * Will fail if the printer has not been homed with G28.
  1699. *
  1700. * Enhanced G29 Auto Bed Leveling Probe Routine
  1701. *
  1702. * Parameters With AUTO_BED_LEVELING_GRID:
  1703. *
  1704. * P Set the size of the grid that will be probed (P x P points).
  1705. * Not supported by non-linear delta printer bed leveling.
  1706. * Example: "G29 P4"
  1707. *
  1708. * V Set the verbose level (0-4). Example: "G29 V3"
  1709. *
  1710. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1711. * This is useful for manual bed leveling and finding flaws in the bed (to
  1712. * assist with part placement).
  1713. * Not supported by non-linear delta printer bed leveling.
  1714. *
  1715. * F Set the Front limit of the probing grid
  1716. * B Set the Back limit of the probing grid
  1717. * L Set the Left limit of the probing grid
  1718. * R Set the Right limit of the probing grid
  1719. *
  1720. * Global Parameters:
  1721. *
  1722. * E/e By default G29 engages / disengages the probe for each point.
  1723. * Include "E" to engage and disengage the probe just once.
  1724. * There's no extra effect if you have a fixed probe.
  1725. * Usage: "G29 E" or "G29 e"
  1726. *
  1727. */
  1728. // Use one of these defines to specify the origin
  1729. // for a topographical map to be printed for your bed.
  1730. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1731. #define TOPO_ORIGIN OriginFrontLeft
  1732. inline void gcode_G29() {
  1733. // Prevent user from running a G29 without first homing in X and Y
  1734. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1735. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1736. SERIAL_ECHO_START;
  1737. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1738. return;
  1739. }
  1740. int verbose_level = 1;
  1741. float x_tmp, y_tmp, z_tmp, real_z;
  1742. if (code_seen('V') || code_seen('v')) {
  1743. verbose_level = code_value_long();
  1744. if (verbose_level < 0 || verbose_level > 4) {
  1745. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1746. return;
  1747. }
  1748. }
  1749. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1750. #ifdef AUTO_BED_LEVELING_GRID
  1751. #ifndef DELTA
  1752. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1753. #endif
  1754. if (verbose_level > 0)
  1755. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1756. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1757. #ifndef DELTA
  1758. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1759. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1760. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1761. return;
  1762. }
  1763. #endif
  1764. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1765. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1766. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1767. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1768. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1769. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1770. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1771. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1772. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1773. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1774. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1775. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1776. if (left_out || right_out || front_out || back_out) {
  1777. if (left_out) {
  1778. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1779. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1780. }
  1781. if (right_out) {
  1782. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1783. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1784. }
  1785. if (front_out) {
  1786. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1787. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1788. }
  1789. if (back_out) {
  1790. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1791. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1792. }
  1793. return;
  1794. }
  1795. #endif // AUTO_BED_LEVELING_GRID
  1796. #ifdef Z_PROBE_SLED
  1797. dock_sled(false); // engage (un-dock) the probe
  1798. #elif not defined(SERVO_ENDSTOPS)
  1799. engage_z_probe();
  1800. #endif
  1801. st_synchronize();
  1802. #ifdef DELTA
  1803. reset_bed_level();
  1804. #else
  1805. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1806. //vector_3 corrected_position = plan_get_position_mm();
  1807. //corrected_position.debug("position before G29");
  1808. plan_bed_level_matrix.set_to_identity();
  1809. vector_3 uncorrected_position = plan_get_position();
  1810. //uncorrected_position.debug("position during G29");
  1811. current_position[X_AXIS] = uncorrected_position.x;
  1812. current_position[Y_AXIS] = uncorrected_position.y;
  1813. current_position[Z_AXIS] = uncorrected_position.z;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. #endif
  1816. setup_for_endstop_move();
  1817. feedrate = homing_feedrate[Z_AXIS];
  1818. #ifdef AUTO_BED_LEVELING_GRID
  1819. // probe at the points of a lattice grid
  1820. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1821. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1822. #ifndef DELTA
  1823. // solve the plane equation ax + by + d = z
  1824. // A is the matrix with rows [x y 1] for all the probed points
  1825. // B is the vector of the Z positions
  1826. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1827. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1828. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1829. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1830. eqnBVector[abl2], // "B" vector of Z points
  1831. mean = 0.0;
  1832. #else
  1833. delta_grid_spacing[0] = xGridSpacing;
  1834. delta_grid_spacing[1] = yGridSpacing;
  1835. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1836. if (code_seen(axis_codes[Z_AXIS])) {
  1837. z_offset += code_value();
  1838. }
  1839. #endif
  1840. int probePointCounter = 0;
  1841. bool zig = true;
  1842. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1843. {
  1844. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1845. int xStart, xStop, xInc;
  1846. if (zig)
  1847. {
  1848. xStart = 0;
  1849. xStop = auto_bed_leveling_grid_points;
  1850. xInc = 1;
  1851. zig = false;
  1852. }
  1853. else
  1854. {
  1855. xStart = auto_bed_leveling_grid_points - 1;
  1856. xStop = -1;
  1857. xInc = -1;
  1858. zig = true;
  1859. }
  1860. #ifndef DELTA
  1861. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1862. // This gets the probe points in more readable order.
  1863. if (!topo_flag) zig = !zig;
  1864. #endif
  1865. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1866. {
  1867. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1868. // raise extruder
  1869. float measured_z,
  1870. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1871. #ifdef DELTA
  1872. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1873. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1874. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1875. continue;
  1876. #endif //DELTA
  1877. // Enhanced G29 - Do not retract servo between probes
  1878. ProbeAction act;
  1879. if (enhanced_g29) {
  1880. if (yProbe == front_probe_bed_position && xCount == 0)
  1881. act = ProbeEngage;
  1882. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1883. act = ProbeRetract;
  1884. else
  1885. act = ProbeStay;
  1886. }
  1887. else
  1888. act = ProbeEngageRetract;
  1889. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1890. #ifndef DELTA
  1891. mean += measured_z;
  1892. eqnBVector[probePointCounter] = measured_z;
  1893. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1894. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1895. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1896. #else
  1897. bed_level[xCount][yCount] = measured_z + z_offset;
  1898. #endif
  1899. probePointCounter++;
  1900. } //xProbe
  1901. } //yProbe
  1902. clean_up_after_endstop_move();
  1903. #ifndef DELTA
  1904. // solve lsq problem
  1905. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1906. mean /= abl2;
  1907. if (verbose_level) {
  1908. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1909. SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
  1910. SERIAL_PROTOCOLPGM(" b: ");
  1911. SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
  1912. SERIAL_PROTOCOLPGM(" d: ");
  1913. SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
  1914. if (verbose_level > 2) {
  1915. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1916. SERIAL_PROTOCOL_F(mean, 6);
  1917. SERIAL_EOL;
  1918. }
  1919. }
  1920. if (topo_flag) {
  1921. int xx, yy;
  1922. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1923. #if TOPO_ORIGIN == OriginFrontLeft
  1924. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1925. #else
  1926. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1927. #endif
  1928. {
  1929. #if TOPO_ORIGIN == OriginBackRight
  1930. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1931. #else
  1932. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1933. #endif
  1934. {
  1935. int ind =
  1936. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1937. yy * auto_bed_leveling_grid_points + xx
  1938. #elif TOPO_ORIGIN == OriginBackLeft
  1939. xx * auto_bed_leveling_grid_points + yy
  1940. #elif TOPO_ORIGIN == OriginFrontRight
  1941. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1942. #endif
  1943. ;
  1944. float diff = eqnBVector[ind] - mean;
  1945. if (diff >= 0.0)
  1946. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1947. else
  1948. SERIAL_PROTOCOLPGM(" ");
  1949. SERIAL_PROTOCOL_F(diff, 5);
  1950. } // xx
  1951. SERIAL_EOL;
  1952. } // yy
  1953. SERIAL_EOL;
  1954. } //topo_flag
  1955. set_bed_level_equation_lsq(plane_equation_coefficients);
  1956. free(plane_equation_coefficients);
  1957. #else
  1958. extrapolate_unprobed_bed_level();
  1959. print_bed_level();
  1960. #endif
  1961. #else // !AUTO_BED_LEVELING_GRID
  1962. // Probe at 3 arbitrary points
  1963. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1964. if (enhanced_g29) {
  1965. // Basic Enhanced G29
  1966. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1967. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1968. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1969. }
  1970. else {
  1971. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  1972. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1973. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1974. }
  1975. clean_up_after_endstop_move();
  1976. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1977. #endif // !AUTO_BED_LEVELING_GRID
  1978. do_blocking_move_to(MANUAL_X_HOME_POS, MANUAL_Y_HOME_POS, Z_RAISE_AFTER_PROBING);
  1979. st_synchronize();
  1980. #ifndef DELTA
  1981. if (verbose_level > 0)
  1982. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1983. // Correct the Z height difference from z-probe position and hotend tip position.
  1984. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1985. // When the bed is uneven, this height must be corrected.
  1986. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1987. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1988. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1989. z_tmp = current_position[Z_AXIS];
  1990. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1991. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. #endif
  1994. #ifdef Z_PROBE_SLED
  1995. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1996. #elif not defined(SERVO_ENDSTOPS)
  1997. retract_z_probe();
  1998. #endif
  1999. }
  2000. #ifndef Z_PROBE_SLED
  2001. inline void gcode_G30() {
  2002. engage_z_probe(); // Engage Z Servo endstop if available
  2003. st_synchronize();
  2004. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2005. setup_for_endstop_move();
  2006. feedrate = homing_feedrate[Z_AXIS];
  2007. run_z_probe();
  2008. SERIAL_PROTOCOLPGM(MSG_BED);
  2009. SERIAL_PROTOCOLPGM(" X: ");
  2010. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2011. SERIAL_PROTOCOLPGM(" Y: ");
  2012. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2013. SERIAL_PROTOCOLPGM(" Z: ");
  2014. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2015. SERIAL_EOL;
  2016. clean_up_after_endstop_move();
  2017. retract_z_probe(); // Retract Z Servo endstop if available
  2018. }
  2019. #endif //!Z_PROBE_SLED
  2020. #endif //ENABLE_AUTO_BED_LEVELING
  2021. /**
  2022. * G92: Set current position to given X Y Z E
  2023. */
  2024. inline void gcode_G92() {
  2025. if (!code_seen(axis_codes[E_AXIS]))
  2026. st_synchronize();
  2027. for (int i=0;i<NUM_AXIS;i++) {
  2028. if (code_seen(axis_codes[i])) {
  2029. if (i == E_AXIS) {
  2030. current_position[i] = code_value();
  2031. plan_set_e_position(current_position[E_AXIS]);
  2032. }
  2033. else {
  2034. current_position[i] = code_value() +
  2035. #ifdef SCARA
  2036. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2037. #else
  2038. add_homing[i]
  2039. #endif
  2040. ;
  2041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2042. }
  2043. }
  2044. }
  2045. }
  2046. #ifdef ULTIPANEL
  2047. /**
  2048. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2049. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2050. */
  2051. inline void gcode_M0_M1() {
  2052. char *src = strchr_pointer + 2;
  2053. unsigned long codenum = 0;
  2054. bool hasP = false, hasS = false;
  2055. if (code_seen('P')) {
  2056. codenum = code_value(); // milliseconds to wait
  2057. hasP = codenum > 0;
  2058. }
  2059. if (code_seen('S')) {
  2060. codenum = code_value() * 1000; // seconds to wait
  2061. hasS = codenum > 0;
  2062. }
  2063. char* starpos = strchr(src, '*');
  2064. if (starpos != NULL) *(starpos) = '\0';
  2065. while (*src == ' ') ++src;
  2066. if (!hasP && !hasS && *src != '\0')
  2067. lcd_setstatus(src);
  2068. else
  2069. LCD_MESSAGEPGM(MSG_USERWAIT);
  2070. lcd_ignore_click();
  2071. st_synchronize();
  2072. previous_millis_cmd = millis();
  2073. if (codenum > 0) {
  2074. codenum += previous_millis_cmd; // keep track of when we started waiting
  2075. while(millis() < codenum && !lcd_clicked()) {
  2076. manage_heater();
  2077. manage_inactivity();
  2078. lcd_update();
  2079. }
  2080. lcd_ignore_click(false);
  2081. }
  2082. else {
  2083. if (!lcd_detected()) return;
  2084. while (!lcd_clicked()) {
  2085. manage_heater();
  2086. manage_inactivity();
  2087. lcd_update();
  2088. }
  2089. }
  2090. if (IS_SD_PRINTING)
  2091. LCD_MESSAGEPGM(MSG_RESUMING);
  2092. else
  2093. LCD_MESSAGEPGM(WELCOME_MSG);
  2094. }
  2095. #endif // ULTIPANEL
  2096. /**
  2097. * M17: Enable power on all stepper motors
  2098. */
  2099. inline void gcode_M17() {
  2100. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2101. enable_x();
  2102. enable_y();
  2103. enable_z();
  2104. enable_e0();
  2105. enable_e1();
  2106. enable_e2();
  2107. enable_e3();
  2108. }
  2109. #ifdef SDSUPPORT
  2110. /**
  2111. * M20: List SD card to serial output
  2112. */
  2113. inline void gcode_M20() {
  2114. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2115. card.ls();
  2116. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2117. }
  2118. /**
  2119. * M21: Init SD Card
  2120. */
  2121. inline void gcode_M21() {
  2122. card.initsd();
  2123. }
  2124. /**
  2125. * M22: Release SD Card
  2126. */
  2127. inline void gcode_M22() {
  2128. card.release();
  2129. }
  2130. /**
  2131. * M23: Select a file
  2132. */
  2133. inline void gcode_M23() {
  2134. char* codepos = strchr_pointer + 4;
  2135. char* starpos = strchr(codepos, '*');
  2136. if (starpos) *starpos = '\0';
  2137. card.openFile(codepos, true);
  2138. }
  2139. /**
  2140. * M24: Start SD Print
  2141. */
  2142. inline void gcode_M24() {
  2143. card.startFileprint();
  2144. starttime = millis();
  2145. }
  2146. /**
  2147. * M25: Pause SD Print
  2148. */
  2149. inline void gcode_M25() {
  2150. card.pauseSDPrint();
  2151. }
  2152. /**
  2153. * M26: Set SD Card file index
  2154. */
  2155. inline void gcode_M26() {
  2156. if (card.cardOK && code_seen('S'))
  2157. card.setIndex(code_value_long());
  2158. }
  2159. /**
  2160. * M27: Get SD Card status
  2161. */
  2162. inline void gcode_M27() {
  2163. card.getStatus();
  2164. }
  2165. /**
  2166. * M28: Start SD Write
  2167. */
  2168. inline void gcode_M28() {
  2169. char* codepos = strchr_pointer + 4;
  2170. char* starpos = strchr(strchr_pointer + 4, '*');
  2171. if (starpos) {
  2172. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2173. strchr_pointer = strchr(npos, ' ') + 1;
  2174. *(starpos) = '\0';
  2175. }
  2176. card.openFile(strchr_pointer + 4, false);
  2177. }
  2178. /**
  2179. * M29: Stop SD Write
  2180. * Processed in write to file routine above
  2181. */
  2182. inline void gcode_M29() {
  2183. // card.saving = false;
  2184. }
  2185. /**
  2186. * M30 <filename>: Delete SD Card file
  2187. */
  2188. inline void gcode_M30() {
  2189. if (card.cardOK) {
  2190. card.closefile();
  2191. char* starpos = strchr(strchr_pointer + 4, '*');
  2192. if (starpos) {
  2193. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2194. strchr_pointer = strchr(npos, ' ') + 1;
  2195. *(starpos) = '\0';
  2196. }
  2197. card.removeFile(strchr_pointer + 4);
  2198. }
  2199. }
  2200. #endif
  2201. /**
  2202. * M31: Get the time since the start of SD Print (or last M109)
  2203. */
  2204. inline void gcode_M31() {
  2205. stoptime = millis();
  2206. unsigned long t = (stoptime - starttime) / 1000;
  2207. int min = t / 60, sec = t % 60;
  2208. char time[30];
  2209. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2210. SERIAL_ECHO_START;
  2211. SERIAL_ECHOLN(time);
  2212. lcd_setstatus(time);
  2213. autotempShutdown();
  2214. }
  2215. #ifdef SDSUPPORT
  2216. /**
  2217. * M32: Select file and start SD Print
  2218. */
  2219. inline void gcode_M32() {
  2220. if (card.sdprinting)
  2221. st_synchronize();
  2222. char* codepos = strchr_pointer + 4;
  2223. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2224. if (! namestartpos)
  2225. namestartpos = codepos; //default name position, 4 letters after the M
  2226. else
  2227. namestartpos++; //to skip the '!'
  2228. char* starpos = strchr(codepos, '*');
  2229. if (starpos) *(starpos) = '\0';
  2230. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2231. if (card.cardOK) {
  2232. card.openFile(namestartpos, true, !call_procedure);
  2233. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2234. card.setIndex(code_value_long());
  2235. card.startFileprint();
  2236. if (!call_procedure)
  2237. starttime = millis(); //procedure calls count as normal print time.
  2238. }
  2239. }
  2240. /**
  2241. * M928: Start SD Write
  2242. */
  2243. inline void gcode_M928() {
  2244. char* starpos = strchr(strchr_pointer + 5, '*');
  2245. if (starpos) {
  2246. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2247. strchr_pointer = strchr(npos, ' ') + 1;
  2248. *(starpos) = '\0';
  2249. }
  2250. card.openLogFile(strchr_pointer + 5);
  2251. }
  2252. #endif // SDSUPPORT
  2253. /**
  2254. * M42: Change pin status via GCode
  2255. */
  2256. inline void gcode_M42() {
  2257. if (code_seen('S')) {
  2258. int pin_status = code_value(),
  2259. pin_number = LED_PIN;
  2260. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2261. pin_number = code_value();
  2262. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2263. if (sensitive_pins[i] == pin_number) {
  2264. pin_number = -1;
  2265. break;
  2266. }
  2267. }
  2268. #if defined(FAN_PIN) && FAN_PIN > -1
  2269. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2270. #endif
  2271. if (pin_number > -1) {
  2272. pinMode(pin_number, OUTPUT);
  2273. digitalWrite(pin_number, pin_status);
  2274. analogWrite(pin_number, pin_status);
  2275. }
  2276. } // code_seen('S')
  2277. }
  2278. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2279. #if Z_MIN_PIN == -1
  2280. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2281. #endif
  2282. /**
  2283. * M48: Z-Probe repeatability measurement function.
  2284. *
  2285. * Usage:
  2286. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2287. * n = Number of samples (4-50, default 10)
  2288. * X = Sample X position
  2289. * Y = Sample Y position
  2290. * V = Verbose level (0-4, default=1)
  2291. * E = Engage probe for each reading
  2292. * L = Number of legs of movement before probe
  2293. *
  2294. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2295. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2296. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2297. * regenerated.
  2298. *
  2299. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2300. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2301. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2302. */
  2303. inline void gcode_M48() {
  2304. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2305. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2306. double X_current, Y_current, Z_current;
  2307. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2308. if (code_seen('V') || code_seen('v')) {
  2309. verbose_level = code_value();
  2310. if (verbose_level < 0 || verbose_level > 4 ) {
  2311. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2312. return;
  2313. }
  2314. }
  2315. if (verbose_level > 0)
  2316. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2317. if (code_seen('n')) {
  2318. n_samples = code_value();
  2319. if (n_samples < 4 || n_samples > 50) {
  2320. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2321. return;
  2322. }
  2323. }
  2324. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2325. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2326. Z_current = st_get_position_mm(Z_AXIS);
  2327. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2328. ext_position = st_get_position_mm(E_AXIS);
  2329. if (code_seen('E') || code_seen('e'))
  2330. engage_probe_for_each_reading++;
  2331. if (code_seen('X') || code_seen('x')) {
  2332. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2333. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2334. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2335. return;
  2336. }
  2337. }
  2338. if (code_seen('Y') || code_seen('y')) {
  2339. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2340. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2341. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2342. return;
  2343. }
  2344. }
  2345. if (code_seen('L') || code_seen('l')) {
  2346. n_legs = code_value();
  2347. if (n_legs == 1) n_legs = 2;
  2348. if (n_legs < 0 || n_legs > 15) {
  2349. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2350. return;
  2351. }
  2352. }
  2353. //
  2354. // Do all the preliminary setup work. First raise the probe.
  2355. //
  2356. st_synchronize();
  2357. plan_bed_level_matrix.set_to_identity();
  2358. plan_buffer_line(X_current, Y_current, Z_start_location,
  2359. ext_position,
  2360. homing_feedrate[Z_AXIS] / 60,
  2361. active_extruder);
  2362. st_synchronize();
  2363. //
  2364. // Now get everything to the specified probe point So we can safely do a probe to
  2365. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2366. // use that as a starting point for each probe.
  2367. //
  2368. if (verbose_level > 2)
  2369. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2370. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2371. ext_position,
  2372. homing_feedrate[X_AXIS]/60,
  2373. active_extruder);
  2374. st_synchronize();
  2375. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2376. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2377. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2378. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2379. //
  2380. // OK, do the inital probe to get us close to the bed.
  2381. // Then retrace the right amount and use that in subsequent probes
  2382. //
  2383. engage_z_probe();
  2384. setup_for_endstop_move();
  2385. run_z_probe();
  2386. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2387. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2388. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2389. ext_position,
  2390. homing_feedrate[X_AXIS]/60,
  2391. active_extruder);
  2392. st_synchronize();
  2393. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2394. if (engage_probe_for_each_reading) retract_z_probe();
  2395. for (n=0; n < n_samples; n++) {
  2396. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2397. if (n_legs) {
  2398. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2399. int l;
  2400. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2401. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2402. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2403. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2404. //SERIAL_ECHOPAIR(" theta: ",theta);
  2405. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2406. //SERIAL_PROTOCOLLNPGM("");
  2407. float dir = rotational_direction ? 1 : -1;
  2408. for (l = 0; l < n_legs - 1; l++) {
  2409. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2410. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2411. if (radius < 0.0) radius = -radius;
  2412. X_current = X_probe_location + cos(theta) * radius;
  2413. Y_current = Y_probe_location + sin(theta) * radius;
  2414. // Make sure our X & Y are sane
  2415. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2416. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2417. if (verbose_level > 3) {
  2418. SERIAL_ECHOPAIR("x: ", X_current);
  2419. SERIAL_ECHOPAIR("y: ", Y_current);
  2420. SERIAL_PROTOCOLLNPGM("");
  2421. }
  2422. do_blocking_move_to( X_current, Y_current, Z_current );
  2423. }
  2424. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2425. }
  2426. if (engage_probe_for_each_reading) {
  2427. engage_z_probe();
  2428. delay(1000);
  2429. }
  2430. setup_for_endstop_move();
  2431. run_z_probe();
  2432. sample_set[n] = current_position[Z_AXIS];
  2433. //
  2434. // Get the current mean for the data points we have so far
  2435. //
  2436. sum = 0.0;
  2437. for (j=0; j<=n; j++) sum += sample_set[j];
  2438. mean = sum / (double (n+1));
  2439. //
  2440. // Now, use that mean to calculate the standard deviation for the
  2441. // data points we have so far
  2442. //
  2443. sum = 0.0;
  2444. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2445. sigma = sqrt( sum / (double (n+1)) );
  2446. if (verbose_level > 1) {
  2447. SERIAL_PROTOCOL(n+1);
  2448. SERIAL_PROTOCOL(" of ");
  2449. SERIAL_PROTOCOL(n_samples);
  2450. SERIAL_PROTOCOLPGM(" z: ");
  2451. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2452. }
  2453. if (verbose_level > 2) {
  2454. SERIAL_PROTOCOL(" mean: ");
  2455. SERIAL_PROTOCOL_F(mean,6);
  2456. SERIAL_PROTOCOL(" sigma: ");
  2457. SERIAL_PROTOCOL_F(sigma,6);
  2458. }
  2459. if (verbose_level > 0) SERIAL_EOL;
  2460. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2461. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2462. st_synchronize();
  2463. if (engage_probe_for_each_reading) {
  2464. retract_z_probe();
  2465. delay(1000);
  2466. }
  2467. }
  2468. retract_z_probe();
  2469. delay(1000);
  2470. clean_up_after_endstop_move();
  2471. // enable_endstops(true);
  2472. if (verbose_level > 0) {
  2473. SERIAL_PROTOCOLPGM("Mean: ");
  2474. SERIAL_PROTOCOL_F(mean, 6);
  2475. SERIAL_EOL;
  2476. }
  2477. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2478. SERIAL_PROTOCOL_F(sigma, 6);
  2479. SERIAL_EOL; SERIAL_EOL;
  2480. }
  2481. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2482. /**
  2483. * M104: Set hot end temperature
  2484. */
  2485. inline void gcode_M104() {
  2486. if (setTargetedHotend(104)) return;
  2487. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2488. #ifdef DUAL_X_CARRIAGE
  2489. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2490. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2491. #endif
  2492. setWatch();
  2493. }
  2494. /**
  2495. * M105: Read hot end and bed temperature
  2496. */
  2497. inline void gcode_M105() {
  2498. if (setTargetedHotend(105)) return;
  2499. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2500. SERIAL_PROTOCOLPGM("ok T:");
  2501. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2502. SERIAL_PROTOCOLPGM(" /");
  2503. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2504. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2505. SERIAL_PROTOCOLPGM(" B:");
  2506. SERIAL_PROTOCOL_F(degBed(),1);
  2507. SERIAL_PROTOCOLPGM(" /");
  2508. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2509. #endif //TEMP_BED_PIN
  2510. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2511. SERIAL_PROTOCOLPGM(" T");
  2512. SERIAL_PROTOCOL(cur_extruder);
  2513. SERIAL_PROTOCOLPGM(":");
  2514. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2515. SERIAL_PROTOCOLPGM(" /");
  2516. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2517. }
  2518. #else
  2519. SERIAL_ERROR_START;
  2520. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2521. #endif
  2522. SERIAL_PROTOCOLPGM(" @:");
  2523. #ifdef EXTRUDER_WATTS
  2524. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2525. SERIAL_PROTOCOLPGM("W");
  2526. #else
  2527. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2528. #endif
  2529. SERIAL_PROTOCOLPGM(" B@:");
  2530. #ifdef BED_WATTS
  2531. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2532. SERIAL_PROTOCOLPGM("W");
  2533. #else
  2534. SERIAL_PROTOCOL(getHeaterPower(-1));
  2535. #endif
  2536. #ifdef SHOW_TEMP_ADC_VALUES
  2537. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2538. SERIAL_PROTOCOLPGM(" ADC B:");
  2539. SERIAL_PROTOCOL_F(degBed(),1);
  2540. SERIAL_PROTOCOLPGM("C->");
  2541. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2542. #endif
  2543. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2544. SERIAL_PROTOCOLPGM(" T");
  2545. SERIAL_PROTOCOL(cur_extruder);
  2546. SERIAL_PROTOCOLPGM(":");
  2547. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2548. SERIAL_PROTOCOLPGM("C->");
  2549. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2550. }
  2551. #endif
  2552. SERIAL_PROTOCOLLN("");
  2553. }
  2554. #if defined(FAN_PIN) && FAN_PIN > -1
  2555. /**
  2556. * M106: Set Fan Speed
  2557. */
  2558. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2559. /**
  2560. * M107: Fan Off
  2561. */
  2562. inline void gcode_M107() { fanSpeed = 0; }
  2563. #endif //FAN_PIN
  2564. /**
  2565. * M109: Wait for extruder(s) to reach temperature
  2566. */
  2567. inline void gcode_M109() {
  2568. if (setTargetedHotend(109)) return;
  2569. LCD_MESSAGEPGM(MSG_HEATING);
  2570. CooldownNoWait = code_seen('S');
  2571. if (CooldownNoWait || code_seen('R')) {
  2572. setTargetHotend(code_value(), tmp_extruder);
  2573. #ifdef DUAL_X_CARRIAGE
  2574. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2575. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2576. #endif
  2577. }
  2578. #ifdef AUTOTEMP
  2579. autotemp_enabled = code_seen('F');
  2580. if (autotemp_enabled) autotemp_factor = code_value();
  2581. if (code_seen('S')) autotemp_min = code_value();
  2582. if (code_seen('B')) autotemp_max = code_value();
  2583. #endif
  2584. setWatch();
  2585. unsigned long timetemp = millis();
  2586. /* See if we are heating up or cooling down */
  2587. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2588. cancel_heatup = false;
  2589. #ifdef TEMP_RESIDENCY_TIME
  2590. long residencyStart = -1;
  2591. /* continue to loop until we have reached the target temp
  2592. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2593. while((!cancel_heatup)&&((residencyStart == -1) ||
  2594. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2595. #else
  2596. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2597. #endif //TEMP_RESIDENCY_TIME
  2598. { // while loop
  2599. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2600. SERIAL_PROTOCOLPGM("T:");
  2601. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2602. SERIAL_PROTOCOLPGM(" E:");
  2603. SERIAL_PROTOCOL((int)tmp_extruder);
  2604. #ifdef TEMP_RESIDENCY_TIME
  2605. SERIAL_PROTOCOLPGM(" W:");
  2606. if (residencyStart > -1) {
  2607. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2608. SERIAL_PROTOCOLLN( timetemp );
  2609. }
  2610. else {
  2611. SERIAL_PROTOCOLLN( "?" );
  2612. }
  2613. #else
  2614. SERIAL_PROTOCOLLN("");
  2615. #endif
  2616. timetemp = millis();
  2617. }
  2618. manage_heater();
  2619. manage_inactivity();
  2620. lcd_update();
  2621. #ifdef TEMP_RESIDENCY_TIME
  2622. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2623. // or when current temp falls outside the hysteresis after target temp was reached
  2624. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2625. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2626. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2627. {
  2628. residencyStart = millis();
  2629. }
  2630. #endif //TEMP_RESIDENCY_TIME
  2631. }
  2632. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2633. starttime = previous_millis_cmd = millis();
  2634. }
  2635. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2636. /**
  2637. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2638. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2639. */
  2640. inline void gcode_M190() {
  2641. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2642. CooldownNoWait = code_seen('S');
  2643. if (CooldownNoWait || code_seen('R'))
  2644. setTargetBed(code_value());
  2645. unsigned long timetemp = millis();
  2646. cancel_heatup = false;
  2647. target_direction = isHeatingBed(); // true if heating, false if cooling
  2648. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2649. unsigned long ms = millis();
  2650. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2651. timetemp = ms;
  2652. float tt = degHotend(active_extruder);
  2653. SERIAL_PROTOCOLPGM("T:");
  2654. SERIAL_PROTOCOL(tt);
  2655. SERIAL_PROTOCOLPGM(" E:");
  2656. SERIAL_PROTOCOL((int)active_extruder);
  2657. SERIAL_PROTOCOLPGM(" B:");
  2658. SERIAL_PROTOCOL_F(degBed(), 1);
  2659. SERIAL_PROTOCOLLN("");
  2660. }
  2661. manage_heater();
  2662. manage_inactivity();
  2663. lcd_update();
  2664. }
  2665. LCD_MESSAGEPGM(MSG_BED_DONE);
  2666. previous_millis_cmd = millis();
  2667. }
  2668. #endif // TEMP_BED_PIN > -1
  2669. /**
  2670. * M112: Emergency Stop
  2671. */
  2672. inline void gcode_M112() {
  2673. kill();
  2674. }
  2675. #ifdef BARICUDA
  2676. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2677. /**
  2678. * M126: Heater 1 valve open
  2679. */
  2680. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2681. /**
  2682. * M127: Heater 1 valve close
  2683. */
  2684. inline void gcode_M127() { ValvePressure = 0; }
  2685. #endif
  2686. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2687. /**
  2688. * M128: Heater 2 valve open
  2689. */
  2690. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2691. /**
  2692. * M129: Heater 2 valve close
  2693. */
  2694. inline void gcode_M129() { EtoPPressure = 0; }
  2695. #endif
  2696. #endif //BARICUDA
  2697. /**
  2698. * M140: Set bed temperature
  2699. */
  2700. inline void gcode_M140() {
  2701. if (code_seen('S')) setTargetBed(code_value());
  2702. }
  2703. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2704. /**
  2705. * M80: Turn on Power Supply
  2706. */
  2707. inline void gcode_M80() {
  2708. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2709. // If you have a switch on suicide pin, this is useful
  2710. // if you want to start another print with suicide feature after
  2711. // a print without suicide...
  2712. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2713. OUT_WRITE(SUICIDE_PIN, HIGH);
  2714. #endif
  2715. #ifdef ULTIPANEL
  2716. powersupply = true;
  2717. LCD_MESSAGEPGM(WELCOME_MSG);
  2718. lcd_update();
  2719. #endif
  2720. }
  2721. #endif // PS_ON_PIN
  2722. /**
  2723. * M81: Turn off Power Supply
  2724. */
  2725. inline void gcode_M81() {
  2726. disable_heater();
  2727. st_synchronize();
  2728. disable_e0();
  2729. disable_e1();
  2730. disable_e2();
  2731. disable_e3();
  2732. finishAndDisableSteppers();
  2733. fanSpeed = 0;
  2734. delay(1000); // Wait 1 second before switching off
  2735. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2736. st_synchronize();
  2737. suicide();
  2738. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2739. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2740. #endif
  2741. #ifdef ULTIPANEL
  2742. powersupply = false;
  2743. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2744. lcd_update();
  2745. #endif
  2746. }
  2747. /**
  2748. * M82: Set E codes absolute (default)
  2749. */
  2750. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2751. /**
  2752. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2753. */
  2754. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2755. /**
  2756. * M18, M84: Disable all stepper motors
  2757. */
  2758. inline void gcode_M18_M84() {
  2759. if (code_seen('S')) {
  2760. stepper_inactive_time = code_value() * 1000;
  2761. }
  2762. else {
  2763. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2764. if (all_axis) {
  2765. st_synchronize();
  2766. disable_e0();
  2767. disable_e1();
  2768. disable_e2();
  2769. disable_e3();
  2770. finishAndDisableSteppers();
  2771. }
  2772. else {
  2773. st_synchronize();
  2774. if (code_seen('X')) disable_x();
  2775. if (code_seen('Y')) disable_y();
  2776. if (code_seen('Z')) disable_z();
  2777. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2778. if (code_seen('E')) {
  2779. disable_e0();
  2780. disable_e1();
  2781. disable_e2();
  2782. disable_e3();
  2783. }
  2784. #endif
  2785. }
  2786. }
  2787. }
  2788. /**
  2789. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2790. */
  2791. inline void gcode_M85() {
  2792. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2793. }
  2794. /**
  2795. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2796. */
  2797. inline void gcode_M92() {
  2798. for(int8_t i=0; i < NUM_AXIS; i++) {
  2799. if (code_seen(axis_codes[i])) {
  2800. if (i == E_AXIS) {
  2801. float value = code_value();
  2802. if (value < 20.0) {
  2803. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2804. max_e_jerk *= factor;
  2805. max_feedrate[i] *= factor;
  2806. axis_steps_per_sqr_second[i] *= factor;
  2807. }
  2808. axis_steps_per_unit[i] = value;
  2809. }
  2810. else {
  2811. axis_steps_per_unit[i] = code_value();
  2812. }
  2813. }
  2814. }
  2815. }
  2816. /**
  2817. * M114: Output current position to serial port
  2818. */
  2819. inline void gcode_M114() {
  2820. SERIAL_PROTOCOLPGM("X:");
  2821. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2822. SERIAL_PROTOCOLPGM(" Y:");
  2823. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2824. SERIAL_PROTOCOLPGM(" Z:");
  2825. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2826. SERIAL_PROTOCOLPGM(" E:");
  2827. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2828. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2829. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2830. SERIAL_PROTOCOLPGM(" Y:");
  2831. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2832. SERIAL_PROTOCOLPGM(" Z:");
  2833. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2834. SERIAL_PROTOCOLLN("");
  2835. #ifdef SCARA
  2836. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2837. SERIAL_PROTOCOL(delta[X_AXIS]);
  2838. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2839. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2840. SERIAL_PROTOCOLLN("");
  2841. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2842. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2843. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2844. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2845. SERIAL_PROTOCOLLN("");
  2846. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2847. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2848. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2849. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2850. SERIAL_PROTOCOLLN("");
  2851. SERIAL_PROTOCOLLN("");
  2852. #endif
  2853. }
  2854. /**
  2855. * M115: Capabilities string
  2856. */
  2857. inline void gcode_M115() {
  2858. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2859. }
  2860. /**
  2861. * M117: Set LCD Status Message
  2862. */
  2863. inline void gcode_M117() {
  2864. char* codepos = strchr_pointer + 5;
  2865. char* starpos = strchr(codepos, '*');
  2866. if (starpos) *starpos = '\0';
  2867. lcd_setstatus(codepos);
  2868. }
  2869. /**
  2870. * M119: Output endstop states to serial output
  2871. */
  2872. inline void gcode_M119() {
  2873. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2874. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2875. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2876. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2877. #endif
  2878. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2879. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2880. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2881. #endif
  2882. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2883. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2884. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2885. #endif
  2886. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2887. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2888. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2889. #endif
  2890. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2891. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2892. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2893. #endif
  2894. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2895. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2896. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2897. #endif
  2898. }
  2899. /**
  2900. * M120: Enable endstops
  2901. */
  2902. inline void gcode_M120() { enable_endstops(false); }
  2903. /**
  2904. * M121: Disable endstops
  2905. */
  2906. inline void gcode_M121() { enable_endstops(true); }
  2907. #ifdef BLINKM
  2908. /**
  2909. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2910. */
  2911. inline void gcode_M150() {
  2912. SendColors(
  2913. code_seen('R') ? (byte)code_value() : 0,
  2914. code_seen('U') ? (byte)code_value() : 0,
  2915. code_seen('B') ? (byte)code_value() : 0
  2916. );
  2917. }
  2918. #endif // BLINKM
  2919. /**
  2920. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2921. * T<extruder>
  2922. * D<millimeters>
  2923. */
  2924. inline void gcode_M200() {
  2925. tmp_extruder = active_extruder;
  2926. if (code_seen('T')) {
  2927. tmp_extruder = code_value();
  2928. if (tmp_extruder >= EXTRUDERS) {
  2929. SERIAL_ECHO_START;
  2930. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2931. return;
  2932. }
  2933. }
  2934. float area = .0;
  2935. if (code_seen('D')) {
  2936. float diameter = code_value();
  2937. // setting any extruder filament size disables volumetric on the assumption that
  2938. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2939. // for all extruders
  2940. volumetric_enabled = (diameter != 0.0);
  2941. if (volumetric_enabled) {
  2942. filament_size[tmp_extruder] = diameter;
  2943. // make sure all extruders have some sane value for the filament size
  2944. for (int i=0; i<EXTRUDERS; i++)
  2945. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2946. }
  2947. }
  2948. else {
  2949. //reserved for setting filament diameter via UFID or filament measuring device
  2950. return;
  2951. }
  2952. calculate_volumetric_multipliers();
  2953. }
  2954. /**
  2955. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2956. */
  2957. inline void gcode_M201() {
  2958. for (int8_t i=0; i < NUM_AXIS; i++) {
  2959. if (code_seen(axis_codes[i])) {
  2960. max_acceleration_units_per_sq_second[i] = code_value();
  2961. }
  2962. }
  2963. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2964. reset_acceleration_rates();
  2965. }
  2966. #if 0 // Not used for Sprinter/grbl gen6
  2967. inline void gcode_M202() {
  2968. for(int8_t i=0; i < NUM_AXIS; i++) {
  2969. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2970. }
  2971. }
  2972. #endif
  2973. /**
  2974. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2975. */
  2976. inline void gcode_M203() {
  2977. for (int8_t i=0; i < NUM_AXIS; i++) {
  2978. if (code_seen(axis_codes[i])) {
  2979. max_feedrate[i] = code_value();
  2980. }
  2981. }
  2982. }
  2983. /**
  2984. * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
  2985. *
  2986. * S = normal moves
  2987. * T = filament only moves
  2988. *
  2989. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2990. */
  2991. inline void gcode_M204() {
  2992. if (code_seen('S')) acceleration = code_value();
  2993. if (code_seen('T')) retract_acceleration = code_value();
  2994. }
  2995. /**
  2996. * M205: Set Advanced Settings
  2997. *
  2998. * S = Min Feed Rate (mm/s)
  2999. * T = Min Travel Feed Rate (mm/s)
  3000. * B = Min Segment Time (µs)
  3001. * X = Max XY Jerk (mm/s/s)
  3002. * Z = Max Z Jerk (mm/s/s)
  3003. * E = Max E Jerk (mm/s/s)
  3004. */
  3005. inline void gcode_M205() {
  3006. if (code_seen('S')) minimumfeedrate = code_value();
  3007. if (code_seen('T')) mintravelfeedrate = code_value();
  3008. if (code_seen('B')) minsegmenttime = code_value();
  3009. if (code_seen('X')) max_xy_jerk = code_value();
  3010. if (code_seen('Z')) max_z_jerk = code_value();
  3011. if (code_seen('E')) max_e_jerk = code_value();
  3012. }
  3013. /**
  3014. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3015. */
  3016. inline void gcode_M206() {
  3017. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3018. if (code_seen(axis_codes[i])) {
  3019. add_homing[i] = code_value();
  3020. }
  3021. }
  3022. #ifdef SCARA
  3023. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3024. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3025. #endif
  3026. }
  3027. #ifdef DELTA
  3028. /**
  3029. * M665: Set delta configurations
  3030. *
  3031. * L = diagonal rod
  3032. * R = delta radius
  3033. * S = segments per second
  3034. */
  3035. inline void gcode_M665() {
  3036. if (code_seen('L')) delta_diagonal_rod = code_value();
  3037. if (code_seen('R')) delta_radius = code_value();
  3038. if (code_seen('S')) delta_segments_per_second = code_value();
  3039. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3040. }
  3041. /**
  3042. * M666: Set delta endstop adjustment
  3043. */
  3044. inline void gcode_M666() {
  3045. for (int8_t i = 0; i < 3; i++) {
  3046. if (code_seen(axis_codes[i])) {
  3047. endstop_adj[i] = code_value();
  3048. }
  3049. }
  3050. }
  3051. #endif // DELTA
  3052. #ifdef FWRETRACT
  3053. /**
  3054. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3055. */
  3056. inline void gcode_M207() {
  3057. if (code_seen('S')) retract_length = code_value();
  3058. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3059. if (code_seen('Z')) retract_zlift = code_value();
  3060. }
  3061. /**
  3062. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3063. */
  3064. inline void gcode_M208() {
  3065. if (code_seen('S')) retract_recover_length = code_value();
  3066. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3067. }
  3068. /**
  3069. * M209: Enable automatic retract (M209 S1)
  3070. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3071. */
  3072. inline void gcode_M209() {
  3073. if (code_seen('S')) {
  3074. int t = code_value();
  3075. switch(t) {
  3076. case 0:
  3077. autoretract_enabled = false;
  3078. break;
  3079. case 1:
  3080. autoretract_enabled = true;
  3081. break;
  3082. default:
  3083. SERIAL_ECHO_START;
  3084. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3085. SERIAL_ECHO(cmdbuffer[bufindr]);
  3086. SERIAL_ECHOLNPGM("\"");
  3087. return;
  3088. }
  3089. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3090. }
  3091. }
  3092. #endif // FWRETRACT
  3093. #if EXTRUDERS > 1
  3094. /**
  3095. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3096. */
  3097. inline void gcode_M218() {
  3098. if (setTargetedHotend(218)) return;
  3099. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3100. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3101. #ifdef DUAL_X_CARRIAGE
  3102. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3103. #endif
  3104. SERIAL_ECHO_START;
  3105. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3106. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3107. SERIAL_ECHO(" ");
  3108. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3109. SERIAL_ECHO(",");
  3110. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3111. #ifdef DUAL_X_CARRIAGE
  3112. SERIAL_ECHO(",");
  3113. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3114. #endif
  3115. }
  3116. SERIAL_EOL;
  3117. }
  3118. #endif // EXTRUDERS > 1
  3119. /**
  3120. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3121. */
  3122. inline void gcode_M220() {
  3123. if (code_seen('S')) feedmultiply = code_value();
  3124. }
  3125. /**
  3126. * M221: Set extrusion percentage (M221 T0 S95)
  3127. */
  3128. inline void gcode_M221() {
  3129. if (code_seen('S')) {
  3130. int sval = code_value();
  3131. if (code_seen('T')) {
  3132. if (setTargetedHotend(221)) return;
  3133. extruder_multiply[tmp_extruder] = sval;
  3134. }
  3135. else {
  3136. extrudemultiply = sval;
  3137. }
  3138. }
  3139. }
  3140. /**
  3141. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3142. */
  3143. inline void gcode_M226() {
  3144. if (code_seen('P')) {
  3145. int pin_number = code_value();
  3146. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3147. if (pin_state >= -1 && pin_state <= 1) {
  3148. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3149. if (sensitive_pins[i] == pin_number) {
  3150. pin_number = -1;
  3151. break;
  3152. }
  3153. }
  3154. if (pin_number > -1) {
  3155. int target = LOW;
  3156. st_synchronize();
  3157. pinMode(pin_number, INPUT);
  3158. switch(pin_state){
  3159. case 1:
  3160. target = HIGH;
  3161. break;
  3162. case 0:
  3163. target = LOW;
  3164. break;
  3165. case -1:
  3166. target = !digitalRead(pin_number);
  3167. break;
  3168. }
  3169. while(digitalRead(pin_number) != target) {
  3170. manage_heater();
  3171. manage_inactivity();
  3172. lcd_update();
  3173. }
  3174. } // pin_number > -1
  3175. } // pin_state -1 0 1
  3176. } // code_seen('P')
  3177. }
  3178. #if NUM_SERVOS > 0
  3179. /**
  3180. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3181. */
  3182. inline void gcode_M280() {
  3183. int servo_index = code_seen('P') ? code_value() : -1;
  3184. int servo_position = 0;
  3185. if (code_seen('S')) {
  3186. servo_position = code_value();
  3187. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3188. #if SERVO_LEVELING
  3189. servos[servo_index].attach(0);
  3190. #endif
  3191. servos[servo_index].write(servo_position);
  3192. #if SERVO_LEVELING
  3193. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3194. servos[servo_index].detach();
  3195. #endif
  3196. }
  3197. else {
  3198. SERIAL_ECHO_START;
  3199. SERIAL_ECHO("Servo ");
  3200. SERIAL_ECHO(servo_index);
  3201. SERIAL_ECHOLN(" out of range");
  3202. }
  3203. }
  3204. else if (servo_index >= 0) {
  3205. SERIAL_PROTOCOL(MSG_OK);
  3206. SERIAL_PROTOCOL(" Servo ");
  3207. SERIAL_PROTOCOL(servo_index);
  3208. SERIAL_PROTOCOL(": ");
  3209. SERIAL_PROTOCOL(servos[servo_index].read());
  3210. SERIAL_PROTOCOLLN("");
  3211. }
  3212. }
  3213. #endif // NUM_SERVOS > 0
  3214. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3215. /**
  3216. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3217. */
  3218. inline void gcode_M300() {
  3219. int beepS = code_seen('S') ? code_value() : 110;
  3220. int beepP = code_seen('P') ? code_value() : 1000;
  3221. if (beepS > 0) {
  3222. #if BEEPER > 0
  3223. tone(BEEPER, beepS);
  3224. delay(beepP);
  3225. noTone(BEEPER);
  3226. #elif defined(ULTRALCD)
  3227. lcd_buzz(beepS, beepP);
  3228. #elif defined(LCD_USE_I2C_BUZZER)
  3229. lcd_buzz(beepP, beepS);
  3230. #endif
  3231. }
  3232. else {
  3233. delay(beepP);
  3234. }
  3235. }
  3236. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3237. #ifdef PIDTEMP
  3238. /**
  3239. * M301: Set PID parameters P I D (and optionally C)
  3240. */
  3241. inline void gcode_M301() {
  3242. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3243. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3244. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3245. if (e < EXTRUDERS) { // catch bad input value
  3246. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3247. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3248. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3249. #ifdef PID_ADD_EXTRUSION_RATE
  3250. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3251. #endif
  3252. updatePID();
  3253. SERIAL_PROTOCOL(MSG_OK);
  3254. #ifdef PID_PARAMS_PER_EXTRUDER
  3255. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3256. SERIAL_PROTOCOL(e);
  3257. #endif // PID_PARAMS_PER_EXTRUDER
  3258. SERIAL_PROTOCOL(" p:");
  3259. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3260. SERIAL_PROTOCOL(" i:");
  3261. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3262. SERIAL_PROTOCOL(" d:");
  3263. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3264. #ifdef PID_ADD_EXTRUSION_RATE
  3265. SERIAL_PROTOCOL(" c:");
  3266. //Kc does not have scaling applied above, or in resetting defaults
  3267. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3268. #endif
  3269. SERIAL_PROTOCOLLN("");
  3270. }
  3271. else {
  3272. SERIAL_ECHO_START;
  3273. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3274. }
  3275. }
  3276. #endif // PIDTEMP
  3277. #ifdef PIDTEMPBED
  3278. inline void gcode_M304() {
  3279. if (code_seen('P')) bedKp = code_value();
  3280. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3281. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3282. updatePID();
  3283. SERIAL_PROTOCOL(MSG_OK);
  3284. SERIAL_PROTOCOL(" p:");
  3285. SERIAL_PROTOCOL(bedKp);
  3286. SERIAL_PROTOCOL(" i:");
  3287. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3288. SERIAL_PROTOCOL(" d:");
  3289. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3290. SERIAL_PROTOCOLLN("");
  3291. }
  3292. #endif // PIDTEMPBED
  3293. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3294. /**
  3295. * M240: Trigger a camera by emulating a Canon RC-1
  3296. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3297. */
  3298. inline void gcode_M240() {
  3299. #ifdef CHDK
  3300. OUT_WRITE(CHDK, HIGH);
  3301. chdkHigh = millis();
  3302. chdkActive = true;
  3303. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3304. const uint8_t NUM_PULSES = 16;
  3305. const float PULSE_LENGTH = 0.01524;
  3306. for (int i = 0; i < NUM_PULSES; i++) {
  3307. WRITE(PHOTOGRAPH_PIN, HIGH);
  3308. _delay_ms(PULSE_LENGTH);
  3309. WRITE(PHOTOGRAPH_PIN, LOW);
  3310. _delay_ms(PULSE_LENGTH);
  3311. }
  3312. delay(7.33);
  3313. for (int i = 0; i < NUM_PULSES; i++) {
  3314. WRITE(PHOTOGRAPH_PIN, HIGH);
  3315. _delay_ms(PULSE_LENGTH);
  3316. WRITE(PHOTOGRAPH_PIN, LOW);
  3317. _delay_ms(PULSE_LENGTH);
  3318. }
  3319. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3320. }
  3321. #endif // CHDK || PHOTOGRAPH_PIN
  3322. #ifdef DOGLCD
  3323. /**
  3324. * M250: Read and optionally set the LCD contrast
  3325. */
  3326. inline void gcode_M250() {
  3327. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3328. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3329. SERIAL_PROTOCOL(lcd_contrast);
  3330. SERIAL_PROTOCOLLN("");
  3331. }
  3332. #endif // DOGLCD
  3333. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3334. /**
  3335. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3336. */
  3337. inline void gcode_M302() {
  3338. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3339. }
  3340. #endif // PREVENT_DANGEROUS_EXTRUDE
  3341. /**
  3342. * M303: PID relay autotune
  3343. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3344. * E<extruder> (-1 for the bed)
  3345. * C<cycles>
  3346. */
  3347. inline void gcode_M303() {
  3348. int e = code_seen('E') ? code_value_long() : 0;
  3349. int c = code_seen('C') ? code_value_long() : 5;
  3350. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3351. PID_autotune(temp, e, c);
  3352. }
  3353. #ifdef SCARA
  3354. /**
  3355. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3356. */
  3357. inline bool gcode_M360() {
  3358. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3359. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3360. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3361. if (! Stopped) {
  3362. //get_coordinates(); // For X Y Z E F
  3363. delta[X_AXIS] = 0;
  3364. delta[Y_AXIS] = 120;
  3365. calculate_SCARA_forward_Transform(delta);
  3366. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3367. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3368. prepare_move();
  3369. //ClearToSend();
  3370. return true;
  3371. }
  3372. return false;
  3373. }
  3374. /**
  3375. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3376. */
  3377. inline bool gcode_M361() {
  3378. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3379. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3380. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3381. if (! Stopped) {
  3382. //get_coordinates(); // For X Y Z E F
  3383. delta[X_AXIS] = 90;
  3384. delta[Y_AXIS] = 130;
  3385. calculate_SCARA_forward_Transform(delta);
  3386. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3387. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3388. prepare_move();
  3389. //ClearToSend();
  3390. return true;
  3391. }
  3392. return false;
  3393. }
  3394. /**
  3395. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3396. */
  3397. inline bool gcode_M362() {
  3398. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3399. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3400. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3401. if (! Stopped) {
  3402. //get_coordinates(); // For X Y Z E F
  3403. delta[X_AXIS] = 60;
  3404. delta[Y_AXIS] = 180;
  3405. calculate_SCARA_forward_Transform(delta);
  3406. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3407. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3408. prepare_move();
  3409. //ClearToSend();
  3410. return true;
  3411. }
  3412. return false;
  3413. }
  3414. /**
  3415. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3416. */
  3417. inline bool gcode_M363() {
  3418. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3419. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3420. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3421. if (! Stopped) {
  3422. //get_coordinates(); // For X Y Z E F
  3423. delta[X_AXIS] = 50;
  3424. delta[Y_AXIS] = 90;
  3425. calculate_SCARA_forward_Transform(delta);
  3426. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3427. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3428. prepare_move();
  3429. //ClearToSend();
  3430. return true;
  3431. }
  3432. return false;
  3433. }
  3434. /**
  3435. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3436. */
  3437. inline bool gcode_M364() {
  3438. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3439. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3440. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3441. if (! Stopped) {
  3442. //get_coordinates(); // For X Y Z E F
  3443. delta[X_AXIS] = 45;
  3444. delta[Y_AXIS] = 135;
  3445. calculate_SCARA_forward_Transform(delta);
  3446. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3447. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3448. prepare_move();
  3449. //ClearToSend();
  3450. return true;
  3451. }
  3452. return false;
  3453. }
  3454. /**
  3455. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3456. */
  3457. inline void gcode_M365() {
  3458. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3459. if (code_seen(axis_codes[i])) {
  3460. axis_scaling[i] = code_value();
  3461. }
  3462. }
  3463. }
  3464. #endif // SCARA
  3465. #ifdef EXT_SOLENOID
  3466. void enable_solenoid(uint8_t num) {
  3467. switch(num) {
  3468. case 0:
  3469. OUT_WRITE(SOL0_PIN, HIGH);
  3470. break;
  3471. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3472. case 1:
  3473. OUT_WRITE(SOL1_PIN, HIGH);
  3474. break;
  3475. #endif
  3476. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3477. case 2:
  3478. OUT_WRITE(SOL2_PIN, HIGH);
  3479. break;
  3480. #endif
  3481. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3482. case 3:
  3483. OUT_WRITE(SOL3_PIN, HIGH);
  3484. break;
  3485. #endif
  3486. default:
  3487. SERIAL_ECHO_START;
  3488. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3489. break;
  3490. }
  3491. }
  3492. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3493. void disable_all_solenoids() {
  3494. OUT_WRITE(SOL0_PIN, LOW);
  3495. OUT_WRITE(SOL1_PIN, LOW);
  3496. OUT_WRITE(SOL2_PIN, LOW);
  3497. OUT_WRITE(SOL3_PIN, LOW);
  3498. }
  3499. /**
  3500. * M380: Enable solenoid on the active extruder
  3501. */
  3502. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3503. /**
  3504. * M381: Disable all solenoids
  3505. */
  3506. inline void gcode_M381() { disable_all_solenoids(); }
  3507. #endif // EXT_SOLENOID
  3508. /**
  3509. * M400: Finish all moves
  3510. */
  3511. inline void gcode_M400() { st_synchronize(); }
  3512. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3513. /**
  3514. * M401: Engage Z Servo endstop if available
  3515. */
  3516. inline void gcode_M401() { engage_z_probe(); }
  3517. /**
  3518. * M402: Retract Z Servo endstop if enabled
  3519. */
  3520. inline void gcode_M402() { retract_z_probe(); }
  3521. #endif
  3522. #ifdef FILAMENT_SENSOR
  3523. /**
  3524. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3525. */
  3526. inline void gcode_M404() {
  3527. #if FILWIDTH_PIN > -1
  3528. if (code_seen('N')) {
  3529. filament_width_nominal = code_value();
  3530. }
  3531. else {
  3532. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3533. SERIAL_PROTOCOLLN(filament_width_nominal);
  3534. }
  3535. #endif
  3536. }
  3537. /**
  3538. * M405: Turn on filament sensor for control
  3539. */
  3540. inline void gcode_M405() {
  3541. if (code_seen('D')) meas_delay_cm = code_value();
  3542. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3543. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3544. int temp_ratio = widthFil_to_size_ratio();
  3545. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3546. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3547. delay_index1 = delay_index2 = 0;
  3548. }
  3549. filament_sensor = true;
  3550. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3551. //SERIAL_PROTOCOL(filament_width_meas);
  3552. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3553. //SERIAL_PROTOCOL(extrudemultiply);
  3554. }
  3555. /**
  3556. * M406: Turn off filament sensor for control
  3557. */
  3558. inline void gcode_M406() { filament_sensor = false; }
  3559. /**
  3560. * M407: Get measured filament diameter on serial output
  3561. */
  3562. inline void gcode_M407() {
  3563. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3564. SERIAL_PROTOCOLLN(filament_width_meas);
  3565. }
  3566. #endif // FILAMENT_SENSOR
  3567. /**
  3568. * M500: Store settings in EEPROM
  3569. */
  3570. inline void gcode_M500() {
  3571. Config_StoreSettings();
  3572. }
  3573. /**
  3574. * M501: Read settings from EEPROM
  3575. */
  3576. inline void gcode_M501() {
  3577. Config_RetrieveSettings();
  3578. }
  3579. /**
  3580. * M502: Revert to default settings
  3581. */
  3582. inline void gcode_M502() {
  3583. Config_ResetDefault();
  3584. }
  3585. /**
  3586. * M503: print settings currently in memory
  3587. */
  3588. inline void gcode_M503() {
  3589. Config_PrintSettings(code_seen('S') && code_value == 0);
  3590. }
  3591. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3592. /**
  3593. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3594. */
  3595. inline void gcode_M540() {
  3596. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3597. }
  3598. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3599. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3600. inline void gcode_SET_Z_PROBE_OFFSET() {
  3601. float value;
  3602. if (code_seen('Z')) {
  3603. value = code_value();
  3604. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3605. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3606. SERIAL_ECHO_START;
  3607. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3608. SERIAL_PROTOCOLLN("");
  3609. }
  3610. else {
  3611. SERIAL_ECHO_START;
  3612. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3613. SERIAL_ECHOPGM(MSG_Z_MIN);
  3614. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3615. SERIAL_ECHOPGM(MSG_Z_MAX);
  3616. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3617. SERIAL_PROTOCOLLN("");
  3618. }
  3619. }
  3620. else {
  3621. SERIAL_ECHO_START;
  3622. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3623. SERIAL_ECHO(-zprobe_zoffset);
  3624. SERIAL_PROTOCOLLN("");
  3625. }
  3626. }
  3627. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3628. #ifdef FILAMENTCHANGEENABLE
  3629. /**
  3630. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3631. */
  3632. inline void gcode_M600() {
  3633. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3634. for (int i=0; i<NUM_AXIS; i++)
  3635. target[i] = lastpos[i] = current_position[i];
  3636. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3637. #ifdef DELTA
  3638. #define RUNPLAN calculate_delta(target); BASICPLAN
  3639. #else
  3640. #define RUNPLAN BASICPLAN
  3641. #endif
  3642. //retract by E
  3643. if (code_seen('E')) target[E_AXIS] += code_value();
  3644. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3645. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3646. #endif
  3647. RUNPLAN;
  3648. //lift Z
  3649. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3650. #ifdef FILAMENTCHANGE_ZADD
  3651. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3652. #endif
  3653. RUNPLAN;
  3654. //move xy
  3655. if (code_seen('X')) target[X_AXIS] = code_value();
  3656. #ifdef FILAMENTCHANGE_XPOS
  3657. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3658. #endif
  3659. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3660. #ifdef FILAMENTCHANGE_YPOS
  3661. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3662. #endif
  3663. RUNPLAN;
  3664. if (code_seen('L')) target[E_AXIS] += code_value();
  3665. #ifdef FILAMENTCHANGE_FINALRETRACT
  3666. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3667. #endif
  3668. RUNPLAN;
  3669. //finish moves
  3670. st_synchronize();
  3671. //disable extruder steppers so filament can be removed
  3672. disable_e0();
  3673. disable_e1();
  3674. disable_e2();
  3675. disable_e3();
  3676. delay(100);
  3677. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3678. uint8_t cnt = 0;
  3679. while (!lcd_clicked()) {
  3680. cnt++;
  3681. manage_heater();
  3682. manage_inactivity(true);
  3683. lcd_update();
  3684. if (cnt == 0) {
  3685. #if BEEPER > 0
  3686. OUT_WRITE(BEEPER,HIGH);
  3687. delay(3);
  3688. WRITE(BEEPER,LOW);
  3689. delay(3);
  3690. #else
  3691. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3692. lcd_buzz(1000/6, 100);
  3693. #else
  3694. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3695. #endif
  3696. #endif
  3697. }
  3698. } // while(!lcd_clicked)
  3699. //return to normal
  3700. if (code_seen('L')) target[E_AXIS] -= code_value();
  3701. #ifdef FILAMENTCHANGE_FINALRETRACT
  3702. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3703. #endif
  3704. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3705. plan_set_e_position(current_position[E_AXIS]);
  3706. RUNPLAN; //should do nothing
  3707. lcd_reset_alert_level();
  3708. #ifdef DELTA
  3709. calculate_delta(lastpos);
  3710. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3711. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3712. #else
  3713. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3714. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3715. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3716. #endif
  3717. }
  3718. #endif // FILAMENTCHANGEENABLE
  3719. #ifdef DUAL_X_CARRIAGE
  3720. /**
  3721. * M605: Set dual x-carriage movement mode
  3722. *
  3723. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3724. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3725. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3726. * millimeters x-offset and an optional differential hotend temperature of
  3727. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3728. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3729. *
  3730. * Note: the X axis should be homed after changing dual x-carriage mode.
  3731. */
  3732. inline void gcode_M605() {
  3733. st_synchronize();
  3734. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3735. switch(dual_x_carriage_mode) {
  3736. case DXC_DUPLICATION_MODE:
  3737. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3738. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3739. SERIAL_ECHO_START;
  3740. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3741. SERIAL_ECHO(" ");
  3742. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3743. SERIAL_ECHO(",");
  3744. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3745. SERIAL_ECHO(" ");
  3746. SERIAL_ECHO(duplicate_extruder_x_offset);
  3747. SERIAL_ECHO(",");
  3748. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3749. break;
  3750. case DXC_FULL_CONTROL_MODE:
  3751. case DXC_AUTO_PARK_MODE:
  3752. break;
  3753. default:
  3754. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3755. break;
  3756. }
  3757. active_extruder_parked = false;
  3758. extruder_duplication_enabled = false;
  3759. delayed_move_time = 0;
  3760. }
  3761. #endif // DUAL_X_CARRIAGE
  3762. /**
  3763. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3764. */
  3765. inline void gcode_M907() {
  3766. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3767. for (int i=0;i<NUM_AXIS;i++)
  3768. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3769. if (code_seen('B')) digipot_current(4, code_value());
  3770. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3771. #endif
  3772. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3773. if (code_seen('X')) digipot_current(0, code_value());
  3774. #endif
  3775. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3776. if (code_seen('Z')) digipot_current(1, code_value());
  3777. #endif
  3778. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3779. if (code_seen('E')) digipot_current(2, code_value());
  3780. #endif
  3781. #ifdef DIGIPOT_I2C
  3782. // this one uses actual amps in floating point
  3783. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3784. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3785. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3786. #endif
  3787. }
  3788. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3789. /**
  3790. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3791. */
  3792. inline void gcode_M908() {
  3793. digitalPotWrite(
  3794. code_seen('P') ? code_value() : 0,
  3795. code_seen('S') ? code_value() : 0
  3796. );
  3797. }
  3798. #endif // DIGIPOTSS_PIN
  3799. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3800. inline void gcode_M350() {
  3801. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3802. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3803. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3804. if(code_seen('B')) microstep_mode(4,code_value());
  3805. microstep_readings();
  3806. #endif
  3807. }
  3808. /**
  3809. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3810. * S# determines MS1 or MS2, X# sets the pin high/low.
  3811. */
  3812. inline void gcode_M351() {
  3813. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3814. if (code_seen('S')) switch((int)code_value()) {
  3815. case 1:
  3816. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3817. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3818. break;
  3819. case 2:
  3820. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3821. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3822. break;
  3823. }
  3824. microstep_readings();
  3825. #endif
  3826. }
  3827. /**
  3828. * M999: Restart after being stopped
  3829. */
  3830. inline void gcode_M999() {
  3831. Stopped = false;
  3832. lcd_reset_alert_level();
  3833. gcode_LastN = Stopped_gcode_LastN;
  3834. FlushSerialRequestResend();
  3835. }
  3836. inline void gcode_T() {
  3837. tmp_extruder = code_value();
  3838. if (tmp_extruder >= EXTRUDERS) {
  3839. SERIAL_ECHO_START;
  3840. SERIAL_ECHO("T");
  3841. SERIAL_ECHO(tmp_extruder);
  3842. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3843. }
  3844. else {
  3845. boolean make_move = false;
  3846. if (code_seen('F')) {
  3847. make_move = true;
  3848. next_feedrate = code_value();
  3849. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3850. }
  3851. #if EXTRUDERS > 1
  3852. if (tmp_extruder != active_extruder) {
  3853. // Save current position to return to after applying extruder offset
  3854. memcpy(destination, current_position, sizeof(destination));
  3855. #ifdef DUAL_X_CARRIAGE
  3856. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3857. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3858. // Park old head: 1) raise 2) move to park position 3) lower
  3859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3860. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3861. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3862. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3863. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3864. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3865. st_synchronize();
  3866. }
  3867. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3868. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3869. extruder_offset[Y_AXIS][active_extruder] +
  3870. extruder_offset[Y_AXIS][tmp_extruder];
  3871. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3872. extruder_offset[Z_AXIS][active_extruder] +
  3873. extruder_offset[Z_AXIS][tmp_extruder];
  3874. active_extruder = tmp_extruder;
  3875. // This function resets the max/min values - the current position may be overwritten below.
  3876. axis_is_at_home(X_AXIS);
  3877. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3878. current_position[X_AXIS] = inactive_extruder_x_pos;
  3879. inactive_extruder_x_pos = destination[X_AXIS];
  3880. }
  3881. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3882. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3883. if (active_extruder == 0 || active_extruder_parked)
  3884. current_position[X_AXIS] = inactive_extruder_x_pos;
  3885. else
  3886. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3887. inactive_extruder_x_pos = destination[X_AXIS];
  3888. extruder_duplication_enabled = false;
  3889. }
  3890. else {
  3891. // record raised toolhead position for use by unpark
  3892. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3893. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3894. active_extruder_parked = true;
  3895. delayed_move_time = 0;
  3896. }
  3897. #else // !DUAL_X_CARRIAGE
  3898. // Offset extruder (only by XY)
  3899. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3900. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3901. // Set the new active extruder and position
  3902. active_extruder = tmp_extruder;
  3903. #endif // !DUAL_X_CARRIAGE
  3904. #ifdef DELTA
  3905. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3906. //sent position to plan_set_position();
  3907. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3908. #else
  3909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3910. #endif
  3911. // Move to the old position if 'F' was in the parameters
  3912. if (make_move && !Stopped) prepare_move();
  3913. }
  3914. #ifdef EXT_SOLENOID
  3915. st_synchronize();
  3916. disable_all_solenoids();
  3917. enable_solenoid_on_active_extruder();
  3918. #endif // EXT_SOLENOID
  3919. #endif // EXTRUDERS > 1
  3920. SERIAL_ECHO_START;
  3921. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3922. SERIAL_PROTOCOLLN((int)active_extruder);
  3923. }
  3924. }
  3925. /**
  3926. * Process Commands and dispatch them to handlers
  3927. */
  3928. void process_commands() {
  3929. if (code_seen('G')) {
  3930. int gCode = code_value_long();
  3931. switch(gCode) {
  3932. // G0, G1
  3933. case 0:
  3934. case 1:
  3935. gcode_G0_G1();
  3936. break;
  3937. // G2, G3
  3938. #ifndef SCARA
  3939. case 2: // G2 - CW ARC
  3940. case 3: // G3 - CCW ARC
  3941. gcode_G2_G3(gCode == 2);
  3942. break;
  3943. #endif
  3944. // G4 Dwell
  3945. case 4:
  3946. gcode_G4();
  3947. break;
  3948. #ifdef FWRETRACT
  3949. case 10: // G10: retract
  3950. case 11: // G11: retract_recover
  3951. gcode_G10_G11(gCode == 10);
  3952. break;
  3953. #endif //FWRETRACT
  3954. case 28: // G28: Home all axes, one at a time
  3955. gcode_G28();
  3956. break;
  3957. #ifdef ENABLE_AUTO_BED_LEVELING
  3958. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3959. gcode_G29();
  3960. break;
  3961. #ifndef Z_PROBE_SLED
  3962. case 30: // G30 Single Z Probe
  3963. gcode_G30();
  3964. break;
  3965. #else // Z_PROBE_SLED
  3966. case 31: // G31: dock the sled
  3967. case 32: // G32: undock the sled
  3968. dock_sled(gCode == 31);
  3969. break;
  3970. #endif // Z_PROBE_SLED
  3971. #endif // ENABLE_AUTO_BED_LEVELING
  3972. case 90: // G90
  3973. relative_mode = false;
  3974. break;
  3975. case 91: // G91
  3976. relative_mode = true;
  3977. break;
  3978. case 92: // G92
  3979. gcode_G92();
  3980. break;
  3981. }
  3982. }
  3983. else if (code_seen('M')) {
  3984. switch( (int)code_value() ) {
  3985. #ifdef ULTIPANEL
  3986. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3987. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3988. gcode_M0_M1();
  3989. break;
  3990. #endif // ULTIPANEL
  3991. case 17:
  3992. gcode_M17();
  3993. break;
  3994. #ifdef SDSUPPORT
  3995. case 20: // M20 - list SD card
  3996. gcode_M20(); break;
  3997. case 21: // M21 - init SD card
  3998. gcode_M21(); break;
  3999. case 22: //M22 - release SD card
  4000. gcode_M22(); break;
  4001. case 23: //M23 - Select file
  4002. gcode_M23(); break;
  4003. case 24: //M24 - Start SD print
  4004. gcode_M24(); break;
  4005. case 25: //M25 - Pause SD print
  4006. gcode_M25(); break;
  4007. case 26: //M26 - Set SD index
  4008. gcode_M26(); break;
  4009. case 27: //M27 - Get SD status
  4010. gcode_M27(); break;
  4011. case 28: //M28 - Start SD write
  4012. gcode_M28(); break;
  4013. case 29: //M29 - Stop SD write
  4014. gcode_M29(); break;
  4015. case 30: //M30 <filename> Delete File
  4016. gcode_M30(); break;
  4017. case 32: //M32 - Select file and start SD print
  4018. gcode_M32(); break;
  4019. case 928: //M928 - Start SD write
  4020. gcode_M928(); break;
  4021. #endif //SDSUPPORT
  4022. case 31: //M31 take time since the start of the SD print or an M109 command
  4023. gcode_M31();
  4024. break;
  4025. case 42: //M42 -Change pin status via gcode
  4026. gcode_M42();
  4027. break;
  4028. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4029. case 48: // M48 Z-Probe repeatability
  4030. gcode_M48();
  4031. break;
  4032. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4033. case 104: // M104
  4034. gcode_M104();
  4035. break;
  4036. case 112: // M112 Emergency Stop
  4037. gcode_M112();
  4038. break;
  4039. case 140: // M140 Set bed temp
  4040. gcode_M140();
  4041. break;
  4042. case 105: // M105 Read current temperature
  4043. gcode_M105();
  4044. return;
  4045. break;
  4046. case 109: // M109 Wait for temperature
  4047. gcode_M109();
  4048. break;
  4049. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4050. case 190: // M190 - Wait for bed heater to reach target.
  4051. gcode_M190();
  4052. break;
  4053. #endif //TEMP_BED_PIN
  4054. #if defined(FAN_PIN) && FAN_PIN > -1
  4055. case 106: //M106 Fan On
  4056. gcode_M106();
  4057. break;
  4058. case 107: //M107 Fan Off
  4059. gcode_M107();
  4060. break;
  4061. #endif //FAN_PIN
  4062. #ifdef BARICUDA
  4063. // PWM for HEATER_1_PIN
  4064. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4065. case 126: // M126 valve open
  4066. gcode_M126();
  4067. break;
  4068. case 127: // M127 valve closed
  4069. gcode_M127();
  4070. break;
  4071. #endif //HEATER_1_PIN
  4072. // PWM for HEATER_2_PIN
  4073. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4074. case 128: // M128 valve open
  4075. gcode_M128();
  4076. break;
  4077. case 129: // M129 valve closed
  4078. gcode_M129();
  4079. break;
  4080. #endif //HEATER_2_PIN
  4081. #endif //BARICUDA
  4082. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4083. case 80: // M80 - Turn on Power Supply
  4084. gcode_M80();
  4085. break;
  4086. #endif // PS_ON_PIN
  4087. case 81: // M81 - Turn off Power Supply
  4088. gcode_M81();
  4089. break;
  4090. case 82:
  4091. gcode_M82();
  4092. break;
  4093. case 83:
  4094. gcode_M83();
  4095. break;
  4096. case 18: //compatibility
  4097. case 84: // M84
  4098. gcode_M18_M84();
  4099. break;
  4100. case 85: // M85
  4101. gcode_M85();
  4102. break;
  4103. case 92: // M92
  4104. gcode_M92();
  4105. break;
  4106. case 115: // M115
  4107. gcode_M115();
  4108. break;
  4109. case 117: // M117 display message
  4110. gcode_M117();
  4111. break;
  4112. case 114: // M114
  4113. gcode_M114();
  4114. break;
  4115. case 120: // M120
  4116. gcode_M120();
  4117. break;
  4118. case 121: // M121
  4119. gcode_M121();
  4120. break;
  4121. case 119: // M119
  4122. gcode_M119();
  4123. break;
  4124. //TODO: update for all axis, use for loop
  4125. #ifdef BLINKM
  4126. case 150: // M150
  4127. gcode_M150();
  4128. break;
  4129. #endif //BLINKM
  4130. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4131. gcode_M200();
  4132. break;
  4133. case 201: // M201
  4134. gcode_M201();
  4135. break;
  4136. #if 0 // Not used for Sprinter/grbl gen6
  4137. case 202: // M202
  4138. gcode_M202();
  4139. break;
  4140. #endif
  4141. case 203: // M203 max feedrate mm/sec
  4142. gcode_M203();
  4143. break;
  4144. case 204: // M204 acclereration S normal moves T filmanent only moves
  4145. gcode_M204();
  4146. break;
  4147. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4148. gcode_M205();
  4149. break;
  4150. case 206: // M206 additional homing offset
  4151. gcode_M206();
  4152. break;
  4153. #ifdef DELTA
  4154. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4155. gcode_M665();
  4156. break;
  4157. case 666: // M666 set delta endstop adjustment
  4158. gcode_M666();
  4159. break;
  4160. #endif // DELTA
  4161. #ifdef FWRETRACT
  4162. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4163. gcode_M207();
  4164. break;
  4165. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4166. gcode_M208();
  4167. break;
  4168. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4169. gcode_M209();
  4170. break;
  4171. #endif // FWRETRACT
  4172. #if EXTRUDERS > 1
  4173. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4174. gcode_M218();
  4175. break;
  4176. #endif
  4177. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4178. gcode_M220();
  4179. break;
  4180. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4181. gcode_M221();
  4182. break;
  4183. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4184. gcode_M226();
  4185. break;
  4186. #if NUM_SERVOS > 0
  4187. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4188. gcode_M280();
  4189. break;
  4190. #endif // NUM_SERVOS > 0
  4191. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4192. case 300: // M300 - Play beep tone
  4193. gcode_M300();
  4194. break;
  4195. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4196. #ifdef PIDTEMP
  4197. case 301: // M301
  4198. gcode_M301();
  4199. break;
  4200. #endif // PIDTEMP
  4201. #ifdef PIDTEMPBED
  4202. case 304: // M304
  4203. gcode_M304();
  4204. break;
  4205. #endif // PIDTEMPBED
  4206. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4207. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4208. gcode_M240();
  4209. break;
  4210. #endif // CHDK || PHOTOGRAPH_PIN
  4211. #ifdef DOGLCD
  4212. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4213. gcode_M250();
  4214. break;
  4215. #endif // DOGLCD
  4216. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4217. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4218. gcode_M302();
  4219. break;
  4220. #endif // PREVENT_DANGEROUS_EXTRUDE
  4221. case 303: // M303 PID autotune
  4222. gcode_M303();
  4223. break;
  4224. #ifdef SCARA
  4225. case 360: // M360 SCARA Theta pos1
  4226. if (gcode_M360()) return;
  4227. break;
  4228. case 361: // M361 SCARA Theta pos2
  4229. if (gcode_M361()) return;
  4230. break;
  4231. case 362: // M362 SCARA Psi pos1
  4232. if (gcode_M362()) return;
  4233. break;
  4234. case 363: // M363 SCARA Psi pos2
  4235. if (gcode_M363()) return;
  4236. break;
  4237. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4238. if (gcode_M364()) return;
  4239. break;
  4240. case 365: // M365 Set SCARA scaling for X Y Z
  4241. gcode_M365();
  4242. break;
  4243. #endif // SCARA
  4244. case 400: // M400 finish all moves
  4245. gcode_M400();
  4246. break;
  4247. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4248. case 401:
  4249. gcode_M401();
  4250. break;
  4251. case 402:
  4252. gcode_M402();
  4253. break;
  4254. #endif
  4255. #ifdef FILAMENT_SENSOR
  4256. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4257. gcode_M404();
  4258. break;
  4259. case 405: //M405 Turn on filament sensor for control
  4260. gcode_M405();
  4261. break;
  4262. case 406: //M406 Turn off filament sensor for control
  4263. gcode_M406();
  4264. break;
  4265. case 407: //M407 Display measured filament diameter
  4266. gcode_M407();
  4267. break;
  4268. #endif // FILAMENT_SENSOR
  4269. case 500: // M500 Store settings in EEPROM
  4270. gcode_M500();
  4271. break;
  4272. case 501: // M501 Read settings from EEPROM
  4273. gcode_M501();
  4274. break;
  4275. case 502: // M502 Revert to default settings
  4276. gcode_M502();
  4277. break;
  4278. case 503: // M503 print settings currently in memory
  4279. gcode_M503();
  4280. break;
  4281. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4282. case 540:
  4283. gcode_M540();
  4284. break;
  4285. #endif
  4286. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4287. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4288. gcode_SET_Z_PROBE_OFFSET();
  4289. break;
  4290. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4291. #ifdef FILAMENTCHANGEENABLE
  4292. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4293. gcode_M600();
  4294. break;
  4295. #endif // FILAMENTCHANGEENABLE
  4296. #ifdef DUAL_X_CARRIAGE
  4297. case 605:
  4298. gcode_M605();
  4299. break;
  4300. #endif // DUAL_X_CARRIAGE
  4301. case 907: // M907 Set digital trimpot motor current using axis codes.
  4302. gcode_M907();
  4303. break;
  4304. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4305. case 908: // M908 Control digital trimpot directly.
  4306. gcode_M908();
  4307. break;
  4308. #endif // DIGIPOTSS_PIN
  4309. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4310. gcode_M350();
  4311. break;
  4312. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4313. gcode_M351();
  4314. break;
  4315. case 999: // M999: Restart after being Stopped
  4316. gcode_M999();
  4317. break;
  4318. }
  4319. }
  4320. else if (code_seen('T')) {
  4321. gcode_T();
  4322. }
  4323. else {
  4324. SERIAL_ECHO_START;
  4325. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4326. SERIAL_ECHO(cmdbuffer[bufindr]);
  4327. SERIAL_ECHOLNPGM("\"");
  4328. }
  4329. ClearToSend();
  4330. }
  4331. void FlushSerialRequestResend()
  4332. {
  4333. //char cmdbuffer[bufindr][100]="Resend:";
  4334. MYSERIAL.flush();
  4335. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4336. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4337. ClearToSend();
  4338. }
  4339. void ClearToSend()
  4340. {
  4341. previous_millis_cmd = millis();
  4342. #ifdef SDSUPPORT
  4343. if(fromsd[bufindr])
  4344. return;
  4345. #endif //SDSUPPORT
  4346. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4347. }
  4348. void get_coordinates()
  4349. {
  4350. bool seen[4]={false,false,false,false};
  4351. for(int8_t i=0; i < NUM_AXIS; i++) {
  4352. if(code_seen(axis_codes[i]))
  4353. {
  4354. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4355. seen[i]=true;
  4356. }
  4357. else destination[i] = current_position[i]; //Are these else lines really needed?
  4358. }
  4359. if(code_seen('F')) {
  4360. next_feedrate = code_value();
  4361. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4362. }
  4363. }
  4364. void get_arc_coordinates()
  4365. {
  4366. #ifdef SF_ARC_FIX
  4367. bool relative_mode_backup = relative_mode;
  4368. relative_mode = true;
  4369. #endif
  4370. get_coordinates();
  4371. #ifdef SF_ARC_FIX
  4372. relative_mode=relative_mode_backup;
  4373. #endif
  4374. if(code_seen('I')) {
  4375. offset[0] = code_value();
  4376. }
  4377. else {
  4378. offset[0] = 0.0;
  4379. }
  4380. if(code_seen('J')) {
  4381. offset[1] = code_value();
  4382. }
  4383. else {
  4384. offset[1] = 0.0;
  4385. }
  4386. }
  4387. void clamp_to_software_endstops(float target[3])
  4388. {
  4389. if (min_software_endstops) {
  4390. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4391. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4392. float negative_z_offset = 0;
  4393. #ifdef ENABLE_AUTO_BED_LEVELING
  4394. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4395. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4396. #endif
  4397. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4398. }
  4399. if (max_software_endstops) {
  4400. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4401. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4402. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4403. }
  4404. }
  4405. #ifdef DELTA
  4406. void recalc_delta_settings(float radius, float diagonal_rod)
  4407. {
  4408. delta_tower1_x= -SIN_60*radius; // front left tower
  4409. delta_tower1_y= -COS_60*radius;
  4410. delta_tower2_x= SIN_60*radius; // front right tower
  4411. delta_tower2_y= -COS_60*radius;
  4412. delta_tower3_x= 0.0; // back middle tower
  4413. delta_tower3_y= radius;
  4414. delta_diagonal_rod_2= sq(diagonal_rod);
  4415. }
  4416. void calculate_delta(float cartesian[3])
  4417. {
  4418. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4419. - sq(delta_tower1_x-cartesian[X_AXIS])
  4420. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4421. ) + cartesian[Z_AXIS];
  4422. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4423. - sq(delta_tower2_x-cartesian[X_AXIS])
  4424. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4425. ) + cartesian[Z_AXIS];
  4426. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4427. - sq(delta_tower3_x-cartesian[X_AXIS])
  4428. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4429. ) + cartesian[Z_AXIS];
  4430. /*
  4431. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4432. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4433. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4434. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4435. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4436. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4437. */
  4438. }
  4439. #ifdef ENABLE_AUTO_BED_LEVELING
  4440. // Adjust print surface height by linear interpolation over the bed_level array.
  4441. int delta_grid_spacing[2] = { 0, 0 };
  4442. void adjust_delta(float cartesian[3])
  4443. {
  4444. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4445. return; // G29 not done
  4446. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4447. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4448. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4449. int floor_x = floor(grid_x);
  4450. int floor_y = floor(grid_y);
  4451. float ratio_x = grid_x - floor_x;
  4452. float ratio_y = grid_y - floor_y;
  4453. float z1 = bed_level[floor_x+half][floor_y+half];
  4454. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4455. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4456. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4457. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4458. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4459. float offset = (1-ratio_x)*left + ratio_x*right;
  4460. delta[X_AXIS] += offset;
  4461. delta[Y_AXIS] += offset;
  4462. delta[Z_AXIS] += offset;
  4463. /*
  4464. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4465. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4466. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4467. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4468. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4469. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4470. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4471. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4472. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4473. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4474. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4475. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4476. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4477. */
  4478. }
  4479. #endif //ENABLE_AUTO_BED_LEVELING
  4480. void prepare_move_raw()
  4481. {
  4482. previous_millis_cmd = millis();
  4483. calculate_delta(destination);
  4484. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4485. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4486. active_extruder);
  4487. for(int8_t i=0; i < NUM_AXIS; i++) {
  4488. current_position[i] = destination[i];
  4489. }
  4490. }
  4491. #endif //DELTA
  4492. void prepare_move()
  4493. {
  4494. clamp_to_software_endstops(destination);
  4495. previous_millis_cmd = millis();
  4496. #ifdef SCARA //for now same as delta-code
  4497. float difference[NUM_AXIS];
  4498. for (int8_t i=0; i < NUM_AXIS; i++) {
  4499. difference[i] = destination[i] - current_position[i];
  4500. }
  4501. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4502. sq(difference[Y_AXIS]) +
  4503. sq(difference[Z_AXIS]));
  4504. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4505. if (cartesian_mm < 0.000001) { return; }
  4506. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4507. int steps = max(1, int(scara_segments_per_second * seconds));
  4508. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4509. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4510. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4511. for (int s = 1; s <= steps; s++) {
  4512. float fraction = float(s) / float(steps);
  4513. for(int8_t i=0; i < NUM_AXIS; i++) {
  4514. destination[i] = current_position[i] + difference[i] * fraction;
  4515. }
  4516. calculate_delta(destination);
  4517. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4518. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4519. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4520. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4521. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4522. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4523. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4524. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4525. active_extruder);
  4526. }
  4527. #endif // SCARA
  4528. #ifdef DELTA
  4529. float difference[NUM_AXIS];
  4530. for (int8_t i=0; i < NUM_AXIS; i++) {
  4531. difference[i] = destination[i] - current_position[i];
  4532. }
  4533. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4534. sq(difference[Y_AXIS]) +
  4535. sq(difference[Z_AXIS]));
  4536. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4537. if (cartesian_mm < 0.000001) { return; }
  4538. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4539. int steps = max(1, int(delta_segments_per_second * seconds));
  4540. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4541. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4542. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4543. for (int s = 1; s <= steps; s++) {
  4544. float fraction = float(s) / float(steps);
  4545. for(int8_t i=0; i < NUM_AXIS; i++) {
  4546. destination[i] = current_position[i] + difference[i] * fraction;
  4547. }
  4548. calculate_delta(destination);
  4549. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4550. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4551. active_extruder);
  4552. }
  4553. #endif // DELTA
  4554. #ifdef DUAL_X_CARRIAGE
  4555. if (active_extruder_parked)
  4556. {
  4557. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4558. {
  4559. // move duplicate extruder into correct duplication position.
  4560. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4561. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4562. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4564. st_synchronize();
  4565. extruder_duplication_enabled = true;
  4566. active_extruder_parked = false;
  4567. }
  4568. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4569. {
  4570. if (current_position[E_AXIS] == destination[E_AXIS])
  4571. {
  4572. // this is a travel move - skit it but keep track of current position (so that it can later
  4573. // be used as start of first non-travel move)
  4574. if (delayed_move_time != 0xFFFFFFFFUL)
  4575. {
  4576. memcpy(current_position, destination, sizeof(current_position));
  4577. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4578. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4579. delayed_move_time = millis();
  4580. return;
  4581. }
  4582. }
  4583. delayed_move_time = 0;
  4584. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4585. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4587. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4589. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4590. active_extruder_parked = false;
  4591. }
  4592. }
  4593. #endif //DUAL_X_CARRIAGE
  4594. #if ! (defined DELTA || defined SCARA)
  4595. // Do not use feedmultiply for E or Z only moves
  4596. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4597. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4598. }
  4599. else {
  4600. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4601. }
  4602. #endif // !(DELTA || SCARA)
  4603. for(int8_t i=0; i < NUM_AXIS; i++) {
  4604. current_position[i] = destination[i];
  4605. }
  4606. }
  4607. void prepare_arc_move(char isclockwise) {
  4608. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4609. // Trace the arc
  4610. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4611. // As far as the parser is concerned, the position is now == target. In reality the
  4612. // motion control system might still be processing the action and the real tool position
  4613. // in any intermediate location.
  4614. for(int8_t i=0; i < NUM_AXIS; i++) {
  4615. current_position[i] = destination[i];
  4616. }
  4617. previous_millis_cmd = millis();
  4618. }
  4619. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4620. #if defined(FAN_PIN)
  4621. #if CONTROLLERFAN_PIN == FAN_PIN
  4622. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4623. #endif
  4624. #endif
  4625. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4626. unsigned long lastMotorCheck = 0;
  4627. void controllerFan()
  4628. {
  4629. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4630. {
  4631. lastMotorCheck = millis();
  4632. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4633. #if EXTRUDERS > 2
  4634. || !READ(E2_ENABLE_PIN)
  4635. #endif
  4636. #if EXTRUDER > 1
  4637. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4638. || !READ(X2_ENABLE_PIN)
  4639. #endif
  4640. || !READ(E1_ENABLE_PIN)
  4641. #endif
  4642. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4643. {
  4644. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4645. }
  4646. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4647. {
  4648. digitalWrite(CONTROLLERFAN_PIN, 0);
  4649. analogWrite(CONTROLLERFAN_PIN, 0);
  4650. }
  4651. else
  4652. {
  4653. // allows digital or PWM fan output to be used (see M42 handling)
  4654. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4655. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4656. }
  4657. }
  4658. }
  4659. #endif
  4660. #ifdef SCARA
  4661. void calculate_SCARA_forward_Transform(float f_scara[3])
  4662. {
  4663. // Perform forward kinematics, and place results in delta[3]
  4664. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4665. float x_sin, x_cos, y_sin, y_cos;
  4666. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4667. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4668. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4669. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4670. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4671. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4672. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4673. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4674. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4675. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4676. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4677. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4678. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4679. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4680. }
  4681. void calculate_delta(float cartesian[3]){
  4682. //reverse kinematics.
  4683. // Perform reversed kinematics, and place results in delta[3]
  4684. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4685. float SCARA_pos[2];
  4686. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4687. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4688. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4689. #if (Linkage_1 == Linkage_2)
  4690. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4691. #else
  4692. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4693. #endif
  4694. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4695. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4696. SCARA_K2 = Linkage_2 * SCARA_S2;
  4697. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4698. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4699. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4700. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4701. delta[Z_AXIS] = cartesian[Z_AXIS];
  4702. /*
  4703. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4704. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4705. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4706. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4707. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4708. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4709. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4710. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4711. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4712. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4713. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4714. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4715. SERIAL_ECHOLN(" ");*/
  4716. }
  4717. #endif
  4718. #ifdef TEMP_STAT_LEDS
  4719. static bool blue_led = false;
  4720. static bool red_led = false;
  4721. static uint32_t stat_update = 0;
  4722. void handle_status_leds(void) {
  4723. float max_temp = 0.0;
  4724. if(millis() > stat_update) {
  4725. stat_update += 500; // Update every 0.5s
  4726. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4727. max_temp = max(max_temp, degHotend(cur_extruder));
  4728. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4729. }
  4730. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4731. max_temp = max(max_temp, degTargetBed());
  4732. max_temp = max(max_temp, degBed());
  4733. #endif
  4734. if((max_temp > 55.0) && (red_led == false)) {
  4735. digitalWrite(STAT_LED_RED, 1);
  4736. digitalWrite(STAT_LED_BLUE, 0);
  4737. red_led = true;
  4738. blue_led = false;
  4739. }
  4740. if((max_temp < 54.0) && (blue_led == false)) {
  4741. digitalWrite(STAT_LED_RED, 0);
  4742. digitalWrite(STAT_LED_BLUE, 1);
  4743. red_led = false;
  4744. blue_led = true;
  4745. }
  4746. }
  4747. }
  4748. #endif
  4749. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4750. {
  4751. #if defined(KILL_PIN) && KILL_PIN > -1
  4752. static int killCount = 0; // make the inactivity button a bit less responsive
  4753. const int KILL_DELAY = 10000;
  4754. #endif
  4755. #if defined(HOME_PIN) && HOME_PIN > -1
  4756. static int homeDebounceCount = 0; // poor man's debouncing count
  4757. const int HOME_DEBOUNCE_DELAY = 10000;
  4758. #endif
  4759. if(buflen < (BUFSIZE-1))
  4760. get_command();
  4761. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4762. if(max_inactive_time)
  4763. kill();
  4764. if(stepper_inactive_time) {
  4765. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4766. {
  4767. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4768. disable_x();
  4769. disable_y();
  4770. disable_z();
  4771. disable_e0();
  4772. disable_e1();
  4773. disable_e2();
  4774. disable_e3();
  4775. }
  4776. }
  4777. }
  4778. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4779. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4780. {
  4781. chdkActive = false;
  4782. WRITE(CHDK, LOW);
  4783. }
  4784. #endif
  4785. #if defined(KILL_PIN) && KILL_PIN > -1
  4786. // Check if the kill button was pressed and wait just in case it was an accidental
  4787. // key kill key press
  4788. // -------------------------------------------------------------------------------
  4789. if( 0 == READ(KILL_PIN) )
  4790. {
  4791. killCount++;
  4792. }
  4793. else if (killCount > 0)
  4794. {
  4795. killCount--;
  4796. }
  4797. // Exceeded threshold and we can confirm that it was not accidental
  4798. // KILL the machine
  4799. // ----------------------------------------------------------------
  4800. if ( killCount >= KILL_DELAY)
  4801. {
  4802. kill();
  4803. }
  4804. #endif
  4805. #if defined(HOME_PIN) && HOME_PIN > -1
  4806. // Check to see if we have to home, use poor man's debouncer
  4807. // ---------------------------------------------------------
  4808. if ( 0 == READ(HOME_PIN) )
  4809. {
  4810. if (homeDebounceCount == 0)
  4811. {
  4812. enquecommands_P((PSTR("G28")));
  4813. homeDebounceCount++;
  4814. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4815. }
  4816. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4817. {
  4818. homeDebounceCount++;
  4819. }
  4820. else
  4821. {
  4822. homeDebounceCount = 0;
  4823. }
  4824. }
  4825. #endif
  4826. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4827. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4828. #endif
  4829. #ifdef EXTRUDER_RUNOUT_PREVENT
  4830. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4831. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4832. {
  4833. bool oldstatus=READ(E0_ENABLE_PIN);
  4834. enable_e0();
  4835. float oldepos=current_position[E_AXIS];
  4836. float oldedes=destination[E_AXIS];
  4837. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4838. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4839. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4840. current_position[E_AXIS]=oldepos;
  4841. destination[E_AXIS]=oldedes;
  4842. plan_set_e_position(oldepos);
  4843. previous_millis_cmd=millis();
  4844. st_synchronize();
  4845. WRITE(E0_ENABLE_PIN,oldstatus);
  4846. }
  4847. #endif
  4848. #if defined(DUAL_X_CARRIAGE)
  4849. // handle delayed move timeout
  4850. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4851. {
  4852. // travel moves have been received so enact them
  4853. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4854. memcpy(destination,current_position,sizeof(destination));
  4855. prepare_move();
  4856. }
  4857. #endif
  4858. #ifdef TEMP_STAT_LEDS
  4859. handle_status_leds();
  4860. #endif
  4861. check_axes_activity();
  4862. }
  4863. void kill()
  4864. {
  4865. cli(); // Stop interrupts
  4866. disable_heater();
  4867. disable_x();
  4868. disable_y();
  4869. disable_z();
  4870. disable_e0();
  4871. disable_e1();
  4872. disable_e2();
  4873. disable_e3();
  4874. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4875. pinMode(PS_ON_PIN,INPUT);
  4876. #endif
  4877. SERIAL_ERROR_START;
  4878. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4879. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4880. // FMC small patch to update the LCD before ending
  4881. sei(); // enable interrupts
  4882. for ( int i=5; i--; lcd_update())
  4883. {
  4884. delay(200);
  4885. }
  4886. cli(); // disable interrupts
  4887. suicide();
  4888. while(1) { /* Intentionally left empty */ } // Wait for reset
  4889. }
  4890. void Stop()
  4891. {
  4892. disable_heater();
  4893. if(Stopped == false) {
  4894. Stopped = true;
  4895. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4896. SERIAL_ERROR_START;
  4897. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4898. LCD_MESSAGEPGM(MSG_STOPPED);
  4899. }
  4900. }
  4901. bool IsStopped() { return Stopped; };
  4902. #ifdef FAST_PWM_FAN
  4903. void setPwmFrequency(uint8_t pin, int val)
  4904. {
  4905. val &= 0x07;
  4906. switch(digitalPinToTimer(pin))
  4907. {
  4908. #if defined(TCCR0A)
  4909. case TIMER0A:
  4910. case TIMER0B:
  4911. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4912. // TCCR0B |= val;
  4913. break;
  4914. #endif
  4915. #if defined(TCCR1A)
  4916. case TIMER1A:
  4917. case TIMER1B:
  4918. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4919. // TCCR1B |= val;
  4920. break;
  4921. #endif
  4922. #if defined(TCCR2)
  4923. case TIMER2:
  4924. case TIMER2:
  4925. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4926. TCCR2 |= val;
  4927. break;
  4928. #endif
  4929. #if defined(TCCR2A)
  4930. case TIMER2A:
  4931. case TIMER2B:
  4932. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4933. TCCR2B |= val;
  4934. break;
  4935. #endif
  4936. #if defined(TCCR3A)
  4937. case TIMER3A:
  4938. case TIMER3B:
  4939. case TIMER3C:
  4940. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4941. TCCR3B |= val;
  4942. break;
  4943. #endif
  4944. #if defined(TCCR4A)
  4945. case TIMER4A:
  4946. case TIMER4B:
  4947. case TIMER4C:
  4948. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4949. TCCR4B |= val;
  4950. break;
  4951. #endif
  4952. #if defined(TCCR5A)
  4953. case TIMER5A:
  4954. case TIMER5B:
  4955. case TIMER5C:
  4956. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4957. TCCR5B |= val;
  4958. break;
  4959. #endif
  4960. }
  4961. }
  4962. #endif //FAST_PWM_FAN
  4963. bool setTargetedHotend(int code){
  4964. tmp_extruder = active_extruder;
  4965. if(code_seen('T')) {
  4966. tmp_extruder = code_value();
  4967. if(tmp_extruder >= EXTRUDERS) {
  4968. SERIAL_ECHO_START;
  4969. switch(code){
  4970. case 104:
  4971. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4972. break;
  4973. case 105:
  4974. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4975. break;
  4976. case 109:
  4977. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4978. break;
  4979. case 218:
  4980. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4981. break;
  4982. case 221:
  4983. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4984. break;
  4985. }
  4986. SERIAL_ECHOLN(tmp_extruder);
  4987. return true;
  4988. }
  4989. }
  4990. return false;
  4991. }
  4992. float calculate_volumetric_multiplier(float diameter) {
  4993. if (!volumetric_enabled || diameter == 0) return 1.0;
  4994. float d2 = diameter * 0.5;
  4995. return 1.0 / (M_PI * d2 * d2);
  4996. }
  4997. void calculate_volumetric_multipliers() {
  4998. for (int i=0; i<EXTRUDERS; i++)
  4999. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5000. }