My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 190KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #if defined(MESH_BED_LEVELING)
  35. #include "mesh_bed_leveling.h"
  36. #endif // MESH_BED_LEVELING
  37. #include "ultralcd.h"
  38. #include "planner.h"
  39. #include "stepper.h"
  40. #include "temperature.h"
  41. #include "motion_control.h"
  42. #include "cardreader.h"
  43. #include "watchdog.h"
  44. #include "ConfigurationStore.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if HAS_DIGIPOTSS
  56. #include <SPI.h>
  57. #endif
  58. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  59. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. //Implemented Codes
  61. //-------------------
  62. // G0 -> G1
  63. // G1 - Coordinated Movement X Y Z E
  64. // G2 - CW ARC
  65. // G3 - CCW ARC
  66. // G4 - Dwell S<seconds> or P<milliseconds>
  67. // G10 - retract filament according to settings of M207
  68. // G11 - retract recover filament according to settings of M208
  69. // G28 - Home all Axis
  70. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  71. // G30 - Single Z Probe, probes bed at current XY location.
  72. // G31 - Dock sled (Z_PROBE_SLED only)
  73. // G32 - Undock sled (Z_PROBE_SLED only)
  74. // G90 - Use Absolute Coordinates
  75. // G91 - Use Relative Coordinates
  76. // G92 - Set current position to coordinates given
  77. // M Codes
  78. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  79. // M1 - Same as M0
  80. // M17 - Enable/Power all stepper motors
  81. // M18 - Disable all stepper motors; same as M84
  82. // M20 - List SD card
  83. // M21 - Init SD card
  84. // M22 - Release SD card
  85. // M23 - Select SD file (M23 filename.g)
  86. // M24 - Start/resume SD print
  87. // M25 - Pause SD print
  88. // M26 - Set SD position in bytes (M26 S12345)
  89. // M27 - Report SD print status
  90. // M28 - Start SD write (M28 filename.g)
  91. // M29 - Stop SD write
  92. // M30 - Delete file from SD (M30 filename.g)
  93. // M31 - Output time since last M109 or SD card start to serial
  94. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  95. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  96. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  97. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  99. // M80 - Turn on Power Supply
  100. // M81 - Turn off Power Supply
  101. // M82 - Set E codes absolute (default)
  102. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  103. // M84 - Disable steppers until next move,
  104. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  105. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. // M92 - Set axis_steps_per_unit - same syntax as G92
  107. // M104 - Set extruder target temp
  108. // M105 - Read current temp
  109. // M106 - Fan on
  110. // M107 - Fan off
  111. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. // M112 - Emergency stop
  115. // M114 - Output current position to serial port
  116. // M115 - Capabilities string
  117. // M117 - display message
  118. // M119 - Output Endstop status to serial port
  119. // M120 - Enable endstop detection
  120. // M121 - Disable endstop detection
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - Set additional homing offset
  136. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M380 - Activate solenoid on active extruder
  152. // M381 - Disable all solenoids
  153. // M400 - Finish all moves
  154. // M401 - Lower z-probe if present
  155. // M402 - Raise z-probe if present
  156. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  157. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  158. // M406 - Turn off Filament Sensor extrusion control
  159. // M407 - Displays measured filament diameter
  160. // M500 - Store parameters in EEPROM
  161. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  162. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  163. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  164. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  165. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  166. // M665 - Set delta configurations
  167. // M666 - Set delta endstop adjustment
  168. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  169. // M907 - Set digital trimpot motor current using axis codes.
  170. // M908 - Control digital trimpot directly.
  171. // M350 - Set microstepping mode.
  172. // M351 - Toggle MS1 MS2 pins directly.
  173. // ************ SCARA Specific - This can change to suit future G-code regulations
  174. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  175. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  176. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  177. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  178. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  179. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  180. //************* SCARA End ***************
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. #ifdef SDSUPPORT
  184. CardReader card;
  185. #endif
  186. float homing_feedrate[] = HOMING_FEEDRATE;
  187. #ifdef ENABLE_AUTO_BED_LEVELING
  188. int xy_travel_speed = XY_TRAVEL_SPEED;
  189. #endif
  190. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  191. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  192. int feedmultiply = 100; //100->1 200->2
  193. int saved_feedmultiply;
  194. int extrudemultiply = 100; //100->1 200->2
  195. int extruder_multiply[EXTRUDERS] = { 100
  196. #if EXTRUDERS > 1
  197. , 100
  198. #if EXTRUDERS > 2
  199. , 100
  200. #if EXTRUDERS > 3
  201. , 100
  202. #endif
  203. #endif
  204. #endif
  205. };
  206. bool volumetric_enabled = false;
  207. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 1
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 2
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #if EXTRUDERS > 3
  213. , DEFAULT_NOMINAL_FILAMENT_DIA
  214. #endif
  215. #endif
  216. #endif
  217. };
  218. float volumetric_multiplier[EXTRUDERS] = {1.0
  219. #if EXTRUDERS > 1
  220. , 1.0
  221. #if EXTRUDERS > 2
  222. , 1.0
  223. #if EXTRUDERS > 3
  224. , 1.0
  225. #endif
  226. #endif
  227. #endif
  228. };
  229. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  230. float home_offset[3] = { 0, 0, 0 };
  231. #ifdef DELTA
  232. float endstop_adj[3] = { 0, 0, 0 };
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = { false, false, false };
  237. float zprobe_zoffset;
  238. // Extruder offset
  239. #if EXTRUDERS > 1
  240. #ifndef DUAL_X_CARRIAGE
  241. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  242. #else
  243. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  244. #endif
  245. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  246. #if defined(EXTRUDER_OFFSET_X)
  247. EXTRUDER_OFFSET_X
  248. #else
  249. 0
  250. #endif
  251. ,
  252. #if defined(EXTRUDER_OFFSET_Y)
  253. EXTRUDER_OFFSET_Y
  254. #else
  255. 0
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed = 0;
  261. #ifdef SERVO_ENDSTOPS
  262. int servo_endstops[] = SERVO_ENDSTOPS;
  263. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  264. #endif
  265. #ifdef BARICUDA
  266. int ValvePressure = 0;
  267. int EtoPPressure = 0;
  268. #endif
  269. #ifdef FWRETRACT
  270. bool autoretract_enabled = false;
  271. bool retracted[EXTRUDERS] = { false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #if EXTRUDERS > 3
  277. , false
  278. #endif
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS] = { false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #if EXTRUDERS > 3
  288. , false
  289. #endif
  290. #endif
  291. #endif
  292. };
  293. float retract_length = RETRACT_LENGTH;
  294. float retract_length_swap = RETRACT_LENGTH_SWAP;
  295. float retract_feedrate = RETRACT_FEEDRATE;
  296. float retract_zlift = RETRACT_ZLIFT;
  297. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  298. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  299. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  300. #endif // FWRETRACT
  301. #ifdef ULTIPANEL
  302. bool powersupply =
  303. #ifdef PS_DEFAULT_OFF
  304. false
  305. #else
  306. true
  307. #endif
  308. ;
  309. #endif
  310. #ifdef DELTA
  311. float delta[3] = { 0, 0, 0 };
  312. #define SIN_60 0.8660254037844386
  313. #define COS_60 0.5
  314. // these are the default values, can be overriden with M665
  315. float delta_radius = DELTA_RADIUS;
  316. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  317. float delta_tower1_y = -COS_60 * delta_radius;
  318. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  319. float delta_tower2_y = -COS_60 * delta_radius;
  320. float delta_tower3_x = 0; // back middle tower
  321. float delta_tower3_y = delta_radius;
  322. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  323. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  324. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  325. #ifdef ENABLE_AUTO_BED_LEVELING
  326. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  327. #endif
  328. #endif
  329. #ifdef SCARA
  330. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. bool cancel_heatup = false;
  334. #ifdef FILAMENT_SENSOR
  335. //Variables for Filament Sensor input
  336. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  337. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  338. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  339. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  340. int delay_index1=0; //index into ring buffer
  341. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  342. float delay_dist=0; //delay distance counter
  343. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  344. #endif
  345. #ifdef FILAMENT_RUNOUT_SENSOR
  346. static bool filrunoutEnqued = false;
  347. #endif
  348. const char errormagic[] PROGMEM = "Error:";
  349. const char echomagic[] PROGMEM = "echo:";
  350. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  351. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  352. static float offset[3] = { 0, 0, 0 };
  353. static bool home_all_axis = true;
  354. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  355. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  356. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  357. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  358. static bool fromsd[BUFSIZE];
  359. static int bufindr = 0;
  360. static int bufindw = 0;
  361. static int buflen = 0;
  362. static char serial_char;
  363. static int serial_count = 0;
  364. static boolean comment_mode = false;
  365. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  366. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  367. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  368. // Inactivity shutdown
  369. static unsigned long previous_millis_cmd = 0;
  370. static unsigned long max_inactive_time = 0;
  371. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  372. unsigned long starttime = 0; ///< Print job start time
  373. unsigned long stoptime = 0; ///< Print job stop time
  374. static uint8_t tmp_extruder;
  375. bool Stopped = false;
  376. #if NUM_SERVOS > 0
  377. Servo servos[NUM_SERVOS];
  378. #endif
  379. bool CooldownNoWait = true;
  380. bool target_direction;
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. //Injects the next command from the pending sequence of commands, when possible
  415. //Return false if and only if no command was pending
  416. static bool drain_queued_commands_P()
  417. {
  418. char cmd[30];
  419. if(!queued_commands_P)
  420. return false;
  421. // Get the next 30 chars from the sequence of gcodes to run
  422. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  423. cmd[sizeof(cmd)-1]= 0;
  424. // Look for the end of line, or the end of sequence
  425. size_t i= 0;
  426. char c;
  427. while( (c= cmd[i]) && c!='\n' )
  428. ++i; // look for the end of this gcode command
  429. cmd[i]= 0;
  430. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  431. {
  432. if(c)
  433. queued_commands_P+= i+1; // move to next command
  434. else
  435. queued_commands_P= NULL; // will have no more commands in the sequence
  436. }
  437. return true;
  438. }
  439. //Record one or many commands to run from program memory.
  440. //Aborts the current queue, if any.
  441. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  442. void enquecommands_P(const char* pgcode)
  443. {
  444. queued_commands_P= pgcode;
  445. drain_queued_commands_P(); // first command exectuted asap (when possible)
  446. }
  447. //adds a single command to the main command buffer, from RAM
  448. //that is really done in a non-safe way.
  449. //needs overworking someday
  450. //Returns false if it failed to do so
  451. bool enquecommand(const char *cmd)
  452. {
  453. if(*cmd==';')
  454. return false;
  455. if(buflen >= BUFSIZE)
  456. return false;
  457. //this is dangerous if a mixing of serial and this happens
  458. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  459. SERIAL_ECHO_START;
  460. SERIAL_ECHOPGM(MSG_Enqueing);
  461. SERIAL_ECHO(cmdbuffer[bufindw]);
  462. SERIAL_ECHOLNPGM("\"");
  463. bufindw= (bufindw + 1)%BUFSIZE;
  464. buflen += 1;
  465. return true;
  466. }
  467. void setup_killpin()
  468. {
  469. #if defined(KILL_PIN) && KILL_PIN > -1
  470. SET_INPUT(KILL_PIN);
  471. WRITE(KILL_PIN,HIGH);
  472. #endif
  473. }
  474. void setup_filrunoutpin()
  475. {
  476. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  477. pinMode(FILRUNOUT_PIN,INPUT);
  478. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  479. WRITE(FILLRUNOUT_PIN,HIGH);
  480. #endif
  481. #endif
  482. }
  483. // Set home pin
  484. void setup_homepin(void)
  485. {
  486. #if defined(HOME_PIN) && HOME_PIN > -1
  487. SET_INPUT(HOME_PIN);
  488. WRITE(HOME_PIN,HIGH);
  489. #endif
  490. }
  491. void setup_photpin()
  492. {
  493. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  494. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. OUT_WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. #if defined(PS_DEFAULT_OFF)
  504. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. OUT_WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. // Set position of Servo Endstops that are defined
  534. #ifdef SERVO_ENDSTOPS
  535. for(int8_t i = 0; i < 3; i++)
  536. {
  537. if(servo_endstops[i] > -1) {
  538. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  539. }
  540. }
  541. #endif
  542. #if SERVO_LEVELING
  543. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  544. servos[servo_endstops[Z_AXIS]].detach();
  545. #endif
  546. }
  547. void setup()
  548. {
  549. setup_killpin();
  550. setup_filrunoutpin();
  551. setup_powerhold();
  552. MYSERIAL.begin(BAUDRATE);
  553. SERIAL_PROTOCOLLNPGM("start");
  554. SERIAL_ECHO_START;
  555. // Check startup - does nothing if bootloader sets MCUSR to 0
  556. byte mcu = MCUSR;
  557. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  558. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  559. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  560. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  561. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  562. MCUSR=0;
  563. SERIAL_ECHOPGM(MSG_MARLIN);
  564. SERIAL_ECHOLNPGM(STRING_VERSION);
  565. #ifdef STRING_VERSION_CONFIG_H
  566. #ifdef STRING_CONFIG_H_AUTHOR
  567. SERIAL_ECHO_START;
  568. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  569. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  570. SERIAL_ECHOPGM(MSG_AUTHOR);
  571. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  572. SERIAL_ECHOPGM("Compiled: ");
  573. SERIAL_ECHOLNPGM(__DATE__);
  574. #endif // STRING_CONFIG_H_AUTHOR
  575. #endif // STRING_VERSION_CONFIG_H
  576. SERIAL_ECHO_START;
  577. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  578. SERIAL_ECHO(freeMemory());
  579. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  580. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  581. for(int8_t i = 0; i < BUFSIZE; i++)
  582. {
  583. fromsd[i] = false;
  584. }
  585. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  586. Config_RetrieveSettings();
  587. tp_init(); // Initialize temperature loop
  588. plan_init(); // Initialize planner;
  589. watchdog_init();
  590. st_init(); // Initialize stepper, this enables interrupts!
  591. setup_photpin();
  592. servo_init();
  593. lcd_init();
  594. _delay_ms(1000); // wait 1sec to display the splash screen
  595. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  596. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  597. #endif
  598. #ifdef DIGIPOT_I2C
  599. digipot_i2c_init();
  600. #endif
  601. #ifdef Z_PROBE_SLED
  602. pinMode(SERVO0_PIN, OUTPUT);
  603. digitalWrite(SERVO0_PIN, LOW); // turn it off
  604. #endif // Z_PROBE_SLED
  605. setup_homepin();
  606. #ifdef STAT_LED_RED
  607. pinMode(STAT_LED_RED, OUTPUT);
  608. digitalWrite(STAT_LED_RED, LOW); // turn it off
  609. #endif
  610. #ifdef STAT_LED_BLUE
  611. pinMode(STAT_LED_BLUE, OUTPUT);
  612. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  613. #endif
  614. }
  615. void loop()
  616. {
  617. if(buflen < (BUFSIZE-1))
  618. get_command();
  619. #ifdef SDSUPPORT
  620. card.checkautostart(false);
  621. #endif
  622. if(buflen)
  623. {
  624. #ifdef SDSUPPORT
  625. if(card.saving)
  626. {
  627. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  628. {
  629. card.write_command(cmdbuffer[bufindr]);
  630. if(card.logging)
  631. {
  632. process_commands();
  633. }
  634. else
  635. {
  636. SERIAL_PROTOCOLLNPGM(MSG_OK);
  637. }
  638. }
  639. else
  640. {
  641. card.closefile();
  642. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  643. }
  644. }
  645. else
  646. {
  647. process_commands();
  648. }
  649. #else
  650. process_commands();
  651. #endif //SDSUPPORT
  652. buflen = (buflen-1);
  653. bufindr = (bufindr + 1)%BUFSIZE;
  654. }
  655. //check heater every n milliseconds
  656. manage_heater();
  657. manage_inactivity();
  658. checkHitEndstops();
  659. lcd_update();
  660. }
  661. void get_command()
  662. {
  663. if(drain_queued_commands_P()) // priority is given to non-serial commands
  664. return;
  665. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  666. serial_char = MYSERIAL.read();
  667. if(serial_char == '\n' ||
  668. serial_char == '\r' ||
  669. serial_count >= (MAX_CMD_SIZE - 1) )
  670. {
  671. // end of line == end of comment
  672. comment_mode = false;
  673. if(!serial_count) {
  674. // short cut for empty lines
  675. return;
  676. }
  677. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  678. fromsd[bufindw] = false;
  679. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  680. {
  681. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  682. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  683. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  684. SERIAL_ERROR_START;
  685. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  686. SERIAL_ERRORLN(gcode_LastN);
  687. //Serial.println(gcode_N);
  688. FlushSerialRequestResend();
  689. serial_count = 0;
  690. return;
  691. }
  692. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  693. {
  694. byte checksum = 0;
  695. byte count = 0;
  696. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  697. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  698. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  699. SERIAL_ERROR_START;
  700. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  701. SERIAL_ERRORLN(gcode_LastN);
  702. FlushSerialRequestResend();
  703. serial_count = 0;
  704. return;
  705. }
  706. //if no errors, continue parsing
  707. }
  708. else
  709. {
  710. SERIAL_ERROR_START;
  711. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  712. SERIAL_ERRORLN(gcode_LastN);
  713. FlushSerialRequestResend();
  714. serial_count = 0;
  715. return;
  716. }
  717. gcode_LastN = gcode_N;
  718. //if no errors, continue parsing
  719. }
  720. else // if we don't receive 'N' but still see '*'
  721. {
  722. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  723. {
  724. SERIAL_ERROR_START;
  725. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  726. SERIAL_ERRORLN(gcode_LastN);
  727. serial_count = 0;
  728. return;
  729. }
  730. }
  731. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  732. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  733. switch(strtol(strchr_pointer + 1, NULL, 10)){
  734. case 0:
  735. case 1:
  736. case 2:
  737. case 3:
  738. if (Stopped == true) {
  739. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  740. LCD_MESSAGEPGM(MSG_STOPPED);
  741. }
  742. break;
  743. default:
  744. break;
  745. }
  746. }
  747. //If command was e-stop process now
  748. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  749. kill();
  750. bufindw = (bufindw + 1)%BUFSIZE;
  751. buflen += 1;
  752. serial_count = 0; //clear buffer
  753. }
  754. else if(serial_char == '\\') { //Handle escapes
  755. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  756. // if we have one more character, copy it over
  757. serial_char = MYSERIAL.read();
  758. cmdbuffer[bufindw][serial_count++] = serial_char;
  759. }
  760. //otherwise do nothing
  761. }
  762. else { // its not a newline, carriage return or escape char
  763. if(serial_char == ';') comment_mode = true;
  764. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  765. }
  766. }
  767. #ifdef SDSUPPORT
  768. if(!card.sdprinting || serial_count!=0){
  769. return;
  770. }
  771. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  772. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  773. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  774. static bool stop_buffering=false;
  775. if(buflen==0) stop_buffering=false;
  776. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  777. int16_t n=card.get();
  778. serial_char = (char)n;
  779. if(serial_char == '\n' ||
  780. serial_char == '\r' ||
  781. (serial_char == '#' && comment_mode == false) ||
  782. (serial_char == ':' && comment_mode == false) ||
  783. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  784. {
  785. if(card.eof()){
  786. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  787. stoptime=millis();
  788. char time[30];
  789. unsigned long t=(stoptime-starttime)/1000;
  790. int hours, minutes;
  791. minutes=(t/60)%60;
  792. hours=t/60/60;
  793. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  794. SERIAL_ECHO_START;
  795. SERIAL_ECHOLN(time);
  796. lcd_setstatus(time);
  797. card.printingHasFinished();
  798. card.checkautostart(true);
  799. }
  800. if(serial_char=='#')
  801. stop_buffering=true;
  802. if(!serial_count)
  803. {
  804. comment_mode = false; //for new command
  805. return; //if empty line
  806. }
  807. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  808. // if(!comment_mode){
  809. fromsd[bufindw] = true;
  810. buflen += 1;
  811. bufindw = (bufindw + 1)%BUFSIZE;
  812. // }
  813. comment_mode = false; //for new command
  814. serial_count = 0; //clear buffer
  815. }
  816. else
  817. {
  818. if(serial_char == ';') comment_mode = true;
  819. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  820. }
  821. }
  822. #endif //SDSUPPORT
  823. }
  824. float code_value()
  825. {
  826. return (strtod(strchr_pointer + 1, NULL));
  827. }
  828. long code_value_long()
  829. {
  830. return (strtol(strchr_pointer + 1, NULL, 10));
  831. }
  832. bool code_seen(char code)
  833. {
  834. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  835. return (strchr_pointer != NULL); //Return True if a character was found
  836. }
  837. #define DEFINE_PGM_READ_ANY(type, reader) \
  838. static inline type pgm_read_any(const type *p) \
  839. { return pgm_read_##reader##_near(p); }
  840. DEFINE_PGM_READ_ANY(float, float);
  841. DEFINE_PGM_READ_ANY(signed char, byte);
  842. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  843. static const PROGMEM type array##_P[3] = \
  844. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  845. static inline type array(int axis) \
  846. { return pgm_read_any(&array##_P[axis]); }
  847. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  848. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  849. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  850. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  851. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  852. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  853. #ifdef DUAL_X_CARRIAGE
  854. #if EXTRUDERS == 1 || defined(COREXY) \
  855. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  856. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  857. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  858. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  859. #endif
  860. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  861. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  862. #endif
  863. #define DXC_FULL_CONTROL_MODE 0
  864. #define DXC_AUTO_PARK_MODE 1
  865. #define DXC_DUPLICATION_MODE 2
  866. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  867. static float x_home_pos(int extruder) {
  868. if (extruder == 0)
  869. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  870. else
  871. // In dual carriage mode the extruder offset provides an override of the
  872. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  873. // This allow soft recalibration of the second extruder offset position without firmware reflash
  874. // (through the M218 command).
  875. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  876. }
  877. static int x_home_dir(int extruder) {
  878. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  879. }
  880. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  881. static bool active_extruder_parked = false; // used in mode 1 & 2
  882. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  883. static unsigned long delayed_move_time = 0; // used in mode 1
  884. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  885. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  886. bool extruder_duplication_enabled = false; // used in mode 2
  887. #endif //DUAL_X_CARRIAGE
  888. static void axis_is_at_home(int axis) {
  889. #ifdef DUAL_X_CARRIAGE
  890. if (axis == X_AXIS) {
  891. if (active_extruder != 0) {
  892. current_position[X_AXIS] = x_home_pos(active_extruder);
  893. min_pos[X_AXIS] = X2_MIN_POS;
  894. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  895. return;
  896. }
  897. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  898. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  899. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  900. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  901. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  902. return;
  903. }
  904. }
  905. #endif
  906. #ifdef SCARA
  907. float homeposition[3];
  908. char i;
  909. if (axis < 2)
  910. {
  911. for (i=0; i<3; i++)
  912. {
  913. homeposition[i] = base_home_pos(i);
  914. }
  915. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  916. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  917. // Works out real Homeposition angles using inverse kinematics,
  918. // and calculates homing offset using forward kinematics
  919. calculate_delta(homeposition);
  920. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  921. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  922. for (i=0; i<2; i++)
  923. {
  924. delta[i] -= home_offset[i];
  925. }
  926. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  929. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  930. calculate_SCARA_forward_Transform(delta);
  931. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  932. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  933. current_position[axis] = delta[axis];
  934. // SCARA home positions are based on configuration since the actual limits are determined by the
  935. // inverse kinematic transform.
  936. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  937. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  938. }
  939. else
  940. {
  941. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  942. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  943. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  944. }
  945. #else
  946. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  947. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  948. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  949. #endif
  950. }
  951. #ifdef ENABLE_AUTO_BED_LEVELING
  952. #ifdef AUTO_BED_LEVELING_GRID
  953. #ifndef DELTA
  954. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  955. {
  956. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  957. planeNormal.debug("planeNormal");
  958. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  959. //bedLevel.debug("bedLevel");
  960. //plan_bed_level_matrix.debug("bed level before");
  961. //vector_3 uncorrected_position = plan_get_position_mm();
  962. //uncorrected_position.debug("position before");
  963. vector_3 corrected_position = plan_get_position();
  964. // corrected_position.debug("position after");
  965. current_position[X_AXIS] = corrected_position.x;
  966. current_position[Y_AXIS] = corrected_position.y;
  967. current_position[Z_AXIS] = corrected_position.z;
  968. // put the bed at 0 so we don't go below it.
  969. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  971. }
  972. #endif
  973. #else // not AUTO_BED_LEVELING_GRID
  974. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  975. plan_bed_level_matrix.set_to_identity();
  976. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  977. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  978. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  979. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  980. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  981. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  982. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  983. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  984. vector_3 corrected_position = plan_get_position();
  985. current_position[X_AXIS] = corrected_position.x;
  986. current_position[Y_AXIS] = corrected_position.y;
  987. current_position[Z_AXIS] = corrected_position.z;
  988. // put the bed at 0 so we don't go below it.
  989. current_position[Z_AXIS] = zprobe_zoffset;
  990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  991. }
  992. #endif // AUTO_BED_LEVELING_GRID
  993. static void run_z_probe() {
  994. #ifdef DELTA
  995. float start_z = current_position[Z_AXIS];
  996. long start_steps = st_get_position(Z_AXIS);
  997. // move down slowly until you find the bed
  998. feedrate = homing_feedrate[Z_AXIS] / 4;
  999. destination[Z_AXIS] = -10;
  1000. prepare_move_raw();
  1001. st_synchronize();
  1002. endstops_hit_on_purpose();
  1003. // we have to let the planner know where we are right now as it is not where we said to go.
  1004. long stop_steps = st_get_position(Z_AXIS);
  1005. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1006. current_position[Z_AXIS] = mm;
  1007. calculate_delta(current_position);
  1008. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1009. #else
  1010. plan_bed_level_matrix.set_to_identity();
  1011. feedrate = homing_feedrate[Z_AXIS];
  1012. // move down until you find the bed
  1013. float zPosition = -10;
  1014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1015. st_synchronize();
  1016. // we have to let the planner know where we are right now as it is not where we said to go.
  1017. zPosition = st_get_position_mm(Z_AXIS);
  1018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1019. // move up the retract distance
  1020. zPosition += home_retract_mm(Z_AXIS);
  1021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1022. st_synchronize();
  1023. // move back down slowly to find bed
  1024. if (homing_bump_divisor[Z_AXIS] >= 1)
  1025. {
  1026. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1027. }
  1028. else
  1029. {
  1030. feedrate = homing_feedrate[Z_AXIS]/10;
  1031. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1032. }
  1033. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1035. st_synchronize();
  1036. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1037. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1038. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1039. #endif
  1040. }
  1041. static void do_blocking_move_to(float x, float y, float z) {
  1042. float oldFeedRate = feedrate;
  1043. #ifdef DELTA
  1044. feedrate = XY_TRAVEL_SPEED;
  1045. destination[X_AXIS] = x;
  1046. destination[Y_AXIS] = y;
  1047. destination[Z_AXIS] = z;
  1048. prepare_move_raw();
  1049. st_synchronize();
  1050. #else
  1051. feedrate = homing_feedrate[Z_AXIS];
  1052. current_position[Z_AXIS] = z;
  1053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1054. st_synchronize();
  1055. feedrate = xy_travel_speed;
  1056. current_position[X_AXIS] = x;
  1057. current_position[Y_AXIS] = y;
  1058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1059. st_synchronize();
  1060. #endif
  1061. feedrate = oldFeedRate;
  1062. }
  1063. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1064. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1065. }
  1066. static void setup_for_endstop_move() {
  1067. saved_feedrate = feedrate;
  1068. saved_feedmultiply = feedmultiply;
  1069. feedmultiply = 100;
  1070. previous_millis_cmd = millis();
  1071. enable_endstops(true);
  1072. }
  1073. static void clean_up_after_endstop_move() {
  1074. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1075. enable_endstops(false);
  1076. #endif
  1077. feedrate = saved_feedrate;
  1078. feedmultiply = saved_feedmultiply;
  1079. previous_millis_cmd = millis();
  1080. }
  1081. static void engage_z_probe() {
  1082. // Engage Z Servo endstop if enabled
  1083. #ifdef SERVO_ENDSTOPS
  1084. if (servo_endstops[Z_AXIS] > -1) {
  1085. #if SERVO_LEVELING
  1086. servos[servo_endstops[Z_AXIS]].attach(0);
  1087. #endif
  1088. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1089. #if SERVO_LEVELING
  1090. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1091. servos[servo_endstops[Z_AXIS]].detach();
  1092. #endif
  1093. }
  1094. #elif defined(Z_PROBE_ALLEN_KEY)
  1095. feedrate = homing_feedrate[X_AXIS];
  1096. // Move to the start position to initiate deployment
  1097. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1098. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1099. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1100. prepare_move_raw();
  1101. // Home X to touch the belt
  1102. feedrate = homing_feedrate[X_AXIS]/10;
  1103. destination[X_AXIS] = 0;
  1104. prepare_move_raw();
  1105. // Home Y for safety
  1106. feedrate = homing_feedrate[X_AXIS]/2;
  1107. destination[Y_AXIS] = 0;
  1108. prepare_move_raw();
  1109. st_synchronize();
  1110. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1111. if (z_min_endstop)
  1112. {
  1113. if (!Stopped)
  1114. {
  1115. SERIAL_ERROR_START;
  1116. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1117. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1118. }
  1119. Stop();
  1120. }
  1121. #endif
  1122. }
  1123. static void retract_z_probe() {
  1124. // Retract Z Servo endstop if enabled
  1125. #ifdef SERVO_ENDSTOPS
  1126. if (servo_endstops[Z_AXIS] > -1)
  1127. {
  1128. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1129. st_synchronize();
  1130. #if SERVO_LEVELING
  1131. servos[servo_endstops[Z_AXIS]].attach(0);
  1132. #endif
  1133. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1134. #if SERVO_LEVELING
  1135. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1136. servos[servo_endstops[Z_AXIS]].detach();
  1137. #endif
  1138. }
  1139. #elif defined(Z_PROBE_ALLEN_KEY)
  1140. // Move up for safety
  1141. feedrate = homing_feedrate[X_AXIS];
  1142. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1143. prepare_move_raw();
  1144. // Move to the start position to initiate retraction
  1145. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1146. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1147. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1148. prepare_move_raw();
  1149. // Move the nozzle down to push the probe into retracted position
  1150. feedrate = homing_feedrate[Z_AXIS]/10;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1152. prepare_move_raw();
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[Z_AXIS]/2;
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1156. prepare_move_raw();
  1157. // Home XY for safety
  1158. feedrate = homing_feedrate[X_AXIS]/2;
  1159. destination[X_AXIS] = 0;
  1160. destination[Y_AXIS] = 0;
  1161. prepare_move_raw();
  1162. st_synchronize();
  1163. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1164. if (!z_min_endstop)
  1165. {
  1166. if (!Stopped)
  1167. {
  1168. SERIAL_ERROR_START;
  1169. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1170. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1171. }
  1172. Stop();
  1173. }
  1174. #endif
  1175. }
  1176. enum ProbeAction
  1177. {
  1178. ProbeStay = 0,
  1179. ProbeEngage = (1 << 0),
  1180. ProbeRetract = (1 << 1),
  1181. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract),
  1182. };
  1183. /// Probe bed height at position (x,y), returns the measured z value
  1184. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1185. // move to right place
  1186. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1187. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1188. #if !defined(Z_PROBE_SLED)
  1189. if (retract_action & ProbeEngage) engage_z_probe();
  1190. #endif
  1191. run_z_probe();
  1192. float measured_z = current_position[Z_AXIS];
  1193. #if !defined(Z_PROBE_SLED)
  1194. if (retract_action & ProbeRetract) retract_z_probe();
  1195. #endif
  1196. if (verbose_level > 2) {
  1197. SERIAL_PROTOCOLPGM(MSG_BED);
  1198. SERIAL_PROTOCOLPGM(" X: ");
  1199. SERIAL_PROTOCOL(x + 0.0001);
  1200. SERIAL_PROTOCOLPGM(" Y: ");
  1201. SERIAL_PROTOCOL(y + 0.0001);
  1202. SERIAL_PROTOCOLPGM(" Z: ");
  1203. SERIAL_PROTOCOL(measured_z + 0.0001);
  1204. SERIAL_EOL;
  1205. }
  1206. return measured_z;
  1207. }
  1208. #ifdef DELTA
  1209. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1210. if (bed_level[x][y] != 0.0) {
  1211. return; // Don't overwrite good values.
  1212. }
  1213. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1214. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1215. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1216. float median = c; // Median is robust (ignores outliers).
  1217. if (a < b) {
  1218. if (b < c) median = b;
  1219. if (c < a) median = a;
  1220. } else { // b <= a
  1221. if (c < b) median = b;
  1222. if (a < c) median = a;
  1223. }
  1224. bed_level[x][y] = median;
  1225. }
  1226. // Fill in the unprobed points (corners of circular print surface)
  1227. // using linear extrapolation, away from the center.
  1228. static void extrapolate_unprobed_bed_level() {
  1229. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1230. for (int y = 0; y <= half; y++) {
  1231. for (int x = 0; x <= half; x++) {
  1232. if (x + y < 3) continue;
  1233. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1234. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1235. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1236. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1237. }
  1238. }
  1239. }
  1240. // Print calibration results for plotting or manual frame adjustment.
  1241. static void print_bed_level() {
  1242. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1243. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1244. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1245. SERIAL_PROTOCOLPGM(" ");
  1246. }
  1247. SERIAL_ECHOLN("");
  1248. }
  1249. }
  1250. // Reset calibration results to zero.
  1251. void reset_bed_level() {
  1252. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1253. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1254. bed_level[x][y] = 0.0;
  1255. }
  1256. }
  1257. }
  1258. #endif // DELTA
  1259. #endif // ENABLE_AUTO_BED_LEVELING
  1260. static void homeaxis(int axis) {
  1261. #define HOMEAXIS_DO(LETTER) \
  1262. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1263. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1264. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1265. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1266. 0) {
  1267. int axis_home_dir = home_dir(axis);
  1268. #ifdef DUAL_X_CARRIAGE
  1269. if (axis == X_AXIS)
  1270. axis_home_dir = x_home_dir(active_extruder);
  1271. #endif
  1272. current_position[axis] = 0;
  1273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1274. #ifndef Z_PROBE_SLED
  1275. // Engage Servo endstop if enabled
  1276. #ifdef SERVO_ENDSTOPS
  1277. #if SERVO_LEVELING
  1278. if (axis==Z_AXIS) {
  1279. engage_z_probe();
  1280. }
  1281. else
  1282. #endif
  1283. if (servo_endstops[axis] > -1) {
  1284. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1285. }
  1286. #endif
  1287. #endif // Z_PROBE_SLED
  1288. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1289. feedrate = homing_feedrate[axis];
  1290. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1291. st_synchronize();
  1292. current_position[axis] = 0;
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1295. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1298. if (homing_bump_divisor[axis] >= 1)
  1299. {
  1300. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1301. }
  1302. else
  1303. {
  1304. feedrate = homing_feedrate[axis]/10;
  1305. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1306. }
  1307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. #ifdef DELTA
  1310. // retrace by the amount specified in endstop_adj
  1311. if (endstop_adj[axis] * axis_home_dir < 0) {
  1312. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1313. destination[axis] = endstop_adj[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. }
  1317. #endif
  1318. axis_is_at_home(axis);
  1319. destination[axis] = current_position[axis];
  1320. feedrate = 0.0;
  1321. endstops_hit_on_purpose();
  1322. axis_known_position[axis] = true;
  1323. // Retract Servo endstop if enabled
  1324. #ifdef SERVO_ENDSTOPS
  1325. if (servo_endstops[axis] > -1) {
  1326. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1327. }
  1328. #endif
  1329. #if SERVO_LEVELING
  1330. #ifndef Z_PROBE_SLED
  1331. if (axis==Z_AXIS) retract_z_probe();
  1332. #endif
  1333. #endif
  1334. }
  1335. }
  1336. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1337. void refresh_cmd_timeout(void)
  1338. {
  1339. previous_millis_cmd = millis();
  1340. }
  1341. #ifdef FWRETRACT
  1342. void retract(bool retracting, bool swapretract = false) {
  1343. if(retracting && !retracted[active_extruder]) {
  1344. destination[X_AXIS]=current_position[X_AXIS];
  1345. destination[Y_AXIS]=current_position[Y_AXIS];
  1346. destination[Z_AXIS]=current_position[Z_AXIS];
  1347. destination[E_AXIS]=current_position[E_AXIS];
  1348. if (swapretract) {
  1349. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1350. } else {
  1351. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1352. }
  1353. plan_set_e_position(current_position[E_AXIS]);
  1354. float oldFeedrate = feedrate;
  1355. feedrate=retract_feedrate*60;
  1356. retracted[active_extruder]=true;
  1357. prepare_move();
  1358. if(retract_zlift > 0.01) {
  1359. current_position[Z_AXIS]-=retract_zlift;
  1360. #ifdef DELTA
  1361. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1362. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1363. #else
  1364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1365. #endif
  1366. prepare_move();
  1367. }
  1368. feedrate = oldFeedrate;
  1369. } else if(!retracting && retracted[active_extruder]) {
  1370. destination[X_AXIS]=current_position[X_AXIS];
  1371. destination[Y_AXIS]=current_position[Y_AXIS];
  1372. destination[Z_AXIS]=current_position[Z_AXIS];
  1373. destination[E_AXIS]=current_position[E_AXIS];
  1374. if(retract_zlift > 0.01) {
  1375. current_position[Z_AXIS]+=retract_zlift;
  1376. #ifdef DELTA
  1377. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1378. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1379. #else
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. #endif
  1382. //prepare_move();
  1383. }
  1384. if (swapretract) {
  1385. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1386. } else {
  1387. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1388. }
  1389. plan_set_e_position(current_position[E_AXIS]);
  1390. float oldFeedrate = feedrate;
  1391. feedrate=retract_recover_feedrate*60;
  1392. retracted[active_extruder]=false;
  1393. prepare_move();
  1394. feedrate = oldFeedrate;
  1395. }
  1396. } //retract
  1397. #endif //FWRETRACT
  1398. #ifdef Z_PROBE_SLED
  1399. #ifndef SLED_DOCKING_OFFSET
  1400. #define SLED_DOCKING_OFFSET 0
  1401. #endif
  1402. //
  1403. // Method to dock/undock a sled designed by Charles Bell.
  1404. //
  1405. // dock[in] If true, move to MAX_X and engage the electromagnet
  1406. // offset[in] The additional distance to move to adjust docking location
  1407. //
  1408. static void dock_sled(bool dock, int offset=0) {
  1409. int z_loc;
  1410. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1411. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1412. SERIAL_ECHO_START;
  1413. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1414. return;
  1415. }
  1416. if (dock) {
  1417. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1418. current_position[Y_AXIS],
  1419. current_position[Z_AXIS]);
  1420. // turn off magnet
  1421. digitalWrite(SERVO0_PIN, LOW);
  1422. } else {
  1423. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1424. z_loc = Z_RAISE_BEFORE_PROBING;
  1425. else
  1426. z_loc = current_position[Z_AXIS];
  1427. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1428. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1429. // turn on magnet
  1430. digitalWrite(SERVO0_PIN, HIGH);
  1431. }
  1432. }
  1433. #endif
  1434. /**
  1435. *
  1436. * G-Code Handler functions
  1437. *
  1438. */
  1439. /**
  1440. * G0, G1: Coordinated movement of X Y Z E axes
  1441. */
  1442. inline void gcode_G0_G1() {
  1443. if (!Stopped) {
  1444. get_coordinates(); // For X Y Z E F
  1445. #ifdef FWRETRACT
  1446. if (autoretract_enabled)
  1447. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1448. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1449. // Is this move an attempt to retract or recover?
  1450. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1451. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1452. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1453. retract(!retracted[active_extruder]);
  1454. return;
  1455. }
  1456. }
  1457. #endif //FWRETRACT
  1458. prepare_move();
  1459. //ClearToSend();
  1460. }
  1461. }
  1462. /**
  1463. * G2: Clockwise Arc
  1464. * G3: Counterclockwise Arc
  1465. */
  1466. inline void gcode_G2_G3(bool clockwise) {
  1467. if (!Stopped) {
  1468. get_arc_coordinates();
  1469. prepare_arc_move(clockwise);
  1470. }
  1471. }
  1472. /**
  1473. * G4: Dwell S<seconds> or P<milliseconds>
  1474. */
  1475. inline void gcode_G4() {
  1476. unsigned long codenum=0;
  1477. LCD_MESSAGEPGM(MSG_DWELL);
  1478. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1479. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1480. st_synchronize();
  1481. previous_millis_cmd = millis();
  1482. codenum += previous_millis_cmd; // keep track of when we started waiting
  1483. while(millis() < codenum) {
  1484. manage_heater();
  1485. manage_inactivity();
  1486. lcd_update();
  1487. }
  1488. }
  1489. #ifdef FWRETRACT
  1490. /**
  1491. * G10 - Retract filament according to settings of M207
  1492. * G11 - Recover filament according to settings of M208
  1493. */
  1494. inline void gcode_G10_G11(bool doRetract=false) {
  1495. #if EXTRUDERS > 1
  1496. if (doRetract) {
  1497. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1498. }
  1499. #endif
  1500. retract(doRetract
  1501. #if EXTRUDERS > 1
  1502. , retracted_swap[active_extruder]
  1503. #endif
  1504. );
  1505. }
  1506. #endif //FWRETRACT
  1507. /**
  1508. * G28: Home all axes, one at a time
  1509. */
  1510. inline void gcode_G28() {
  1511. #ifdef ENABLE_AUTO_BED_LEVELING
  1512. #ifdef DELTA
  1513. reset_bed_level();
  1514. #else
  1515. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1516. #endif
  1517. #endif
  1518. #if defined(MESH_BED_LEVELING)
  1519. uint8_t mbl_was_active = mbl.active;
  1520. mbl.active = 0;
  1521. #endif // MESH_BED_LEVELING
  1522. saved_feedrate = feedrate;
  1523. saved_feedmultiply = feedmultiply;
  1524. feedmultiply = 100;
  1525. previous_millis_cmd = millis();
  1526. enable_endstops(true);
  1527. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1528. feedrate = 0.0;
  1529. #ifdef DELTA
  1530. // A delta can only safely home all axis at the same time
  1531. // all axis have to home at the same time
  1532. // Move all carriages up together until the first endstop is hit.
  1533. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1535. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1536. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1538. st_synchronize();
  1539. endstops_hit_on_purpose();
  1540. // Destination reached
  1541. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1542. // take care of back off and rehome now we are all at the top
  1543. HOMEAXIS(X);
  1544. HOMEAXIS(Y);
  1545. HOMEAXIS(Z);
  1546. calculate_delta(current_position);
  1547. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1548. #else // NOT DELTA
  1549. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1550. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1551. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1552. HOMEAXIS(Z);
  1553. }
  1554. #endif
  1555. #ifdef QUICK_HOME
  1556. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1557. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1558. #ifndef DUAL_X_CARRIAGE
  1559. int x_axis_home_dir = home_dir(X_AXIS);
  1560. #else
  1561. int x_axis_home_dir = x_home_dir(active_extruder);
  1562. extruder_duplication_enabled = false;
  1563. #endif
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1566. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1567. feedrate = homing_feedrate[X_AXIS];
  1568. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1569. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1570. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1571. } else {
  1572. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1573. }
  1574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. axis_is_at_home(X_AXIS);
  1577. axis_is_at_home(Y_AXIS);
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. destination[X_AXIS] = current_position[X_AXIS];
  1580. destination[Y_AXIS] = current_position[Y_AXIS];
  1581. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1582. feedrate = 0.0;
  1583. st_synchronize();
  1584. endstops_hit_on_purpose();
  1585. current_position[X_AXIS] = destination[X_AXIS];
  1586. current_position[Y_AXIS] = destination[Y_AXIS];
  1587. #ifndef SCARA
  1588. current_position[Z_AXIS] = destination[Z_AXIS];
  1589. #endif
  1590. }
  1591. #endif //QUICK_HOME
  1592. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1593. #ifdef DUAL_X_CARRIAGE
  1594. int tmp_extruder = active_extruder;
  1595. extruder_duplication_enabled = false;
  1596. active_extruder = !active_extruder;
  1597. HOMEAXIS(X);
  1598. inactive_extruder_x_pos = current_position[X_AXIS];
  1599. active_extruder = tmp_extruder;
  1600. HOMEAXIS(X);
  1601. // reset state used by the different modes
  1602. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1603. delayed_move_time = 0;
  1604. active_extruder_parked = true;
  1605. #else
  1606. HOMEAXIS(X);
  1607. #endif
  1608. }
  1609. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1610. if (code_seen(axis_codes[X_AXIS])) {
  1611. if (code_value_long() != 0) {
  1612. current_position[X_AXIS] = code_value()
  1613. #ifndef SCARA
  1614. + home_offset[X_AXIS]
  1615. #endif
  1616. ;
  1617. }
  1618. }
  1619. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1620. current_position[Y_AXIS] = code_value()
  1621. #ifndef SCARA
  1622. + home_offset[Y_AXIS]
  1623. #endif
  1624. ;
  1625. }
  1626. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1627. #ifndef Z_SAFE_HOMING
  1628. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1629. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1630. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1631. feedrate = max_feedrate[Z_AXIS];
  1632. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1633. st_synchronize();
  1634. #endif
  1635. HOMEAXIS(Z);
  1636. }
  1637. #else // Z_SAFE_HOMING
  1638. if (home_all_axis) {
  1639. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1640. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1641. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1642. feedrate = XY_TRAVEL_SPEED / 60;
  1643. current_position[Z_AXIS] = 0;
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1646. st_synchronize();
  1647. current_position[X_AXIS] = destination[X_AXIS];
  1648. current_position[Y_AXIS] = destination[Y_AXIS];
  1649. HOMEAXIS(Z);
  1650. }
  1651. // Let's see if X and Y are homed and probe is inside bed area.
  1652. if (code_seen(axis_codes[Z_AXIS])) {
  1653. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1654. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1655. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1656. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1657. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1658. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1659. current_position[Z_AXIS] = 0;
  1660. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1661. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1662. feedrate = max_feedrate[Z_AXIS];
  1663. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1664. st_synchronize();
  1665. HOMEAXIS(Z);
  1666. }
  1667. else {
  1668. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1669. SERIAL_ECHO_START;
  1670. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1671. }
  1672. }
  1673. else {
  1674. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1675. SERIAL_ECHO_START;
  1676. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1677. }
  1678. }
  1679. #endif // Z_SAFE_HOMING
  1680. #endif // Z_HOME_DIR < 0
  1681. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1682. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1683. #ifdef ENABLE_AUTO_BED_LEVELING
  1684. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1685. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1686. #endif
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. #endif // else DELTA
  1689. #ifdef SCARA
  1690. calculate_delta(current_position);
  1691. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1692. #endif
  1693. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1694. enable_endstops(false);
  1695. #endif
  1696. #if defined(MESH_BED_LEVELING)
  1697. if (mbl_was_active) {
  1698. current_position[X_AXIS] = mbl.get_x(0);
  1699. current_position[Y_AXIS] = mbl.get_y(0);
  1700. destination[X_AXIS] = current_position[X_AXIS];
  1701. destination[Y_AXIS] = current_position[Y_AXIS];
  1702. destination[Z_AXIS] = current_position[Z_AXIS];
  1703. destination[E_AXIS] = current_position[E_AXIS];
  1704. feedrate = homing_feedrate[X_AXIS];
  1705. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1706. st_synchronize();
  1707. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1709. mbl.active = 1;
  1710. }
  1711. #endif
  1712. feedrate = saved_feedrate;
  1713. feedmultiply = saved_feedmultiply;
  1714. previous_millis_cmd = millis();
  1715. endstops_hit_on_purpose();
  1716. }
  1717. #if defined(MESH_BED_LEVELING)
  1718. inline void gcode_G29() {
  1719. static int probe_point = -1;
  1720. int state = 0;
  1721. if (code_seen('S') || code_seen('s')) {
  1722. state = code_value_long();
  1723. if (state < 0 || state > 2) {
  1724. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1725. return;
  1726. }
  1727. }
  1728. if (state == 0) { // Dump mesh_bed_leveling
  1729. if (mbl.active) {
  1730. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1731. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1732. SERIAL_PROTOCOLPGM(",");
  1733. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1734. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1735. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1736. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1737. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1738. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1739. SERIAL_PROTOCOLPGM(" ");
  1740. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1741. }
  1742. SERIAL_EOL;
  1743. }
  1744. } else {
  1745. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1746. }
  1747. } else if (state == 1) { // Begin probing mesh points
  1748. mbl.reset();
  1749. probe_point = 0;
  1750. enquecommands_P(PSTR("G28"));
  1751. enquecommands_P(PSTR("G29 S2"));
  1752. } else if (state == 2) { // Goto next point
  1753. if (probe_point < 0) {
  1754. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1755. return;
  1756. }
  1757. int ix, iy;
  1758. if (probe_point == 0) {
  1759. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. } else {
  1762. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1763. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1764. if (iy&1) { // Zig zag
  1765. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1766. }
  1767. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1768. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1770. st_synchronize();
  1771. }
  1772. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1773. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1774. probe_point = -1;
  1775. mbl.active = 1;
  1776. enquecommands_P(PSTR("G28"));
  1777. return;
  1778. }
  1779. ix = probe_point % MESH_NUM_X_POINTS;
  1780. iy = probe_point / MESH_NUM_X_POINTS;
  1781. if (iy&1) { // Zig zag
  1782. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1783. }
  1784. current_position[X_AXIS] = mbl.get_x(ix);
  1785. current_position[Y_AXIS] = mbl.get_y(iy);
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1787. st_synchronize();
  1788. probe_point++;
  1789. }
  1790. }
  1791. #endif
  1792. #ifdef ENABLE_AUTO_BED_LEVELING
  1793. // Define the possible boundaries for probing based on set limits
  1794. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1795. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1796. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1797. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1798. #ifdef AUTO_BED_LEVELING_GRID
  1799. // Make sure probing points are reachable
  1800. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1801. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1802. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1803. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1804. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1805. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1806. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1807. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1808. #endif
  1809. #else // !AUTO_BED_LEVELING_GRID
  1810. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1811. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1812. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1813. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1814. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1815. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1816. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1817. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1818. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1819. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1820. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1821. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1822. #endif
  1823. #endif // !AUTO_BED_LEVELING_GRID
  1824. /**
  1825. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1826. * Will fail if the printer has not been homed with G28.
  1827. *
  1828. * Enhanced G29 Auto Bed Leveling Probe Routine
  1829. *
  1830. * Parameters With AUTO_BED_LEVELING_GRID:
  1831. *
  1832. * P Set the size of the grid that will be probed (P x P points).
  1833. * Not supported by non-linear delta printer bed leveling.
  1834. * Example: "G29 P4"
  1835. *
  1836. * S Set the XY travel speed between probe points (in mm/min)
  1837. *
  1838. * V Set the verbose level (0-4). Example: "G29 V3"
  1839. *
  1840. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1841. * This is useful for manual bed leveling and finding flaws in the bed (to
  1842. * assist with part placement).
  1843. * Not supported by non-linear delta printer bed leveling.
  1844. *
  1845. * F Set the Front limit of the probing grid
  1846. * B Set the Back limit of the probing grid
  1847. * L Set the Left limit of the probing grid
  1848. * R Set the Right limit of the probing grid
  1849. *
  1850. * Global Parameters:
  1851. *
  1852. * E/e By default G29 engages / disengages the probe for each point.
  1853. * Include "E" to engage and disengage the probe just once.
  1854. * There's no extra effect if you have a fixed probe.
  1855. * Usage: "G29 E" or "G29 e"
  1856. *
  1857. */
  1858. inline void gcode_G29() {
  1859. // Prevent user from running a G29 without first homing in X and Y
  1860. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1861. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1862. SERIAL_ECHO_START;
  1863. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1864. return;
  1865. }
  1866. int verbose_level = 1;
  1867. float x_tmp, y_tmp, z_tmp, real_z;
  1868. if (code_seen('V') || code_seen('v')) {
  1869. verbose_level = code_value_long();
  1870. if (verbose_level < 0 || verbose_level > 4) {
  1871. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1872. return;
  1873. }
  1874. }
  1875. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1876. #ifdef AUTO_BED_LEVELING_GRID
  1877. #ifndef DELTA
  1878. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1879. #endif
  1880. if (verbose_level > 0)
  1881. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1882. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1883. #ifndef DELTA
  1884. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1885. if (auto_bed_leveling_grid_points < 2) {
  1886. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1887. return;
  1888. }
  1889. #endif
  1890. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1891. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1892. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1893. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1894. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1895. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1896. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1897. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1898. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1899. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1900. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1901. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1902. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1903. if (left_out || right_out || front_out || back_out) {
  1904. if (left_out) {
  1905. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1906. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1907. }
  1908. if (right_out) {
  1909. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1910. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1911. }
  1912. if (front_out) {
  1913. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1914. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1915. }
  1916. if (back_out) {
  1917. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1918. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1919. }
  1920. return;
  1921. }
  1922. #endif // AUTO_BED_LEVELING_GRID
  1923. #ifdef Z_PROBE_SLED
  1924. dock_sled(false); // engage (un-dock) the probe
  1925. #endif
  1926. st_synchronize();
  1927. #ifdef DELTA
  1928. reset_bed_level();
  1929. #else
  1930. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1931. //vector_3 corrected_position = plan_get_position_mm();
  1932. //corrected_position.debug("position before G29");
  1933. plan_bed_level_matrix.set_to_identity();
  1934. vector_3 uncorrected_position = plan_get_position();
  1935. //uncorrected_position.debug("position during G29");
  1936. current_position[X_AXIS] = uncorrected_position.x;
  1937. current_position[Y_AXIS] = uncorrected_position.y;
  1938. current_position[Z_AXIS] = uncorrected_position.z;
  1939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1940. #endif
  1941. setup_for_endstop_move();
  1942. feedrate = homing_feedrate[Z_AXIS];
  1943. #ifdef AUTO_BED_LEVELING_GRID
  1944. // probe at the points of a lattice grid
  1945. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1946. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1947. #ifndef DELTA
  1948. // solve the plane equation ax + by + d = z
  1949. // A is the matrix with rows [x y 1] for all the probed points
  1950. // B is the vector of the Z positions
  1951. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1952. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1953. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1954. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1955. eqnBVector[abl2], // "B" vector of Z points
  1956. mean = 0.0;
  1957. #else
  1958. delta_grid_spacing[0] = xGridSpacing;
  1959. delta_grid_spacing[1] = yGridSpacing;
  1960. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1961. if (code_seen(axis_codes[Z_AXIS])) {
  1962. z_offset += code_value();
  1963. }
  1964. #endif
  1965. int probePointCounter = 0;
  1966. bool zig = true;
  1967. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1968. {
  1969. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1970. int xStart, xStop, xInc;
  1971. if (zig)
  1972. {
  1973. xStart = 0;
  1974. xStop = auto_bed_leveling_grid_points;
  1975. xInc = 1;
  1976. zig = false;
  1977. }
  1978. else
  1979. {
  1980. xStart = auto_bed_leveling_grid_points - 1;
  1981. xStop = -1;
  1982. xInc = -1;
  1983. zig = true;
  1984. }
  1985. #ifndef DELTA
  1986. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1987. // This gets the probe points in more readable order.
  1988. if (!topo_flag) zig = !zig;
  1989. #endif
  1990. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1991. {
  1992. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1993. // raise extruder
  1994. float measured_z,
  1995. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1996. #ifdef DELTA
  1997. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1998. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1999. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  2000. continue;
  2001. #endif //DELTA
  2002. // Enhanced G29 - Do not retract servo between probes
  2003. ProbeAction act;
  2004. if (enhanced_g29) {
  2005. if (yProbe == front_probe_bed_position && xCount == 0)
  2006. act = ProbeEngage;
  2007. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2008. act = ProbeRetract;
  2009. else
  2010. act = ProbeStay;
  2011. }
  2012. else
  2013. act = ProbeEngageAndRetract;
  2014. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2015. #ifndef DELTA
  2016. mean += measured_z;
  2017. eqnBVector[probePointCounter] = measured_z;
  2018. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2019. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2020. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2021. #else
  2022. bed_level[xCount][yCount] = measured_z + z_offset;
  2023. #endif
  2024. probePointCounter++;
  2025. } //xProbe
  2026. } //yProbe
  2027. clean_up_after_endstop_move();
  2028. #ifndef DELTA
  2029. // solve lsq problem
  2030. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2031. mean /= abl2;
  2032. if (verbose_level) {
  2033. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2034. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2035. SERIAL_PROTOCOLPGM(" b: ");
  2036. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2037. SERIAL_PROTOCOLPGM(" d: ");
  2038. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2039. SERIAL_EOL;
  2040. if (verbose_level > 2) {
  2041. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2042. SERIAL_PROTOCOL_F(mean, 8);
  2043. SERIAL_EOL;
  2044. }
  2045. }
  2046. if (topo_flag) {
  2047. int xx, yy;
  2048. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2049. #if TOPO_ORIGIN == OriginFrontLeft
  2050. SERIAL_PROTOCOLPGM("+-----------+\n");
  2051. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2052. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2053. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2054. SERIAL_PROTOCOLPGM("+-----------+\n");
  2055. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  2056. #else
  2057. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  2058. #endif
  2059. {
  2060. #if TOPO_ORIGIN == OriginBackRight
  2061. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  2062. #else
  2063. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  2064. #endif
  2065. {
  2066. int ind =
  2067. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  2068. yy * auto_bed_leveling_grid_points + xx
  2069. #elif TOPO_ORIGIN == OriginBackLeft
  2070. xx * auto_bed_leveling_grid_points + yy
  2071. #elif TOPO_ORIGIN == OriginFrontRight
  2072. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  2073. #endif
  2074. ;
  2075. float diff = eqnBVector[ind] - mean;
  2076. if (diff >= 0.0)
  2077. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2078. else
  2079. SERIAL_PROTOCOLPGM(" ");
  2080. SERIAL_PROTOCOL_F(diff, 5);
  2081. } // xx
  2082. SERIAL_EOL;
  2083. } // yy
  2084. SERIAL_EOL;
  2085. } //topo_flag
  2086. set_bed_level_equation_lsq(plane_equation_coefficients);
  2087. free(plane_equation_coefficients);
  2088. #else
  2089. extrapolate_unprobed_bed_level();
  2090. print_bed_level();
  2091. #endif
  2092. #else // !AUTO_BED_LEVELING_GRID
  2093. // Probe at 3 arbitrary points
  2094. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2095. if (enhanced_g29) {
  2096. // Basic Enhanced G29
  2097. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2098. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2099. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2100. }
  2101. else {
  2102. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level);
  2103. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  2104. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  2105. }
  2106. clean_up_after_endstop_move();
  2107. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2108. #endif // !AUTO_BED_LEVELING_GRID
  2109. #ifndef DELTA
  2110. if (verbose_level > 0)
  2111. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2112. // Correct the Z height difference from z-probe position and hotend tip position.
  2113. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2114. // When the bed is uneven, this height must be corrected.
  2115. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2116. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2117. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2118. z_tmp = current_position[Z_AXIS];
  2119. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2120. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2122. #endif
  2123. #ifdef Z_PROBE_SLED
  2124. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2125. #endif
  2126. #ifdef Z_PROBE_END_SCRIPT
  2127. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2128. st_synchronize();
  2129. #endif
  2130. }
  2131. #ifndef Z_PROBE_SLED
  2132. inline void gcode_G30() {
  2133. engage_z_probe(); // Engage Z Servo endstop if available
  2134. st_synchronize();
  2135. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2136. setup_for_endstop_move();
  2137. feedrate = homing_feedrate[Z_AXIS];
  2138. run_z_probe();
  2139. SERIAL_PROTOCOLPGM(MSG_BED);
  2140. SERIAL_PROTOCOLPGM(" X: ");
  2141. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2142. SERIAL_PROTOCOLPGM(" Y: ");
  2143. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2144. SERIAL_PROTOCOLPGM(" Z: ");
  2145. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2146. SERIAL_EOL;
  2147. clean_up_after_endstop_move();
  2148. retract_z_probe(); // Retract Z Servo endstop if available
  2149. }
  2150. #endif //!Z_PROBE_SLED
  2151. #endif //ENABLE_AUTO_BED_LEVELING
  2152. /**
  2153. * G92: Set current position to given X Y Z E
  2154. */
  2155. inline void gcode_G92() {
  2156. if (!code_seen(axis_codes[E_AXIS]))
  2157. st_synchronize();
  2158. for (int i = 0; i < NUM_AXIS; i++) {
  2159. if (code_seen(axis_codes[i])) {
  2160. current_position[i] = code_value();
  2161. if (i == E_AXIS)
  2162. plan_set_e_position(current_position[E_AXIS]);
  2163. else
  2164. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2165. }
  2166. }
  2167. }
  2168. #ifdef ULTIPANEL
  2169. /**
  2170. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2171. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2172. */
  2173. inline void gcode_M0_M1() {
  2174. char *src = strchr_pointer + 2;
  2175. unsigned long codenum = 0;
  2176. bool hasP = false, hasS = false;
  2177. if (code_seen('P')) {
  2178. codenum = code_value(); // milliseconds to wait
  2179. hasP = codenum > 0;
  2180. }
  2181. if (code_seen('S')) {
  2182. codenum = code_value() * 1000; // seconds to wait
  2183. hasS = codenum > 0;
  2184. }
  2185. char* starpos = strchr(src, '*');
  2186. if (starpos != NULL) *(starpos) = '\0';
  2187. while (*src == ' ') ++src;
  2188. if (!hasP && !hasS && *src != '\0')
  2189. lcd_setstatus(src);
  2190. else
  2191. LCD_MESSAGEPGM(MSG_USERWAIT);
  2192. lcd_ignore_click();
  2193. st_synchronize();
  2194. previous_millis_cmd = millis();
  2195. if (codenum > 0) {
  2196. codenum += previous_millis_cmd; // keep track of when we started waiting
  2197. while(millis() < codenum && !lcd_clicked()) {
  2198. manage_heater();
  2199. manage_inactivity();
  2200. lcd_update();
  2201. }
  2202. lcd_ignore_click(false);
  2203. }
  2204. else {
  2205. if (!lcd_detected()) return;
  2206. while (!lcd_clicked()) {
  2207. manage_heater();
  2208. manage_inactivity();
  2209. lcd_update();
  2210. }
  2211. }
  2212. if (IS_SD_PRINTING)
  2213. LCD_MESSAGEPGM(MSG_RESUMING);
  2214. else
  2215. LCD_MESSAGEPGM(WELCOME_MSG);
  2216. }
  2217. #endif // ULTIPANEL
  2218. /**
  2219. * M17: Enable power on all stepper motors
  2220. */
  2221. inline void gcode_M17() {
  2222. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2223. enable_x();
  2224. enable_y();
  2225. enable_z();
  2226. enable_e0();
  2227. enable_e1();
  2228. enable_e2();
  2229. enable_e3();
  2230. }
  2231. #ifdef SDSUPPORT
  2232. /**
  2233. * M20: List SD card to serial output
  2234. */
  2235. inline void gcode_M20() {
  2236. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2237. card.ls();
  2238. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2239. }
  2240. /**
  2241. * M21: Init SD Card
  2242. */
  2243. inline void gcode_M21() {
  2244. card.initsd();
  2245. }
  2246. /**
  2247. * M22: Release SD Card
  2248. */
  2249. inline void gcode_M22() {
  2250. card.release();
  2251. }
  2252. /**
  2253. * M23: Select a file
  2254. */
  2255. inline void gcode_M23() {
  2256. char* codepos = strchr_pointer + 4;
  2257. char* starpos = strchr(codepos, '*');
  2258. if (starpos) *starpos = '\0';
  2259. card.openFile(codepos, true);
  2260. }
  2261. /**
  2262. * M24: Start SD Print
  2263. */
  2264. inline void gcode_M24() {
  2265. card.startFileprint();
  2266. starttime = millis();
  2267. }
  2268. /**
  2269. * M25: Pause SD Print
  2270. */
  2271. inline void gcode_M25() {
  2272. card.pauseSDPrint();
  2273. }
  2274. /**
  2275. * M26: Set SD Card file index
  2276. */
  2277. inline void gcode_M26() {
  2278. if (card.cardOK && code_seen('S'))
  2279. card.setIndex(code_value_long());
  2280. }
  2281. /**
  2282. * M27: Get SD Card status
  2283. */
  2284. inline void gcode_M27() {
  2285. card.getStatus();
  2286. }
  2287. /**
  2288. * M28: Start SD Write
  2289. */
  2290. inline void gcode_M28() {
  2291. char* codepos = strchr_pointer + 4;
  2292. char* starpos = strchr(codepos, '*');
  2293. if (starpos) {
  2294. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2295. strchr_pointer = strchr(npos, ' ') + 1;
  2296. *(starpos) = '\0';
  2297. }
  2298. card.openFile(codepos, false);
  2299. }
  2300. /**
  2301. * M29: Stop SD Write
  2302. * Processed in write to file routine above
  2303. */
  2304. inline void gcode_M29() {
  2305. // card.saving = false;
  2306. }
  2307. /**
  2308. * M30 <filename>: Delete SD Card file
  2309. */
  2310. inline void gcode_M30() {
  2311. if (card.cardOK) {
  2312. card.closefile();
  2313. char* starpos = strchr(strchr_pointer + 4, '*');
  2314. if (starpos) {
  2315. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2316. strchr_pointer = strchr(npos, ' ') + 1;
  2317. *(starpos) = '\0';
  2318. }
  2319. card.removeFile(strchr_pointer + 4);
  2320. }
  2321. }
  2322. #endif
  2323. /**
  2324. * M31: Get the time since the start of SD Print (or last M109)
  2325. */
  2326. inline void gcode_M31() {
  2327. stoptime = millis();
  2328. unsigned long t = (stoptime - starttime) / 1000;
  2329. int min = t / 60, sec = t % 60;
  2330. char time[30];
  2331. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2332. SERIAL_ECHO_START;
  2333. SERIAL_ECHOLN(time);
  2334. lcd_setstatus(time);
  2335. autotempShutdown();
  2336. }
  2337. #ifdef SDSUPPORT
  2338. /**
  2339. * M32: Select file and start SD Print
  2340. */
  2341. inline void gcode_M32() {
  2342. if (card.sdprinting)
  2343. st_synchronize();
  2344. char* codepos = strchr_pointer + 4;
  2345. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2346. if (! namestartpos)
  2347. namestartpos = codepos; //default name position, 4 letters after the M
  2348. else
  2349. namestartpos++; //to skip the '!'
  2350. char* starpos = strchr(codepos, '*');
  2351. if (starpos) *(starpos) = '\0';
  2352. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2353. if (card.cardOK) {
  2354. card.openFile(namestartpos, true, !call_procedure);
  2355. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2356. card.setIndex(code_value_long());
  2357. card.startFileprint();
  2358. if (!call_procedure)
  2359. starttime = millis(); //procedure calls count as normal print time.
  2360. }
  2361. }
  2362. /**
  2363. * M928: Start SD Write
  2364. */
  2365. inline void gcode_M928() {
  2366. char* starpos = strchr(strchr_pointer + 5, '*');
  2367. if (starpos) {
  2368. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2369. strchr_pointer = strchr(npos, ' ') + 1;
  2370. *(starpos) = '\0';
  2371. }
  2372. card.openLogFile(strchr_pointer + 5);
  2373. }
  2374. #endif // SDSUPPORT
  2375. /**
  2376. * M42: Change pin status via GCode
  2377. */
  2378. inline void gcode_M42() {
  2379. if (code_seen('S')) {
  2380. int pin_status = code_value(),
  2381. pin_number = LED_PIN;
  2382. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2383. pin_number = code_value();
  2384. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2385. if (sensitive_pins[i] == pin_number) {
  2386. pin_number = -1;
  2387. break;
  2388. }
  2389. }
  2390. #if defined(FAN_PIN) && FAN_PIN > -1
  2391. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2392. #endif
  2393. if (pin_number > -1) {
  2394. pinMode(pin_number, OUTPUT);
  2395. digitalWrite(pin_number, pin_status);
  2396. analogWrite(pin_number, pin_status);
  2397. }
  2398. } // code_seen('S')
  2399. }
  2400. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2401. #if Z_MIN_PIN == -1
  2402. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2403. #endif
  2404. /**
  2405. * M48: Z-Probe repeatability measurement function.
  2406. *
  2407. * Usage:
  2408. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2409. * n = Number of samples (4-50, default 10)
  2410. * X = Sample X position
  2411. * Y = Sample Y position
  2412. * V = Verbose level (0-4, default=1)
  2413. * E = Engage probe for each reading
  2414. * L = Number of legs of movement before probe
  2415. *
  2416. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2417. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2418. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2419. * regenerated.
  2420. *
  2421. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2422. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2423. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2424. */
  2425. inline void gcode_M48() {
  2426. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2427. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2428. double X_current, Y_current, Z_current;
  2429. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2430. if (code_seen('V') || code_seen('v')) {
  2431. verbose_level = code_value();
  2432. if (verbose_level < 0 || verbose_level > 4 ) {
  2433. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2434. return;
  2435. }
  2436. }
  2437. if (verbose_level > 0)
  2438. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2439. if (code_seen('n')) {
  2440. n_samples = code_value();
  2441. if (n_samples < 4 || n_samples > 50) {
  2442. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2443. return;
  2444. }
  2445. }
  2446. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2447. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2448. Z_current = st_get_position_mm(Z_AXIS);
  2449. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2450. ext_position = st_get_position_mm(E_AXIS);
  2451. if (code_seen('E') || code_seen('e'))
  2452. engage_probe_for_each_reading++;
  2453. if (code_seen('X') || code_seen('x')) {
  2454. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2455. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2456. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2457. return;
  2458. }
  2459. }
  2460. if (code_seen('Y') || code_seen('y')) {
  2461. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2462. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2463. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2464. return;
  2465. }
  2466. }
  2467. if (code_seen('L') || code_seen('l')) {
  2468. n_legs = code_value();
  2469. if (n_legs == 1) n_legs = 2;
  2470. if (n_legs < 0 || n_legs > 15) {
  2471. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2472. return;
  2473. }
  2474. }
  2475. //
  2476. // Do all the preliminary setup work. First raise the probe.
  2477. //
  2478. st_synchronize();
  2479. plan_bed_level_matrix.set_to_identity();
  2480. plan_buffer_line(X_current, Y_current, Z_start_location,
  2481. ext_position,
  2482. homing_feedrate[Z_AXIS] / 60,
  2483. active_extruder);
  2484. st_synchronize();
  2485. //
  2486. // Now get everything to the specified probe point So we can safely do a probe to
  2487. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2488. // use that as a starting point for each probe.
  2489. //
  2490. if (verbose_level > 2)
  2491. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2492. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2493. ext_position,
  2494. homing_feedrate[X_AXIS]/60,
  2495. active_extruder);
  2496. st_synchronize();
  2497. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2498. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2499. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2500. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2501. //
  2502. // OK, do the inital probe to get us close to the bed.
  2503. // Then retrace the right amount and use that in subsequent probes
  2504. //
  2505. engage_z_probe();
  2506. setup_for_endstop_move();
  2507. run_z_probe();
  2508. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2509. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2510. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2511. ext_position,
  2512. homing_feedrate[X_AXIS]/60,
  2513. active_extruder);
  2514. st_synchronize();
  2515. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2516. if (engage_probe_for_each_reading) retract_z_probe();
  2517. for (n=0; n < n_samples; n++) {
  2518. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2519. if (n_legs) {
  2520. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2521. int l;
  2522. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2523. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2524. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2525. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2526. //SERIAL_ECHOPAIR(" theta: ",theta);
  2527. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2528. //SERIAL_PROTOCOLLNPGM("");
  2529. float dir = rotational_direction ? 1 : -1;
  2530. for (l = 0; l < n_legs - 1; l++) {
  2531. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2532. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2533. if (radius < 0.0) radius = -radius;
  2534. X_current = X_probe_location + cos(theta) * radius;
  2535. Y_current = Y_probe_location + sin(theta) * radius;
  2536. // Make sure our X & Y are sane
  2537. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2538. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2539. if (verbose_level > 3) {
  2540. SERIAL_ECHOPAIR("x: ", X_current);
  2541. SERIAL_ECHOPAIR("y: ", Y_current);
  2542. SERIAL_PROTOCOLLNPGM("");
  2543. }
  2544. do_blocking_move_to( X_current, Y_current, Z_current );
  2545. }
  2546. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2547. }
  2548. if (engage_probe_for_each_reading) {
  2549. engage_z_probe();
  2550. delay(1000);
  2551. }
  2552. setup_for_endstop_move();
  2553. run_z_probe();
  2554. sample_set[n] = current_position[Z_AXIS];
  2555. //
  2556. // Get the current mean for the data points we have so far
  2557. //
  2558. sum = 0.0;
  2559. for (j=0; j<=n; j++) sum += sample_set[j];
  2560. mean = sum / (double (n+1));
  2561. //
  2562. // Now, use that mean to calculate the standard deviation for the
  2563. // data points we have so far
  2564. //
  2565. sum = 0.0;
  2566. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2567. sigma = sqrt( sum / (double (n+1)) );
  2568. if (verbose_level > 1) {
  2569. SERIAL_PROTOCOL(n+1);
  2570. SERIAL_PROTOCOL(" of ");
  2571. SERIAL_PROTOCOL(n_samples);
  2572. SERIAL_PROTOCOLPGM(" z: ");
  2573. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2574. }
  2575. if (verbose_level > 2) {
  2576. SERIAL_PROTOCOL(" mean: ");
  2577. SERIAL_PROTOCOL_F(mean,6);
  2578. SERIAL_PROTOCOL(" sigma: ");
  2579. SERIAL_PROTOCOL_F(sigma,6);
  2580. }
  2581. if (verbose_level > 0) SERIAL_EOL;
  2582. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2583. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2584. st_synchronize();
  2585. if (engage_probe_for_each_reading) {
  2586. retract_z_probe();
  2587. delay(1000);
  2588. }
  2589. }
  2590. retract_z_probe();
  2591. delay(1000);
  2592. clean_up_after_endstop_move();
  2593. // enable_endstops(true);
  2594. if (verbose_level > 0) {
  2595. SERIAL_PROTOCOLPGM("Mean: ");
  2596. SERIAL_PROTOCOL_F(mean, 6);
  2597. SERIAL_EOL;
  2598. }
  2599. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2600. SERIAL_PROTOCOL_F(sigma, 6);
  2601. SERIAL_EOL; SERIAL_EOL;
  2602. }
  2603. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2604. /**
  2605. * M104: Set hot end temperature
  2606. */
  2607. inline void gcode_M104() {
  2608. if (setTargetedHotend(104)) return;
  2609. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2610. #ifdef DUAL_X_CARRIAGE
  2611. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2612. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2613. #endif
  2614. setWatch();
  2615. }
  2616. /**
  2617. * M105: Read hot end and bed temperature
  2618. */
  2619. inline void gcode_M105() {
  2620. if (setTargetedHotend(105)) return;
  2621. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2622. SERIAL_PROTOCOLPGM("ok T:");
  2623. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2624. SERIAL_PROTOCOLPGM(" /");
  2625. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2626. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2627. SERIAL_PROTOCOLPGM(" B:");
  2628. SERIAL_PROTOCOL_F(degBed(),1);
  2629. SERIAL_PROTOCOLPGM(" /");
  2630. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2631. #endif //TEMP_BED_PIN
  2632. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2633. SERIAL_PROTOCOLPGM(" T");
  2634. SERIAL_PROTOCOL(cur_extruder);
  2635. SERIAL_PROTOCOLPGM(":");
  2636. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2637. SERIAL_PROTOCOLPGM(" /");
  2638. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2639. }
  2640. #else
  2641. SERIAL_ERROR_START;
  2642. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2643. #endif
  2644. SERIAL_PROTOCOLPGM(" @:");
  2645. #ifdef EXTRUDER_WATTS
  2646. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2647. SERIAL_PROTOCOLPGM("W");
  2648. #else
  2649. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2650. #endif
  2651. SERIAL_PROTOCOLPGM(" B@:");
  2652. #ifdef BED_WATTS
  2653. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2654. SERIAL_PROTOCOLPGM("W");
  2655. #else
  2656. SERIAL_PROTOCOL(getHeaterPower(-1));
  2657. #endif
  2658. #ifdef SHOW_TEMP_ADC_VALUES
  2659. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2660. SERIAL_PROTOCOLPGM(" ADC B:");
  2661. SERIAL_PROTOCOL_F(degBed(),1);
  2662. SERIAL_PROTOCOLPGM("C->");
  2663. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2664. #endif
  2665. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2666. SERIAL_PROTOCOLPGM(" T");
  2667. SERIAL_PROTOCOL(cur_extruder);
  2668. SERIAL_PROTOCOLPGM(":");
  2669. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2670. SERIAL_PROTOCOLPGM("C->");
  2671. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2672. }
  2673. #endif
  2674. SERIAL_PROTOCOLLN("");
  2675. }
  2676. #if defined(FAN_PIN) && FAN_PIN > -1
  2677. /**
  2678. * M106: Set Fan Speed
  2679. */
  2680. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2681. /**
  2682. * M107: Fan Off
  2683. */
  2684. inline void gcode_M107() { fanSpeed = 0; }
  2685. #endif //FAN_PIN
  2686. /**
  2687. * M109: Wait for extruder(s) to reach temperature
  2688. */
  2689. inline void gcode_M109() {
  2690. if (setTargetedHotend(109)) return;
  2691. LCD_MESSAGEPGM(MSG_HEATING);
  2692. CooldownNoWait = code_seen('S');
  2693. if (CooldownNoWait || code_seen('R')) {
  2694. setTargetHotend(code_value(), tmp_extruder);
  2695. #ifdef DUAL_X_CARRIAGE
  2696. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2697. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2698. #endif
  2699. }
  2700. #ifdef AUTOTEMP
  2701. autotemp_enabled = code_seen('F');
  2702. if (autotemp_enabled) autotemp_factor = code_value();
  2703. if (code_seen('S')) autotemp_min = code_value();
  2704. if (code_seen('B')) autotemp_max = code_value();
  2705. #endif
  2706. setWatch();
  2707. unsigned long timetemp = millis();
  2708. /* See if we are heating up or cooling down */
  2709. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2710. cancel_heatup = false;
  2711. #ifdef TEMP_RESIDENCY_TIME
  2712. long residencyStart = -1;
  2713. /* continue to loop until we have reached the target temp
  2714. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2715. while((!cancel_heatup)&&((residencyStart == -1) ||
  2716. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2717. #else
  2718. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2719. #endif //TEMP_RESIDENCY_TIME
  2720. { // while loop
  2721. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2722. SERIAL_PROTOCOLPGM("T:");
  2723. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2724. SERIAL_PROTOCOLPGM(" E:");
  2725. SERIAL_PROTOCOL((int)tmp_extruder);
  2726. #ifdef TEMP_RESIDENCY_TIME
  2727. SERIAL_PROTOCOLPGM(" W:");
  2728. if (residencyStart > -1) {
  2729. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2730. SERIAL_PROTOCOLLN( timetemp );
  2731. }
  2732. else {
  2733. SERIAL_PROTOCOLLN( "?" );
  2734. }
  2735. #else
  2736. SERIAL_PROTOCOLLN("");
  2737. #endif
  2738. timetemp = millis();
  2739. }
  2740. manage_heater();
  2741. manage_inactivity();
  2742. lcd_update();
  2743. #ifdef TEMP_RESIDENCY_TIME
  2744. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2745. // or when current temp falls outside the hysteresis after target temp was reached
  2746. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2747. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2748. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2749. {
  2750. residencyStart = millis();
  2751. }
  2752. #endif //TEMP_RESIDENCY_TIME
  2753. }
  2754. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2755. starttime = previous_millis_cmd = millis();
  2756. }
  2757. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2758. /**
  2759. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2760. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2761. */
  2762. inline void gcode_M190() {
  2763. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2764. CooldownNoWait = code_seen('S');
  2765. if (CooldownNoWait || code_seen('R'))
  2766. setTargetBed(code_value());
  2767. unsigned long timetemp = millis();
  2768. cancel_heatup = false;
  2769. target_direction = isHeatingBed(); // true if heating, false if cooling
  2770. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2771. unsigned long ms = millis();
  2772. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2773. timetemp = ms;
  2774. float tt = degHotend(active_extruder);
  2775. SERIAL_PROTOCOLPGM("T:");
  2776. SERIAL_PROTOCOL(tt);
  2777. SERIAL_PROTOCOLPGM(" E:");
  2778. SERIAL_PROTOCOL((int)active_extruder);
  2779. SERIAL_PROTOCOLPGM(" B:");
  2780. SERIAL_PROTOCOL_F(degBed(), 1);
  2781. SERIAL_PROTOCOLLN("");
  2782. }
  2783. manage_heater();
  2784. manage_inactivity();
  2785. lcd_update();
  2786. }
  2787. LCD_MESSAGEPGM(MSG_BED_DONE);
  2788. previous_millis_cmd = millis();
  2789. }
  2790. #endif // TEMP_BED_PIN > -1
  2791. /**
  2792. * M112: Emergency Stop
  2793. */
  2794. inline void gcode_M112() {
  2795. kill();
  2796. }
  2797. #ifdef BARICUDA
  2798. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2799. /**
  2800. * M126: Heater 1 valve open
  2801. */
  2802. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2803. /**
  2804. * M127: Heater 1 valve close
  2805. */
  2806. inline void gcode_M127() { ValvePressure = 0; }
  2807. #endif
  2808. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2809. /**
  2810. * M128: Heater 2 valve open
  2811. */
  2812. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2813. /**
  2814. * M129: Heater 2 valve close
  2815. */
  2816. inline void gcode_M129() { EtoPPressure = 0; }
  2817. #endif
  2818. #endif //BARICUDA
  2819. /**
  2820. * M140: Set bed temperature
  2821. */
  2822. inline void gcode_M140() {
  2823. if (code_seen('S')) setTargetBed(code_value());
  2824. }
  2825. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2826. /**
  2827. * M80: Turn on Power Supply
  2828. */
  2829. inline void gcode_M80() {
  2830. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2831. // If you have a switch on suicide pin, this is useful
  2832. // if you want to start another print with suicide feature after
  2833. // a print without suicide...
  2834. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2835. OUT_WRITE(SUICIDE_PIN, HIGH);
  2836. #endif
  2837. #ifdef ULTIPANEL
  2838. powersupply = true;
  2839. LCD_MESSAGEPGM(WELCOME_MSG);
  2840. lcd_update();
  2841. #endif
  2842. }
  2843. #endif // PS_ON_PIN
  2844. /**
  2845. * M81: Turn off Power Supply
  2846. */
  2847. inline void gcode_M81() {
  2848. disable_heater();
  2849. st_synchronize();
  2850. disable_e0();
  2851. disable_e1();
  2852. disable_e2();
  2853. disable_e3();
  2854. finishAndDisableSteppers();
  2855. fanSpeed = 0;
  2856. delay(1000); // Wait 1 second before switching off
  2857. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2858. st_synchronize();
  2859. suicide();
  2860. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2861. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2862. #endif
  2863. #ifdef ULTIPANEL
  2864. powersupply = false;
  2865. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2866. lcd_update();
  2867. #endif
  2868. }
  2869. /**
  2870. * M82: Set E codes absolute (default)
  2871. */
  2872. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2873. /**
  2874. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2875. */
  2876. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2877. /**
  2878. * M18, M84: Disable all stepper motors
  2879. */
  2880. inline void gcode_M18_M84() {
  2881. if (code_seen('S')) {
  2882. stepper_inactive_time = code_value() * 1000;
  2883. }
  2884. else {
  2885. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2886. if (all_axis) {
  2887. st_synchronize();
  2888. disable_e0();
  2889. disable_e1();
  2890. disable_e2();
  2891. disable_e3();
  2892. finishAndDisableSteppers();
  2893. }
  2894. else {
  2895. st_synchronize();
  2896. if (code_seen('X')) disable_x();
  2897. if (code_seen('Y')) disable_y();
  2898. if (code_seen('Z')) disable_z();
  2899. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2900. if (code_seen('E')) {
  2901. disable_e0();
  2902. disable_e1();
  2903. disable_e2();
  2904. disable_e3();
  2905. }
  2906. #endif
  2907. }
  2908. }
  2909. }
  2910. /**
  2911. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2912. */
  2913. inline void gcode_M85() {
  2914. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2915. }
  2916. /**
  2917. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2918. */
  2919. inline void gcode_M92() {
  2920. for(int8_t i=0; i < NUM_AXIS; i++) {
  2921. if (code_seen(axis_codes[i])) {
  2922. if (i == E_AXIS) {
  2923. float value = code_value();
  2924. if (value < 20.0) {
  2925. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2926. max_e_jerk *= factor;
  2927. max_feedrate[i] *= factor;
  2928. axis_steps_per_sqr_second[i] *= factor;
  2929. }
  2930. axis_steps_per_unit[i] = value;
  2931. }
  2932. else {
  2933. axis_steps_per_unit[i] = code_value();
  2934. }
  2935. }
  2936. }
  2937. }
  2938. /**
  2939. * M114: Output current position to serial port
  2940. */
  2941. inline void gcode_M114() {
  2942. SERIAL_PROTOCOLPGM("X:");
  2943. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2944. SERIAL_PROTOCOLPGM(" Y:");
  2945. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2946. SERIAL_PROTOCOLPGM(" Z:");
  2947. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2948. SERIAL_PROTOCOLPGM(" E:");
  2949. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2950. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2951. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2952. SERIAL_PROTOCOLPGM(" Y:");
  2953. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2954. SERIAL_PROTOCOLPGM(" Z:");
  2955. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2956. SERIAL_PROTOCOLLN("");
  2957. #ifdef SCARA
  2958. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2959. SERIAL_PROTOCOL(delta[X_AXIS]);
  2960. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2961. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2962. SERIAL_PROTOCOLLN("");
  2963. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2964. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2965. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2966. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2967. SERIAL_PROTOCOLLN("");
  2968. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2969. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2970. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2971. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2972. SERIAL_PROTOCOLLN("");
  2973. SERIAL_PROTOCOLLN("");
  2974. #endif
  2975. }
  2976. /**
  2977. * M115: Capabilities string
  2978. */
  2979. inline void gcode_M115() {
  2980. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2981. }
  2982. /**
  2983. * M117: Set LCD Status Message
  2984. */
  2985. inline void gcode_M117() {
  2986. char* codepos = strchr_pointer + 5;
  2987. char* starpos = strchr(codepos, '*');
  2988. if (starpos) *starpos = '\0';
  2989. lcd_setstatus(codepos);
  2990. }
  2991. /**
  2992. * M119: Output endstop states to serial output
  2993. */
  2994. inline void gcode_M119() {
  2995. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2996. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2997. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2998. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2999. #endif
  3000. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3001. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3002. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3003. #endif
  3004. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3005. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3006. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3007. #endif
  3008. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3009. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3010. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3011. #endif
  3012. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3013. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3014. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3015. #endif
  3016. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3017. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3018. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3019. #endif
  3020. }
  3021. /**
  3022. * M120: Enable endstops
  3023. */
  3024. inline void gcode_M120() { enable_endstops(false); }
  3025. /**
  3026. * M121: Disable endstops
  3027. */
  3028. inline void gcode_M121() { enable_endstops(true); }
  3029. #ifdef BLINKM
  3030. /**
  3031. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3032. */
  3033. inline void gcode_M150() {
  3034. SendColors(
  3035. code_seen('R') ? (byte)code_value() : 0,
  3036. code_seen('U') ? (byte)code_value() : 0,
  3037. code_seen('B') ? (byte)code_value() : 0
  3038. );
  3039. }
  3040. #endif // BLINKM
  3041. /**
  3042. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3043. * T<extruder>
  3044. * D<millimeters>
  3045. */
  3046. inline void gcode_M200() {
  3047. tmp_extruder = active_extruder;
  3048. if (code_seen('T')) {
  3049. tmp_extruder = code_value();
  3050. if (tmp_extruder >= EXTRUDERS) {
  3051. SERIAL_ECHO_START;
  3052. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3053. return;
  3054. }
  3055. }
  3056. float area = .0;
  3057. if (code_seen('D')) {
  3058. float diameter = code_value();
  3059. // setting any extruder filament size disables volumetric on the assumption that
  3060. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3061. // for all extruders
  3062. volumetric_enabled = (diameter != 0.0);
  3063. if (volumetric_enabled) {
  3064. filament_size[tmp_extruder] = diameter;
  3065. // make sure all extruders have some sane value for the filament size
  3066. for (int i=0; i<EXTRUDERS; i++)
  3067. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3068. }
  3069. }
  3070. else {
  3071. //reserved for setting filament diameter via UFID or filament measuring device
  3072. return;
  3073. }
  3074. calculate_volumetric_multipliers();
  3075. }
  3076. /**
  3077. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3078. */
  3079. inline void gcode_M201() {
  3080. for (int8_t i=0; i < NUM_AXIS; i++) {
  3081. if (code_seen(axis_codes[i])) {
  3082. max_acceleration_units_per_sq_second[i] = code_value();
  3083. }
  3084. }
  3085. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3086. reset_acceleration_rates();
  3087. }
  3088. #if 0 // Not used for Sprinter/grbl gen6
  3089. inline void gcode_M202() {
  3090. for(int8_t i=0; i < NUM_AXIS; i++) {
  3091. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3092. }
  3093. }
  3094. #endif
  3095. /**
  3096. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3097. */
  3098. inline void gcode_M203() {
  3099. for (int8_t i=0; i < NUM_AXIS; i++) {
  3100. if (code_seen(axis_codes[i])) {
  3101. max_feedrate[i] = code_value();
  3102. }
  3103. }
  3104. }
  3105. /**
  3106. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3107. *
  3108. * P = Printing moves
  3109. * R = Retract only (no X, Y, Z) moves
  3110. * T = Travel (non printing) moves
  3111. *
  3112. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3113. */
  3114. inline void gcode_M204() {
  3115. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3116. {
  3117. acceleration = code_value();
  3118. travel_acceleration = acceleration;
  3119. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3120. SERIAL_EOL;
  3121. }
  3122. if (code_seen('P'))
  3123. {
  3124. acceleration = code_value();
  3125. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3126. SERIAL_EOL;
  3127. }
  3128. if (code_seen('R'))
  3129. {
  3130. retract_acceleration = code_value();
  3131. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3132. SERIAL_EOL;
  3133. }
  3134. if (code_seen('T'))
  3135. {
  3136. travel_acceleration = code_value();
  3137. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3138. SERIAL_EOL;
  3139. }
  3140. }
  3141. /**
  3142. * M205: Set Advanced Settings
  3143. *
  3144. * S = Min Feed Rate (mm/s)
  3145. * T = Min Travel Feed Rate (mm/s)
  3146. * B = Min Segment Time (µs)
  3147. * X = Max XY Jerk (mm/s/s)
  3148. * Z = Max Z Jerk (mm/s/s)
  3149. * E = Max E Jerk (mm/s/s)
  3150. */
  3151. inline void gcode_M205() {
  3152. if (code_seen('S')) minimumfeedrate = code_value();
  3153. if (code_seen('T')) mintravelfeedrate = code_value();
  3154. if (code_seen('B')) minsegmenttime = code_value();
  3155. if (code_seen('X')) max_xy_jerk = code_value();
  3156. if (code_seen('Z')) max_z_jerk = code_value();
  3157. if (code_seen('E')) max_e_jerk = code_value();
  3158. }
  3159. /**
  3160. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3161. */
  3162. inline void gcode_M206() {
  3163. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3164. if (code_seen(axis_codes[i])) {
  3165. home_offset[i] = code_value();
  3166. }
  3167. }
  3168. #ifdef SCARA
  3169. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3170. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3171. #endif
  3172. }
  3173. #ifdef DELTA
  3174. /**
  3175. * M665: Set delta configurations
  3176. *
  3177. * L = diagonal rod
  3178. * R = delta radius
  3179. * S = segments per second
  3180. */
  3181. inline void gcode_M665() {
  3182. if (code_seen('L')) delta_diagonal_rod = code_value();
  3183. if (code_seen('R')) delta_radius = code_value();
  3184. if (code_seen('S')) delta_segments_per_second = code_value();
  3185. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3186. }
  3187. /**
  3188. * M666: Set delta endstop adjustment
  3189. */
  3190. inline void gcode_M666() {
  3191. for (int8_t i = 0; i < 3; i++) {
  3192. if (code_seen(axis_codes[i])) {
  3193. endstop_adj[i] = code_value();
  3194. }
  3195. }
  3196. }
  3197. #endif // DELTA
  3198. #ifdef FWRETRACT
  3199. /**
  3200. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3201. */
  3202. inline void gcode_M207() {
  3203. if (code_seen('S')) retract_length = code_value();
  3204. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3205. if (code_seen('Z')) retract_zlift = code_value();
  3206. }
  3207. /**
  3208. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3209. */
  3210. inline void gcode_M208() {
  3211. if (code_seen('S')) retract_recover_length = code_value();
  3212. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3213. }
  3214. /**
  3215. * M209: Enable automatic retract (M209 S1)
  3216. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3217. */
  3218. inline void gcode_M209() {
  3219. if (code_seen('S')) {
  3220. int t = code_value();
  3221. switch(t) {
  3222. case 0:
  3223. autoretract_enabled = false;
  3224. break;
  3225. case 1:
  3226. autoretract_enabled = true;
  3227. break;
  3228. default:
  3229. SERIAL_ECHO_START;
  3230. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3231. SERIAL_ECHO(cmdbuffer[bufindr]);
  3232. SERIAL_ECHOLNPGM("\"");
  3233. return;
  3234. }
  3235. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3236. }
  3237. }
  3238. #endif // FWRETRACT
  3239. #if EXTRUDERS > 1
  3240. /**
  3241. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3242. */
  3243. inline void gcode_M218() {
  3244. if (setTargetedHotend(218)) return;
  3245. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3246. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3247. #ifdef DUAL_X_CARRIAGE
  3248. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3249. #endif
  3250. SERIAL_ECHO_START;
  3251. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3252. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3253. SERIAL_ECHO(" ");
  3254. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3255. SERIAL_ECHO(",");
  3256. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3257. #ifdef DUAL_X_CARRIAGE
  3258. SERIAL_ECHO(",");
  3259. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3260. #endif
  3261. }
  3262. SERIAL_EOL;
  3263. }
  3264. #endif // EXTRUDERS > 1
  3265. /**
  3266. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3267. */
  3268. inline void gcode_M220() {
  3269. if (code_seen('S')) feedmultiply = code_value();
  3270. }
  3271. /**
  3272. * M221: Set extrusion percentage (M221 T0 S95)
  3273. */
  3274. inline void gcode_M221() {
  3275. if (code_seen('S')) {
  3276. int sval = code_value();
  3277. if (code_seen('T')) {
  3278. if (setTargetedHotend(221)) return;
  3279. extruder_multiply[tmp_extruder] = sval;
  3280. }
  3281. else {
  3282. extrudemultiply = sval;
  3283. }
  3284. }
  3285. }
  3286. /**
  3287. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3288. */
  3289. inline void gcode_M226() {
  3290. if (code_seen('P')) {
  3291. int pin_number = code_value();
  3292. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3293. if (pin_state >= -1 && pin_state <= 1) {
  3294. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3295. if (sensitive_pins[i] == pin_number) {
  3296. pin_number = -1;
  3297. break;
  3298. }
  3299. }
  3300. if (pin_number > -1) {
  3301. int target = LOW;
  3302. st_synchronize();
  3303. pinMode(pin_number, INPUT);
  3304. switch(pin_state){
  3305. case 1:
  3306. target = HIGH;
  3307. break;
  3308. case 0:
  3309. target = LOW;
  3310. break;
  3311. case -1:
  3312. target = !digitalRead(pin_number);
  3313. break;
  3314. }
  3315. while(digitalRead(pin_number) != target) {
  3316. manage_heater();
  3317. manage_inactivity();
  3318. lcd_update();
  3319. }
  3320. } // pin_number > -1
  3321. } // pin_state -1 0 1
  3322. } // code_seen('P')
  3323. }
  3324. #if NUM_SERVOS > 0
  3325. /**
  3326. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3327. */
  3328. inline void gcode_M280() {
  3329. int servo_index = code_seen('P') ? code_value() : -1;
  3330. int servo_position = 0;
  3331. if (code_seen('S')) {
  3332. servo_position = code_value();
  3333. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3334. #if SERVO_LEVELING
  3335. servos[servo_index].attach(0);
  3336. #endif
  3337. servos[servo_index].write(servo_position);
  3338. #if SERVO_LEVELING
  3339. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3340. servos[servo_index].detach();
  3341. #endif
  3342. }
  3343. else {
  3344. SERIAL_ECHO_START;
  3345. SERIAL_ECHO("Servo ");
  3346. SERIAL_ECHO(servo_index);
  3347. SERIAL_ECHOLN(" out of range");
  3348. }
  3349. }
  3350. else if (servo_index >= 0) {
  3351. SERIAL_PROTOCOL(MSG_OK);
  3352. SERIAL_PROTOCOL(" Servo ");
  3353. SERIAL_PROTOCOL(servo_index);
  3354. SERIAL_PROTOCOL(": ");
  3355. SERIAL_PROTOCOL(servos[servo_index].read());
  3356. SERIAL_PROTOCOLLN("");
  3357. }
  3358. }
  3359. #endif // NUM_SERVOS > 0
  3360. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3361. /**
  3362. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3363. */
  3364. inline void gcode_M300() {
  3365. int beepS = code_seen('S') ? code_value() : 110;
  3366. int beepP = code_seen('P') ? code_value() : 1000;
  3367. if (beepS > 0) {
  3368. #if BEEPER > 0
  3369. tone(BEEPER, beepS);
  3370. delay(beepP);
  3371. noTone(BEEPER);
  3372. #elif defined(ULTRALCD)
  3373. lcd_buzz(beepS, beepP);
  3374. #elif defined(LCD_USE_I2C_BUZZER)
  3375. lcd_buzz(beepP, beepS);
  3376. #endif
  3377. }
  3378. else {
  3379. delay(beepP);
  3380. }
  3381. }
  3382. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3383. #ifdef PIDTEMP
  3384. /**
  3385. * M301: Set PID parameters P I D (and optionally C)
  3386. */
  3387. inline void gcode_M301() {
  3388. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3389. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3390. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3391. if (e < EXTRUDERS) { // catch bad input value
  3392. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3393. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3394. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3395. #ifdef PID_ADD_EXTRUSION_RATE
  3396. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3397. #endif
  3398. updatePID();
  3399. SERIAL_PROTOCOL(MSG_OK);
  3400. #ifdef PID_PARAMS_PER_EXTRUDER
  3401. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3402. SERIAL_PROTOCOL(e);
  3403. #endif // PID_PARAMS_PER_EXTRUDER
  3404. SERIAL_PROTOCOL(" p:");
  3405. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3406. SERIAL_PROTOCOL(" i:");
  3407. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3408. SERIAL_PROTOCOL(" d:");
  3409. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3410. #ifdef PID_ADD_EXTRUSION_RATE
  3411. SERIAL_PROTOCOL(" c:");
  3412. //Kc does not have scaling applied above, or in resetting defaults
  3413. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3414. #endif
  3415. SERIAL_PROTOCOLLN("");
  3416. }
  3417. else {
  3418. SERIAL_ECHO_START;
  3419. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3420. }
  3421. }
  3422. #endif // PIDTEMP
  3423. #ifdef PIDTEMPBED
  3424. inline void gcode_M304() {
  3425. if (code_seen('P')) bedKp = code_value();
  3426. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3427. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3428. updatePID();
  3429. SERIAL_PROTOCOL(MSG_OK);
  3430. SERIAL_PROTOCOL(" p:");
  3431. SERIAL_PROTOCOL(bedKp);
  3432. SERIAL_PROTOCOL(" i:");
  3433. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3434. SERIAL_PROTOCOL(" d:");
  3435. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3436. SERIAL_PROTOCOLLN("");
  3437. }
  3438. #endif // PIDTEMPBED
  3439. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3440. /**
  3441. * M240: Trigger a camera by emulating a Canon RC-1
  3442. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3443. */
  3444. inline void gcode_M240() {
  3445. #ifdef CHDK
  3446. OUT_WRITE(CHDK, HIGH);
  3447. chdkHigh = millis();
  3448. chdkActive = true;
  3449. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3450. const uint8_t NUM_PULSES = 16;
  3451. const float PULSE_LENGTH = 0.01524;
  3452. for (int i = 0; i < NUM_PULSES; i++) {
  3453. WRITE(PHOTOGRAPH_PIN, HIGH);
  3454. _delay_ms(PULSE_LENGTH);
  3455. WRITE(PHOTOGRAPH_PIN, LOW);
  3456. _delay_ms(PULSE_LENGTH);
  3457. }
  3458. delay(7.33);
  3459. for (int i = 0; i < NUM_PULSES; i++) {
  3460. WRITE(PHOTOGRAPH_PIN, HIGH);
  3461. _delay_ms(PULSE_LENGTH);
  3462. WRITE(PHOTOGRAPH_PIN, LOW);
  3463. _delay_ms(PULSE_LENGTH);
  3464. }
  3465. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3466. }
  3467. #endif // CHDK || PHOTOGRAPH_PIN
  3468. #ifdef DOGLCD
  3469. /**
  3470. * M250: Read and optionally set the LCD contrast
  3471. */
  3472. inline void gcode_M250() {
  3473. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3474. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3475. SERIAL_PROTOCOL(lcd_contrast);
  3476. SERIAL_PROTOCOLLN("");
  3477. }
  3478. #endif // DOGLCD
  3479. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3480. /**
  3481. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3482. */
  3483. inline void gcode_M302() {
  3484. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3485. }
  3486. #endif // PREVENT_DANGEROUS_EXTRUDE
  3487. /**
  3488. * M303: PID relay autotune
  3489. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3490. * E<extruder> (-1 for the bed)
  3491. * C<cycles>
  3492. */
  3493. inline void gcode_M303() {
  3494. int e = code_seen('E') ? code_value_long() : 0;
  3495. int c = code_seen('C') ? code_value_long() : 5;
  3496. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3497. PID_autotune(temp, e, c);
  3498. }
  3499. #ifdef SCARA
  3500. /**
  3501. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3502. */
  3503. inline bool gcode_M360() {
  3504. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3505. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3506. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3507. if (! Stopped) {
  3508. //get_coordinates(); // For X Y Z E F
  3509. delta[X_AXIS] = 0;
  3510. delta[Y_AXIS] = 120;
  3511. calculate_SCARA_forward_Transform(delta);
  3512. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3513. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3514. prepare_move();
  3515. //ClearToSend();
  3516. return true;
  3517. }
  3518. return false;
  3519. }
  3520. /**
  3521. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3522. */
  3523. inline bool gcode_M361() {
  3524. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3525. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3526. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3527. if (! Stopped) {
  3528. //get_coordinates(); // For X Y Z E F
  3529. delta[X_AXIS] = 90;
  3530. delta[Y_AXIS] = 130;
  3531. calculate_SCARA_forward_Transform(delta);
  3532. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3533. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3534. prepare_move();
  3535. //ClearToSend();
  3536. return true;
  3537. }
  3538. return false;
  3539. }
  3540. /**
  3541. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3542. */
  3543. inline bool gcode_M362() {
  3544. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3545. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3546. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3547. if (! Stopped) {
  3548. //get_coordinates(); // For X Y Z E F
  3549. delta[X_AXIS] = 60;
  3550. delta[Y_AXIS] = 180;
  3551. calculate_SCARA_forward_Transform(delta);
  3552. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3553. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3554. prepare_move();
  3555. //ClearToSend();
  3556. return true;
  3557. }
  3558. return false;
  3559. }
  3560. /**
  3561. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3562. */
  3563. inline bool gcode_M363() {
  3564. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3565. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3566. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3567. if (! Stopped) {
  3568. //get_coordinates(); // For X Y Z E F
  3569. delta[X_AXIS] = 50;
  3570. delta[Y_AXIS] = 90;
  3571. calculate_SCARA_forward_Transform(delta);
  3572. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3573. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3574. prepare_move();
  3575. //ClearToSend();
  3576. return true;
  3577. }
  3578. return false;
  3579. }
  3580. /**
  3581. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3582. */
  3583. inline bool gcode_M364() {
  3584. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3585. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3586. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3587. if (! Stopped) {
  3588. //get_coordinates(); // For X Y Z E F
  3589. delta[X_AXIS] = 45;
  3590. delta[Y_AXIS] = 135;
  3591. calculate_SCARA_forward_Transform(delta);
  3592. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3593. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3594. prepare_move();
  3595. //ClearToSend();
  3596. return true;
  3597. }
  3598. return false;
  3599. }
  3600. /**
  3601. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3602. */
  3603. inline void gcode_M365() {
  3604. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3605. if (code_seen(axis_codes[i])) {
  3606. axis_scaling[i] = code_value();
  3607. }
  3608. }
  3609. }
  3610. #endif // SCARA
  3611. #ifdef EXT_SOLENOID
  3612. void enable_solenoid(uint8_t num) {
  3613. switch(num) {
  3614. case 0:
  3615. OUT_WRITE(SOL0_PIN, HIGH);
  3616. break;
  3617. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3618. case 1:
  3619. OUT_WRITE(SOL1_PIN, HIGH);
  3620. break;
  3621. #endif
  3622. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3623. case 2:
  3624. OUT_WRITE(SOL2_PIN, HIGH);
  3625. break;
  3626. #endif
  3627. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3628. case 3:
  3629. OUT_WRITE(SOL3_PIN, HIGH);
  3630. break;
  3631. #endif
  3632. default:
  3633. SERIAL_ECHO_START;
  3634. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3635. break;
  3636. }
  3637. }
  3638. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3639. void disable_all_solenoids() {
  3640. OUT_WRITE(SOL0_PIN, LOW);
  3641. OUT_WRITE(SOL1_PIN, LOW);
  3642. OUT_WRITE(SOL2_PIN, LOW);
  3643. OUT_WRITE(SOL3_PIN, LOW);
  3644. }
  3645. /**
  3646. * M380: Enable solenoid on the active extruder
  3647. */
  3648. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3649. /**
  3650. * M381: Disable all solenoids
  3651. */
  3652. inline void gcode_M381() { disable_all_solenoids(); }
  3653. #endif // EXT_SOLENOID
  3654. /**
  3655. * M400: Finish all moves
  3656. */
  3657. inline void gcode_M400() { st_synchronize(); }
  3658. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3659. /**
  3660. * M401: Engage Z Servo endstop if available
  3661. */
  3662. inline void gcode_M401() { engage_z_probe(); }
  3663. /**
  3664. * M402: Retract Z Servo endstop if enabled
  3665. */
  3666. inline void gcode_M402() { retract_z_probe(); }
  3667. #endif
  3668. #ifdef FILAMENT_SENSOR
  3669. /**
  3670. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3671. */
  3672. inline void gcode_M404() {
  3673. #if FILWIDTH_PIN > -1
  3674. if (code_seen('W')) {
  3675. filament_width_nominal = code_value();
  3676. }
  3677. else {
  3678. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3679. SERIAL_PROTOCOLLN(filament_width_nominal);
  3680. }
  3681. #endif
  3682. }
  3683. /**
  3684. * M405: Turn on filament sensor for control
  3685. */
  3686. inline void gcode_M405() {
  3687. if (code_seen('D')) meas_delay_cm = code_value();
  3688. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3689. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3690. int temp_ratio = widthFil_to_size_ratio();
  3691. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3692. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3693. delay_index1 = delay_index2 = 0;
  3694. }
  3695. filament_sensor = true;
  3696. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3697. //SERIAL_PROTOCOL(filament_width_meas);
  3698. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3699. //SERIAL_PROTOCOL(extrudemultiply);
  3700. }
  3701. /**
  3702. * M406: Turn off filament sensor for control
  3703. */
  3704. inline void gcode_M406() { filament_sensor = false; }
  3705. /**
  3706. * M407: Get measured filament diameter on serial output
  3707. */
  3708. inline void gcode_M407() {
  3709. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3710. SERIAL_PROTOCOLLN(filament_width_meas);
  3711. }
  3712. #endif // FILAMENT_SENSOR
  3713. /**
  3714. * M500: Store settings in EEPROM
  3715. */
  3716. inline void gcode_M500() {
  3717. Config_StoreSettings();
  3718. }
  3719. /**
  3720. * M501: Read settings from EEPROM
  3721. */
  3722. inline void gcode_M501() {
  3723. Config_RetrieveSettings();
  3724. }
  3725. /**
  3726. * M502: Revert to default settings
  3727. */
  3728. inline void gcode_M502() {
  3729. Config_ResetDefault();
  3730. }
  3731. /**
  3732. * M503: print settings currently in memory
  3733. */
  3734. inline void gcode_M503() {
  3735. Config_PrintSettings(code_seen('S') && code_value == 0);
  3736. }
  3737. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3738. /**
  3739. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3740. */
  3741. inline void gcode_M540() {
  3742. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3743. }
  3744. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3745. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3746. inline void gcode_SET_Z_PROBE_OFFSET() {
  3747. float value;
  3748. if (code_seen('Z')) {
  3749. value = code_value();
  3750. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3751. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3752. SERIAL_ECHO_START;
  3753. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3754. SERIAL_PROTOCOLLN("");
  3755. }
  3756. else {
  3757. SERIAL_ECHO_START;
  3758. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3759. SERIAL_ECHOPGM(MSG_Z_MIN);
  3760. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3761. SERIAL_ECHOPGM(MSG_Z_MAX);
  3762. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3763. SERIAL_PROTOCOLLN("");
  3764. }
  3765. }
  3766. else {
  3767. SERIAL_ECHO_START;
  3768. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3769. SERIAL_ECHO(-zprobe_zoffset);
  3770. SERIAL_PROTOCOLLN("");
  3771. }
  3772. }
  3773. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3774. #ifdef FILAMENTCHANGEENABLE
  3775. /**
  3776. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3777. */
  3778. inline void gcode_M600() {
  3779. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3780. for (int i=0; i<NUM_AXIS; i++)
  3781. target[i] = lastpos[i] = current_position[i];
  3782. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3783. #ifdef DELTA
  3784. #define RUNPLAN calculate_delta(target); BASICPLAN
  3785. #else
  3786. #define RUNPLAN BASICPLAN
  3787. #endif
  3788. //retract by E
  3789. if (code_seen('E')) target[E_AXIS] += code_value();
  3790. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3791. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3792. #endif
  3793. RUNPLAN;
  3794. //lift Z
  3795. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3796. #ifdef FILAMENTCHANGE_ZADD
  3797. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3798. #endif
  3799. RUNPLAN;
  3800. //move xy
  3801. if (code_seen('X')) target[X_AXIS] = code_value();
  3802. #ifdef FILAMENTCHANGE_XPOS
  3803. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3804. #endif
  3805. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3806. #ifdef FILAMENTCHANGE_YPOS
  3807. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3808. #endif
  3809. RUNPLAN;
  3810. if (code_seen('L')) target[E_AXIS] += code_value();
  3811. #ifdef FILAMENTCHANGE_FINALRETRACT
  3812. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3813. #endif
  3814. RUNPLAN;
  3815. //finish moves
  3816. st_synchronize();
  3817. //disable extruder steppers so filament can be removed
  3818. disable_e0();
  3819. disable_e1();
  3820. disable_e2();
  3821. disable_e3();
  3822. delay(100);
  3823. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3824. uint8_t cnt = 0;
  3825. while (!lcd_clicked()) {
  3826. cnt++;
  3827. manage_heater();
  3828. manage_inactivity(true);
  3829. lcd_update();
  3830. if (cnt == 0) {
  3831. #if BEEPER > 0
  3832. OUT_WRITE(BEEPER,HIGH);
  3833. delay(3);
  3834. WRITE(BEEPER,LOW);
  3835. delay(3);
  3836. #else
  3837. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3838. lcd_buzz(1000/6, 100);
  3839. #else
  3840. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3841. #endif
  3842. #endif
  3843. }
  3844. } // while(!lcd_clicked)
  3845. //return to normal
  3846. if (code_seen('L')) target[E_AXIS] -= code_value();
  3847. #ifdef FILAMENTCHANGE_FINALRETRACT
  3848. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3849. #endif
  3850. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3851. plan_set_e_position(current_position[E_AXIS]);
  3852. RUNPLAN; //should do nothing
  3853. lcd_reset_alert_level();
  3854. #ifdef DELTA
  3855. calculate_delta(lastpos);
  3856. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3857. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3858. #else
  3859. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3860. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3861. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3862. #endif
  3863. #ifdef FILAMENT_RUNOUT_SENSOR
  3864. filrunoutEnqued = false;
  3865. #endif
  3866. }
  3867. #endif // FILAMENTCHANGEENABLE
  3868. #ifdef DUAL_X_CARRIAGE
  3869. /**
  3870. * M605: Set dual x-carriage movement mode
  3871. *
  3872. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3873. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3874. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3875. * millimeters x-offset and an optional differential hotend temperature of
  3876. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3877. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3878. *
  3879. * Note: the X axis should be homed after changing dual x-carriage mode.
  3880. */
  3881. inline void gcode_M605() {
  3882. st_synchronize();
  3883. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3884. switch(dual_x_carriage_mode) {
  3885. case DXC_DUPLICATION_MODE:
  3886. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3887. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3888. SERIAL_ECHO_START;
  3889. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3890. SERIAL_ECHO(" ");
  3891. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3892. SERIAL_ECHO(",");
  3893. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3894. SERIAL_ECHO(" ");
  3895. SERIAL_ECHO(duplicate_extruder_x_offset);
  3896. SERIAL_ECHO(",");
  3897. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3898. break;
  3899. case DXC_FULL_CONTROL_MODE:
  3900. case DXC_AUTO_PARK_MODE:
  3901. break;
  3902. default:
  3903. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3904. break;
  3905. }
  3906. active_extruder_parked = false;
  3907. extruder_duplication_enabled = false;
  3908. delayed_move_time = 0;
  3909. }
  3910. #endif // DUAL_X_CARRIAGE
  3911. /**
  3912. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3913. */
  3914. inline void gcode_M907() {
  3915. #if HAS_DIGIPOTSS
  3916. for (int i=0;i<NUM_AXIS;i++)
  3917. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3918. if (code_seen('B')) digipot_current(4, code_value());
  3919. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3920. #endif
  3921. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3922. if (code_seen('X')) digipot_current(0, code_value());
  3923. #endif
  3924. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3925. if (code_seen('Z')) digipot_current(1, code_value());
  3926. #endif
  3927. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3928. if (code_seen('E')) digipot_current(2, code_value());
  3929. #endif
  3930. #ifdef DIGIPOT_I2C
  3931. // this one uses actual amps in floating point
  3932. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3933. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3934. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3935. #endif
  3936. }
  3937. #if HAS_DIGIPOTSS
  3938. /**
  3939. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3940. */
  3941. inline void gcode_M908() {
  3942. digitalPotWrite(
  3943. code_seen('P') ? code_value() : 0,
  3944. code_seen('S') ? code_value() : 0
  3945. );
  3946. }
  3947. #endif // HAS_DIGIPOTSS
  3948. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3949. inline void gcode_M350() {
  3950. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3951. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3952. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3953. if(code_seen('B')) microstep_mode(4,code_value());
  3954. microstep_readings();
  3955. #endif
  3956. }
  3957. /**
  3958. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3959. * S# determines MS1 or MS2, X# sets the pin high/low.
  3960. */
  3961. inline void gcode_M351() {
  3962. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3963. if (code_seen('S')) switch(code_value_long()) {
  3964. case 1:
  3965. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3966. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3967. break;
  3968. case 2:
  3969. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3970. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3971. break;
  3972. }
  3973. microstep_readings();
  3974. #endif
  3975. }
  3976. /**
  3977. * M999: Restart after being stopped
  3978. */
  3979. inline void gcode_M999() {
  3980. Stopped = false;
  3981. lcd_reset_alert_level();
  3982. gcode_LastN = Stopped_gcode_LastN;
  3983. FlushSerialRequestResend();
  3984. }
  3985. inline void gcode_T() {
  3986. tmp_extruder = code_value();
  3987. if (tmp_extruder >= EXTRUDERS) {
  3988. SERIAL_ECHO_START;
  3989. SERIAL_ECHO("T");
  3990. SERIAL_ECHO(tmp_extruder);
  3991. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3992. }
  3993. else {
  3994. boolean make_move = false;
  3995. if (code_seen('F')) {
  3996. make_move = true;
  3997. next_feedrate = code_value();
  3998. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3999. }
  4000. #if EXTRUDERS > 1
  4001. if (tmp_extruder != active_extruder) {
  4002. // Save current position to return to after applying extruder offset
  4003. memcpy(destination, current_position, sizeof(destination));
  4004. #ifdef DUAL_X_CARRIAGE
  4005. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  4006. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4007. // Park old head: 1) raise 2) move to park position 3) lower
  4008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4009. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4010. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4011. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4012. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4013. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4014. st_synchronize();
  4015. }
  4016. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4017. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4018. extruder_offset[Y_AXIS][active_extruder] +
  4019. extruder_offset[Y_AXIS][tmp_extruder];
  4020. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4021. extruder_offset[Z_AXIS][active_extruder] +
  4022. extruder_offset[Z_AXIS][tmp_extruder];
  4023. active_extruder = tmp_extruder;
  4024. // This function resets the max/min values - the current position may be overwritten below.
  4025. axis_is_at_home(X_AXIS);
  4026. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4027. current_position[X_AXIS] = inactive_extruder_x_pos;
  4028. inactive_extruder_x_pos = destination[X_AXIS];
  4029. }
  4030. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4031. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4032. if (active_extruder == 0 || active_extruder_parked)
  4033. current_position[X_AXIS] = inactive_extruder_x_pos;
  4034. else
  4035. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4036. inactive_extruder_x_pos = destination[X_AXIS];
  4037. extruder_duplication_enabled = false;
  4038. }
  4039. else {
  4040. // record raised toolhead position for use by unpark
  4041. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4042. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4043. active_extruder_parked = true;
  4044. delayed_move_time = 0;
  4045. }
  4046. #else // !DUAL_X_CARRIAGE
  4047. // Offset extruder (only by XY)
  4048. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4049. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4050. // Set the new active extruder and position
  4051. active_extruder = tmp_extruder;
  4052. #endif // !DUAL_X_CARRIAGE
  4053. #ifdef DELTA
  4054. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4055. //sent position to plan_set_position();
  4056. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4057. #else
  4058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4059. #endif
  4060. // Move to the old position if 'F' was in the parameters
  4061. if (make_move && !Stopped) prepare_move();
  4062. }
  4063. #ifdef EXT_SOLENOID
  4064. st_synchronize();
  4065. disable_all_solenoids();
  4066. enable_solenoid_on_active_extruder();
  4067. #endif // EXT_SOLENOID
  4068. #endif // EXTRUDERS > 1
  4069. SERIAL_ECHO_START;
  4070. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4071. SERIAL_PROTOCOLLN((int)active_extruder);
  4072. }
  4073. }
  4074. /**
  4075. * Process Commands and dispatch them to handlers
  4076. */
  4077. void process_commands() {
  4078. if (code_seen('G')) {
  4079. int gCode = code_value_long();
  4080. switch(gCode) {
  4081. // G0, G1
  4082. case 0:
  4083. case 1:
  4084. gcode_G0_G1();
  4085. break;
  4086. // G2, G3
  4087. #ifndef SCARA
  4088. case 2: // G2 - CW ARC
  4089. case 3: // G3 - CCW ARC
  4090. gcode_G2_G3(gCode == 2);
  4091. break;
  4092. #endif
  4093. // G4 Dwell
  4094. case 4:
  4095. gcode_G4();
  4096. break;
  4097. #ifdef FWRETRACT
  4098. case 10: // G10: retract
  4099. case 11: // G11: retract_recover
  4100. gcode_G10_G11(gCode == 10);
  4101. break;
  4102. #endif //FWRETRACT
  4103. case 28: // G28: Home all axes, one at a time
  4104. gcode_G28();
  4105. break;
  4106. #if defined(MESH_BED_LEVELING)
  4107. case 29: // G29 Handle mesh based leveling
  4108. gcode_G29();
  4109. break;
  4110. #endif
  4111. #ifdef ENABLE_AUTO_BED_LEVELING
  4112. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4113. gcode_G29();
  4114. break;
  4115. #ifndef Z_PROBE_SLED
  4116. case 30: // G30 Single Z Probe
  4117. gcode_G30();
  4118. break;
  4119. #else // Z_PROBE_SLED
  4120. case 31: // G31: dock the sled
  4121. case 32: // G32: undock the sled
  4122. dock_sled(gCode == 31);
  4123. break;
  4124. #endif // Z_PROBE_SLED
  4125. #endif // ENABLE_AUTO_BED_LEVELING
  4126. case 90: // G90
  4127. relative_mode = false;
  4128. break;
  4129. case 91: // G91
  4130. relative_mode = true;
  4131. break;
  4132. case 92: // G92
  4133. gcode_G92();
  4134. break;
  4135. }
  4136. }
  4137. else if (code_seen('M')) {
  4138. switch( code_value_long() ) {
  4139. #ifdef ULTIPANEL
  4140. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4141. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4142. gcode_M0_M1();
  4143. break;
  4144. #endif // ULTIPANEL
  4145. case 17:
  4146. gcode_M17();
  4147. break;
  4148. #ifdef SDSUPPORT
  4149. case 20: // M20 - list SD card
  4150. gcode_M20(); break;
  4151. case 21: // M21 - init SD card
  4152. gcode_M21(); break;
  4153. case 22: //M22 - release SD card
  4154. gcode_M22(); break;
  4155. case 23: //M23 - Select file
  4156. gcode_M23(); break;
  4157. case 24: //M24 - Start SD print
  4158. gcode_M24(); break;
  4159. case 25: //M25 - Pause SD print
  4160. gcode_M25(); break;
  4161. case 26: //M26 - Set SD index
  4162. gcode_M26(); break;
  4163. case 27: //M27 - Get SD status
  4164. gcode_M27(); break;
  4165. case 28: //M28 - Start SD write
  4166. gcode_M28(); break;
  4167. case 29: //M29 - Stop SD write
  4168. gcode_M29(); break;
  4169. case 30: //M30 <filename> Delete File
  4170. gcode_M30(); break;
  4171. case 32: //M32 - Select file and start SD print
  4172. gcode_M32(); break;
  4173. case 928: //M928 - Start SD write
  4174. gcode_M928(); break;
  4175. #endif //SDSUPPORT
  4176. case 31: //M31 take time since the start of the SD print or an M109 command
  4177. gcode_M31();
  4178. break;
  4179. case 42: //M42 -Change pin status via gcode
  4180. gcode_M42();
  4181. break;
  4182. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4183. case 48: // M48 Z-Probe repeatability
  4184. gcode_M48();
  4185. break;
  4186. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4187. case 104: // M104
  4188. gcode_M104();
  4189. break;
  4190. case 112: // M112 Emergency Stop
  4191. gcode_M112();
  4192. break;
  4193. case 140: // M140 Set bed temp
  4194. gcode_M140();
  4195. break;
  4196. case 105: // M105 Read current temperature
  4197. gcode_M105();
  4198. return;
  4199. break;
  4200. case 109: // M109 Wait for temperature
  4201. gcode_M109();
  4202. break;
  4203. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4204. case 190: // M190 - Wait for bed heater to reach target.
  4205. gcode_M190();
  4206. break;
  4207. #endif //TEMP_BED_PIN
  4208. #if defined(FAN_PIN) && FAN_PIN > -1
  4209. case 106: //M106 Fan On
  4210. gcode_M106();
  4211. break;
  4212. case 107: //M107 Fan Off
  4213. gcode_M107();
  4214. break;
  4215. #endif //FAN_PIN
  4216. #ifdef BARICUDA
  4217. // PWM for HEATER_1_PIN
  4218. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4219. case 126: // M126 valve open
  4220. gcode_M126();
  4221. break;
  4222. case 127: // M127 valve closed
  4223. gcode_M127();
  4224. break;
  4225. #endif //HEATER_1_PIN
  4226. // PWM for HEATER_2_PIN
  4227. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4228. case 128: // M128 valve open
  4229. gcode_M128();
  4230. break;
  4231. case 129: // M129 valve closed
  4232. gcode_M129();
  4233. break;
  4234. #endif //HEATER_2_PIN
  4235. #endif //BARICUDA
  4236. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4237. case 80: // M80 - Turn on Power Supply
  4238. gcode_M80();
  4239. break;
  4240. #endif // PS_ON_PIN
  4241. case 81: // M81 - Turn off Power Supply
  4242. gcode_M81();
  4243. break;
  4244. case 82:
  4245. gcode_M82();
  4246. break;
  4247. case 83:
  4248. gcode_M83();
  4249. break;
  4250. case 18: //compatibility
  4251. case 84: // M84
  4252. gcode_M18_M84();
  4253. break;
  4254. case 85: // M85
  4255. gcode_M85();
  4256. break;
  4257. case 92: // M92
  4258. gcode_M92();
  4259. break;
  4260. case 115: // M115
  4261. gcode_M115();
  4262. break;
  4263. case 117: // M117 display message
  4264. gcode_M117();
  4265. break;
  4266. case 114: // M114
  4267. gcode_M114();
  4268. break;
  4269. case 120: // M120
  4270. gcode_M120();
  4271. break;
  4272. case 121: // M121
  4273. gcode_M121();
  4274. break;
  4275. case 119: // M119
  4276. gcode_M119();
  4277. break;
  4278. //TODO: update for all axis, use for loop
  4279. #ifdef BLINKM
  4280. case 150: // M150
  4281. gcode_M150();
  4282. break;
  4283. #endif //BLINKM
  4284. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4285. gcode_M200();
  4286. break;
  4287. case 201: // M201
  4288. gcode_M201();
  4289. break;
  4290. #if 0 // Not used for Sprinter/grbl gen6
  4291. case 202: // M202
  4292. gcode_M202();
  4293. break;
  4294. #endif
  4295. case 203: // M203 max feedrate mm/sec
  4296. gcode_M203();
  4297. break;
  4298. case 204: // M204 acclereration S normal moves T filmanent only moves
  4299. gcode_M204();
  4300. break;
  4301. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4302. gcode_M205();
  4303. break;
  4304. case 206: // M206 additional homing offset
  4305. gcode_M206();
  4306. break;
  4307. #ifdef DELTA
  4308. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4309. gcode_M665();
  4310. break;
  4311. case 666: // M666 set delta endstop adjustment
  4312. gcode_M666();
  4313. break;
  4314. #endif // DELTA
  4315. #ifdef FWRETRACT
  4316. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4317. gcode_M207();
  4318. break;
  4319. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4320. gcode_M208();
  4321. break;
  4322. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4323. gcode_M209();
  4324. break;
  4325. #endif // FWRETRACT
  4326. #if EXTRUDERS > 1
  4327. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4328. gcode_M218();
  4329. break;
  4330. #endif
  4331. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4332. gcode_M220();
  4333. break;
  4334. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4335. gcode_M221();
  4336. break;
  4337. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4338. gcode_M226();
  4339. break;
  4340. #if NUM_SERVOS > 0
  4341. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4342. gcode_M280();
  4343. break;
  4344. #endif // NUM_SERVOS > 0
  4345. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4346. case 300: // M300 - Play beep tone
  4347. gcode_M300();
  4348. break;
  4349. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4350. #ifdef PIDTEMP
  4351. case 301: // M301
  4352. gcode_M301();
  4353. break;
  4354. #endif // PIDTEMP
  4355. #ifdef PIDTEMPBED
  4356. case 304: // M304
  4357. gcode_M304();
  4358. break;
  4359. #endif // PIDTEMPBED
  4360. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4361. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4362. gcode_M240();
  4363. break;
  4364. #endif // CHDK || PHOTOGRAPH_PIN
  4365. #ifdef DOGLCD
  4366. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4367. gcode_M250();
  4368. break;
  4369. #endif // DOGLCD
  4370. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4371. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4372. gcode_M302();
  4373. break;
  4374. #endif // PREVENT_DANGEROUS_EXTRUDE
  4375. case 303: // M303 PID autotune
  4376. gcode_M303();
  4377. break;
  4378. #ifdef SCARA
  4379. case 360: // M360 SCARA Theta pos1
  4380. if (gcode_M360()) return;
  4381. break;
  4382. case 361: // M361 SCARA Theta pos2
  4383. if (gcode_M361()) return;
  4384. break;
  4385. case 362: // M362 SCARA Psi pos1
  4386. if (gcode_M362()) return;
  4387. break;
  4388. case 363: // M363 SCARA Psi pos2
  4389. if (gcode_M363()) return;
  4390. break;
  4391. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4392. if (gcode_M364()) return;
  4393. break;
  4394. case 365: // M365 Set SCARA scaling for X Y Z
  4395. gcode_M365();
  4396. break;
  4397. #endif // SCARA
  4398. case 400: // M400 finish all moves
  4399. gcode_M400();
  4400. break;
  4401. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4402. case 401:
  4403. gcode_M401();
  4404. break;
  4405. case 402:
  4406. gcode_M402();
  4407. break;
  4408. #endif
  4409. #ifdef FILAMENT_SENSOR
  4410. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4411. gcode_M404();
  4412. break;
  4413. case 405: //M405 Turn on filament sensor for control
  4414. gcode_M405();
  4415. break;
  4416. case 406: //M406 Turn off filament sensor for control
  4417. gcode_M406();
  4418. break;
  4419. case 407: //M407 Display measured filament diameter
  4420. gcode_M407();
  4421. break;
  4422. #endif // FILAMENT_SENSOR
  4423. case 500: // M500 Store settings in EEPROM
  4424. gcode_M500();
  4425. break;
  4426. case 501: // M501 Read settings from EEPROM
  4427. gcode_M501();
  4428. break;
  4429. case 502: // M502 Revert to default settings
  4430. gcode_M502();
  4431. break;
  4432. case 503: // M503 print settings currently in memory
  4433. gcode_M503();
  4434. break;
  4435. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4436. case 540:
  4437. gcode_M540();
  4438. break;
  4439. #endif
  4440. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4441. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4442. gcode_SET_Z_PROBE_OFFSET();
  4443. break;
  4444. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4445. #ifdef FILAMENTCHANGEENABLE
  4446. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4447. gcode_M600();
  4448. break;
  4449. #endif // FILAMENTCHANGEENABLE
  4450. #ifdef DUAL_X_CARRIAGE
  4451. case 605:
  4452. gcode_M605();
  4453. break;
  4454. #endif // DUAL_X_CARRIAGE
  4455. case 907: // M907 Set digital trimpot motor current using axis codes.
  4456. gcode_M907();
  4457. break;
  4458. #if HAS_DIGIPOTSS
  4459. case 908: // M908 Control digital trimpot directly.
  4460. gcode_M908();
  4461. break;
  4462. #endif // HAS_DIGIPOTSS
  4463. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4464. gcode_M350();
  4465. break;
  4466. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4467. gcode_M351();
  4468. break;
  4469. case 999: // M999: Restart after being Stopped
  4470. gcode_M999();
  4471. break;
  4472. }
  4473. }
  4474. else if (code_seen('T')) {
  4475. gcode_T();
  4476. }
  4477. else {
  4478. SERIAL_ECHO_START;
  4479. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4480. SERIAL_ECHO(cmdbuffer[bufindr]);
  4481. SERIAL_ECHOLNPGM("\"");
  4482. }
  4483. ClearToSend();
  4484. }
  4485. void FlushSerialRequestResend()
  4486. {
  4487. //char cmdbuffer[bufindr][100]="Resend:";
  4488. MYSERIAL.flush();
  4489. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4490. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4491. ClearToSend();
  4492. }
  4493. void ClearToSend()
  4494. {
  4495. previous_millis_cmd = millis();
  4496. #ifdef SDSUPPORT
  4497. if(fromsd[bufindr])
  4498. return;
  4499. #endif //SDSUPPORT
  4500. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4501. }
  4502. void get_coordinates()
  4503. {
  4504. bool seen[4]={false,false,false,false};
  4505. for(int8_t i=0; i < NUM_AXIS; i++) {
  4506. if(code_seen(axis_codes[i]))
  4507. {
  4508. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4509. seen[i]=true;
  4510. }
  4511. else destination[i] = current_position[i]; //Are these else lines really needed?
  4512. }
  4513. if(code_seen('F')) {
  4514. next_feedrate = code_value();
  4515. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4516. }
  4517. }
  4518. void get_arc_coordinates()
  4519. {
  4520. #ifdef SF_ARC_FIX
  4521. bool relative_mode_backup = relative_mode;
  4522. relative_mode = true;
  4523. #endif
  4524. get_coordinates();
  4525. #ifdef SF_ARC_FIX
  4526. relative_mode=relative_mode_backup;
  4527. #endif
  4528. if(code_seen('I')) {
  4529. offset[0] = code_value();
  4530. }
  4531. else {
  4532. offset[0] = 0.0;
  4533. }
  4534. if(code_seen('J')) {
  4535. offset[1] = code_value();
  4536. }
  4537. else {
  4538. offset[1] = 0.0;
  4539. }
  4540. }
  4541. void clamp_to_software_endstops(float target[3])
  4542. {
  4543. if (min_software_endstops) {
  4544. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4545. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4546. float negative_z_offset = 0;
  4547. #ifdef ENABLE_AUTO_BED_LEVELING
  4548. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4549. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4550. #endif
  4551. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4552. }
  4553. if (max_software_endstops) {
  4554. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4555. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4556. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4557. }
  4558. }
  4559. #ifdef DELTA
  4560. void recalc_delta_settings(float radius, float diagonal_rod)
  4561. {
  4562. delta_tower1_x= -SIN_60*radius; // front left tower
  4563. delta_tower1_y= -COS_60*radius;
  4564. delta_tower2_x= SIN_60*radius; // front right tower
  4565. delta_tower2_y= -COS_60*radius;
  4566. delta_tower3_x= 0.0; // back middle tower
  4567. delta_tower3_y= radius;
  4568. delta_diagonal_rod_2= sq(diagonal_rod);
  4569. }
  4570. void calculate_delta(float cartesian[3])
  4571. {
  4572. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4573. - sq(delta_tower1_x-cartesian[X_AXIS])
  4574. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4575. ) + cartesian[Z_AXIS];
  4576. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4577. - sq(delta_tower2_x-cartesian[X_AXIS])
  4578. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4579. ) + cartesian[Z_AXIS];
  4580. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4581. - sq(delta_tower3_x-cartesian[X_AXIS])
  4582. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4583. ) + cartesian[Z_AXIS];
  4584. /*
  4585. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4586. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4587. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4588. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4589. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4590. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4591. */
  4592. }
  4593. #ifdef ENABLE_AUTO_BED_LEVELING
  4594. // Adjust print surface height by linear interpolation over the bed_level array.
  4595. int delta_grid_spacing[2] = { 0, 0 };
  4596. void adjust_delta(float cartesian[3])
  4597. {
  4598. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4599. return; // G29 not done
  4600. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4601. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4602. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4603. int floor_x = floor(grid_x);
  4604. int floor_y = floor(grid_y);
  4605. float ratio_x = grid_x - floor_x;
  4606. float ratio_y = grid_y - floor_y;
  4607. float z1 = bed_level[floor_x+half][floor_y+half];
  4608. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4609. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4610. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4611. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4612. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4613. float offset = (1-ratio_x)*left + ratio_x*right;
  4614. delta[X_AXIS] += offset;
  4615. delta[Y_AXIS] += offset;
  4616. delta[Z_AXIS] += offset;
  4617. /*
  4618. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4619. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4620. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4621. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4622. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4623. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4624. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4625. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4626. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4627. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4628. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4629. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4630. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4631. */
  4632. }
  4633. #endif //ENABLE_AUTO_BED_LEVELING
  4634. void prepare_move_raw()
  4635. {
  4636. previous_millis_cmd = millis();
  4637. calculate_delta(destination);
  4638. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4639. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4640. active_extruder);
  4641. for(int8_t i=0; i < NUM_AXIS; i++) {
  4642. current_position[i] = destination[i];
  4643. }
  4644. }
  4645. #endif //DELTA
  4646. #if defined(MESH_BED_LEVELING)
  4647. #if !defined(MIN)
  4648. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4649. #endif // ! MIN
  4650. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4651. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4652. {
  4653. if (!mbl.active) {
  4654. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4655. for(int8_t i=0; i < NUM_AXIS; i++) {
  4656. current_position[i] = destination[i];
  4657. }
  4658. return;
  4659. }
  4660. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4661. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4662. int ix = mbl.select_x_index(x);
  4663. int iy = mbl.select_y_index(y);
  4664. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4665. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4666. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4667. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4668. if (pix == ix && piy == iy) {
  4669. // Start and end on same mesh square
  4670. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4671. for(int8_t i=0; i < NUM_AXIS; i++) {
  4672. current_position[i] = destination[i];
  4673. }
  4674. return;
  4675. }
  4676. float nx, ny, ne, normalized_dist;
  4677. if (ix > pix && (x_splits) & BIT(ix)) {
  4678. nx = mbl.get_x(ix);
  4679. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4680. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4681. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4682. x_splits ^= BIT(ix);
  4683. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4684. nx = mbl.get_x(pix);
  4685. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4686. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4687. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4688. x_splits ^= BIT(pix);
  4689. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4690. ny = mbl.get_y(iy);
  4691. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4692. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4693. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4694. y_splits ^= BIT(iy);
  4695. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4696. ny = mbl.get_y(piy);
  4697. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4698. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4699. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4700. y_splits ^= BIT(piy);
  4701. } else {
  4702. // Already split on a border
  4703. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4704. for(int8_t i=0; i < NUM_AXIS; i++) {
  4705. current_position[i] = destination[i];
  4706. }
  4707. return;
  4708. }
  4709. // Do the split and look for more borders
  4710. destination[X_AXIS] = nx;
  4711. destination[Y_AXIS] = ny;
  4712. destination[E_AXIS] = ne;
  4713. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4714. destination[X_AXIS] = x;
  4715. destination[Y_AXIS] = y;
  4716. destination[E_AXIS] = e;
  4717. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4718. }
  4719. #endif // MESH_BED_LEVELING
  4720. void prepare_move()
  4721. {
  4722. clamp_to_software_endstops(destination);
  4723. previous_millis_cmd = millis();
  4724. #ifdef SCARA //for now same as delta-code
  4725. float difference[NUM_AXIS];
  4726. for (int8_t i=0; i < NUM_AXIS; i++) {
  4727. difference[i] = destination[i] - current_position[i];
  4728. }
  4729. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4730. sq(difference[Y_AXIS]) +
  4731. sq(difference[Z_AXIS]));
  4732. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4733. if (cartesian_mm < 0.000001) { return; }
  4734. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4735. int steps = max(1, int(scara_segments_per_second * seconds));
  4736. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4737. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4738. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4739. for (int s = 1; s <= steps; s++) {
  4740. float fraction = float(s) / float(steps);
  4741. for(int8_t i=0; i < NUM_AXIS; i++) {
  4742. destination[i] = current_position[i] + difference[i] * fraction;
  4743. }
  4744. calculate_delta(destination);
  4745. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4746. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4747. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4748. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4749. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4750. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4751. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4752. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4753. active_extruder);
  4754. }
  4755. #endif // SCARA
  4756. #ifdef DELTA
  4757. float difference[NUM_AXIS];
  4758. for (int8_t i=0; i < NUM_AXIS; i++) {
  4759. difference[i] = destination[i] - current_position[i];
  4760. }
  4761. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4762. sq(difference[Y_AXIS]) +
  4763. sq(difference[Z_AXIS]));
  4764. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4765. if (cartesian_mm < 0.000001) { return; }
  4766. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4767. int steps = max(1, int(delta_segments_per_second * seconds));
  4768. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4769. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4770. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4771. for (int s = 1; s <= steps; s++) {
  4772. float fraction = float(s) / float(steps);
  4773. for(int8_t i=0; i < NUM_AXIS; i++) {
  4774. destination[i] = current_position[i] + difference[i] * fraction;
  4775. }
  4776. calculate_delta(destination);
  4777. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4778. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4779. active_extruder);
  4780. }
  4781. #endif // DELTA
  4782. #ifdef DUAL_X_CARRIAGE
  4783. if (active_extruder_parked)
  4784. {
  4785. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4786. {
  4787. // move duplicate extruder into correct duplication position.
  4788. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4789. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4790. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4792. st_synchronize();
  4793. extruder_duplication_enabled = true;
  4794. active_extruder_parked = false;
  4795. }
  4796. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4797. {
  4798. if (current_position[E_AXIS] == destination[E_AXIS])
  4799. {
  4800. // this is a travel move - skit it but keep track of current position (so that it can later
  4801. // be used as start of first non-travel move)
  4802. if (delayed_move_time != 0xFFFFFFFFUL)
  4803. {
  4804. memcpy(current_position, destination, sizeof(current_position));
  4805. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4806. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4807. delayed_move_time = millis();
  4808. return;
  4809. }
  4810. }
  4811. delayed_move_time = 0;
  4812. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4813. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4815. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4817. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4818. active_extruder_parked = false;
  4819. }
  4820. }
  4821. #endif //DUAL_X_CARRIAGE
  4822. #if ! (defined DELTA || defined SCARA)
  4823. // Do not use feedmultiply for E or Z only moves
  4824. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4826. } else {
  4827. #if defined(MESH_BED_LEVELING)
  4828. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4829. return;
  4830. #else
  4831. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4832. #endif // MESH_BED_LEVELING
  4833. }
  4834. #endif // !(DELTA || SCARA)
  4835. for(int8_t i=0; i < NUM_AXIS; i++) {
  4836. current_position[i] = destination[i];
  4837. }
  4838. }
  4839. void prepare_arc_move(char isclockwise) {
  4840. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4841. // Trace the arc
  4842. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4843. // As far as the parser is concerned, the position is now == target. In reality the
  4844. // motion control system might still be processing the action and the real tool position
  4845. // in any intermediate location.
  4846. for(int8_t i=0; i < NUM_AXIS; i++) {
  4847. current_position[i] = destination[i];
  4848. }
  4849. previous_millis_cmd = millis();
  4850. }
  4851. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4852. #if defined(FAN_PIN)
  4853. #if CONTROLLERFAN_PIN == FAN_PIN
  4854. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4855. #endif
  4856. #endif
  4857. unsigned long lastMotor = 0; // Last time a motor was turned on
  4858. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4859. void controllerFan() {
  4860. uint32_t ms = millis();
  4861. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4862. lastMotorCheck = ms;
  4863. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4864. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4865. #if EXTRUDERS > 1
  4866. || E1_ENABLE_READ == E_ENABLE_ON
  4867. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4868. || X2_ENABLE_READ == X_ENABLE_ON
  4869. #endif
  4870. #if EXTRUDERS > 2
  4871. || E2_ENABLE_READ == E_ENABLE_ON
  4872. #if EXTRUDERS > 3
  4873. || E3_ENABLE_READ == E_ENABLE_ON
  4874. #endif
  4875. #endif
  4876. #endif
  4877. ) {
  4878. lastMotor = ms; //... set time to NOW so the fan will turn on
  4879. }
  4880. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4881. // allows digital or PWM fan output to be used (see M42 handling)
  4882. digitalWrite(CONTROLLERFAN_PIN, speed);
  4883. analogWrite(CONTROLLERFAN_PIN, speed);
  4884. }
  4885. }
  4886. #endif
  4887. #ifdef SCARA
  4888. void calculate_SCARA_forward_Transform(float f_scara[3])
  4889. {
  4890. // Perform forward kinematics, and place results in delta[3]
  4891. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4892. float x_sin, x_cos, y_sin, y_cos;
  4893. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4894. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4895. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4896. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4897. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4898. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4899. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4900. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4901. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4902. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4903. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4904. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4905. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4906. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4907. }
  4908. void calculate_delta(float cartesian[3]){
  4909. //reverse kinematics.
  4910. // Perform reversed kinematics, and place results in delta[3]
  4911. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4912. float SCARA_pos[2];
  4913. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4914. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4915. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4916. #if (Linkage_1 == Linkage_2)
  4917. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4918. #else
  4919. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4920. #endif
  4921. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4922. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4923. SCARA_K2 = Linkage_2 * SCARA_S2;
  4924. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4925. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4926. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4927. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4928. delta[Z_AXIS] = cartesian[Z_AXIS];
  4929. /*
  4930. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4931. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4932. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4933. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4934. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4935. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4936. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4937. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4938. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4939. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4940. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4941. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4942. SERIAL_ECHOLN(" ");*/
  4943. }
  4944. #endif
  4945. #ifdef TEMP_STAT_LEDS
  4946. static bool blue_led = false;
  4947. static bool red_led = false;
  4948. static uint32_t stat_update = 0;
  4949. void handle_status_leds(void) {
  4950. float max_temp = 0.0;
  4951. if(millis() > stat_update) {
  4952. stat_update += 500; // Update every 0.5s
  4953. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4954. max_temp = max(max_temp, degHotend(cur_extruder));
  4955. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4956. }
  4957. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4958. max_temp = max(max_temp, degTargetBed());
  4959. max_temp = max(max_temp, degBed());
  4960. #endif
  4961. if((max_temp > 55.0) && (red_led == false)) {
  4962. digitalWrite(STAT_LED_RED, 1);
  4963. digitalWrite(STAT_LED_BLUE, 0);
  4964. red_led = true;
  4965. blue_led = false;
  4966. }
  4967. if((max_temp < 54.0) && (blue_led == false)) {
  4968. digitalWrite(STAT_LED_RED, 0);
  4969. digitalWrite(STAT_LED_BLUE, 1);
  4970. red_led = false;
  4971. blue_led = true;
  4972. }
  4973. }
  4974. }
  4975. #endif
  4976. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4977. {
  4978. #if defined(KILL_PIN) && KILL_PIN > -1
  4979. static int killCount = 0; // make the inactivity button a bit less responsive
  4980. const int KILL_DELAY = 750;
  4981. #endif
  4982. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4983. if(card.sdprinting) {
  4984. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4985. filrunout(); }
  4986. #endif
  4987. #if defined(HOME_PIN) && HOME_PIN > -1
  4988. static int homeDebounceCount = 0; // poor man's debouncing count
  4989. const int HOME_DEBOUNCE_DELAY = 750;
  4990. #endif
  4991. if(buflen < (BUFSIZE-1))
  4992. get_command();
  4993. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4994. if(max_inactive_time)
  4995. kill();
  4996. if(stepper_inactive_time) {
  4997. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4998. {
  4999. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5000. disable_x();
  5001. disable_y();
  5002. disable_z();
  5003. disable_e0();
  5004. disable_e1();
  5005. disable_e2();
  5006. disable_e3();
  5007. }
  5008. }
  5009. }
  5010. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5011. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5012. {
  5013. chdkActive = false;
  5014. WRITE(CHDK, LOW);
  5015. }
  5016. #endif
  5017. #if defined(KILL_PIN) && KILL_PIN > -1
  5018. // Check if the kill button was pressed and wait just in case it was an accidental
  5019. // key kill key press
  5020. // -------------------------------------------------------------------------------
  5021. if( 0 == READ(KILL_PIN) )
  5022. {
  5023. killCount++;
  5024. }
  5025. else if (killCount > 0)
  5026. {
  5027. killCount--;
  5028. }
  5029. // Exceeded threshold and we can confirm that it was not accidental
  5030. // KILL the machine
  5031. // ----------------------------------------------------------------
  5032. if ( killCount >= KILL_DELAY)
  5033. {
  5034. kill();
  5035. }
  5036. #endif
  5037. #if defined(HOME_PIN) && HOME_PIN > -1
  5038. // Check to see if we have to home, use poor man's debouncer
  5039. // ---------------------------------------------------------
  5040. if ( 0 == READ(HOME_PIN) )
  5041. {
  5042. if (homeDebounceCount == 0)
  5043. {
  5044. enquecommands_P((PSTR("G28")));
  5045. homeDebounceCount++;
  5046. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5047. }
  5048. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5049. {
  5050. homeDebounceCount++;
  5051. }
  5052. else
  5053. {
  5054. homeDebounceCount = 0;
  5055. }
  5056. }
  5057. #endif
  5058. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5059. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5060. #endif
  5061. #ifdef EXTRUDER_RUNOUT_PREVENT
  5062. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5063. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5064. {
  5065. bool oldstatus=E0_ENABLE_READ;
  5066. enable_e0();
  5067. float oldepos=current_position[E_AXIS];
  5068. float oldedes=destination[E_AXIS];
  5069. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5070. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5071. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5072. current_position[E_AXIS]=oldepos;
  5073. destination[E_AXIS]=oldedes;
  5074. plan_set_e_position(oldepos);
  5075. previous_millis_cmd=millis();
  5076. st_synchronize();
  5077. E0_ENABLE_WRITE(oldstatus);
  5078. }
  5079. #endif
  5080. #if defined(DUAL_X_CARRIAGE)
  5081. // handle delayed move timeout
  5082. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5083. {
  5084. // travel moves have been received so enact them
  5085. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5086. memcpy(destination,current_position,sizeof(destination));
  5087. prepare_move();
  5088. }
  5089. #endif
  5090. #ifdef TEMP_STAT_LEDS
  5091. handle_status_leds();
  5092. #endif
  5093. check_axes_activity();
  5094. }
  5095. void kill()
  5096. {
  5097. cli(); // Stop interrupts
  5098. disable_heater();
  5099. disable_x();
  5100. disable_y();
  5101. disable_z();
  5102. disable_e0();
  5103. disable_e1();
  5104. disable_e2();
  5105. disable_e3();
  5106. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5107. pinMode(PS_ON_PIN,INPUT);
  5108. #endif
  5109. SERIAL_ERROR_START;
  5110. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5111. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5112. // FMC small patch to update the LCD before ending
  5113. sei(); // enable interrupts
  5114. for ( int i=5; i--; lcd_update())
  5115. {
  5116. delay(200);
  5117. }
  5118. cli(); // disable interrupts
  5119. suicide();
  5120. while(1) { /* Intentionally left empty */ } // Wait for reset
  5121. }
  5122. #ifdef FILAMENT_RUNOUT_SENSOR
  5123. void filrunout()
  5124. {
  5125. if filrunoutEnqued == false {
  5126. filrunoutEnqued = true;
  5127. enquecommand("M600");
  5128. }
  5129. }
  5130. #endif
  5131. void Stop()
  5132. {
  5133. disable_heater();
  5134. if(Stopped == false) {
  5135. Stopped = true;
  5136. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5137. SERIAL_ERROR_START;
  5138. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5139. LCD_MESSAGEPGM(MSG_STOPPED);
  5140. }
  5141. }
  5142. bool IsStopped() { return Stopped; };
  5143. #ifdef FAST_PWM_FAN
  5144. void setPwmFrequency(uint8_t pin, int val)
  5145. {
  5146. val &= 0x07;
  5147. switch(digitalPinToTimer(pin))
  5148. {
  5149. #if defined(TCCR0A)
  5150. case TIMER0A:
  5151. case TIMER0B:
  5152. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5153. // TCCR0B |= val;
  5154. break;
  5155. #endif
  5156. #if defined(TCCR1A)
  5157. case TIMER1A:
  5158. case TIMER1B:
  5159. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5160. // TCCR1B |= val;
  5161. break;
  5162. #endif
  5163. #if defined(TCCR2)
  5164. case TIMER2:
  5165. case TIMER2:
  5166. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5167. TCCR2 |= val;
  5168. break;
  5169. #endif
  5170. #if defined(TCCR2A)
  5171. case TIMER2A:
  5172. case TIMER2B:
  5173. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5174. TCCR2B |= val;
  5175. break;
  5176. #endif
  5177. #if defined(TCCR3A)
  5178. case TIMER3A:
  5179. case TIMER3B:
  5180. case TIMER3C:
  5181. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5182. TCCR3B |= val;
  5183. break;
  5184. #endif
  5185. #if defined(TCCR4A)
  5186. case TIMER4A:
  5187. case TIMER4B:
  5188. case TIMER4C:
  5189. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5190. TCCR4B |= val;
  5191. break;
  5192. #endif
  5193. #if defined(TCCR5A)
  5194. case TIMER5A:
  5195. case TIMER5B:
  5196. case TIMER5C:
  5197. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5198. TCCR5B |= val;
  5199. break;
  5200. #endif
  5201. }
  5202. }
  5203. #endif //FAST_PWM_FAN
  5204. bool setTargetedHotend(int code){
  5205. tmp_extruder = active_extruder;
  5206. if(code_seen('T')) {
  5207. tmp_extruder = code_value();
  5208. if(tmp_extruder >= EXTRUDERS) {
  5209. SERIAL_ECHO_START;
  5210. switch(code){
  5211. case 104:
  5212. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5213. break;
  5214. case 105:
  5215. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5216. break;
  5217. case 109:
  5218. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5219. break;
  5220. case 218:
  5221. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5222. break;
  5223. case 221:
  5224. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5225. break;
  5226. }
  5227. SERIAL_ECHOLN(tmp_extruder);
  5228. return true;
  5229. }
  5230. }
  5231. return false;
  5232. }
  5233. float calculate_volumetric_multiplier(float diameter) {
  5234. if (!volumetric_enabled || diameter == 0) return 1.0;
  5235. float d2 = diameter * 0.5;
  5236. return 1.0 / (M_PI * d2 * d2);
  5237. }
  5238. void calculate_volumetric_multipliers() {
  5239. for (int i=0; i<EXTRUDERS; i++)
  5240. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5241. }