My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 203KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  37. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  38. #ifdef MESH_BED_LEVELING
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #include "ultralcd.h"
  42. #include "planner.h"
  43. #include "stepper.h"
  44. #include "temperature.h"
  45. #include "cardreader.h"
  46. #include "watchdog.h"
  47. #include "configuration_store.h"
  48. #include "language.h"
  49. #include "pins_arduino.h"
  50. #include "math.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - display message
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * M928 - Start SD logging (M928 filename.g) - ended by M29
  208. * M999 - Restart after being stopped by error
  209. *
  210. * "T" Codes
  211. *
  212. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  213. *
  214. */
  215. #ifdef SDSUPPORT
  216. CardReader card;
  217. #endif
  218. bool Running = true;
  219. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  220. static float feedrate = 1500.0, saved_feedrate;
  221. float current_position[NUM_AXIS] = { 0.0 };
  222. static float destination[NUM_AXIS] = { 0.0 };
  223. bool axis_known_position[3] = { false };
  224. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  225. static int cmd_queue_index_r = 0;
  226. static int cmd_queue_index_w = 0;
  227. static int commands_in_queue = 0;
  228. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  229. float homing_feedrate[] = HOMING_FEEDRATE;
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedrate_multiplier = 100; //100->1 200->2
  232. int saved_feedrate_multiplier;
  233. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  234. bool volumetric_enabled = false;
  235. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  236. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  237. float home_offset[3] = { 0 };
  238. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  239. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  240. uint8_t active_extruder = 0;
  241. int fanSpeed = 0;
  242. bool cancel_heatup = false;
  243. const char errormagic[] PROGMEM = "Error:";
  244. const char echomagic[] PROGMEM = "echo:";
  245. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  246. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  247. static char serial_char;
  248. static int serial_count = 0;
  249. static boolean comment_mode = false;
  250. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  251. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  252. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  253. // Inactivity shutdown
  254. millis_t previous_cmd_ms = 0;
  255. static millis_t max_inactive_time = 0;
  256. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  257. millis_t print_job_start_ms = 0; ///< Print job start time
  258. millis_t print_job_stop_ms = 0; ///< Print job stop time
  259. static uint8_t target_extruder;
  260. bool no_wait_for_cooling = true;
  261. bool target_direction;
  262. #ifdef ENABLE_AUTO_BED_LEVELING
  263. int xy_travel_speed = XY_TRAVEL_SPEED;
  264. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  265. #endif
  266. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  267. float z_endstop_adj = 0;
  268. #endif
  269. // Extruder offsets
  270. #if EXTRUDERS > 1
  271. #ifndef EXTRUDER_OFFSET_X
  272. #define EXTRUDER_OFFSET_X { 0 }
  273. #endif
  274. #ifndef EXTRUDER_OFFSET_Y
  275. #define EXTRUDER_OFFSET_Y { 0 }
  276. #endif
  277. float extruder_offset[][EXTRUDERS] = {
  278. EXTRUDER_OFFSET_X,
  279. EXTRUDER_OFFSET_Y
  280. #ifdef DUAL_X_CARRIAGE
  281. , { 0 } // supports offsets in XYZ plane
  282. #endif
  283. };
  284. #endif
  285. #ifdef SERVO_ENDSTOPS
  286. int servo_endstops[] = SERVO_ENDSTOPS;
  287. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  288. #endif
  289. #ifdef BARICUDA
  290. int ValvePressure = 0;
  291. int EtoPPressure = 0;
  292. #endif
  293. #ifdef FWRETRACT
  294. bool autoretract_enabled = false;
  295. bool retracted[EXTRUDERS] = { false };
  296. bool retracted_swap[EXTRUDERS] = { false };
  297. float retract_length = RETRACT_LENGTH;
  298. float retract_length_swap = RETRACT_LENGTH_SWAP;
  299. float retract_feedrate = RETRACT_FEEDRATE;
  300. float retract_zlift = RETRACT_ZLIFT;
  301. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  302. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  303. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  304. #endif // FWRETRACT
  305. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  306. bool powersupply =
  307. #ifdef PS_DEFAULT_OFF
  308. false
  309. #else
  310. true
  311. #endif
  312. ;
  313. #endif
  314. #ifdef DELTA
  315. float delta[3] = { 0 };
  316. #define SIN_60 0.8660254037844386
  317. #define COS_60 0.5
  318. float endstop_adj[3] = { 0 };
  319. // these are the default values, can be overriden with M665
  320. float delta_radius = DELTA_RADIUS;
  321. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  322. float delta_tower1_y = -COS_60 * delta_radius;
  323. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  324. float delta_tower2_y = -COS_60 * delta_radius;
  325. float delta_tower3_x = 0; // back middle tower
  326. float delta_tower3_y = delta_radius;
  327. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  328. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  329. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  330. #ifdef ENABLE_AUTO_BED_LEVELING
  331. int delta_grid_spacing[2] = { 0, 0 };
  332. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  333. #endif
  334. #else
  335. static bool home_all_axis = true;
  336. #endif
  337. #ifdef SCARA
  338. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  339. static float delta[3] = { 0 };
  340. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  341. #endif
  342. #ifdef FILAMENT_SENSOR
  343. //Variables for Filament Sensor input
  344. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  345. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  346. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  347. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  348. int delay_index1 = 0; //index into ring buffer
  349. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  350. float delay_dist = 0; //delay distance counter
  351. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  352. #endif
  353. #ifdef FILAMENT_RUNOUT_SENSOR
  354. static bool filrunoutEnqueued = false;
  355. #endif
  356. #ifdef SDSUPPORT
  357. static bool fromsd[BUFSIZE];
  358. #endif
  359. #if NUM_SERVOS > 0
  360. Servo servo[NUM_SERVOS];
  361. #endif
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //================================ Functions ================================
  368. //===========================================================================
  369. void process_next_command();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  372. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. #ifdef PREVENT_DANGEROUS_EXTRUDE
  375. float extrude_min_temp = EXTRUDE_MINTEMP;
  376. #endif
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. /**
  396. * Inject the next command from the command queue, when possible
  397. * Return false only if no command was pending
  398. */
  399. static bool drain_queued_commands_P() {
  400. if (!queued_commands_P) return false;
  401. // Get the next 30 chars from the sequence of gcodes to run
  402. char cmd[30];
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  404. cmd[sizeof(cmd) - 1] = '\0';
  405. // Look for the end of line, or the end of sequence
  406. size_t i = 0;
  407. char c;
  408. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  409. cmd[i] = '\0';
  410. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  411. if (c)
  412. queued_commands_P += i + 1; // move to next command
  413. else
  414. queued_commands_P = NULL; // will have no more commands in the sequence
  415. }
  416. return true;
  417. }
  418. /**
  419. * Record one or many commands to run from program memory.
  420. * Aborts the current queue, if any.
  421. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  422. */
  423. void enqueuecommands_P(const char* pgcode) {
  424. queued_commands_P = pgcode;
  425. drain_queued_commands_P(); // first command executed asap (when possible)
  426. }
  427. /**
  428. * Copy a command directly into the main command buffer, from RAM.
  429. *
  430. * This is done in a non-safe way and needs a rework someday.
  431. * Returns false if it doesn't add any command
  432. */
  433. bool enqueuecommand(const char *cmd) {
  434. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  435. // This is dangerous if a mixing of serial and this happens
  436. char *command = command_queue[cmd_queue_index_w];
  437. strcpy(command, cmd);
  438. SERIAL_ECHO_START;
  439. SERIAL_ECHOPGM(MSG_Enqueueing);
  440. SERIAL_ECHO(command);
  441. SERIAL_ECHOLNPGM("\"");
  442. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  443. commands_in_queue++;
  444. return true;
  445. }
  446. void setup_killpin() {
  447. #if HAS_KILL
  448. SET_INPUT(KILL_PIN);
  449. WRITE(KILL_PIN, HIGH);
  450. #endif
  451. }
  452. void setup_filrunoutpin() {
  453. #if HAS_FILRUNOUT
  454. pinMode(FILRUNOUT_PIN, INPUT);
  455. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  456. WRITE(FILRUNOUT_PIN, HIGH);
  457. #endif
  458. #endif
  459. }
  460. // Set home pin
  461. void setup_homepin(void) {
  462. #if HAS_HOME
  463. SET_INPUT(HOME_PIN);
  464. WRITE(HOME_PIN, HIGH);
  465. #endif
  466. }
  467. void setup_photpin() {
  468. #if HAS_PHOTOGRAPH
  469. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  470. #endif
  471. }
  472. void setup_powerhold() {
  473. #if HAS_SUICIDE
  474. OUT_WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if HAS_POWER_SWITCH
  477. #ifdef PS_DEFAULT_OFF
  478. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  479. #else
  480. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  481. #endif
  482. #endif
  483. }
  484. void suicide() {
  485. #if HAS_SUICIDE
  486. OUT_WRITE(SUICIDE_PIN, LOW);
  487. #endif
  488. }
  489. void servo_init() {
  490. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  491. servo[0].attach(SERVO0_PIN);
  492. #endif
  493. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  494. servo[1].attach(SERVO1_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  497. servo[2].attach(SERVO2_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  500. servo[3].attach(SERVO3_PIN);
  501. #endif
  502. // Set position of Servo Endstops that are defined
  503. #ifdef SERVO_ENDSTOPS
  504. for (int i = 0; i < 3; i++)
  505. if (servo_endstops[i] >= 0)
  506. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  507. #endif
  508. #if SERVO_LEVELING
  509. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  510. servo[servo_endstops[Z_AXIS]].detach();
  511. #endif
  512. }
  513. /**
  514. * Marlin entry-point: Set up before the program loop
  515. * - Set up the kill pin, filament runout, power hold
  516. * - Start the serial port
  517. * - Print startup messages and diagnostics
  518. * - Get EEPROM or default settings
  519. * - Initialize managers for:
  520. * • temperature
  521. * • planner
  522. * • watchdog
  523. * • stepper
  524. * • photo pin
  525. * • servos
  526. * • LCD controller
  527. * • Digipot I2C
  528. * • Z probe sled
  529. * • status LEDs
  530. */
  531. void setup() {
  532. setup_killpin();
  533. setup_filrunoutpin();
  534. setup_powerhold();
  535. MYSERIAL.begin(BAUDRATE);
  536. SERIAL_PROTOCOLLNPGM("start");
  537. SERIAL_ECHO_START;
  538. // Check startup - does nothing if bootloader sets MCUSR to 0
  539. byte mcu = MCUSR;
  540. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  541. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  542. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  543. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  544. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  545. MCUSR = 0;
  546. SERIAL_ECHOPGM(MSG_MARLIN);
  547. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  548. #ifdef STRING_VERSION_CONFIG_H
  549. #ifdef STRING_CONFIG_H_AUTHOR
  550. SERIAL_ECHO_START;
  551. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  552. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  553. SERIAL_ECHOPGM(MSG_AUTHOR);
  554. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  555. SERIAL_ECHOPGM("Compiled: ");
  556. SERIAL_ECHOLNPGM(__DATE__);
  557. #endif // STRING_CONFIG_H_AUTHOR
  558. #endif // STRING_VERSION_CONFIG_H
  559. SERIAL_ECHO_START;
  560. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  561. SERIAL_ECHO(freeMemory());
  562. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  563. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  564. #ifdef SDSUPPORT
  565. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  566. #endif
  567. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  568. Config_RetrieveSettings();
  569. tp_init(); // Initialize temperature loop
  570. plan_init(); // Initialize planner;
  571. watchdog_init();
  572. st_init(); // Initialize stepper, this enables interrupts!
  573. setup_photpin();
  574. servo_init();
  575. lcd_init();
  576. _delay_ms(1000); // wait 1sec to display the splash screen
  577. #if HAS_CONTROLLERFAN
  578. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  579. #endif
  580. #ifdef DIGIPOT_I2C
  581. digipot_i2c_init();
  582. #endif
  583. #ifdef Z_PROBE_SLED
  584. pinMode(SLED_PIN, OUTPUT);
  585. digitalWrite(SLED_PIN, LOW); // turn it off
  586. #endif // Z_PROBE_SLED
  587. setup_homepin();
  588. #ifdef STAT_LED_RED
  589. pinMode(STAT_LED_RED, OUTPUT);
  590. digitalWrite(STAT_LED_RED, LOW); // turn it off
  591. #endif
  592. #ifdef STAT_LED_BLUE
  593. pinMode(STAT_LED_BLUE, OUTPUT);
  594. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  595. #endif
  596. }
  597. /**
  598. * The main Marlin program loop
  599. *
  600. * - Save or log commands to SD
  601. * - Process available commands (if not saving)
  602. * - Call heater manager
  603. * - Call inactivity manager
  604. * - Call endstop manager
  605. * - Call LCD update
  606. */
  607. void loop() {
  608. if (commands_in_queue < BUFSIZE - 1) get_command();
  609. #ifdef SDSUPPORT
  610. card.checkautostart(false);
  611. #endif
  612. if (commands_in_queue) {
  613. #ifdef SDSUPPORT
  614. if (card.saving) {
  615. char *command = command_queue[cmd_queue_index_r];
  616. if (strstr_P(command, PSTR("M29"))) {
  617. // M29 closes the file
  618. card.closefile();
  619. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  620. }
  621. else {
  622. // Write the string from the read buffer to SD
  623. card.write_command(command);
  624. if (card.logging)
  625. process_next_command(); // The card is saving because it's logging
  626. else
  627. SERIAL_PROTOCOLLNPGM(MSG_OK);
  628. }
  629. }
  630. else
  631. process_next_command();
  632. #else
  633. process_next_command();
  634. #endif // SDSUPPORT
  635. commands_in_queue--;
  636. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  637. }
  638. // Check heater every n milliseconds
  639. manage_heater();
  640. manage_inactivity();
  641. checkHitEndstops();
  642. lcd_update();
  643. }
  644. void gcode_line_error(const char *err, bool doFlush=true) {
  645. SERIAL_ERROR_START;
  646. serialprintPGM(err);
  647. SERIAL_ERRORLN(gcode_LastN);
  648. //Serial.println(gcode_N);
  649. if (doFlush) FlushSerialRequestResend();
  650. serial_count = 0;
  651. }
  652. /**
  653. * Add to the circular command queue the next command from:
  654. * - The command-injection queue (queued_commands_P)
  655. * - The active serial input (usually USB)
  656. * - The SD card file being actively printed
  657. */
  658. void get_command() {
  659. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  660. #ifdef NO_TIMEOUTS
  661. static millis_t last_command_time = 0;
  662. millis_t ms = millis();
  663. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  664. SERIAL_ECHOLNPGM(MSG_WAIT);
  665. last_command_time = ms;
  666. }
  667. #endif
  668. //
  669. // Loop while serial characters are incoming and the queue is not full
  670. //
  671. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  672. #ifdef NO_TIMEOUTS
  673. last_command_time = ms;
  674. #endif
  675. serial_char = MYSERIAL.read();
  676. //
  677. // If the character ends the line, or the line is full...
  678. //
  679. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  680. // end of line == end of comment
  681. comment_mode = false;
  682. if (!serial_count) return; // empty lines just exit
  683. char *command = command_queue[cmd_queue_index_w];
  684. command[serial_count] = 0; // terminate string
  685. // this item in the queue is not from sd
  686. #ifdef SDSUPPORT
  687. fromsd[cmd_queue_index_w] = false;
  688. #endif
  689. if (strchr(command, 'N') != NULL) {
  690. strchr_pointer = strchr(command, 'N');
  691. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  692. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  693. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  694. return;
  695. }
  696. if (strchr(command, '*') != NULL) {
  697. byte checksum = 0;
  698. byte count = 0;
  699. while (command[count] != '*') checksum ^= command[count++];
  700. strchr_pointer = strchr(command, '*');
  701. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  702. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  703. return;
  704. }
  705. // if no errors, continue parsing
  706. }
  707. else {
  708. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  709. return;
  710. }
  711. gcode_LastN = gcode_N;
  712. // if no errors, continue parsing
  713. }
  714. else { // if we don't receive 'N' but still see '*'
  715. if ((strchr(command, '*') != NULL)) {
  716. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  717. return;
  718. }
  719. }
  720. if (strchr(command, 'G') != NULL) {
  721. strchr_pointer = strchr(command, 'G');
  722. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  723. case 0:
  724. case 1:
  725. case 2:
  726. case 3:
  727. if (IsStopped()) {
  728. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  729. LCD_MESSAGEPGM(MSG_STOPPED);
  730. }
  731. break;
  732. default:
  733. break;
  734. }
  735. }
  736. // If command was e-stop process now
  737. if (strcmp(command, "M112") == 0) kill();
  738. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  739. commands_in_queue += 1;
  740. serial_count = 0; //clear buffer
  741. }
  742. else if (serial_char == '\\') { // Handle escapes
  743. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  744. // if we have one more character, copy it over
  745. serial_char = MYSERIAL.read();
  746. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  747. }
  748. // otherwise do nothing
  749. }
  750. else { // its not a newline, carriage return or escape char
  751. if (serial_char == ';') comment_mode = true;
  752. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  753. }
  754. }
  755. #ifdef SDSUPPORT
  756. if (!card.sdprinting || serial_count) return;
  757. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  758. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  759. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  760. static bool stop_buffering = false;
  761. if (commands_in_queue == 0) stop_buffering = false;
  762. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  763. int16_t n = card.get();
  764. serial_char = (char)n;
  765. if (serial_char == '\n' || serial_char == '\r' ||
  766. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  767. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  768. ) {
  769. if (card.eof()) {
  770. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  771. print_job_stop_ms = millis();
  772. char time[30];
  773. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  774. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  775. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  776. SERIAL_ECHO_START;
  777. SERIAL_ECHOLN(time);
  778. lcd_setstatus(time, true);
  779. card.printingHasFinished();
  780. card.checkautostart(true);
  781. }
  782. if (serial_char == '#') stop_buffering = true;
  783. if (!serial_count) {
  784. comment_mode = false; //for new command
  785. return; //if empty line
  786. }
  787. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  788. // if (!comment_mode) {
  789. fromsd[cmd_queue_index_w] = true;
  790. commands_in_queue += 1;
  791. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  792. // }
  793. comment_mode = false; //for new command
  794. serial_count = 0; //clear buffer
  795. }
  796. else {
  797. if (serial_char == ';') comment_mode = true;
  798. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  799. }
  800. }
  801. #endif // SDSUPPORT
  802. }
  803. bool code_has_value() {
  804. int i = 1;
  805. char c = strchr_pointer[i];
  806. if (c == '-' || c == '+') c = strchr_pointer[++i];
  807. if (c == '.') c = strchr_pointer[++i];
  808. return (c >= '0' && c <= '9');
  809. }
  810. float code_value() {
  811. float ret;
  812. char *e = strchr(strchr_pointer, 'E');
  813. if (e) {
  814. *e = 0;
  815. ret = strtod(strchr_pointer+1, NULL);
  816. *e = 'E';
  817. }
  818. else
  819. ret = strtod(strchr_pointer+1, NULL);
  820. return ret;
  821. }
  822. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  823. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  824. bool code_seen(char code) {
  825. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  826. return (strchr_pointer != NULL); //Return True if a character was found
  827. }
  828. #define DEFINE_PGM_READ_ANY(type, reader) \
  829. static inline type pgm_read_any(const type *p) \
  830. { return pgm_read_##reader##_near(p); }
  831. DEFINE_PGM_READ_ANY(float, float);
  832. DEFINE_PGM_READ_ANY(signed char, byte);
  833. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  834. static const PROGMEM type array##_P[3] = \
  835. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  836. static inline type array(int axis) \
  837. { return pgm_read_any(&array##_P[axis]); }
  838. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  839. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  840. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  841. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  842. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  843. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  844. #ifdef DUAL_X_CARRIAGE
  845. #define DXC_FULL_CONTROL_MODE 0
  846. #define DXC_AUTO_PARK_MODE 1
  847. #define DXC_DUPLICATION_MODE 2
  848. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  849. static float x_home_pos(int extruder) {
  850. if (extruder == 0)
  851. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  852. else
  853. // In dual carriage mode the extruder offset provides an override of the
  854. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  855. // This allow soft recalibration of the second extruder offset position without firmware reflash
  856. // (through the M218 command).
  857. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  858. }
  859. static int x_home_dir(int extruder) {
  860. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  861. }
  862. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  863. static bool active_extruder_parked = false; // used in mode 1 & 2
  864. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  865. static millis_t delayed_move_time = 0; // used in mode 1
  866. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  867. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  868. bool extruder_duplication_enabled = false; // used in mode 2
  869. #endif //DUAL_X_CARRIAGE
  870. static void axis_is_at_home(AxisEnum axis) {
  871. #ifdef DUAL_X_CARRIAGE
  872. if (axis == X_AXIS) {
  873. if (active_extruder != 0) {
  874. current_position[X_AXIS] = x_home_pos(active_extruder);
  875. min_pos[X_AXIS] = X2_MIN_POS;
  876. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  877. return;
  878. }
  879. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  880. float xoff = home_offset[X_AXIS];
  881. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  882. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  883. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  884. return;
  885. }
  886. }
  887. #endif
  888. #ifdef SCARA
  889. if (axis == X_AXIS || axis == Y_AXIS) {
  890. float homeposition[3];
  891. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  892. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  893. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  894. // Works out real Homeposition angles using inverse kinematics,
  895. // and calculates homing offset using forward kinematics
  896. calculate_delta(homeposition);
  897. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  898. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  899. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  900. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  901. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  902. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. calculate_SCARA_forward_Transform(delta);
  905. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. current_position[axis] = delta[axis];
  908. // SCARA home positions are based on configuration since the actual limits are determined by the
  909. // inverse kinematic transform.
  910. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  911. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  912. }
  913. else
  914. #endif
  915. {
  916. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  917. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  918. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  919. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  920. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  921. #endif
  922. }
  923. }
  924. /**
  925. * Some planner shorthand inline functions
  926. */
  927. inline void set_homing_bump_feedrate(AxisEnum axis) {
  928. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  929. if (homing_bump_divisor[axis] >= 1)
  930. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  931. else {
  932. feedrate = homing_feedrate[axis] / 10;
  933. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  934. }
  935. }
  936. inline void line_to_current_position() {
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  938. }
  939. inline void line_to_z(float zPosition) {
  940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  941. }
  942. inline void line_to_destination(float mm_m) {
  943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  944. }
  945. inline void line_to_destination() {
  946. line_to_destination(feedrate);
  947. }
  948. inline void sync_plan_position() {
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. }
  951. #if defined(DELTA) || defined(SCARA)
  952. inline void sync_plan_position_delta() {
  953. calculate_delta(current_position);
  954. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  955. }
  956. #endif
  957. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  958. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  959. static void setup_for_endstop_move() {
  960. saved_feedrate = feedrate;
  961. saved_feedrate_multiplier = feedrate_multiplier;
  962. feedrate_multiplier = 100;
  963. refresh_cmd_timeout();
  964. enable_endstops(true);
  965. }
  966. #ifdef ENABLE_AUTO_BED_LEVELING
  967. #ifdef DELTA
  968. /**
  969. * Calculate delta, start a line, and set current_position to destination
  970. */
  971. void prepare_move_raw() {
  972. refresh_cmd_timeout();
  973. calculate_delta(destination);
  974. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  975. set_current_to_destination();
  976. }
  977. #endif
  978. #ifdef AUTO_BED_LEVELING_GRID
  979. #ifndef DELTA
  980. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  981. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  982. planeNormal.debug("planeNormal");
  983. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  984. //bedLevel.debug("bedLevel");
  985. //plan_bed_level_matrix.debug("bed level before");
  986. //vector_3 uncorrected_position = plan_get_position_mm();
  987. //uncorrected_position.debug("position before");
  988. vector_3 corrected_position = plan_get_position();
  989. //corrected_position.debug("position after");
  990. current_position[X_AXIS] = corrected_position.x;
  991. current_position[Y_AXIS] = corrected_position.y;
  992. current_position[Z_AXIS] = corrected_position.z;
  993. sync_plan_position();
  994. }
  995. #endif // !DELTA
  996. #else // !AUTO_BED_LEVELING_GRID
  997. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  998. plan_bed_level_matrix.set_to_identity();
  999. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1000. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1001. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1002. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1003. if (planeNormal.z < 0) {
  1004. planeNormal.x = -planeNormal.x;
  1005. planeNormal.y = -planeNormal.y;
  1006. planeNormal.z = -planeNormal.z;
  1007. }
  1008. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1009. vector_3 corrected_position = plan_get_position();
  1010. current_position[X_AXIS] = corrected_position.x;
  1011. current_position[Y_AXIS] = corrected_position.y;
  1012. current_position[Z_AXIS] = corrected_position.z;
  1013. sync_plan_position();
  1014. }
  1015. #endif // !AUTO_BED_LEVELING_GRID
  1016. static void run_z_probe() {
  1017. #ifdef DELTA
  1018. float start_z = current_position[Z_AXIS];
  1019. long start_steps = st_get_position(Z_AXIS);
  1020. // move down slowly until you find the bed
  1021. feedrate = homing_feedrate[Z_AXIS] / 4;
  1022. destination[Z_AXIS] = -10;
  1023. prepare_move_raw(); // this will also set_current_to_destination
  1024. st_synchronize();
  1025. endstops_hit_on_purpose(); // clear endstop hit flags
  1026. // we have to let the planner know where we are right now as it is not where we said to go.
  1027. long stop_steps = st_get_position(Z_AXIS);
  1028. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1029. current_position[Z_AXIS] = mm;
  1030. sync_plan_position_delta();
  1031. #else // !DELTA
  1032. plan_bed_level_matrix.set_to_identity();
  1033. feedrate = homing_feedrate[Z_AXIS];
  1034. // Move down until the probe (or endstop?) is triggered
  1035. float zPosition = -10;
  1036. line_to_z(zPosition);
  1037. st_synchronize();
  1038. // Tell the planner where we ended up - Get this from the stepper handler
  1039. zPosition = st_get_position_mm(Z_AXIS);
  1040. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1041. // move up the retract distance
  1042. zPosition += home_bump_mm(Z_AXIS);
  1043. line_to_z(zPosition);
  1044. st_synchronize();
  1045. endstops_hit_on_purpose(); // clear endstop hit flags
  1046. // move back down slowly to find bed
  1047. set_homing_bump_feedrate(Z_AXIS);
  1048. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1049. line_to_z(zPosition);
  1050. st_synchronize();
  1051. endstops_hit_on_purpose(); // clear endstop hit flags
  1052. // Get the current stepper position after bumping an endstop
  1053. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1054. sync_plan_position();
  1055. #endif // !DELTA
  1056. }
  1057. /**
  1058. * Plan a move to (X, Y, Z) and set the current_position
  1059. * The final current_position may not be the one that was requested
  1060. */
  1061. static void do_blocking_move_to(float x, float y, float z) {
  1062. float oldFeedRate = feedrate;
  1063. #ifdef DELTA
  1064. feedrate = XY_TRAVEL_SPEED;
  1065. destination[X_AXIS] = x;
  1066. destination[Y_AXIS] = y;
  1067. destination[Z_AXIS] = z;
  1068. prepare_move_raw(); // this will also set_current_to_destination
  1069. st_synchronize();
  1070. #else
  1071. feedrate = homing_feedrate[Z_AXIS];
  1072. current_position[Z_AXIS] = z;
  1073. line_to_current_position();
  1074. st_synchronize();
  1075. feedrate = xy_travel_speed;
  1076. current_position[X_AXIS] = x;
  1077. current_position[Y_AXIS] = y;
  1078. line_to_current_position();
  1079. st_synchronize();
  1080. #endif
  1081. feedrate = oldFeedRate;
  1082. }
  1083. static void clean_up_after_endstop_move() {
  1084. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1085. enable_endstops(false);
  1086. #endif
  1087. feedrate = saved_feedrate;
  1088. feedrate_multiplier = saved_feedrate_multiplier;
  1089. refresh_cmd_timeout();
  1090. }
  1091. static void deploy_z_probe() {
  1092. #ifdef SERVO_ENDSTOPS
  1093. // Engage Z Servo endstop if enabled
  1094. if (servo_endstops[Z_AXIS] >= 0) {
  1095. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1096. #if SERVO_LEVELING
  1097. srv->attach(0);
  1098. #endif
  1099. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1100. #if SERVO_LEVELING
  1101. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1102. srv->detach();
  1103. #endif
  1104. }
  1105. #elif defined(Z_PROBE_ALLEN_KEY)
  1106. feedrate = homing_feedrate[X_AXIS];
  1107. // Move to the start position to initiate deployment
  1108. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1109. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1110. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1111. prepare_move_raw(); // this will also set_current_to_destination
  1112. // Home X to touch the belt
  1113. feedrate = homing_feedrate[X_AXIS]/10;
  1114. destination[X_AXIS] = 0;
  1115. prepare_move_raw(); // this will also set_current_to_destination
  1116. // Home Y for safety
  1117. feedrate = homing_feedrate[X_AXIS]/2;
  1118. destination[Y_AXIS] = 0;
  1119. prepare_move_raw(); // this will also set_current_to_destination
  1120. st_synchronize();
  1121. #ifdef Z_PROBE_ENDSTOP
  1122. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1123. if (z_probe_endstop)
  1124. #else
  1125. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1126. if (z_min_endstop)
  1127. #endif
  1128. {
  1129. if (IsRunning()) {
  1130. SERIAL_ERROR_START;
  1131. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1132. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1133. }
  1134. Stop();
  1135. }
  1136. #endif // Z_PROBE_ALLEN_KEY
  1137. }
  1138. static void stow_z_probe(bool doRaise=true) {
  1139. #ifdef SERVO_ENDSTOPS
  1140. // Retract Z Servo endstop if enabled
  1141. if (servo_endstops[Z_AXIS] >= 0) {
  1142. #if Z_RAISE_AFTER_PROBING > 0
  1143. if (doRaise) {
  1144. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1145. st_synchronize();
  1146. }
  1147. #endif
  1148. // Change the Z servo angle
  1149. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1150. #if SERVO_LEVELING
  1151. srv->attach(0);
  1152. #endif
  1153. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1154. #if SERVO_LEVELING
  1155. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1156. srv->detach();
  1157. #endif
  1158. }
  1159. #elif defined(Z_PROBE_ALLEN_KEY)
  1160. // Move up for safety
  1161. feedrate = homing_feedrate[X_AXIS];
  1162. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1163. prepare_move_raw(); // this will also set_current_to_destination
  1164. // Move to the start position to initiate retraction
  1165. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1166. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1167. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1168. prepare_move_raw(); // this will also set_current_to_destination
  1169. // Move the nozzle down to push the probe into retracted position
  1170. feedrate = homing_feedrate[Z_AXIS]/10;
  1171. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1172. prepare_move_raw(); // this will also set_current_to_destination
  1173. // Move up for safety
  1174. feedrate = homing_feedrate[Z_AXIS]/2;
  1175. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1176. prepare_move_raw(); // this will also set_current_to_destination
  1177. // Home XY for safety
  1178. feedrate = homing_feedrate[X_AXIS]/2;
  1179. destination[X_AXIS] = 0;
  1180. destination[Y_AXIS] = 0;
  1181. prepare_move_raw(); // this will also set_current_to_destination
  1182. st_synchronize();
  1183. #ifdef Z_PROBE_ENDSTOP
  1184. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1185. if (!z_probe_endstop)
  1186. #else
  1187. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1188. if (!z_min_endstop)
  1189. #endif
  1190. {
  1191. if (IsRunning()) {
  1192. SERIAL_ERROR_START;
  1193. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1194. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1195. }
  1196. Stop();
  1197. }
  1198. #endif // Z_PROBE_ALLEN_KEY
  1199. }
  1200. enum ProbeAction {
  1201. ProbeStay = 0,
  1202. ProbeDeploy = BIT(0),
  1203. ProbeStow = BIT(1),
  1204. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1205. };
  1206. // Probe bed height at position (x,y), returns the measured z value
  1207. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1208. // move to right place
  1209. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1210. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1211. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1212. if (probe_action & ProbeDeploy) deploy_z_probe();
  1213. #endif
  1214. run_z_probe();
  1215. float measured_z = current_position[Z_AXIS];
  1216. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1217. if (probe_action == ProbeStay) {
  1218. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1219. st_synchronize();
  1220. }
  1221. #endif
  1222. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1223. if (probe_action & ProbeStow) stow_z_probe();
  1224. #endif
  1225. if (verbose_level > 2) {
  1226. SERIAL_PROTOCOLPGM("Bed X: ");
  1227. SERIAL_PROTOCOL_F(x, 3);
  1228. SERIAL_PROTOCOLPGM(" Y: ");
  1229. SERIAL_PROTOCOL_F(y, 3);
  1230. SERIAL_PROTOCOLPGM(" Z: ");
  1231. SERIAL_PROTOCOL_F(measured_z, 3);
  1232. SERIAL_EOL;
  1233. }
  1234. return measured_z;
  1235. }
  1236. #ifdef DELTA
  1237. /**
  1238. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1239. */
  1240. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1241. if (bed_level[x][y] != 0.0) {
  1242. return; // Don't overwrite good values.
  1243. }
  1244. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1245. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1246. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1247. float median = c; // Median is robust (ignores outliers).
  1248. if (a < b) {
  1249. if (b < c) median = b;
  1250. if (c < a) median = a;
  1251. } else { // b <= a
  1252. if (c < b) median = b;
  1253. if (a < c) median = a;
  1254. }
  1255. bed_level[x][y] = median;
  1256. }
  1257. // Fill in the unprobed points (corners of circular print surface)
  1258. // using linear extrapolation, away from the center.
  1259. static void extrapolate_unprobed_bed_level() {
  1260. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1261. for (int y = 0; y <= half; y++) {
  1262. for (int x = 0; x <= half; x++) {
  1263. if (x + y < 3) continue;
  1264. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1265. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1266. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1267. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1268. }
  1269. }
  1270. }
  1271. // Print calibration results for plotting or manual frame adjustment.
  1272. static void print_bed_level() {
  1273. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1274. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1275. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1276. SERIAL_PROTOCOLCHAR(' ');
  1277. }
  1278. SERIAL_EOL;
  1279. }
  1280. }
  1281. // Reset calibration results to zero.
  1282. void reset_bed_level() {
  1283. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1284. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1285. bed_level[x][y] = 0.0;
  1286. }
  1287. }
  1288. }
  1289. #endif // DELTA
  1290. #endif // ENABLE_AUTO_BED_LEVELING
  1291. #ifdef Z_PROBE_SLED
  1292. #ifndef SLED_DOCKING_OFFSET
  1293. #define SLED_DOCKING_OFFSET 0
  1294. #endif
  1295. /**
  1296. * Method to dock/undock a sled designed by Charles Bell.
  1297. *
  1298. * dock[in] If true, move to MAX_X and engage the electromagnet
  1299. * offset[in] The additional distance to move to adjust docking location
  1300. */
  1301. static void dock_sled(bool dock, int offset=0) {
  1302. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1303. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1304. SERIAL_ECHO_START;
  1305. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1306. return;
  1307. }
  1308. if (dock) {
  1309. float oldXpos = current_position[X_AXIS]; // save x position
  1310. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1311. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1312. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1313. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1314. } else {
  1315. float oldXpos = current_position[X_AXIS]; // save x position
  1316. float z_loc = current_position[Z_AXIS];
  1317. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1318. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1319. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1320. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1321. }
  1322. }
  1323. #endif // Z_PROBE_SLED
  1324. /**
  1325. * Home an individual axis
  1326. */
  1327. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1328. static void homeaxis(AxisEnum axis) {
  1329. #define HOMEAXIS_DO(LETTER) \
  1330. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1331. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1332. int axis_home_dir =
  1333. #ifdef DUAL_X_CARRIAGE
  1334. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1335. #endif
  1336. home_dir(axis);
  1337. // Set the axis position as setup for the move
  1338. current_position[axis] = 0;
  1339. sync_plan_position();
  1340. #ifdef Z_PROBE_SLED
  1341. // Get Probe
  1342. if (axis == Z_AXIS) {
  1343. if (axis_home_dir < 0) dock_sled(false);
  1344. }
  1345. #endif
  1346. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1347. // Deploy a probe if there is one, and homing towards the bed
  1348. if (axis == Z_AXIS) {
  1349. if (axis_home_dir < 0) deploy_z_probe();
  1350. }
  1351. #endif
  1352. #ifdef SERVO_ENDSTOPS
  1353. if (axis != Z_AXIS) {
  1354. // Engage Servo endstop if enabled
  1355. if (servo_endstops[axis] > -1)
  1356. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1357. }
  1358. #endif
  1359. // Set a flag for Z motor locking
  1360. #ifdef Z_DUAL_ENDSTOPS
  1361. if (axis == Z_AXIS) In_Homing_Process(true);
  1362. #endif
  1363. // Move towards the endstop until an endstop is triggered
  1364. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1365. feedrate = homing_feedrate[axis];
  1366. line_to_destination();
  1367. st_synchronize();
  1368. // Set the axis position as setup for the move
  1369. current_position[axis] = 0;
  1370. sync_plan_position();
  1371. enable_endstops(false); // Disable endstops while moving away
  1372. // Move away from the endstop by the axis HOME_BUMP_MM
  1373. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1374. line_to_destination();
  1375. st_synchronize();
  1376. enable_endstops(true); // Enable endstops for next homing move
  1377. // Slow down the feedrate for the next move
  1378. set_homing_bump_feedrate(axis);
  1379. // Move slowly towards the endstop until triggered
  1380. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1381. line_to_destination();
  1382. st_synchronize();
  1383. #ifdef Z_DUAL_ENDSTOPS
  1384. if (axis == Z_AXIS) {
  1385. float adj = fabs(z_endstop_adj);
  1386. bool lockZ1;
  1387. if (axis_home_dir > 0) {
  1388. adj = -adj;
  1389. lockZ1 = (z_endstop_adj > 0);
  1390. }
  1391. else
  1392. lockZ1 = (z_endstop_adj < 0);
  1393. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1394. sync_plan_position();
  1395. // Move to the adjusted endstop height
  1396. feedrate = homing_feedrate[axis];
  1397. destination[Z_AXIS] = adj;
  1398. line_to_destination();
  1399. st_synchronize();
  1400. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1401. In_Homing_Process(false);
  1402. } // Z_AXIS
  1403. #endif
  1404. #ifdef DELTA
  1405. // retrace by the amount specified in endstop_adj
  1406. if (endstop_adj[axis] * axis_home_dir < 0) {
  1407. enable_endstops(false); // Disable endstops while moving away
  1408. sync_plan_position();
  1409. destination[axis] = endstop_adj[axis];
  1410. line_to_destination();
  1411. st_synchronize();
  1412. enable_endstops(true); // Enable endstops for next homing move
  1413. }
  1414. #endif
  1415. // Set the axis position to its home position (plus home offsets)
  1416. axis_is_at_home(axis);
  1417. sync_plan_position();
  1418. destination[axis] = current_position[axis];
  1419. feedrate = 0.0;
  1420. endstops_hit_on_purpose(); // clear endstop hit flags
  1421. axis_known_position[axis] = true;
  1422. #ifdef Z_PROBE_SLED
  1423. // bring probe back
  1424. if (axis == Z_AXIS) {
  1425. if (axis_home_dir < 0) dock_sled(true);
  1426. }
  1427. #endif
  1428. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1429. // Deploy a probe if there is one, and homing towards the bed
  1430. if (axis == Z_AXIS) {
  1431. if (axis_home_dir < 0) stow_z_probe();
  1432. }
  1433. else
  1434. #endif
  1435. #ifdef SERVO_ENDSTOPS
  1436. {
  1437. // Retract Servo endstop if enabled
  1438. if (servo_endstops[axis] > -1)
  1439. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1440. }
  1441. #endif
  1442. }
  1443. }
  1444. #ifdef FWRETRACT
  1445. void retract(bool retracting, bool swapping=false) {
  1446. if (retracting == retracted[active_extruder]) return;
  1447. float oldFeedrate = feedrate;
  1448. set_destination_to_current();
  1449. if (retracting) {
  1450. feedrate = retract_feedrate * 60;
  1451. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1452. plan_set_e_position(current_position[E_AXIS]);
  1453. prepare_move();
  1454. if (retract_zlift > 0.01) {
  1455. current_position[Z_AXIS] -= retract_zlift;
  1456. #ifdef DELTA
  1457. sync_plan_position_delta();
  1458. #else
  1459. sync_plan_position();
  1460. #endif
  1461. prepare_move();
  1462. }
  1463. }
  1464. else {
  1465. if (retract_zlift > 0.01) {
  1466. current_position[Z_AXIS] += retract_zlift;
  1467. #ifdef DELTA
  1468. sync_plan_position_delta();
  1469. #else
  1470. sync_plan_position();
  1471. #endif
  1472. //prepare_move();
  1473. }
  1474. feedrate = retract_recover_feedrate * 60;
  1475. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1476. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1477. plan_set_e_position(current_position[E_AXIS]);
  1478. prepare_move();
  1479. }
  1480. feedrate = oldFeedrate;
  1481. retracted[active_extruder] = retracting;
  1482. } // retract()
  1483. #endif // FWRETRACT
  1484. /**
  1485. *
  1486. * G-Code Handler functions
  1487. *
  1488. */
  1489. /**
  1490. * Set XYZE destination and feedrate from the current GCode command
  1491. *
  1492. * - Set destination from included axis codes
  1493. * - Set to current for missing axis codes
  1494. * - Set the feedrate, if included
  1495. */
  1496. void gcode_get_destination() {
  1497. for (int i = 0; i < NUM_AXIS; i++) {
  1498. if (code_seen(axis_codes[i]))
  1499. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1500. else
  1501. destination[i] = current_position[i];
  1502. }
  1503. if (code_seen('F')) {
  1504. float next_feedrate = code_value();
  1505. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1506. }
  1507. }
  1508. /**
  1509. * G0, G1: Coordinated movement of X Y Z E axes
  1510. */
  1511. inline void gcode_G0_G1() {
  1512. if (IsRunning()) {
  1513. gcode_get_destination(); // For X Y Z E F
  1514. #ifdef FWRETRACT
  1515. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1516. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1517. // Is this move an attempt to retract or recover?
  1518. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1519. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1520. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1521. retract(!retracted[active_extruder]);
  1522. return;
  1523. }
  1524. }
  1525. #endif //FWRETRACT
  1526. prepare_move();
  1527. }
  1528. }
  1529. /**
  1530. * Plan an arc in 2 dimensions
  1531. *
  1532. * The arc is approximated by generating many small linear segments.
  1533. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1534. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1535. * larger segments will tend to be more efficient. Your slicer should have
  1536. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1537. */
  1538. void plan_arc(
  1539. float *target, // Destination position
  1540. float *offset, // Center of rotation relative to current_position
  1541. uint8_t clockwise // Clockwise?
  1542. ) {
  1543. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1544. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1545. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1546. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1547. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1548. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1549. r_axis1 = -offset[Y_AXIS],
  1550. rt_axis0 = target[X_AXIS] - center_axis0,
  1551. rt_axis1 = target[Y_AXIS] - center_axis1;
  1552. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1553. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1554. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1555. if (clockwise) { angular_travel -= RADIANS(360); }
  1556. // Make a circle if the angular rotation is 0
  1557. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1558. angular_travel += RADIANS(360);
  1559. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1560. if (mm_of_travel < 0.001) { return; }
  1561. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1562. if (segments == 0) segments = 1;
  1563. float theta_per_segment = angular_travel/segments;
  1564. float linear_per_segment = linear_travel/segments;
  1565. float extruder_per_segment = extruder_travel/segments;
  1566. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1567. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1568. r_T = [cos(phi) -sin(phi);
  1569. sin(phi) cos(phi] * r ;
  1570. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1571. defined from the circle center to the initial position. Each line segment is formed by successive
  1572. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1573. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1574. all double numbers are single precision on the Arduino. (True double precision will not have
  1575. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1576. tool precision in some cases. Therefore, arc path correction is implemented.
  1577. Small angle approximation may be used to reduce computation overhead further. This approximation
  1578. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1579. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1580. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1581. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1582. issue for CNC machines with the single precision Arduino calculations.
  1583. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1584. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1585. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1586. This is important when there are successive arc motions.
  1587. */
  1588. // Vector rotation matrix values
  1589. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1590. float sin_T = theta_per_segment;
  1591. float arc_target[4];
  1592. float sin_Ti;
  1593. float cos_Ti;
  1594. float r_axisi;
  1595. uint16_t i;
  1596. int8_t count = 0;
  1597. // Initialize the linear axis
  1598. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1599. // Initialize the extruder axis
  1600. arc_target[E_AXIS] = current_position[E_AXIS];
  1601. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1602. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1603. if (count < N_ARC_CORRECTION) {
  1604. // Apply vector rotation matrix to previous r_axis0 / 1
  1605. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1606. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1607. r_axis1 = r_axisi;
  1608. count++;
  1609. }
  1610. else {
  1611. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1612. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1613. cos_Ti = cos(i*theta_per_segment);
  1614. sin_Ti = sin(i*theta_per_segment);
  1615. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1616. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1617. count = 0;
  1618. }
  1619. // Update arc_target location
  1620. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1621. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1622. arc_target[Z_AXIS] += linear_per_segment;
  1623. arc_target[E_AXIS] += extruder_per_segment;
  1624. clamp_to_software_endstops(arc_target);
  1625. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1626. }
  1627. // Ensure last segment arrives at target location.
  1628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1629. // As far as the parser is concerned, the position is now == target. In reality the
  1630. // motion control system might still be processing the action and the real tool position
  1631. // in any intermediate location.
  1632. set_current_to_destination();
  1633. }
  1634. /**
  1635. * G2: Clockwise Arc
  1636. * G3: Counterclockwise Arc
  1637. */
  1638. inline void gcode_G2_G3(bool clockwise) {
  1639. if (IsRunning()) {
  1640. #ifdef SF_ARC_FIX
  1641. bool relative_mode_backup = relative_mode;
  1642. relative_mode = true;
  1643. #endif
  1644. gcode_get_destination();
  1645. #ifdef SF_ARC_FIX
  1646. relative_mode = relative_mode_backup;
  1647. #endif
  1648. // Center of arc as offset from current_position
  1649. float arc_offset[2] = {
  1650. code_seen('I') ? code_value() : 0,
  1651. code_seen('J') ? code_value() : 0
  1652. };
  1653. // Send an arc to the planner
  1654. plan_arc(destination, arc_offset, clockwise);
  1655. refresh_cmd_timeout();
  1656. }
  1657. }
  1658. /**
  1659. * G4: Dwell S<seconds> or P<milliseconds>
  1660. */
  1661. inline void gcode_G4() {
  1662. millis_t codenum = 0;
  1663. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1664. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1665. st_synchronize();
  1666. refresh_cmd_timeout();
  1667. codenum += previous_cmd_ms; // keep track of when we started waiting
  1668. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1669. while (millis() < codenum) {
  1670. manage_heater();
  1671. manage_inactivity();
  1672. lcd_update();
  1673. }
  1674. }
  1675. #ifdef FWRETRACT
  1676. /**
  1677. * G10 - Retract filament according to settings of M207
  1678. * G11 - Recover filament according to settings of M208
  1679. */
  1680. inline void gcode_G10_G11(bool doRetract=false) {
  1681. #if EXTRUDERS > 1
  1682. if (doRetract) {
  1683. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1684. }
  1685. #endif
  1686. retract(doRetract
  1687. #if EXTRUDERS > 1
  1688. , retracted_swap[active_extruder]
  1689. #endif
  1690. );
  1691. }
  1692. #endif //FWRETRACT
  1693. /**
  1694. * G28: Home all axes according to settings
  1695. *
  1696. * Parameters
  1697. *
  1698. * None Home to all axes with no parameters.
  1699. * With QUICK_HOME enabled XY will home together, then Z.
  1700. *
  1701. * Cartesian parameters
  1702. *
  1703. * X Home to the X endstop
  1704. * Y Home to the Y endstop
  1705. * Z Home to the Z endstop
  1706. *
  1707. */
  1708. inline void gcode_G28() {
  1709. // Wait for planner moves to finish!
  1710. st_synchronize();
  1711. // For auto bed leveling, clear the level matrix
  1712. #ifdef ENABLE_AUTO_BED_LEVELING
  1713. plan_bed_level_matrix.set_to_identity();
  1714. #ifdef DELTA
  1715. reset_bed_level();
  1716. #endif
  1717. #endif
  1718. // For manual bed leveling deactivate the matrix temporarily
  1719. #ifdef MESH_BED_LEVELING
  1720. uint8_t mbl_was_active = mbl.active;
  1721. mbl.active = 0;
  1722. #endif
  1723. setup_for_endstop_move();
  1724. set_destination_to_current();
  1725. feedrate = 0.0;
  1726. #ifdef DELTA
  1727. // A delta can only safely home all axis at the same time
  1728. // all axis have to home at the same time
  1729. // Pretend the current position is 0,0,0
  1730. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1731. sync_plan_position();
  1732. // Move all carriages up together until the first endstop is hit.
  1733. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1734. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1735. line_to_destination();
  1736. st_synchronize();
  1737. endstops_hit_on_purpose(); // clear endstop hit flags
  1738. // Destination reached
  1739. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1740. // take care of back off and rehome now we are all at the top
  1741. HOMEAXIS(X);
  1742. HOMEAXIS(Y);
  1743. HOMEAXIS(Z);
  1744. sync_plan_position_delta();
  1745. #else // NOT DELTA
  1746. bool homeX = code_seen(axis_codes[X_AXIS]),
  1747. homeY = code_seen(axis_codes[Y_AXIS]),
  1748. homeZ = code_seen(axis_codes[Z_AXIS]);
  1749. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1750. if (home_all_axis || homeZ) {
  1751. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1752. HOMEAXIS(Z);
  1753. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1754. // Raise Z before homing any other axes
  1755. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1756. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1757. feedrate = max_feedrate[Z_AXIS] * 60;
  1758. line_to_destination();
  1759. st_synchronize();
  1760. #endif
  1761. } // home_all_axis || homeZ
  1762. #ifdef QUICK_HOME
  1763. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1764. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1765. #ifdef DUAL_X_CARRIAGE
  1766. int x_axis_home_dir = x_home_dir(active_extruder);
  1767. extruder_duplication_enabled = false;
  1768. #else
  1769. int x_axis_home_dir = home_dir(X_AXIS);
  1770. #endif
  1771. sync_plan_position();
  1772. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1773. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1774. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1775. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1776. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1777. line_to_destination();
  1778. st_synchronize();
  1779. axis_is_at_home(X_AXIS);
  1780. axis_is_at_home(Y_AXIS);
  1781. sync_plan_position();
  1782. destination[X_AXIS] = current_position[X_AXIS];
  1783. destination[Y_AXIS] = current_position[Y_AXIS];
  1784. line_to_destination();
  1785. feedrate = 0.0;
  1786. st_synchronize();
  1787. endstops_hit_on_purpose(); // clear endstop hit flags
  1788. current_position[X_AXIS] = destination[X_AXIS];
  1789. current_position[Y_AXIS] = destination[Y_AXIS];
  1790. #ifndef SCARA
  1791. current_position[Z_AXIS] = destination[Z_AXIS];
  1792. #endif
  1793. }
  1794. #endif // QUICK_HOME
  1795. #ifdef HOME_Y_BEFORE_X
  1796. // Home Y
  1797. if (home_all_axis || homeY) HOMEAXIS(Y);
  1798. #endif
  1799. // Home X
  1800. if (home_all_axis || homeX) {
  1801. #ifdef DUAL_X_CARRIAGE
  1802. int tmp_extruder = active_extruder;
  1803. extruder_duplication_enabled = false;
  1804. active_extruder = !active_extruder;
  1805. HOMEAXIS(X);
  1806. inactive_extruder_x_pos = current_position[X_AXIS];
  1807. active_extruder = tmp_extruder;
  1808. HOMEAXIS(X);
  1809. // reset state used by the different modes
  1810. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1811. delayed_move_time = 0;
  1812. active_extruder_parked = true;
  1813. #else
  1814. HOMEAXIS(X);
  1815. #endif
  1816. }
  1817. #ifndef HOME_Y_BEFORE_X
  1818. // Home Y
  1819. if (home_all_axis || homeY) HOMEAXIS(Y);
  1820. #endif
  1821. // Home Z last if homing towards the bed
  1822. #if Z_HOME_DIR < 0
  1823. if (home_all_axis || homeZ) {
  1824. #ifdef Z_SAFE_HOMING
  1825. if (home_all_axis) {
  1826. current_position[Z_AXIS] = 0;
  1827. sync_plan_position();
  1828. //
  1829. // Set the probe (or just the nozzle) destination to the safe homing point
  1830. //
  1831. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1832. // then this may not work as expected.
  1833. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1834. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1835. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1836. feedrate = XY_TRAVEL_SPEED;
  1837. // This could potentially move X, Y, Z all together
  1838. line_to_destination();
  1839. st_synchronize();
  1840. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1841. current_position[X_AXIS] = destination[X_AXIS];
  1842. current_position[Y_AXIS] = destination[Y_AXIS];
  1843. // Home the Z axis
  1844. HOMEAXIS(Z);
  1845. }
  1846. else if (homeZ) { // Don't need to Home Z twice
  1847. // Let's see if X and Y are homed
  1848. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1849. // Make sure the probe is within the physical limits
  1850. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1851. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1852. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1853. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1854. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1855. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1856. // Set the plan current position to X, Y, 0
  1857. current_position[Z_AXIS] = 0;
  1858. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1859. // Set Z destination away from bed and raise the axis
  1860. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1861. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1862. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1863. line_to_destination();
  1864. st_synchronize();
  1865. // Home the Z axis
  1866. HOMEAXIS(Z);
  1867. }
  1868. else {
  1869. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1870. SERIAL_ECHO_START;
  1871. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1872. }
  1873. }
  1874. else {
  1875. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1876. SERIAL_ECHO_START;
  1877. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1878. }
  1879. } // !home_all_axes && homeZ
  1880. #else // !Z_SAFE_HOMING
  1881. HOMEAXIS(Z);
  1882. #endif // !Z_SAFE_HOMING
  1883. } // home_all_axis || homeZ
  1884. #endif // Z_HOME_DIR < 0
  1885. sync_plan_position();
  1886. #endif // else DELTA
  1887. #ifdef SCARA
  1888. sync_plan_position_delta();
  1889. #endif
  1890. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1891. enable_endstops(false);
  1892. #endif
  1893. // For manual leveling move back to 0,0
  1894. #ifdef MESH_BED_LEVELING
  1895. if (mbl_was_active) {
  1896. current_position[X_AXIS] = mbl.get_x(0);
  1897. current_position[Y_AXIS] = mbl.get_y(0);
  1898. set_destination_to_current();
  1899. feedrate = homing_feedrate[X_AXIS];
  1900. line_to_destination();
  1901. st_synchronize();
  1902. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1903. sync_plan_position();
  1904. mbl.active = 1;
  1905. }
  1906. #endif
  1907. feedrate = saved_feedrate;
  1908. feedrate_multiplier = saved_feedrate_multiplier;
  1909. refresh_cmd_timeout();
  1910. endstops_hit_on_purpose(); // clear endstop hit flags
  1911. }
  1912. #ifdef MESH_BED_LEVELING
  1913. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1914. /**
  1915. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1916. * mesh to compensate for variable bed height
  1917. *
  1918. * Parameters With MESH_BED_LEVELING:
  1919. *
  1920. * S0 Produce a mesh report
  1921. * S1 Start probing mesh points
  1922. * S2 Probe the next mesh point
  1923. * S3 Xn Yn Zn.nn Manually modify a single point
  1924. *
  1925. * The S0 report the points as below
  1926. *
  1927. * +----> X-axis
  1928. * |
  1929. * |
  1930. * v Y-axis
  1931. *
  1932. */
  1933. inline void gcode_G29() {
  1934. static int probe_point = -1;
  1935. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1936. if (state < 0 || state > 3) {
  1937. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1938. return;
  1939. }
  1940. int ix, iy;
  1941. float z;
  1942. switch(state) {
  1943. case MeshReport:
  1944. if (mbl.active) {
  1945. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1946. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1947. SERIAL_PROTOCOLCHAR(',');
  1948. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1949. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1950. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1951. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1952. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1953. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1954. SERIAL_PROTOCOLPGM(" ");
  1955. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1956. }
  1957. SERIAL_EOL;
  1958. }
  1959. }
  1960. else
  1961. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1962. break;
  1963. case MeshStart:
  1964. mbl.reset();
  1965. probe_point = 0;
  1966. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1967. break;
  1968. case MeshNext:
  1969. if (probe_point < 0) {
  1970. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1971. return;
  1972. }
  1973. if (probe_point == 0) {
  1974. // Set Z to a positive value before recording the first Z.
  1975. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1976. sync_plan_position();
  1977. }
  1978. else {
  1979. // For others, save the Z of the previous point, then raise Z again.
  1980. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1981. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1982. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1983. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1984. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1986. st_synchronize();
  1987. }
  1988. // Is there another point to sample? Move there.
  1989. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1990. ix = probe_point % MESH_NUM_X_POINTS;
  1991. iy = probe_point / MESH_NUM_X_POINTS;
  1992. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1993. current_position[X_AXIS] = mbl.get_x(ix);
  1994. current_position[Y_AXIS] = mbl.get_y(iy);
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1996. st_synchronize();
  1997. probe_point++;
  1998. }
  1999. else {
  2000. // After recording the last point, activate the mbl and home
  2001. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2002. probe_point = -1;
  2003. mbl.active = 1;
  2004. enqueuecommands_P(PSTR("G28"));
  2005. }
  2006. break;
  2007. case MeshSet:
  2008. if (code_seen('X') || code_seen('x')) {
  2009. ix = code_value_long()-1;
  2010. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2011. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2012. return;
  2013. }
  2014. } else {
  2015. SERIAL_PROTOCOLPGM("X not entered.\n");
  2016. return;
  2017. }
  2018. if (code_seen('Y') || code_seen('y')) {
  2019. iy = code_value_long()-1;
  2020. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2021. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2022. return;
  2023. }
  2024. } else {
  2025. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2026. return;
  2027. }
  2028. if (code_seen('Z') || code_seen('z')) {
  2029. z = code_value();
  2030. } else {
  2031. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2032. return;
  2033. }
  2034. mbl.z_values[iy][ix] = z;
  2035. } // switch(state)
  2036. }
  2037. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2038. /**
  2039. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2040. * Will fail if the printer has not been homed with G28.
  2041. *
  2042. * Enhanced G29 Auto Bed Leveling Probe Routine
  2043. *
  2044. * Parameters With AUTO_BED_LEVELING_GRID:
  2045. *
  2046. * P Set the size of the grid that will be probed (P x P points).
  2047. * Not supported by non-linear delta printer bed leveling.
  2048. * Example: "G29 P4"
  2049. *
  2050. * S Set the XY travel speed between probe points (in mm/min)
  2051. *
  2052. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2053. * or clean the rotation Matrix. Useful to check the topology
  2054. * after a first run of G29.
  2055. *
  2056. * V Set the verbose level (0-4). Example: "G29 V3"
  2057. *
  2058. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2059. * This is useful for manual bed leveling and finding flaws in the bed (to
  2060. * assist with part placement).
  2061. * Not supported by non-linear delta printer bed leveling.
  2062. *
  2063. * F Set the Front limit of the probing grid
  2064. * B Set the Back limit of the probing grid
  2065. * L Set the Left limit of the probing grid
  2066. * R Set the Right limit of the probing grid
  2067. *
  2068. * Global Parameters:
  2069. *
  2070. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2071. * Include "E" to engage/disengage the probe for each sample.
  2072. * There's no extra effect if you have a fixed probe.
  2073. * Usage: "G29 E" or "G29 e"
  2074. *
  2075. */
  2076. inline void gcode_G29() {
  2077. // Don't allow auto-leveling without homing first
  2078. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2079. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2080. SERIAL_ECHO_START;
  2081. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2082. return;
  2083. }
  2084. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2085. if (verbose_level < 0 || verbose_level > 4) {
  2086. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2087. return;
  2088. }
  2089. bool dryrun = code_seen('D') || code_seen('d'),
  2090. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2091. #ifdef AUTO_BED_LEVELING_GRID
  2092. #ifndef DELTA
  2093. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2094. #endif
  2095. if (verbose_level > 0) {
  2096. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2097. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2098. }
  2099. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2100. #ifndef DELTA
  2101. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2102. if (auto_bed_leveling_grid_points < 2) {
  2103. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2104. return;
  2105. }
  2106. #endif
  2107. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2108. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2109. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2110. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2111. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2112. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2113. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2114. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2115. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2116. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2117. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2118. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2119. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2120. if (left_out || right_out || front_out || back_out) {
  2121. if (left_out) {
  2122. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2123. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2124. }
  2125. if (right_out) {
  2126. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2127. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2128. }
  2129. if (front_out) {
  2130. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2131. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2132. }
  2133. if (back_out) {
  2134. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2135. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2136. }
  2137. return;
  2138. }
  2139. #endif // AUTO_BED_LEVELING_GRID
  2140. #ifdef Z_PROBE_SLED
  2141. dock_sled(false); // engage (un-dock) the probe
  2142. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2143. deploy_z_probe();
  2144. #endif
  2145. st_synchronize();
  2146. if (!dryrun) {
  2147. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2148. plan_bed_level_matrix.set_to_identity();
  2149. #ifdef DELTA
  2150. reset_bed_level();
  2151. #else //!DELTA
  2152. //vector_3 corrected_position = plan_get_position_mm();
  2153. //corrected_position.debug("position before G29");
  2154. vector_3 uncorrected_position = plan_get_position();
  2155. //uncorrected_position.debug("position during G29");
  2156. current_position[X_AXIS] = uncorrected_position.x;
  2157. current_position[Y_AXIS] = uncorrected_position.y;
  2158. current_position[Z_AXIS] = uncorrected_position.z;
  2159. sync_plan_position();
  2160. #endif // !DELTA
  2161. }
  2162. setup_for_endstop_move();
  2163. feedrate = homing_feedrate[Z_AXIS];
  2164. #ifdef AUTO_BED_LEVELING_GRID
  2165. // probe at the points of a lattice grid
  2166. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2167. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2168. #ifdef DELTA
  2169. delta_grid_spacing[0] = xGridSpacing;
  2170. delta_grid_spacing[1] = yGridSpacing;
  2171. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2172. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2173. #else // !DELTA
  2174. // solve the plane equation ax + by + d = z
  2175. // A is the matrix with rows [x y 1] for all the probed points
  2176. // B is the vector of the Z positions
  2177. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2178. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2179. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2180. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2181. eqnBVector[abl2], // "B" vector of Z points
  2182. mean = 0.0;
  2183. #endif // !DELTA
  2184. int probePointCounter = 0;
  2185. bool zig = true;
  2186. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2187. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2188. int xStart, xStop, xInc;
  2189. if (zig) {
  2190. xStart = 0;
  2191. xStop = auto_bed_leveling_grid_points;
  2192. xInc = 1;
  2193. }
  2194. else {
  2195. xStart = auto_bed_leveling_grid_points - 1;
  2196. xStop = -1;
  2197. xInc = -1;
  2198. }
  2199. #ifndef DELTA
  2200. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2201. // This gets the probe points in more readable order.
  2202. if (!do_topography_map) zig = !zig;
  2203. #endif
  2204. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2205. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2206. // raise extruder
  2207. float measured_z,
  2208. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2209. #ifdef DELTA
  2210. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2211. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2212. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2213. #endif //DELTA
  2214. ProbeAction act;
  2215. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2216. act = ProbeDeployAndStow;
  2217. else if (yCount == 0 && xCount == xStart)
  2218. act = ProbeDeploy;
  2219. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2220. act = ProbeStow;
  2221. else
  2222. act = ProbeStay;
  2223. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2224. #ifndef DELTA
  2225. mean += measured_z;
  2226. eqnBVector[probePointCounter] = measured_z;
  2227. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2228. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2229. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2230. #else
  2231. bed_level[xCount][yCount] = measured_z + z_offset;
  2232. #endif
  2233. probePointCounter++;
  2234. manage_heater();
  2235. manage_inactivity();
  2236. lcd_update();
  2237. } //xProbe
  2238. } //yProbe
  2239. clean_up_after_endstop_move();
  2240. #ifdef DELTA
  2241. if (!dryrun) extrapolate_unprobed_bed_level();
  2242. print_bed_level();
  2243. #else // !DELTA
  2244. // solve lsq problem
  2245. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2246. mean /= abl2;
  2247. if (verbose_level) {
  2248. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2249. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2250. SERIAL_PROTOCOLPGM(" b: ");
  2251. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2252. SERIAL_PROTOCOLPGM(" d: ");
  2253. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2254. SERIAL_EOL;
  2255. if (verbose_level > 2) {
  2256. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2257. SERIAL_PROTOCOL_F(mean, 8);
  2258. SERIAL_EOL;
  2259. }
  2260. }
  2261. // Show the Topography map if enabled
  2262. if (do_topography_map) {
  2263. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2264. SERIAL_PROTOCOLPGM("+-----------+\n");
  2265. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2266. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2267. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2268. SERIAL_PROTOCOLPGM("+-----------+\n");
  2269. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2270. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2271. int ind = yy * auto_bed_leveling_grid_points + xx;
  2272. float diff = eqnBVector[ind] - mean;
  2273. if (diff >= 0.0)
  2274. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2275. else
  2276. SERIAL_PROTOCOLCHAR(' ');
  2277. SERIAL_PROTOCOL_F(diff, 5);
  2278. } // xx
  2279. SERIAL_EOL;
  2280. } // yy
  2281. SERIAL_EOL;
  2282. } //do_topography_map
  2283. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2284. free(plane_equation_coefficients);
  2285. #endif //!DELTA
  2286. #else // !AUTO_BED_LEVELING_GRID
  2287. // Actions for each probe
  2288. ProbeAction p1, p2, p3;
  2289. if (deploy_probe_for_each_reading)
  2290. p1 = p2 = p3 = ProbeDeployAndStow;
  2291. else
  2292. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2293. // Probe at 3 arbitrary points
  2294. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2295. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2296. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2297. clean_up_after_endstop_move();
  2298. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2299. #endif // !AUTO_BED_LEVELING_GRID
  2300. #ifndef DELTA
  2301. if (verbose_level > 0)
  2302. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2303. if (!dryrun) {
  2304. // Correct the Z height difference from z-probe position and hotend tip position.
  2305. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2306. // When the bed is uneven, this height must be corrected.
  2307. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2308. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2309. z_tmp = current_position[Z_AXIS],
  2310. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2311. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2312. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2313. sync_plan_position();
  2314. }
  2315. #endif // !DELTA
  2316. #ifdef Z_PROBE_SLED
  2317. dock_sled(true); // dock the probe
  2318. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2319. stow_z_probe();
  2320. #endif
  2321. #ifdef Z_PROBE_END_SCRIPT
  2322. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2323. st_synchronize();
  2324. #endif
  2325. }
  2326. #ifndef Z_PROBE_SLED
  2327. inline void gcode_G30() {
  2328. deploy_z_probe(); // Engage Z Servo endstop if available
  2329. st_synchronize();
  2330. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2331. setup_for_endstop_move();
  2332. feedrate = homing_feedrate[Z_AXIS];
  2333. run_z_probe();
  2334. SERIAL_PROTOCOLPGM("Bed X: ");
  2335. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2336. SERIAL_PROTOCOLPGM(" Y: ");
  2337. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2338. SERIAL_PROTOCOLPGM(" Z: ");
  2339. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2340. SERIAL_EOL;
  2341. clean_up_after_endstop_move();
  2342. stow_z_probe(); // Retract Z Servo endstop if available
  2343. }
  2344. #endif //!Z_PROBE_SLED
  2345. #endif //ENABLE_AUTO_BED_LEVELING
  2346. /**
  2347. * G92: Set current position to given X Y Z E
  2348. */
  2349. inline void gcode_G92() {
  2350. if (!code_seen(axis_codes[E_AXIS]))
  2351. st_synchronize();
  2352. bool didXYZ = false;
  2353. for (int i = 0; i < NUM_AXIS; i++) {
  2354. if (code_seen(axis_codes[i])) {
  2355. float v = current_position[i] = code_value();
  2356. if (i == E_AXIS)
  2357. plan_set_e_position(v);
  2358. else
  2359. didXYZ = true;
  2360. }
  2361. }
  2362. if (didXYZ) sync_plan_position();
  2363. }
  2364. #ifdef ULTIPANEL
  2365. /**
  2366. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2367. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2368. */
  2369. inline void gcode_M0_M1() {
  2370. char *src = strchr_pointer + 2;
  2371. millis_t codenum = 0;
  2372. bool hasP = false, hasS = false;
  2373. if (code_seen('P')) {
  2374. codenum = code_value_short(); // milliseconds to wait
  2375. hasP = codenum > 0;
  2376. }
  2377. if (code_seen('S')) {
  2378. codenum = code_value() * 1000; // seconds to wait
  2379. hasS = codenum > 0;
  2380. }
  2381. char* starpos = strchr(src, '*');
  2382. if (starpos != NULL) *(starpos) = '\0';
  2383. while (*src == ' ') ++src;
  2384. if (!hasP && !hasS && *src != '\0')
  2385. lcd_setstatus(src, true);
  2386. else {
  2387. LCD_MESSAGEPGM(MSG_USERWAIT);
  2388. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2389. dontExpireStatus();
  2390. #endif
  2391. }
  2392. lcd_ignore_click();
  2393. st_synchronize();
  2394. refresh_cmd_timeout();
  2395. if (codenum > 0) {
  2396. codenum += previous_cmd_ms; // keep track of when we started waiting
  2397. while(millis() < codenum && !lcd_clicked()) {
  2398. manage_heater();
  2399. manage_inactivity();
  2400. lcd_update();
  2401. }
  2402. lcd_ignore_click(false);
  2403. }
  2404. else {
  2405. if (!lcd_detected()) return;
  2406. while (!lcd_clicked()) {
  2407. manage_heater();
  2408. manage_inactivity();
  2409. lcd_update();
  2410. }
  2411. }
  2412. if (IS_SD_PRINTING)
  2413. LCD_MESSAGEPGM(MSG_RESUMING);
  2414. else
  2415. LCD_MESSAGEPGM(WELCOME_MSG);
  2416. }
  2417. #endif // ULTIPANEL
  2418. /**
  2419. * M17: Enable power on all stepper motors
  2420. */
  2421. inline void gcode_M17() {
  2422. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2423. enable_all_steppers();
  2424. }
  2425. #ifdef SDSUPPORT
  2426. /**
  2427. * M20: List SD card to serial output
  2428. */
  2429. inline void gcode_M20() {
  2430. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2431. card.ls();
  2432. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2433. }
  2434. /**
  2435. * M21: Init SD Card
  2436. */
  2437. inline void gcode_M21() {
  2438. card.initsd();
  2439. }
  2440. /**
  2441. * M22: Release SD Card
  2442. */
  2443. inline void gcode_M22() {
  2444. card.release();
  2445. }
  2446. /**
  2447. * M23: Select a file
  2448. */
  2449. inline void gcode_M23() {
  2450. char* codepos = strchr_pointer + 4;
  2451. char* starpos = strchr(codepos, '*');
  2452. if (starpos) *starpos = '\0';
  2453. card.openFile(codepos, true);
  2454. }
  2455. /**
  2456. * M24: Start SD Print
  2457. */
  2458. inline void gcode_M24() {
  2459. card.startFileprint();
  2460. print_job_start_ms = millis();
  2461. }
  2462. /**
  2463. * M25: Pause SD Print
  2464. */
  2465. inline void gcode_M25() {
  2466. card.pauseSDPrint();
  2467. }
  2468. /**
  2469. * M26: Set SD Card file index
  2470. */
  2471. inline void gcode_M26() {
  2472. if (card.cardOK && code_seen('S'))
  2473. card.setIndex(code_value_short());
  2474. }
  2475. /**
  2476. * M27: Get SD Card status
  2477. */
  2478. inline void gcode_M27() {
  2479. card.getStatus();
  2480. }
  2481. /**
  2482. * M28: Start SD Write
  2483. */
  2484. inline void gcode_M28() {
  2485. char* codepos = strchr_pointer + 4;
  2486. char* starpos = strchr(codepos, '*');
  2487. if (starpos) {
  2488. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2489. strchr_pointer = strchr(npos, ' ') + 1;
  2490. *(starpos) = '\0';
  2491. }
  2492. card.openFile(codepos, false);
  2493. }
  2494. /**
  2495. * M29: Stop SD Write
  2496. * Processed in write to file routine above
  2497. */
  2498. inline void gcode_M29() {
  2499. // card.saving = false;
  2500. }
  2501. /**
  2502. * M30 <filename>: Delete SD Card file
  2503. */
  2504. inline void gcode_M30() {
  2505. if (card.cardOK) {
  2506. card.closefile();
  2507. char* starpos = strchr(strchr_pointer + 4, '*');
  2508. if (starpos) {
  2509. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2510. strchr_pointer = strchr(npos, ' ') + 1;
  2511. *(starpos) = '\0';
  2512. }
  2513. card.removeFile(strchr_pointer + 4);
  2514. }
  2515. }
  2516. #endif
  2517. /**
  2518. * M31: Get the time since the start of SD Print (or last M109)
  2519. */
  2520. inline void gcode_M31() {
  2521. print_job_stop_ms = millis();
  2522. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2523. int min = t / 60, sec = t % 60;
  2524. char time[30];
  2525. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2526. SERIAL_ECHO_START;
  2527. SERIAL_ECHOLN(time);
  2528. lcd_setstatus(time);
  2529. autotempShutdown();
  2530. }
  2531. #ifdef SDSUPPORT
  2532. /**
  2533. * M32: Select file and start SD Print
  2534. */
  2535. inline void gcode_M32() {
  2536. if (card.sdprinting)
  2537. st_synchronize();
  2538. char* codepos = strchr_pointer + 4;
  2539. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2540. if (! namestartpos)
  2541. namestartpos = codepos; //default name position, 4 letters after the M
  2542. else
  2543. namestartpos++; //to skip the '!'
  2544. char* starpos = strchr(codepos, '*');
  2545. if (starpos) *(starpos) = '\0';
  2546. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2547. if (card.cardOK) {
  2548. card.openFile(namestartpos, true, !call_procedure);
  2549. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2550. card.setIndex(code_value_short());
  2551. card.startFileprint();
  2552. if (!call_procedure)
  2553. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2554. }
  2555. }
  2556. #ifdef LONG_FILENAME_HOST_SUPPORT
  2557. /**
  2558. * M33: Get the long full path of a file or folder
  2559. *
  2560. * Parameters:
  2561. * <dospath> Case-insensitive DOS-style path to a file or folder
  2562. *
  2563. * Example:
  2564. * M33 miscel~1/armchair/armcha~1.gco
  2565. *
  2566. * Output:
  2567. * /Miscellaneous/Armchair/Armchair.gcode
  2568. */
  2569. inline void gcode_M33() {
  2570. char *args = strchr_pointer + 4;
  2571. while (*args == ' ') ++args;
  2572. clear_asterisk(args);
  2573. card.printLongPath(args);
  2574. }
  2575. #endif
  2576. /**
  2577. * M928: Start SD Write
  2578. */
  2579. inline void gcode_M928() {
  2580. char* starpos = strchr(strchr_pointer + 5, '*');
  2581. if (starpos) {
  2582. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2583. strchr_pointer = strchr(npos, ' ') + 1;
  2584. *(starpos) = '\0';
  2585. }
  2586. card.openLogFile(strchr_pointer + 5);
  2587. }
  2588. #endif // SDSUPPORT
  2589. /**
  2590. * M42: Change pin status via GCode
  2591. */
  2592. inline void gcode_M42() {
  2593. if (code_seen('S')) {
  2594. int pin_status = code_value_short(),
  2595. pin_number = LED_PIN;
  2596. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2597. pin_number = code_value_short();
  2598. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2599. if (sensitive_pins[i] == pin_number) {
  2600. pin_number = -1;
  2601. break;
  2602. }
  2603. }
  2604. #if HAS_FAN
  2605. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2606. #endif
  2607. if (pin_number > -1) {
  2608. pinMode(pin_number, OUTPUT);
  2609. digitalWrite(pin_number, pin_status);
  2610. analogWrite(pin_number, pin_status);
  2611. }
  2612. } // code_seen('S')
  2613. }
  2614. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2615. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2616. #ifdef Z_PROBE_ENDSTOP
  2617. #if !HAS_Z_PROBE
  2618. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2619. #endif
  2620. #elif !HAS_Z_MIN
  2621. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2622. #endif
  2623. /**
  2624. * M48: Z-Probe repeatability measurement function.
  2625. *
  2626. * Usage:
  2627. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2628. * P = Number of sampled points (4-50, default 10)
  2629. * X = Sample X position
  2630. * Y = Sample Y position
  2631. * V = Verbose level (0-4, default=1)
  2632. * E = Engage probe for each reading
  2633. * L = Number of legs of movement before probe
  2634. *
  2635. * This function assumes the bed has been homed. Specifically, that a G28 command
  2636. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2637. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2638. * regenerated.
  2639. */
  2640. inline void gcode_M48() {
  2641. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2642. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2643. if (code_seen('V') || code_seen('v')) {
  2644. verbose_level = code_value_short();
  2645. if (verbose_level < 0 || verbose_level > 4 ) {
  2646. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2647. return;
  2648. }
  2649. }
  2650. if (verbose_level > 0)
  2651. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2652. if (code_seen('P') || code_seen('p')) {
  2653. n_samples = code_value_short();
  2654. if (n_samples < 4 || n_samples > 50) {
  2655. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2656. return;
  2657. }
  2658. }
  2659. double X_current = st_get_position_mm(X_AXIS),
  2660. Y_current = st_get_position_mm(Y_AXIS),
  2661. Z_current = st_get_position_mm(Z_AXIS),
  2662. E_current = st_get_position_mm(E_AXIS),
  2663. X_probe_location = X_current, Y_probe_location = Y_current,
  2664. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2665. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2666. if (code_seen('X') || code_seen('x')) {
  2667. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2668. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2669. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2670. return;
  2671. }
  2672. }
  2673. if (code_seen('Y') || code_seen('y')) {
  2674. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2675. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2676. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2677. return;
  2678. }
  2679. }
  2680. if (code_seen('L') || code_seen('l')) {
  2681. n_legs = code_value_short();
  2682. if (n_legs == 1) n_legs = 2;
  2683. if (n_legs < 0 || n_legs > 15) {
  2684. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2685. return;
  2686. }
  2687. }
  2688. //
  2689. // Do all the preliminary setup work. First raise the probe.
  2690. //
  2691. st_synchronize();
  2692. plan_bed_level_matrix.set_to_identity();
  2693. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2694. st_synchronize();
  2695. //
  2696. // Now get everything to the specified probe point So we can safely do a probe to
  2697. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2698. // use that as a starting point for each probe.
  2699. //
  2700. if (verbose_level > 2)
  2701. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2702. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2703. E_current,
  2704. homing_feedrate[X_AXIS]/60,
  2705. active_extruder);
  2706. st_synchronize();
  2707. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2708. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2709. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2710. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2711. //
  2712. // OK, do the initial probe to get us close to the bed.
  2713. // Then retrace the right amount and use that in subsequent probes
  2714. //
  2715. deploy_z_probe();
  2716. setup_for_endstop_move();
  2717. run_z_probe();
  2718. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2719. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2720. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2721. E_current,
  2722. homing_feedrate[X_AXIS]/60,
  2723. active_extruder);
  2724. st_synchronize();
  2725. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2726. if (deploy_probe_for_each_reading) stow_z_probe();
  2727. for (uint8_t n=0; n < n_samples; n++) {
  2728. // Make sure we are at the probe location
  2729. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2730. if (n_legs) {
  2731. millis_t ms = millis();
  2732. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2733. theta = RADIANS(ms % 360L);
  2734. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2735. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2736. //SERIAL_ECHOPAIR(" theta: ",theta);
  2737. //SERIAL_ECHOPAIR(" direction: ",dir);
  2738. //SERIAL_EOL;
  2739. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2740. ms = millis();
  2741. theta += RADIANS(dir * (ms % 20L));
  2742. radius += (ms % 10L) - 5L;
  2743. if (radius < 0.0) radius = -radius;
  2744. X_current = X_probe_location + cos(theta) * radius;
  2745. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2746. Y_current = Y_probe_location + sin(theta) * radius;
  2747. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2748. if (verbose_level > 3) {
  2749. SERIAL_ECHOPAIR("x: ", X_current);
  2750. SERIAL_ECHOPAIR("y: ", Y_current);
  2751. SERIAL_EOL;
  2752. }
  2753. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2754. } // n_legs loop
  2755. // Go back to the probe location
  2756. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2757. } // n_legs
  2758. if (deploy_probe_for_each_reading) {
  2759. deploy_z_probe();
  2760. delay(1000);
  2761. }
  2762. setup_for_endstop_move();
  2763. run_z_probe();
  2764. sample_set[n] = current_position[Z_AXIS];
  2765. //
  2766. // Get the current mean for the data points we have so far
  2767. //
  2768. sum = 0.0;
  2769. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2770. mean = sum / (n + 1);
  2771. //
  2772. // Now, use that mean to calculate the standard deviation for the
  2773. // data points we have so far
  2774. //
  2775. sum = 0.0;
  2776. for (uint8_t j = 0; j <= n; j++) {
  2777. float ss = sample_set[j] - mean;
  2778. sum += ss * ss;
  2779. }
  2780. sigma = sqrt(sum / (n + 1));
  2781. if (verbose_level > 1) {
  2782. SERIAL_PROTOCOL(n+1);
  2783. SERIAL_PROTOCOLPGM(" of ");
  2784. SERIAL_PROTOCOL(n_samples);
  2785. SERIAL_PROTOCOLPGM(" z: ");
  2786. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2787. if (verbose_level > 2) {
  2788. SERIAL_PROTOCOLPGM(" mean: ");
  2789. SERIAL_PROTOCOL_F(mean,6);
  2790. SERIAL_PROTOCOLPGM(" sigma: ");
  2791. SERIAL_PROTOCOL_F(sigma,6);
  2792. }
  2793. }
  2794. if (verbose_level > 0) SERIAL_EOL;
  2795. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2796. st_synchronize();
  2797. // Stow between
  2798. if (deploy_probe_for_each_reading) {
  2799. stow_z_probe();
  2800. delay(1000);
  2801. }
  2802. }
  2803. // Stow after
  2804. if (!deploy_probe_for_each_reading) {
  2805. stow_z_probe();
  2806. delay(1000);
  2807. }
  2808. clean_up_after_endstop_move();
  2809. if (verbose_level > 0) {
  2810. SERIAL_PROTOCOLPGM("Mean: ");
  2811. SERIAL_PROTOCOL_F(mean, 6);
  2812. SERIAL_EOL;
  2813. }
  2814. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2815. SERIAL_PROTOCOL_F(sigma, 6);
  2816. SERIAL_EOL; SERIAL_EOL;
  2817. }
  2818. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2819. /**
  2820. * M104: Set hot end temperature
  2821. */
  2822. inline void gcode_M104() {
  2823. if (setTargetedHotend(104)) return;
  2824. if (code_seen('S')) {
  2825. float temp = code_value();
  2826. setTargetHotend(temp, target_extruder);
  2827. #ifdef DUAL_X_CARRIAGE
  2828. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2829. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2830. #endif
  2831. #ifdef THERMAL_PROTECTION_HOTENDS
  2832. start_watching_heater(target_extruder);
  2833. #endif
  2834. }
  2835. }
  2836. /**
  2837. * M105: Read hot end and bed temperature
  2838. */
  2839. inline void gcode_M105() {
  2840. if (setTargetedHotend(105)) return;
  2841. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2842. SERIAL_PROTOCOLPGM(MSG_OK);
  2843. #if HAS_TEMP_0
  2844. SERIAL_PROTOCOLPGM(" T:");
  2845. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2846. SERIAL_PROTOCOLPGM(" /");
  2847. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2848. #endif
  2849. #if HAS_TEMP_BED
  2850. SERIAL_PROTOCOLPGM(" B:");
  2851. SERIAL_PROTOCOL_F(degBed(), 1);
  2852. SERIAL_PROTOCOLPGM(" /");
  2853. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2854. #endif
  2855. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2856. SERIAL_PROTOCOLPGM(" T");
  2857. SERIAL_PROTOCOL(e);
  2858. SERIAL_PROTOCOLCHAR(':');
  2859. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2860. SERIAL_PROTOCOLPGM(" /");
  2861. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2862. }
  2863. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2864. SERIAL_ERROR_START;
  2865. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2866. #endif
  2867. SERIAL_PROTOCOLPGM(" @:");
  2868. #ifdef EXTRUDER_WATTS
  2869. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2870. SERIAL_PROTOCOLCHAR('W');
  2871. #else
  2872. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2873. #endif
  2874. SERIAL_PROTOCOLPGM(" B@:");
  2875. #ifdef BED_WATTS
  2876. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2877. SERIAL_PROTOCOLCHAR('W');
  2878. #else
  2879. SERIAL_PROTOCOL(getHeaterPower(-1));
  2880. #endif
  2881. #ifdef SHOW_TEMP_ADC_VALUES
  2882. #if HAS_TEMP_BED
  2883. SERIAL_PROTOCOLPGM(" ADC B:");
  2884. SERIAL_PROTOCOL_F(degBed(),1);
  2885. SERIAL_PROTOCOLPGM("C->");
  2886. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2887. #endif
  2888. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2889. SERIAL_PROTOCOLPGM(" T");
  2890. SERIAL_PROTOCOL(cur_extruder);
  2891. SERIAL_PROTOCOLCHAR(':');
  2892. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2893. SERIAL_PROTOCOLPGM("C->");
  2894. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2895. }
  2896. #endif
  2897. SERIAL_EOL;
  2898. }
  2899. #if HAS_FAN
  2900. /**
  2901. * M106: Set Fan Speed
  2902. */
  2903. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2904. /**
  2905. * M107: Fan Off
  2906. */
  2907. inline void gcode_M107() { fanSpeed = 0; }
  2908. #endif // HAS_FAN
  2909. /**
  2910. * M109: Wait for extruder(s) to reach temperature
  2911. */
  2912. inline void gcode_M109() {
  2913. if (setTargetedHotend(109)) return;
  2914. LCD_MESSAGEPGM(MSG_HEATING);
  2915. no_wait_for_cooling = code_seen('S');
  2916. if (no_wait_for_cooling || code_seen('R')) {
  2917. float temp = code_value();
  2918. setTargetHotend(temp, target_extruder);
  2919. #ifdef DUAL_X_CARRIAGE
  2920. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2921. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2922. #endif
  2923. }
  2924. #ifdef AUTOTEMP
  2925. autotemp_enabled = code_seen('F');
  2926. if (autotemp_enabled) autotemp_factor = code_value();
  2927. if (code_seen('S')) autotemp_min = code_value();
  2928. if (code_seen('B')) autotemp_max = code_value();
  2929. #endif
  2930. #ifdef THERMAL_PROTECTION_HOTENDS
  2931. start_watching_heater(target_extruder);
  2932. #endif
  2933. millis_t temp_ms = millis();
  2934. /* See if we are heating up or cooling down */
  2935. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2936. cancel_heatup = false;
  2937. #ifdef TEMP_RESIDENCY_TIME
  2938. long residency_start_ms = -1;
  2939. /* continue to loop until we have reached the target temp
  2940. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2941. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2942. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2943. #else
  2944. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2945. #endif //TEMP_RESIDENCY_TIME
  2946. { // while loop
  2947. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2948. SERIAL_PROTOCOLPGM("T:");
  2949. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2950. SERIAL_PROTOCOLPGM(" E:");
  2951. SERIAL_PROTOCOL((int)target_extruder);
  2952. #ifdef TEMP_RESIDENCY_TIME
  2953. SERIAL_PROTOCOLPGM(" W:");
  2954. if (residency_start_ms > -1) {
  2955. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2956. SERIAL_PROTOCOLLN(temp_ms);
  2957. }
  2958. else {
  2959. SERIAL_PROTOCOLLNPGM("?");
  2960. }
  2961. #else
  2962. SERIAL_EOL;
  2963. #endif
  2964. temp_ms = millis();
  2965. }
  2966. manage_heater();
  2967. manage_inactivity();
  2968. lcd_update();
  2969. #ifdef TEMP_RESIDENCY_TIME
  2970. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2971. // or when current temp falls outside the hysteresis after target temp was reached
  2972. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2973. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2974. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2975. {
  2976. residency_start_ms = millis();
  2977. }
  2978. #endif //TEMP_RESIDENCY_TIME
  2979. }
  2980. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2981. refresh_cmd_timeout();
  2982. print_job_start_ms = previous_cmd_ms;
  2983. }
  2984. #if HAS_TEMP_BED
  2985. /**
  2986. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2987. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2988. */
  2989. inline void gcode_M190() {
  2990. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2991. no_wait_for_cooling = code_seen('S');
  2992. if (no_wait_for_cooling || code_seen('R'))
  2993. setTargetBed(code_value());
  2994. millis_t temp_ms = millis();
  2995. cancel_heatup = false;
  2996. target_direction = isHeatingBed(); // true if heating, false if cooling
  2997. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2998. millis_t ms = millis();
  2999. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3000. temp_ms = ms;
  3001. float tt = degHotend(active_extruder);
  3002. SERIAL_PROTOCOLPGM("T:");
  3003. SERIAL_PROTOCOL(tt);
  3004. SERIAL_PROTOCOLPGM(" E:");
  3005. SERIAL_PROTOCOL((int)active_extruder);
  3006. SERIAL_PROTOCOLPGM(" B:");
  3007. SERIAL_PROTOCOL_F(degBed(), 1);
  3008. SERIAL_EOL;
  3009. }
  3010. manage_heater();
  3011. manage_inactivity();
  3012. lcd_update();
  3013. }
  3014. LCD_MESSAGEPGM(MSG_BED_DONE);
  3015. refresh_cmd_timeout();
  3016. }
  3017. #endif // HAS_TEMP_BED
  3018. /**
  3019. * M111: Set the debug level
  3020. */
  3021. inline void gcode_M111() {
  3022. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  3023. }
  3024. /**
  3025. * M112: Emergency Stop
  3026. */
  3027. inline void gcode_M112() { kill(); }
  3028. #ifdef BARICUDA
  3029. #if HAS_HEATER_1
  3030. /**
  3031. * M126: Heater 1 valve open
  3032. */
  3033. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3034. /**
  3035. * M127: Heater 1 valve close
  3036. */
  3037. inline void gcode_M127() { ValvePressure = 0; }
  3038. #endif
  3039. #if HAS_HEATER_2
  3040. /**
  3041. * M128: Heater 2 valve open
  3042. */
  3043. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3044. /**
  3045. * M129: Heater 2 valve close
  3046. */
  3047. inline void gcode_M129() { EtoPPressure = 0; }
  3048. #endif
  3049. #endif //BARICUDA
  3050. /**
  3051. * M140: Set bed temperature
  3052. */
  3053. inline void gcode_M140() {
  3054. if (code_seen('S')) setTargetBed(code_value());
  3055. }
  3056. #ifdef ULTIPANEL
  3057. /**
  3058. * M145: Set the heatup state for a material in the LCD menu
  3059. * S<material> (0=PLA, 1=ABS)
  3060. * H<hotend temp>
  3061. * B<bed temp>
  3062. * F<fan speed>
  3063. */
  3064. inline void gcode_M145() {
  3065. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3066. if (material < 0 || material > 1) {
  3067. SERIAL_ERROR_START;
  3068. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3069. }
  3070. else {
  3071. int v;
  3072. switch (material) {
  3073. case 0:
  3074. if (code_seen('H')) {
  3075. v = code_value_short();
  3076. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3077. }
  3078. if (code_seen('F')) {
  3079. v = code_value_short();
  3080. plaPreheatFanSpeed = constrain(v, 0, 255);
  3081. }
  3082. #if TEMP_SENSOR_BED != 0
  3083. if (code_seen('B')) {
  3084. v = code_value_short();
  3085. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3086. }
  3087. #endif
  3088. break;
  3089. case 1:
  3090. if (code_seen('H')) {
  3091. v = code_value_short();
  3092. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3093. }
  3094. if (code_seen('F')) {
  3095. v = code_value_short();
  3096. absPreheatFanSpeed = constrain(v, 0, 255);
  3097. }
  3098. #if TEMP_SENSOR_BED != 0
  3099. if (code_seen('B')) {
  3100. v = code_value_short();
  3101. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3102. }
  3103. #endif
  3104. break;
  3105. }
  3106. }
  3107. }
  3108. #endif
  3109. #if HAS_POWER_SWITCH
  3110. /**
  3111. * M80: Turn on Power Supply
  3112. */
  3113. inline void gcode_M80() {
  3114. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3115. // If you have a switch on suicide pin, this is useful
  3116. // if you want to start another print with suicide feature after
  3117. // a print without suicide...
  3118. #if HAS_SUICIDE
  3119. OUT_WRITE(SUICIDE_PIN, HIGH);
  3120. #endif
  3121. #ifdef ULTIPANEL
  3122. powersupply = true;
  3123. LCD_MESSAGEPGM(WELCOME_MSG);
  3124. lcd_update();
  3125. #endif
  3126. }
  3127. #endif // HAS_POWER_SWITCH
  3128. /**
  3129. * M81: Turn off Power, including Power Supply, if there is one.
  3130. *
  3131. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3132. */
  3133. inline void gcode_M81() {
  3134. disable_all_heaters();
  3135. st_synchronize();
  3136. disable_e0();
  3137. disable_e1();
  3138. disable_e2();
  3139. disable_e3();
  3140. finishAndDisableSteppers();
  3141. fanSpeed = 0;
  3142. delay(1000); // Wait 1 second before switching off
  3143. #if HAS_SUICIDE
  3144. st_synchronize();
  3145. suicide();
  3146. #elif HAS_POWER_SWITCH
  3147. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3148. #endif
  3149. #ifdef ULTIPANEL
  3150. #if HAS_POWER_SWITCH
  3151. powersupply = false;
  3152. #endif
  3153. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3154. lcd_update();
  3155. #endif
  3156. }
  3157. /**
  3158. * M82: Set E codes absolute (default)
  3159. */
  3160. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3161. /**
  3162. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3163. */
  3164. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3165. /**
  3166. * M18, M84: Disable all stepper motors
  3167. */
  3168. inline void gcode_M18_M84() {
  3169. if (code_seen('S')) {
  3170. stepper_inactive_time = code_value() * 1000;
  3171. }
  3172. else {
  3173. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3174. if (all_axis) {
  3175. st_synchronize();
  3176. disable_e0();
  3177. disable_e1();
  3178. disable_e2();
  3179. disable_e3();
  3180. finishAndDisableSteppers();
  3181. }
  3182. else {
  3183. st_synchronize();
  3184. if (code_seen('X')) disable_x();
  3185. if (code_seen('Y')) disable_y();
  3186. if (code_seen('Z')) disable_z();
  3187. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3188. if (code_seen('E')) {
  3189. disable_e0();
  3190. disable_e1();
  3191. disable_e2();
  3192. disable_e3();
  3193. }
  3194. #endif
  3195. }
  3196. }
  3197. }
  3198. /**
  3199. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3200. */
  3201. inline void gcode_M85() {
  3202. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3203. }
  3204. /**
  3205. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3206. * (Follows the same syntax as G92)
  3207. */
  3208. inline void gcode_M92() {
  3209. for(int8_t i=0; i < NUM_AXIS; i++) {
  3210. if (code_seen(axis_codes[i])) {
  3211. if (i == E_AXIS) {
  3212. float value = code_value();
  3213. if (value < 20.0) {
  3214. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3215. max_e_jerk *= factor;
  3216. max_feedrate[i] *= factor;
  3217. axis_steps_per_sqr_second[i] *= factor;
  3218. }
  3219. axis_steps_per_unit[i] = value;
  3220. }
  3221. else {
  3222. axis_steps_per_unit[i] = code_value();
  3223. }
  3224. }
  3225. }
  3226. }
  3227. /**
  3228. * M114: Output current position to serial port
  3229. */
  3230. inline void gcode_M114() {
  3231. SERIAL_PROTOCOLPGM("X:");
  3232. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3233. SERIAL_PROTOCOLPGM(" Y:");
  3234. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3235. SERIAL_PROTOCOLPGM(" Z:");
  3236. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3237. SERIAL_PROTOCOLPGM(" E:");
  3238. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3239. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3240. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3241. SERIAL_PROTOCOLPGM(" Y:");
  3242. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3243. SERIAL_PROTOCOLPGM(" Z:");
  3244. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3245. SERIAL_EOL;
  3246. #ifdef SCARA
  3247. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3248. SERIAL_PROTOCOL(delta[X_AXIS]);
  3249. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3250. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3251. SERIAL_EOL;
  3252. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3253. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3254. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3255. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3256. SERIAL_EOL;
  3257. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3258. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3259. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3260. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3261. SERIAL_EOL; SERIAL_EOL;
  3262. #endif
  3263. }
  3264. /**
  3265. * M115: Capabilities string
  3266. */
  3267. inline void gcode_M115() {
  3268. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3269. }
  3270. #ifdef ULTIPANEL
  3271. /**
  3272. * M117: Set LCD Status Message
  3273. */
  3274. inline void gcode_M117() {
  3275. lcd_setstatus(strchr_pointer + 5);
  3276. }
  3277. #endif
  3278. /**
  3279. * M119: Output endstop states to serial output
  3280. */
  3281. inline void gcode_M119() {
  3282. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3283. #if HAS_X_MIN
  3284. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3285. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3286. #endif
  3287. #if HAS_X_MAX
  3288. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3289. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3290. #endif
  3291. #if HAS_Y_MIN
  3292. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3293. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3294. #endif
  3295. #if HAS_Y_MAX
  3296. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3297. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3298. #endif
  3299. #if HAS_Z_MIN
  3300. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3301. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3302. #endif
  3303. #if HAS_Z_MAX
  3304. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3305. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3306. #endif
  3307. #if HAS_Z2_MAX
  3308. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3309. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3310. #endif
  3311. #if HAS_Z_PROBE
  3312. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3313. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3314. #endif
  3315. }
  3316. /**
  3317. * M120: Enable endstops
  3318. */
  3319. inline void gcode_M120() { enable_endstops(false); }
  3320. /**
  3321. * M121: Disable endstops
  3322. */
  3323. inline void gcode_M121() { enable_endstops(true); }
  3324. #ifdef BLINKM
  3325. /**
  3326. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3327. */
  3328. inline void gcode_M150() {
  3329. SendColors(
  3330. code_seen('R') ? (byte)code_value_short() : 0,
  3331. code_seen('U') ? (byte)code_value_short() : 0,
  3332. code_seen('B') ? (byte)code_value_short() : 0
  3333. );
  3334. }
  3335. #endif // BLINKM
  3336. /**
  3337. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3338. * T<extruder>
  3339. * D<millimeters>
  3340. */
  3341. inline void gcode_M200() {
  3342. int tmp_extruder = active_extruder;
  3343. if (code_seen('T')) {
  3344. tmp_extruder = code_value_short();
  3345. if (tmp_extruder >= EXTRUDERS) {
  3346. SERIAL_ECHO_START;
  3347. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3348. return;
  3349. }
  3350. }
  3351. if (code_seen('D')) {
  3352. float diameter = code_value();
  3353. // setting any extruder filament size disables volumetric on the assumption that
  3354. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3355. // for all extruders
  3356. volumetric_enabled = (diameter != 0.0);
  3357. if (volumetric_enabled) {
  3358. filament_size[tmp_extruder] = diameter;
  3359. // make sure all extruders have some sane value for the filament size
  3360. for (int i=0; i<EXTRUDERS; i++)
  3361. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3362. }
  3363. }
  3364. else {
  3365. //reserved for setting filament diameter via UFID or filament measuring device
  3366. return;
  3367. }
  3368. calculate_volumetric_multipliers();
  3369. }
  3370. /**
  3371. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3372. */
  3373. inline void gcode_M201() {
  3374. for (int8_t i=0; i < NUM_AXIS; i++) {
  3375. if (code_seen(axis_codes[i])) {
  3376. max_acceleration_units_per_sq_second[i] = code_value();
  3377. }
  3378. }
  3379. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3380. reset_acceleration_rates();
  3381. }
  3382. #if 0 // Not used for Sprinter/grbl gen6
  3383. inline void gcode_M202() {
  3384. for(int8_t i=0; i < NUM_AXIS; i++) {
  3385. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3386. }
  3387. }
  3388. #endif
  3389. /**
  3390. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3391. */
  3392. inline void gcode_M203() {
  3393. for (int8_t i=0; i < NUM_AXIS; i++) {
  3394. if (code_seen(axis_codes[i])) {
  3395. max_feedrate[i] = code_value();
  3396. }
  3397. }
  3398. }
  3399. /**
  3400. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3401. *
  3402. * P = Printing moves
  3403. * R = Retract only (no X, Y, Z) moves
  3404. * T = Travel (non printing) moves
  3405. *
  3406. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3407. */
  3408. inline void gcode_M204() {
  3409. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3410. acceleration = code_value();
  3411. travel_acceleration = acceleration;
  3412. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3413. SERIAL_EOL;
  3414. }
  3415. if (code_seen('P')) {
  3416. acceleration = code_value();
  3417. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3418. SERIAL_EOL;
  3419. }
  3420. if (code_seen('R')) {
  3421. retract_acceleration = code_value();
  3422. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3423. SERIAL_EOL;
  3424. }
  3425. if (code_seen('T')) {
  3426. travel_acceleration = code_value();
  3427. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3428. SERIAL_EOL;
  3429. }
  3430. }
  3431. /**
  3432. * M205: Set Advanced Settings
  3433. *
  3434. * S = Min Feed Rate (mm/s)
  3435. * T = Min Travel Feed Rate (mm/s)
  3436. * B = Min Segment Time (µs)
  3437. * X = Max XY Jerk (mm/s/s)
  3438. * Z = Max Z Jerk (mm/s/s)
  3439. * E = Max E Jerk (mm/s/s)
  3440. */
  3441. inline void gcode_M205() {
  3442. if (code_seen('S')) minimumfeedrate = code_value();
  3443. if (code_seen('T')) mintravelfeedrate = code_value();
  3444. if (code_seen('B')) minsegmenttime = code_value();
  3445. if (code_seen('X')) max_xy_jerk = code_value();
  3446. if (code_seen('Z')) max_z_jerk = code_value();
  3447. if (code_seen('E')) max_e_jerk = code_value();
  3448. }
  3449. /**
  3450. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3451. */
  3452. inline void gcode_M206() {
  3453. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3454. if (code_seen(axis_codes[i])) {
  3455. home_offset[i] = code_value();
  3456. }
  3457. }
  3458. #ifdef SCARA
  3459. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3460. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3461. #endif
  3462. }
  3463. #ifdef DELTA
  3464. /**
  3465. * M665: Set delta configurations
  3466. *
  3467. * L = diagonal rod
  3468. * R = delta radius
  3469. * S = segments per second
  3470. */
  3471. inline void gcode_M665() {
  3472. if (code_seen('L')) delta_diagonal_rod = code_value();
  3473. if (code_seen('R')) delta_radius = code_value();
  3474. if (code_seen('S')) delta_segments_per_second = code_value();
  3475. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3476. }
  3477. /**
  3478. * M666: Set delta endstop adjustment
  3479. */
  3480. inline void gcode_M666() {
  3481. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3482. if (code_seen(axis_codes[i])) {
  3483. endstop_adj[i] = code_value();
  3484. }
  3485. }
  3486. }
  3487. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3488. /**
  3489. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3490. */
  3491. inline void gcode_M666() {
  3492. if (code_seen('Z')) z_endstop_adj = code_value();
  3493. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3494. SERIAL_EOL;
  3495. }
  3496. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3497. #ifdef FWRETRACT
  3498. /**
  3499. * M207: Set firmware retraction values
  3500. *
  3501. * S[+mm] retract_length
  3502. * W[+mm] retract_length_swap (multi-extruder)
  3503. * F[mm/min] retract_feedrate
  3504. * Z[mm] retract_zlift
  3505. */
  3506. inline void gcode_M207() {
  3507. if (code_seen('S')) retract_length = code_value();
  3508. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3509. if (code_seen('Z')) retract_zlift = code_value();
  3510. #if EXTRUDERS > 1
  3511. if (code_seen('W')) retract_length_swap = code_value();
  3512. #endif
  3513. }
  3514. /**
  3515. * M208: Set firmware un-retraction values
  3516. *
  3517. * S[+mm] retract_recover_length (in addition to M207 S*)
  3518. * W[+mm] retract_recover_length_swap (multi-extruder)
  3519. * F[mm/min] retract_recover_feedrate
  3520. */
  3521. inline void gcode_M208() {
  3522. if (code_seen('S')) retract_recover_length = code_value();
  3523. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3524. #if EXTRUDERS > 1
  3525. if (code_seen('W')) retract_recover_length_swap = code_value();
  3526. #endif
  3527. }
  3528. /**
  3529. * M209: Enable automatic retract (M209 S1)
  3530. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3531. */
  3532. inline void gcode_M209() {
  3533. if (code_seen('S')) {
  3534. int t = code_value_short();
  3535. switch(t) {
  3536. case 0:
  3537. autoretract_enabled = false;
  3538. break;
  3539. case 1:
  3540. autoretract_enabled = true;
  3541. break;
  3542. default:
  3543. SERIAL_ECHO_START;
  3544. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3545. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3546. SERIAL_ECHOLNPGM("\"");
  3547. return;
  3548. }
  3549. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3550. }
  3551. }
  3552. #endif // FWRETRACT
  3553. #if EXTRUDERS > 1
  3554. /**
  3555. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3556. */
  3557. inline void gcode_M218() {
  3558. if (setTargetedHotend(218)) return;
  3559. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3560. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3561. #ifdef DUAL_X_CARRIAGE
  3562. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3563. #endif
  3564. SERIAL_ECHO_START;
  3565. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3566. for (int e = 0; e < EXTRUDERS; e++) {
  3567. SERIAL_CHAR(' ');
  3568. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3569. SERIAL_CHAR(',');
  3570. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3571. #ifdef DUAL_X_CARRIAGE
  3572. SERIAL_CHAR(',');
  3573. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3574. #endif
  3575. }
  3576. SERIAL_EOL;
  3577. }
  3578. #endif // EXTRUDERS > 1
  3579. /**
  3580. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3581. */
  3582. inline void gcode_M220() {
  3583. if (code_seen('S')) feedrate_multiplier = code_value();
  3584. }
  3585. /**
  3586. * M221: Set extrusion percentage (M221 T0 S95)
  3587. */
  3588. inline void gcode_M221() {
  3589. if (code_seen('S')) {
  3590. int sval = code_value();
  3591. if (code_seen('T')) {
  3592. if (setTargetedHotend(221)) return;
  3593. extruder_multiply[target_extruder] = sval;
  3594. }
  3595. else {
  3596. extruder_multiply[active_extruder] = sval;
  3597. }
  3598. }
  3599. }
  3600. /**
  3601. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3602. */
  3603. inline void gcode_M226() {
  3604. if (code_seen('P')) {
  3605. int pin_number = code_value();
  3606. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3607. if (pin_state >= -1 && pin_state <= 1) {
  3608. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3609. if (sensitive_pins[i] == pin_number) {
  3610. pin_number = -1;
  3611. break;
  3612. }
  3613. }
  3614. if (pin_number > -1) {
  3615. int target = LOW;
  3616. st_synchronize();
  3617. pinMode(pin_number, INPUT);
  3618. switch(pin_state){
  3619. case 1:
  3620. target = HIGH;
  3621. break;
  3622. case 0:
  3623. target = LOW;
  3624. break;
  3625. case -1:
  3626. target = !digitalRead(pin_number);
  3627. break;
  3628. }
  3629. while(digitalRead(pin_number) != target) {
  3630. manage_heater();
  3631. manage_inactivity();
  3632. lcd_update();
  3633. }
  3634. } // pin_number > -1
  3635. } // pin_state -1 0 1
  3636. } // code_seen('P')
  3637. }
  3638. #if NUM_SERVOS > 0
  3639. /**
  3640. * M280: Get or set servo position. P<index> S<angle>
  3641. */
  3642. inline void gcode_M280() {
  3643. int servo_index = code_seen('P') ? code_value_short() : -1;
  3644. int servo_position = 0;
  3645. if (code_seen('S')) {
  3646. servo_position = code_value_short();
  3647. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3648. Servo *srv = &servo[servo_index];
  3649. #if SERVO_LEVELING
  3650. srv->attach(0);
  3651. #endif
  3652. srv->write(servo_position);
  3653. #if SERVO_LEVELING
  3654. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3655. srv->detach();
  3656. #endif
  3657. }
  3658. else {
  3659. SERIAL_ECHO_START;
  3660. SERIAL_ECHO("Servo ");
  3661. SERIAL_ECHO(servo_index);
  3662. SERIAL_ECHOLN(" out of range");
  3663. }
  3664. }
  3665. else if (servo_index >= 0) {
  3666. SERIAL_PROTOCOL(MSG_OK);
  3667. SERIAL_PROTOCOL(" Servo ");
  3668. SERIAL_PROTOCOL(servo_index);
  3669. SERIAL_PROTOCOL(": ");
  3670. SERIAL_PROTOCOL(servo[servo_index].read());
  3671. SERIAL_EOL;
  3672. }
  3673. }
  3674. #endif // NUM_SERVOS > 0
  3675. #if HAS_LCD_BUZZ
  3676. /**
  3677. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3678. */
  3679. inline void gcode_M300() {
  3680. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3681. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3682. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3683. lcd_buzz(beepP, beepS);
  3684. }
  3685. #endif // HAS_LCD_BUZZ
  3686. #ifdef PIDTEMP
  3687. /**
  3688. * M301: Set PID parameters P I D (and optionally C)
  3689. */
  3690. inline void gcode_M301() {
  3691. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3692. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3693. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3694. if (e < EXTRUDERS) { // catch bad input value
  3695. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3696. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3697. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3698. #ifdef PID_ADD_EXTRUSION_RATE
  3699. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3700. #endif
  3701. updatePID();
  3702. SERIAL_PROTOCOL(MSG_OK);
  3703. #ifdef PID_PARAMS_PER_EXTRUDER
  3704. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3705. SERIAL_PROTOCOL(e);
  3706. #endif // PID_PARAMS_PER_EXTRUDER
  3707. SERIAL_PROTOCOL(" p:");
  3708. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3709. SERIAL_PROTOCOL(" i:");
  3710. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3711. SERIAL_PROTOCOL(" d:");
  3712. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3713. #ifdef PID_ADD_EXTRUSION_RATE
  3714. SERIAL_PROTOCOL(" c:");
  3715. //Kc does not have scaling applied above, or in resetting defaults
  3716. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3717. #endif
  3718. SERIAL_EOL;
  3719. }
  3720. else {
  3721. SERIAL_ECHO_START;
  3722. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3723. }
  3724. }
  3725. #endif // PIDTEMP
  3726. #ifdef PIDTEMPBED
  3727. inline void gcode_M304() {
  3728. if (code_seen('P')) bedKp = code_value();
  3729. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3730. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3731. updatePID();
  3732. SERIAL_PROTOCOL(MSG_OK);
  3733. SERIAL_PROTOCOL(" p:");
  3734. SERIAL_PROTOCOL(bedKp);
  3735. SERIAL_PROTOCOL(" i:");
  3736. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3737. SERIAL_PROTOCOL(" d:");
  3738. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3739. SERIAL_EOL;
  3740. }
  3741. #endif // PIDTEMPBED
  3742. #if defined(CHDK) || HAS_PHOTOGRAPH
  3743. /**
  3744. * M240: Trigger a camera by emulating a Canon RC-1
  3745. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3746. */
  3747. inline void gcode_M240() {
  3748. #ifdef CHDK
  3749. OUT_WRITE(CHDK, HIGH);
  3750. chdkHigh = millis();
  3751. chdkActive = true;
  3752. #elif HAS_PHOTOGRAPH
  3753. const uint8_t NUM_PULSES = 16;
  3754. const float PULSE_LENGTH = 0.01524;
  3755. for (int i = 0; i < NUM_PULSES; i++) {
  3756. WRITE(PHOTOGRAPH_PIN, HIGH);
  3757. _delay_ms(PULSE_LENGTH);
  3758. WRITE(PHOTOGRAPH_PIN, LOW);
  3759. _delay_ms(PULSE_LENGTH);
  3760. }
  3761. delay(7.33);
  3762. for (int i = 0; i < NUM_PULSES; i++) {
  3763. WRITE(PHOTOGRAPH_PIN, HIGH);
  3764. _delay_ms(PULSE_LENGTH);
  3765. WRITE(PHOTOGRAPH_PIN, LOW);
  3766. _delay_ms(PULSE_LENGTH);
  3767. }
  3768. #endif // !CHDK && HAS_PHOTOGRAPH
  3769. }
  3770. #endif // CHDK || PHOTOGRAPH_PIN
  3771. #ifdef HAS_LCD_CONTRAST
  3772. /**
  3773. * M250: Read and optionally set the LCD contrast
  3774. */
  3775. inline void gcode_M250() {
  3776. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3777. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3778. SERIAL_PROTOCOL(lcd_contrast);
  3779. SERIAL_EOL;
  3780. }
  3781. #endif // HAS_LCD_CONTRAST
  3782. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3783. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3784. /**
  3785. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3786. */
  3787. inline void gcode_M302() {
  3788. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3789. }
  3790. #endif // PREVENT_DANGEROUS_EXTRUDE
  3791. /**
  3792. * M303: PID relay autotune
  3793. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3794. * E<extruder> (-1 for the bed)
  3795. * C<cycles>
  3796. */
  3797. inline void gcode_M303() {
  3798. int e = code_seen('E') ? code_value_short() : 0;
  3799. int c = code_seen('C') ? code_value_short() : 5;
  3800. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3801. PID_autotune(temp, e, c);
  3802. }
  3803. #ifdef SCARA
  3804. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3805. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3806. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3807. if (IsRunning()) {
  3808. //gcode_get_destination(); // For X Y Z E F
  3809. delta[X_AXIS] = delta_x;
  3810. delta[Y_AXIS] = delta_y;
  3811. calculate_SCARA_forward_Transform(delta);
  3812. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3813. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3814. prepare_move();
  3815. //ok_to_send();
  3816. return true;
  3817. }
  3818. return false;
  3819. }
  3820. /**
  3821. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3822. */
  3823. inline bool gcode_M360() {
  3824. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3825. return SCARA_move_to_cal(0, 120);
  3826. }
  3827. /**
  3828. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3829. */
  3830. inline bool gcode_M361() {
  3831. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3832. return SCARA_move_to_cal(90, 130);
  3833. }
  3834. /**
  3835. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3836. */
  3837. inline bool gcode_M362() {
  3838. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3839. return SCARA_move_to_cal(60, 180);
  3840. }
  3841. /**
  3842. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3843. */
  3844. inline bool gcode_M363() {
  3845. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3846. return SCARA_move_to_cal(50, 90);
  3847. }
  3848. /**
  3849. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3850. */
  3851. inline bool gcode_M364() {
  3852. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3853. return SCARA_move_to_cal(45, 135);
  3854. }
  3855. /**
  3856. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3857. */
  3858. inline void gcode_M365() {
  3859. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3860. if (code_seen(axis_codes[i])) {
  3861. axis_scaling[i] = code_value();
  3862. }
  3863. }
  3864. }
  3865. #endif // SCARA
  3866. #ifdef EXT_SOLENOID
  3867. void enable_solenoid(uint8_t num) {
  3868. switch(num) {
  3869. case 0:
  3870. OUT_WRITE(SOL0_PIN, HIGH);
  3871. break;
  3872. #if HAS_SOLENOID_1
  3873. case 1:
  3874. OUT_WRITE(SOL1_PIN, HIGH);
  3875. break;
  3876. #endif
  3877. #if HAS_SOLENOID_2
  3878. case 2:
  3879. OUT_WRITE(SOL2_PIN, HIGH);
  3880. break;
  3881. #endif
  3882. #if HAS_SOLENOID_3
  3883. case 3:
  3884. OUT_WRITE(SOL3_PIN, HIGH);
  3885. break;
  3886. #endif
  3887. default:
  3888. SERIAL_ECHO_START;
  3889. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3890. break;
  3891. }
  3892. }
  3893. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3894. void disable_all_solenoids() {
  3895. OUT_WRITE(SOL0_PIN, LOW);
  3896. OUT_WRITE(SOL1_PIN, LOW);
  3897. OUT_WRITE(SOL2_PIN, LOW);
  3898. OUT_WRITE(SOL3_PIN, LOW);
  3899. }
  3900. /**
  3901. * M380: Enable solenoid on the active extruder
  3902. */
  3903. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3904. /**
  3905. * M381: Disable all solenoids
  3906. */
  3907. inline void gcode_M381() { disable_all_solenoids(); }
  3908. #endif // EXT_SOLENOID
  3909. /**
  3910. * M400: Finish all moves
  3911. */
  3912. inline void gcode_M400() { st_synchronize(); }
  3913. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3914. #ifdef SERVO_ENDSTOPS
  3915. void raise_z_for_servo() {
  3916. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3917. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3918. if (zpos < z_dest)
  3919. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3920. }
  3921. #endif
  3922. /**
  3923. * M401: Engage Z Servo endstop if available
  3924. */
  3925. inline void gcode_M401() {
  3926. #ifdef SERVO_ENDSTOPS
  3927. raise_z_for_servo();
  3928. #endif
  3929. deploy_z_probe();
  3930. }
  3931. /**
  3932. * M402: Retract Z Servo endstop if enabled
  3933. */
  3934. inline void gcode_M402() {
  3935. #ifdef SERVO_ENDSTOPS
  3936. raise_z_for_servo();
  3937. #endif
  3938. stow_z_probe(false);
  3939. }
  3940. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3941. #ifdef FILAMENT_SENSOR
  3942. /**
  3943. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3944. */
  3945. inline void gcode_M404() {
  3946. #if HAS_FILWIDTH
  3947. if (code_seen('W')) {
  3948. filament_width_nominal = code_value();
  3949. }
  3950. else {
  3951. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3952. SERIAL_PROTOCOLLN(filament_width_nominal);
  3953. }
  3954. #endif
  3955. }
  3956. /**
  3957. * M405: Turn on filament sensor for control
  3958. */
  3959. inline void gcode_M405() {
  3960. if (code_seen('D')) meas_delay_cm = code_value();
  3961. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3962. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3963. int temp_ratio = widthFil_to_size_ratio();
  3964. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3965. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3966. delay_index1 = delay_index2 = 0;
  3967. }
  3968. filament_sensor = true;
  3969. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3970. //SERIAL_PROTOCOL(filament_width_meas);
  3971. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3972. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3973. }
  3974. /**
  3975. * M406: Turn off filament sensor for control
  3976. */
  3977. inline void gcode_M406() { filament_sensor = false; }
  3978. /**
  3979. * M407: Get measured filament diameter on serial output
  3980. */
  3981. inline void gcode_M407() {
  3982. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3983. SERIAL_PROTOCOLLN(filament_width_meas);
  3984. }
  3985. #endif // FILAMENT_SENSOR
  3986. /**
  3987. * M410: Quickstop - Abort all planned moves
  3988. *
  3989. * This will stop the carriages mid-move, so most likely they
  3990. * will be out of sync with the stepper position after this.
  3991. */
  3992. inline void gcode_M410() { quickStop(); }
  3993. #ifdef MESH_BED_LEVELING
  3994. /**
  3995. * M420: Enable/Disable Mesh Bed Leveling
  3996. */
  3997. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3998. /**
  3999. * M421: Set a single Mesh Bed Leveling Z coordinate
  4000. */
  4001. inline void gcode_M421() {
  4002. float x, y, z;
  4003. bool err = false, hasX, hasY, hasZ;
  4004. if ((hasX = code_seen('X'))) x = code_value();
  4005. if ((hasY = code_seen('Y'))) y = code_value();
  4006. if ((hasZ = code_seen('Z'))) z = code_value();
  4007. if (!hasX || !hasY || !hasZ) {
  4008. SERIAL_ERROR_START;
  4009. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4010. err = true;
  4011. }
  4012. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4013. SERIAL_ERROR_START;
  4014. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4015. err = true;
  4016. }
  4017. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4018. }
  4019. #endif
  4020. /**
  4021. * M428: Set home_offset based on the distance between the
  4022. * current_position and the nearest "reference point."
  4023. * If an axis is past center its endstop position
  4024. * is the reference-point. Otherwise it uses 0. This allows
  4025. * the Z offset to be set near the bed when using a max endstop.
  4026. *
  4027. * M428 can't be used more than 2cm away from 0 or an endstop.
  4028. *
  4029. * Use M206 to set these values directly.
  4030. */
  4031. inline void gcode_M428() {
  4032. bool err = false;
  4033. float new_offs[3], new_pos[3];
  4034. memcpy(new_pos, current_position, sizeof(new_pos));
  4035. memcpy(new_offs, home_offset, sizeof(new_offs));
  4036. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4037. if (axis_known_position[i]) {
  4038. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4039. diff = new_pos[i] - base;
  4040. if (diff > -20 && diff < 20) {
  4041. new_offs[i] -= diff;
  4042. new_pos[i] = base;
  4043. }
  4044. else {
  4045. SERIAL_ERROR_START;
  4046. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4047. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4048. #if HAS_LCD_BUZZ
  4049. enqueuecommands_P(PSTR("M300 S40 P200"));
  4050. #endif
  4051. err = true;
  4052. break;
  4053. }
  4054. }
  4055. }
  4056. if (!err) {
  4057. memcpy(current_position, new_pos, sizeof(new_pos));
  4058. memcpy(home_offset, new_offs, sizeof(new_offs));
  4059. sync_plan_position();
  4060. LCD_ALERTMESSAGEPGM("Offset applied.");
  4061. #if HAS_LCD_BUZZ
  4062. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4063. #endif
  4064. }
  4065. }
  4066. /**
  4067. * M500: Store settings in EEPROM
  4068. */
  4069. inline void gcode_M500() {
  4070. Config_StoreSettings();
  4071. }
  4072. /**
  4073. * M501: Read settings from EEPROM
  4074. */
  4075. inline void gcode_M501() {
  4076. Config_RetrieveSettings();
  4077. }
  4078. /**
  4079. * M502: Revert to default settings
  4080. */
  4081. inline void gcode_M502() {
  4082. Config_ResetDefault();
  4083. }
  4084. /**
  4085. * M503: print settings currently in memory
  4086. */
  4087. inline void gcode_M503() {
  4088. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4089. }
  4090. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4091. /**
  4092. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4093. */
  4094. inline void gcode_M540() {
  4095. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4096. }
  4097. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4098. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4099. inline void gcode_SET_Z_PROBE_OFFSET() {
  4100. float value;
  4101. if (code_seen('Z')) {
  4102. value = code_value();
  4103. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4104. zprobe_zoffset = -value;
  4105. SERIAL_ECHO_START;
  4106. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4107. SERIAL_EOL;
  4108. }
  4109. else {
  4110. SERIAL_ECHO_START;
  4111. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4112. SERIAL_ECHOPGM(MSG_Z_MIN);
  4113. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4114. SERIAL_ECHOPGM(MSG_Z_MAX);
  4115. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4116. SERIAL_EOL;
  4117. }
  4118. }
  4119. else {
  4120. SERIAL_ECHO_START;
  4121. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4122. SERIAL_ECHO(-zprobe_zoffset);
  4123. SERIAL_EOL;
  4124. }
  4125. }
  4126. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4127. #ifdef FILAMENTCHANGEENABLE
  4128. /**
  4129. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4130. */
  4131. inline void gcode_M600() {
  4132. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4133. for (int i=0; i<NUM_AXIS; i++)
  4134. target[i] = lastpos[i] = current_position[i];
  4135. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4136. #ifdef DELTA
  4137. #define RUNPLAN calculate_delta(target); BASICPLAN
  4138. #else
  4139. #define RUNPLAN BASICPLAN
  4140. #endif
  4141. //retract by E
  4142. if (code_seen('E')) target[E_AXIS] += code_value();
  4143. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4144. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4145. #endif
  4146. RUNPLAN;
  4147. //lift Z
  4148. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4149. #ifdef FILAMENTCHANGE_ZADD
  4150. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4151. #endif
  4152. RUNPLAN;
  4153. //move xy
  4154. if (code_seen('X')) target[X_AXIS] = code_value();
  4155. #ifdef FILAMENTCHANGE_XPOS
  4156. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4157. #endif
  4158. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4159. #ifdef FILAMENTCHANGE_YPOS
  4160. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4161. #endif
  4162. RUNPLAN;
  4163. if (code_seen('L')) target[E_AXIS] += code_value();
  4164. #ifdef FILAMENTCHANGE_FINALRETRACT
  4165. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4166. #endif
  4167. RUNPLAN;
  4168. //finish moves
  4169. st_synchronize();
  4170. //disable extruder steppers so filament can be removed
  4171. disable_e0();
  4172. disable_e1();
  4173. disable_e2();
  4174. disable_e3();
  4175. delay(100);
  4176. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4177. uint8_t cnt = 0;
  4178. while (!lcd_clicked()) {
  4179. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4180. manage_heater();
  4181. manage_inactivity(true);
  4182. lcd_update();
  4183. } // while(!lcd_clicked)
  4184. //return to normal
  4185. if (code_seen('L')) target[E_AXIS] -= code_value();
  4186. #ifdef FILAMENTCHANGE_FINALRETRACT
  4187. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4188. #endif
  4189. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4190. plan_set_e_position(current_position[E_AXIS]);
  4191. RUNPLAN; //should do nothing
  4192. lcd_reset_alert_level();
  4193. #ifdef DELTA
  4194. calculate_delta(lastpos);
  4195. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4196. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4197. #else
  4198. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4199. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4200. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4201. #endif
  4202. #ifdef FILAMENT_RUNOUT_SENSOR
  4203. filrunoutEnqueued = false;
  4204. #endif
  4205. }
  4206. #endif // FILAMENTCHANGEENABLE
  4207. #ifdef DUAL_X_CARRIAGE
  4208. /**
  4209. * M605: Set dual x-carriage movement mode
  4210. *
  4211. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4212. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4213. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4214. * millimeters x-offset and an optional differential hotend temperature of
  4215. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4216. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4217. *
  4218. * Note: the X axis should be homed after changing dual x-carriage mode.
  4219. */
  4220. inline void gcode_M605() {
  4221. st_synchronize();
  4222. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4223. switch(dual_x_carriage_mode) {
  4224. case DXC_DUPLICATION_MODE:
  4225. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4226. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4227. SERIAL_ECHO_START;
  4228. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4229. SERIAL_CHAR(' ');
  4230. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4231. SERIAL_CHAR(',');
  4232. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4233. SERIAL_CHAR(' ');
  4234. SERIAL_ECHO(duplicate_extruder_x_offset);
  4235. SERIAL_CHAR(',');
  4236. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4237. break;
  4238. case DXC_FULL_CONTROL_MODE:
  4239. case DXC_AUTO_PARK_MODE:
  4240. break;
  4241. default:
  4242. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4243. break;
  4244. }
  4245. active_extruder_parked = false;
  4246. extruder_duplication_enabled = false;
  4247. delayed_move_time = 0;
  4248. }
  4249. #endif // DUAL_X_CARRIAGE
  4250. /**
  4251. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4252. */
  4253. inline void gcode_M907() {
  4254. #if HAS_DIGIPOTSS
  4255. for (int i=0;i<NUM_AXIS;i++)
  4256. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4257. if (code_seen('B')) digipot_current(4, code_value());
  4258. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4259. #endif
  4260. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4261. if (code_seen('X')) digipot_current(0, code_value());
  4262. #endif
  4263. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4264. if (code_seen('Z')) digipot_current(1, code_value());
  4265. #endif
  4266. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4267. if (code_seen('E')) digipot_current(2, code_value());
  4268. #endif
  4269. #ifdef DIGIPOT_I2C
  4270. // this one uses actual amps in floating point
  4271. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4272. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4273. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4274. #endif
  4275. }
  4276. #if HAS_DIGIPOTSS
  4277. /**
  4278. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4279. */
  4280. inline void gcode_M908() {
  4281. digitalPotWrite(
  4282. code_seen('P') ? code_value() : 0,
  4283. code_seen('S') ? code_value() : 0
  4284. );
  4285. }
  4286. #endif // HAS_DIGIPOTSS
  4287. #if HAS_MICROSTEPS
  4288. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4289. inline void gcode_M350() {
  4290. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4291. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4292. if(code_seen('B')) microstep_mode(4,code_value());
  4293. microstep_readings();
  4294. }
  4295. /**
  4296. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4297. * S# determines MS1 or MS2, X# sets the pin high/low.
  4298. */
  4299. inline void gcode_M351() {
  4300. if (code_seen('S')) switch(code_value_short()) {
  4301. case 1:
  4302. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4303. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4304. break;
  4305. case 2:
  4306. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4307. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4308. break;
  4309. }
  4310. microstep_readings();
  4311. }
  4312. #endif // HAS_MICROSTEPS
  4313. /**
  4314. * M999: Restart after being stopped
  4315. */
  4316. inline void gcode_M999() {
  4317. Running = true;
  4318. lcd_reset_alert_level();
  4319. gcode_LastN = Stopped_gcode_LastN;
  4320. FlushSerialRequestResend();
  4321. }
  4322. /**
  4323. * T0-T3: Switch tool, usually switching extruders
  4324. *
  4325. * F[mm/min] Set the movement feedrate
  4326. */
  4327. inline void gcode_T() {
  4328. uint16_t tmp_extruder = code_value_short();
  4329. if (tmp_extruder >= EXTRUDERS) {
  4330. SERIAL_ECHO_START;
  4331. SERIAL_CHAR('T');
  4332. SERIAL_ECHO(tmp_extruder);
  4333. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4334. }
  4335. else {
  4336. target_extruder = tmp_extruder;
  4337. #if EXTRUDERS > 1
  4338. bool make_move = false;
  4339. #endif
  4340. if (code_seen('F')) {
  4341. #if EXTRUDERS > 1
  4342. make_move = true;
  4343. #endif
  4344. float next_feedrate = code_value();
  4345. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4346. }
  4347. #if EXTRUDERS > 1
  4348. if (tmp_extruder != active_extruder) {
  4349. // Save current position to return to after applying extruder offset
  4350. set_destination_to_current();
  4351. #ifdef DUAL_X_CARRIAGE
  4352. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4353. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4354. // Park old head: 1) raise 2) move to park position 3) lower
  4355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4356. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4357. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4358. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4359. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4360. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4361. st_synchronize();
  4362. }
  4363. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4364. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4365. extruder_offset[Y_AXIS][active_extruder] +
  4366. extruder_offset[Y_AXIS][tmp_extruder];
  4367. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4368. extruder_offset[Z_AXIS][active_extruder] +
  4369. extruder_offset[Z_AXIS][tmp_extruder];
  4370. active_extruder = tmp_extruder;
  4371. // This function resets the max/min values - the current position may be overwritten below.
  4372. axis_is_at_home(X_AXIS);
  4373. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4374. current_position[X_AXIS] = inactive_extruder_x_pos;
  4375. inactive_extruder_x_pos = destination[X_AXIS];
  4376. }
  4377. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4378. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4379. if (active_extruder == 0 || active_extruder_parked)
  4380. current_position[X_AXIS] = inactive_extruder_x_pos;
  4381. else
  4382. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4383. inactive_extruder_x_pos = destination[X_AXIS];
  4384. extruder_duplication_enabled = false;
  4385. }
  4386. else {
  4387. // record raised toolhead position for use by unpark
  4388. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4389. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4390. active_extruder_parked = true;
  4391. delayed_move_time = 0;
  4392. }
  4393. #else // !DUAL_X_CARRIAGE
  4394. // Offset extruder (only by XY)
  4395. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4396. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4397. // Set the new active extruder and position
  4398. active_extruder = tmp_extruder;
  4399. #endif // !DUAL_X_CARRIAGE
  4400. #ifdef DELTA
  4401. sync_plan_position_delta();
  4402. #else
  4403. sync_plan_position();
  4404. #endif
  4405. // Move to the old position if 'F' was in the parameters
  4406. if (make_move && IsRunning()) prepare_move();
  4407. }
  4408. #ifdef EXT_SOLENOID
  4409. st_synchronize();
  4410. disable_all_solenoids();
  4411. enable_solenoid_on_active_extruder();
  4412. #endif // EXT_SOLENOID
  4413. #endif // EXTRUDERS > 1
  4414. SERIAL_ECHO_START;
  4415. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4416. SERIAL_PROTOCOLLN((int)active_extruder);
  4417. }
  4418. }
  4419. /**
  4420. * Process Commands and dispatch them to handlers
  4421. * This is called from the main loop()
  4422. */
  4423. void process_next_command() {
  4424. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4425. SERIAL_ECHO_START;
  4426. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4427. }
  4428. if (code_seen('G')) {
  4429. int codenum = code_value_short();
  4430. switch (codenum) {
  4431. // G0, G1
  4432. case 0:
  4433. case 1:
  4434. gcode_G0_G1();
  4435. break;
  4436. // G2, G3
  4437. #ifndef SCARA
  4438. case 2: // G2 - CW ARC
  4439. case 3: // G3 - CCW ARC
  4440. gcode_G2_G3(codenum == 2);
  4441. break;
  4442. #endif
  4443. // G4 Dwell
  4444. case 4:
  4445. gcode_G4();
  4446. break;
  4447. #ifdef FWRETRACT
  4448. case 10: // G10: retract
  4449. case 11: // G11: retract_recover
  4450. gcode_G10_G11(codenum == 10);
  4451. break;
  4452. #endif //FWRETRACT
  4453. case 28: // G28: Home all axes, one at a time
  4454. gcode_G28();
  4455. break;
  4456. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4457. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4458. gcode_G29();
  4459. break;
  4460. #endif
  4461. #ifdef ENABLE_AUTO_BED_LEVELING
  4462. #ifndef Z_PROBE_SLED
  4463. case 30: // G30 Single Z Probe
  4464. gcode_G30();
  4465. break;
  4466. #else // Z_PROBE_SLED
  4467. case 31: // G31: dock the sled
  4468. case 32: // G32: undock the sled
  4469. dock_sled(codenum == 31);
  4470. break;
  4471. #endif // Z_PROBE_SLED
  4472. #endif // ENABLE_AUTO_BED_LEVELING
  4473. case 90: // G90
  4474. relative_mode = false;
  4475. break;
  4476. case 91: // G91
  4477. relative_mode = true;
  4478. break;
  4479. case 92: // G92
  4480. gcode_G92();
  4481. break;
  4482. }
  4483. }
  4484. else if (code_seen('M')) {
  4485. switch(code_value_short()) {
  4486. #ifdef ULTIPANEL
  4487. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4488. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4489. gcode_M0_M1();
  4490. break;
  4491. #endif // ULTIPANEL
  4492. case 17:
  4493. gcode_M17();
  4494. break;
  4495. #ifdef SDSUPPORT
  4496. case 20: // M20 - list SD card
  4497. gcode_M20(); break;
  4498. case 21: // M21 - init SD card
  4499. gcode_M21(); break;
  4500. case 22: //M22 - release SD card
  4501. gcode_M22(); break;
  4502. case 23: //M23 - Select file
  4503. gcode_M23(); break;
  4504. case 24: //M24 - Start SD print
  4505. gcode_M24(); break;
  4506. case 25: //M25 - Pause SD print
  4507. gcode_M25(); break;
  4508. case 26: //M26 - Set SD index
  4509. gcode_M26(); break;
  4510. case 27: //M27 - Get SD status
  4511. gcode_M27(); break;
  4512. case 28: //M28 - Start SD write
  4513. gcode_M28(); break;
  4514. case 29: //M29 - Stop SD write
  4515. gcode_M29(); break;
  4516. case 30: //M30 <filename> Delete File
  4517. gcode_M30(); break;
  4518. case 32: //M32 - Select file and start SD print
  4519. gcode_M32(); break;
  4520. #ifdef LONG_FILENAME_HOST_SUPPORT
  4521. case 33: //M33 - Get the long full path to a file or folder
  4522. gcode_M33(); break;
  4523. #endif // LONG_FILENAME_HOST_SUPPORT
  4524. case 928: //M928 - Start SD write
  4525. gcode_M928(); break;
  4526. #endif //SDSUPPORT
  4527. case 31: //M31 take time since the start of the SD print or an M109 command
  4528. gcode_M31();
  4529. break;
  4530. case 42: //M42 -Change pin status via gcode
  4531. gcode_M42();
  4532. break;
  4533. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4534. case 48: // M48 Z-Probe repeatability
  4535. gcode_M48();
  4536. break;
  4537. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4538. case 104: // M104
  4539. gcode_M104();
  4540. break;
  4541. case 111: // M111: Set debug level
  4542. gcode_M111();
  4543. break;
  4544. case 112: // M112: Emergency Stop
  4545. gcode_M112();
  4546. break;
  4547. case 140: // M140: Set bed temp
  4548. gcode_M140();
  4549. break;
  4550. case 105: // M105: Read current temperature
  4551. gcode_M105();
  4552. return;
  4553. break;
  4554. case 109: // M109: Wait for temperature
  4555. gcode_M109();
  4556. break;
  4557. #if HAS_TEMP_BED
  4558. case 190: // M190: Wait for bed heater to reach target
  4559. gcode_M190();
  4560. break;
  4561. #endif // HAS_TEMP_BED
  4562. #if HAS_FAN
  4563. case 106: // M106: Fan On
  4564. gcode_M106();
  4565. break;
  4566. case 107: // M107: Fan Off
  4567. gcode_M107();
  4568. break;
  4569. #endif // HAS_FAN
  4570. #ifdef BARICUDA
  4571. // PWM for HEATER_1_PIN
  4572. #if HAS_HEATER_1
  4573. case 126: // M126: valve open
  4574. gcode_M126();
  4575. break;
  4576. case 127: // M127: valve closed
  4577. gcode_M127();
  4578. break;
  4579. #endif // HAS_HEATER_1
  4580. // PWM for HEATER_2_PIN
  4581. #if HAS_HEATER_2
  4582. case 128: // M128: valve open
  4583. gcode_M128();
  4584. break;
  4585. case 129: // M129: valve closed
  4586. gcode_M129();
  4587. break;
  4588. #endif // HAS_HEATER_2
  4589. #endif // BARICUDA
  4590. #if HAS_POWER_SWITCH
  4591. case 80: // M80: Turn on Power Supply
  4592. gcode_M80();
  4593. break;
  4594. #endif // HAS_POWER_SWITCH
  4595. case 81: // M81: Turn off Power, including Power Supply, if possible
  4596. gcode_M81();
  4597. break;
  4598. case 82:
  4599. gcode_M82();
  4600. break;
  4601. case 83:
  4602. gcode_M83();
  4603. break;
  4604. case 18: // (for compatibility)
  4605. case 84: // M84
  4606. gcode_M18_M84();
  4607. break;
  4608. case 85: // M85
  4609. gcode_M85();
  4610. break;
  4611. case 92: // M92: Set the steps-per-unit for one or more axes
  4612. gcode_M92();
  4613. break;
  4614. case 115: // M115: Report capabilities
  4615. gcode_M115();
  4616. break;
  4617. #ifdef ULTIPANEL
  4618. case 117: // M117: Set LCD message text
  4619. gcode_M117();
  4620. break;
  4621. #endif
  4622. case 114: // M114: Report current position
  4623. gcode_M114();
  4624. break;
  4625. case 120: // M120: Enable endstops
  4626. gcode_M120();
  4627. break;
  4628. case 121: // M121: Disable endstops
  4629. gcode_M121();
  4630. break;
  4631. case 119: // M119: Report endstop states
  4632. gcode_M119();
  4633. break;
  4634. #ifdef ULTIPANEL
  4635. case 145: // M145: Set material heatup parameters
  4636. gcode_M145();
  4637. break;
  4638. #endif
  4639. #ifdef BLINKM
  4640. case 150: // M150
  4641. gcode_M150();
  4642. break;
  4643. #endif //BLINKM
  4644. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4645. gcode_M200();
  4646. break;
  4647. case 201: // M201
  4648. gcode_M201();
  4649. break;
  4650. #if 0 // Not used for Sprinter/grbl gen6
  4651. case 202: // M202
  4652. gcode_M202();
  4653. break;
  4654. #endif
  4655. case 203: // M203 max feedrate mm/sec
  4656. gcode_M203();
  4657. break;
  4658. case 204: // M204 acclereration S normal moves T filmanent only moves
  4659. gcode_M204();
  4660. break;
  4661. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4662. gcode_M205();
  4663. break;
  4664. case 206: // M206 additional homing offset
  4665. gcode_M206();
  4666. break;
  4667. #ifdef DELTA
  4668. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4669. gcode_M665();
  4670. break;
  4671. #endif
  4672. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4673. case 666: // M666 set delta / dual endstop adjustment
  4674. gcode_M666();
  4675. break;
  4676. #endif
  4677. #ifdef FWRETRACT
  4678. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4679. gcode_M207();
  4680. break;
  4681. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4682. gcode_M208();
  4683. break;
  4684. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4685. gcode_M209();
  4686. break;
  4687. #endif // FWRETRACT
  4688. #if EXTRUDERS > 1
  4689. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4690. gcode_M218();
  4691. break;
  4692. #endif
  4693. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4694. gcode_M220();
  4695. break;
  4696. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4697. gcode_M221();
  4698. break;
  4699. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4700. gcode_M226();
  4701. break;
  4702. #if NUM_SERVOS > 0
  4703. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4704. gcode_M280();
  4705. break;
  4706. #endif // NUM_SERVOS > 0
  4707. #if HAS_LCD_BUZZ
  4708. case 300: // M300 - Play beep tone
  4709. gcode_M300();
  4710. break;
  4711. #endif // HAS_LCD_BUZZ
  4712. #ifdef PIDTEMP
  4713. case 301: // M301
  4714. gcode_M301();
  4715. break;
  4716. #endif // PIDTEMP
  4717. #ifdef PIDTEMPBED
  4718. case 304: // M304
  4719. gcode_M304();
  4720. break;
  4721. #endif // PIDTEMPBED
  4722. #if defined(CHDK) || HAS_PHOTOGRAPH
  4723. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4724. gcode_M240();
  4725. break;
  4726. #endif // CHDK || PHOTOGRAPH_PIN
  4727. #ifdef HAS_LCD_CONTRAST
  4728. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4729. gcode_M250();
  4730. break;
  4731. #endif // HAS_LCD_CONTRAST
  4732. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4733. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4734. gcode_M302();
  4735. break;
  4736. #endif // PREVENT_DANGEROUS_EXTRUDE
  4737. case 303: // M303 PID autotune
  4738. gcode_M303();
  4739. break;
  4740. #ifdef SCARA
  4741. case 360: // M360 SCARA Theta pos1
  4742. if (gcode_M360()) return;
  4743. break;
  4744. case 361: // M361 SCARA Theta pos2
  4745. if (gcode_M361()) return;
  4746. break;
  4747. case 362: // M362 SCARA Psi pos1
  4748. if (gcode_M362()) return;
  4749. break;
  4750. case 363: // M363 SCARA Psi pos2
  4751. if (gcode_M363()) return;
  4752. break;
  4753. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4754. if (gcode_M364()) return;
  4755. break;
  4756. case 365: // M365 Set SCARA scaling for X Y Z
  4757. gcode_M365();
  4758. break;
  4759. #endif // SCARA
  4760. case 400: // M400 finish all moves
  4761. gcode_M400();
  4762. break;
  4763. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4764. case 401:
  4765. gcode_M401();
  4766. break;
  4767. case 402:
  4768. gcode_M402();
  4769. break;
  4770. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4771. #ifdef FILAMENT_SENSOR
  4772. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4773. gcode_M404();
  4774. break;
  4775. case 405: //M405 Turn on filament sensor for control
  4776. gcode_M405();
  4777. break;
  4778. case 406: //M406 Turn off filament sensor for control
  4779. gcode_M406();
  4780. break;
  4781. case 407: //M407 Display measured filament diameter
  4782. gcode_M407();
  4783. break;
  4784. #endif // FILAMENT_SENSOR
  4785. case 410: // M410 quickstop - Abort all the planned moves.
  4786. gcode_M410();
  4787. break;
  4788. #ifdef MESH_BED_LEVELING
  4789. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4790. gcode_M420();
  4791. break;
  4792. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4793. gcode_M421();
  4794. break;
  4795. #endif
  4796. case 428: // M428 Apply current_position to home_offset
  4797. gcode_M428();
  4798. break;
  4799. case 500: // M500 Store settings in EEPROM
  4800. gcode_M500();
  4801. break;
  4802. case 501: // M501 Read settings from EEPROM
  4803. gcode_M501();
  4804. break;
  4805. case 502: // M502 Revert to default settings
  4806. gcode_M502();
  4807. break;
  4808. case 503: // M503 print settings currently in memory
  4809. gcode_M503();
  4810. break;
  4811. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4812. case 540:
  4813. gcode_M540();
  4814. break;
  4815. #endif
  4816. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4817. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4818. gcode_SET_Z_PROBE_OFFSET();
  4819. break;
  4820. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4821. #ifdef FILAMENTCHANGEENABLE
  4822. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4823. gcode_M600();
  4824. break;
  4825. #endif // FILAMENTCHANGEENABLE
  4826. #ifdef DUAL_X_CARRIAGE
  4827. case 605:
  4828. gcode_M605();
  4829. break;
  4830. #endif // DUAL_X_CARRIAGE
  4831. case 907: // M907 Set digital trimpot motor current using axis codes.
  4832. gcode_M907();
  4833. break;
  4834. #if HAS_DIGIPOTSS
  4835. case 908: // M908 Control digital trimpot directly.
  4836. gcode_M908();
  4837. break;
  4838. #endif // HAS_DIGIPOTSS
  4839. #if HAS_MICROSTEPS
  4840. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4841. gcode_M350();
  4842. break;
  4843. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4844. gcode_M351();
  4845. break;
  4846. #endif // HAS_MICROSTEPS
  4847. case 999: // M999: Restart after being Stopped
  4848. gcode_M999();
  4849. break;
  4850. }
  4851. }
  4852. else if (code_seen('T')) {
  4853. gcode_T();
  4854. }
  4855. else {
  4856. SERIAL_ECHO_START;
  4857. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4858. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4859. SERIAL_ECHOLNPGM("\"");
  4860. }
  4861. ok_to_send();
  4862. }
  4863. void FlushSerialRequestResend() {
  4864. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4865. MYSERIAL.flush();
  4866. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4867. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4868. ok_to_send();
  4869. }
  4870. void ok_to_send() {
  4871. refresh_cmd_timeout();
  4872. #ifdef SDSUPPORT
  4873. if (fromsd[cmd_queue_index_r]) return;
  4874. #endif
  4875. SERIAL_PROTOCOLPGM(MSG_OK);
  4876. #ifdef ADVANCED_OK
  4877. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4878. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4879. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4880. #endif
  4881. SERIAL_EOL;
  4882. }
  4883. void clamp_to_software_endstops(float target[3]) {
  4884. if (min_software_endstops) {
  4885. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4886. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4887. float negative_z_offset = 0;
  4888. #ifdef ENABLE_AUTO_BED_LEVELING
  4889. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4890. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4891. #endif
  4892. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4893. }
  4894. if (max_software_endstops) {
  4895. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4896. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4897. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4898. }
  4899. }
  4900. #ifdef DELTA
  4901. void recalc_delta_settings(float radius, float diagonal_rod) {
  4902. delta_tower1_x = -SIN_60 * radius; // front left tower
  4903. delta_tower1_y = -COS_60 * radius;
  4904. delta_tower2_x = SIN_60 * radius; // front right tower
  4905. delta_tower2_y = -COS_60 * radius;
  4906. delta_tower3_x = 0.0; // back middle tower
  4907. delta_tower3_y = radius;
  4908. delta_diagonal_rod_2 = sq(diagonal_rod);
  4909. }
  4910. void calculate_delta(float cartesian[3]) {
  4911. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4912. - sq(delta_tower1_x-cartesian[X_AXIS])
  4913. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4914. ) + cartesian[Z_AXIS];
  4915. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4916. - sq(delta_tower2_x-cartesian[X_AXIS])
  4917. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4918. ) + cartesian[Z_AXIS];
  4919. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4920. - sq(delta_tower3_x-cartesian[X_AXIS])
  4921. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4922. ) + cartesian[Z_AXIS];
  4923. /*
  4924. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4925. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4926. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4927. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4928. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4929. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4930. */
  4931. }
  4932. #ifdef ENABLE_AUTO_BED_LEVELING
  4933. // Adjust print surface height by linear interpolation over the bed_level array.
  4934. void adjust_delta(float cartesian[3]) {
  4935. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4936. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4937. float h1 = 0.001 - half, h2 = half - 0.001,
  4938. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4939. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4940. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4941. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4942. z1 = bed_level[floor_x + half][floor_y + half],
  4943. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4944. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4945. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4946. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4947. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4948. offset = (1 - ratio_x) * left + ratio_x * right;
  4949. delta[X_AXIS] += offset;
  4950. delta[Y_AXIS] += offset;
  4951. delta[Z_AXIS] += offset;
  4952. /*
  4953. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4954. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4955. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4956. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4957. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4958. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4959. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4960. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4961. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4962. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4963. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4964. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4965. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4966. */
  4967. }
  4968. #endif // ENABLE_AUTO_BED_LEVELING
  4969. #endif // DELTA
  4970. #ifdef MESH_BED_LEVELING
  4971. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4972. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4973. {
  4974. if (!mbl.active) {
  4975. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4976. set_current_to_destination();
  4977. return;
  4978. }
  4979. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4980. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4981. int ix = mbl.select_x_index(x);
  4982. int iy = mbl.select_y_index(y);
  4983. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4984. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4985. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4986. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4987. if (pix == ix && piy == iy) {
  4988. // Start and end on same mesh square
  4989. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4990. set_current_to_destination();
  4991. return;
  4992. }
  4993. float nx, ny, ne, normalized_dist;
  4994. if (ix > pix && (x_splits) & BIT(ix)) {
  4995. nx = mbl.get_x(ix);
  4996. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4997. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4998. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4999. x_splits ^= BIT(ix);
  5000. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5001. nx = mbl.get_x(pix);
  5002. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5003. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5004. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5005. x_splits ^= BIT(pix);
  5006. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5007. ny = mbl.get_y(iy);
  5008. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5009. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5010. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5011. y_splits ^= BIT(iy);
  5012. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5013. ny = mbl.get_y(piy);
  5014. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5015. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5016. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5017. y_splits ^= BIT(piy);
  5018. } else {
  5019. // Already split on a border
  5020. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5021. set_current_to_destination();
  5022. return;
  5023. }
  5024. // Do the split and look for more borders
  5025. destination[X_AXIS] = nx;
  5026. destination[Y_AXIS] = ny;
  5027. destination[E_AXIS] = ne;
  5028. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5029. destination[X_AXIS] = x;
  5030. destination[Y_AXIS] = y;
  5031. destination[E_AXIS] = e;
  5032. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5033. }
  5034. #endif // MESH_BED_LEVELING
  5035. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5036. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5037. float de = dest_e - curr_e;
  5038. if (de) {
  5039. if (degHotend(active_extruder) < extrude_min_temp) {
  5040. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5041. SERIAL_ECHO_START;
  5042. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5043. }
  5044. #ifdef PREVENT_LENGTHY_EXTRUDE
  5045. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5046. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5047. SERIAL_ECHO_START;
  5048. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5049. }
  5050. #endif
  5051. }
  5052. }
  5053. #endif // PREVENT_DANGEROUS_EXTRUDE
  5054. #if defined(DELTA) || defined(SCARA)
  5055. inline bool prepare_move_delta() {
  5056. float difference[NUM_AXIS];
  5057. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5058. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5059. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5060. if (cartesian_mm < 0.000001) return false;
  5061. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5062. int steps = max(1, int(delta_segments_per_second * seconds));
  5063. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5064. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5065. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5066. for (int s = 1; s <= steps; s++) {
  5067. float fraction = float(s) / float(steps);
  5068. for (int8_t i = 0; i < NUM_AXIS; i++)
  5069. destination[i] = current_position[i] + difference[i] * fraction;
  5070. calculate_delta(destination);
  5071. #ifdef ENABLE_AUTO_BED_LEVELING
  5072. adjust_delta(destination);
  5073. #endif
  5074. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5075. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5076. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5077. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5078. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5079. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5080. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5081. }
  5082. return true;
  5083. }
  5084. #endif // DELTA || SCARA
  5085. #ifdef SCARA
  5086. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5087. #endif
  5088. #ifdef DUAL_X_CARRIAGE
  5089. inline bool prepare_move_dual_x_carriage() {
  5090. if (active_extruder_parked) {
  5091. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5092. // move duplicate extruder into correct duplication position.
  5093. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5094. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5095. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5096. sync_plan_position();
  5097. st_synchronize();
  5098. extruder_duplication_enabled = true;
  5099. active_extruder_parked = false;
  5100. }
  5101. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5102. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5103. // This is a travel move (with no extrusion)
  5104. // Skip it, but keep track of the current position
  5105. // (so it can be used as the start of the next non-travel move)
  5106. if (delayed_move_time != 0xFFFFFFFFUL) {
  5107. set_current_to_destination();
  5108. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5109. delayed_move_time = millis();
  5110. return false;
  5111. }
  5112. }
  5113. delayed_move_time = 0;
  5114. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5115. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5118. active_extruder_parked = false;
  5119. }
  5120. }
  5121. return true;
  5122. }
  5123. #endif // DUAL_X_CARRIAGE
  5124. #if !defined(DELTA) && !defined(SCARA)
  5125. inline bool prepare_move_cartesian() {
  5126. // Do not use feedrate_multiplier for E or Z only moves
  5127. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5128. line_to_destination();
  5129. }
  5130. else {
  5131. #ifdef MESH_BED_LEVELING
  5132. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5133. return false;
  5134. #else
  5135. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5136. #endif
  5137. }
  5138. return true;
  5139. }
  5140. #endif // !DELTA && !SCARA
  5141. /**
  5142. * Prepare a single move and get ready for the next one
  5143. */
  5144. void prepare_move() {
  5145. clamp_to_software_endstops(destination);
  5146. refresh_cmd_timeout();
  5147. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5148. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5149. #endif
  5150. #ifdef SCARA
  5151. if (!prepare_move_scara()) return;
  5152. #elif defined(DELTA)
  5153. if (!prepare_move_delta()) return;
  5154. #endif
  5155. #ifdef DUAL_X_CARRIAGE
  5156. if (!prepare_move_dual_x_carriage()) return;
  5157. #endif
  5158. #if !defined(DELTA) && !defined(SCARA)
  5159. if (!prepare_move_cartesian()) return;
  5160. #endif
  5161. set_current_to_destination();
  5162. }
  5163. #if HAS_CONTROLLERFAN
  5164. void controllerFan() {
  5165. static millis_t lastMotor = 0; // Last time a motor was turned on
  5166. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5167. millis_t ms = millis();
  5168. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5169. lastMotorCheck = ms;
  5170. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5171. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5172. #if EXTRUDERS > 1
  5173. || E1_ENABLE_READ == E_ENABLE_ON
  5174. #if HAS_X2_ENABLE
  5175. || X2_ENABLE_READ == X_ENABLE_ON
  5176. #endif
  5177. #if EXTRUDERS > 2
  5178. || E2_ENABLE_READ == E_ENABLE_ON
  5179. #if EXTRUDERS > 3
  5180. || E3_ENABLE_READ == E_ENABLE_ON
  5181. #endif
  5182. #endif
  5183. #endif
  5184. ) {
  5185. lastMotor = ms; //... set time to NOW so the fan will turn on
  5186. }
  5187. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5188. // allows digital or PWM fan output to be used (see M42 handling)
  5189. digitalWrite(CONTROLLERFAN_PIN, speed);
  5190. analogWrite(CONTROLLERFAN_PIN, speed);
  5191. }
  5192. }
  5193. #endif // HAS_CONTROLLERFAN
  5194. #ifdef SCARA
  5195. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5196. // Perform forward kinematics, and place results in delta[3]
  5197. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5198. float x_sin, x_cos, y_sin, y_cos;
  5199. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5200. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5201. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5202. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5203. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5204. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5205. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5206. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5207. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5208. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5209. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5210. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5211. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5212. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5213. }
  5214. void calculate_delta(float cartesian[3]){
  5215. //reverse kinematics.
  5216. // Perform reversed kinematics, and place results in delta[3]
  5217. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5218. float SCARA_pos[2];
  5219. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5220. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5221. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5222. #if (Linkage_1 == Linkage_2)
  5223. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5224. #else
  5225. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5226. #endif
  5227. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5228. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5229. SCARA_K2 = Linkage_2 * SCARA_S2;
  5230. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5231. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5232. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5233. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5234. delta[Z_AXIS] = cartesian[Z_AXIS];
  5235. /*
  5236. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5237. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5238. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5239. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5240. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5241. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5242. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5243. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5244. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5245. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5246. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5247. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5248. SERIAL_EOL;
  5249. */
  5250. }
  5251. #endif // SCARA
  5252. #ifdef TEMP_STAT_LEDS
  5253. static bool red_led = false;
  5254. static millis_t next_status_led_update_ms = 0;
  5255. void handle_status_leds(void) {
  5256. float max_temp = 0.0;
  5257. if (millis() > next_status_led_update_ms) {
  5258. next_status_led_update_ms += 500; // Update every 0.5s
  5259. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5260. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5261. #if HAS_TEMP_BED
  5262. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5263. #endif
  5264. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5265. if (new_led != red_led) {
  5266. red_led = new_led;
  5267. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5268. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5269. }
  5270. }
  5271. }
  5272. #endif
  5273. void enable_all_steppers() {
  5274. enable_x();
  5275. enable_y();
  5276. enable_z();
  5277. enable_e0();
  5278. enable_e1();
  5279. enable_e2();
  5280. enable_e3();
  5281. }
  5282. void disable_all_steppers() {
  5283. disable_x();
  5284. disable_y();
  5285. disable_z();
  5286. disable_e0();
  5287. disable_e1();
  5288. disable_e2();
  5289. disable_e3();
  5290. }
  5291. /**
  5292. * Manage several activities:
  5293. * - Check for Filament Runout
  5294. * - Keep the command buffer full
  5295. * - Check for maximum inactive time between commands
  5296. * - Check for maximum inactive time between stepper commands
  5297. * - Check if pin CHDK needs to go LOW
  5298. * - Check for KILL button held down
  5299. * - Check for HOME button held down
  5300. * - Check if cooling fan needs to be switched on
  5301. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5302. */
  5303. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5304. #if HAS_FILRUNOUT
  5305. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5306. filrunout();
  5307. #endif
  5308. if (commands_in_queue < BUFSIZE - 1) get_command();
  5309. millis_t ms = millis();
  5310. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5311. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5312. && !ignore_stepper_queue && !blocks_queued())
  5313. disable_all_steppers();
  5314. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5315. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5316. chdkActive = false;
  5317. WRITE(CHDK, LOW);
  5318. }
  5319. #endif
  5320. #if HAS_KILL
  5321. // Check if the kill button was pressed and wait just in case it was an accidental
  5322. // key kill key press
  5323. // -------------------------------------------------------------------------------
  5324. static int killCount = 0; // make the inactivity button a bit less responsive
  5325. const int KILL_DELAY = 750;
  5326. if (!READ(KILL_PIN))
  5327. killCount++;
  5328. else if (killCount > 0)
  5329. killCount--;
  5330. // Exceeded threshold and we can confirm that it was not accidental
  5331. // KILL the machine
  5332. // ----------------------------------------------------------------
  5333. if (killCount >= KILL_DELAY) kill();
  5334. #endif
  5335. #if HAS_HOME
  5336. // Check to see if we have to home, use poor man's debouncer
  5337. // ---------------------------------------------------------
  5338. static int homeDebounceCount = 0; // poor man's debouncing count
  5339. const int HOME_DEBOUNCE_DELAY = 750;
  5340. if (!READ(HOME_PIN)) {
  5341. if (!homeDebounceCount) {
  5342. enqueuecommands_P(PSTR("G28"));
  5343. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5344. }
  5345. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5346. homeDebounceCount++;
  5347. else
  5348. homeDebounceCount = 0;
  5349. }
  5350. #endif
  5351. #if HAS_CONTROLLERFAN
  5352. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5353. #endif
  5354. #ifdef EXTRUDER_RUNOUT_PREVENT
  5355. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5356. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5357. bool oldstatus;
  5358. switch(active_extruder) {
  5359. case 0:
  5360. oldstatus = E0_ENABLE_READ;
  5361. enable_e0();
  5362. break;
  5363. #if EXTRUDERS > 1
  5364. case 1:
  5365. oldstatus = E1_ENABLE_READ;
  5366. enable_e1();
  5367. break;
  5368. #if EXTRUDERS > 2
  5369. case 2:
  5370. oldstatus = E2_ENABLE_READ;
  5371. enable_e2();
  5372. break;
  5373. #if EXTRUDERS > 3
  5374. case 3:
  5375. oldstatus = E3_ENABLE_READ;
  5376. enable_e3();
  5377. break;
  5378. #endif
  5379. #endif
  5380. #endif
  5381. }
  5382. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5384. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5385. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5386. current_position[E_AXIS] = oldepos;
  5387. destination[E_AXIS] = oldedes;
  5388. plan_set_e_position(oldepos);
  5389. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5390. st_synchronize();
  5391. switch(active_extruder) {
  5392. case 0:
  5393. E0_ENABLE_WRITE(oldstatus);
  5394. break;
  5395. #if EXTRUDERS > 1
  5396. case 1:
  5397. E1_ENABLE_WRITE(oldstatus);
  5398. break;
  5399. #if EXTRUDERS > 2
  5400. case 2:
  5401. E2_ENABLE_WRITE(oldstatus);
  5402. break;
  5403. #if EXTRUDERS > 3
  5404. case 3:
  5405. E3_ENABLE_WRITE(oldstatus);
  5406. break;
  5407. #endif
  5408. #endif
  5409. #endif
  5410. }
  5411. }
  5412. #endif
  5413. #ifdef DUAL_X_CARRIAGE
  5414. // handle delayed move timeout
  5415. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5416. // travel moves have been received so enact them
  5417. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5418. set_destination_to_current();
  5419. prepare_move();
  5420. }
  5421. #endif
  5422. #ifdef TEMP_STAT_LEDS
  5423. handle_status_leds();
  5424. #endif
  5425. check_axes_activity();
  5426. }
  5427. void kill()
  5428. {
  5429. cli(); // Stop interrupts
  5430. disable_all_heaters();
  5431. disable_all_steppers();
  5432. #if HAS_POWER_SWITCH
  5433. pinMode(PS_ON_PIN, INPUT);
  5434. #endif
  5435. SERIAL_ERROR_START;
  5436. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5437. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5438. // FMC small patch to update the LCD before ending
  5439. sei(); // enable interrupts
  5440. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5441. cli(); // disable interrupts
  5442. suicide();
  5443. while(1) { /* Intentionally left empty */ } // Wait for reset
  5444. }
  5445. #ifdef FILAMENT_RUNOUT_SENSOR
  5446. void filrunout() {
  5447. if (!filrunoutEnqueued) {
  5448. filrunoutEnqueued = true;
  5449. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5450. st_synchronize();
  5451. }
  5452. }
  5453. #endif // FILAMENT_RUNOUT_SENSOR
  5454. #ifdef FAST_PWM_FAN
  5455. void setPwmFrequency(uint8_t pin, int val) {
  5456. val &= 0x07;
  5457. switch (digitalPinToTimer(pin)) {
  5458. #if defined(TCCR0A)
  5459. case TIMER0A:
  5460. case TIMER0B:
  5461. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5462. // TCCR0B |= val;
  5463. break;
  5464. #endif
  5465. #if defined(TCCR1A)
  5466. case TIMER1A:
  5467. case TIMER1B:
  5468. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5469. // TCCR1B |= val;
  5470. break;
  5471. #endif
  5472. #if defined(TCCR2)
  5473. case TIMER2:
  5474. case TIMER2:
  5475. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5476. TCCR2 |= val;
  5477. break;
  5478. #endif
  5479. #if defined(TCCR2A)
  5480. case TIMER2A:
  5481. case TIMER2B:
  5482. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5483. TCCR2B |= val;
  5484. break;
  5485. #endif
  5486. #if defined(TCCR3A)
  5487. case TIMER3A:
  5488. case TIMER3B:
  5489. case TIMER3C:
  5490. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5491. TCCR3B |= val;
  5492. break;
  5493. #endif
  5494. #if defined(TCCR4A)
  5495. case TIMER4A:
  5496. case TIMER4B:
  5497. case TIMER4C:
  5498. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5499. TCCR4B |= val;
  5500. break;
  5501. #endif
  5502. #if defined(TCCR5A)
  5503. case TIMER5A:
  5504. case TIMER5B:
  5505. case TIMER5C:
  5506. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5507. TCCR5B |= val;
  5508. break;
  5509. #endif
  5510. }
  5511. }
  5512. #endif // FAST_PWM_FAN
  5513. void Stop() {
  5514. disable_all_heaters();
  5515. if (IsRunning()) {
  5516. Running = false;
  5517. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5518. SERIAL_ERROR_START;
  5519. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5520. LCD_MESSAGEPGM(MSG_STOPPED);
  5521. }
  5522. }
  5523. bool setTargetedHotend(int code){
  5524. target_extruder = active_extruder;
  5525. if (code_seen('T')) {
  5526. target_extruder = code_value_short();
  5527. if (target_extruder >= EXTRUDERS) {
  5528. SERIAL_ECHO_START;
  5529. switch(code){
  5530. case 104:
  5531. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5532. break;
  5533. case 105:
  5534. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5535. break;
  5536. case 109:
  5537. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5538. break;
  5539. case 218:
  5540. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5541. break;
  5542. case 221:
  5543. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5544. break;
  5545. }
  5546. SERIAL_ECHOLN(target_extruder);
  5547. return true;
  5548. }
  5549. }
  5550. return false;
  5551. }
  5552. float calculate_volumetric_multiplier(float diameter) {
  5553. if (!volumetric_enabled || diameter == 0) return 1.0;
  5554. float d2 = diameter * 0.5;
  5555. return 1.0 / (M_PI * d2 * d2);
  5556. }
  5557. void calculate_volumetric_multipliers() {
  5558. for (int i=0; i<EXTRUDERS; i++)
  5559. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5560. }