My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 266KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M907 - Set digital trimpot motor current using axis codes.
  218. * M908 - Control digital trimpot directly.
  219. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  220. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  221. * M350 - Set microstepping mode.
  222. * M351 - Toggle MS1 MS2 pins directly.
  223. *
  224. * ************ SCARA Specific - This can change to suit future G-code regulations
  225. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  226. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  227. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  228. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  229. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  230. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  231. * ************* SCARA End ***************
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M100 - Watch Free Memory (For Debugging Only)
  235. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  329. int xy_travel_speed = XY_TRAVEL_SPEED;
  330. bool bed_leveling_in_progress = false;
  331. #endif
  332. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  333. float z_endstop_adj = 0;
  334. #endif
  335. // Extruder offsets
  336. #if HOTENDS > 1
  337. #ifndef HOTEND_OFFSET_X
  338. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  339. #endif
  340. #ifndef HOTEND_OFFSET_Y
  341. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  342. #endif
  343. float hotend_offset[][HOTENDS] = {
  344. HOTEND_OFFSET_X,
  345. HOTEND_OFFSET_Y
  346. #if ENABLED(DUAL_X_CARRIAGE)
  347. , { 0 } // Z offsets for each extruder
  348. #endif
  349. };
  350. #endif
  351. #if ENABLED(HAS_SERVO_ENDSTOPS)
  352. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  353. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  354. #endif
  355. #if ENABLED(BARICUDA)
  356. int baricuda_valve_pressure = 0;
  357. int baricuda_e_to_p_pressure = 0;
  358. #endif
  359. #if ENABLED(FWRETRACT)
  360. bool autoretract_enabled = false;
  361. bool retracted[EXTRUDERS] = { false };
  362. bool retracted_swap[EXTRUDERS] = { false };
  363. float retract_length = RETRACT_LENGTH;
  364. float retract_length_swap = RETRACT_LENGTH_SWAP;
  365. float retract_feedrate = RETRACT_FEEDRATE;
  366. float retract_zlift = RETRACT_ZLIFT;
  367. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  368. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  369. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  370. #endif // FWRETRACT
  371. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  372. bool powersupply =
  373. #if ENABLED(PS_DEFAULT_OFF)
  374. false
  375. #else
  376. true
  377. #endif
  378. ;
  379. #endif
  380. #if ENABLED(DELTA)
  381. #define TOWER_1 X_AXIS
  382. #define TOWER_2 Y_AXIS
  383. #define TOWER_3 Z_AXIS
  384. float delta[3] = { 0 };
  385. #define SIN_60 0.8660254037844386
  386. #define COS_60 0.5
  387. float endstop_adj[3] = { 0 };
  388. // these are the default values, can be overriden with M665
  389. float delta_radius = DELTA_RADIUS;
  390. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  391. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  392. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  393. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  394. float delta_tower3_x = 0; // back middle tower
  395. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  396. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  397. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  398. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  399. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  400. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  401. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  402. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  403. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  404. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  405. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  406. int delta_grid_spacing[2] = { 0, 0 };
  407. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  408. #endif
  409. #else
  410. static bool home_all_axis = true;
  411. #endif
  412. #if ENABLED(SCARA)
  413. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  414. static float delta[3] = { 0 };
  415. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  416. #endif
  417. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  418. //Variables for Filament Sensor input
  419. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  420. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  421. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  422. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  423. int filwidth_delay_index1 = 0; //index into ring buffer
  424. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  425. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  426. #endif
  427. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  428. static bool filament_ran_out = false;
  429. #endif
  430. static bool send_ok[BUFSIZE];
  431. #if HAS_SERVOS
  432. Servo servo[NUM_SERVOS];
  433. #define MOVE_SERVO(I, P) servo[I].move(P)
  434. #define SERVO_ENDSTOP_EXISTS(I) (servo_endstop_id[I] >= 0)
  435. #define MOVE_SERVO_ENDSTOP(I, J) MOVE_SERVO(servo_endstop_id[I], servo_endstop_angle[I][J])
  436. #define DEPLOY_SERVO_ENDSTOP(I) MOVE_SERVO_ENDSTOP(I, 0)
  437. #define STOW_SERVO_ENDSTOP(I) MOVE_SERVO_ENDSTOP(I, 1)
  438. #endif
  439. #ifdef CHDK
  440. millis_t chdkHigh = 0;
  441. boolean chdkActive = false;
  442. #endif
  443. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  444. int lpq_len = 20;
  445. #endif
  446. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  447. // States for managing Marlin and host communication
  448. // Marlin sends messages if blocked or busy
  449. enum MarlinBusyState {
  450. NOT_BUSY, // Not in a handler
  451. IN_HANDLER, // Processing a GCode
  452. IN_PROCESS, // Known to be blocking command input (as in G29)
  453. PAUSED_FOR_USER, // Blocking pending any input
  454. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  455. };
  456. static MarlinBusyState busy_state = NOT_BUSY;
  457. static millis_t next_busy_signal_ms = 0;
  458. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  459. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  460. #else
  461. #define host_keepalive() ;
  462. #define KEEPALIVE_STATE(n) ;
  463. #endif // HOST_KEEPALIVE_FEATURE
  464. /**
  465. * ***************************************************************************
  466. * ******************************** FUNCTIONS ********************************
  467. * ***************************************************************************
  468. */
  469. void stop();
  470. void get_available_commands();
  471. void process_next_command();
  472. void prepare_move_to_destination();
  473. #if ENABLED(ARC_SUPPORT)
  474. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  475. #endif
  476. #if ENABLED(BEZIER_CURVE_SUPPORT)
  477. void plan_cubic_move(const float offset[4]);
  478. #endif
  479. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  480. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  481. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  482. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  483. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  484. static void report_current_position();
  485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  486. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  487. SERIAL_ECHO(prefix);
  488. SERIAL_ECHOPAIR(": (", x);
  489. SERIAL_ECHOPAIR(", ", y);
  490. SERIAL_ECHOPAIR(", ", z);
  491. SERIAL_ECHOLNPGM(")");
  492. }
  493. void print_xyz(const char* prefix, const float xyz[]) {
  494. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  495. }
  496. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  497. void print_xyz(const char* prefix, const vector_3 &xyz) {
  498. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  499. }
  500. #endif
  501. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  502. #endif
  503. #if ENABLED(DELTA) || ENABLED(SCARA)
  504. inline void sync_plan_position_delta() {
  505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  506. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  507. #endif
  508. calculate_delta(current_position);
  509. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  510. }
  511. #endif
  512. #if ENABLED(SDSUPPORT)
  513. #include "SdFatUtil.h"
  514. int freeMemory() { return SdFatUtil::FreeRam(); }
  515. #else
  516. extern "C" {
  517. extern unsigned int __bss_end;
  518. extern unsigned int __heap_start;
  519. extern void* __brkval;
  520. int freeMemory() {
  521. int free_memory;
  522. if ((int)__brkval == 0)
  523. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  524. else
  525. free_memory = ((int)&free_memory) - ((int)__brkval);
  526. return free_memory;
  527. }
  528. }
  529. #endif //!SDSUPPORT
  530. #if ENABLED(DIGIPOT_I2C)
  531. extern void digipot_i2c_set_current(int channel, float current);
  532. extern void digipot_i2c_init();
  533. #endif
  534. /**
  535. * Inject the next "immediate" command, when possible.
  536. * Return true if any immediate commands remain to inject.
  537. */
  538. static bool drain_queued_commands_P() {
  539. if (queued_commands_P != NULL) {
  540. size_t i = 0;
  541. char c, cmd[30];
  542. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  543. cmd[sizeof(cmd) - 1] = '\0';
  544. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  545. cmd[i] = '\0';
  546. if (enqueue_and_echo_command(cmd)) { // success?
  547. if (c) // newline char?
  548. queued_commands_P += i + 1; // advance to the next command
  549. else
  550. queued_commands_P = NULL; // nul char? no more commands
  551. }
  552. }
  553. return (queued_commands_P != NULL); // return whether any more remain
  554. }
  555. /**
  556. * Record one or many commands to run from program memory.
  557. * Aborts the current queue, if any.
  558. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  559. */
  560. void enqueue_and_echo_commands_P(const char* pgcode) {
  561. queued_commands_P = pgcode;
  562. drain_queued_commands_P(); // first command executed asap (when possible)
  563. }
  564. void clear_command_queue() {
  565. cmd_queue_index_r = cmd_queue_index_w;
  566. commands_in_queue = 0;
  567. }
  568. /**
  569. * Once a new command is in the ring buffer, call this to commit it
  570. */
  571. inline void _commit_command(bool say_ok) {
  572. send_ok[cmd_queue_index_w] = say_ok;
  573. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  574. commands_in_queue++;
  575. }
  576. /**
  577. * Copy a command directly into the main command buffer, from RAM.
  578. * Returns true if successfully adds the command
  579. */
  580. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  581. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  582. strcpy(command_queue[cmd_queue_index_w], cmd);
  583. _commit_command(say_ok);
  584. return true;
  585. }
  586. void enqueue_and_echo_command_now(const char* cmd) {
  587. while (!enqueue_and_echo_command(cmd)) idle();
  588. }
  589. /**
  590. * Enqueue with Serial Echo
  591. */
  592. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  593. if (_enqueuecommand(cmd, say_ok)) {
  594. SERIAL_ECHO_START;
  595. SERIAL_ECHOPGM(MSG_Enqueueing);
  596. SERIAL_ECHO(cmd);
  597. SERIAL_ECHOLNPGM("\"");
  598. return true;
  599. }
  600. return false;
  601. }
  602. void setup_killpin() {
  603. #if HAS_KILL
  604. SET_INPUT(KILL_PIN);
  605. WRITE(KILL_PIN, HIGH);
  606. #endif
  607. }
  608. void setup_filrunoutpin() {
  609. #if HAS_FILRUNOUT
  610. pinMode(FILRUNOUT_PIN, INPUT);
  611. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  612. WRITE(FILRUNOUT_PIN, HIGH);
  613. #endif
  614. #endif
  615. }
  616. // Set home pin
  617. void setup_homepin(void) {
  618. #if HAS_HOME
  619. SET_INPUT(HOME_PIN);
  620. WRITE(HOME_PIN, HIGH);
  621. #endif
  622. }
  623. void setup_photpin() {
  624. #if HAS_PHOTOGRAPH
  625. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  626. #endif
  627. }
  628. void setup_powerhold() {
  629. #if HAS_SUICIDE
  630. OUT_WRITE(SUICIDE_PIN, HIGH);
  631. #endif
  632. #if HAS_POWER_SWITCH
  633. #if ENABLED(PS_DEFAULT_OFF)
  634. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  635. #else
  636. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  637. #endif
  638. #endif
  639. }
  640. void suicide() {
  641. #if HAS_SUICIDE
  642. OUT_WRITE(SUICIDE_PIN, LOW);
  643. #endif
  644. }
  645. void servo_init() {
  646. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  647. servo[0].attach(SERVO0_PIN);
  648. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  649. #endif
  650. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  651. servo[1].attach(SERVO1_PIN);
  652. servo[1].detach();
  653. #endif
  654. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  655. servo[2].attach(SERVO2_PIN);
  656. servo[2].detach();
  657. #endif
  658. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  659. servo[3].attach(SERVO3_PIN);
  660. servo[3].detach();
  661. #endif
  662. #if ENABLED(HAS_SERVO_ENDSTOPS)
  663. endstops.enable_z_probe(false);
  664. /**
  665. * Set position of all defined Servo Endstops
  666. *
  667. * ** UNSAFE! - NEEDS UPDATE! **
  668. *
  669. * The servo might be deployed and positioned too low to stow
  670. * when starting up the machine or rebooting the board.
  671. * There's no way to know where the nozzle is positioned until
  672. * homing has been done - no homing with z-probe without init!
  673. *
  674. */
  675. for (int i = 0; i < 3; i++)
  676. if (SERVO_ENDSTOP_EXISTS(i))
  677. STOW_SERVO_ENDSTOP(i);
  678. #endif // HAS_SERVO_ENDSTOPS
  679. }
  680. /**
  681. * Stepper Reset (RigidBoard, et.al.)
  682. */
  683. #if HAS_STEPPER_RESET
  684. void disableStepperDrivers() {
  685. pinMode(STEPPER_RESET_PIN, OUTPUT);
  686. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  687. }
  688. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  689. #endif
  690. /**
  691. * Marlin entry-point: Set up before the program loop
  692. * - Set up the kill pin, filament runout, power hold
  693. * - Start the serial port
  694. * - Print startup messages and diagnostics
  695. * - Get EEPROM or default settings
  696. * - Initialize managers for:
  697. * • temperature
  698. * • planner
  699. * • watchdog
  700. * • stepper
  701. * • photo pin
  702. * • servos
  703. * • LCD controller
  704. * • Digipot I2C
  705. * • Z probe sled
  706. * • status LEDs
  707. */
  708. void setup() {
  709. #ifdef DISABLE_JTAG
  710. // Disable JTAG on AT90USB chips to free up pins for IO
  711. MCUCR = 0x80;
  712. MCUCR = 0x80;
  713. #endif
  714. setup_killpin();
  715. setup_filrunoutpin();
  716. setup_powerhold();
  717. #if HAS_STEPPER_RESET
  718. disableStepperDrivers();
  719. #endif
  720. MYSERIAL.begin(BAUDRATE);
  721. SERIAL_PROTOCOLLNPGM("start");
  722. SERIAL_ECHO_START;
  723. // Check startup - does nothing if bootloader sets MCUSR to 0
  724. byte mcu = MCUSR;
  725. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  726. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  727. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  728. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  729. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  730. MCUSR = 0;
  731. SERIAL_ECHOPGM(MSG_MARLIN);
  732. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  733. #ifdef STRING_DISTRIBUTION_DATE
  734. #ifdef STRING_CONFIG_H_AUTHOR
  735. SERIAL_ECHO_START;
  736. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  737. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  738. SERIAL_ECHOPGM(MSG_AUTHOR);
  739. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  740. SERIAL_ECHOPGM("Compiled: ");
  741. SERIAL_ECHOLNPGM(__DATE__);
  742. #endif // STRING_CONFIG_H_AUTHOR
  743. #endif // STRING_DISTRIBUTION_DATE
  744. SERIAL_ECHO_START;
  745. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  746. SERIAL_ECHO(freeMemory());
  747. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  748. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  749. // Send "ok" after commands by default
  750. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  751. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  752. Config_RetrieveSettings();
  753. thermalManager.init(); // Initialize temperature loop
  754. #if ENABLED(DELTA) || ENABLED(SCARA)
  755. // Vital to init kinematic equivalent for X0 Y0 Z0
  756. sync_plan_position_delta();
  757. #endif
  758. #if ENABLED(USE_WATCHDOG)
  759. watchdog_init();
  760. #endif
  761. stepper.init(); // Initialize stepper, this enables interrupts!
  762. setup_photpin();
  763. servo_init();
  764. #if HAS_CONTROLLERFAN
  765. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  766. #endif
  767. #if HAS_STEPPER_RESET
  768. enableStepperDrivers();
  769. #endif
  770. #if ENABLED(DIGIPOT_I2C)
  771. digipot_i2c_init();
  772. #endif
  773. #if ENABLED(DAC_STEPPER_CURRENT)
  774. dac_init();
  775. #endif
  776. #if ENABLED(Z_PROBE_SLED)
  777. pinMode(SLED_PIN, OUTPUT);
  778. digitalWrite(SLED_PIN, LOW); // turn it off
  779. #endif // Z_PROBE_SLED
  780. setup_homepin();
  781. #ifdef STAT_LED_RED
  782. pinMode(STAT_LED_RED, OUTPUT);
  783. digitalWrite(STAT_LED_RED, LOW); // turn it off
  784. #endif
  785. #ifdef STAT_LED_BLUE
  786. pinMode(STAT_LED_BLUE, OUTPUT);
  787. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  788. #endif
  789. lcd_init();
  790. #if ENABLED(SHOW_BOOTSCREEN)
  791. #if ENABLED(DOGLCD)
  792. delay(1000);
  793. #elif ENABLED(ULTRA_LCD)
  794. bootscreen();
  795. lcd_init();
  796. #endif
  797. #endif
  798. }
  799. /**
  800. * The main Marlin program loop
  801. *
  802. * - Save or log commands to SD
  803. * - Process available commands (if not saving)
  804. * - Call heater manager
  805. * - Call inactivity manager
  806. * - Call endstop manager
  807. * - Call LCD update
  808. */
  809. void loop() {
  810. if (commands_in_queue < BUFSIZE) get_available_commands();
  811. #if ENABLED(SDSUPPORT)
  812. card.checkautostart(false);
  813. #endif
  814. if (commands_in_queue) {
  815. #if ENABLED(SDSUPPORT)
  816. if (card.saving) {
  817. char* command = command_queue[cmd_queue_index_r];
  818. if (strstr_P(command, PSTR("M29"))) {
  819. // M29 closes the file
  820. card.closefile();
  821. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  822. ok_to_send();
  823. }
  824. else {
  825. // Write the string from the read buffer to SD
  826. card.write_command(command);
  827. if (card.logging)
  828. process_next_command(); // The card is saving because it's logging
  829. else
  830. ok_to_send();
  831. }
  832. }
  833. else
  834. process_next_command();
  835. #else
  836. process_next_command();
  837. #endif // SDSUPPORT
  838. commands_in_queue--;
  839. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  840. }
  841. endstops.report_state();
  842. idle();
  843. }
  844. void gcode_line_error(const char* err, bool doFlush = true) {
  845. SERIAL_ERROR_START;
  846. serialprintPGM(err);
  847. SERIAL_ERRORLN(gcode_LastN);
  848. //Serial.println(gcode_N);
  849. if (doFlush) FlushSerialRequestResend();
  850. serial_count = 0;
  851. }
  852. inline void get_serial_commands() {
  853. static char serial_line_buffer[MAX_CMD_SIZE];
  854. static boolean serial_comment_mode = false;
  855. // If the command buffer is empty for too long,
  856. // send "wait" to indicate Marlin is still waiting.
  857. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  858. static millis_t last_command_time = 0;
  859. millis_t ms = millis();
  860. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  861. SERIAL_ECHOLNPGM(MSG_WAIT);
  862. last_command_time = ms;
  863. }
  864. #endif
  865. /**
  866. * Loop while serial characters are incoming and the queue is not full
  867. */
  868. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  869. char serial_char = MYSERIAL.read();
  870. /**
  871. * If the character ends the line
  872. */
  873. if (serial_char == '\n' || serial_char == '\r') {
  874. serial_comment_mode = false; // end of line == end of comment
  875. if (!serial_count) continue; // skip empty lines
  876. serial_line_buffer[serial_count] = 0; // terminate string
  877. serial_count = 0; //reset buffer
  878. char* command = serial_line_buffer;
  879. while (*command == ' ') command++; // skip any leading spaces
  880. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  881. char* apos = strchr(command, '*');
  882. if (npos) {
  883. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  884. if (M110) {
  885. char* n2pos = strchr(command + 4, 'N');
  886. if (n2pos) npos = n2pos;
  887. }
  888. gcode_N = strtol(npos + 1, NULL, 10);
  889. if (gcode_N != gcode_LastN + 1 && !M110) {
  890. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  891. return;
  892. }
  893. if (apos) {
  894. byte checksum = 0, count = 0;
  895. while (command[count] != '*') checksum ^= command[count++];
  896. if (strtol(apos + 1, NULL, 10) != checksum) {
  897. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  898. return;
  899. }
  900. // if no errors, continue parsing
  901. }
  902. else {
  903. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  904. return;
  905. }
  906. gcode_LastN = gcode_N;
  907. // if no errors, continue parsing
  908. }
  909. else if (apos) { // No '*' without 'N'
  910. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  911. return;
  912. }
  913. // Movement commands alert when stopped
  914. if (IsStopped()) {
  915. char* gpos = strchr(command, 'G');
  916. if (gpos) {
  917. int codenum = strtol(gpos + 1, NULL, 10);
  918. switch (codenum) {
  919. case 0:
  920. case 1:
  921. case 2:
  922. case 3:
  923. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  924. LCD_MESSAGEPGM(MSG_STOPPED);
  925. break;
  926. }
  927. }
  928. }
  929. // If command was e-stop process now
  930. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  931. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  932. last_command_time = ms;
  933. #endif
  934. // Add the command to the queue
  935. _enqueuecommand(serial_line_buffer, true);
  936. }
  937. else if (serial_count >= MAX_CMD_SIZE - 1) {
  938. // Keep fetching, but ignore normal characters beyond the max length
  939. // The command will be injected when EOL is reached
  940. }
  941. else if (serial_char == '\\') { // Handle escapes
  942. if (MYSERIAL.available() > 0) {
  943. // if we have one more character, copy it over
  944. serial_char = MYSERIAL.read();
  945. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  946. }
  947. // otherwise do nothing
  948. }
  949. else { // it's not a newline, carriage return or escape char
  950. if (serial_char == ';') serial_comment_mode = true;
  951. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  952. }
  953. } // queue has space, serial has data
  954. }
  955. #if ENABLED(SDSUPPORT)
  956. inline void get_sdcard_commands() {
  957. static bool stop_buffering = false,
  958. sd_comment_mode = false;
  959. if (!card.sdprinting) return;
  960. /**
  961. * '#' stops reading from SD to the buffer prematurely, so procedural
  962. * macro calls are possible. If it occurs, stop_buffering is triggered
  963. * and the buffer is run dry; this character _can_ occur in serial com
  964. * due to checksums, however, no checksums are used in SD printing.
  965. */
  966. if (commands_in_queue == 0) stop_buffering = false;
  967. uint16_t sd_count = 0;
  968. bool card_eof = card.eof();
  969. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  970. int16_t n = card.get();
  971. char sd_char = (char)n;
  972. card_eof = card.eof();
  973. if (card_eof || n == -1
  974. || sd_char == '\n' || sd_char == '\r'
  975. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  976. ) {
  977. if (card_eof) {
  978. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  979. print_job_timer.stop();
  980. char time[30];
  981. millis_t t = print_job_timer.duration();
  982. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  983. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  984. SERIAL_ECHO_START;
  985. SERIAL_ECHOLN(time);
  986. lcd_setstatus(time, true);
  987. card.printingHasFinished();
  988. card.checkautostart(true);
  989. }
  990. if (sd_char == '#') stop_buffering = true;
  991. sd_comment_mode = false; //for new command
  992. if (!sd_count) continue; //skip empty lines
  993. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  994. sd_count = 0; //clear buffer
  995. _commit_command(false);
  996. }
  997. else if (sd_count >= MAX_CMD_SIZE - 1) {
  998. /**
  999. * Keep fetching, but ignore normal characters beyond the max length
  1000. * The command will be injected when EOL is reached
  1001. */
  1002. }
  1003. else {
  1004. if (sd_char == ';') sd_comment_mode = true;
  1005. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1006. }
  1007. }
  1008. }
  1009. #endif // SDSUPPORT
  1010. /**
  1011. * Add to the circular command queue the next command from:
  1012. * - The command-injection queue (queued_commands_P)
  1013. * - The active serial input (usually USB)
  1014. * - The SD card file being actively printed
  1015. */
  1016. void get_available_commands() {
  1017. // if any immediate commands remain, don't get other commands yet
  1018. if (drain_queued_commands_P()) return;
  1019. get_serial_commands();
  1020. #if ENABLED(SDSUPPORT)
  1021. get_sdcard_commands();
  1022. #endif
  1023. }
  1024. inline bool code_has_value() {
  1025. int i = 1;
  1026. char c = seen_pointer[i];
  1027. while (c == ' ') c = seen_pointer[++i];
  1028. if (c == '-' || c == '+') c = seen_pointer[++i];
  1029. if (c == '.') c = seen_pointer[++i];
  1030. return NUMERIC(c);
  1031. }
  1032. inline float code_value_float() {
  1033. float ret;
  1034. char* e = strchr(seen_pointer, 'E');
  1035. if (e) {
  1036. *e = 0;
  1037. ret = strtod(seen_pointer + 1, NULL);
  1038. *e = 'E';
  1039. }
  1040. else
  1041. ret = strtod(seen_pointer + 1, NULL);
  1042. return ret;
  1043. }
  1044. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1045. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1046. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1047. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1048. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1049. inline bool code_value_bool() { return code_value_byte() > 0; }
  1050. #if ENABLED(INCH_MODE_SUPPORT)
  1051. inline void set_input_linear_units(LinearUnit units) {
  1052. switch (units) {
  1053. case LINEARUNIT_INCH:
  1054. linear_unit_factor = 25.4;
  1055. break;
  1056. case LINEARUNIT_MM:
  1057. default:
  1058. linear_unit_factor = 1.0;
  1059. break;
  1060. }
  1061. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1062. }
  1063. inline float axis_unit_factor(int axis) {
  1064. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1065. }
  1066. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1067. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1068. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1069. #else
  1070. inline float code_value_linear_units() { return code_value_float(); }
  1071. inline float code_value_per_axis_unit(int axis) { return code_value_float(); }
  1072. inline float code_value_axis_units(int axis) { return code_value_float(); }
  1073. #endif
  1074. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1075. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1076. float code_value_temp_abs() {
  1077. switch (input_temp_units) {
  1078. case TEMPUNIT_C:
  1079. return code_value_float();
  1080. case TEMPUNIT_F:
  1081. return (code_value_float() - 32) / 1.8;
  1082. case TEMPUNIT_K:
  1083. return code_value_float() - 272.15;
  1084. default:
  1085. return code_value_float();
  1086. }
  1087. }
  1088. float code_value_temp_diff() {
  1089. switch (input_temp_units) {
  1090. case TEMPUNIT_C:
  1091. case TEMPUNIT_K:
  1092. return code_value_float();
  1093. case TEMPUNIT_F:
  1094. return code_value_float() / 1.8;
  1095. default:
  1096. return code_value_float();
  1097. }
  1098. }
  1099. #else
  1100. float code_value_temp_abs() { return code_value_float(); }
  1101. float code_value_temp_diff() { return code_value_float(); }
  1102. #endif
  1103. inline millis_t code_value_millis() { return code_value_ulong(); }
  1104. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1105. bool code_seen(char code) {
  1106. seen_pointer = strchr(current_command_args, code);
  1107. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1108. }
  1109. /**
  1110. * Set target_extruder from the T parameter or the active_extruder
  1111. *
  1112. * Returns TRUE if the target is invalid
  1113. */
  1114. bool get_target_extruder_from_command(int code) {
  1115. if (code_seen('T')) {
  1116. uint8_t t = code_value_byte();
  1117. if (t >= EXTRUDERS) {
  1118. SERIAL_ECHO_START;
  1119. SERIAL_CHAR('M');
  1120. SERIAL_ECHO(code);
  1121. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1122. SERIAL_EOL;
  1123. return true;
  1124. }
  1125. target_extruder = t;
  1126. }
  1127. else
  1128. target_extruder = active_extruder;
  1129. return false;
  1130. }
  1131. #define DEFINE_PGM_READ_ANY(type, reader) \
  1132. static inline type pgm_read_any(const type *p) \
  1133. { return pgm_read_##reader##_near(p); }
  1134. DEFINE_PGM_READ_ANY(float, float);
  1135. DEFINE_PGM_READ_ANY(signed char, byte);
  1136. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1137. static const PROGMEM type array##_P[3] = \
  1138. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1139. static inline type array(int axis) \
  1140. { return pgm_read_any(&array##_P[axis]); }
  1141. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1142. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1143. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1144. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1145. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1146. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1147. #if ENABLED(DUAL_X_CARRIAGE)
  1148. #define DXC_FULL_CONTROL_MODE 0
  1149. #define DXC_AUTO_PARK_MODE 1
  1150. #define DXC_DUPLICATION_MODE 2
  1151. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1152. static float x_home_pos(int extruder) {
  1153. if (extruder == 0)
  1154. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1155. else
  1156. /**
  1157. * In dual carriage mode the extruder offset provides an override of the
  1158. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1159. * This allow soft recalibration of the second extruder offset position
  1160. * without firmware reflash (through the M218 command).
  1161. */
  1162. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1163. }
  1164. static int x_home_dir(int extruder) {
  1165. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1166. }
  1167. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1168. static bool active_extruder_parked = false; // used in mode 1 & 2
  1169. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1170. static millis_t delayed_move_time = 0; // used in mode 1
  1171. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1172. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1173. bool extruder_duplication_enabled = false; // used in mode 2
  1174. #endif //DUAL_X_CARRIAGE
  1175. /**
  1176. * Software endstops can be used to monitor the open end of
  1177. * an axis that has a hardware endstop on the other end. Or
  1178. * they can prevent axes from moving past endstops and grinding.
  1179. *
  1180. * To keep doing their job as the coordinate system changes,
  1181. * the software endstop positions must be refreshed to remain
  1182. * at the same positions relative to the machine.
  1183. */
  1184. static void update_software_endstops(AxisEnum axis) {
  1185. float offs = home_offset[axis] + position_shift[axis];
  1186. #if ENABLED(DUAL_X_CARRIAGE)
  1187. if (axis == X_AXIS) {
  1188. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1189. if (active_extruder != 0) {
  1190. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1191. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1192. return;
  1193. }
  1194. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1195. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1196. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1197. return;
  1198. }
  1199. }
  1200. else
  1201. #endif
  1202. {
  1203. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1204. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1205. }
  1206. }
  1207. /**
  1208. * Change the home offset for an axis, update the current
  1209. * position and the software endstops to retain the same
  1210. * relative distance to the new home.
  1211. *
  1212. * Since this changes the current_position, code should
  1213. * call sync_plan_position soon after this.
  1214. */
  1215. static void set_home_offset(AxisEnum axis, float v) {
  1216. current_position[axis] += v - home_offset[axis];
  1217. home_offset[axis] = v;
  1218. update_software_endstops(axis);
  1219. }
  1220. static void set_axis_is_at_home(AxisEnum axis) {
  1221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1222. if (DEBUGGING(LEVELING)) {
  1223. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1224. SERIAL_ECHOLNPGM(") >>>");
  1225. }
  1226. #endif
  1227. position_shift[axis] = 0;
  1228. #if ENABLED(DUAL_X_CARRIAGE)
  1229. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1230. if (active_extruder != 0)
  1231. current_position[X_AXIS] = x_home_pos(active_extruder);
  1232. else
  1233. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1234. update_software_endstops(X_AXIS);
  1235. return;
  1236. }
  1237. #endif
  1238. #if ENABLED(SCARA)
  1239. if (axis == X_AXIS || axis == Y_AXIS) {
  1240. float homeposition[3];
  1241. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1242. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1243. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1244. /**
  1245. * Works out real Homeposition angles using inverse kinematics,
  1246. * and calculates homing offset using forward kinematics
  1247. */
  1248. calculate_delta(homeposition);
  1249. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1250. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1251. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1252. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1253. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1254. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1255. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1256. calculate_SCARA_forward_Transform(delta);
  1257. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1258. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1259. current_position[axis] = delta[axis];
  1260. /**
  1261. * SCARA home positions are based on configuration since the actual
  1262. * limits are determined by the inverse kinematic transform.
  1263. */
  1264. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1265. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1266. }
  1267. else
  1268. #endif
  1269. {
  1270. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1271. update_software_endstops(axis);
  1272. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1273. if (axis == Z_AXIS) {
  1274. current_position[Z_AXIS] -= zprobe_zoffset;
  1275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1276. if (DEBUGGING(LEVELING)) {
  1277. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1278. SERIAL_EOL;
  1279. }
  1280. #endif
  1281. }
  1282. #endif
  1283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1284. if (DEBUGGING(LEVELING)) {
  1285. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1286. DEBUG_POS("", current_position);
  1287. }
  1288. #endif
  1289. }
  1290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1291. if (DEBUGGING(LEVELING)) {
  1292. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1293. SERIAL_ECHOLNPGM(")");
  1294. }
  1295. #endif
  1296. }
  1297. /**
  1298. * Some planner shorthand inline functions
  1299. */
  1300. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1301. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1302. int hbd = homing_bump_divisor[axis];
  1303. if (hbd < 1) {
  1304. hbd = 10;
  1305. SERIAL_ECHO_START;
  1306. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1307. }
  1308. feedrate = homing_feedrate[axis] / hbd;
  1309. }
  1310. //
  1311. // line_to_current_position
  1312. // Move the planner to the current position from wherever it last moved
  1313. // (or from wherever it has been told it is located).
  1314. //
  1315. inline void line_to_current_position() {
  1316. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1317. }
  1318. inline void line_to_z(float zPosition) {
  1319. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1320. }
  1321. //
  1322. // line_to_destination
  1323. // Move the planner, not necessarily synced with current_position
  1324. //
  1325. inline void line_to_destination(float mm_m) {
  1326. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1327. }
  1328. inline void line_to_destination() {
  1329. line_to_destination(feedrate);
  1330. }
  1331. /**
  1332. * sync_plan_position
  1333. * Set planner / stepper positions to the cartesian current_position.
  1334. * The stepper code translates these coordinates into step units.
  1335. * Allows translation between steps and units (mm) for cartesian & core robots
  1336. */
  1337. inline void sync_plan_position() {
  1338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1340. #endif
  1341. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1342. }
  1343. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1344. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1345. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1346. static void setup_for_endstop_move() {
  1347. saved_feedrate = feedrate;
  1348. saved_feedrate_multiplier = feedrate_multiplier;
  1349. feedrate_multiplier = 100;
  1350. refresh_cmd_timeout();
  1351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1352. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1353. #endif
  1354. endstops.enable();
  1355. }
  1356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1357. #if ENABLED(DELTA)
  1358. /**
  1359. * Calculate delta, start a line, and set current_position to destination
  1360. */
  1361. void prepare_move_to_destination_raw() {
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1364. #endif
  1365. refresh_cmd_timeout();
  1366. calculate_delta(destination);
  1367. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1368. set_current_to_destination();
  1369. }
  1370. #endif
  1371. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1372. #if DISABLED(DELTA)
  1373. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1374. //planner.bed_level_matrix.debug("bed level before");
  1375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1376. planner.bed_level_matrix.set_to_identity();
  1377. if (DEBUGGING(LEVELING)) {
  1378. vector_3 uncorrected_position = planner.adjusted_position();
  1379. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1380. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1381. }
  1382. #endif
  1383. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1384. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1385. vector_3 corrected_position = planner.adjusted_position();
  1386. current_position[X_AXIS] = corrected_position.x;
  1387. current_position[Y_AXIS] = corrected_position.y;
  1388. current_position[Z_AXIS] = corrected_position.z;
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1391. #endif
  1392. sync_plan_position();
  1393. }
  1394. #endif // !DELTA
  1395. #else // !AUTO_BED_LEVELING_GRID
  1396. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1397. planner.bed_level_matrix.set_to_identity();
  1398. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1399. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1400. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1401. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1402. if (planeNormal.z < 0) {
  1403. planeNormal.x = -planeNormal.x;
  1404. planeNormal.y = -planeNormal.y;
  1405. planeNormal.z = -planeNormal.z;
  1406. }
  1407. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1408. vector_3 corrected_position = planner.adjusted_position();
  1409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1410. if (DEBUGGING(LEVELING)) {
  1411. vector_3 uncorrected_position = corrected_position;
  1412. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1413. }
  1414. #endif
  1415. current_position[X_AXIS] = corrected_position.x;
  1416. current_position[Y_AXIS] = corrected_position.y;
  1417. current_position[Z_AXIS] = corrected_position.z;
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1420. #endif
  1421. sync_plan_position();
  1422. }
  1423. #endif // !AUTO_BED_LEVELING_GRID
  1424. static void run_z_probe() {
  1425. /**
  1426. * To prevent stepper_inactive_time from running out and
  1427. * EXTRUDER_RUNOUT_PREVENT from extruding
  1428. */
  1429. refresh_cmd_timeout();
  1430. #if ENABLED(DELTA)
  1431. float start_z = current_position[Z_AXIS];
  1432. long start_steps = stepper.position(Z_AXIS);
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1435. #endif
  1436. // move down slowly until you find the bed
  1437. feedrate = homing_feedrate[Z_AXIS] / 4;
  1438. destination[Z_AXIS] = -10;
  1439. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1440. stepper.synchronize();
  1441. endstops.hit_on_purpose(); // clear endstop hit flags
  1442. /**
  1443. * We have to let the planner know where we are right now as it
  1444. * is not where we said to go.
  1445. */
  1446. long stop_steps = stepper.position(Z_AXIS);
  1447. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1448. current_position[Z_AXIS] = mm;
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1451. #endif
  1452. sync_plan_position_delta();
  1453. #else // !DELTA
  1454. planner.bed_level_matrix.set_to_identity();
  1455. feedrate = homing_feedrate[Z_AXIS];
  1456. // Move down until the Z probe (or endstop?) is triggered
  1457. float zPosition = -(Z_MAX_LENGTH + 10);
  1458. line_to_z(zPosition);
  1459. stepper.synchronize();
  1460. // Tell the planner where we ended up - Get this from the stepper handler
  1461. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1462. planner.set_position_mm(
  1463. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1464. current_position[E_AXIS]
  1465. );
  1466. // move up the retract distance
  1467. zPosition += home_bump_mm(Z_AXIS);
  1468. line_to_z(zPosition);
  1469. stepper.synchronize();
  1470. endstops.hit_on_purpose(); // clear endstop hit flags
  1471. // move back down slowly to find bed
  1472. set_homing_bump_feedrate(Z_AXIS);
  1473. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1474. line_to_z(zPosition);
  1475. stepper.synchronize();
  1476. endstops.hit_on_purpose(); // clear endstop hit flags
  1477. // Get the current stepper position after bumping an endstop
  1478. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1479. sync_plan_position();
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1482. #endif
  1483. #endif // !DELTA
  1484. }
  1485. /**
  1486. * Plan a move to (X, Y, Z) and set the current_position
  1487. * The final current_position may not be the one that was requested
  1488. */
  1489. static void do_blocking_move_to(float x, float y, float z) {
  1490. float oldFeedRate = feedrate;
  1491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1492. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1493. #endif
  1494. #if ENABLED(DELTA)
  1495. feedrate = XY_TRAVEL_SPEED;
  1496. destination[X_AXIS] = x;
  1497. destination[Y_AXIS] = y;
  1498. destination[Z_AXIS] = z;
  1499. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1500. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1501. else
  1502. prepare_move_to_destination(); // this will also set_current_to_destination
  1503. stepper.synchronize();
  1504. #else
  1505. feedrate = homing_feedrate[Z_AXIS];
  1506. current_position[Z_AXIS] = z;
  1507. line_to_current_position();
  1508. stepper.synchronize();
  1509. feedrate = xy_travel_speed;
  1510. current_position[X_AXIS] = x;
  1511. current_position[Y_AXIS] = y;
  1512. line_to_current_position();
  1513. stepper.synchronize();
  1514. #endif
  1515. feedrate = oldFeedRate;
  1516. }
  1517. inline void do_blocking_move_to_xy(float x, float y) {
  1518. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1519. }
  1520. inline void do_blocking_move_to_x(float x) {
  1521. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1522. }
  1523. inline void do_blocking_move_to_z(float z) {
  1524. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1525. }
  1526. inline void raise_z_after_probing() {
  1527. #if Z_RAISE_AFTER_PROBING > 0
  1528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1529. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1530. #endif
  1531. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1532. #endif
  1533. }
  1534. static void clean_up_after_endstop_move() {
  1535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1537. #endif
  1538. endstops.not_homing();
  1539. feedrate = saved_feedrate;
  1540. feedrate_multiplier = saved_feedrate_multiplier;
  1541. refresh_cmd_timeout();
  1542. }
  1543. #if HAS_BED_PROBE
  1544. static void deploy_z_probe() {
  1545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1546. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1547. #endif
  1548. if (endstops.z_probe_enabled) return;
  1549. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1550. // Engage Z Servo endstop if enabled
  1551. if (SERVO_ENDSTOP_EXISTS(Z_AXIS))
  1552. DEPLOY_SERVO_ENDSTOP(Z_AXIS);
  1553. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1554. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1555. // If endstop is already false, the Z probe is deployed
  1556. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1557. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1558. if (z_probe_endstop)
  1559. #else
  1560. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1561. if (z_min_endstop)
  1562. #endif
  1563. {
  1564. // Move to the start position to initiate deployment
  1565. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1566. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1567. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1568. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1569. // Move to engage deployment
  1570. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1571. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1572. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1573. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1574. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1575. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1576. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1577. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1578. prepare_move_to_destination_raw();
  1579. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1580. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1581. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1582. // Move to trigger deployment
  1583. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1584. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1585. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1586. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1587. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1588. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1589. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1590. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1591. prepare_move_to_destination_raw();
  1592. #endif
  1593. }
  1594. // Partially Home X,Y for safety
  1595. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1596. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1597. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1598. stepper.synchronize();
  1599. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1600. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1601. if (z_probe_endstop)
  1602. #else
  1603. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1604. if (z_min_endstop)
  1605. #endif
  1606. {
  1607. if (IsRunning()) {
  1608. SERIAL_ERROR_START;
  1609. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1610. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1611. }
  1612. stop();
  1613. }
  1614. #endif // Z_PROBE_ALLEN_KEY
  1615. #if ENABLED(FIX_MOUNTED_PROBE)
  1616. // Noting to be done. Just set endstops.z_probe_enabled
  1617. #endif
  1618. endstops.enable_z_probe();
  1619. }
  1620. static void stow_z_probe(bool doRaise = true) {
  1621. #if !(ENABLED(HAS_SERVO_ENDSTOPS) && (Z_RAISE_AFTER_PROBING > 0))
  1622. UNUSED(doRaise);
  1623. #endif
  1624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1625. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1626. #endif
  1627. if (!endstops.z_probe_enabled) return;
  1628. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1629. // Retract Z Servo endstop if enabled
  1630. if (SERVO_ENDSTOP_EXISTS(Z_AXIS)) {
  1631. #if Z_RAISE_AFTER_PROBING > 0
  1632. if (doRaise) {
  1633. raise_z_after_probing(); // this also updates current_position
  1634. stepper.synchronize();
  1635. }
  1636. #endif
  1637. // Change the Z servo angle
  1638. STOW_SERVO_ENDSTOP(Z_AXIS);
  1639. }
  1640. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1641. // Move up for safety
  1642. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1643. #if Z_RAISE_AFTER_PROBING > 0
  1644. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1645. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1646. #endif
  1647. // Move to the start position to initiate retraction
  1648. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1649. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1650. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1651. prepare_move_to_destination_raw();
  1652. // Move the nozzle down to push the Z probe into retracted position
  1653. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1654. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1655. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1656. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1657. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1658. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1659. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1660. prepare_move_to_destination_raw();
  1661. // Move up for safety
  1662. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1663. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1664. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1665. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1666. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1667. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1668. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1669. prepare_move_to_destination_raw();
  1670. // Home XY for safety
  1671. feedrate = homing_feedrate[X_AXIS] / 2;
  1672. destination[X_AXIS] = 0;
  1673. destination[Y_AXIS] = 0;
  1674. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1675. stepper.synchronize();
  1676. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1677. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1678. if (!z_probe_endstop)
  1679. #else
  1680. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1681. if (!z_min_endstop)
  1682. #endif
  1683. {
  1684. if (IsRunning()) {
  1685. SERIAL_ERROR_START;
  1686. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1687. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1688. }
  1689. stop();
  1690. }
  1691. #endif // Z_PROBE_ALLEN_KEY
  1692. #if ENABLED(FIX_MOUNTED_PROBE)
  1693. // Nothing to do here. Just clear endstops.z_probe_enabled
  1694. #endif
  1695. endstops.enable_z_probe(false);
  1696. }
  1697. #endif // HAS_BED_PROBE
  1698. enum ProbeAction {
  1699. ProbeStay = 0,
  1700. ProbeDeploy = _BV(0),
  1701. ProbeStow = _BV(1),
  1702. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1703. };
  1704. // Probe bed height at position (x,y), returns the measured z value
  1705. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1707. if (DEBUGGING(LEVELING)) {
  1708. SERIAL_ECHOLNPGM("probe_pt >>>");
  1709. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1710. SERIAL_EOL;
  1711. DEBUG_POS("", current_position);
  1712. }
  1713. #endif
  1714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1715. if (DEBUGGING(LEVELING)) {
  1716. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1717. SERIAL_EOL;
  1718. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1719. SERIAL_EOL;
  1720. }
  1721. #endif
  1722. // Move Z up to the z_before height, then move the Z probe to the given XY
  1723. do_blocking_move_to_z(z_before); // this also updates current_position
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) {
  1726. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1727. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1728. SERIAL_EOL;
  1729. }
  1730. #endif
  1731. // this also updates current_position
  1732. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1733. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1734. if (probe_action & ProbeDeploy) {
  1735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1736. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1737. #endif
  1738. deploy_z_probe();
  1739. }
  1740. #endif
  1741. run_z_probe();
  1742. float measured_z = current_position[Z_AXIS];
  1743. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1744. if (probe_action & ProbeStow) {
  1745. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1746. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1747. #endif
  1748. stow_z_probe();
  1749. }
  1750. #endif
  1751. if (verbose_level > 2) {
  1752. SERIAL_PROTOCOLPGM("Bed X: ");
  1753. SERIAL_PROTOCOL_F(x, 3);
  1754. SERIAL_PROTOCOLPGM(" Y: ");
  1755. SERIAL_PROTOCOL_F(y, 3);
  1756. SERIAL_PROTOCOLPGM(" Z: ");
  1757. SERIAL_PROTOCOL_F(measured_z, 3);
  1758. SERIAL_EOL;
  1759. }
  1760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1761. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1762. #endif
  1763. return measured_z;
  1764. }
  1765. #if ENABLED(DELTA)
  1766. /**
  1767. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1768. */
  1769. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1770. if (bed_level[x][y] != 0.0) {
  1771. return; // Don't overwrite good values.
  1772. }
  1773. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1774. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1775. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1776. float median = c; // Median is robust (ignores outliers).
  1777. if (a < b) {
  1778. if (b < c) median = b;
  1779. if (c < a) median = a;
  1780. }
  1781. else { // b <= a
  1782. if (c < b) median = b;
  1783. if (a < c) median = a;
  1784. }
  1785. bed_level[x][y] = median;
  1786. }
  1787. /**
  1788. * Fill in the unprobed points (corners of circular print surface)
  1789. * using linear extrapolation, away from the center.
  1790. */
  1791. static void extrapolate_unprobed_bed_level() {
  1792. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1793. for (int y = 0; y <= half; y++) {
  1794. for (int x = 0; x <= half; x++) {
  1795. if (x + y < 3) continue;
  1796. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1797. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1798. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1799. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1800. }
  1801. }
  1802. }
  1803. /**
  1804. * Print calibration results for plotting or manual frame adjustment.
  1805. */
  1806. static void print_bed_level() {
  1807. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1808. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1809. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1810. SERIAL_PROTOCOLCHAR(' ');
  1811. }
  1812. SERIAL_EOL;
  1813. }
  1814. }
  1815. /**
  1816. * Reset calibration results to zero.
  1817. */
  1818. void reset_bed_level() {
  1819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1820. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1821. #endif
  1822. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1823. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1824. bed_level[x][y] = 0.0;
  1825. }
  1826. }
  1827. }
  1828. #endif // DELTA
  1829. #if ENABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_SLED)
  1830. void raise_z_for_servo() {
  1831. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1832. /**
  1833. * The zprobe_zoffset is negative any switch below the nozzle, so
  1834. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1835. */
  1836. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1837. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1838. }
  1839. #endif
  1840. #endif // AUTO_BED_LEVELING_FEATURE
  1841. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1842. static void axis_unhomed_error(bool xyz=false) {
  1843. if (xyz) {
  1844. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1845. SERIAL_ECHO_START;
  1846. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1847. }
  1848. else {
  1849. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1850. SERIAL_ECHO_START;
  1851. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1852. }
  1853. }
  1854. #endif
  1855. #if ENABLED(Z_PROBE_SLED)
  1856. #ifndef SLED_DOCKING_OFFSET
  1857. #define SLED_DOCKING_OFFSET 0
  1858. #endif
  1859. /**
  1860. * Method to dock/undock a sled designed by Charles Bell.
  1861. *
  1862. * dock[in] If true, move to MAX_X and engage the electromagnet
  1863. * offset[in] The additional distance to move to adjust docking location
  1864. */
  1865. static void dock_sled(bool dock, int offset = 0) {
  1866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1867. if (DEBUGGING(LEVELING)) {
  1868. SERIAL_ECHOPAIR("dock_sled(", dock);
  1869. SERIAL_ECHOLNPGM(")");
  1870. }
  1871. #endif
  1872. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1873. axis_unhomed_error(true);
  1874. return;
  1875. }
  1876. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1877. float oldXpos = current_position[X_AXIS]; // save x position
  1878. if (dock) {
  1879. raise_z_after_probing(); // raise Z
  1880. // Dock sled a bit closer to ensure proper capturing
  1881. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1882. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1883. }
  1884. else {
  1885. float z_loc = current_position[Z_AXIS];
  1886. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1887. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1888. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1889. }
  1890. do_blocking_move_to_x(oldXpos); // return to position before docking
  1891. endstops.enable_z_probe(!dock); // logically disable docked probe
  1892. }
  1893. #endif // Z_PROBE_SLED
  1894. /**
  1895. * Home an individual axis
  1896. */
  1897. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1898. static void homeaxis(AxisEnum axis) {
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1902. SERIAL_ECHOLNPGM(")");
  1903. }
  1904. #endif
  1905. #define HOMEAXIS_DO(LETTER) \
  1906. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1907. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1908. int axis_home_dir =
  1909. #if ENABLED(DUAL_X_CARRIAGE)
  1910. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1911. #endif
  1912. home_dir(axis);
  1913. // Set the axis position as setup for the move
  1914. current_position[axis] = 0;
  1915. sync_plan_position();
  1916. #if ENABLED(Z_PROBE_SLED)
  1917. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1918. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1919. #define _Z_DEPLOY (dock_sled(false))
  1920. #define _Z_STOW (dock_sled(true))
  1921. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1922. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1923. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1924. #define _Z_DEPLOY (deploy_z_probe())
  1925. #define _Z_STOW (stow_z_probe())
  1926. #elif ENABLED(HAS_SERVO_ENDSTOPS)
  1927. #define _Z_SERVO_TEST true // Z not deployed yet
  1928. #define _Z_SERVO_SUBTEST (axis == Z_AXIS) // Z is a probe
  1929. #endif
  1930. // If there's a Z probe that needs deployment...
  1931. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1932. // ...and homing Z towards the bed? Deploy it.
  1933. if (axis == Z_AXIS && axis_home_dir < 0) {
  1934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1935. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_DEPLOY));
  1936. #endif
  1937. _Z_DEPLOY;
  1938. }
  1939. #endif
  1940. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1941. // Engage an X, Y (or Z) Servo endstop if enabled
  1942. if (_Z_SERVO_TEST && SERVO_ENDSTOP_EXISTS(axis)) {
  1943. DEPLOY_SERVO_ENDSTOP(axis);
  1944. if (_Z_SERVO_SUBTEST) endstops.z_probe_enabled = true;
  1945. }
  1946. #endif
  1947. // Set a flag for Z motor locking
  1948. #if ENABLED(Z_DUAL_ENDSTOPS)
  1949. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1950. #endif
  1951. // Move towards the endstop until an endstop is triggered
  1952. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1953. feedrate = homing_feedrate[axis];
  1954. line_to_destination();
  1955. stepper.synchronize();
  1956. // Set the axis position as setup for the move
  1957. current_position[axis] = 0;
  1958. sync_plan_position();
  1959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1960. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1961. #endif
  1962. endstops.enable(false); // Disable endstops while moving away
  1963. // Move away from the endstop by the axis HOME_BUMP_MM
  1964. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1965. line_to_destination();
  1966. stepper.synchronize();
  1967. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1968. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1969. #endif
  1970. endstops.enable(true); // Enable endstops for next homing move
  1971. // Slow down the feedrate for the next move
  1972. set_homing_bump_feedrate(axis);
  1973. // Move slowly towards the endstop until triggered
  1974. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1975. line_to_destination();
  1976. stepper.synchronize();
  1977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1978. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1979. #endif
  1980. #if ENABLED(Z_DUAL_ENDSTOPS)
  1981. if (axis == Z_AXIS) {
  1982. float adj = fabs(z_endstop_adj);
  1983. bool lockZ1;
  1984. if (axis_home_dir > 0) {
  1985. adj = -adj;
  1986. lockZ1 = (z_endstop_adj > 0);
  1987. }
  1988. else
  1989. lockZ1 = (z_endstop_adj < 0);
  1990. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1991. sync_plan_position();
  1992. // Move to the adjusted endstop height
  1993. feedrate = homing_feedrate[axis];
  1994. destination[Z_AXIS] = adj;
  1995. line_to_destination();
  1996. stepper.synchronize();
  1997. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1998. stepper.set_homing_flag(false);
  1999. } // Z_AXIS
  2000. #endif
  2001. #if ENABLED(DELTA)
  2002. // retrace by the amount specified in endstop_adj
  2003. if (endstop_adj[axis] * axis_home_dir < 0) {
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2006. #endif
  2007. endstops.enable(false); // Disable endstops while moving away
  2008. sync_plan_position();
  2009. destination[axis] = endstop_adj[axis];
  2010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2011. if (DEBUGGING(LEVELING)) {
  2012. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2013. DEBUG_POS("", destination);
  2014. }
  2015. #endif
  2016. line_to_destination();
  2017. stepper.synchronize();
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2020. #endif
  2021. endstops.enable(true); // Enable endstops for next homing move
  2022. }
  2023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2024. else {
  2025. if (DEBUGGING(LEVELING)) {
  2026. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2027. SERIAL_EOL;
  2028. }
  2029. }
  2030. #endif
  2031. #endif
  2032. // Set the axis position to its home position (plus home offsets)
  2033. set_axis_is_at_home(axis);
  2034. sync_plan_position();
  2035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2036. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2037. #endif
  2038. destination[axis] = current_position[axis];
  2039. feedrate = 0.0;
  2040. endstops.hit_on_purpose(); // clear endstop hit flags
  2041. axis_known_position[axis] = true;
  2042. axis_homed[axis] = true;
  2043. // Put away the Z probe with a function
  2044. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  2045. if (axis == Z_AXIS && axis_home_dir < 0) {
  2046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  2048. #endif
  2049. _Z_STOW;
  2050. }
  2051. #endif
  2052. // Retract X, Y (or Z) Servo endstop if enabled
  2053. #if ENABLED(HAS_SERVO_ENDSTOPS)
  2054. if (_Z_SERVO_TEST && SERVO_ENDSTOP_EXISTS(axis)) {
  2055. // Raise the servo probe before stow outside ABL context.
  2056. // This is a workaround to allow use of a Servo Probe without
  2057. // ABL until more global probe handling is implemented.
  2058. #if Z_RAISE_AFTER_PROBING > 0
  2059. if (axis == Z_AXIS) {
  2060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2061. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  2062. #endif
  2063. current_position[Z_AXIS] = Z_RAISE_AFTER_PROBING;
  2064. feedrate = homing_feedrate[Z_AXIS];
  2065. line_to_current_position();
  2066. stepper.synchronize();
  2067. }
  2068. #endif
  2069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2070. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  2071. #endif
  2072. STOW_SERVO_ENDSTOP(axis);
  2073. if (_Z_SERVO_SUBTEST) endstops.enable_z_probe(false);
  2074. }
  2075. #endif // HAS_SERVO_ENDSTOPS
  2076. }
  2077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2078. if (DEBUGGING(LEVELING)) {
  2079. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2080. SERIAL_ECHOLNPGM(")");
  2081. }
  2082. #endif
  2083. }
  2084. #if ENABLED(FWRETRACT)
  2085. void retract(bool retracting, bool swapping = false) {
  2086. if (retracting == retracted[active_extruder]) return;
  2087. float oldFeedrate = feedrate;
  2088. set_destination_to_current();
  2089. if (retracting) {
  2090. feedrate = retract_feedrate * 60;
  2091. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2092. sync_plan_position_e();
  2093. prepare_move_to_destination();
  2094. if (retract_zlift > 0.01) {
  2095. current_position[Z_AXIS] -= retract_zlift;
  2096. #if ENABLED(DELTA)
  2097. sync_plan_position_delta();
  2098. #else
  2099. sync_plan_position();
  2100. #endif
  2101. prepare_move_to_destination();
  2102. }
  2103. }
  2104. else {
  2105. if (retract_zlift > 0.01) {
  2106. current_position[Z_AXIS] += retract_zlift;
  2107. #if ENABLED(DELTA)
  2108. sync_plan_position_delta();
  2109. #else
  2110. sync_plan_position();
  2111. #endif
  2112. }
  2113. feedrate = retract_recover_feedrate * 60;
  2114. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2115. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2116. sync_plan_position_e();
  2117. prepare_move_to_destination();
  2118. }
  2119. feedrate = oldFeedrate;
  2120. retracted[active_extruder] = retracting;
  2121. } // retract()
  2122. #endif // FWRETRACT
  2123. /**
  2124. * ***************************************************************************
  2125. * ***************************** G-CODE HANDLING *****************************
  2126. * ***************************************************************************
  2127. */
  2128. /**
  2129. * Set XYZE destination and feedrate from the current GCode command
  2130. *
  2131. * - Set destination from included axis codes
  2132. * - Set to current for missing axis codes
  2133. * - Set the feedrate, if included
  2134. */
  2135. void gcode_get_destination() {
  2136. for (int i = 0; i < NUM_AXIS; i++) {
  2137. if (code_seen(axis_codes[i]))
  2138. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2139. else
  2140. destination[i] = current_position[i];
  2141. }
  2142. if (code_seen('F')) {
  2143. float next_feedrate = code_value_linear_units();
  2144. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2145. }
  2146. }
  2147. void unknown_command_error() {
  2148. SERIAL_ECHO_START;
  2149. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2150. SERIAL_ECHO(current_command);
  2151. SERIAL_ECHOPGM("\"\n");
  2152. }
  2153. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2154. /**
  2155. * Output a "busy" message at regular intervals
  2156. * while the machine is not accepting commands.
  2157. */
  2158. void host_keepalive() {
  2159. millis_t ms = millis();
  2160. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2161. if (PENDING(ms, next_busy_signal_ms)) return;
  2162. switch (busy_state) {
  2163. case IN_HANDLER:
  2164. case IN_PROCESS:
  2165. SERIAL_ECHO_START;
  2166. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2167. break;
  2168. case PAUSED_FOR_USER:
  2169. SERIAL_ECHO_START;
  2170. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2171. break;
  2172. case PAUSED_FOR_INPUT:
  2173. SERIAL_ECHO_START;
  2174. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2175. break;
  2176. default:
  2177. break;
  2178. }
  2179. }
  2180. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2181. }
  2182. #endif //HOST_KEEPALIVE_FEATURE
  2183. /**
  2184. * G0, G1: Coordinated movement of X Y Z E axes
  2185. */
  2186. inline void gcode_G0_G1() {
  2187. if (IsRunning()) {
  2188. gcode_get_destination(); // For X Y Z E F
  2189. #if ENABLED(FWRETRACT)
  2190. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2191. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2192. // Is this move an attempt to retract or recover?
  2193. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2194. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2195. sync_plan_position_e(); // AND from the planner
  2196. retract(!retracted[active_extruder]);
  2197. return;
  2198. }
  2199. }
  2200. #endif //FWRETRACT
  2201. prepare_move_to_destination();
  2202. }
  2203. }
  2204. /**
  2205. * G2: Clockwise Arc
  2206. * G3: Counterclockwise Arc
  2207. */
  2208. #if ENABLED(ARC_SUPPORT)
  2209. inline void gcode_G2_G3(bool clockwise) {
  2210. if (IsRunning()) {
  2211. #if ENABLED(SF_ARC_FIX)
  2212. bool relative_mode_backup = relative_mode;
  2213. relative_mode = true;
  2214. #endif
  2215. gcode_get_destination();
  2216. #if ENABLED(SF_ARC_FIX)
  2217. relative_mode = relative_mode_backup;
  2218. #endif
  2219. // Center of arc as offset from current_position
  2220. float arc_offset[2] = {
  2221. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2222. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2223. };
  2224. // Send an arc to the planner
  2225. plan_arc(destination, arc_offset, clockwise);
  2226. refresh_cmd_timeout();
  2227. }
  2228. }
  2229. #endif
  2230. /**
  2231. * G4: Dwell S<seconds> or P<milliseconds>
  2232. */
  2233. inline void gcode_G4() {
  2234. millis_t codenum = 0;
  2235. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2236. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2237. stepper.synchronize();
  2238. refresh_cmd_timeout();
  2239. codenum += previous_cmd_ms; // keep track of when we started waiting
  2240. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2241. while (PENDING(millis(), codenum)) idle();
  2242. }
  2243. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2244. /**
  2245. * Parameters interpreted according to:
  2246. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2247. * However I, J omission is not supported at this point; all
  2248. * parameters can be omitted and default to zero.
  2249. */
  2250. /**
  2251. * G5: Cubic B-spline
  2252. */
  2253. inline void gcode_G5() {
  2254. if (IsRunning()) {
  2255. gcode_get_destination();
  2256. float offset[] = {
  2257. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2258. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2259. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2260. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2261. };
  2262. plan_cubic_move(offset);
  2263. }
  2264. }
  2265. #endif // BEZIER_CURVE_SUPPORT
  2266. #if ENABLED(FWRETRACT)
  2267. /**
  2268. * G10 - Retract filament according to settings of M207
  2269. * G11 - Recover filament according to settings of M208
  2270. */
  2271. inline void gcode_G10_G11(bool doRetract=false) {
  2272. #if EXTRUDERS > 1
  2273. if (doRetract) {
  2274. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2275. }
  2276. #endif
  2277. retract(doRetract
  2278. #if EXTRUDERS > 1
  2279. , retracted_swap[active_extruder]
  2280. #endif
  2281. );
  2282. }
  2283. #endif //FWRETRACT
  2284. #if ENABLED(INCH_MODE_SUPPORT)
  2285. /**
  2286. * G20: Set input mode to inches
  2287. */
  2288. inline void gcode_G20() {
  2289. set_input_linear_units(LINEARUNIT_INCH);
  2290. }
  2291. /**
  2292. * G21: Set input mode to millimeters
  2293. */
  2294. inline void gcode_G21() {
  2295. set_input_linear_units(LINEARUNIT_MM);
  2296. }
  2297. #endif
  2298. /**
  2299. * G28: Home all axes according to settings
  2300. *
  2301. * Parameters
  2302. *
  2303. * None Home to all axes with no parameters.
  2304. * With QUICK_HOME enabled XY will home together, then Z.
  2305. *
  2306. * Cartesian parameters
  2307. *
  2308. * X Home to the X endstop
  2309. * Y Home to the Y endstop
  2310. * Z Home to the Z endstop
  2311. *
  2312. */
  2313. inline void gcode_G28() {
  2314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2315. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2316. #endif
  2317. // Wait for planner moves to finish!
  2318. stepper.synchronize();
  2319. // For auto bed leveling, clear the level matrix
  2320. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2321. planner.bed_level_matrix.set_to_identity();
  2322. #if ENABLED(DELTA)
  2323. reset_bed_level();
  2324. #endif
  2325. #endif
  2326. /**
  2327. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2328. * on again when homing all axis
  2329. */
  2330. #if ENABLED(MESH_BED_LEVELING)
  2331. float pre_home_z = MESH_HOME_SEARCH_Z;
  2332. if (mbl.active()) {
  2333. // Save known Z position if already homed
  2334. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2335. pre_home_z = current_position[Z_AXIS];
  2336. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2337. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2338. }
  2339. mbl.set_active(false);
  2340. }
  2341. #endif
  2342. setup_for_endstop_move();
  2343. /**
  2344. * Directly after a reset this is all 0. Later we get a hint if we have
  2345. * to raise z or not.
  2346. */
  2347. set_destination_to_current();
  2348. feedrate = 0.0;
  2349. #if ENABLED(DELTA)
  2350. /**
  2351. * A delta can only safely home all axis at the same time
  2352. * all axis have to home at the same time
  2353. */
  2354. // Pretend the current position is 0,0,0
  2355. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2356. sync_plan_position();
  2357. // Move all carriages up together until the first endstop is hit.
  2358. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2359. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2360. line_to_destination();
  2361. stepper.synchronize();
  2362. endstops.hit_on_purpose(); // clear endstop hit flags
  2363. // Destination reached
  2364. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2365. // take care of back off and rehome now we are all at the top
  2366. HOMEAXIS(X);
  2367. HOMEAXIS(Y);
  2368. HOMEAXIS(Z);
  2369. sync_plan_position_delta();
  2370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2371. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2372. #endif
  2373. #else // NOT DELTA
  2374. bool homeX = code_seen(axis_codes[X_AXIS]),
  2375. homeY = code_seen(axis_codes[Y_AXIS]),
  2376. homeZ = code_seen(axis_codes[Z_AXIS]);
  2377. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2378. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2379. if (home_all_axis || homeZ) {
  2380. HOMEAXIS(Z);
  2381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2382. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2383. #endif
  2384. }
  2385. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2386. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2387. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2388. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2389. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2391. if (DEBUGGING(LEVELING)) {
  2392. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2393. SERIAL_EOL;
  2394. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2395. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2396. }
  2397. #endif
  2398. line_to_destination();
  2399. stepper.synchronize();
  2400. /**
  2401. * Update the current Z position even if it currently not real from
  2402. * Z-home otherwise each call to line_to_destination() will want to
  2403. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2404. */
  2405. current_position[Z_AXIS] = destination[Z_AXIS];
  2406. }
  2407. #endif
  2408. #if ENABLED(QUICK_HOME)
  2409. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2410. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2411. #if ENABLED(DUAL_X_CARRIAGE)
  2412. int x_axis_home_dir = x_home_dir(active_extruder);
  2413. extruder_duplication_enabled = false;
  2414. #else
  2415. int x_axis_home_dir = home_dir(X_AXIS);
  2416. #endif
  2417. sync_plan_position();
  2418. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2419. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2420. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2421. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2422. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2423. line_to_destination();
  2424. stepper.synchronize();
  2425. set_axis_is_at_home(X_AXIS);
  2426. set_axis_is_at_home(Y_AXIS);
  2427. sync_plan_position();
  2428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2429. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2430. #endif
  2431. destination[X_AXIS] = current_position[X_AXIS];
  2432. destination[Y_AXIS] = current_position[Y_AXIS];
  2433. line_to_destination();
  2434. feedrate = 0.0;
  2435. stepper.synchronize();
  2436. endstops.hit_on_purpose(); // clear endstop hit flags
  2437. current_position[X_AXIS] = destination[X_AXIS];
  2438. current_position[Y_AXIS] = destination[Y_AXIS];
  2439. #if DISABLED(SCARA)
  2440. current_position[Z_AXIS] = destination[Z_AXIS];
  2441. #endif
  2442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2443. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2444. #endif
  2445. }
  2446. #endif // QUICK_HOME
  2447. #if ENABLED(HOME_Y_BEFORE_X)
  2448. // Home Y
  2449. if (home_all_axis || homeY) HOMEAXIS(Y);
  2450. #endif
  2451. // Home X
  2452. if (home_all_axis || homeX) {
  2453. #if ENABLED(DUAL_X_CARRIAGE)
  2454. int tmp_extruder = active_extruder;
  2455. extruder_duplication_enabled = false;
  2456. active_extruder = !active_extruder;
  2457. HOMEAXIS(X);
  2458. inactive_extruder_x_pos = current_position[X_AXIS];
  2459. active_extruder = tmp_extruder;
  2460. HOMEAXIS(X);
  2461. // reset state used by the different modes
  2462. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2463. delayed_move_time = 0;
  2464. active_extruder_parked = true;
  2465. #else
  2466. HOMEAXIS(X);
  2467. #endif
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2470. #endif
  2471. }
  2472. #if DISABLED(HOME_Y_BEFORE_X)
  2473. // Home Y
  2474. if (home_all_axis || homeY) {
  2475. HOMEAXIS(Y);
  2476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2477. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2478. #endif
  2479. }
  2480. #endif
  2481. // Home Z last if homing towards the bed
  2482. #if Z_HOME_DIR < 0
  2483. if (home_all_axis || homeZ) {
  2484. #if ENABLED(Z_SAFE_HOMING)
  2485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2486. if (DEBUGGING(LEVELING)) {
  2487. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2488. }
  2489. #endif
  2490. if (home_all_axis) {
  2491. /**
  2492. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2493. * No need to move Z any more as this height should already be safe
  2494. * enough to reach Z_SAFE_HOMING XY positions.
  2495. * Just make sure the planner is in sync.
  2496. */
  2497. sync_plan_position();
  2498. /**
  2499. * Set the Z probe (or just the nozzle) destination to the safe
  2500. * homing point
  2501. */
  2502. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2503. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2504. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2505. feedrate = XY_TRAVEL_SPEED;
  2506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2507. if (DEBUGGING(LEVELING)) {
  2508. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2509. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2510. }
  2511. #endif
  2512. // Move in the XY plane
  2513. line_to_destination();
  2514. stepper.synchronize();
  2515. /**
  2516. * Update the current positions for XY, Z is still at least at
  2517. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2518. */
  2519. current_position[X_AXIS] = destination[X_AXIS];
  2520. current_position[Y_AXIS] = destination[Y_AXIS];
  2521. // Home the Z axis
  2522. HOMEAXIS(Z);
  2523. }
  2524. else if (homeZ) { // Don't need to Home Z twice
  2525. // Let's see if X and Y are homed
  2526. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2527. /**
  2528. * Make sure the Z probe is within the physical limits
  2529. * NOTE: This doesn't necessarily ensure the Z probe is also
  2530. * within the bed!
  2531. */
  2532. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2533. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2534. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2535. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2536. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2537. // Home the Z axis
  2538. HOMEAXIS(Z);
  2539. }
  2540. else {
  2541. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2542. SERIAL_ECHO_START;
  2543. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2544. }
  2545. }
  2546. else {
  2547. axis_unhomed_error();
  2548. }
  2549. } // !home_all_axes && homeZ
  2550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2551. if (DEBUGGING(LEVELING)) {
  2552. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2553. }
  2554. #endif
  2555. #else // !Z_SAFE_HOMING
  2556. HOMEAXIS(Z);
  2557. #endif // !Z_SAFE_HOMING
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2560. #endif
  2561. } // home_all_axis || homeZ
  2562. #endif // Z_HOME_DIR < 0
  2563. sync_plan_position();
  2564. #endif // else DELTA
  2565. #if ENABLED(SCARA)
  2566. sync_plan_position_delta();
  2567. #endif
  2568. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2569. endstops.enable(false);
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) {
  2572. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2573. }
  2574. #endif
  2575. #endif
  2576. // Enable mesh leveling again
  2577. #if ENABLED(MESH_BED_LEVELING)
  2578. if (mbl.has_mesh()) {
  2579. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2580. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2581. sync_plan_position();
  2582. mbl.set_active(true);
  2583. #if ENABLED(MESH_G28_REST_ORIGIN)
  2584. current_position[Z_AXIS] = 0.0;
  2585. set_destination_to_current();
  2586. feedrate = homing_feedrate[Z_AXIS];
  2587. line_to_destination();
  2588. stepper.synchronize();
  2589. #else
  2590. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2591. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2592. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2593. #endif
  2594. }
  2595. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2596. current_position[Z_AXIS] = pre_home_z;
  2597. sync_plan_position();
  2598. mbl.set_active(true);
  2599. current_position[Z_AXIS] = pre_home_z -
  2600. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2601. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2602. }
  2603. }
  2604. #endif
  2605. feedrate = saved_feedrate;
  2606. feedrate_multiplier = saved_feedrate_multiplier;
  2607. refresh_cmd_timeout();
  2608. endstops.hit_on_purpose(); // clear endstop hit flags
  2609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2610. if (DEBUGGING(LEVELING)) {
  2611. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2612. }
  2613. #endif
  2614. report_current_position();
  2615. }
  2616. #if ENABLED(MESH_BED_LEVELING)
  2617. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2618. inline void _mbl_goto_xy(float x, float y) {
  2619. saved_feedrate = feedrate;
  2620. feedrate = homing_feedrate[X_AXIS];
  2621. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2622. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2623. + MIN_Z_HEIGHT_FOR_HOMING
  2624. #endif
  2625. ;
  2626. line_to_current_position();
  2627. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2628. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2629. line_to_current_position();
  2630. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2631. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2632. line_to_current_position();
  2633. #endif
  2634. feedrate = saved_feedrate;
  2635. stepper.synchronize();
  2636. }
  2637. /**
  2638. * G29: Mesh-based Z probe, probes a grid and produces a
  2639. * mesh to compensate for variable bed height
  2640. *
  2641. * Parameters With MESH_BED_LEVELING:
  2642. *
  2643. * S0 Produce a mesh report
  2644. * S1 Start probing mesh points
  2645. * S2 Probe the next mesh point
  2646. * S3 Xn Yn Zn.nn Manually modify a single point
  2647. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2648. * S5 Reset and disable mesh
  2649. *
  2650. * The S0 report the points as below
  2651. *
  2652. * +----> X-axis 1-n
  2653. * |
  2654. * |
  2655. * v Y-axis 1-n
  2656. *
  2657. */
  2658. inline void gcode_G29() {
  2659. static int probe_point = -1;
  2660. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2661. if (state < 0 || state > 5) {
  2662. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2663. return;
  2664. }
  2665. int8_t px, py;
  2666. float z;
  2667. switch (state) {
  2668. case MeshReport:
  2669. if (mbl.has_mesh()) {
  2670. SERIAL_PROTOCOLPGM("State: ");
  2671. if (mbl.active())
  2672. SERIAL_PROTOCOLPGM("On");
  2673. else
  2674. SERIAL_PROTOCOLPGM("Off");
  2675. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2676. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2677. SERIAL_PROTOCOLCHAR(',');
  2678. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2679. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2680. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2681. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2682. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2683. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2684. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2685. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2686. SERIAL_PROTOCOLPGM(" ");
  2687. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2688. }
  2689. SERIAL_EOL;
  2690. }
  2691. }
  2692. else
  2693. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2694. break;
  2695. case MeshStart:
  2696. mbl.reset();
  2697. probe_point = 0;
  2698. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2699. break;
  2700. case MeshNext:
  2701. if (probe_point < 0) {
  2702. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2703. return;
  2704. }
  2705. // For each G29 S2...
  2706. if (probe_point == 0) {
  2707. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2708. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2709. sync_plan_position();
  2710. }
  2711. else {
  2712. // For G29 S2 after adjusting Z.
  2713. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2714. }
  2715. // If there's another point to sample, move there with optional lift.
  2716. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2717. mbl.zigzag(probe_point, px, py);
  2718. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2719. probe_point++;
  2720. }
  2721. else {
  2722. // One last "return to the bed" (as originally coded) at completion
  2723. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2724. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2725. + MIN_Z_HEIGHT_FOR_HOMING
  2726. #endif
  2727. ;
  2728. line_to_current_position();
  2729. stepper.synchronize();
  2730. // After recording the last point, activate the mbl and home
  2731. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2732. probe_point = -1;
  2733. mbl.set_has_mesh(true);
  2734. enqueue_and_echo_commands_P(PSTR("G28"));
  2735. }
  2736. break;
  2737. case MeshSet:
  2738. if (code_seen('X')) {
  2739. px = code_value_int() - 1;
  2740. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2741. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2742. return;
  2743. }
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLPGM("X not entered.\n");
  2747. return;
  2748. }
  2749. if (code_seen('Y')) {
  2750. py = code_value_int() - 1;
  2751. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2752. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2753. return;
  2754. }
  2755. }
  2756. else {
  2757. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2758. return;
  2759. }
  2760. if (code_seen('Z')) {
  2761. z = code_value_axis_units(Z_AXIS);
  2762. }
  2763. else {
  2764. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2765. return;
  2766. }
  2767. mbl.z_values[py][px] = z;
  2768. break;
  2769. case MeshSetZOffset:
  2770. if (code_seen('Z')) {
  2771. z = code_value_axis_units(Z_AXIS);
  2772. }
  2773. else {
  2774. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2775. return;
  2776. }
  2777. mbl.z_offset = z;
  2778. break;
  2779. case MeshReset:
  2780. if (mbl.active()) {
  2781. current_position[Z_AXIS] +=
  2782. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2783. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2784. mbl.reset();
  2785. sync_plan_position();
  2786. }
  2787. else
  2788. mbl.reset();
  2789. } // switch(state)
  2790. report_current_position();
  2791. }
  2792. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2793. void out_of_range_error(const char* p_edge) {
  2794. SERIAL_PROTOCOLPGM("?Probe ");
  2795. serialprintPGM(p_edge);
  2796. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2797. }
  2798. /**
  2799. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2800. * Will fail if the printer has not been homed with G28.
  2801. *
  2802. * Enhanced G29 Auto Bed Leveling Probe Routine
  2803. *
  2804. * Parameters With AUTO_BED_LEVELING_GRID:
  2805. *
  2806. * P Set the size of the grid that will be probed (P x P points).
  2807. * Not supported by non-linear delta printer bed leveling.
  2808. * Example: "G29 P4"
  2809. *
  2810. * S Set the XY travel speed between probe points (in mm/min)
  2811. *
  2812. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2813. * or clean the rotation Matrix. Useful to check the topology
  2814. * after a first run of G29.
  2815. *
  2816. * V Set the verbose level (0-4). Example: "G29 V3"
  2817. *
  2818. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2819. * This is useful for manual bed leveling and finding flaws in the bed (to
  2820. * assist with part placement).
  2821. * Not supported by non-linear delta printer bed leveling.
  2822. *
  2823. * F Set the Front limit of the probing grid
  2824. * B Set the Back limit of the probing grid
  2825. * L Set the Left limit of the probing grid
  2826. * R Set the Right limit of the probing grid
  2827. *
  2828. * Global Parameters:
  2829. *
  2830. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2831. * Include "E" to engage/disengage the Z probe for each sample.
  2832. * There's no extra effect if you have a fixed Z probe.
  2833. * Usage: "G29 E" or "G29 e"
  2834. *
  2835. */
  2836. inline void gcode_G29() {
  2837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2838. if (DEBUGGING(LEVELING)) {
  2839. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2840. DEBUG_POS("", current_position);
  2841. }
  2842. #endif
  2843. // Don't allow auto-leveling without homing first
  2844. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2845. axis_unhomed_error(true);
  2846. return;
  2847. }
  2848. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2849. if (verbose_level < 0 || verbose_level > 4) {
  2850. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2851. return;
  2852. }
  2853. bool dryrun = code_seen('D'),
  2854. deploy_probe_for_each_reading = code_seen('E');
  2855. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2856. #if DISABLED(DELTA)
  2857. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2858. #endif
  2859. if (verbose_level > 0) {
  2860. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2861. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2862. }
  2863. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2864. #if DISABLED(DELTA)
  2865. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2866. if (auto_bed_leveling_grid_points < 2) {
  2867. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2868. return;
  2869. }
  2870. #endif
  2871. xy_travel_speed = code_seen('S') ? (int)code_value_linear_units() : XY_TRAVEL_SPEED;
  2872. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2873. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2874. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2875. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2876. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2877. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2878. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2879. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2880. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2881. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2882. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2883. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2884. if (left_out || right_out || front_out || back_out) {
  2885. if (left_out) {
  2886. out_of_range_error(PSTR("(L)eft"));
  2887. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2888. }
  2889. if (right_out) {
  2890. out_of_range_error(PSTR("(R)ight"));
  2891. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2892. }
  2893. if (front_out) {
  2894. out_of_range_error(PSTR("(F)ront"));
  2895. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2896. }
  2897. if (back_out) {
  2898. out_of_range_error(PSTR("(B)ack"));
  2899. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2900. }
  2901. return;
  2902. }
  2903. #endif // AUTO_BED_LEVELING_GRID
  2904. if (!dryrun) {
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2906. if (DEBUGGING(LEVELING)) {
  2907. vector_3 corrected_position = planner.adjusted_position();
  2908. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2909. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2910. }
  2911. #endif
  2912. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2913. planner.bed_level_matrix.set_to_identity();
  2914. #if ENABLED(DELTA)
  2915. reset_bed_level();
  2916. #else //!DELTA
  2917. //vector_3 corrected_position = planner.adjusted_position();
  2918. //corrected_position.debug("position before G29");
  2919. vector_3 uncorrected_position = planner.adjusted_position();
  2920. //uncorrected_position.debug("position during G29");
  2921. current_position[X_AXIS] = uncorrected_position.x;
  2922. current_position[Y_AXIS] = uncorrected_position.y;
  2923. current_position[Z_AXIS] = uncorrected_position.z;
  2924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2925. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2926. #endif
  2927. sync_plan_position();
  2928. #endif // !DELTA
  2929. }
  2930. #if ENABLED(Z_PROBE_SLED)
  2931. dock_sled(false); // engage (un-dock) the Z probe
  2932. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2933. deploy_z_probe();
  2934. #endif
  2935. stepper.synchronize();
  2936. setup_for_endstop_move();
  2937. feedrate = homing_feedrate[Z_AXIS];
  2938. bed_leveling_in_progress = true;
  2939. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2940. // probe at the points of a lattice grid
  2941. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2942. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2943. #if ENABLED(DELTA)
  2944. delta_grid_spacing[0] = xGridSpacing;
  2945. delta_grid_spacing[1] = yGridSpacing;
  2946. float zoffset = zprobe_zoffset;
  2947. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2948. #else // !DELTA
  2949. /**
  2950. * solve the plane equation ax + by + d = z
  2951. * A is the matrix with rows [x y 1] for all the probed points
  2952. * B is the vector of the Z positions
  2953. * the normal vector to the plane is formed by the coefficients of the
  2954. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2955. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2956. */
  2957. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2958. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2959. eqnBVector[abl2], // "B" vector of Z points
  2960. mean = 0.0;
  2961. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2962. #endif // !DELTA
  2963. int probePointCounter = 0;
  2964. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2965. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2966. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2967. int xStart, xStop, xInc;
  2968. if (zig) {
  2969. xStart = 0;
  2970. xStop = auto_bed_leveling_grid_points;
  2971. xInc = 1;
  2972. }
  2973. else {
  2974. xStart = auto_bed_leveling_grid_points - 1;
  2975. xStop = -1;
  2976. xInc = -1;
  2977. }
  2978. zig = !zig;
  2979. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2980. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2981. // raise extruder
  2982. float measured_z,
  2983. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2984. if (probePointCounter) {
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. if (DEBUGGING(LEVELING)) {
  2987. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2988. SERIAL_EOL;
  2989. }
  2990. #endif
  2991. }
  2992. else {
  2993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2994. if (DEBUGGING(LEVELING)) {
  2995. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2996. SERIAL_EOL;
  2997. }
  2998. #endif
  2999. }
  3000. #if ENABLED(DELTA)
  3001. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3002. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3003. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3004. #endif //DELTA
  3005. ProbeAction act;
  3006. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  3007. act = ProbeDeployAndStow;
  3008. else if (yCount == 0 && xCount == xStart)
  3009. act = ProbeDeploy;
  3010. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  3011. act = ProbeStow;
  3012. else
  3013. act = ProbeStay;
  3014. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  3015. #if DISABLED(DELTA)
  3016. mean += measured_z;
  3017. eqnBVector[probePointCounter] = measured_z;
  3018. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3019. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3020. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3021. indexIntoAB[xCount][yCount] = probePointCounter;
  3022. #else
  3023. bed_level[xCount][yCount] = measured_z + zoffset;
  3024. #endif
  3025. probePointCounter++;
  3026. idle();
  3027. } //xProbe
  3028. } //yProbe
  3029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3030. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3031. #endif
  3032. clean_up_after_endstop_move();
  3033. #if ENABLED(DELTA)
  3034. if (!dryrun) extrapolate_unprobed_bed_level();
  3035. print_bed_level();
  3036. #else // !DELTA
  3037. // solve lsq problem
  3038. double plane_equation_coefficients[3];
  3039. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3040. mean /= abl2;
  3041. if (verbose_level) {
  3042. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3043. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3044. SERIAL_PROTOCOLPGM(" b: ");
  3045. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3046. SERIAL_PROTOCOLPGM(" d: ");
  3047. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3048. SERIAL_EOL;
  3049. if (verbose_level > 2) {
  3050. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3051. SERIAL_PROTOCOL_F(mean, 8);
  3052. SERIAL_EOL;
  3053. }
  3054. }
  3055. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3056. // Show the Topography map if enabled
  3057. if (do_topography_map) {
  3058. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3059. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3060. SERIAL_PROTOCOLPGM(" | |\n");
  3061. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3062. SERIAL_PROTOCOLPGM(" E | | I\n");
  3063. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3064. SERIAL_PROTOCOLPGM(" T | | H\n");
  3065. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3066. SERIAL_PROTOCOLPGM(" | |\n");
  3067. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3068. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3069. float min_diff = 999;
  3070. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3071. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3072. int ind = indexIntoAB[xx][yy];
  3073. float diff = eqnBVector[ind] - mean;
  3074. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3075. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3076. z_tmp = 0;
  3077. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3078. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3079. if (diff >= 0.0)
  3080. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3081. else
  3082. SERIAL_PROTOCOLCHAR(' ');
  3083. SERIAL_PROTOCOL_F(diff, 5);
  3084. } // xx
  3085. SERIAL_EOL;
  3086. } // yy
  3087. SERIAL_EOL;
  3088. if (verbose_level > 3) {
  3089. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3090. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3091. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3092. int ind = indexIntoAB[xx][yy];
  3093. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3094. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3095. z_tmp = 0;
  3096. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3097. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3098. if (diff >= 0.0)
  3099. SERIAL_PROTOCOLPGM(" +");
  3100. // Include + for column alignment
  3101. else
  3102. SERIAL_PROTOCOLCHAR(' ');
  3103. SERIAL_PROTOCOL_F(diff, 5);
  3104. } // xx
  3105. SERIAL_EOL;
  3106. } // yy
  3107. SERIAL_EOL;
  3108. }
  3109. } //do_topography_map
  3110. #endif //!DELTA
  3111. #else // !AUTO_BED_LEVELING_GRID
  3112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3113. if (DEBUGGING(LEVELING)) {
  3114. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3115. }
  3116. #endif
  3117. // Actions for each probe
  3118. ProbeAction p1, p2, p3;
  3119. if (deploy_probe_for_each_reading)
  3120. p1 = p2 = p3 = ProbeDeployAndStow;
  3121. else
  3122. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3123. // Probe at 3 arbitrary points
  3124. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3125. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3126. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3127. p1, verbose_level),
  3128. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3129. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3130. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3131. p2, verbose_level),
  3132. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3133. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3134. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3135. p3, verbose_level);
  3136. clean_up_after_endstop_move();
  3137. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3138. #endif // !AUTO_BED_LEVELING_GRID
  3139. #if ENABLED(DELTA)
  3140. // Allen Key Probe for Delta
  3141. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  3142. stow_z_probe();
  3143. #else
  3144. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  3145. #endif
  3146. #else // !DELTA
  3147. if (verbose_level > 0)
  3148. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3149. if (!dryrun) {
  3150. /**
  3151. * Correct the Z height difference from Z probe position and nozzle tip position.
  3152. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3153. * from the nozzle. When the bed is uneven, this height must be corrected.
  3154. */
  3155. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3156. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3157. z_tmp = current_position[Z_AXIS],
  3158. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3160. if (DEBUGGING(LEVELING)) {
  3161. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3162. SERIAL_EOL;
  3163. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3164. SERIAL_EOL;
  3165. }
  3166. #endif
  3167. // Apply the correction sending the Z probe offset
  3168. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3169. /*
  3170. * Get the current Z position and send it to the planner.
  3171. *
  3172. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3173. * (most recent planner.set_position_mm/sync_plan_position)
  3174. *
  3175. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3176. * (set by default, M851, EEPROM, or Menu)
  3177. *
  3178. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3179. * after the last probe
  3180. *
  3181. * >> Should home_offset[Z_AXIS] be included?
  3182. *
  3183. *
  3184. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3185. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3186. * not actually "homing" Z... then perhaps it should not be included
  3187. * here. The purpose of home_offset[] is to adjust for inaccurate
  3188. * endstops, not for reasonably accurate probes. If it were added
  3189. * here, it could be seen as a compensating factor for the Z probe.
  3190. */
  3191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3192. if (DEBUGGING(LEVELING)) {
  3193. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3194. SERIAL_EOL;
  3195. }
  3196. #endif
  3197. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3198. #if ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3199. + Z_RAISE_AFTER_PROBING
  3200. #endif
  3201. ;
  3202. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3203. sync_plan_position();
  3204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3205. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3206. #endif
  3207. }
  3208. // Sled assembly for Cartesian bots
  3209. #if ENABLED(Z_PROBE_SLED)
  3210. dock_sled(true); // dock the sled
  3211. #else
  3212. // Raise Z axis for non-delta and non servo based probes
  3213. #if DISABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3214. raise_z_after_probing();
  3215. #endif
  3216. #endif
  3217. #endif // !DELTA
  3218. #if ENABLED(MECHANICAL_PROBE)
  3219. stow_z_probe();
  3220. #endif
  3221. #ifdef Z_PROBE_END_SCRIPT
  3222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3223. if (DEBUGGING(LEVELING)) {
  3224. SERIAL_ECHO("Z Probe End Script: ");
  3225. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3226. }
  3227. #endif
  3228. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3229. #if HAS_BED_PROBE
  3230. endstops.enable_z_probe(false);
  3231. #endif
  3232. stepper.synchronize();
  3233. #endif
  3234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3235. if (DEBUGGING(LEVELING)) {
  3236. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3237. }
  3238. #endif
  3239. bed_leveling_in_progress = false;
  3240. report_current_position();
  3241. KEEPALIVE_STATE(IN_HANDLER);
  3242. }
  3243. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3244. /**
  3245. * G30: Do a single Z probe at the current XY
  3246. */
  3247. inline void gcode_G30() {
  3248. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3249. raise_z_for_servo();
  3250. #endif
  3251. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3252. stepper.synchronize();
  3253. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3254. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3255. feedrate = homing_feedrate[Z_AXIS];
  3256. run_z_probe();
  3257. SERIAL_PROTOCOLPGM("Bed X: ");
  3258. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3259. SERIAL_PROTOCOLPGM(" Y: ");
  3260. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3261. SERIAL_PROTOCOLPGM(" Z: ");
  3262. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3263. SERIAL_EOL;
  3264. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3265. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3266. raise_z_for_servo();
  3267. #endif
  3268. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3269. report_current_position();
  3270. }
  3271. #endif //!Z_PROBE_SLED
  3272. #endif //AUTO_BED_LEVELING_FEATURE
  3273. /**
  3274. * G92: Set current position to given X Y Z E
  3275. */
  3276. inline void gcode_G92() {
  3277. bool didE = code_seen(axis_codes[E_AXIS]);
  3278. if (!didE) stepper.synchronize();
  3279. bool didXYZ = false;
  3280. for (int i = 0; i < NUM_AXIS; i++) {
  3281. if (code_seen(axis_codes[i])) {
  3282. float p = current_position[i],
  3283. v = code_value_axis_units(i);
  3284. current_position[i] = v;
  3285. if (i != E_AXIS) {
  3286. position_shift[i] += v - p; // Offset the coordinate space
  3287. update_software_endstops((AxisEnum)i);
  3288. didXYZ = true;
  3289. }
  3290. }
  3291. }
  3292. if (didXYZ) {
  3293. #if ENABLED(DELTA) || ENABLED(SCARA)
  3294. sync_plan_position_delta();
  3295. #else
  3296. sync_plan_position();
  3297. #endif
  3298. }
  3299. else if (didE) {
  3300. sync_plan_position_e();
  3301. }
  3302. }
  3303. #if ENABLED(ULTIPANEL)
  3304. /**
  3305. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3306. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3307. */
  3308. inline void gcode_M0_M1() {
  3309. char* args = current_command_args;
  3310. uint8_t test_value = 12;
  3311. SERIAL_ECHOPAIR("TEST", test_value);
  3312. millis_t codenum = 0;
  3313. bool hasP = false, hasS = false;
  3314. if (code_seen('P')) {
  3315. codenum = code_value_millis(); // milliseconds to wait
  3316. hasP = codenum > 0;
  3317. }
  3318. if (code_seen('S')) {
  3319. codenum = code_value_millis_from_seconds(); // seconds to wait
  3320. hasS = codenum > 0;
  3321. }
  3322. if (!hasP && !hasS && *args != '\0')
  3323. lcd_setstatus(args, true);
  3324. else {
  3325. LCD_MESSAGEPGM(MSG_USERWAIT);
  3326. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3327. dontExpireStatus();
  3328. #endif
  3329. }
  3330. lcd_ignore_click();
  3331. stepper.synchronize();
  3332. refresh_cmd_timeout();
  3333. if (codenum > 0) {
  3334. codenum += previous_cmd_ms; // wait until this time for a click
  3335. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3336. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3337. KEEPALIVE_STATE(IN_HANDLER);
  3338. lcd_ignore_click(false);
  3339. }
  3340. else {
  3341. if (!lcd_detected()) return;
  3342. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3343. while (!lcd_clicked()) idle();
  3344. KEEPALIVE_STATE(IN_HANDLER);
  3345. }
  3346. if (IS_SD_PRINTING)
  3347. LCD_MESSAGEPGM(MSG_RESUMING);
  3348. else
  3349. LCD_MESSAGEPGM(WELCOME_MSG);
  3350. }
  3351. #endif // ULTIPANEL
  3352. /**
  3353. * M17: Enable power on all stepper motors
  3354. */
  3355. inline void gcode_M17() {
  3356. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3357. enable_all_steppers();
  3358. }
  3359. #if ENABLED(SDSUPPORT)
  3360. /**
  3361. * M20: List SD card to serial output
  3362. */
  3363. inline void gcode_M20() {
  3364. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3365. card.ls();
  3366. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3367. }
  3368. /**
  3369. * M21: Init SD Card
  3370. */
  3371. inline void gcode_M21() {
  3372. card.initsd();
  3373. }
  3374. /**
  3375. * M22: Release SD Card
  3376. */
  3377. inline void gcode_M22() {
  3378. card.release();
  3379. }
  3380. /**
  3381. * M23: Open a file
  3382. */
  3383. inline void gcode_M23() {
  3384. card.openFile(current_command_args, true);
  3385. }
  3386. /**
  3387. * M24: Start SD Print
  3388. */
  3389. inline void gcode_M24() {
  3390. card.startFileprint();
  3391. print_job_timer.start();
  3392. }
  3393. /**
  3394. * M25: Pause SD Print
  3395. */
  3396. inline void gcode_M25() {
  3397. card.pauseSDPrint();
  3398. }
  3399. /**
  3400. * M26: Set SD Card file index
  3401. */
  3402. inline void gcode_M26() {
  3403. if (card.cardOK && code_seen('S'))
  3404. card.setIndex(code_value_long());
  3405. }
  3406. /**
  3407. * M27: Get SD Card status
  3408. */
  3409. inline void gcode_M27() {
  3410. card.getStatus();
  3411. }
  3412. /**
  3413. * M28: Start SD Write
  3414. */
  3415. inline void gcode_M28() {
  3416. card.openFile(current_command_args, false);
  3417. }
  3418. /**
  3419. * M29: Stop SD Write
  3420. * Processed in write to file routine above
  3421. */
  3422. inline void gcode_M29() {
  3423. // card.saving = false;
  3424. }
  3425. /**
  3426. * M30 <filename>: Delete SD Card file
  3427. */
  3428. inline void gcode_M30() {
  3429. if (card.cardOK) {
  3430. card.closefile();
  3431. card.removeFile(current_command_args);
  3432. }
  3433. }
  3434. #endif //SDSUPPORT
  3435. /**
  3436. * M31: Get the time since the start of SD Print (or last M109)
  3437. */
  3438. inline void gcode_M31() {
  3439. millis_t t = print_job_timer.duration();
  3440. int min = t / 60, sec = t % 60;
  3441. char time[30];
  3442. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3443. SERIAL_ECHO_START;
  3444. SERIAL_ECHOLN(time);
  3445. lcd_setstatus(time);
  3446. thermalManager.autotempShutdown();
  3447. }
  3448. #if ENABLED(SDSUPPORT)
  3449. /**
  3450. * M32: Select file and start SD Print
  3451. */
  3452. inline void gcode_M32() {
  3453. if (card.sdprinting)
  3454. stepper.synchronize();
  3455. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3456. if (!namestartpos)
  3457. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3458. else
  3459. namestartpos++; //to skip the '!'
  3460. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3461. if (card.cardOK) {
  3462. card.openFile(namestartpos, true, call_procedure);
  3463. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3464. card.setIndex(code_value_long());
  3465. card.startFileprint();
  3466. // Procedure calls count as normal print time.
  3467. if (!call_procedure) print_job_timer.start();
  3468. }
  3469. }
  3470. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3471. /**
  3472. * M33: Get the long full path of a file or folder
  3473. *
  3474. * Parameters:
  3475. * <dospath> Case-insensitive DOS-style path to a file or folder
  3476. *
  3477. * Example:
  3478. * M33 miscel~1/armchair/armcha~1.gco
  3479. *
  3480. * Output:
  3481. * /Miscellaneous/Armchair/Armchair.gcode
  3482. */
  3483. inline void gcode_M33() {
  3484. card.printLongPath(current_command_args);
  3485. }
  3486. #endif
  3487. /**
  3488. * M928: Start SD Write
  3489. */
  3490. inline void gcode_M928() {
  3491. card.openLogFile(current_command_args);
  3492. }
  3493. #endif // SDSUPPORT
  3494. /**
  3495. * M42: Change pin status via GCode
  3496. *
  3497. * P<pin> Pin number (LED if omitted)
  3498. * S<byte> Pin status from 0 - 255
  3499. */
  3500. inline void gcode_M42() {
  3501. if (code_seen('S')) {
  3502. int pin_status = code_value_int();
  3503. if (pin_status < 0 || pin_status > 255) return;
  3504. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3505. if (pin_number < 0) return;
  3506. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3507. if (pin_number == sensitive_pins[i]) return;
  3508. pinMode(pin_number, OUTPUT);
  3509. digitalWrite(pin_number, pin_status);
  3510. analogWrite(pin_number, pin_status);
  3511. #if FAN_COUNT > 0
  3512. switch (pin_number) {
  3513. #if HAS_FAN0
  3514. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3515. #endif
  3516. #if HAS_FAN1
  3517. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3518. #endif
  3519. #if HAS_FAN2
  3520. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3521. #endif
  3522. }
  3523. #endif
  3524. } // code_seen('S')
  3525. }
  3526. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3527. /**
  3528. * This is redundant since the SanityCheck.h already checks for a valid
  3529. * Z_MIN_PROBE_PIN, but here for clarity.
  3530. */
  3531. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3532. #if !HAS_Z_MIN_PROBE_PIN
  3533. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3534. #endif
  3535. #elif !HAS_Z_MIN
  3536. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3537. #endif
  3538. /**
  3539. * M48: Z probe repeatability measurement function.
  3540. *
  3541. * Usage:
  3542. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3543. * P = Number of sampled points (4-50, default 10)
  3544. * X = Sample X position
  3545. * Y = Sample Y position
  3546. * V = Verbose level (0-4, default=1)
  3547. * E = Engage Z probe for each reading
  3548. * L = Number of legs of movement before probe
  3549. * S = Schizoid (Or Star if you prefer)
  3550. *
  3551. * This function assumes the bed has been homed. Specifically, that a G28 command
  3552. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3553. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3554. * regenerated.
  3555. */
  3556. inline void gcode_M48() {
  3557. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3558. axis_unhomed_error(true);
  3559. return;
  3560. }
  3561. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3562. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3563. if (code_seen('V')) {
  3564. verbose_level = code_value_byte();
  3565. if (verbose_level < 0 || verbose_level > 4) {
  3566. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3567. return;
  3568. }
  3569. }
  3570. if (verbose_level > 0)
  3571. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3572. if (code_seen('P')) {
  3573. n_samples = code_value_byte();
  3574. if (n_samples < 4 || n_samples > 50) {
  3575. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3576. return;
  3577. }
  3578. }
  3579. float X_current = current_position[X_AXIS],
  3580. Y_current = current_position[Y_AXIS],
  3581. Z_current = current_position[Z_AXIS],
  3582. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3583. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3584. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3585. bool deploy_probe_for_each_reading = code_seen('E');
  3586. if (code_seen('X')) {
  3587. X_probe_location = code_value_axis_units(X_AXIS);
  3588. #if DISABLED(DELTA)
  3589. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3590. out_of_range_error(PSTR("X"));
  3591. return;
  3592. }
  3593. #endif
  3594. }
  3595. if (code_seen('Y')) {
  3596. Y_probe_location = code_value_axis_units(Y_AXIS);
  3597. #if DISABLED(DELTA)
  3598. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3599. out_of_range_error(PSTR("Y"));
  3600. return;
  3601. }
  3602. #endif
  3603. }
  3604. #if ENABLED(DELTA)
  3605. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3606. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3607. return;
  3608. }
  3609. #endif
  3610. bool seen_L = code_seen('L');
  3611. if (seen_L) {
  3612. n_legs = code_value_byte();
  3613. if (n_legs < 0 || n_legs > 15) {
  3614. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3615. return;
  3616. }
  3617. if (n_legs == 1) n_legs = 2;
  3618. }
  3619. if (code_seen('S')) {
  3620. schizoid_flag++;
  3621. if (!seen_L) n_legs = 7;
  3622. }
  3623. /**
  3624. * Now get everything to the specified probe point So we can safely do a
  3625. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3626. * we don't want to use that as a starting point for each probe.
  3627. */
  3628. if (verbose_level > 2)
  3629. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3630. #if ENABLED(DELTA)
  3631. // we don't do bed level correction in M48 because we want the raw data when we probe
  3632. reset_bed_level();
  3633. #else
  3634. // we don't do bed level correction in M48 because we want the raw data when we probe
  3635. planner.bed_level_matrix.set_to_identity();
  3636. #endif
  3637. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3638. do_blocking_move_to_z(Z_start_location);
  3639. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3640. /**
  3641. * OK, do the initial probe to get us close to the bed.
  3642. * Then retrace the right amount and use that in subsequent probes
  3643. */
  3644. setup_for_endstop_move();
  3645. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3646. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3647. verbose_level);
  3648. raise_z_after_probing();
  3649. for (uint8_t n = 0; n < n_samples; n++) {
  3650. randomSeed(millis());
  3651. delay(500);
  3652. if (n_legs) {
  3653. float radius, angle = random(0.0, 360.0);
  3654. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3655. radius = random(
  3656. #if ENABLED(DELTA)
  3657. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3658. #else
  3659. 5, X_MAX_LENGTH / 8
  3660. #endif
  3661. );
  3662. if (verbose_level > 3) {
  3663. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3664. SERIAL_ECHOPAIR(" angle: ", angle);
  3665. delay(100);
  3666. if (dir > 0)
  3667. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3668. else
  3669. SERIAL_ECHO(" Direction: Clockwise \n");
  3670. delay(100);
  3671. }
  3672. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3673. double delta_angle;
  3674. if (schizoid_flag)
  3675. // The points of a 5 point star are 72 degrees apart. We need to
  3676. // skip a point and go to the next one on the star.
  3677. delta_angle = dir * 2.0 * 72.0;
  3678. else
  3679. // If we do this line, we are just trying to move further
  3680. // around the circle.
  3681. delta_angle = dir * (float) random(25, 45);
  3682. angle += delta_angle;
  3683. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3684. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3685. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3686. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3687. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3688. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3689. #if DISABLED(DELTA)
  3690. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3691. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3692. #else
  3693. // If we have gone out too far, we can do a simple fix and scale the numbers
  3694. // back in closer to the origin.
  3695. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3696. X_current /= 1.25;
  3697. Y_current /= 1.25;
  3698. if (verbose_level > 3) {
  3699. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3700. SERIAL_ECHOPAIR(", ", Y_current);
  3701. SERIAL_EOL;
  3702. delay(50);
  3703. }
  3704. }
  3705. #endif
  3706. if (verbose_level > 3) {
  3707. SERIAL_PROTOCOL("Going to:");
  3708. SERIAL_ECHOPAIR("x: ", X_current);
  3709. SERIAL_ECHOPAIR("y: ", Y_current);
  3710. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3711. SERIAL_EOL;
  3712. delay(55);
  3713. }
  3714. do_blocking_move_to_xy(X_current, Y_current);
  3715. } // n_legs loop
  3716. } // n_legs
  3717. /**
  3718. * We don't really have to do this move, but if we don't we can see a
  3719. * funny shift in the Z Height because the user might not have the
  3720. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3721. * height. This gets us back to the probe location at the same height that
  3722. * we have been running around the circle at.
  3723. */
  3724. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3725. if (deploy_probe_for_each_reading)
  3726. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3727. else {
  3728. if (n == n_samples - 1)
  3729. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3730. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3731. }
  3732. /**
  3733. * Get the current mean for the data points we have so far
  3734. */
  3735. sum = 0.0;
  3736. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3737. mean = sum / (n + 1);
  3738. /**
  3739. * Now, use that mean to calculate the standard deviation for the
  3740. * data points we have so far
  3741. */
  3742. sum = 0.0;
  3743. for (uint8_t j = 0; j <= n; j++) {
  3744. float ss = sample_set[j] - mean;
  3745. sum += ss * ss;
  3746. }
  3747. sigma = sqrt(sum / (n + 1));
  3748. if (verbose_level > 1) {
  3749. SERIAL_PROTOCOL(n + 1);
  3750. SERIAL_PROTOCOLPGM(" of ");
  3751. SERIAL_PROTOCOL((int)n_samples);
  3752. SERIAL_PROTOCOLPGM(" z: ");
  3753. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3754. delay(50);
  3755. if (verbose_level > 2) {
  3756. SERIAL_PROTOCOLPGM(" mean: ");
  3757. SERIAL_PROTOCOL_F(mean, 6);
  3758. SERIAL_PROTOCOLPGM(" sigma: ");
  3759. SERIAL_PROTOCOL_F(sigma, 6);
  3760. }
  3761. }
  3762. if (verbose_level > 0) SERIAL_EOL;
  3763. delay(50);
  3764. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3765. } // End of probe loop code
  3766. // raise_z_after_probing();
  3767. if (verbose_level > 0) {
  3768. SERIAL_PROTOCOLPGM("Mean: ");
  3769. SERIAL_PROTOCOL_F(mean, 6);
  3770. SERIAL_EOL;
  3771. delay(25);
  3772. }
  3773. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3774. SERIAL_PROTOCOL_F(sigma, 6);
  3775. SERIAL_EOL; SERIAL_EOL;
  3776. delay(25);
  3777. clean_up_after_endstop_move();
  3778. report_current_position();
  3779. }
  3780. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3781. /**
  3782. * M75: Start print timer
  3783. */
  3784. inline void gcode_M75() { print_job_timer.start(); }
  3785. /**
  3786. * M76: Pause print timer
  3787. */
  3788. inline void gcode_M76() { print_job_timer.pause(); }
  3789. /**
  3790. * M77: Stop print timer
  3791. */
  3792. inline void gcode_M77() { print_job_timer.stop(); }
  3793. #if ENABLED(PRINTCOUNTER)
  3794. /*+
  3795. * M78: Show print statistics
  3796. */
  3797. inline void gcode_M78() {
  3798. // "M78 S78" will reset the statistics
  3799. if (code_seen('S') && code_value_int() == 78)
  3800. print_job_timer.initStats();
  3801. else print_job_timer.showStats();
  3802. }
  3803. #endif
  3804. /**
  3805. * M104: Set hot end temperature
  3806. */
  3807. inline void gcode_M104() {
  3808. if (get_target_extruder_from_command(104)) return;
  3809. if (DEBUGGING(DRYRUN)) return;
  3810. #if ENABLED(SINGLENOZZLE)
  3811. if (target_extruder != active_extruder) return;
  3812. #endif
  3813. if (code_seen('S')) {
  3814. float temp = code_value_temp_abs();
  3815. thermalManager.setTargetHotend(temp, target_extruder);
  3816. #if ENABLED(DUAL_X_CARRIAGE)
  3817. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3818. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3819. #endif
  3820. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3821. /**
  3822. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3823. * stand by mode, for instance in a dual extruder setup, without affecting
  3824. * the running print timer.
  3825. */
  3826. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3827. print_job_timer.stop();
  3828. LCD_MESSAGEPGM(WELCOME_MSG);
  3829. }
  3830. /**
  3831. * We do not check if the timer is already running because this check will
  3832. * be done for us inside the Stopwatch::start() method thus a running timer
  3833. * will not restart.
  3834. */
  3835. else print_job_timer.start();
  3836. #endif
  3837. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3838. }
  3839. }
  3840. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3841. void print_heaterstates() {
  3842. #if HAS_TEMP_HOTEND
  3843. SERIAL_PROTOCOLPGM(" T:");
  3844. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3845. SERIAL_PROTOCOLPGM(" /");
  3846. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3847. #endif
  3848. #if HAS_TEMP_BED
  3849. SERIAL_PROTOCOLPGM(" B:");
  3850. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3851. SERIAL_PROTOCOLPGM(" /");
  3852. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3853. #endif
  3854. #if HOTENDS > 1
  3855. for (int8_t e = 0; e < HOTENDS; ++e) {
  3856. SERIAL_PROTOCOLPGM(" T");
  3857. SERIAL_PROTOCOL(e);
  3858. SERIAL_PROTOCOLCHAR(':');
  3859. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3860. SERIAL_PROTOCOLPGM(" /");
  3861. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3862. }
  3863. #endif
  3864. #if HAS_TEMP_BED
  3865. SERIAL_PROTOCOLPGM(" B@:");
  3866. #ifdef BED_WATTS
  3867. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3868. SERIAL_PROTOCOLCHAR('W');
  3869. #else
  3870. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3871. #endif
  3872. #endif
  3873. SERIAL_PROTOCOLPGM(" @:");
  3874. #ifdef EXTRUDER_WATTS
  3875. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3876. SERIAL_PROTOCOLCHAR('W');
  3877. #else
  3878. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3879. #endif
  3880. #if HOTENDS > 1
  3881. for (int8_t e = 0; e < HOTENDS; ++e) {
  3882. SERIAL_PROTOCOLPGM(" @");
  3883. SERIAL_PROTOCOL(e);
  3884. SERIAL_PROTOCOLCHAR(':');
  3885. #ifdef EXTRUDER_WATTS
  3886. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3887. SERIAL_PROTOCOLCHAR('W');
  3888. #else
  3889. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3890. #endif
  3891. }
  3892. #endif
  3893. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3894. #if HAS_TEMP_BED
  3895. SERIAL_PROTOCOLPGM(" ADC B:");
  3896. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3897. SERIAL_PROTOCOLPGM("C->");
  3898. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3899. #endif
  3900. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3901. SERIAL_PROTOCOLPGM(" T");
  3902. SERIAL_PROTOCOL(cur_hotend);
  3903. SERIAL_PROTOCOLCHAR(':');
  3904. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3905. SERIAL_PROTOCOLPGM("C->");
  3906. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3907. }
  3908. #endif
  3909. }
  3910. #endif
  3911. /**
  3912. * M105: Read hot end and bed temperature
  3913. */
  3914. inline void gcode_M105() {
  3915. if (get_target_extruder_from_command(105)) return;
  3916. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3917. SERIAL_PROTOCOLPGM(MSG_OK);
  3918. print_heaterstates();
  3919. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3920. SERIAL_ERROR_START;
  3921. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3922. #endif
  3923. SERIAL_EOL;
  3924. }
  3925. #if FAN_COUNT > 0
  3926. /**
  3927. * M106: Set Fan Speed
  3928. *
  3929. * S<int> Speed between 0-255
  3930. * P<index> Fan index, if more than one fan
  3931. */
  3932. inline void gcode_M106() {
  3933. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3934. p = code_seen('P') ? code_value_ushort() : 0;
  3935. NOMORE(s, 255);
  3936. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3937. }
  3938. /**
  3939. * M107: Fan Off
  3940. */
  3941. inline void gcode_M107() {
  3942. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3943. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3944. }
  3945. #endif // FAN_COUNT > 0
  3946. /**
  3947. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3948. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3949. */
  3950. inline void gcode_M109() {
  3951. if (get_target_extruder_from_command(109)) return;
  3952. if (DEBUGGING(DRYRUN)) return;
  3953. #if ENABLED(SINGLENOZZLE)
  3954. if (target_extruder != active_extruder) return;
  3955. #endif
  3956. bool no_wait_for_cooling = code_seen('S');
  3957. if (no_wait_for_cooling || code_seen('R')) {
  3958. float temp = code_value_temp_abs();
  3959. thermalManager.setTargetHotend(temp, target_extruder);
  3960. #if ENABLED(DUAL_X_CARRIAGE)
  3961. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3962. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3963. #endif
  3964. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3965. /**
  3966. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3967. * stand by mode, for instance in a dual extruder setup, without affecting
  3968. * the running print timer.
  3969. */
  3970. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3971. print_job_timer.stop();
  3972. LCD_MESSAGEPGM(WELCOME_MSG);
  3973. }
  3974. /**
  3975. * We do not check if the timer is already running because this check will
  3976. * be done for us inside the Stopwatch::start() method thus a running timer
  3977. * will not restart.
  3978. */
  3979. else print_job_timer.start();
  3980. #endif
  3981. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3982. }
  3983. #if ENABLED(AUTOTEMP)
  3984. planner.autotemp_M109();
  3985. #endif
  3986. #if TEMP_RESIDENCY_TIME > 0
  3987. millis_t residency_start_ms = 0;
  3988. // Loop until the temperature has stabilized
  3989. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3990. #else
  3991. // Loop until the temperature is very close target
  3992. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3993. #endif //TEMP_RESIDENCY_TIME > 0
  3994. float theTarget = -1;
  3995. bool wants_to_cool;
  3996. cancel_heatup = false;
  3997. millis_t now, next_temp_ms = 0;
  3998. KEEPALIVE_STATE(NOT_BUSY);
  3999. do {
  4000. now = millis();
  4001. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4002. next_temp_ms = now + 1000UL;
  4003. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4004. print_heaterstates();
  4005. #endif
  4006. #if TEMP_RESIDENCY_TIME > 0
  4007. SERIAL_PROTOCOLPGM(" W:");
  4008. if (residency_start_ms) {
  4009. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4010. SERIAL_PROTOCOLLN(rem);
  4011. }
  4012. else {
  4013. SERIAL_PROTOCOLLNPGM("?");
  4014. }
  4015. #else
  4016. SERIAL_EOL;
  4017. #endif
  4018. }
  4019. // Target temperature might be changed during the loop
  4020. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4021. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4022. theTarget = thermalManager.degTargetHotend(target_extruder);
  4023. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4024. if (no_wait_for_cooling && wants_to_cool) break;
  4025. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4026. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  4027. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  4028. }
  4029. idle();
  4030. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4031. #if TEMP_RESIDENCY_TIME > 0
  4032. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  4033. if (!residency_start_ms) {
  4034. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4035. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  4036. }
  4037. else if (temp_diff > TEMP_HYSTERESIS) {
  4038. // Restart the timer whenever the temperature falls outside the hysteresis.
  4039. residency_start_ms = millis();
  4040. }
  4041. #endif //TEMP_RESIDENCY_TIME > 0
  4042. } while (!cancel_heatup && TEMP_CONDITIONS);
  4043. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4044. KEEPALIVE_STATE(IN_HANDLER);
  4045. }
  4046. #if HAS_TEMP_BED
  4047. /**
  4048. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4049. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4050. */
  4051. inline void gcode_M190() {
  4052. if (DEBUGGING(DRYRUN)) return;
  4053. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4054. bool no_wait_for_cooling = code_seen('S');
  4055. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  4056. #if TEMP_BED_RESIDENCY_TIME > 0
  4057. millis_t residency_start_ms = 0;
  4058. // Loop until the temperature has stabilized
  4059. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4060. #else
  4061. // Loop until the temperature is very close target
  4062. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4063. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4064. float theTarget = -1;
  4065. bool wants_to_cool;
  4066. cancel_heatup = false;
  4067. millis_t now, next_temp_ms = 0;
  4068. KEEPALIVE_STATE(NOT_BUSY);
  4069. do {
  4070. now = millis();
  4071. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4072. next_temp_ms = now + 1000UL;
  4073. print_heaterstates();
  4074. #if TEMP_BED_RESIDENCY_TIME > 0
  4075. SERIAL_PROTOCOLPGM(" W:");
  4076. if (residency_start_ms) {
  4077. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4078. SERIAL_PROTOCOLLN(rem);
  4079. }
  4080. else {
  4081. SERIAL_PROTOCOLLNPGM("?");
  4082. }
  4083. #else
  4084. SERIAL_EOL;
  4085. #endif
  4086. }
  4087. // Target temperature might be changed during the loop
  4088. if (theTarget != thermalManager.degTargetBed()) {
  4089. wants_to_cool = thermalManager.isCoolingBed();
  4090. theTarget = thermalManager.degTargetBed();
  4091. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4092. if (no_wait_for_cooling && wants_to_cool) break;
  4093. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4094. // Simply don't wait to cool a bed under 30C
  4095. if (wants_to_cool && theTarget < 30) break;
  4096. }
  4097. idle();
  4098. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4099. #if TEMP_BED_RESIDENCY_TIME > 0
  4100. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4101. if (!residency_start_ms) {
  4102. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4103. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  4104. }
  4105. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4106. // Restart the timer whenever the temperature falls outside the hysteresis.
  4107. residency_start_ms = millis();
  4108. }
  4109. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4110. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4111. LCD_MESSAGEPGM(MSG_BED_DONE);
  4112. KEEPALIVE_STATE(IN_HANDLER);
  4113. }
  4114. #endif // HAS_TEMP_BED
  4115. /**
  4116. * M110: Set Current Line Number
  4117. */
  4118. inline void gcode_M110() {
  4119. if (code_seen('N')) gcode_N = code_value_long();
  4120. }
  4121. /**
  4122. * M111: Set the debug level
  4123. */
  4124. inline void gcode_M111() {
  4125. marlin_debug_flags = code_seen('S') ? code_value_byte() : DEBUG_NONE;
  4126. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4127. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4128. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4129. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4130. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4132. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4133. #endif
  4134. const static char* const debug_strings[] PROGMEM = {
  4135. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4137. str_debug_32
  4138. #endif
  4139. };
  4140. SERIAL_ECHO_START;
  4141. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4142. if (marlin_debug_flags) {
  4143. uint8_t comma = 0;
  4144. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4145. if (TEST(marlin_debug_flags, i)) {
  4146. if (comma++) SERIAL_CHAR(',');
  4147. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4148. }
  4149. }
  4150. }
  4151. else {
  4152. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4153. }
  4154. SERIAL_EOL;
  4155. }
  4156. /**
  4157. * M112: Emergency Stop
  4158. */
  4159. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4160. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4161. /**
  4162. * M113: Get or set Host Keepalive interval (0 to disable)
  4163. *
  4164. * S<seconds> Optional. Set the keepalive interval.
  4165. */
  4166. inline void gcode_M113() {
  4167. if (code_seen('S')) {
  4168. host_keepalive_interval = code_value_byte();
  4169. NOMORE(host_keepalive_interval, 60);
  4170. }
  4171. else {
  4172. SERIAL_ECHO_START;
  4173. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4174. SERIAL_EOL;
  4175. }
  4176. }
  4177. #endif
  4178. #if ENABLED(BARICUDA)
  4179. #if HAS_HEATER_1
  4180. /**
  4181. * M126: Heater 1 valve open
  4182. */
  4183. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4184. /**
  4185. * M127: Heater 1 valve close
  4186. */
  4187. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4188. #endif
  4189. #if HAS_HEATER_2
  4190. /**
  4191. * M128: Heater 2 valve open
  4192. */
  4193. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4194. /**
  4195. * M129: Heater 2 valve close
  4196. */
  4197. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4198. #endif
  4199. #endif //BARICUDA
  4200. /**
  4201. * M140: Set bed temperature
  4202. */
  4203. inline void gcode_M140() {
  4204. if (DEBUGGING(DRYRUN)) return;
  4205. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4206. }
  4207. #if ENABLED(ULTIPANEL)
  4208. /**
  4209. * M145: Set the heatup state for a material in the LCD menu
  4210. * S<material> (0=PLA, 1=ABS)
  4211. * H<hotend temp>
  4212. * B<bed temp>
  4213. * F<fan speed>
  4214. */
  4215. inline void gcode_M145() {
  4216. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4217. if (material < 0 || material > 1) {
  4218. SERIAL_ERROR_START;
  4219. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4220. }
  4221. else {
  4222. int v;
  4223. switch (material) {
  4224. case 0:
  4225. if (code_seen('H')) {
  4226. v = code_value_int();
  4227. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4228. }
  4229. if (code_seen('F')) {
  4230. v = code_value_int();
  4231. plaPreheatFanSpeed = constrain(v, 0, 255);
  4232. }
  4233. #if TEMP_SENSOR_BED != 0
  4234. if (code_seen('B')) {
  4235. v = code_value_int();
  4236. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4237. }
  4238. #endif
  4239. break;
  4240. case 1:
  4241. if (code_seen('H')) {
  4242. v = code_value_int();
  4243. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4244. }
  4245. if (code_seen('F')) {
  4246. v = code_value_int();
  4247. absPreheatFanSpeed = constrain(v, 0, 255);
  4248. }
  4249. #if TEMP_SENSOR_BED != 0
  4250. if (code_seen('B')) {
  4251. v = code_value_int();
  4252. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4253. }
  4254. #endif
  4255. break;
  4256. }
  4257. }
  4258. }
  4259. #endif
  4260. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4261. /**
  4262. * M149: Set temperature units
  4263. */
  4264. inline void gcode_M149() {
  4265. if (code_seen('C')) {
  4266. set_input_temp_units(TEMPUNIT_C);
  4267. } else if (code_seen('K')) {
  4268. set_input_temp_units(TEMPUNIT_K);
  4269. } else if (code_seen('F')) {
  4270. set_input_temp_units(TEMPUNIT_F);
  4271. }
  4272. }
  4273. #endif
  4274. #if HAS_POWER_SWITCH
  4275. /**
  4276. * M80: Turn on Power Supply
  4277. */
  4278. inline void gcode_M80() {
  4279. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4280. /**
  4281. * If you have a switch on suicide pin, this is useful
  4282. * if you want to start another print with suicide feature after
  4283. * a print without suicide...
  4284. */
  4285. #if HAS_SUICIDE
  4286. OUT_WRITE(SUICIDE_PIN, HIGH);
  4287. #endif
  4288. #if ENABLED(ULTIPANEL)
  4289. powersupply = true;
  4290. LCD_MESSAGEPGM(WELCOME_MSG);
  4291. lcd_update();
  4292. #endif
  4293. }
  4294. #endif // HAS_POWER_SWITCH
  4295. /**
  4296. * M81: Turn off Power, including Power Supply, if there is one.
  4297. *
  4298. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4299. */
  4300. inline void gcode_M81() {
  4301. thermalManager.disable_all_heaters();
  4302. stepper.finish_and_disable();
  4303. #if FAN_COUNT > 0
  4304. #if FAN_COUNT > 1
  4305. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4306. #else
  4307. fanSpeeds[0] = 0;
  4308. #endif
  4309. #endif
  4310. delay(1000); // Wait 1 second before switching off
  4311. #if HAS_SUICIDE
  4312. stepper.synchronize();
  4313. suicide();
  4314. #elif HAS_POWER_SWITCH
  4315. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4316. #endif
  4317. #if ENABLED(ULTIPANEL)
  4318. #if HAS_POWER_SWITCH
  4319. powersupply = false;
  4320. #endif
  4321. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4322. lcd_update();
  4323. #endif
  4324. }
  4325. /**
  4326. * M82: Set E codes absolute (default)
  4327. */
  4328. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4329. /**
  4330. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4331. */
  4332. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4333. /**
  4334. * M18, M84: Disable all stepper motors
  4335. */
  4336. inline void gcode_M18_M84() {
  4337. if (code_seen('S')) {
  4338. stepper_inactive_time = code_value_millis_from_seconds();
  4339. }
  4340. else {
  4341. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4342. if (all_axis) {
  4343. stepper.finish_and_disable();
  4344. }
  4345. else {
  4346. stepper.synchronize();
  4347. if (code_seen('X')) disable_x();
  4348. if (code_seen('Y')) disable_y();
  4349. if (code_seen('Z')) disable_z();
  4350. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4351. if (code_seen('E')) {
  4352. disable_e0();
  4353. disable_e1();
  4354. disable_e2();
  4355. disable_e3();
  4356. }
  4357. #endif
  4358. }
  4359. }
  4360. }
  4361. /**
  4362. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4363. */
  4364. inline void gcode_M85() {
  4365. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4366. }
  4367. /**
  4368. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4369. * (Follows the same syntax as G92)
  4370. */
  4371. inline void gcode_M92() {
  4372. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4373. if (code_seen(axis_codes[i])) {
  4374. if (i == E_AXIS) {
  4375. float value = code_value_per_axis_unit(i);
  4376. if (value < 20.0) {
  4377. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4378. planner.max_e_jerk *= factor;
  4379. planner.max_feedrate[i] *= factor;
  4380. planner.max_acceleration_steps_per_s2[i] *= factor;
  4381. }
  4382. planner.axis_steps_per_mm[i] = value;
  4383. }
  4384. else {
  4385. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4386. }
  4387. }
  4388. }
  4389. }
  4390. /**
  4391. * Output the current position to serial
  4392. */
  4393. static void report_current_position() {
  4394. SERIAL_PROTOCOLPGM("X:");
  4395. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4396. SERIAL_PROTOCOLPGM(" Y:");
  4397. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4398. SERIAL_PROTOCOLPGM(" Z:");
  4399. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4400. SERIAL_PROTOCOLPGM(" E:");
  4401. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4402. stepper.report_positions();
  4403. #if ENABLED(SCARA)
  4404. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4405. SERIAL_PROTOCOL(delta[X_AXIS]);
  4406. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4407. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4408. SERIAL_EOL;
  4409. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4410. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4411. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4412. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4413. SERIAL_EOL;
  4414. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4415. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4416. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4417. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4418. SERIAL_EOL; SERIAL_EOL;
  4419. #endif
  4420. }
  4421. /**
  4422. * M114: Output current position to serial port
  4423. */
  4424. inline void gcode_M114() { report_current_position(); }
  4425. /**
  4426. * M115: Capabilities string
  4427. */
  4428. inline void gcode_M115() {
  4429. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4430. }
  4431. /**
  4432. * M117: Set LCD Status Message
  4433. */
  4434. inline void gcode_M117() {
  4435. lcd_setstatus(current_command_args);
  4436. }
  4437. /**
  4438. * M119: Output endstop states to serial output
  4439. */
  4440. inline void gcode_M119() { endstops.M119(); }
  4441. /**
  4442. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4443. */
  4444. inline void gcode_M120() { endstops.enable_globally(true); }
  4445. /**
  4446. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4447. */
  4448. inline void gcode_M121() { endstops.enable_globally(false); }
  4449. #if ENABLED(BLINKM)
  4450. /**
  4451. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4452. */
  4453. inline void gcode_M150() {
  4454. SendColors(
  4455. code_seen('R') ? code_value_byte() : 0,
  4456. code_seen('U') ? code_value_byte() : 0,
  4457. code_seen('B') ? code_value_byte() : 0
  4458. );
  4459. }
  4460. #endif // BLINKM
  4461. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4462. /**
  4463. * M155: Send data to a I2C slave device
  4464. *
  4465. * This is a PoC, the formating and arguments for the GCODE will
  4466. * change to be more compatible, the current proposal is:
  4467. *
  4468. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4469. *
  4470. * M155 B<byte-1 value in base 10>
  4471. * M155 B<byte-2 value in base 10>
  4472. * M155 B<byte-3 value in base 10>
  4473. *
  4474. * M155 S1 ; Send the buffered data and reset the buffer
  4475. * M155 R1 ; Reset the buffer without sending data
  4476. *
  4477. */
  4478. inline void gcode_M155() {
  4479. // Set the target address
  4480. if (code_seen('A'))
  4481. i2c.address(code_value_byte());
  4482. // Add a new byte to the buffer
  4483. else if (code_seen('B'))
  4484. i2c.addbyte(code_value_int());
  4485. // Flush the buffer to the bus
  4486. else if (code_seen('S')) i2c.send();
  4487. // Reset and rewind the buffer
  4488. else if (code_seen('R')) i2c.reset();
  4489. }
  4490. /**
  4491. * M156: Request X bytes from I2C slave device
  4492. *
  4493. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4494. */
  4495. inline void gcode_M156() {
  4496. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4497. int bytes = code_seen('B') ? code_value_int() : 1;
  4498. if (addr && bytes > 0 && bytes <= 32) {
  4499. i2c.address(addr);
  4500. i2c.reqbytes(bytes);
  4501. }
  4502. else {
  4503. SERIAL_ERROR_START;
  4504. SERIAL_ERRORLN("Bad i2c request");
  4505. }
  4506. }
  4507. #endif //EXPERIMENTAL_I2CBUS
  4508. /**
  4509. * M200: Set filament diameter and set E axis units to cubic units
  4510. *
  4511. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4512. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4513. */
  4514. inline void gcode_M200() {
  4515. if (get_target_extruder_from_command(200)) return;
  4516. if (code_seen('D')) {
  4517. float diameter = code_value_linear_units();
  4518. // setting any extruder filament size disables volumetric on the assumption that
  4519. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4520. // for all extruders
  4521. volumetric_enabled = (diameter != 0.0);
  4522. if (volumetric_enabled) {
  4523. filament_size[target_extruder] = diameter;
  4524. // make sure all extruders have some sane value for the filament size
  4525. for (int i = 0; i < EXTRUDERS; i++)
  4526. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4527. }
  4528. }
  4529. else {
  4530. //reserved for setting filament diameter via UFID or filament measuring device
  4531. return;
  4532. }
  4533. calculate_volumetric_multipliers();
  4534. }
  4535. /**
  4536. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4537. */
  4538. inline void gcode_M201() {
  4539. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4540. if (code_seen(axis_codes[i])) {
  4541. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4542. }
  4543. }
  4544. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4545. planner.reset_acceleration_rates();
  4546. }
  4547. #if 0 // Not used for Sprinter/grbl gen6
  4548. inline void gcode_M202() {
  4549. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4550. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4551. }
  4552. }
  4553. #endif
  4554. /**
  4555. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4556. */
  4557. inline void gcode_M203() {
  4558. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4559. if (code_seen(axis_codes[i])) {
  4560. planner.max_feedrate[i] = code_value_axis_units(i);
  4561. }
  4562. }
  4563. }
  4564. /**
  4565. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4566. *
  4567. * P = Printing moves
  4568. * R = Retract only (no X, Y, Z) moves
  4569. * T = Travel (non printing) moves
  4570. *
  4571. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4572. */
  4573. inline void gcode_M204() {
  4574. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4575. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4576. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4577. SERIAL_EOL;
  4578. }
  4579. if (code_seen('P')) {
  4580. planner.acceleration = code_value_linear_units();
  4581. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4582. SERIAL_EOL;
  4583. }
  4584. if (code_seen('R')) {
  4585. planner.retract_acceleration = code_value_linear_units();
  4586. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4587. SERIAL_EOL;
  4588. }
  4589. if (code_seen('T')) {
  4590. planner.travel_acceleration = code_value_linear_units();
  4591. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4592. SERIAL_EOL;
  4593. }
  4594. }
  4595. /**
  4596. * M205: Set Advanced Settings
  4597. *
  4598. * S = Min Feed Rate (mm/s)
  4599. * T = Min Travel Feed Rate (mm/s)
  4600. * B = Min Segment Time (µs)
  4601. * X = Max XY Jerk (mm/s/s)
  4602. * Z = Max Z Jerk (mm/s/s)
  4603. * E = Max E Jerk (mm/s/s)
  4604. */
  4605. inline void gcode_M205() {
  4606. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4607. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4608. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4609. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4610. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4611. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4612. }
  4613. /**
  4614. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4615. */
  4616. inline void gcode_M206() {
  4617. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4618. if (code_seen(axis_codes[i]))
  4619. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4620. #if ENABLED(SCARA)
  4621. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4622. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4623. #endif
  4624. sync_plan_position();
  4625. report_current_position();
  4626. }
  4627. #if ENABLED(DELTA)
  4628. /**
  4629. * M665: Set delta configurations
  4630. *
  4631. * L = diagonal rod
  4632. * R = delta radius
  4633. * S = segments per second
  4634. * A = Alpha (Tower 1) diagonal rod trim
  4635. * B = Beta (Tower 2) diagonal rod trim
  4636. * C = Gamma (Tower 3) diagonal rod trim
  4637. */
  4638. inline void gcode_M665() {
  4639. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4640. if (code_seen('R')) delta_radius = code_value_linear_units();
  4641. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4642. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4643. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4644. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4645. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4646. }
  4647. /**
  4648. * M666: Set delta endstop adjustment
  4649. */
  4650. inline void gcode_M666() {
  4651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4652. if (DEBUGGING(LEVELING)) {
  4653. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4654. }
  4655. #endif
  4656. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4657. if (code_seen(axis_codes[i])) {
  4658. endstop_adj[i] = code_value_axis_units(i);
  4659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4660. if (DEBUGGING(LEVELING)) {
  4661. SERIAL_ECHOPGM("endstop_adj[");
  4662. SERIAL_ECHO(axis_codes[i]);
  4663. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4664. SERIAL_EOL;
  4665. }
  4666. #endif
  4667. }
  4668. }
  4669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4670. if (DEBUGGING(LEVELING)) {
  4671. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4672. }
  4673. #endif
  4674. }
  4675. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4676. /**
  4677. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4678. */
  4679. inline void gcode_M666() {
  4680. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4681. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4682. SERIAL_EOL;
  4683. }
  4684. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4685. #if ENABLED(FWRETRACT)
  4686. /**
  4687. * M207: Set firmware retraction values
  4688. *
  4689. * S[+mm] retract_length
  4690. * W[+mm] retract_length_swap (multi-extruder)
  4691. * F[mm/min] retract_feedrate
  4692. * Z[mm] retract_zlift
  4693. */
  4694. inline void gcode_M207() {
  4695. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4696. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4697. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4698. #if EXTRUDERS > 1
  4699. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4700. #endif
  4701. }
  4702. /**
  4703. * M208: Set firmware un-retraction values
  4704. *
  4705. * S[+mm] retract_recover_length (in addition to M207 S*)
  4706. * W[+mm] retract_recover_length_swap (multi-extruder)
  4707. * F[mm/min] retract_recover_feedrate
  4708. */
  4709. inline void gcode_M208() {
  4710. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4711. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4712. #if EXTRUDERS > 1
  4713. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4714. #endif
  4715. }
  4716. /**
  4717. * M209: Enable automatic retract (M209 S1)
  4718. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4719. */
  4720. inline void gcode_M209() {
  4721. if (code_seen('S')) {
  4722. int t = code_value_int();
  4723. switch (t) {
  4724. case 0:
  4725. autoretract_enabled = false;
  4726. break;
  4727. case 1:
  4728. autoretract_enabled = true;
  4729. break;
  4730. default:
  4731. unknown_command_error();
  4732. return;
  4733. }
  4734. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4735. }
  4736. }
  4737. #endif // FWRETRACT
  4738. #if HOTENDS > 1
  4739. /**
  4740. * M218 - set hotend offset (in mm)
  4741. *
  4742. * T<tool>
  4743. * X<xoffset>
  4744. * Y<yoffset>
  4745. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4746. */
  4747. inline void gcode_M218() {
  4748. if (get_target_extruder_from_command(218)) return;
  4749. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4750. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4751. #if ENABLED(DUAL_X_CARRIAGE)
  4752. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4753. #endif
  4754. SERIAL_ECHO_START;
  4755. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4756. for (int e = 0; e < HOTENDS; e++) {
  4757. SERIAL_CHAR(' ');
  4758. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4759. SERIAL_CHAR(',');
  4760. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4761. #if ENABLED(DUAL_X_CARRIAGE)
  4762. SERIAL_CHAR(',');
  4763. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4764. #endif
  4765. }
  4766. SERIAL_EOL;
  4767. }
  4768. #endif // HOTENDS > 1
  4769. /**
  4770. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4771. */
  4772. inline void gcode_M220() {
  4773. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4774. }
  4775. /**
  4776. * M221: Set extrusion percentage (M221 T0 S95)
  4777. */
  4778. inline void gcode_M221() {
  4779. if (code_seen('S')) {
  4780. int sval = code_value_int();
  4781. if (get_target_extruder_from_command(221)) return;
  4782. extruder_multiplier[target_extruder] = sval;
  4783. }
  4784. }
  4785. /**
  4786. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4787. */
  4788. inline void gcode_M226() {
  4789. if (code_seen('P')) {
  4790. int pin_number = code_value_int();
  4791. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4792. if (pin_state >= -1 && pin_state <= 1) {
  4793. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4794. if (sensitive_pins[i] == pin_number) {
  4795. pin_number = -1;
  4796. break;
  4797. }
  4798. }
  4799. if (pin_number > -1) {
  4800. int target = LOW;
  4801. stepper.synchronize();
  4802. pinMode(pin_number, INPUT);
  4803. switch (pin_state) {
  4804. case 1:
  4805. target = HIGH;
  4806. break;
  4807. case 0:
  4808. target = LOW;
  4809. break;
  4810. case -1:
  4811. target = !digitalRead(pin_number);
  4812. break;
  4813. }
  4814. while (digitalRead(pin_number) != target) idle();
  4815. } // pin_number > -1
  4816. } // pin_state -1 0 1
  4817. } // code_seen('P')
  4818. }
  4819. #if HAS_SERVOS
  4820. /**
  4821. * M280: Get or set servo position. P<index> S<angle>
  4822. */
  4823. inline void gcode_M280() {
  4824. int servo_index = code_seen('P') ? code_value_int() : -1;
  4825. int servo_position = 0;
  4826. if (code_seen('S')) {
  4827. servo_position = code_value_int();
  4828. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4829. MOVE_SERVO(servo_index, servo_position);
  4830. else {
  4831. SERIAL_ERROR_START;
  4832. SERIAL_ERROR("Servo ");
  4833. SERIAL_ERROR(servo_index);
  4834. SERIAL_ERRORLN(" out of range");
  4835. }
  4836. }
  4837. else if (servo_index >= 0) {
  4838. SERIAL_ECHO_START;
  4839. SERIAL_ECHO(" Servo ");
  4840. SERIAL_ECHO(servo_index);
  4841. SERIAL_ECHO(": ");
  4842. SERIAL_ECHOLN(servo[servo_index].read());
  4843. }
  4844. }
  4845. #endif // HAS_SERVOS
  4846. #if HAS_BUZZER
  4847. /**
  4848. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4849. */
  4850. inline void gcode_M300() {
  4851. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4852. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4853. // Limits the tone duration to 0-5 seconds.
  4854. NOMORE(duration, 5000);
  4855. buzzer.tone(duration, frequency);
  4856. }
  4857. #endif // HAS_BUZZER
  4858. #if ENABLED(PIDTEMP)
  4859. /**
  4860. * M301: Set PID parameters P I D (and optionally C, L)
  4861. *
  4862. * P[float] Kp term
  4863. * I[float] Ki term (unscaled)
  4864. * D[float] Kd term (unscaled)
  4865. *
  4866. * With PID_ADD_EXTRUSION_RATE:
  4867. *
  4868. * C[float] Kc term
  4869. * L[float] LPQ length
  4870. */
  4871. inline void gcode_M301() {
  4872. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4873. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4874. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4875. if (e < HOTENDS) { // catch bad input value
  4876. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4877. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4878. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4879. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4880. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4881. if (code_seen('L')) lpq_len = code_value_float();
  4882. NOMORE(lpq_len, LPQ_MAX_LEN);
  4883. #endif
  4884. thermalManager.updatePID();
  4885. SERIAL_ECHO_START;
  4886. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4887. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4888. SERIAL_ECHO(e);
  4889. #endif // PID_PARAMS_PER_HOTEND
  4890. SERIAL_ECHO(" p:");
  4891. SERIAL_ECHO(PID_PARAM(Kp, e));
  4892. SERIAL_ECHO(" i:");
  4893. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4894. SERIAL_ECHO(" d:");
  4895. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4896. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4897. SERIAL_ECHO(" c:");
  4898. //Kc does not have scaling applied above, or in resetting defaults
  4899. SERIAL_ECHO(PID_PARAM(Kc, e));
  4900. #endif
  4901. SERIAL_EOL;
  4902. }
  4903. else {
  4904. SERIAL_ERROR_START;
  4905. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4906. }
  4907. }
  4908. #endif // PIDTEMP
  4909. #if ENABLED(PIDTEMPBED)
  4910. inline void gcode_M304() {
  4911. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4912. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4913. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4914. thermalManager.updatePID();
  4915. SERIAL_ECHO_START;
  4916. SERIAL_ECHO(" p:");
  4917. SERIAL_ECHO(thermalManager.bedKp);
  4918. SERIAL_ECHO(" i:");
  4919. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4920. SERIAL_ECHO(" d:");
  4921. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4922. }
  4923. #endif // PIDTEMPBED
  4924. #if defined(CHDK) || HAS_PHOTOGRAPH
  4925. /**
  4926. * M240: Trigger a camera by emulating a Canon RC-1
  4927. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4928. */
  4929. inline void gcode_M240() {
  4930. #ifdef CHDK
  4931. OUT_WRITE(CHDK, HIGH);
  4932. chdkHigh = millis();
  4933. chdkActive = true;
  4934. #elif HAS_PHOTOGRAPH
  4935. const uint8_t NUM_PULSES = 16;
  4936. const float PULSE_LENGTH = 0.01524;
  4937. for (int i = 0; i < NUM_PULSES; i++) {
  4938. WRITE(PHOTOGRAPH_PIN, HIGH);
  4939. _delay_ms(PULSE_LENGTH);
  4940. WRITE(PHOTOGRAPH_PIN, LOW);
  4941. _delay_ms(PULSE_LENGTH);
  4942. }
  4943. delay(7.33);
  4944. for (int i = 0; i < NUM_PULSES; i++) {
  4945. WRITE(PHOTOGRAPH_PIN, HIGH);
  4946. _delay_ms(PULSE_LENGTH);
  4947. WRITE(PHOTOGRAPH_PIN, LOW);
  4948. _delay_ms(PULSE_LENGTH);
  4949. }
  4950. #endif // !CHDK && HAS_PHOTOGRAPH
  4951. }
  4952. #endif // CHDK || PHOTOGRAPH_PIN
  4953. #if HAS_LCD_CONTRAST
  4954. /**
  4955. * M250: Read and optionally set the LCD contrast
  4956. */
  4957. inline void gcode_M250() {
  4958. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4959. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4960. SERIAL_PROTOCOL(lcd_contrast);
  4961. SERIAL_EOL;
  4962. }
  4963. #endif // HAS_LCD_CONTRAST
  4964. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4965. /**
  4966. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4967. */
  4968. inline void gcode_M302() {
  4969. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4970. }
  4971. #endif // PREVENT_DANGEROUS_EXTRUDE
  4972. /**
  4973. * M303: PID relay autotune
  4974. *
  4975. * S<temperature> sets the target temperature. (default 150C)
  4976. * E<extruder> (-1 for the bed) (default 0)
  4977. * C<cycles>
  4978. * U<bool> with a non-zero value will apply the result to current settings
  4979. */
  4980. inline void gcode_M303() {
  4981. #if HAS_PID_HEATING
  4982. int e = code_seen('E') ? code_value_int() : 0;
  4983. int c = code_seen('C') ? code_value_int() : 5;
  4984. bool u = code_seen('U') && code_value_bool();
  4985. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4986. if (e >= 0 && e < HOTENDS)
  4987. target_extruder = e;
  4988. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4989. thermalManager.PID_autotune(temp, e, c, u);
  4990. KEEPALIVE_STATE(IN_HANDLER);
  4991. #else
  4992. SERIAL_ERROR_START;
  4993. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4994. #endif
  4995. }
  4996. #if ENABLED(SCARA)
  4997. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4998. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4999. //SERIAL_ECHOLN(" Soft endstops disabled ");
  5000. if (IsRunning()) {
  5001. //gcode_get_destination(); // For X Y Z E F
  5002. delta[X_AXIS] = delta_x;
  5003. delta[Y_AXIS] = delta_y;
  5004. calculate_SCARA_forward_Transform(delta);
  5005. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  5006. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  5007. prepare_move_to_destination();
  5008. //ok_to_send();
  5009. return true;
  5010. }
  5011. return false;
  5012. }
  5013. /**
  5014. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5015. */
  5016. inline bool gcode_M360() {
  5017. SERIAL_ECHOLN(" Cal: Theta 0 ");
  5018. return SCARA_move_to_cal(0, 120);
  5019. }
  5020. /**
  5021. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5022. */
  5023. inline bool gcode_M361() {
  5024. SERIAL_ECHOLN(" Cal: Theta 90 ");
  5025. return SCARA_move_to_cal(90, 130);
  5026. }
  5027. /**
  5028. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5029. */
  5030. inline bool gcode_M362() {
  5031. SERIAL_ECHOLN(" Cal: Psi 0 ");
  5032. return SCARA_move_to_cal(60, 180);
  5033. }
  5034. /**
  5035. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5036. */
  5037. inline bool gcode_M363() {
  5038. SERIAL_ECHOLN(" Cal: Psi 90 ");
  5039. return SCARA_move_to_cal(50, 90);
  5040. }
  5041. /**
  5042. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5043. */
  5044. inline bool gcode_M364() {
  5045. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  5046. return SCARA_move_to_cal(45, 135);
  5047. }
  5048. /**
  5049. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5050. */
  5051. inline void gcode_M365() {
  5052. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5053. if (code_seen(axis_codes[i])) {
  5054. axis_scaling[i] = code_value_float();
  5055. }
  5056. }
  5057. }
  5058. #endif // SCARA
  5059. #if ENABLED(EXT_SOLENOID)
  5060. void enable_solenoid(uint8_t num) {
  5061. switch (num) {
  5062. case 0:
  5063. OUT_WRITE(SOL0_PIN, HIGH);
  5064. break;
  5065. #if HAS_SOLENOID_1
  5066. case 1:
  5067. OUT_WRITE(SOL1_PIN, HIGH);
  5068. break;
  5069. #endif
  5070. #if HAS_SOLENOID_2
  5071. case 2:
  5072. OUT_WRITE(SOL2_PIN, HIGH);
  5073. break;
  5074. #endif
  5075. #if HAS_SOLENOID_3
  5076. case 3:
  5077. OUT_WRITE(SOL3_PIN, HIGH);
  5078. break;
  5079. #endif
  5080. default:
  5081. SERIAL_ECHO_START;
  5082. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5083. break;
  5084. }
  5085. }
  5086. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5087. void disable_all_solenoids() {
  5088. OUT_WRITE(SOL0_PIN, LOW);
  5089. OUT_WRITE(SOL1_PIN, LOW);
  5090. OUT_WRITE(SOL2_PIN, LOW);
  5091. OUT_WRITE(SOL3_PIN, LOW);
  5092. }
  5093. /**
  5094. * M380: Enable solenoid on the active extruder
  5095. */
  5096. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5097. /**
  5098. * M381: Disable all solenoids
  5099. */
  5100. inline void gcode_M381() { disable_all_solenoids(); }
  5101. #endif // EXT_SOLENOID
  5102. /**
  5103. * M400: Finish all moves
  5104. */
  5105. inline void gcode_M400() { stepper.synchronize(); }
  5106. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY))
  5107. /**
  5108. * M401: Engage Z Servo endstop if available
  5109. */
  5110. inline void gcode_M401() {
  5111. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5112. raise_z_for_servo();
  5113. #endif
  5114. deploy_z_probe();
  5115. }
  5116. /**
  5117. * M402: Retract Z Servo endstop if enabled
  5118. */
  5119. inline void gcode_M402() {
  5120. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5121. raise_z_for_servo();
  5122. #endif
  5123. stow_z_probe(false);
  5124. }
  5125. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5126. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5127. /**
  5128. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5129. */
  5130. inline void gcode_M404() {
  5131. if (code_seen('W')) {
  5132. filament_width_nominal = code_value_linear_units();
  5133. }
  5134. else {
  5135. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5136. SERIAL_PROTOCOLLN(filament_width_nominal);
  5137. }
  5138. }
  5139. /**
  5140. * M405: Turn on filament sensor for control
  5141. */
  5142. inline void gcode_M405() {
  5143. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5144. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5145. if (code_seen('D')) meas_delay_cm = code_value_int();
  5146. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5147. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5148. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5149. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5150. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5151. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5152. }
  5153. filament_sensor = true;
  5154. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5155. //SERIAL_PROTOCOL(filament_width_meas);
  5156. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5157. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5158. }
  5159. /**
  5160. * M406: Turn off filament sensor for control
  5161. */
  5162. inline void gcode_M406() { filament_sensor = false; }
  5163. /**
  5164. * M407: Get measured filament diameter on serial output
  5165. */
  5166. inline void gcode_M407() {
  5167. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5168. SERIAL_PROTOCOLLN(filament_width_meas);
  5169. }
  5170. #endif // FILAMENT_WIDTH_SENSOR
  5171. #if DISABLED(DELTA) && DISABLED(SCARA)
  5172. void set_current_position_from_planner() {
  5173. stepper.synchronize();
  5174. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5175. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5176. current_position[X_AXIS] = pos.x;
  5177. current_position[Y_AXIS] = pos.y;
  5178. current_position[Z_AXIS] = pos.z;
  5179. #else
  5180. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5181. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5182. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5183. #endif
  5184. sync_plan_position(); // ...re-apply to planner position
  5185. }
  5186. #endif
  5187. /**
  5188. * M410: Quickstop - Abort all planned moves
  5189. *
  5190. * This will stop the carriages mid-move, so most likely they
  5191. * will be out of sync with the stepper position after this.
  5192. */
  5193. inline void gcode_M410() {
  5194. stepper.quick_stop();
  5195. #if DISABLED(DELTA) && DISABLED(SCARA)
  5196. set_current_position_from_planner();
  5197. #endif
  5198. }
  5199. #if ENABLED(MESH_BED_LEVELING)
  5200. /**
  5201. * M420: Enable/Disable Mesh Bed Leveling
  5202. */
  5203. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5204. /**
  5205. * M421: Set a single Mesh Bed Leveling Z coordinate
  5206. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5207. */
  5208. inline void gcode_M421() {
  5209. int8_t px, py;
  5210. float z = 0;
  5211. bool hasX, hasY, hasZ, hasI, hasJ;
  5212. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5213. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5214. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5215. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5216. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5217. if (hasX && hasY && hasZ) {
  5218. if (px >= 0 && py >= 0)
  5219. mbl.set_z(px, py, z);
  5220. else {
  5221. SERIAL_ERROR_START;
  5222. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5223. }
  5224. }
  5225. else if (hasI && hasJ && hasZ) {
  5226. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5227. mbl.set_z(px, py, z);
  5228. else {
  5229. SERIAL_ERROR_START;
  5230. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5231. }
  5232. }
  5233. else {
  5234. SERIAL_ERROR_START;
  5235. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5236. }
  5237. }
  5238. #endif
  5239. /**
  5240. * M428: Set home_offset based on the distance between the
  5241. * current_position and the nearest "reference point."
  5242. * If an axis is past center its endstop position
  5243. * is the reference-point. Otherwise it uses 0. This allows
  5244. * the Z offset to be set near the bed when using a max endstop.
  5245. *
  5246. * M428 can't be used more than 2cm away from 0 or an endstop.
  5247. *
  5248. * Use M206 to set these values directly.
  5249. */
  5250. inline void gcode_M428() {
  5251. bool err = false;
  5252. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5253. if (axis_homed[i]) {
  5254. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5255. diff = current_position[i] - base;
  5256. if (diff > -20 && diff < 20) {
  5257. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5258. }
  5259. else {
  5260. SERIAL_ERROR_START;
  5261. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5262. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5263. #if HAS_BUZZER
  5264. buzzer.tone(200, 40);
  5265. #endif
  5266. err = true;
  5267. break;
  5268. }
  5269. }
  5270. }
  5271. if (!err) {
  5272. #if ENABLED(DELTA) || ENABLED(SCARA)
  5273. sync_plan_position_delta();
  5274. #else
  5275. sync_plan_position();
  5276. #endif
  5277. report_current_position();
  5278. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5279. #if HAS_BUZZER
  5280. buzzer.tone(200, 659);
  5281. buzzer.tone(200, 698);
  5282. #endif
  5283. }
  5284. }
  5285. /**
  5286. * M500: Store settings in EEPROM
  5287. */
  5288. inline void gcode_M500() {
  5289. Config_StoreSettings();
  5290. }
  5291. /**
  5292. * M501: Read settings from EEPROM
  5293. */
  5294. inline void gcode_M501() {
  5295. Config_RetrieveSettings();
  5296. }
  5297. /**
  5298. * M502: Revert to default settings
  5299. */
  5300. inline void gcode_M502() {
  5301. Config_ResetDefault();
  5302. }
  5303. /**
  5304. * M503: print settings currently in memory
  5305. */
  5306. inline void gcode_M503() {
  5307. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5308. }
  5309. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5310. /**
  5311. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5312. */
  5313. inline void gcode_M540() {
  5314. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5315. }
  5316. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5317. #if HAS_BED_PROBE
  5318. inline void gcode_M851() {
  5319. SERIAL_ECHO_START;
  5320. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5321. SERIAL_CHAR(' ');
  5322. if (code_seen('Z')) {
  5323. float value = code_value_axis_units(Z_AXIS);
  5324. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5325. zprobe_zoffset = value;
  5326. SERIAL_ECHO(zprobe_zoffset);
  5327. }
  5328. else {
  5329. SERIAL_ECHOPGM(MSG_Z_MIN);
  5330. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5331. SERIAL_ECHOPGM(MSG_Z_MAX);
  5332. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5333. }
  5334. }
  5335. else {
  5336. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5337. }
  5338. SERIAL_EOL;
  5339. }
  5340. #endif // HAS_BED_PROBE
  5341. #if ENABLED(FILAMENTCHANGEENABLE)
  5342. /**
  5343. * M600: Pause for filament change
  5344. *
  5345. * E[distance] - Retract the filament this far (negative value)
  5346. * Z[distance] - Move the Z axis by this distance
  5347. * X[position] - Move to this X position, with Y
  5348. * Y[position] - Move to this Y position, with X
  5349. * L[distance] - Retract distance for removal (manual reload)
  5350. *
  5351. * Default values are used for omitted arguments.
  5352. *
  5353. */
  5354. inline void gcode_M600() {
  5355. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5356. SERIAL_ERROR_START;
  5357. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5358. return;
  5359. }
  5360. float lastpos[NUM_AXIS];
  5361. #if ENABLED(DELTA)
  5362. float fr60 = feedrate / 60;
  5363. #endif
  5364. for (int i = 0; i < NUM_AXIS; i++)
  5365. lastpos[i] = destination[i] = current_position[i];
  5366. #if ENABLED(DELTA)
  5367. #define RUNPLAN calculate_delta(destination); \
  5368. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5369. #else
  5370. #define RUNPLAN line_to_destination();
  5371. #endif
  5372. //retract by E
  5373. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5374. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5375. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5376. #endif
  5377. RUNPLAN;
  5378. //lift Z
  5379. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5380. #ifdef FILAMENTCHANGE_ZADD
  5381. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5382. #endif
  5383. RUNPLAN;
  5384. //move xy
  5385. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5386. #ifdef FILAMENTCHANGE_XPOS
  5387. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5388. #endif
  5389. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5390. #ifdef FILAMENTCHANGE_YPOS
  5391. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5392. #endif
  5393. RUNPLAN;
  5394. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5395. #ifdef FILAMENTCHANGE_FINALRETRACT
  5396. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5397. #endif
  5398. RUNPLAN;
  5399. //finish moves
  5400. stepper.synchronize();
  5401. //disable extruder steppers so filament can be removed
  5402. disable_e0();
  5403. disable_e1();
  5404. disable_e2();
  5405. disable_e3();
  5406. delay(100);
  5407. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5408. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5409. millis_t next_tick = 0;
  5410. #endif
  5411. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5412. while (!lcd_clicked()) {
  5413. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5414. millis_t ms = millis();
  5415. if (ELAPSED(ms, next_tick)) {
  5416. lcd_quick_feedback();
  5417. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5418. }
  5419. idle(true);
  5420. #else
  5421. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5422. destination[E_AXIS] = current_position[E_AXIS];
  5423. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5424. stepper.synchronize();
  5425. #endif
  5426. } // while(!lcd_clicked)
  5427. KEEPALIVE_STATE(IN_HANDLER);
  5428. lcd_quick_feedback(); // click sound feedback
  5429. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5430. current_position[E_AXIS] = 0;
  5431. stepper.synchronize();
  5432. #endif
  5433. //return to normal
  5434. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5435. #ifdef FILAMENTCHANGE_FINALRETRACT
  5436. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5437. #endif
  5438. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5439. sync_plan_position_e();
  5440. RUNPLAN; //should do nothing
  5441. lcd_reset_alert_level();
  5442. #if ENABLED(DELTA)
  5443. // Move XYZ to starting position, then E
  5444. calculate_delta(lastpos);
  5445. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5446. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5447. #else
  5448. // Move XY to starting position, then Z, then E
  5449. destination[X_AXIS] = lastpos[X_AXIS];
  5450. destination[Y_AXIS] = lastpos[Y_AXIS];
  5451. line_to_destination();
  5452. destination[Z_AXIS] = lastpos[Z_AXIS];
  5453. line_to_destination();
  5454. destination[E_AXIS] = lastpos[E_AXIS];
  5455. line_to_destination();
  5456. #endif
  5457. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5458. filament_ran_out = false;
  5459. #endif
  5460. }
  5461. #endif // FILAMENTCHANGEENABLE
  5462. #if ENABLED(DUAL_X_CARRIAGE)
  5463. /**
  5464. * M605: Set dual x-carriage movement mode
  5465. *
  5466. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5467. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5468. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5469. * millimeters x-offset and an optional differential hotend temperature of
  5470. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5471. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5472. *
  5473. * Note: the X axis should be homed after changing dual x-carriage mode.
  5474. */
  5475. inline void gcode_M605() {
  5476. stepper.synchronize();
  5477. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5478. switch (dual_x_carriage_mode) {
  5479. case DXC_DUPLICATION_MODE:
  5480. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5481. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5482. SERIAL_ECHO_START;
  5483. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5484. SERIAL_CHAR(' ');
  5485. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5486. SERIAL_CHAR(',');
  5487. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5488. SERIAL_CHAR(' ');
  5489. SERIAL_ECHO(duplicate_extruder_x_offset);
  5490. SERIAL_CHAR(',');
  5491. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5492. break;
  5493. case DXC_FULL_CONTROL_MODE:
  5494. case DXC_AUTO_PARK_MODE:
  5495. break;
  5496. default:
  5497. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5498. break;
  5499. }
  5500. active_extruder_parked = false;
  5501. extruder_duplication_enabled = false;
  5502. delayed_move_time = 0;
  5503. }
  5504. #endif // DUAL_X_CARRIAGE
  5505. #if ENABLED(LIN_ADVANCE)
  5506. /**
  5507. * M905: Set advance factor
  5508. */
  5509. inline void gcode_M905() {
  5510. stepper.synchronize();
  5511. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5512. }
  5513. #endif
  5514. /**
  5515. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5516. */
  5517. inline void gcode_M907() {
  5518. #if HAS_DIGIPOTSS
  5519. for (int i = 0; i < NUM_AXIS; i++)
  5520. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5521. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5522. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5523. #endif
  5524. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5525. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5526. #endif
  5527. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5528. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5529. #endif
  5530. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5531. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5532. #endif
  5533. #if ENABLED(DIGIPOT_I2C)
  5534. // this one uses actual amps in floating point
  5535. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5536. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5537. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5538. #endif
  5539. #if ENABLED(DAC_STEPPER_CURRENT)
  5540. if (code_seen('S')) {
  5541. float dac_percent = code_value_float();
  5542. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5543. }
  5544. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5545. #endif
  5546. }
  5547. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5548. /**
  5549. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5550. */
  5551. inline void gcode_M908() {
  5552. #if HAS_DIGIPOTSS
  5553. stepper.digitalPotWrite(
  5554. code_seen('P') ? code_value_int() : 0,
  5555. code_seen('S') ? code_value_int() : 0
  5556. );
  5557. #endif
  5558. #ifdef DAC_STEPPER_CURRENT
  5559. dac_current_raw(
  5560. code_seen('P') ? code_value_byte() : -1,
  5561. code_seen('S') ? code_value_ushort() : 0
  5562. );
  5563. #endif
  5564. }
  5565. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5566. inline void gcode_M909() { dac_print_values(); }
  5567. inline void gcode_M910() { dac_commit_eeprom(); }
  5568. #endif
  5569. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5570. #if HAS_MICROSTEPS
  5571. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5572. inline void gcode_M350() {
  5573. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5574. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5575. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5576. stepper.microstep_readings();
  5577. }
  5578. /**
  5579. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5580. * S# determines MS1 or MS2, X# sets the pin high/low.
  5581. */
  5582. inline void gcode_M351() {
  5583. if (code_seen('S')) switch (code_value_byte()) {
  5584. case 1:
  5585. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5586. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5587. break;
  5588. case 2:
  5589. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5590. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5591. break;
  5592. }
  5593. stepper.microstep_readings();
  5594. }
  5595. #endif // HAS_MICROSTEPS
  5596. /**
  5597. * M999: Restart after being stopped
  5598. *
  5599. * Default behaviour is to flush the serial buffer and request
  5600. * a resend to the host starting on the last N line received.
  5601. *
  5602. * Sending "M999 S1" will resume printing without flushing the
  5603. * existing command buffer.
  5604. *
  5605. */
  5606. inline void gcode_M999() {
  5607. Running = true;
  5608. lcd_reset_alert_level();
  5609. if (code_seen('S') && code_value_bool()) return;
  5610. // gcode_LastN = Stopped_gcode_LastN;
  5611. FlushSerialRequestResend();
  5612. }
  5613. /**
  5614. * T0-T3: Switch tool, usually switching extruders
  5615. *
  5616. * F[mm/min] Set the movement feedrate
  5617. * S1 Don't move the tool in XY after change
  5618. */
  5619. inline void gcode_T(uint8_t tmp_extruder) {
  5620. if (tmp_extruder >= EXTRUDERS) {
  5621. SERIAL_ECHO_START;
  5622. SERIAL_CHAR('T');
  5623. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5624. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5625. return;
  5626. }
  5627. #if HOTENDS > 1
  5628. float stored_feedrate = feedrate;
  5629. if (code_seen('F')) {
  5630. float next_feedrate = code_value_axis_units(X_AXIS);
  5631. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5632. }
  5633. else {
  5634. feedrate =
  5635. #ifdef XY_TRAVEL_SPEED
  5636. XY_TRAVEL_SPEED
  5637. #else
  5638. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  5639. #endif
  5640. ;
  5641. }
  5642. if (tmp_extruder != active_extruder) {
  5643. bool no_move = code_seen('S') && code_value_bool();
  5644. // Save current position to return to after applying extruder offset
  5645. if (!no_move) set_destination_to_current();
  5646. #if ENABLED(DUAL_X_CARRIAGE)
  5647. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5648. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5649. // Park old head: 1) raise 2) move to park position 3) lower
  5650. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5651. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5652. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5653. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5654. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5655. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5656. stepper.synchronize();
  5657. }
  5658. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5659. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5660. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5661. active_extruder = tmp_extruder;
  5662. // This function resets the max/min values - the current position may be overwritten below.
  5663. set_axis_is_at_home(X_AXIS);
  5664. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5665. current_position[X_AXIS] = inactive_extruder_x_pos;
  5666. inactive_extruder_x_pos = destination[X_AXIS];
  5667. }
  5668. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5669. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5670. if (active_extruder_parked)
  5671. current_position[X_AXIS] = inactive_extruder_x_pos;
  5672. else
  5673. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5674. inactive_extruder_x_pos = destination[X_AXIS];
  5675. extruder_duplication_enabled = false;
  5676. }
  5677. else {
  5678. // record raised toolhead position for use by unpark
  5679. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5680. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5681. active_extruder_parked = true;
  5682. delayed_move_time = 0;
  5683. }
  5684. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5685. #else // !DUAL_X_CARRIAGE
  5686. //
  5687. // Set current_position to the position of the new nozzle.
  5688. // Offsets are based on linear distance, so we need to get
  5689. // the resulting position in coordinate space.
  5690. //
  5691. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5692. // - With mesh leveling, update Z for the new position
  5693. // - Otherwise, just use the raw linear distance
  5694. //
  5695. // Software endstops are altered here too. Consider a case where:
  5696. // E0 at X=0 ... E1 at X=10
  5697. // When we switch to E1 now X=10, but E1 can't move left.
  5698. // To express this we apply the change in XY to the software endstops.
  5699. // E1 can move farther right than E0, so the right limit is extended.
  5700. //
  5701. // Note that we don't adjust the Z software endstops. Why not?
  5702. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5703. // because the bed is 1mm lower at the new position. As long as
  5704. // the first nozzle is out of the way, the carriage should be
  5705. // allowed to move 1mm lower. This technically "breaks" the
  5706. // Z software endstop. But this is technically correct (and
  5707. // there is no viable alternative).
  5708. //
  5709. float xydiff[2] = {
  5710. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5711. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5712. };
  5713. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5714. // Offset extruder, make sure to apply the bed level rotation matrix
  5715. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5716. hotend_offset[Y_AXIS][tmp_extruder],
  5717. 0),
  5718. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5719. hotend_offset[Y_AXIS][active_extruder],
  5720. 0),
  5721. offset_vec = tmp_offset_vec - act_offset_vec;
  5722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5723. if (DEBUGGING(LEVELING)) {
  5724. SERIAL_ECHOLNPGM(">>> gcode_T");
  5725. tmp_offset_vec.debug("tmp_offset_vec");
  5726. act_offset_vec.debug("act_offset_vec");
  5727. offset_vec.debug("offset_vec (BEFORE)");
  5728. DEBUG_POS("BEFORE rotation", current_position);
  5729. }
  5730. #endif
  5731. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5732. // Adjust the current position
  5733. current_position[X_AXIS] += offset_vec.x;
  5734. current_position[Y_AXIS] += offset_vec.y;
  5735. current_position[Z_AXIS] += offset_vec.z;
  5736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5737. if (DEBUGGING(LEVELING)) {
  5738. offset_vec.debug("offset_vec (AFTER)");
  5739. DEBUG_POS("AFTER rotation", current_position);
  5740. SERIAL_ECHOLNPGM("<<< gcode_T");
  5741. }
  5742. #endif
  5743. #elif ENABLED(MESH_BED_LEVELING)
  5744. if (mbl.active()) {
  5745. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5746. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5747. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5748. }
  5749. #else // no bed leveling
  5750. // The newly-selected extruder XY is actually at...
  5751. current_position[X_AXIS] += xydiff[X_AXIS];
  5752. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5753. #endif // no bed leveling
  5754. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5755. position_shift[i] += xydiff[i];
  5756. update_software_endstops((AxisEnum)i);
  5757. }
  5758. // Set the new active extruder
  5759. active_extruder = tmp_extruder;
  5760. #endif // !DUAL_X_CARRIAGE
  5761. // Tell the planner the new "current position"
  5762. #if ENABLED(DELTA)
  5763. sync_plan_position_delta();
  5764. #else
  5765. sync_plan_position();
  5766. #endif
  5767. // Move to the "old position" (move the extruder into place)
  5768. if (!no_move && IsRunning()) prepare_move_to_destination();
  5769. } // (tmp_extruder != active_extruder)
  5770. #if ENABLED(EXT_SOLENOID)
  5771. stepper.synchronize();
  5772. disable_all_solenoids();
  5773. enable_solenoid_on_active_extruder();
  5774. #endif // EXT_SOLENOID
  5775. feedrate = stored_feedrate;
  5776. #else // !HOTENDS > 1
  5777. // Set the new active extruder
  5778. active_extruder = tmp_extruder;
  5779. #endif
  5780. SERIAL_ECHO_START;
  5781. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5782. SERIAL_PROTOCOLLN((int)active_extruder);
  5783. }
  5784. /**
  5785. * Process a single command and dispatch it to its handler
  5786. * This is called from the main loop()
  5787. */
  5788. void process_next_command() {
  5789. current_command = command_queue[cmd_queue_index_r];
  5790. if (DEBUGGING(ECHO)) {
  5791. SERIAL_ECHO_START;
  5792. SERIAL_ECHOLN(current_command);
  5793. }
  5794. // Sanitize the current command:
  5795. // - Skip leading spaces
  5796. // - Bypass N[-0-9][0-9]*[ ]*
  5797. // - Overwrite * with nul to mark the end
  5798. while (*current_command == ' ') ++current_command;
  5799. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5800. current_command += 2; // skip N[-0-9]
  5801. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5802. while (*current_command == ' ') ++current_command; // skip [ ]*
  5803. }
  5804. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5805. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5806. char *cmd_ptr = current_command;
  5807. // Get the command code, which must be G, M, or T
  5808. char command_code = *cmd_ptr++;
  5809. // Skip spaces to get the numeric part
  5810. while (*cmd_ptr == ' ') cmd_ptr++;
  5811. uint16_t codenum = 0; // define ahead of goto
  5812. // Bail early if there's no code
  5813. bool code_is_good = NUMERIC(*cmd_ptr);
  5814. if (!code_is_good) goto ExitUnknownCommand;
  5815. // Get and skip the code number
  5816. do {
  5817. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5818. cmd_ptr++;
  5819. } while (NUMERIC(*cmd_ptr));
  5820. // Skip all spaces to get to the first argument, or nul
  5821. while (*cmd_ptr == ' ') cmd_ptr++;
  5822. // The command's arguments (if any) start here, for sure!
  5823. current_command_args = cmd_ptr;
  5824. KEEPALIVE_STATE(IN_HANDLER);
  5825. // Handle a known G, M, or T
  5826. switch (command_code) {
  5827. case 'G': switch (codenum) {
  5828. // G0, G1
  5829. case 0:
  5830. case 1:
  5831. gcode_G0_G1();
  5832. break;
  5833. // G2, G3
  5834. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5835. case 2: // G2 - CW ARC
  5836. case 3: // G3 - CCW ARC
  5837. gcode_G2_G3(codenum == 2);
  5838. break;
  5839. #endif
  5840. // G4 Dwell
  5841. case 4:
  5842. gcode_G4();
  5843. break;
  5844. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5845. // G5
  5846. case 5: // G5 - Cubic B_spline
  5847. gcode_G5();
  5848. break;
  5849. #endif // BEZIER_CURVE_SUPPORT
  5850. #if ENABLED(FWRETRACT)
  5851. case 10: // G10: retract
  5852. case 11: // G11: retract_recover
  5853. gcode_G10_G11(codenum == 10);
  5854. break;
  5855. #endif // FWRETRACT
  5856. #if ENABLED(INCH_MODE_SUPPORT)
  5857. case 20: //G20: Inch Mode
  5858. gcode_G20();
  5859. break;
  5860. case 21: //G21: MM Mode
  5861. gcode_G21();
  5862. break;
  5863. #endif
  5864. case 28: // G28: Home all axes, one at a time
  5865. gcode_G28();
  5866. break;
  5867. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5868. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5869. gcode_G29();
  5870. break;
  5871. #endif
  5872. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5873. #if DISABLED(Z_PROBE_SLED)
  5874. case 30: // G30 Single Z probe
  5875. gcode_G30();
  5876. break;
  5877. #else // Z_PROBE_SLED
  5878. case 31: // G31: dock the sled
  5879. case 32: // G32: undock the sled
  5880. dock_sled(codenum == 31);
  5881. break;
  5882. #endif // Z_PROBE_SLED
  5883. #endif // AUTO_BED_LEVELING_FEATURE
  5884. case 90: // G90
  5885. relative_mode = false;
  5886. break;
  5887. case 91: // G91
  5888. relative_mode = true;
  5889. break;
  5890. case 92: // G92
  5891. gcode_G92();
  5892. break;
  5893. }
  5894. break;
  5895. case 'M': switch (codenum) {
  5896. #if ENABLED(ULTIPANEL)
  5897. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5898. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5899. gcode_M0_M1();
  5900. break;
  5901. #endif // ULTIPANEL
  5902. case 17:
  5903. gcode_M17();
  5904. break;
  5905. #if ENABLED(SDSUPPORT)
  5906. case 20: // M20 - list SD card
  5907. gcode_M20(); break;
  5908. case 21: // M21 - init SD card
  5909. gcode_M21(); break;
  5910. case 22: //M22 - release SD card
  5911. gcode_M22(); break;
  5912. case 23: //M23 - Select file
  5913. gcode_M23(); break;
  5914. case 24: //M24 - Start SD print
  5915. gcode_M24(); break;
  5916. case 25: //M25 - Pause SD print
  5917. gcode_M25(); break;
  5918. case 26: //M26 - Set SD index
  5919. gcode_M26(); break;
  5920. case 27: //M27 - Get SD status
  5921. gcode_M27(); break;
  5922. case 28: //M28 - Start SD write
  5923. gcode_M28(); break;
  5924. case 29: //M29 - Stop SD write
  5925. gcode_M29(); break;
  5926. case 30: //M30 <filename> Delete File
  5927. gcode_M30(); break;
  5928. case 32: //M32 - Select file and start SD print
  5929. gcode_M32(); break;
  5930. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5931. case 33: //M33 - Get the long full path to a file or folder
  5932. gcode_M33(); break;
  5933. #endif // LONG_FILENAME_HOST_SUPPORT
  5934. case 928: //M928 - Start SD write
  5935. gcode_M928(); break;
  5936. #endif //SDSUPPORT
  5937. case 31: //M31 take time since the start of the SD print or an M109 command
  5938. gcode_M31();
  5939. break;
  5940. case 42: //M42 -Change pin status via gcode
  5941. gcode_M42();
  5942. break;
  5943. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5944. case 48: // M48 Z probe repeatability
  5945. gcode_M48();
  5946. break;
  5947. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5948. case 75: // Start print timer
  5949. gcode_M75();
  5950. break;
  5951. case 76: // Pause print timer
  5952. gcode_M76();
  5953. break;
  5954. case 77: // Stop print timer
  5955. gcode_M77();
  5956. break;
  5957. #if ENABLED(PRINTCOUNTER)
  5958. case 78: // Show print statistics
  5959. gcode_M78();
  5960. break;
  5961. #endif
  5962. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5963. case 100:
  5964. gcode_M100();
  5965. break;
  5966. #endif
  5967. case 104: // M104
  5968. gcode_M104();
  5969. break;
  5970. case 110: // M110: Set Current Line Number
  5971. gcode_M110();
  5972. break;
  5973. case 111: // M111: Set debug level
  5974. gcode_M111();
  5975. break;
  5976. case 112: // M112: Emergency Stop
  5977. gcode_M112();
  5978. break;
  5979. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5980. case 113: // M113: Set Host Keepalive interval
  5981. gcode_M113();
  5982. break;
  5983. #endif
  5984. case 140: // M140: Set bed temp
  5985. gcode_M140();
  5986. break;
  5987. case 105: // M105: Read current temperature
  5988. gcode_M105();
  5989. KEEPALIVE_STATE(NOT_BUSY);
  5990. return; // "ok" already printed
  5991. case 109: // M109: Wait for temperature
  5992. gcode_M109();
  5993. break;
  5994. #if HAS_TEMP_BED
  5995. case 190: // M190: Wait for bed heater to reach target
  5996. gcode_M190();
  5997. break;
  5998. #endif // HAS_TEMP_BED
  5999. #if FAN_COUNT > 0
  6000. case 106: // M106: Fan On
  6001. gcode_M106();
  6002. break;
  6003. case 107: // M107: Fan Off
  6004. gcode_M107();
  6005. break;
  6006. #endif // FAN_COUNT > 0
  6007. #if ENABLED(BARICUDA)
  6008. // PWM for HEATER_1_PIN
  6009. #if HAS_HEATER_1
  6010. case 126: // M126: valve open
  6011. gcode_M126();
  6012. break;
  6013. case 127: // M127: valve closed
  6014. gcode_M127();
  6015. break;
  6016. #endif // HAS_HEATER_1
  6017. // PWM for HEATER_2_PIN
  6018. #if HAS_HEATER_2
  6019. case 128: // M128: valve open
  6020. gcode_M128();
  6021. break;
  6022. case 129: // M129: valve closed
  6023. gcode_M129();
  6024. break;
  6025. #endif // HAS_HEATER_2
  6026. #endif // BARICUDA
  6027. #if HAS_POWER_SWITCH
  6028. case 80: // M80: Turn on Power Supply
  6029. gcode_M80();
  6030. break;
  6031. #endif // HAS_POWER_SWITCH
  6032. case 81: // M81: Turn off Power, including Power Supply, if possible
  6033. gcode_M81();
  6034. break;
  6035. case 82:
  6036. gcode_M82();
  6037. break;
  6038. case 83:
  6039. gcode_M83();
  6040. break;
  6041. case 18: // (for compatibility)
  6042. case 84: // M84
  6043. gcode_M18_M84();
  6044. break;
  6045. case 85: // M85
  6046. gcode_M85();
  6047. break;
  6048. case 92: // M92: Set the steps-per-unit for one or more axes
  6049. gcode_M92();
  6050. break;
  6051. case 115: // M115: Report capabilities
  6052. gcode_M115();
  6053. break;
  6054. case 117: // M117: Set LCD message text, if possible
  6055. gcode_M117();
  6056. break;
  6057. case 114: // M114: Report current position
  6058. gcode_M114();
  6059. break;
  6060. case 120: // M120: Enable endstops
  6061. gcode_M120();
  6062. break;
  6063. case 121: // M121: Disable endstops
  6064. gcode_M121();
  6065. break;
  6066. case 119: // M119: Report endstop states
  6067. gcode_M119();
  6068. break;
  6069. #if ENABLED(ULTIPANEL)
  6070. case 145: // M145: Set material heatup parameters
  6071. gcode_M145();
  6072. break;
  6073. #endif
  6074. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6075. case 149:
  6076. gcode_M149();
  6077. break;
  6078. #endif
  6079. #if ENABLED(BLINKM)
  6080. case 150: // M150
  6081. gcode_M150();
  6082. break;
  6083. #endif //BLINKM
  6084. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6085. case 155:
  6086. gcode_M155();
  6087. break;
  6088. case 156:
  6089. gcode_M156();
  6090. break;
  6091. #endif //EXPERIMENTAL_I2CBUS
  6092. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6093. gcode_M200();
  6094. break;
  6095. case 201: // M201
  6096. gcode_M201();
  6097. break;
  6098. #if 0 // Not used for Sprinter/grbl gen6
  6099. case 202: // M202
  6100. gcode_M202();
  6101. break;
  6102. #endif
  6103. case 203: // M203 max feedrate mm/sec
  6104. gcode_M203();
  6105. break;
  6106. case 204: // M204 acclereration S normal moves T filmanent only moves
  6107. gcode_M204();
  6108. break;
  6109. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6110. gcode_M205();
  6111. break;
  6112. case 206: // M206 additional homing offset
  6113. gcode_M206();
  6114. break;
  6115. #if ENABLED(DELTA)
  6116. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6117. gcode_M665();
  6118. break;
  6119. #endif
  6120. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6121. case 666: // M666 set delta / dual endstop adjustment
  6122. gcode_M666();
  6123. break;
  6124. #endif
  6125. #if ENABLED(FWRETRACT)
  6126. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6127. gcode_M207();
  6128. break;
  6129. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6130. gcode_M208();
  6131. break;
  6132. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6133. gcode_M209();
  6134. break;
  6135. #endif // FWRETRACT
  6136. #if HOTENDS > 1
  6137. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6138. gcode_M218();
  6139. break;
  6140. #endif
  6141. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6142. gcode_M220();
  6143. break;
  6144. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6145. gcode_M221();
  6146. break;
  6147. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6148. gcode_M226();
  6149. break;
  6150. #if HAS_SERVOS
  6151. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6152. gcode_M280();
  6153. break;
  6154. #endif // HAS_SERVOS
  6155. #if HAS_BUZZER
  6156. case 300: // M300 - Play beep tone
  6157. gcode_M300();
  6158. break;
  6159. #endif // HAS_BUZZER
  6160. #if ENABLED(PIDTEMP)
  6161. case 301: // M301
  6162. gcode_M301();
  6163. break;
  6164. #endif // PIDTEMP
  6165. #if ENABLED(PIDTEMPBED)
  6166. case 304: // M304
  6167. gcode_M304();
  6168. break;
  6169. #endif // PIDTEMPBED
  6170. #if defined(CHDK) || HAS_PHOTOGRAPH
  6171. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6172. gcode_M240();
  6173. break;
  6174. #endif // CHDK || PHOTOGRAPH_PIN
  6175. #if HAS_LCD_CONTRAST
  6176. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6177. gcode_M250();
  6178. break;
  6179. #endif // HAS_LCD_CONTRAST
  6180. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6181. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6182. gcode_M302();
  6183. break;
  6184. #endif // PREVENT_DANGEROUS_EXTRUDE
  6185. case 303: // M303 PID autotune
  6186. gcode_M303();
  6187. break;
  6188. #if ENABLED(SCARA)
  6189. case 360: // M360 SCARA Theta pos1
  6190. if (gcode_M360()) return;
  6191. break;
  6192. case 361: // M361 SCARA Theta pos2
  6193. if (gcode_M361()) return;
  6194. break;
  6195. case 362: // M362 SCARA Psi pos1
  6196. if (gcode_M362()) return;
  6197. break;
  6198. case 363: // M363 SCARA Psi pos2
  6199. if (gcode_M363()) return;
  6200. break;
  6201. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6202. if (gcode_M364()) return;
  6203. break;
  6204. case 365: // M365 Set SCARA scaling for X Y Z
  6205. gcode_M365();
  6206. break;
  6207. #endif // SCARA
  6208. case 400: // M400 finish all moves
  6209. gcode_M400();
  6210. break;
  6211. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  6212. case 401:
  6213. gcode_M401();
  6214. break;
  6215. case 402:
  6216. gcode_M402();
  6217. break;
  6218. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  6219. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6220. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6221. gcode_M404();
  6222. break;
  6223. case 405: //M405 Turn on filament sensor for control
  6224. gcode_M405();
  6225. break;
  6226. case 406: //M406 Turn off filament sensor for control
  6227. gcode_M406();
  6228. break;
  6229. case 407: //M407 Display measured filament diameter
  6230. gcode_M407();
  6231. break;
  6232. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6233. case 410: // M410 quickstop - Abort all the planned moves.
  6234. gcode_M410();
  6235. break;
  6236. #if ENABLED(MESH_BED_LEVELING)
  6237. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6238. gcode_M420();
  6239. break;
  6240. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6241. gcode_M421();
  6242. break;
  6243. #endif
  6244. case 428: // M428 Apply current_position to home_offset
  6245. gcode_M428();
  6246. break;
  6247. case 500: // M500 Store settings in EEPROM
  6248. gcode_M500();
  6249. break;
  6250. case 501: // M501 Read settings from EEPROM
  6251. gcode_M501();
  6252. break;
  6253. case 502: // M502 Revert to default settings
  6254. gcode_M502();
  6255. break;
  6256. case 503: // M503 print settings currently in memory
  6257. gcode_M503();
  6258. break;
  6259. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6260. case 540:
  6261. gcode_M540();
  6262. break;
  6263. #endif
  6264. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6265. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6266. gcode_M851();
  6267. break;
  6268. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6269. #if ENABLED(FILAMENTCHANGEENABLE)
  6270. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6271. gcode_M600();
  6272. break;
  6273. #endif // FILAMENTCHANGEENABLE
  6274. #if ENABLED(DUAL_X_CARRIAGE)
  6275. case 605:
  6276. gcode_M605();
  6277. break;
  6278. #endif // DUAL_X_CARRIAGE
  6279. #if ENABLED(LIN_ADVANCE)
  6280. case 905: // M905 Set advance factor.
  6281. gcode_M905();
  6282. break;
  6283. #endif
  6284. case 907: // M907 Set digital trimpot motor current using axis codes.
  6285. gcode_M907();
  6286. break;
  6287. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6288. case 908: // M908 Control digital trimpot directly.
  6289. gcode_M908();
  6290. break;
  6291. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6292. case 909: // M909 Print digipot/DAC current value
  6293. gcode_M909();
  6294. break;
  6295. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6296. gcode_M910();
  6297. break;
  6298. #endif
  6299. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6300. #if HAS_MICROSTEPS
  6301. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6302. gcode_M350();
  6303. break;
  6304. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6305. gcode_M351();
  6306. break;
  6307. #endif // HAS_MICROSTEPS
  6308. case 999: // M999: Restart after being Stopped
  6309. gcode_M999();
  6310. break;
  6311. }
  6312. break;
  6313. case 'T':
  6314. gcode_T(codenum);
  6315. break;
  6316. default: code_is_good = false;
  6317. }
  6318. KEEPALIVE_STATE(NOT_BUSY);
  6319. ExitUnknownCommand:
  6320. // Still unknown command? Throw an error
  6321. if (!code_is_good) unknown_command_error();
  6322. ok_to_send();
  6323. }
  6324. void FlushSerialRequestResend() {
  6325. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6326. MYSERIAL.flush();
  6327. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6328. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6329. ok_to_send();
  6330. }
  6331. void ok_to_send() {
  6332. refresh_cmd_timeout();
  6333. if (!send_ok[cmd_queue_index_r]) return;
  6334. SERIAL_PROTOCOLPGM(MSG_OK);
  6335. #if ENABLED(ADVANCED_OK)
  6336. char* p = command_queue[cmd_queue_index_r];
  6337. if (*p == 'N') {
  6338. SERIAL_PROTOCOL(' ');
  6339. SERIAL_ECHO(*p++);
  6340. while (NUMERIC_SIGNED(*p))
  6341. SERIAL_ECHO(*p++);
  6342. }
  6343. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6344. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6345. #endif
  6346. SERIAL_EOL;
  6347. }
  6348. void clamp_to_software_endstops(float target[3]) {
  6349. if (min_software_endstops) {
  6350. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6351. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6352. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6353. }
  6354. if (max_software_endstops) {
  6355. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6356. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6357. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6358. }
  6359. }
  6360. #if ENABLED(DELTA)
  6361. void recalc_delta_settings(float radius, float diagonal_rod) {
  6362. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6363. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6364. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6365. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6366. delta_tower3_x = 0.0; // back middle tower
  6367. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6368. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6369. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6370. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6371. }
  6372. void calculate_delta(float cartesian[3]) {
  6373. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6374. - sq(delta_tower1_x - cartesian[X_AXIS])
  6375. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6376. ) + cartesian[Z_AXIS];
  6377. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6378. - sq(delta_tower2_x - cartesian[X_AXIS])
  6379. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6380. ) + cartesian[Z_AXIS];
  6381. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6382. - sq(delta_tower3_x - cartesian[X_AXIS])
  6383. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6384. ) + cartesian[Z_AXIS];
  6385. /**
  6386. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6387. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6388. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6389. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6390. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6391. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6392. */
  6393. }
  6394. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6395. // Adjust print surface height by linear interpolation over the bed_level array.
  6396. void adjust_delta(float cartesian[3]) {
  6397. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6398. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6399. float h1 = 0.001 - half, h2 = half - 0.001,
  6400. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6401. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6402. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6403. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6404. z1 = bed_level[floor_x + half][floor_y + half],
  6405. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6406. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6407. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6408. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6409. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6410. offset = (1 - ratio_x) * left + ratio_x * right;
  6411. delta[X_AXIS] += offset;
  6412. delta[Y_AXIS] += offset;
  6413. delta[Z_AXIS] += offset;
  6414. /**
  6415. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6416. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6417. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6418. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6419. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6420. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6421. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6422. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6423. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6424. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6425. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6426. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6427. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6428. */
  6429. }
  6430. #endif // AUTO_BED_LEVELING_FEATURE
  6431. #endif // DELTA
  6432. #if ENABLED(MESH_BED_LEVELING)
  6433. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6434. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6435. if (!mbl.active()) {
  6436. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6437. set_current_to_destination();
  6438. return;
  6439. }
  6440. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6441. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6442. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6443. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6444. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6445. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6446. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6447. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6448. if (pcx == cx && pcy == cy) {
  6449. // Start and end on same mesh square
  6450. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6451. set_current_to_destination();
  6452. return;
  6453. }
  6454. float nx, ny, nz, ne, normalized_dist;
  6455. if (cx > pcx && TEST(x_splits, cx)) {
  6456. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6457. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6458. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6459. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6460. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6461. CBI(x_splits, cx);
  6462. }
  6463. else if (cx < pcx && TEST(x_splits, pcx)) {
  6464. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6465. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6466. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6467. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6468. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6469. CBI(x_splits, pcx);
  6470. }
  6471. else if (cy > pcy && TEST(y_splits, cy)) {
  6472. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6473. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6474. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6475. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6476. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6477. CBI(y_splits, cy);
  6478. }
  6479. else if (cy < pcy && TEST(y_splits, pcy)) {
  6480. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6481. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6482. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6483. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6484. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6485. CBI(y_splits, pcy);
  6486. }
  6487. else {
  6488. // Already split on a border
  6489. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6490. set_current_to_destination();
  6491. return;
  6492. }
  6493. // Do the split and look for more borders
  6494. destination[X_AXIS] = nx;
  6495. destination[Y_AXIS] = ny;
  6496. destination[Z_AXIS] = nz;
  6497. destination[E_AXIS] = ne;
  6498. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6499. destination[X_AXIS] = x;
  6500. destination[Y_AXIS] = y;
  6501. destination[Z_AXIS] = z;
  6502. destination[E_AXIS] = e;
  6503. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6504. }
  6505. #endif // MESH_BED_LEVELING
  6506. #if ENABLED(DELTA) || ENABLED(SCARA)
  6507. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6508. float difference[NUM_AXIS];
  6509. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6510. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6511. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6512. if (cartesian_mm < 0.000001) return false;
  6513. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6514. float seconds = cartesian_mm / _feedrate;
  6515. int steps = max(1, int(delta_segments_per_second * seconds));
  6516. float inv_steps = 1.0/steps;
  6517. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6518. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6519. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6520. for (int s = 1; s <= steps; s++) {
  6521. float fraction = float(s) * inv_steps;
  6522. for (int8_t i = 0; i < NUM_AXIS; i++)
  6523. target[i] = current_position[i] + difference[i] * fraction;
  6524. calculate_delta(target);
  6525. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6526. if (!bed_leveling_in_progress) adjust_delta(target);
  6527. #endif
  6528. //DEBUG_POS("prepare_delta_move_to", target);
  6529. //DEBUG_POS("prepare_delta_move_to", delta);
  6530. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6531. }
  6532. return true;
  6533. }
  6534. #endif // DELTA || SCARA
  6535. #if ENABLED(SCARA)
  6536. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6537. #endif
  6538. #if ENABLED(DUAL_X_CARRIAGE)
  6539. inline bool prepare_move_dual_x_carriage() {
  6540. if (active_extruder_parked) {
  6541. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6542. // move duplicate extruder into correct duplication position.
  6543. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6544. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6545. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6546. sync_plan_position();
  6547. stepper.synchronize();
  6548. extruder_duplication_enabled = true;
  6549. active_extruder_parked = false;
  6550. }
  6551. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6552. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6553. // This is a travel move (with no extrusion)
  6554. // Skip it, but keep track of the current position
  6555. // (so it can be used as the start of the next non-travel move)
  6556. if (delayed_move_time != 0xFFFFFFFFUL) {
  6557. set_current_to_destination();
  6558. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6559. delayed_move_time = millis();
  6560. return false;
  6561. }
  6562. }
  6563. delayed_move_time = 0;
  6564. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6565. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6566. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6567. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6568. active_extruder_parked = false;
  6569. }
  6570. }
  6571. return true;
  6572. }
  6573. #endif // DUAL_X_CARRIAGE
  6574. #if DISABLED(DELTA) && DISABLED(SCARA)
  6575. inline bool prepare_cartesian_move_to_destination() {
  6576. // Do not use feedrate_multiplier for E or Z only moves
  6577. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6578. line_to_destination();
  6579. }
  6580. else {
  6581. #if ENABLED(MESH_BED_LEVELING)
  6582. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6583. return false;
  6584. #else
  6585. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6586. #endif
  6587. }
  6588. return true;
  6589. }
  6590. #endif // !DELTA && !SCARA
  6591. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6592. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6593. if (DEBUGGING(DRYRUN)) return;
  6594. float de = dest_e - curr_e;
  6595. if (de) {
  6596. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6597. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6598. SERIAL_ECHO_START;
  6599. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6600. }
  6601. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6602. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6603. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6604. SERIAL_ECHO_START;
  6605. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6606. }
  6607. #endif
  6608. }
  6609. }
  6610. #endif // PREVENT_DANGEROUS_EXTRUDE
  6611. /**
  6612. * Prepare a single move and get ready for the next one
  6613. *
  6614. * (This may call planner.buffer_line several times to put
  6615. * smaller moves into the planner for DELTA or SCARA.)
  6616. */
  6617. void prepare_move_to_destination() {
  6618. clamp_to_software_endstops(destination);
  6619. refresh_cmd_timeout();
  6620. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6621. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6622. #endif
  6623. #if ENABLED(SCARA)
  6624. if (!prepare_scara_move_to(destination)) return;
  6625. #elif ENABLED(DELTA)
  6626. if (!prepare_delta_move_to(destination)) return;
  6627. #else
  6628. #if ENABLED(DUAL_X_CARRIAGE)
  6629. if (!prepare_move_dual_x_carriage()) return;
  6630. #endif
  6631. if (!prepare_cartesian_move_to_destination()) return;
  6632. #endif
  6633. set_current_to_destination();
  6634. }
  6635. #if ENABLED(ARC_SUPPORT)
  6636. /**
  6637. * Plan an arc in 2 dimensions
  6638. *
  6639. * The arc is approximated by generating many small linear segments.
  6640. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6641. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6642. * larger segments will tend to be more efficient. Your slicer should have
  6643. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6644. */
  6645. void plan_arc(
  6646. float target[NUM_AXIS], // Destination position
  6647. float* offset, // Center of rotation relative to current_position
  6648. uint8_t clockwise // Clockwise?
  6649. ) {
  6650. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6651. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6652. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6653. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6654. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6655. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6656. r_Y = -offset[Y_AXIS],
  6657. rt_X = target[X_AXIS] - center_X,
  6658. rt_Y = target[Y_AXIS] - center_Y;
  6659. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6660. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6661. if (angular_travel < 0) angular_travel += RADIANS(360);
  6662. if (clockwise) angular_travel -= RADIANS(360);
  6663. // Make a circle if the angular rotation is 0
  6664. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6665. angular_travel += RADIANS(360);
  6666. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6667. if (mm_of_travel < 0.001) return;
  6668. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6669. if (segments == 0) segments = 1;
  6670. float theta_per_segment = angular_travel / segments;
  6671. float linear_per_segment = linear_travel / segments;
  6672. float extruder_per_segment = extruder_travel / segments;
  6673. /**
  6674. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6675. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6676. * r_T = [cos(phi) -sin(phi);
  6677. * sin(phi) cos(phi] * r ;
  6678. *
  6679. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6680. * defined from the circle center to the initial position. Each line segment is formed by successive
  6681. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6682. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6683. * all double numbers are single precision on the Arduino. (True double precision will not have
  6684. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6685. * tool precision in some cases. Therefore, arc path correction is implemented.
  6686. *
  6687. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6688. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6689. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6690. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6691. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6692. * issue for CNC machines with the single precision Arduino calculations.
  6693. *
  6694. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6695. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6696. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6697. * This is important when there are successive arc motions.
  6698. */
  6699. // Vector rotation matrix values
  6700. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6701. float sin_T = theta_per_segment;
  6702. float arc_target[NUM_AXIS];
  6703. float sin_Ti, cos_Ti, r_new_Y;
  6704. uint16_t i;
  6705. int8_t count = 0;
  6706. // Initialize the linear axis
  6707. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6708. // Initialize the extruder axis
  6709. arc_target[E_AXIS] = current_position[E_AXIS];
  6710. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6711. millis_t next_idle_ms = millis() + 200UL;
  6712. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6713. thermalManager.manage_heater();
  6714. millis_t now = millis();
  6715. if (ELAPSED(now, next_idle_ms)) {
  6716. next_idle_ms = now + 200UL;
  6717. idle();
  6718. }
  6719. if (++count < N_ARC_CORRECTION) {
  6720. // Apply vector rotation matrix to previous r_X / 1
  6721. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6722. r_X = r_X * cos_T - r_Y * sin_T;
  6723. r_Y = r_new_Y;
  6724. }
  6725. else {
  6726. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6727. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6728. // To reduce stuttering, the sin and cos could be computed at different times.
  6729. // For now, compute both at the same time.
  6730. cos_Ti = cos(i * theta_per_segment);
  6731. sin_Ti = sin(i * theta_per_segment);
  6732. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6733. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6734. count = 0;
  6735. }
  6736. // Update arc_target location
  6737. arc_target[X_AXIS] = center_X + r_X;
  6738. arc_target[Y_AXIS] = center_Y + r_Y;
  6739. arc_target[Z_AXIS] += linear_per_segment;
  6740. arc_target[E_AXIS] += extruder_per_segment;
  6741. clamp_to_software_endstops(arc_target);
  6742. #if ENABLED(DELTA) || ENABLED(SCARA)
  6743. calculate_delta(arc_target);
  6744. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6745. adjust_delta(arc_target);
  6746. #endif
  6747. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6748. #else
  6749. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6750. #endif
  6751. }
  6752. // Ensure last segment arrives at target location.
  6753. #if ENABLED(DELTA) || ENABLED(SCARA)
  6754. calculate_delta(target);
  6755. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6756. adjust_delta(target);
  6757. #endif
  6758. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6759. #else
  6760. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6761. #endif
  6762. // As far as the parser is concerned, the position is now == target. In reality the
  6763. // motion control system might still be processing the action and the real tool position
  6764. // in any intermediate location.
  6765. set_current_to_destination();
  6766. }
  6767. #endif
  6768. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6769. void plan_cubic_move(const float offset[4]) {
  6770. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6771. // As far as the parser is concerned, the position is now == target. In reality the
  6772. // motion control system might still be processing the action and the real tool position
  6773. // in any intermediate location.
  6774. set_current_to_destination();
  6775. }
  6776. #endif // BEZIER_CURVE_SUPPORT
  6777. #if HAS_CONTROLLERFAN
  6778. void controllerFan() {
  6779. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6780. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6781. millis_t ms = millis();
  6782. if (ELAPSED(ms, nextMotorCheck)) {
  6783. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6784. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6785. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6786. #if EXTRUDERS > 1
  6787. || E1_ENABLE_READ == E_ENABLE_ON
  6788. #if HAS_X2_ENABLE
  6789. || X2_ENABLE_READ == X_ENABLE_ON
  6790. #endif
  6791. #if EXTRUDERS > 2
  6792. || E2_ENABLE_READ == E_ENABLE_ON
  6793. #if EXTRUDERS > 3
  6794. || E3_ENABLE_READ == E_ENABLE_ON
  6795. #endif
  6796. #endif
  6797. #endif
  6798. ) {
  6799. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6800. }
  6801. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6802. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6803. // allows digital or PWM fan output to be used (see M42 handling)
  6804. digitalWrite(CONTROLLERFAN_PIN, speed);
  6805. analogWrite(CONTROLLERFAN_PIN, speed);
  6806. }
  6807. }
  6808. #endif // HAS_CONTROLLERFAN
  6809. #if ENABLED(SCARA)
  6810. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6811. // Perform forward kinematics, and place results in delta[3]
  6812. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6813. float x_sin, x_cos, y_sin, y_cos;
  6814. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6815. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6816. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6817. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6818. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6819. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6820. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6821. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6822. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6823. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6824. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6825. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6826. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6827. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6828. }
  6829. void calculate_delta(float cartesian[3]) {
  6830. //reverse kinematics.
  6831. // Perform reversed kinematics, and place results in delta[3]
  6832. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6833. float SCARA_pos[2];
  6834. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6835. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6836. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6837. #if (Linkage_1 == Linkage_2)
  6838. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6839. #else
  6840. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6841. #endif
  6842. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6843. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6844. SCARA_K2 = Linkage_2 * SCARA_S2;
  6845. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6846. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6847. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6848. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6849. delta[Z_AXIS] = cartesian[Z_AXIS];
  6850. /**
  6851. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6852. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6853. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6854. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6855. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6856. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6857. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6858. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6859. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6860. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6861. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6862. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6863. SERIAL_EOL;
  6864. */
  6865. }
  6866. #endif // SCARA
  6867. #if ENABLED(TEMP_STAT_LEDS)
  6868. static bool red_led = false;
  6869. static millis_t next_status_led_update_ms = 0;
  6870. void handle_status_leds(void) {
  6871. float max_temp = 0.0;
  6872. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6873. next_status_led_update_ms += 500; // Update every 0.5s
  6874. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6875. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6876. #if HAS_TEMP_BED
  6877. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6878. #endif
  6879. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6880. if (new_led != red_led) {
  6881. red_led = new_led;
  6882. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6883. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6884. }
  6885. }
  6886. }
  6887. #endif
  6888. void enable_all_steppers() {
  6889. enable_x();
  6890. enable_y();
  6891. enable_z();
  6892. enable_e0();
  6893. enable_e1();
  6894. enable_e2();
  6895. enable_e3();
  6896. }
  6897. void disable_all_steppers() {
  6898. disable_x();
  6899. disable_y();
  6900. disable_z();
  6901. disable_e0();
  6902. disable_e1();
  6903. disable_e2();
  6904. disable_e3();
  6905. }
  6906. /**
  6907. * Standard idle routine keeps the machine alive
  6908. */
  6909. void idle(
  6910. #if ENABLED(FILAMENTCHANGEENABLE)
  6911. bool no_stepper_sleep/*=false*/
  6912. #endif
  6913. ) {
  6914. lcd_update();
  6915. host_keepalive();
  6916. manage_inactivity(
  6917. #if ENABLED(FILAMENTCHANGEENABLE)
  6918. no_stepper_sleep
  6919. #endif
  6920. );
  6921. thermalManager.manage_heater();
  6922. #if ENABLED(PRINTCOUNTER)
  6923. print_job_timer.tick();
  6924. #endif
  6925. #if HAS_BUZZER
  6926. buzzer.tick();
  6927. #endif
  6928. }
  6929. /**
  6930. * Manage several activities:
  6931. * - Check for Filament Runout
  6932. * - Keep the command buffer full
  6933. * - Check for maximum inactive time between commands
  6934. * - Check for maximum inactive time between stepper commands
  6935. * - Check if pin CHDK needs to go LOW
  6936. * - Check for KILL button held down
  6937. * - Check for HOME button held down
  6938. * - Check if cooling fan needs to be switched on
  6939. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6940. */
  6941. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6942. #if HAS_FILRUNOUT
  6943. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6944. handle_filament_runout();
  6945. #endif
  6946. if (commands_in_queue < BUFSIZE) get_available_commands();
  6947. millis_t ms = millis();
  6948. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6949. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6950. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6951. #if ENABLED(DISABLE_INACTIVE_X)
  6952. disable_x();
  6953. #endif
  6954. #if ENABLED(DISABLE_INACTIVE_Y)
  6955. disable_y();
  6956. #endif
  6957. #if ENABLED(DISABLE_INACTIVE_Z)
  6958. disable_z();
  6959. #endif
  6960. #if ENABLED(DISABLE_INACTIVE_E)
  6961. disable_e0();
  6962. disable_e1();
  6963. disable_e2();
  6964. disable_e3();
  6965. #endif
  6966. }
  6967. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6968. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6969. chdkActive = false;
  6970. WRITE(CHDK, LOW);
  6971. }
  6972. #endif
  6973. #if HAS_KILL
  6974. // Check if the kill button was pressed and wait just in case it was an accidental
  6975. // key kill key press
  6976. // -------------------------------------------------------------------------------
  6977. static int killCount = 0; // make the inactivity button a bit less responsive
  6978. const int KILL_DELAY = 750;
  6979. if (!READ(KILL_PIN))
  6980. killCount++;
  6981. else if (killCount > 0)
  6982. killCount--;
  6983. // Exceeded threshold and we can confirm that it was not accidental
  6984. // KILL the machine
  6985. // ----------------------------------------------------------------
  6986. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6987. #endif
  6988. #if HAS_HOME
  6989. // Check to see if we have to home, use poor man's debouncer
  6990. // ---------------------------------------------------------
  6991. static int homeDebounceCount = 0; // poor man's debouncing count
  6992. const int HOME_DEBOUNCE_DELAY = 2500;
  6993. if (!READ(HOME_PIN)) {
  6994. if (!homeDebounceCount) {
  6995. enqueue_and_echo_commands_P(PSTR("G28"));
  6996. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6997. }
  6998. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6999. homeDebounceCount++;
  7000. else
  7001. homeDebounceCount = 0;
  7002. }
  7003. #endif
  7004. #if HAS_CONTROLLERFAN
  7005. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7006. #endif
  7007. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7008. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  7009. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7010. bool oldstatus;
  7011. switch (active_extruder) {
  7012. case 0:
  7013. oldstatus = E0_ENABLE_READ;
  7014. enable_e0();
  7015. break;
  7016. #if EXTRUDERS > 1
  7017. case 1:
  7018. oldstatus = E1_ENABLE_READ;
  7019. enable_e1();
  7020. break;
  7021. #if EXTRUDERS > 2
  7022. case 2:
  7023. oldstatus = E2_ENABLE_READ;
  7024. enable_e2();
  7025. break;
  7026. #if EXTRUDERS > 3
  7027. case 3:
  7028. oldstatus = E3_ENABLE_READ;
  7029. enable_e3();
  7030. break;
  7031. #endif
  7032. #endif
  7033. #endif
  7034. }
  7035. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7036. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7037. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7038. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7039. current_position[E_AXIS] = oldepos;
  7040. destination[E_AXIS] = oldedes;
  7041. planner.set_e_position_mm(oldepos);
  7042. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7043. stepper.synchronize();
  7044. switch (active_extruder) {
  7045. case 0:
  7046. E0_ENABLE_WRITE(oldstatus);
  7047. break;
  7048. #if EXTRUDERS > 1
  7049. case 1:
  7050. E1_ENABLE_WRITE(oldstatus);
  7051. break;
  7052. #if EXTRUDERS > 2
  7053. case 2:
  7054. E2_ENABLE_WRITE(oldstatus);
  7055. break;
  7056. #if EXTRUDERS > 3
  7057. case 3:
  7058. E3_ENABLE_WRITE(oldstatus);
  7059. break;
  7060. #endif
  7061. #endif
  7062. #endif
  7063. }
  7064. }
  7065. #endif
  7066. #if ENABLED(DUAL_X_CARRIAGE)
  7067. // handle delayed move timeout
  7068. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7069. // travel moves have been received so enact them
  7070. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7071. set_destination_to_current();
  7072. prepare_move_to_destination();
  7073. }
  7074. #endif
  7075. #if ENABLED(TEMP_STAT_LEDS)
  7076. handle_status_leds();
  7077. #endif
  7078. planner.check_axes_activity();
  7079. }
  7080. void kill(const char* lcd_msg) {
  7081. #if ENABLED(ULTRA_LCD)
  7082. lcd_init();
  7083. lcd_setalertstatuspgm(lcd_msg);
  7084. #else
  7085. UNUSED(lcd_msg);
  7086. #endif
  7087. cli(); // Stop interrupts
  7088. thermalManager.disable_all_heaters();
  7089. disable_all_steppers();
  7090. #if HAS_POWER_SWITCH
  7091. pinMode(PS_ON_PIN, INPUT);
  7092. #endif
  7093. SERIAL_ERROR_START;
  7094. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7095. // FMC small patch to update the LCD before ending
  7096. sei(); // enable interrupts
  7097. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7098. cli(); // disable interrupts
  7099. suicide();
  7100. while (1) {
  7101. #if ENABLED(USE_WATCHDOG)
  7102. watchdog_reset();
  7103. #endif
  7104. } // Wait for reset
  7105. }
  7106. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7107. void handle_filament_runout() {
  7108. if (!filament_ran_out) {
  7109. filament_ran_out = true;
  7110. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7111. stepper.synchronize();
  7112. }
  7113. }
  7114. #endif // FILAMENT_RUNOUT_SENSOR
  7115. #if ENABLED(FAST_PWM_FAN)
  7116. void setPwmFrequency(uint8_t pin, int val) {
  7117. val &= 0x07;
  7118. switch (digitalPinToTimer(pin)) {
  7119. #if defined(TCCR0A)
  7120. case TIMER0A:
  7121. case TIMER0B:
  7122. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7123. // TCCR0B |= val;
  7124. break;
  7125. #endif
  7126. #if defined(TCCR1A)
  7127. case TIMER1A:
  7128. case TIMER1B:
  7129. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7130. // TCCR1B |= val;
  7131. break;
  7132. #endif
  7133. #if defined(TCCR2)
  7134. case TIMER2:
  7135. case TIMER2:
  7136. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7137. TCCR2 |= val;
  7138. break;
  7139. #endif
  7140. #if defined(TCCR2A)
  7141. case TIMER2A:
  7142. case TIMER2B:
  7143. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7144. TCCR2B |= val;
  7145. break;
  7146. #endif
  7147. #if defined(TCCR3A)
  7148. case TIMER3A:
  7149. case TIMER3B:
  7150. case TIMER3C:
  7151. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7152. TCCR3B |= val;
  7153. break;
  7154. #endif
  7155. #if defined(TCCR4A)
  7156. case TIMER4A:
  7157. case TIMER4B:
  7158. case TIMER4C:
  7159. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7160. TCCR4B |= val;
  7161. break;
  7162. #endif
  7163. #if defined(TCCR5A)
  7164. case TIMER5A:
  7165. case TIMER5B:
  7166. case TIMER5C:
  7167. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7168. TCCR5B |= val;
  7169. break;
  7170. #endif
  7171. }
  7172. }
  7173. #endif // FAST_PWM_FAN
  7174. void stop() {
  7175. thermalManager.disable_all_heaters();
  7176. if (IsRunning()) {
  7177. Running = false;
  7178. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7179. SERIAL_ERROR_START;
  7180. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7181. LCD_MESSAGEPGM(MSG_STOPPED);
  7182. }
  7183. }
  7184. float calculate_volumetric_multiplier(float diameter) {
  7185. if (!volumetric_enabled || diameter == 0) return 1.0;
  7186. float d2 = diameter * 0.5;
  7187. return 1.0 / (M_PI * d2 * d2);
  7188. }
  7189. void calculate_volumetric_multipliers() {
  7190. for (int i = 0; i < EXTRUDERS; i++)
  7191. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7192. }