My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 438KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "least_squares_fit.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(MAX7219_DEBUG)
  274. #include "Max7219_Debug_LEDs.h"
  275. #endif
  276. #if ENABLED(NEOPIXEL_LED)
  277. #include <Adafruit_NeoPixel.h>
  278. #endif
  279. #if ENABLED(BLINKM)
  280. #include "blinkm.h"
  281. #include "Wire.h"
  282. #endif
  283. #if ENABLED(PCA9632)
  284. #include "pca9632.h"
  285. #endif
  286. #if HAS_SERVOS
  287. #include "servo.h"
  288. #endif
  289. #if HAS_DIGIPOTSS
  290. #include <SPI.h>
  291. #endif
  292. #if ENABLED(DAC_STEPPER_CURRENT)
  293. #include "stepper_dac.h"
  294. #endif
  295. #if ENABLED(EXPERIMENTAL_I2CBUS)
  296. #include "twibus.h"
  297. #endif
  298. #if ENABLED(I2C_POSITION_ENCODERS)
  299. #include "I2CPositionEncoder.h"
  300. #endif
  301. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  302. #include "endstop_interrupts.h"
  303. #endif
  304. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  305. void gcode_M100();
  306. void M100_dump_routine(const char * const title, const char *start, const char *end);
  307. #endif
  308. #if ENABLED(SDSUPPORT)
  309. CardReader card;
  310. #endif
  311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  312. TWIBus i2c;
  313. #endif
  314. #if ENABLED(G38_PROBE_TARGET)
  315. bool G38_move = false,
  316. G38_endstop_hit = false;
  317. #endif
  318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  319. #include "ubl.h"
  320. extern bool defer_return_to_status;
  321. unified_bed_leveling ubl;
  322. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  323. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  324. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  325. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  326. || isnan(ubl.z_values[0][0]))
  327. #endif
  328. #if ENABLED(NEOPIXEL_LED)
  329. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  330. #define NEO_WHITE 255, 255, 255
  331. #else
  332. #define NEO_WHITE 0, 0, 0, 255
  333. #endif
  334. #endif
  335. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  336. #define LED_WHITE 255, 255, 255
  337. #elif ENABLED(RGBW_LED)
  338. #define LED_WHITE 0, 0, 0, 255
  339. #endif
  340. bool Running = true;
  341. uint8_t marlin_debug_flags = DEBUG_NONE;
  342. /**
  343. * Cartesian Current Position
  344. * Used to track the logical position as moves are queued.
  345. * Used by 'line_to_current_position' to do a move after changing it.
  346. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  347. */
  348. float current_position[XYZE] = { 0.0 };
  349. /**
  350. * Cartesian Destination
  351. * A temporary position, usually applied to 'current_position'.
  352. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  353. * 'line_to_destination' sets 'current_position' to 'destination'.
  354. */
  355. float destination[XYZE] = { 0.0 };
  356. /**
  357. * axis_homed
  358. * Flags that each linear axis was homed.
  359. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  360. *
  361. * axis_known_position
  362. * Flags that the position is known in each linear axis. Set when homed.
  363. * Cleared whenever a stepper powers off, potentially losing its position.
  364. */
  365. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  366. /**
  367. * GCode line number handling. Hosts may opt to include line numbers when
  368. * sending commands to Marlin, and lines will be checked for sequentiality.
  369. * M110 N<int> sets the current line number.
  370. */
  371. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  372. /**
  373. * GCode Command Queue
  374. * A simple ring buffer of BUFSIZE command strings.
  375. *
  376. * Commands are copied into this buffer by the command injectors
  377. * (immediate, serial, sd card) and they are processed sequentially by
  378. * the main loop. The process_next_command function parses the next
  379. * command and hands off execution to individual handler functions.
  380. */
  381. uint8_t commands_in_queue = 0; // Count of commands in the queue
  382. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  383. cmd_queue_index_w = 0; // Ring buffer write position
  384. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  385. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  386. #else // This can be collapsed back to the way it was soon.
  387. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  388. #endif
  389. /**
  390. * Next Injected Command pointer. NULL if no commands are being injected.
  391. * Used by Marlin internally to ensure that commands initiated from within
  392. * are enqueued ahead of any pending serial or sd card commands.
  393. */
  394. static const char *injected_commands_P = NULL;
  395. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  396. TempUnit input_temp_units = TEMPUNIT_C;
  397. #endif
  398. /**
  399. * Feed rates are often configured with mm/m
  400. * but the planner and stepper like mm/s units.
  401. */
  402. static const float homing_feedrate_mm_s[] PROGMEM = {
  403. #if ENABLED(DELTA)
  404. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  405. #else
  406. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  407. #endif
  408. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  409. };
  410. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  411. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  412. static float saved_feedrate_mm_s;
  413. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  414. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  415. // Initialized by settings.load()
  416. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  417. volumetric_enabled;
  418. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  419. #if HAS_WORKSPACE_OFFSET
  420. #if HAS_POSITION_SHIFT
  421. // The distance that XYZ has been offset by G92. Reset by G28.
  422. float position_shift[XYZ] = { 0 };
  423. #endif
  424. #if HAS_HOME_OFFSET
  425. // This offset is added to the configured home position.
  426. // Set by M206, M428, or menu item. Saved to EEPROM.
  427. float home_offset[XYZ] = { 0 };
  428. #endif
  429. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  430. // The above two are combined to save on computes
  431. float workspace_offset[XYZ] = { 0 };
  432. #endif
  433. #endif
  434. // Software Endstops are based on the configured limits.
  435. #if HAS_SOFTWARE_ENDSTOPS
  436. bool soft_endstops_enabled = true;
  437. #endif
  438. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  439. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  440. #if FAN_COUNT > 0
  441. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  442. #if ENABLED(EXTRA_FAN_SPEED)
  443. int16_t old_fanSpeeds[FAN_COUNT],
  444. new_fanSpeeds[FAN_COUNT];
  445. #endif
  446. #if ENABLED(PROBING_FANS_OFF)
  447. bool fans_paused = false;
  448. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  449. #endif
  450. #endif
  451. // The active extruder (tool). Set with T<extruder> command.
  452. uint8_t active_extruder = 0;
  453. // Relative Mode. Enable with G91, disable with G90.
  454. static bool relative_mode = false;
  455. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  456. volatile bool wait_for_heatup = true;
  457. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  458. #if HAS_RESUME_CONTINUE
  459. volatile bool wait_for_user = false;
  460. #endif
  461. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  462. // Number of characters read in the current line of serial input
  463. static int serial_count = 0;
  464. // Inactivity shutdown
  465. millis_t previous_cmd_ms = 0;
  466. static millis_t max_inactive_time = 0;
  467. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  468. // Print Job Timer
  469. #if ENABLED(PRINTCOUNTER)
  470. PrintCounter print_job_timer = PrintCounter();
  471. #else
  472. Stopwatch print_job_timer = Stopwatch();
  473. #endif
  474. // Buzzer - I2C on the LCD or a BEEPER_PIN
  475. #if ENABLED(LCD_USE_I2C_BUZZER)
  476. #define BUZZ(d,f) lcd_buzz(d, f)
  477. #elif PIN_EXISTS(BEEPER)
  478. Buzzer buzzer;
  479. #define BUZZ(d,f) buzzer.tone(d, f)
  480. #else
  481. #define BUZZ(d,f) NOOP
  482. #endif
  483. static uint8_t target_extruder;
  484. #if HAS_BED_PROBE
  485. float zprobe_zoffset; // Initialized by settings.load()
  486. #endif
  487. #if HAS_ABL
  488. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  489. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  490. #elif defined(XY_PROBE_SPEED)
  491. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  492. #else
  493. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  494. #endif
  495. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  496. #if ENABLED(DELTA)
  497. #define ADJUST_DELTA(V) \
  498. if (planner.leveling_active) { \
  499. const float zadj = bilinear_z_offset(V); \
  500. delta[A_AXIS] += zadj; \
  501. delta[B_AXIS] += zadj; \
  502. delta[C_AXIS] += zadj; \
  503. }
  504. #else
  505. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  506. #endif
  507. #elif IS_KINEMATIC
  508. #define ADJUST_DELTA(V) NOOP
  509. #endif
  510. #if ENABLED(Z_DUAL_ENDSTOPS)
  511. float z_endstop_adj;
  512. #endif
  513. // Extruder offsets
  514. #if HOTENDS > 1
  515. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  516. #endif
  517. #if HAS_Z_SERVO_ENDSTOP
  518. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  519. #endif
  520. #if ENABLED(BARICUDA)
  521. uint8_t baricuda_valve_pressure = 0,
  522. baricuda_e_to_p_pressure = 0;
  523. #endif
  524. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  525. bool autoretract_enabled, // M209 S - Autoretract switch
  526. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  527. float retract_length, // M207 S - G10 Retract length
  528. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  529. retract_zlift, // M207 Z - G10 Retract hop size
  530. retract_recover_length, // M208 S - G11 Recover length
  531. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  532. swap_retract_length, // M207 W - G10 Swap Retract length
  533. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  534. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  535. #if EXTRUDERS > 1
  536. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  537. #else
  538. constexpr bool retracted_swap[1] = { false };
  539. #endif
  540. #endif // FWRETRACT
  541. #if HAS_POWER_SWITCH
  542. bool powersupply_on =
  543. #if ENABLED(PS_DEFAULT_OFF)
  544. false
  545. #else
  546. true
  547. #endif
  548. ;
  549. #endif
  550. #if ENABLED(DELTA)
  551. float delta[ABC],
  552. endstop_adj[ABC] = { 0 };
  553. // Initialized by settings.load()
  554. float delta_radius,
  555. delta_tower_angle_trim[ABC],
  556. delta_tower[ABC][2],
  557. delta_diagonal_rod,
  558. delta_calibration_radius,
  559. delta_diagonal_rod_2_tower[ABC],
  560. delta_segments_per_second,
  561. delta_clip_start_height = Z_MAX_POS;
  562. float delta_safe_distance_from_top();
  563. #endif
  564. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  565. int bilinear_grid_spacing[2], bilinear_start[2];
  566. float bilinear_grid_factor[2],
  567. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  568. #endif
  569. #if IS_SCARA
  570. // Float constants for SCARA calculations
  571. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  572. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  573. L2_2 = sq(float(L2));
  574. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  575. delta[ABC];
  576. #endif
  577. float cartes[XYZ] = { 0 };
  578. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  579. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  580. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  581. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  582. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  583. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  584. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  585. #endif
  586. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  587. static bool filament_ran_out = false;
  588. #endif
  589. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  590. AdvancedPauseMenuResponse advanced_pause_menu_response;
  591. #endif
  592. #if ENABLED(MIXING_EXTRUDER)
  593. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  594. #if MIXING_VIRTUAL_TOOLS > 1
  595. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  596. #endif
  597. #endif
  598. static bool send_ok[BUFSIZE];
  599. #if HAS_SERVOS
  600. Servo servo[NUM_SERVOS];
  601. #define MOVE_SERVO(I, P) servo[I].move(P)
  602. #if HAS_Z_SERVO_ENDSTOP
  603. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  604. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  605. #endif
  606. #endif
  607. #ifdef CHDK
  608. millis_t chdkHigh = 0;
  609. bool chdkActive = false;
  610. #endif
  611. #ifdef AUTOMATIC_CURRENT_CONTROL
  612. bool auto_current_control = 0;
  613. #endif
  614. #if ENABLED(PID_EXTRUSION_SCALING)
  615. int lpq_len = 20;
  616. #endif
  617. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  618. MarlinBusyState busy_state = NOT_BUSY;
  619. static millis_t next_busy_signal_ms = 0;
  620. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  621. #else
  622. #define host_keepalive() NOOP
  623. #endif
  624. #if ENABLED(I2C_POSITION_ENCODERS)
  625. I2CPositionEncodersMgr I2CPEM;
  626. uint8_t blockBufferIndexRef = 0;
  627. millis_t lastUpdateMillis;
  628. #endif
  629. #if ENABLED(CNC_WORKSPACE_PLANES)
  630. static WorkspacePlane workspace_plane = PLANE_XY;
  631. #endif
  632. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  633. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  634. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  635. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  636. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  637. typedef void __void_##CONFIG##__
  638. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  639. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  640. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  641. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  642. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  643. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  644. /**
  645. * ***************************************************************************
  646. * ******************************** FUNCTIONS ********************************
  647. * ***************************************************************************
  648. */
  649. void stop();
  650. void get_available_commands();
  651. void process_next_command();
  652. void prepare_move_to_destination();
  653. void get_cartesian_from_steppers();
  654. void set_current_from_steppers_for_axis(const AxisEnum axis);
  655. #if ENABLED(ARC_SUPPORT)
  656. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  657. #endif
  658. #if ENABLED(BEZIER_CURVE_SUPPORT)
  659. void plan_cubic_move(const float offset[4]);
  660. #endif
  661. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  662. void report_current_position();
  663. void report_current_position_detail();
  664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  665. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  666. serialprintPGM(prefix);
  667. SERIAL_CHAR('(');
  668. SERIAL_ECHO(x);
  669. SERIAL_ECHOPAIR(", ", y);
  670. SERIAL_ECHOPAIR(", ", z);
  671. SERIAL_CHAR(')');
  672. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  673. }
  674. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  675. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  676. }
  677. #if HAS_ABL
  678. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  679. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  680. }
  681. #endif
  682. #define DEBUG_POS(SUFFIX,VAR) do { \
  683. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  684. #endif
  685. /**
  686. * sync_plan_position
  687. *
  688. * Set the planner/stepper positions directly from current_position with
  689. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  690. */
  691. void sync_plan_position() {
  692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  693. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  694. #endif
  695. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  696. }
  697. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  698. #if IS_KINEMATIC
  699. inline void sync_plan_position_kinematic() {
  700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  701. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  702. #endif
  703. planner.set_position_mm_kinematic(current_position);
  704. }
  705. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  706. #else
  707. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  708. #endif
  709. #if ENABLED(SDSUPPORT)
  710. #include "SdFatUtil.h"
  711. int freeMemory() { return SdFatUtil::FreeRam(); }
  712. #else
  713. extern "C" {
  714. extern char __bss_end;
  715. extern char __heap_start;
  716. extern void* __brkval;
  717. int freeMemory() {
  718. int free_memory;
  719. if ((int)__brkval == 0)
  720. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  721. else
  722. free_memory = ((int)&free_memory) - ((int)__brkval);
  723. return free_memory;
  724. }
  725. }
  726. #endif // !SDSUPPORT
  727. #if ENABLED(DIGIPOT_I2C)
  728. extern void digipot_i2c_set_current(uint8_t channel, float current);
  729. extern void digipot_i2c_init();
  730. #endif
  731. /**
  732. * Inject the next "immediate" command, when possible, onto the front of the queue.
  733. * Return true if any immediate commands remain to inject.
  734. */
  735. static bool drain_injected_commands_P() {
  736. if (injected_commands_P != NULL) {
  737. size_t i = 0;
  738. char c, cmd[30];
  739. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  740. cmd[sizeof(cmd) - 1] = '\0';
  741. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  742. cmd[i] = '\0';
  743. if (enqueue_and_echo_command(cmd)) // success?
  744. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  745. }
  746. return (injected_commands_P != NULL); // return whether any more remain
  747. }
  748. /**
  749. * Record one or many commands to run from program memory.
  750. * Aborts the current queue, if any.
  751. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  752. */
  753. void enqueue_and_echo_commands_P(const char * const pgcode) {
  754. injected_commands_P = pgcode;
  755. drain_injected_commands_P(); // first command executed asap (when possible)
  756. }
  757. /**
  758. * Clear the Marlin command queue
  759. */
  760. void clear_command_queue() {
  761. cmd_queue_index_r = cmd_queue_index_w;
  762. commands_in_queue = 0;
  763. }
  764. /**
  765. * Once a new command is in the ring buffer, call this to commit it
  766. */
  767. inline void _commit_command(bool say_ok) {
  768. send_ok[cmd_queue_index_w] = say_ok;
  769. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  770. commands_in_queue++;
  771. }
  772. /**
  773. * Copy a command from RAM into the main command buffer.
  774. * Return true if the command was successfully added.
  775. * Return false for a full buffer, or if the 'command' is a comment.
  776. */
  777. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  778. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  779. strcpy(command_queue[cmd_queue_index_w], cmd);
  780. _commit_command(say_ok);
  781. return true;
  782. }
  783. /**
  784. * Enqueue with Serial Echo
  785. */
  786. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  787. if (_enqueuecommand(cmd, say_ok)) {
  788. SERIAL_ECHO_START();
  789. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  790. SERIAL_CHAR('"');
  791. SERIAL_EOL();
  792. return true;
  793. }
  794. return false;
  795. }
  796. void setup_killpin() {
  797. #if HAS_KILL
  798. SET_INPUT_PULLUP(KILL_PIN);
  799. #endif
  800. }
  801. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  802. void setup_filrunoutpin() {
  803. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  804. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  805. #else
  806. SET_INPUT(FIL_RUNOUT_PIN);
  807. #endif
  808. }
  809. #endif
  810. void setup_powerhold() {
  811. #if HAS_SUICIDE
  812. OUT_WRITE(SUICIDE_PIN, HIGH);
  813. #endif
  814. #if HAS_POWER_SWITCH
  815. #if ENABLED(PS_DEFAULT_OFF)
  816. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  817. #else
  818. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  819. #endif
  820. #endif
  821. }
  822. void suicide() {
  823. #if HAS_SUICIDE
  824. OUT_WRITE(SUICIDE_PIN, LOW);
  825. #endif
  826. }
  827. void servo_init() {
  828. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  829. servo[0].attach(SERVO0_PIN);
  830. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  831. #endif
  832. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  833. servo[1].attach(SERVO1_PIN);
  834. servo[1].detach();
  835. #endif
  836. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  837. servo[2].attach(SERVO2_PIN);
  838. servo[2].detach();
  839. #endif
  840. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  841. servo[3].attach(SERVO3_PIN);
  842. servo[3].detach();
  843. #endif
  844. #if HAS_Z_SERVO_ENDSTOP
  845. /**
  846. * Set position of Z Servo Endstop
  847. *
  848. * The servo might be deployed and positioned too low to stow
  849. * when starting up the machine or rebooting the board.
  850. * There's no way to know where the nozzle is positioned until
  851. * homing has been done - no homing with z-probe without init!
  852. *
  853. */
  854. STOW_Z_SERVO();
  855. #endif
  856. }
  857. /**
  858. * Stepper Reset (RigidBoard, et.al.)
  859. */
  860. #if HAS_STEPPER_RESET
  861. void disableStepperDrivers() {
  862. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  863. }
  864. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  865. #endif
  866. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  867. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  868. i2c.receive(bytes);
  869. }
  870. void i2c_on_request() { // just send dummy data for now
  871. i2c.reply("Hello World!\n");
  872. }
  873. #endif
  874. #if HAS_COLOR_LEDS
  875. #if ENABLED(NEOPIXEL_LED)
  876. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  877. void set_neopixel_color(const uint32_t color) {
  878. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  879. pixels.setPixelColor(i, color);
  880. pixels.show();
  881. }
  882. void setup_neopixel() {
  883. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  884. pixels.begin();
  885. pixels.show(); // initialize to all off
  886. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  887. delay(2000);
  888. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  889. delay(2000);
  890. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  891. delay(2000);
  892. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  893. delay(2000);
  894. #endif
  895. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  896. }
  897. #endif // NEOPIXEL_LED
  898. void set_led_color(
  899. const uint8_t r, const uint8_t g, const uint8_t b
  900. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  901. , const uint8_t w = 0
  902. #if ENABLED(NEOPIXEL_LED)
  903. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  904. , bool isSequence = false
  905. #endif
  906. #endif
  907. ) {
  908. #if ENABLED(NEOPIXEL_LED)
  909. const uint32_t color = pixels.Color(r, g, b, w);
  910. static uint16_t nextLed = 0;
  911. pixels.setBrightness(p);
  912. if (!isSequence)
  913. set_neopixel_color(color);
  914. else {
  915. pixels.setPixelColor(nextLed, color);
  916. pixels.show();
  917. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  918. return;
  919. }
  920. #endif
  921. #if ENABLED(BLINKM)
  922. // This variant uses i2c to send the RGB components to the device.
  923. SendColors(r, g, b);
  924. #endif
  925. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  926. // This variant uses 3 separate pins for the RGB components.
  927. // If the pins can do PWM then their intensity will be set.
  928. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  929. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  930. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  931. analogWrite(RGB_LED_R_PIN, r);
  932. analogWrite(RGB_LED_G_PIN, g);
  933. analogWrite(RGB_LED_B_PIN, b);
  934. #if ENABLED(RGBW_LED)
  935. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  936. analogWrite(RGB_LED_W_PIN, w);
  937. #endif
  938. #endif
  939. #if ENABLED(PCA9632)
  940. // Update I2C LED driver
  941. PCA9632_SetColor(r, g, b);
  942. #endif
  943. }
  944. #endif // HAS_COLOR_LEDS
  945. void gcode_line_error(const char* err, bool doFlush = true) {
  946. SERIAL_ERROR_START();
  947. serialprintPGM(err);
  948. SERIAL_ERRORLN(gcode_LastN);
  949. //Serial.println(gcode_N);
  950. if (doFlush) FlushSerialRequestResend();
  951. serial_count = 0;
  952. }
  953. /**
  954. * Get all commands waiting on the serial port and queue them.
  955. * Exit when the buffer is full or when no more characters are
  956. * left on the serial port.
  957. */
  958. inline void get_serial_commands() {
  959. static char serial_line_buffer[MAX_CMD_SIZE];
  960. static bool serial_comment_mode = false;
  961. // If the command buffer is empty for too long,
  962. // send "wait" to indicate Marlin is still waiting.
  963. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  964. static millis_t last_command_time = 0;
  965. const millis_t ms = millis();
  966. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  967. SERIAL_ECHOLNPGM(MSG_WAIT);
  968. last_command_time = ms;
  969. }
  970. #endif
  971. /**
  972. * Loop while serial characters are incoming and the queue is not full
  973. */
  974. int c;
  975. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  976. char serial_char = c;
  977. /**
  978. * If the character ends the line
  979. */
  980. if (serial_char == '\n' || serial_char == '\r') {
  981. serial_comment_mode = false; // end of line == end of comment
  982. if (!serial_count) continue; // skip empty lines
  983. serial_line_buffer[serial_count] = 0; // terminate string
  984. serial_count = 0; //reset buffer
  985. char* command = serial_line_buffer;
  986. while (*command == ' ') command++; // skip any leading spaces
  987. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  988. *apos = strchr(command, '*');
  989. if (npos) {
  990. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  991. if (M110) {
  992. char* n2pos = strchr(command + 4, 'N');
  993. if (n2pos) npos = n2pos;
  994. }
  995. gcode_N = strtol(npos + 1, NULL, 10);
  996. if (gcode_N != gcode_LastN + 1 && !M110) {
  997. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  998. return;
  999. }
  1000. if (apos) {
  1001. byte checksum = 0, count = 0;
  1002. while (command[count] != '*') checksum ^= command[count++];
  1003. if (strtol(apos + 1, NULL, 10) != checksum) {
  1004. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1005. return;
  1006. }
  1007. // if no errors, continue parsing
  1008. }
  1009. else {
  1010. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1011. return;
  1012. }
  1013. gcode_LastN = gcode_N;
  1014. // if no errors, continue parsing
  1015. }
  1016. else if (apos) { // No '*' without 'N'
  1017. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  1018. return;
  1019. }
  1020. // Movement commands alert when stopped
  1021. if (IsStopped()) {
  1022. char* gpos = strchr(command, 'G');
  1023. if (gpos) {
  1024. const int codenum = strtol(gpos + 1, NULL, 10);
  1025. switch (codenum) {
  1026. case 0:
  1027. case 1:
  1028. case 2:
  1029. case 3:
  1030. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1031. LCD_MESSAGEPGM(MSG_STOPPED);
  1032. break;
  1033. }
  1034. }
  1035. }
  1036. #if DISABLED(EMERGENCY_PARSER)
  1037. // If command was e-stop process now
  1038. if (strcmp(command, "M108") == 0) {
  1039. wait_for_heatup = false;
  1040. #if ENABLED(ULTIPANEL)
  1041. wait_for_user = false;
  1042. #endif
  1043. }
  1044. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1045. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1046. #endif
  1047. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1048. last_command_time = ms;
  1049. #endif
  1050. // Add the command to the queue
  1051. _enqueuecommand(serial_line_buffer, true);
  1052. }
  1053. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1054. // Keep fetching, but ignore normal characters beyond the max length
  1055. // The command will be injected when EOL is reached
  1056. }
  1057. else if (serial_char == '\\') { // Handle escapes
  1058. if ((c = MYSERIAL.read()) >= 0) {
  1059. // if we have one more character, copy it over
  1060. serial_char = c;
  1061. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1062. }
  1063. // otherwise do nothing
  1064. }
  1065. else { // it's not a newline, carriage return or escape char
  1066. if (serial_char == ';') serial_comment_mode = true;
  1067. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1068. }
  1069. } // queue has space, serial has data
  1070. }
  1071. #if ENABLED(SDSUPPORT)
  1072. /**
  1073. * Get commands from the SD Card until the command buffer is full
  1074. * or until the end of the file is reached. The special character '#'
  1075. * can also interrupt buffering.
  1076. */
  1077. inline void get_sdcard_commands() {
  1078. static bool stop_buffering = false,
  1079. sd_comment_mode = false;
  1080. if (!card.sdprinting) return;
  1081. /**
  1082. * '#' stops reading from SD to the buffer prematurely, so procedural
  1083. * macro calls are possible. If it occurs, stop_buffering is triggered
  1084. * and the buffer is run dry; this character _can_ occur in serial com
  1085. * due to checksums, however, no checksums are used in SD printing.
  1086. */
  1087. if (commands_in_queue == 0) stop_buffering = false;
  1088. uint16_t sd_count = 0;
  1089. bool card_eof = card.eof();
  1090. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1091. const int16_t n = card.get();
  1092. char sd_char = (char)n;
  1093. card_eof = card.eof();
  1094. if (card_eof || n == -1
  1095. || sd_char == '\n' || sd_char == '\r'
  1096. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1097. ) {
  1098. if (card_eof) {
  1099. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1100. card.printingHasFinished();
  1101. #if ENABLED(PRINTER_EVENT_LEDS)
  1102. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1103. set_led_color(0, 255, 0); // Green
  1104. #if HAS_RESUME_CONTINUE
  1105. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1106. #else
  1107. safe_delay(1000);
  1108. #endif
  1109. set_led_color(0, 0, 0); // OFF
  1110. #endif
  1111. card.checkautostart(true);
  1112. }
  1113. else if (n == -1) {
  1114. SERIAL_ERROR_START();
  1115. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1116. }
  1117. if (sd_char == '#') stop_buffering = true;
  1118. sd_comment_mode = false; // for new command
  1119. if (!sd_count) continue; // skip empty lines (and comment lines)
  1120. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1121. sd_count = 0; // clear sd line buffer
  1122. _commit_command(false);
  1123. }
  1124. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1125. /**
  1126. * Keep fetching, but ignore normal characters beyond the max length
  1127. * The command will be injected when EOL is reached
  1128. */
  1129. }
  1130. else {
  1131. if (sd_char == ';') sd_comment_mode = true;
  1132. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1133. }
  1134. }
  1135. }
  1136. #endif // SDSUPPORT
  1137. /**
  1138. * Add to the circular command queue the next command from:
  1139. * - The command-injection queue (injected_commands_P)
  1140. * - The active serial input (usually USB)
  1141. * - The SD card file being actively printed
  1142. */
  1143. void get_available_commands() {
  1144. // if any immediate commands remain, don't get other commands yet
  1145. if (drain_injected_commands_P()) return;
  1146. get_serial_commands();
  1147. #if ENABLED(SDSUPPORT)
  1148. get_sdcard_commands();
  1149. #endif
  1150. }
  1151. /**
  1152. * Set target_extruder from the T parameter or the active_extruder
  1153. *
  1154. * Returns TRUE if the target is invalid
  1155. */
  1156. bool get_target_extruder_from_command(const uint16_t code) {
  1157. if (parser.seenval('T')) {
  1158. const int8_t e = parser.value_byte();
  1159. if (e >= EXTRUDERS) {
  1160. SERIAL_ECHO_START();
  1161. SERIAL_CHAR('M');
  1162. SERIAL_ECHO(code);
  1163. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1164. return true;
  1165. }
  1166. target_extruder = e;
  1167. }
  1168. else
  1169. target_extruder = active_extruder;
  1170. return false;
  1171. }
  1172. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1173. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1174. #endif
  1175. #if ENABLED(DUAL_X_CARRIAGE)
  1176. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1177. static float x_home_pos(const int extruder) {
  1178. if (extruder == 0)
  1179. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1180. else
  1181. /**
  1182. * In dual carriage mode the extruder offset provides an override of the
  1183. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1184. * This allows soft recalibration of the second extruder home position
  1185. * without firmware reflash (through the M218 command).
  1186. */
  1187. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1188. }
  1189. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1190. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1191. static bool active_extruder_parked = false; // used in mode 1 & 2
  1192. static float raised_parked_position[XYZE]; // used in mode 1
  1193. static millis_t delayed_move_time = 0; // used in mode 1
  1194. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1195. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1196. #endif // DUAL_X_CARRIAGE
  1197. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1198. /**
  1199. * Software endstops can be used to monitor the open end of
  1200. * an axis that has a hardware endstop on the other end. Or
  1201. * they can prevent axes from moving past endstops and grinding.
  1202. *
  1203. * To keep doing their job as the coordinate system changes,
  1204. * the software endstop positions must be refreshed to remain
  1205. * at the same positions relative to the machine.
  1206. */
  1207. void update_software_endstops(const AxisEnum axis) {
  1208. const float offs = 0.0
  1209. #if HAS_HOME_OFFSET
  1210. + home_offset[axis]
  1211. #endif
  1212. #if HAS_POSITION_SHIFT
  1213. + position_shift[axis]
  1214. #endif
  1215. ;
  1216. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1217. workspace_offset[axis] = offs;
  1218. #endif
  1219. #if ENABLED(DUAL_X_CARRIAGE)
  1220. if (axis == X_AXIS) {
  1221. // In Dual X mode hotend_offset[X] is T1's home position
  1222. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1223. if (active_extruder != 0) {
  1224. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1225. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1226. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1227. }
  1228. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1229. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1230. // but not so far to the right that T1 would move past the end
  1231. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1232. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1233. }
  1234. else {
  1235. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1236. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1237. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1238. }
  1239. }
  1240. #elif ENABLED(DELTA)
  1241. soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
  1242. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1243. #else
  1244. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1245. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1246. #endif
  1247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1248. if (DEBUGGING(LEVELING)) {
  1249. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1250. #if HAS_HOME_OFFSET
  1251. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1252. #endif
  1253. #if HAS_POSITION_SHIFT
  1254. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1255. #endif
  1256. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1257. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1258. }
  1259. #endif
  1260. #if ENABLED(DELTA)
  1261. if (axis == Z_AXIS)
  1262. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1263. #endif
  1264. }
  1265. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1266. #if HAS_M206_COMMAND
  1267. /**
  1268. * Change the home offset for an axis, update the current
  1269. * position and the software endstops to retain the same
  1270. * relative distance to the new home.
  1271. *
  1272. * Since this changes the current_position, code should
  1273. * call sync_plan_position soon after this.
  1274. */
  1275. static void set_home_offset(const AxisEnum axis, const float v) {
  1276. current_position[axis] += v - home_offset[axis];
  1277. home_offset[axis] = v;
  1278. update_software_endstops(axis);
  1279. }
  1280. #endif // HAS_M206_COMMAND
  1281. /**
  1282. * Set an axis' current position to its home position (after homing).
  1283. *
  1284. * For Core and Cartesian robots this applies one-to-one when an
  1285. * individual axis has been homed.
  1286. *
  1287. * DELTA should wait until all homing is done before setting the XYZ
  1288. * current_position to home, because homing is a single operation.
  1289. * In the case where the axis positions are already known and previously
  1290. * homed, DELTA could home to X or Y individually by moving either one
  1291. * to the center. However, homing Z always homes XY and Z.
  1292. *
  1293. * SCARA should wait until all XY homing is done before setting the XY
  1294. * current_position to home, because neither X nor Y is at home until
  1295. * both are at home. Z can however be homed individually.
  1296. *
  1297. * Callers must sync the planner position after calling this!
  1298. */
  1299. static void set_axis_is_at_home(const AxisEnum axis) {
  1300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1301. if (DEBUGGING(LEVELING)) {
  1302. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1303. SERIAL_CHAR(')');
  1304. SERIAL_EOL();
  1305. }
  1306. #endif
  1307. axis_known_position[axis] = axis_homed[axis] = true;
  1308. #if HAS_POSITION_SHIFT
  1309. position_shift[axis] = 0;
  1310. update_software_endstops(axis);
  1311. #endif
  1312. #if ENABLED(DUAL_X_CARRIAGE)
  1313. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1314. current_position[X_AXIS] = x_home_pos(active_extruder);
  1315. return;
  1316. }
  1317. #endif
  1318. #if ENABLED(MORGAN_SCARA)
  1319. /**
  1320. * Morgan SCARA homes XY at the same time
  1321. */
  1322. if (axis == X_AXIS || axis == Y_AXIS) {
  1323. float homeposition[XYZ];
  1324. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1325. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1326. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1327. /**
  1328. * Get Home position SCARA arm angles using inverse kinematics,
  1329. * and calculate homing offset using forward kinematics
  1330. */
  1331. inverse_kinematics(homeposition);
  1332. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1333. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1334. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1335. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1336. /**
  1337. * SCARA home positions are based on configuration since the actual
  1338. * limits are determined by the inverse kinematic transform.
  1339. */
  1340. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1341. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. }
  1343. else
  1344. #endif
  1345. {
  1346. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1347. }
  1348. /**
  1349. * Z Probe Z Homing? Account for the probe's Z offset.
  1350. */
  1351. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1352. if (axis == Z_AXIS) {
  1353. #if HOMING_Z_WITH_PROBE
  1354. current_position[Z_AXIS] -= zprobe_zoffset;
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) {
  1357. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1358. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1359. }
  1360. #endif
  1361. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1362. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1363. #endif
  1364. }
  1365. #endif
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) {
  1368. #if HAS_HOME_OFFSET
  1369. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1370. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1371. #endif
  1372. DEBUG_POS("", current_position);
  1373. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1374. SERIAL_CHAR(')');
  1375. SERIAL_EOL();
  1376. }
  1377. #endif
  1378. #if ENABLED(I2C_POSITION_ENCODERS)
  1379. I2CPEM.homed(axis);
  1380. #endif
  1381. }
  1382. /**
  1383. * Some planner shorthand inline functions
  1384. */
  1385. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1386. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1387. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1388. if (hbd < 1) {
  1389. hbd = 10;
  1390. SERIAL_ECHO_START();
  1391. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1392. }
  1393. return homing_feedrate(axis) / hbd;
  1394. }
  1395. /**
  1396. * Move the planner to the current position from wherever it last moved
  1397. * (or from wherever it has been told it is located).
  1398. */
  1399. inline void line_to_current_position() {
  1400. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1401. }
  1402. /**
  1403. * Move the planner to the position stored in the destination array, which is
  1404. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1405. */
  1406. inline void line_to_destination(const float fr_mm_s) {
  1407. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1408. }
  1409. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1410. inline void set_current_to_destination() { COPY(current_position, destination); }
  1411. inline void set_destination_to_current() { COPY(destination, current_position); }
  1412. #if IS_KINEMATIC
  1413. /**
  1414. * Calculate delta, start a line, and set current_position to destination
  1415. */
  1416. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1419. #endif
  1420. refresh_cmd_timeout();
  1421. #if UBL_DELTA
  1422. // ubl segmented line will do z-only moves in single segment
  1423. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1424. #else
  1425. if ( current_position[X_AXIS] == destination[X_AXIS]
  1426. && current_position[Y_AXIS] == destination[Y_AXIS]
  1427. && current_position[Z_AXIS] == destination[Z_AXIS]
  1428. && current_position[E_AXIS] == destination[E_AXIS]
  1429. ) return;
  1430. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1431. #endif
  1432. set_current_to_destination();
  1433. }
  1434. #endif // IS_KINEMATIC
  1435. /**
  1436. * Plan a move to (X, Y, Z) and set the current_position
  1437. * The final current_position may not be the one that was requested
  1438. */
  1439. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1440. const float old_feedrate_mm_s = feedrate_mm_s;
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1443. #endif
  1444. #if ENABLED(DELTA)
  1445. if (!position_is_reachable_xy(lx, ly)) return;
  1446. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1447. set_destination_to_current(); // sync destination at the start
  1448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1449. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1450. #endif
  1451. // when in the danger zone
  1452. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1453. if (lz > delta_clip_start_height) { // staying in the danger zone
  1454. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1455. destination[Y_AXIS] = ly;
  1456. destination[Z_AXIS] = lz;
  1457. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1460. #endif
  1461. return;
  1462. }
  1463. else {
  1464. destination[Z_AXIS] = delta_clip_start_height;
  1465. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1467. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1468. #endif
  1469. }
  1470. }
  1471. if (lz > current_position[Z_AXIS]) { // raising?
  1472. destination[Z_AXIS] = lz;
  1473. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1476. #endif
  1477. }
  1478. destination[X_AXIS] = lx;
  1479. destination[Y_AXIS] = ly;
  1480. prepare_move_to_destination(); // set_current_to_destination
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1483. #endif
  1484. if (lz < current_position[Z_AXIS]) { // lowering?
  1485. destination[Z_AXIS] = lz;
  1486. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1489. #endif
  1490. }
  1491. #elif IS_SCARA
  1492. if (!position_is_reachable_xy(lx, ly)) return;
  1493. set_destination_to_current();
  1494. // If Z needs to raise, do it before moving XY
  1495. if (destination[Z_AXIS] < lz) {
  1496. destination[Z_AXIS] = lz;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1498. }
  1499. destination[X_AXIS] = lx;
  1500. destination[Y_AXIS] = ly;
  1501. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1502. // If Z needs to lower, do it after moving XY
  1503. if (destination[Z_AXIS] > lz) {
  1504. destination[Z_AXIS] = lz;
  1505. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1506. }
  1507. #else
  1508. // If Z needs to raise, do it before moving XY
  1509. if (current_position[Z_AXIS] < lz) {
  1510. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1511. current_position[Z_AXIS] = lz;
  1512. line_to_current_position();
  1513. }
  1514. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1515. current_position[X_AXIS] = lx;
  1516. current_position[Y_AXIS] = ly;
  1517. line_to_current_position();
  1518. // If Z needs to lower, do it after moving XY
  1519. if (current_position[Z_AXIS] > lz) {
  1520. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1521. current_position[Z_AXIS] = lz;
  1522. line_to_current_position();
  1523. }
  1524. #endif
  1525. stepper.synchronize();
  1526. feedrate_mm_s = old_feedrate_mm_s;
  1527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1528. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1529. #endif
  1530. }
  1531. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1532. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1533. }
  1534. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1535. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1536. }
  1537. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1538. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1539. }
  1540. //
  1541. // Prepare to do endstop or probe moves
  1542. // with custom feedrates.
  1543. //
  1544. // - Save current feedrates
  1545. // - Reset the rate multiplier
  1546. // - Reset the command timeout
  1547. // - Enable the endstops (for endstop moves)
  1548. //
  1549. static void setup_for_endstop_or_probe_move() {
  1550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1551. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1552. #endif
  1553. saved_feedrate_mm_s = feedrate_mm_s;
  1554. saved_feedrate_percentage = feedrate_percentage;
  1555. feedrate_percentage = 100;
  1556. refresh_cmd_timeout();
  1557. }
  1558. static void clean_up_after_endstop_or_probe_move() {
  1559. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1560. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1561. #endif
  1562. feedrate_mm_s = saved_feedrate_mm_s;
  1563. feedrate_percentage = saved_feedrate_percentage;
  1564. refresh_cmd_timeout();
  1565. }
  1566. #if HAS_BED_PROBE
  1567. /**
  1568. * Raise Z to a minimum height to make room for a probe to move
  1569. */
  1570. inline void do_probe_raise(const float z_raise) {
  1571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1572. if (DEBUGGING(LEVELING)) {
  1573. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1574. SERIAL_CHAR(')');
  1575. SERIAL_EOL();
  1576. }
  1577. #endif
  1578. float z_dest = z_raise;
  1579. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1580. if (z_dest > current_position[Z_AXIS])
  1581. do_blocking_move_to_z(z_dest);
  1582. }
  1583. #endif // HAS_BED_PROBE
  1584. #if HAS_AXIS_UNHOMED_ERR
  1585. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1586. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1587. const bool xx = x && !axis_known_position[X_AXIS],
  1588. yy = y && !axis_known_position[Y_AXIS],
  1589. zz = z && !axis_known_position[Z_AXIS];
  1590. #else
  1591. const bool xx = x && !axis_homed[X_AXIS],
  1592. yy = y && !axis_homed[Y_AXIS],
  1593. zz = z && !axis_homed[Z_AXIS];
  1594. #endif
  1595. if (xx || yy || zz) {
  1596. SERIAL_ECHO_START();
  1597. SERIAL_ECHOPGM(MSG_HOME " ");
  1598. if (xx) SERIAL_ECHOPGM(MSG_X);
  1599. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1600. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1601. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1602. #if ENABLED(ULTRA_LCD)
  1603. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1604. #endif
  1605. return true;
  1606. }
  1607. return false;
  1608. }
  1609. #endif // HAS_AXIS_UNHOMED_ERR
  1610. #if ENABLED(Z_PROBE_SLED)
  1611. #ifndef SLED_DOCKING_OFFSET
  1612. #define SLED_DOCKING_OFFSET 0
  1613. #endif
  1614. /**
  1615. * Method to dock/undock a sled designed by Charles Bell.
  1616. *
  1617. * stow[in] If false, move to MAX_X and engage the solenoid
  1618. * If true, move to MAX_X and release the solenoid
  1619. */
  1620. static void dock_sled(bool stow) {
  1621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1622. if (DEBUGGING(LEVELING)) {
  1623. SERIAL_ECHOPAIR("dock_sled(", stow);
  1624. SERIAL_CHAR(')');
  1625. SERIAL_EOL();
  1626. }
  1627. #endif
  1628. // Dock sled a bit closer to ensure proper capturing
  1629. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1630. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1631. WRITE(SOL1_PIN, !stow); // switch solenoid
  1632. #endif
  1633. }
  1634. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1635. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1636. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1637. }
  1638. void run_deploy_moves_script() {
  1639. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1651. #endif
  1652. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1653. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1654. #endif
  1655. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1667. #endif
  1668. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1669. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1670. #endif
  1671. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1679. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1682. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1683. #endif
  1684. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1685. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1686. #endif
  1687. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1688. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1689. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1692. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1695. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1698. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1699. #endif
  1700. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1701. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1702. #endif
  1703. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1704. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1705. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1708. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1711. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1714. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1715. #endif
  1716. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1717. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1718. #endif
  1719. }
  1720. void run_stow_moves_script() {
  1721. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1723. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1724. #endif
  1725. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1726. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1727. #endif
  1728. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1729. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1732. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1733. #endif
  1734. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1735. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1736. #endif
  1737. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1739. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1742. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1743. #endif
  1744. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1745. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1746. #endif
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1748. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1749. #endif
  1750. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1751. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1752. #endif
  1753. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1755. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1758. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1759. #endif
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1761. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1764. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1765. #endif
  1766. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1767. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1768. #endif
  1769. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1770. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1771. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1772. #endif
  1773. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1774. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1775. #endif
  1776. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1777. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1778. #endif
  1779. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1780. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1781. #endif
  1782. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1783. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1784. #endif
  1785. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1786. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1787. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1788. #endif
  1789. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1790. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1791. #endif
  1792. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1793. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1794. #endif
  1795. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1796. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1797. #endif
  1798. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1799. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1800. #endif
  1801. }
  1802. #endif // Z_PROBE_ALLEN_KEY
  1803. #if ENABLED(PROBING_FANS_OFF)
  1804. void fans_pause(const bool p) {
  1805. if (p != fans_paused) {
  1806. fans_paused = p;
  1807. if (p)
  1808. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1809. paused_fanSpeeds[x] = fanSpeeds[x];
  1810. fanSpeeds[x] = 0;
  1811. }
  1812. else
  1813. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1814. fanSpeeds[x] = paused_fanSpeeds[x];
  1815. }
  1816. }
  1817. #endif // PROBING_FANS_OFF
  1818. #if HAS_BED_PROBE
  1819. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1820. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1821. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1822. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1823. #else
  1824. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1825. #endif
  1826. #endif
  1827. #if QUIET_PROBING
  1828. void probing_pause(const bool p) {
  1829. #if ENABLED(PROBING_HEATERS_OFF)
  1830. thermalManager.pause(p);
  1831. #endif
  1832. #if ENABLED(PROBING_FANS_OFF)
  1833. fans_pause(p);
  1834. #endif
  1835. if (p) safe_delay(
  1836. #if DELAY_BEFORE_PROBING > 25
  1837. DELAY_BEFORE_PROBING
  1838. #else
  1839. 25
  1840. #endif
  1841. );
  1842. }
  1843. #endif // QUIET_PROBING
  1844. #if ENABLED(BLTOUCH)
  1845. void bltouch_command(int angle) {
  1846. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1847. safe_delay(BLTOUCH_DELAY);
  1848. }
  1849. bool set_bltouch_deployed(const bool deploy) {
  1850. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1851. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1852. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1853. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1854. safe_delay(1500); // Wait for internal self-test to complete.
  1855. // (Measured completion time was 0.65 seconds
  1856. // after reset, deploy, and stow sequence)
  1857. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1858. SERIAL_ERROR_START();
  1859. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1860. stop(); // punt!
  1861. return true;
  1862. }
  1863. }
  1864. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) {
  1867. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1868. SERIAL_CHAR(')');
  1869. SERIAL_EOL();
  1870. }
  1871. #endif
  1872. return false;
  1873. }
  1874. #endif // BLTOUCH
  1875. // returns false for ok and true for failure
  1876. bool set_probe_deployed(bool deploy) {
  1877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1878. if (DEBUGGING(LEVELING)) {
  1879. DEBUG_POS("set_probe_deployed", current_position);
  1880. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1881. }
  1882. #endif
  1883. if (endstops.z_probe_enabled == deploy) return false;
  1884. // Make room for probe
  1885. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1886. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1887. #if ENABLED(Z_PROBE_SLED)
  1888. #define _AUE_ARGS true, false, false
  1889. #else
  1890. #define _AUE_ARGS
  1891. #endif
  1892. if (axis_unhomed_error(_AUE_ARGS)) {
  1893. SERIAL_ERROR_START();
  1894. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1895. stop();
  1896. return true;
  1897. }
  1898. #endif
  1899. const float oldXpos = current_position[X_AXIS],
  1900. oldYpos = current_position[Y_AXIS];
  1901. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1902. // If endstop is already false, the Z probe is deployed
  1903. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1904. // Would a goto be less ugly?
  1905. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1906. // for a triggered when stowed manual probe.
  1907. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1908. // otherwise an Allen-Key probe can't be stowed.
  1909. #endif
  1910. #if ENABLED(SOLENOID_PROBE)
  1911. #if HAS_SOLENOID_1
  1912. WRITE(SOL1_PIN, deploy);
  1913. #endif
  1914. #elif ENABLED(Z_PROBE_SLED)
  1915. dock_sled(!deploy);
  1916. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1917. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1918. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1919. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1920. #endif
  1921. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1922. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1923. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1924. if (IsRunning()) {
  1925. SERIAL_ERROR_START();
  1926. SERIAL_ERRORLNPGM("Z-Probe failed");
  1927. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1928. }
  1929. stop();
  1930. return true;
  1931. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1932. #endif
  1933. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1934. endstops.enable_z_probe(deploy);
  1935. return false;
  1936. }
  1937. /**
  1938. * @brief Used by run_z_probe to do a single Z probe move.
  1939. *
  1940. * @param z Z destination
  1941. * @param fr_mm_s Feedrate in mm/s
  1942. * @return true to indicate an error
  1943. */
  1944. static bool do_probe_move(const float z, const float fr_mm_m) {
  1945. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1946. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1947. #endif
  1948. // Deploy BLTouch at the start of any probe
  1949. #if ENABLED(BLTOUCH)
  1950. if (set_bltouch_deployed(true)) return true;
  1951. #endif
  1952. #if QUIET_PROBING
  1953. probing_pause(true);
  1954. #endif
  1955. // Move down until probe triggered
  1956. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1957. // Check to see if the probe was triggered
  1958. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1959. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1960. Z_MIN
  1961. #else
  1962. Z_MIN_PROBE
  1963. #endif
  1964. );
  1965. #if QUIET_PROBING
  1966. probing_pause(false);
  1967. #endif
  1968. // Retract BLTouch immediately after a probe if it was triggered
  1969. #if ENABLED(BLTOUCH)
  1970. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1971. #endif
  1972. // Clear endstop flags
  1973. endstops.hit_on_purpose();
  1974. // Get Z where the steppers were interrupted
  1975. set_current_from_steppers_for_axis(Z_AXIS);
  1976. // Tell the planner where we actually are
  1977. SYNC_PLAN_POSITION_KINEMATIC();
  1978. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1979. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1980. #endif
  1981. return !probe_triggered;
  1982. }
  1983. /**
  1984. * @details Used by probe_pt to do a single Z probe.
  1985. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1986. *
  1987. * @param short_move Flag for a shorter probe move towards the bed
  1988. * @return The raw Z position where the probe was triggered
  1989. */
  1990. static float run_z_probe(const bool short_move=true) {
  1991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1992. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1993. #endif
  1994. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1995. refresh_cmd_timeout();
  1996. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1997. // Do a first probe at the fast speed
  1998. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2000. float first_probe_z = current_position[Z_AXIS];
  2001. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  2002. #endif
  2003. // move up to make clearance for the probe
  2004. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2005. #else
  2006. // If the nozzle is above the travel height then
  2007. // move down quickly before doing the slow probe
  2008. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2009. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2010. if (z < current_position[Z_AXIS]) {
  2011. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2012. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2013. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2014. }
  2015. #endif
  2016. // move down slowly to find bed
  2017. if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2020. #endif
  2021. // Debug: compare probe heights
  2022. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2023. if (DEBUGGING(LEVELING)) {
  2024. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2025. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2026. }
  2027. #endif
  2028. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  2029. #if ENABLED(DELTA)
  2030. + home_offset[Z_AXIS] // Account for delta height adjustment
  2031. #endif
  2032. ;
  2033. }
  2034. /**
  2035. * - Move to the given XY
  2036. * - Deploy the probe, if not already deployed
  2037. * - Probe the bed, get the Z position
  2038. * - Depending on the 'stow' flag
  2039. * - Stow the probe, or
  2040. * - Raise to the BETWEEN height
  2041. * - Return the probed Z position
  2042. */
  2043. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2045. if (DEBUGGING(LEVELING)) {
  2046. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2047. SERIAL_ECHOPAIR(", ", ly);
  2048. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2049. SERIAL_ECHOLNPGM("stow)");
  2050. DEBUG_POS("", current_position);
  2051. }
  2052. #endif
  2053. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2054. if (printable
  2055. ? !position_is_reachable_xy(nx, ny)
  2056. : !position_is_reachable_by_probe_xy(lx, ly)
  2057. ) return NAN;
  2058. const float old_feedrate_mm_s = feedrate_mm_s;
  2059. #if ENABLED(DELTA)
  2060. if (current_position[Z_AXIS] > delta_clip_start_height)
  2061. do_blocking_move_to_z(delta_clip_start_height);
  2062. #endif
  2063. #if HAS_SOFTWARE_ENDSTOPS
  2064. // Store the status of the soft endstops and disable if we're probing a non-printable location
  2065. static bool enable_soft_endstops = soft_endstops_enabled;
  2066. if (!printable) soft_endstops_enabled = false;
  2067. #endif
  2068. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2069. // Move the probe to the given XY
  2070. do_blocking_move_to_xy(nx, ny);
  2071. float measured_z = NAN;
  2072. if (!DEPLOY_PROBE()) {
  2073. measured_z = run_z_probe(printable);
  2074. if (!stow)
  2075. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2076. else
  2077. if (STOW_PROBE()) measured_z = NAN;
  2078. }
  2079. #if HAS_SOFTWARE_ENDSTOPS
  2080. // Restore the soft endstop status
  2081. soft_endstops_enabled = enable_soft_endstops;
  2082. #endif
  2083. if (verbose_level > 2) {
  2084. SERIAL_PROTOCOLPGM("Bed X: ");
  2085. SERIAL_PROTOCOL_F(lx, 3);
  2086. SERIAL_PROTOCOLPGM(" Y: ");
  2087. SERIAL_PROTOCOL_F(ly, 3);
  2088. SERIAL_PROTOCOLPGM(" Z: ");
  2089. SERIAL_PROTOCOL_F(measured_z, 3);
  2090. SERIAL_EOL();
  2091. }
  2092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2093. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2094. #endif
  2095. feedrate_mm_s = old_feedrate_mm_s;
  2096. if (isnan(measured_z)) {
  2097. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2098. SERIAL_ERROR_START();
  2099. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2100. }
  2101. return measured_z;
  2102. }
  2103. #endif // HAS_BED_PROBE
  2104. #if HAS_LEVELING
  2105. bool leveling_is_valid() {
  2106. return
  2107. #if ENABLED(MESH_BED_LEVELING)
  2108. mbl.has_mesh
  2109. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2110. !!bilinear_grid_spacing[X_AXIS]
  2111. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2112. true
  2113. #else // 3POINT, LINEAR
  2114. true
  2115. #endif
  2116. ;
  2117. }
  2118. /**
  2119. * Turn bed leveling on or off, fixing the current
  2120. * position as-needed.
  2121. *
  2122. * Disable: Current position = physical position
  2123. * Enable: Current position = "unleveled" physical position
  2124. */
  2125. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2126. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2127. const bool can_change = (!enable || leveling_is_valid());
  2128. #else
  2129. constexpr bool can_change = true;
  2130. #endif
  2131. if (can_change && enable != planner.leveling_active) {
  2132. #if ENABLED(MESH_BED_LEVELING)
  2133. if (!enable)
  2134. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2135. const bool enabling = enable && leveling_is_valid();
  2136. planner.leveling_active = enabling;
  2137. if (enabling) planner.unapply_leveling(current_position);
  2138. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2139. #if PLANNER_LEVELING
  2140. if (planner.leveling_active) { // leveling from on to off
  2141. // change unleveled current_position to physical current_position without moving steppers.
  2142. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2143. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2144. }
  2145. else { // leveling from off to on
  2146. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2147. // change physical current_position to unleveled current_position without moving steppers.
  2148. planner.unapply_leveling(current_position);
  2149. }
  2150. #else
  2151. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2152. #endif
  2153. #else // ABL
  2154. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2155. // Force bilinear_z_offset to re-calculate next time
  2156. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2157. (void)bilinear_z_offset(reset);
  2158. #endif
  2159. // Enable or disable leveling compensation in the planner
  2160. planner.leveling_active = enable;
  2161. if (!enable)
  2162. // When disabling just get the current position from the steppers.
  2163. // This will yield the smallest error when first converted back to steps.
  2164. set_current_from_steppers_for_axis(
  2165. #if ABL_PLANAR
  2166. ALL_AXES
  2167. #else
  2168. Z_AXIS
  2169. #endif
  2170. );
  2171. else
  2172. // When enabling, remove compensation from the current position,
  2173. // so compensation will give the right stepper counts.
  2174. planner.unapply_leveling(current_position);
  2175. #endif // ABL
  2176. }
  2177. }
  2178. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2179. void set_z_fade_height(const float zfh) {
  2180. const bool level_active = planner.leveling_active;
  2181. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2182. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2183. #endif
  2184. planner.set_z_fade_height(zfh);
  2185. if (level_active) {
  2186. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2187. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2188. #else
  2189. set_current_from_steppers_for_axis(
  2190. #if ABL_PLANAR
  2191. ALL_AXES
  2192. #else
  2193. Z_AXIS
  2194. #endif
  2195. );
  2196. #endif
  2197. }
  2198. }
  2199. #endif // LEVELING_FADE_HEIGHT
  2200. /**
  2201. * Reset calibration results to zero.
  2202. */
  2203. void reset_bed_level() {
  2204. set_bed_leveling_enabled(false);
  2205. #if ENABLED(MESH_BED_LEVELING)
  2206. if (leveling_is_valid()) {
  2207. mbl.reset();
  2208. mbl.has_mesh = false;
  2209. }
  2210. #else
  2211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2212. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2213. #endif
  2214. #if ABL_PLANAR
  2215. planner.bed_level_matrix.set_to_identity();
  2216. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2217. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2218. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2219. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2220. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2221. z_values[x][y] = NAN;
  2222. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2223. ubl.reset();
  2224. #endif
  2225. #endif
  2226. }
  2227. #endif // HAS_LEVELING
  2228. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2229. /**
  2230. * Enable to produce output in JSON format suitable
  2231. * for SCAD or JavaScript mesh visualizers.
  2232. *
  2233. * Visualize meshes in OpenSCAD using the included script.
  2234. *
  2235. * buildroot/shared/scripts/MarlinMesh.scad
  2236. */
  2237. //#define SCAD_MESH_OUTPUT
  2238. /**
  2239. * Print calibration results for plotting or manual frame adjustment.
  2240. */
  2241. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2242. #ifndef SCAD_MESH_OUTPUT
  2243. for (uint8_t x = 0; x < sx; x++) {
  2244. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2245. SERIAL_PROTOCOLCHAR(' ');
  2246. SERIAL_PROTOCOL((int)x);
  2247. }
  2248. SERIAL_EOL();
  2249. #endif
  2250. #ifdef SCAD_MESH_OUTPUT
  2251. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2252. #endif
  2253. for (uint8_t y = 0; y < sy; y++) {
  2254. #ifdef SCAD_MESH_OUTPUT
  2255. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2256. #else
  2257. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2258. SERIAL_PROTOCOL((int)y);
  2259. #endif
  2260. for (uint8_t x = 0; x < sx; x++) {
  2261. SERIAL_PROTOCOLCHAR(' ');
  2262. const float offset = fn(x, y);
  2263. if (!isnan(offset)) {
  2264. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2265. SERIAL_PROTOCOL_F(offset, precision);
  2266. }
  2267. else {
  2268. #ifdef SCAD_MESH_OUTPUT
  2269. for (uint8_t i = 3; i < precision + 3; i++)
  2270. SERIAL_PROTOCOLCHAR(' ');
  2271. SERIAL_PROTOCOLPGM("NAN");
  2272. #else
  2273. for (uint8_t i = 0; i < precision + 3; i++)
  2274. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2275. #endif
  2276. }
  2277. #ifdef SCAD_MESH_OUTPUT
  2278. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2279. #endif
  2280. }
  2281. #ifdef SCAD_MESH_OUTPUT
  2282. SERIAL_PROTOCOLCHAR(' ');
  2283. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2284. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2285. #endif
  2286. SERIAL_EOL();
  2287. }
  2288. #ifdef SCAD_MESH_OUTPUT
  2289. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2290. #endif
  2291. SERIAL_EOL();
  2292. }
  2293. #endif
  2294. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2295. /**
  2296. * Extrapolate a single point from its neighbors
  2297. */
  2298. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2300. if (DEBUGGING(LEVELING)) {
  2301. SERIAL_ECHOPGM("Extrapolate [");
  2302. if (x < 10) SERIAL_CHAR(' ');
  2303. SERIAL_ECHO((int)x);
  2304. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2305. SERIAL_CHAR(' ');
  2306. if (y < 10) SERIAL_CHAR(' ');
  2307. SERIAL_ECHO((int)y);
  2308. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2309. SERIAL_CHAR(']');
  2310. }
  2311. #endif
  2312. if (!isnan(z_values[x][y])) {
  2313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2314. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2315. #endif
  2316. return; // Don't overwrite good values.
  2317. }
  2318. SERIAL_EOL();
  2319. // Get X neighbors, Y neighbors, and XY neighbors
  2320. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2321. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2322. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2323. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2324. // Treat far unprobed points as zero, near as equal to far
  2325. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2326. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2327. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2328. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2329. // Take the average instead of the median
  2330. z_values[x][y] = (a + b + c) / 3.0;
  2331. // Median is robust (ignores outliers).
  2332. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2333. // : ((c < b) ? b : (a < c) ? a : c);
  2334. }
  2335. //Enable this if your SCARA uses 180° of total area
  2336. //#define EXTRAPOLATE_FROM_EDGE
  2337. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2338. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2339. #define HALF_IN_X
  2340. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2341. #define HALF_IN_Y
  2342. #endif
  2343. #endif
  2344. /**
  2345. * Fill in the unprobed points (corners of circular print surface)
  2346. * using linear extrapolation, away from the center.
  2347. */
  2348. static void extrapolate_unprobed_bed_level() {
  2349. #ifdef HALF_IN_X
  2350. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2351. #else
  2352. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2353. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2354. xlen = ctrx1;
  2355. #endif
  2356. #ifdef HALF_IN_Y
  2357. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2358. #else
  2359. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2360. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2361. ylen = ctry1;
  2362. #endif
  2363. for (uint8_t xo = 0; xo <= xlen; xo++)
  2364. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2365. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2366. #ifndef HALF_IN_X
  2367. const uint8_t x1 = ctrx1 - xo;
  2368. #endif
  2369. #ifndef HALF_IN_Y
  2370. const uint8_t y1 = ctry1 - yo;
  2371. #ifndef HALF_IN_X
  2372. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2373. #endif
  2374. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2375. #endif
  2376. #ifndef HALF_IN_X
  2377. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2378. #endif
  2379. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2380. }
  2381. }
  2382. static void print_bilinear_leveling_grid() {
  2383. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2384. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2385. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2386. );
  2387. }
  2388. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2389. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2390. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2391. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2392. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2393. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2394. int bilinear_grid_spacing_virt[2] = { 0 };
  2395. float bilinear_grid_factor_virt[2] = { 0 };
  2396. static void print_bilinear_leveling_grid_virt() {
  2397. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2398. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2399. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2400. );
  2401. }
  2402. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2403. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2404. uint8_t ep = 0, ip = 1;
  2405. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2406. if (x) {
  2407. ep = GRID_MAX_POINTS_X - 1;
  2408. ip = GRID_MAX_POINTS_X - 2;
  2409. }
  2410. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2411. return LINEAR_EXTRAPOLATION(
  2412. z_values[ep][y - 1],
  2413. z_values[ip][y - 1]
  2414. );
  2415. else
  2416. return LINEAR_EXTRAPOLATION(
  2417. bed_level_virt_coord(ep + 1, y),
  2418. bed_level_virt_coord(ip + 1, y)
  2419. );
  2420. }
  2421. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2422. if (y) {
  2423. ep = GRID_MAX_POINTS_Y - 1;
  2424. ip = GRID_MAX_POINTS_Y - 2;
  2425. }
  2426. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2427. return LINEAR_EXTRAPOLATION(
  2428. z_values[x - 1][ep],
  2429. z_values[x - 1][ip]
  2430. );
  2431. else
  2432. return LINEAR_EXTRAPOLATION(
  2433. bed_level_virt_coord(x, ep + 1),
  2434. bed_level_virt_coord(x, ip + 1)
  2435. );
  2436. }
  2437. return z_values[x - 1][y - 1];
  2438. }
  2439. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2440. return (
  2441. p[i-1] * -t * sq(1 - t)
  2442. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2443. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2444. - p[i+2] * sq(t) * (1 - t)
  2445. ) * 0.5;
  2446. }
  2447. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2448. float row[4], column[4];
  2449. for (uint8_t i = 0; i < 4; i++) {
  2450. for (uint8_t j = 0; j < 4; j++) {
  2451. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2452. }
  2453. row[i] = bed_level_virt_cmr(column, 1, ty);
  2454. }
  2455. return bed_level_virt_cmr(row, 1, tx);
  2456. }
  2457. void bed_level_virt_interpolate() {
  2458. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2459. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2460. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2461. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2462. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2463. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2464. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2465. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2466. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2467. continue;
  2468. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2469. bed_level_virt_2cmr(
  2470. x + 1,
  2471. y + 1,
  2472. (float)tx / (BILINEAR_SUBDIVISIONS),
  2473. (float)ty / (BILINEAR_SUBDIVISIONS)
  2474. );
  2475. }
  2476. }
  2477. #endif // ABL_BILINEAR_SUBDIVISION
  2478. // Refresh after other values have been updated
  2479. void refresh_bed_level() {
  2480. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2481. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2482. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2483. bed_level_virt_interpolate();
  2484. #endif
  2485. }
  2486. #endif // AUTO_BED_LEVELING_BILINEAR
  2487. /**
  2488. * Home an individual linear axis
  2489. */
  2490. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2492. if (DEBUGGING(LEVELING)) {
  2493. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2494. SERIAL_ECHOPAIR(", ", distance);
  2495. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2496. SERIAL_CHAR(')');
  2497. SERIAL_EOL();
  2498. }
  2499. #endif
  2500. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2501. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2502. if (deploy_bltouch) set_bltouch_deployed(true);
  2503. #endif
  2504. #if QUIET_PROBING
  2505. if (axis == Z_AXIS) probing_pause(true);
  2506. #endif
  2507. // Tell the planner we're at Z=0
  2508. current_position[axis] = 0;
  2509. #if IS_SCARA
  2510. SYNC_PLAN_POSITION_KINEMATIC();
  2511. current_position[axis] = distance;
  2512. inverse_kinematics(current_position);
  2513. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2514. #else
  2515. sync_plan_position();
  2516. current_position[axis] = distance;
  2517. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2518. #endif
  2519. stepper.synchronize();
  2520. #if QUIET_PROBING
  2521. if (axis == Z_AXIS) probing_pause(false);
  2522. #endif
  2523. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2524. if (deploy_bltouch) set_bltouch_deployed(false);
  2525. #endif
  2526. endstops.hit_on_purpose();
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) {
  2529. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2530. SERIAL_CHAR(')');
  2531. SERIAL_EOL();
  2532. }
  2533. #endif
  2534. }
  2535. /**
  2536. * TMC2130 specific sensorless homing using stallGuard2.
  2537. * stallGuard2 only works when in spreadCycle mode.
  2538. * spreadCycle and stealthChop are mutually exclusive.
  2539. */
  2540. #if ENABLED(SENSORLESS_HOMING)
  2541. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2542. #if ENABLED(STEALTHCHOP)
  2543. if (enable) {
  2544. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2545. st.stealthChop(0);
  2546. }
  2547. else {
  2548. st.coolstep_min_speed(0);
  2549. st.stealthChop(1);
  2550. }
  2551. #endif
  2552. st.diag1_stall(enable ? 1 : 0);
  2553. }
  2554. #endif
  2555. /**
  2556. * Home an individual "raw axis" to its endstop.
  2557. * This applies to XYZ on Cartesian and Core robots, and
  2558. * to the individual ABC steppers on DELTA and SCARA.
  2559. *
  2560. * At the end of the procedure the axis is marked as
  2561. * homed and the current position of that axis is updated.
  2562. * Kinematic robots should wait till all axes are homed
  2563. * before updating the current position.
  2564. */
  2565. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2566. static void homeaxis(const AxisEnum axis) {
  2567. #if IS_SCARA
  2568. // Only Z homing (with probe) is permitted
  2569. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2570. #else
  2571. #define CAN_HOME(A) \
  2572. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2573. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2574. #endif
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (DEBUGGING(LEVELING)) {
  2577. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2578. SERIAL_CHAR(')');
  2579. SERIAL_EOL();
  2580. }
  2581. #endif
  2582. const int axis_home_dir =
  2583. #if ENABLED(DUAL_X_CARRIAGE)
  2584. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2585. #endif
  2586. home_dir(axis);
  2587. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2588. #if HOMING_Z_WITH_PROBE
  2589. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2590. #endif
  2591. // Set a flag for Z motor locking
  2592. #if ENABLED(Z_DUAL_ENDSTOPS)
  2593. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2594. #endif
  2595. // Disable stealthChop if used. Enable diag1 pin on driver.
  2596. #if ENABLED(SENSORLESS_HOMING)
  2597. #if ENABLED(X_IS_TMC2130)
  2598. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2599. #endif
  2600. #if ENABLED(Y_IS_TMC2130)
  2601. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2602. #endif
  2603. #endif
  2604. // Fast move towards endstop until triggered
  2605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2606. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2607. #endif
  2608. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2609. // When homing Z with probe respect probe clearance
  2610. const float bump = axis_home_dir * (
  2611. #if HOMING_Z_WITH_PROBE
  2612. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2613. #endif
  2614. home_bump_mm(axis)
  2615. );
  2616. // If a second homing move is configured...
  2617. if (bump) {
  2618. // Move away from the endstop by the axis HOME_BUMP_MM
  2619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2620. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2621. #endif
  2622. do_homing_move(axis, -bump);
  2623. // Slow move towards endstop until triggered
  2624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2625. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2626. #endif
  2627. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2628. }
  2629. #if ENABLED(Z_DUAL_ENDSTOPS)
  2630. if (axis == Z_AXIS) {
  2631. float adj = FABS(z_endstop_adj);
  2632. bool lockZ1;
  2633. if (axis_home_dir > 0) {
  2634. adj = -adj;
  2635. lockZ1 = (z_endstop_adj > 0);
  2636. }
  2637. else
  2638. lockZ1 = (z_endstop_adj < 0);
  2639. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2640. // Move to the adjusted endstop height
  2641. do_homing_move(axis, adj);
  2642. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2643. stepper.set_homing_flag(false);
  2644. } // Z_AXIS
  2645. #endif
  2646. #if IS_SCARA
  2647. set_axis_is_at_home(axis);
  2648. SYNC_PLAN_POSITION_KINEMATIC();
  2649. #elif ENABLED(DELTA)
  2650. // Delta has already moved all three towers up in G28
  2651. // so here it re-homes each tower in turn.
  2652. // Delta homing treats the axes as normal linear axes.
  2653. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2654. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2656. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2657. #endif
  2658. do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2659. }
  2660. #else
  2661. // For cartesian/core machines,
  2662. // set the axis to its home position
  2663. set_axis_is_at_home(axis);
  2664. sync_plan_position();
  2665. destination[axis] = current_position[axis];
  2666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2667. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2668. #endif
  2669. #endif
  2670. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2671. #if ENABLED(SENSORLESS_HOMING)
  2672. #if ENABLED(X_IS_TMC2130)
  2673. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2674. #endif
  2675. #if ENABLED(Y_IS_TMC2130)
  2676. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2677. #endif
  2678. #endif
  2679. // Put away the Z probe
  2680. #if HOMING_Z_WITH_PROBE
  2681. if (axis == Z_AXIS && STOW_PROBE()) return;
  2682. #endif
  2683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2684. if (DEBUGGING(LEVELING)) {
  2685. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2686. SERIAL_CHAR(')');
  2687. SERIAL_EOL();
  2688. }
  2689. #endif
  2690. } // homeaxis()
  2691. #if ENABLED(FWRETRACT)
  2692. /**
  2693. * Retract or recover according to firmware settings
  2694. *
  2695. * This function handles retract/recover moves for G10 and G11,
  2696. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2697. *
  2698. * To simplify the logic, doubled retract/recover moves are ignored.
  2699. *
  2700. * Note: Z lift is done transparently to the planner. Aborting
  2701. * a print between G10 and G11 may corrupt the Z position.
  2702. *
  2703. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2704. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2705. */
  2706. void retract(const bool retracting
  2707. #if EXTRUDERS > 1
  2708. , bool swapping = false
  2709. #endif
  2710. ) {
  2711. static float hop_height, // Remember where the Z height started
  2712. hop_amount = 0.0; // Total amount lifted, for use in recover
  2713. // Simply never allow two retracts or recovers in a row
  2714. if (retracted[active_extruder] == retracting) return;
  2715. #if EXTRUDERS < 2
  2716. bool swapping = false;
  2717. #endif
  2718. if (!retracting) swapping = retracted_swap[active_extruder];
  2719. /* // debugging
  2720. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2721. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2722. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2723. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2724. SERIAL_ECHOPAIR("retracted[", i);
  2725. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2726. SERIAL_ECHOPAIR("retracted_swap[", i);
  2727. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2728. }
  2729. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2730. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2731. //*/
  2732. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2733. const float old_feedrate_mm_s = feedrate_mm_s;
  2734. const int16_t old_flow = flow_percentage[active_extruder];
  2735. // Don't apply flow multiplication to retract/recover
  2736. flow_percentage[active_extruder] = 100;
  2737. // The current position will be the destination for E and Z moves
  2738. set_destination_to_current();
  2739. stepper.synchronize(); // Wait for all moves to finish
  2740. if (retracting) {
  2741. // Remember the Z height since G-code may include its own Z-hop
  2742. // For best results turn off Z hop if G-code already includes it
  2743. hop_height = destination[Z_AXIS];
  2744. // Retract by moving from a faux E position back to the current E position
  2745. feedrate_mm_s = retract_feedrate_mm_s;
  2746. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
  2747. sync_plan_position_e();
  2748. prepare_move_to_destination();
  2749. // Is a Z hop set, and has the hop not yet been done?
  2750. if (has_zhop) {
  2751. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2752. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2753. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2754. prepare_move_to_destination(); // Raise up to the old current pos
  2755. }
  2756. }
  2757. else {
  2758. // If a hop was done and Z hasn't changed, undo the Z hop
  2759. if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
  2760. current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
  2761. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2762. prepare_move_to_destination(); // Lower to the old current pos
  2763. hop_amount = 0.0;
  2764. }
  2765. // A retract multiplier has been added here to get faster swap recovery
  2766. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2767. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2768. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2769. sync_plan_position_e();
  2770. prepare_move_to_destination(); // Recover E
  2771. }
  2772. // Restore flow and feedrate
  2773. flow_percentage[active_extruder] = old_flow;
  2774. feedrate_mm_s = old_feedrate_mm_s;
  2775. // The active extruder is now retracted or recovered
  2776. retracted[active_extruder] = retracting;
  2777. // If swap retract/recover then update the retracted_swap flag too
  2778. #if EXTRUDERS > 1
  2779. if (swapping) retracted_swap[active_extruder] = retracting;
  2780. #endif
  2781. /* // debugging
  2782. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2783. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2784. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2785. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2786. SERIAL_ECHOPAIR("retracted[", i);
  2787. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2788. SERIAL_ECHOPAIR("retracted_swap[", i);
  2789. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2790. }
  2791. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2792. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2793. //*/
  2794. } // retract()
  2795. #endif // FWRETRACT
  2796. #if ENABLED(MIXING_EXTRUDER)
  2797. void normalize_mix() {
  2798. float mix_total = 0.0;
  2799. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2800. // Scale all values if they don't add up to ~1.0
  2801. if (!NEAR(mix_total, 1.0)) {
  2802. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2803. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2804. }
  2805. }
  2806. #if ENABLED(DIRECT_MIXING_IN_G1)
  2807. // Get mixing parameters from the GCode
  2808. // The total "must" be 1.0 (but it will be normalized)
  2809. // If no mix factors are given, the old mix is preserved
  2810. void gcode_get_mix() {
  2811. const char* mixing_codes = "ABCDHI";
  2812. byte mix_bits = 0;
  2813. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2814. if (parser.seenval(mixing_codes[i])) {
  2815. SBI(mix_bits, i);
  2816. float v = parser.value_float();
  2817. NOLESS(v, 0.0);
  2818. mixing_factor[i] = RECIPROCAL(v);
  2819. }
  2820. }
  2821. // If any mixing factors were included, clear the rest
  2822. // If none were included, preserve the last mix
  2823. if (mix_bits) {
  2824. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2825. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2826. normalize_mix();
  2827. }
  2828. }
  2829. #endif
  2830. #endif
  2831. /**
  2832. * ***************************************************************************
  2833. * ***************************** G-CODE HANDLING *****************************
  2834. * ***************************************************************************
  2835. */
  2836. /**
  2837. * Set XYZE destination and feedrate from the current GCode command
  2838. *
  2839. * - Set destination from included axis codes
  2840. * - Set to current for missing axis codes
  2841. * - Set the feedrate, if included
  2842. */
  2843. void gcode_get_destination() {
  2844. LOOP_XYZE(i) {
  2845. if (parser.seen(axis_codes[i]))
  2846. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2847. else
  2848. destination[i] = current_position[i];
  2849. }
  2850. if (parser.linearval('F') > 0.0)
  2851. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2852. #if ENABLED(PRINTCOUNTER)
  2853. if (!DEBUGGING(DRYRUN))
  2854. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2855. #endif
  2856. // Get ABCDHI mixing factors
  2857. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2858. gcode_get_mix();
  2859. #endif
  2860. }
  2861. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2862. /**
  2863. * Output a "busy" message at regular intervals
  2864. * while the machine is not accepting commands.
  2865. */
  2866. void host_keepalive() {
  2867. const millis_t ms = millis();
  2868. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2869. if (PENDING(ms, next_busy_signal_ms)) return;
  2870. switch (busy_state) {
  2871. case IN_HANDLER:
  2872. case IN_PROCESS:
  2873. SERIAL_ECHO_START();
  2874. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2875. break;
  2876. case PAUSED_FOR_USER:
  2877. SERIAL_ECHO_START();
  2878. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2879. break;
  2880. case PAUSED_FOR_INPUT:
  2881. SERIAL_ECHO_START();
  2882. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2883. break;
  2884. default:
  2885. break;
  2886. }
  2887. }
  2888. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2889. }
  2890. #endif // HOST_KEEPALIVE_FEATURE
  2891. /**************************************************
  2892. ***************** GCode Handlers *****************
  2893. **************************************************/
  2894. /**
  2895. * G0, G1: Coordinated movement of X Y Z E axes
  2896. */
  2897. inline void gcode_G0_G1(
  2898. #if IS_SCARA
  2899. bool fast_move=false
  2900. #endif
  2901. ) {
  2902. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2903. if (axis_unhomed_error()) return;
  2904. #endif
  2905. if (IsRunning()) {
  2906. gcode_get_destination(); // For X Y Z E F
  2907. #if ENABLED(FWRETRACT)
  2908. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2909. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2910. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2911. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2912. // Is this a retract or recover move?
  2913. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2914. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2915. sync_plan_position_e(); // AND from the planner
  2916. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2917. }
  2918. }
  2919. }
  2920. #endif // FWRETRACT
  2921. #if IS_SCARA
  2922. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2923. #else
  2924. prepare_move_to_destination();
  2925. #endif
  2926. }
  2927. }
  2928. /**
  2929. * G2: Clockwise Arc
  2930. * G3: Counterclockwise Arc
  2931. *
  2932. * This command has two forms: IJ-form and R-form.
  2933. *
  2934. * - I specifies an X offset. J specifies a Y offset.
  2935. * At least one of the IJ parameters is required.
  2936. * X and Y can be omitted to do a complete circle.
  2937. * The given XY is not error-checked. The arc ends
  2938. * based on the angle of the destination.
  2939. * Mixing I or J with R will throw an error.
  2940. *
  2941. * - R specifies the radius. X or Y is required.
  2942. * Omitting both X and Y will throw an error.
  2943. * X or Y must differ from the current XY.
  2944. * Mixing R with I or J will throw an error.
  2945. *
  2946. * - P specifies the number of full circles to do
  2947. * before the specified arc move.
  2948. *
  2949. * Examples:
  2950. *
  2951. * G2 I10 ; CW circle centered at X+10
  2952. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2953. */
  2954. #if ENABLED(ARC_SUPPORT)
  2955. inline void gcode_G2_G3(bool clockwise) {
  2956. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2957. if (axis_unhomed_error()) return;
  2958. #endif
  2959. if (IsRunning()) {
  2960. #if ENABLED(SF_ARC_FIX)
  2961. const bool relative_mode_backup = relative_mode;
  2962. relative_mode = true;
  2963. #endif
  2964. gcode_get_destination();
  2965. #if ENABLED(SF_ARC_FIX)
  2966. relative_mode = relative_mode_backup;
  2967. #endif
  2968. float arc_offset[2] = { 0.0, 0.0 };
  2969. if (parser.seenval('R')) {
  2970. const float r = parser.value_linear_units(),
  2971. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2972. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2973. if (r && (p2 != p1 || q2 != q1)) {
  2974. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2975. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2976. d = HYPOT(dx, dy), // Linear distance between the points
  2977. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2978. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2979. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2980. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2981. arc_offset[0] = cx - p1;
  2982. arc_offset[1] = cy - q1;
  2983. }
  2984. }
  2985. else {
  2986. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2987. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2988. }
  2989. if (arc_offset[0] || arc_offset[1]) {
  2990. #if ENABLED(ARC_P_CIRCLES)
  2991. // P indicates number of circles to do
  2992. int8_t circles_to_do = parser.byteval('P');
  2993. if (!WITHIN(circles_to_do, 0, 100)) {
  2994. SERIAL_ERROR_START();
  2995. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2996. }
  2997. while (circles_to_do--)
  2998. plan_arc(current_position, arc_offset, clockwise);
  2999. #endif
  3000. // Send the arc to the planner
  3001. plan_arc(destination, arc_offset, clockwise);
  3002. refresh_cmd_timeout();
  3003. }
  3004. else {
  3005. // Bad arguments
  3006. SERIAL_ERROR_START();
  3007. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3008. }
  3009. }
  3010. }
  3011. #endif // ARC_SUPPORT
  3012. void dwell(millis_t time) {
  3013. refresh_cmd_timeout();
  3014. time += previous_cmd_ms;
  3015. while (PENDING(millis(), time)) idle();
  3016. }
  3017. /**
  3018. * G4: Dwell S<seconds> or P<milliseconds>
  3019. */
  3020. inline void gcode_G4() {
  3021. millis_t dwell_ms = 0;
  3022. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3023. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3024. stepper.synchronize();
  3025. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3026. dwell(dwell_ms);
  3027. }
  3028. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3029. /**
  3030. * Parameters interpreted according to:
  3031. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3032. * However I, J omission is not supported at this point; all
  3033. * parameters can be omitted and default to zero.
  3034. */
  3035. /**
  3036. * G5: Cubic B-spline
  3037. */
  3038. inline void gcode_G5() {
  3039. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3040. if (axis_unhomed_error()) return;
  3041. #endif
  3042. if (IsRunning()) {
  3043. #if ENABLED(CNC_WORKSPACE_PLANES)
  3044. if (workspace_plane != PLANE_XY) {
  3045. SERIAL_ERROR_START();
  3046. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3047. return;
  3048. }
  3049. #endif
  3050. gcode_get_destination();
  3051. const float offset[] = {
  3052. parser.linearval('I'),
  3053. parser.linearval('J'),
  3054. parser.linearval('P'),
  3055. parser.linearval('Q')
  3056. };
  3057. plan_cubic_move(offset);
  3058. }
  3059. }
  3060. #endif // BEZIER_CURVE_SUPPORT
  3061. #if ENABLED(FWRETRACT)
  3062. /**
  3063. * G10 - Retract filament according to settings of M207
  3064. */
  3065. inline void gcode_G10() {
  3066. #if EXTRUDERS > 1
  3067. const bool rs = parser.boolval('S');
  3068. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3069. #endif
  3070. retract(true
  3071. #if EXTRUDERS > 1
  3072. , rs
  3073. #endif
  3074. );
  3075. }
  3076. /**
  3077. * G11 - Recover filament according to settings of M208
  3078. */
  3079. inline void gcode_G11() { retract(false); }
  3080. #endif // FWRETRACT
  3081. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3082. /**
  3083. * G12: Clean the nozzle
  3084. */
  3085. inline void gcode_G12() {
  3086. // Don't allow nozzle cleaning without homing first
  3087. if (axis_unhomed_error()) return;
  3088. const uint8_t pattern = parser.ushortval('P', 0),
  3089. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3090. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3091. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3092. Nozzle::clean(pattern, strokes, radius, objects);
  3093. }
  3094. #endif
  3095. #if ENABLED(CNC_WORKSPACE_PLANES)
  3096. void report_workspace_plane() {
  3097. SERIAL_ECHO_START();
  3098. SERIAL_ECHOPGM("Workspace Plane ");
  3099. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3100. }
  3101. /**
  3102. * G17: Select Plane XY
  3103. * G18: Select Plane ZX
  3104. * G19: Select Plane YZ
  3105. */
  3106. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3107. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3108. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3109. #endif // CNC_WORKSPACE_PLANES
  3110. #if ENABLED(INCH_MODE_SUPPORT)
  3111. /**
  3112. * G20: Set input mode to inches
  3113. */
  3114. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3115. /**
  3116. * G21: Set input mode to millimeters
  3117. */
  3118. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3119. #endif
  3120. #if ENABLED(NOZZLE_PARK_FEATURE)
  3121. /**
  3122. * G27: Park the nozzle
  3123. */
  3124. inline void gcode_G27() {
  3125. // Don't allow nozzle parking without homing first
  3126. if (axis_unhomed_error()) return;
  3127. Nozzle::park(parser.ushortval('P'));
  3128. }
  3129. #endif // NOZZLE_PARK_FEATURE
  3130. #if ENABLED(QUICK_HOME)
  3131. static void quick_home_xy() {
  3132. // Pretend the current position is 0,0
  3133. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3134. sync_plan_position();
  3135. const int x_axis_home_dir =
  3136. #if ENABLED(DUAL_X_CARRIAGE)
  3137. x_home_dir(active_extruder)
  3138. #else
  3139. home_dir(X_AXIS)
  3140. #endif
  3141. ;
  3142. const float mlx = max_length(X_AXIS),
  3143. mly = max_length(Y_AXIS),
  3144. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3145. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3146. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3147. endstops.hit_on_purpose(); // clear endstop hit flags
  3148. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3149. }
  3150. #endif // QUICK_HOME
  3151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3152. void log_machine_info() {
  3153. SERIAL_ECHOPGM("Machine Type: ");
  3154. #if ENABLED(DELTA)
  3155. SERIAL_ECHOLNPGM("Delta");
  3156. #elif IS_SCARA
  3157. SERIAL_ECHOLNPGM("SCARA");
  3158. #elif IS_CORE
  3159. SERIAL_ECHOLNPGM("Core");
  3160. #else
  3161. SERIAL_ECHOLNPGM("Cartesian");
  3162. #endif
  3163. SERIAL_ECHOPGM("Probe: ");
  3164. #if ENABLED(PROBE_MANUALLY)
  3165. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3166. #elif ENABLED(FIX_MOUNTED_PROBE)
  3167. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3168. #elif ENABLED(BLTOUCH)
  3169. SERIAL_ECHOLNPGM("BLTOUCH");
  3170. #elif HAS_Z_SERVO_ENDSTOP
  3171. SERIAL_ECHOLNPGM("SERVO PROBE");
  3172. #elif ENABLED(Z_PROBE_SLED)
  3173. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3174. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3175. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3176. #else
  3177. SERIAL_ECHOLNPGM("NONE");
  3178. #endif
  3179. #if HAS_BED_PROBE
  3180. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3181. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3182. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3183. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3184. SERIAL_ECHOPGM(" (Right");
  3185. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3186. SERIAL_ECHOPGM(" (Left");
  3187. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3188. SERIAL_ECHOPGM(" (Middle");
  3189. #else
  3190. SERIAL_ECHOPGM(" (Aligned With");
  3191. #endif
  3192. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3193. SERIAL_ECHOPGM("-Back");
  3194. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3195. SERIAL_ECHOPGM("-Front");
  3196. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3197. SERIAL_ECHOPGM("-Center");
  3198. #endif
  3199. if (zprobe_zoffset < 0)
  3200. SERIAL_ECHOPGM(" & Below");
  3201. else if (zprobe_zoffset > 0)
  3202. SERIAL_ECHOPGM(" & Above");
  3203. else
  3204. SERIAL_ECHOPGM(" & Same Z as");
  3205. SERIAL_ECHOLNPGM(" Nozzle)");
  3206. #endif
  3207. #if HAS_ABL
  3208. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3209. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3210. SERIAL_ECHOPGM("LINEAR");
  3211. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3212. SERIAL_ECHOPGM("BILINEAR");
  3213. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3214. SERIAL_ECHOPGM("3POINT");
  3215. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3216. SERIAL_ECHOPGM("UBL");
  3217. #endif
  3218. if (planner.leveling_active) {
  3219. SERIAL_ECHOLNPGM(" (enabled)");
  3220. #if ABL_PLANAR
  3221. const float diff[XYZ] = {
  3222. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3223. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3224. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3225. };
  3226. SERIAL_ECHOPGM("ABL Adjustment X");
  3227. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3228. SERIAL_ECHO(diff[X_AXIS]);
  3229. SERIAL_ECHOPGM(" Y");
  3230. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3231. SERIAL_ECHO(diff[Y_AXIS]);
  3232. SERIAL_ECHOPGM(" Z");
  3233. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3234. SERIAL_ECHO(diff[Z_AXIS]);
  3235. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3236. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3237. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3238. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3239. #endif
  3240. }
  3241. else
  3242. SERIAL_ECHOLNPGM(" (disabled)");
  3243. SERIAL_EOL();
  3244. #elif ENABLED(MESH_BED_LEVELING)
  3245. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3246. if (planner.leveling_active) {
  3247. float lz = current_position[Z_AXIS];
  3248. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3249. SERIAL_ECHOLNPGM(" (enabled)");
  3250. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3251. }
  3252. else
  3253. SERIAL_ECHOPGM(" (disabled)");
  3254. SERIAL_EOL();
  3255. #endif // MESH_BED_LEVELING
  3256. }
  3257. #endif // DEBUG_LEVELING_FEATURE
  3258. #if ENABLED(DELTA)
  3259. /**
  3260. * A delta can only safely home all axes at the same time
  3261. * This is like quick_home_xy() but for 3 towers.
  3262. */
  3263. inline bool home_delta() {
  3264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3265. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3266. #endif
  3267. // Init the current position of all carriages to 0,0,0
  3268. ZERO(current_position);
  3269. sync_plan_position();
  3270. // Move all carriages together linearly until an endstop is hit.
  3271. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
  3272. feedrate_mm_s = homing_feedrate(X_AXIS);
  3273. line_to_current_position();
  3274. stepper.synchronize();
  3275. // If an endstop was not hit, then damage can occur if homing is continued.
  3276. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
  3277. // not set correctly.
  3278. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3279. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3280. SERIAL_ERROR_START();
  3281. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3282. return false;
  3283. }
  3284. endstops.hit_on_purpose(); // clear endstop hit flags
  3285. // At least one carriage has reached the top.
  3286. // Now re-home each carriage separately.
  3287. HOMEAXIS(A);
  3288. HOMEAXIS(B);
  3289. HOMEAXIS(C);
  3290. // Set all carriages to their home positions
  3291. // Do this here all at once for Delta, because
  3292. // XYZ isn't ABC. Applying this per-tower would
  3293. // give the impression that they are the same.
  3294. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3295. SYNC_PLAN_POSITION_KINEMATIC();
  3296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3297. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3298. #endif
  3299. return true;
  3300. }
  3301. #endif // DELTA
  3302. #if ENABLED(Z_SAFE_HOMING)
  3303. inline void home_z_safely() {
  3304. // Disallow Z homing if X or Y are unknown
  3305. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3306. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3307. SERIAL_ECHO_START();
  3308. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3309. return;
  3310. }
  3311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3312. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3313. #endif
  3314. SYNC_PLAN_POSITION_KINEMATIC();
  3315. /**
  3316. * Move the Z probe (or just the nozzle) to the safe homing point
  3317. */
  3318. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3319. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3320. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3321. #if HOMING_Z_WITH_PROBE
  3322. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3323. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3324. #endif
  3325. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3327. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3328. #endif
  3329. // This causes the carriage on Dual X to unpark
  3330. #if ENABLED(DUAL_X_CARRIAGE)
  3331. active_extruder_parked = false;
  3332. #endif
  3333. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3334. HOMEAXIS(Z);
  3335. }
  3336. else {
  3337. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3338. SERIAL_ECHO_START();
  3339. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3340. }
  3341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3342. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3343. #endif
  3344. }
  3345. #endif // Z_SAFE_HOMING
  3346. #if ENABLED(PROBE_MANUALLY)
  3347. bool g29_in_progress = false;
  3348. #else
  3349. constexpr bool g29_in_progress = false;
  3350. #endif
  3351. /**
  3352. * G28: Home all axes according to settings
  3353. *
  3354. * Parameters
  3355. *
  3356. * None Home to all axes with no parameters.
  3357. * With QUICK_HOME enabled XY will home together, then Z.
  3358. *
  3359. * Cartesian parameters
  3360. *
  3361. * X Home to the X endstop
  3362. * Y Home to the Y endstop
  3363. * Z Home to the Z endstop
  3364. *
  3365. */
  3366. inline void gcode_G28(const bool always_home_all) {
  3367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3368. if (DEBUGGING(LEVELING)) {
  3369. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3370. log_machine_info();
  3371. }
  3372. #endif
  3373. // Wait for planner moves to finish!
  3374. stepper.synchronize();
  3375. // Cancel the active G29 session
  3376. #if ENABLED(PROBE_MANUALLY)
  3377. g29_in_progress = false;
  3378. #endif
  3379. // Disable the leveling matrix before homing
  3380. #if HAS_LEVELING
  3381. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3382. const bool ubl_state_at_entry = planner.leveling_active;
  3383. #endif
  3384. set_bed_leveling_enabled(false);
  3385. #endif
  3386. #if ENABLED(CNC_WORKSPACE_PLANES)
  3387. workspace_plane = PLANE_XY;
  3388. #endif
  3389. // Always home with tool 0 active
  3390. #if HOTENDS > 1
  3391. const uint8_t old_tool_index = active_extruder;
  3392. tool_change(0, 0, true);
  3393. #endif
  3394. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3395. extruder_duplication_enabled = false;
  3396. #endif
  3397. setup_for_endstop_or_probe_move();
  3398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3399. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3400. #endif
  3401. endstops.enable(true); // Enable endstops for next homing move
  3402. #if ENABLED(DELTA)
  3403. home_delta();
  3404. UNUSED(always_home_all);
  3405. #else // NOT DELTA
  3406. const bool homeX = always_home_all || parser.seen('X'),
  3407. homeY = always_home_all || parser.seen('Y'),
  3408. homeZ = always_home_all || parser.seen('Z'),
  3409. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3410. set_destination_to_current();
  3411. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3412. if (home_all || homeZ) {
  3413. HOMEAXIS(Z);
  3414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3415. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3416. #endif
  3417. }
  3418. #else
  3419. if (home_all || homeX || homeY) {
  3420. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3421. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3422. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3424. if (DEBUGGING(LEVELING))
  3425. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3426. #endif
  3427. do_blocking_move_to_z(destination[Z_AXIS]);
  3428. }
  3429. }
  3430. #endif
  3431. #if ENABLED(QUICK_HOME)
  3432. if (home_all || (homeX && homeY)) quick_home_xy();
  3433. #endif
  3434. #if ENABLED(HOME_Y_BEFORE_X)
  3435. // Home Y
  3436. if (home_all || homeY) {
  3437. HOMEAXIS(Y);
  3438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3439. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3440. #endif
  3441. }
  3442. #endif
  3443. // Home X
  3444. if (home_all || homeX) {
  3445. #if ENABLED(DUAL_X_CARRIAGE)
  3446. // Always home the 2nd (right) extruder first
  3447. active_extruder = 1;
  3448. HOMEAXIS(X);
  3449. // Remember this extruder's position for later tool change
  3450. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3451. // Home the 1st (left) extruder
  3452. active_extruder = 0;
  3453. HOMEAXIS(X);
  3454. // Consider the active extruder to be parked
  3455. COPY(raised_parked_position, current_position);
  3456. delayed_move_time = 0;
  3457. active_extruder_parked = true;
  3458. #else
  3459. HOMEAXIS(X);
  3460. #endif
  3461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3462. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3463. #endif
  3464. }
  3465. #if DISABLED(HOME_Y_BEFORE_X)
  3466. // Home Y
  3467. if (home_all || homeY) {
  3468. HOMEAXIS(Y);
  3469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3470. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3471. #endif
  3472. }
  3473. #endif
  3474. // Home Z last if homing towards the bed
  3475. #if Z_HOME_DIR < 0
  3476. if (home_all || homeZ) {
  3477. #if ENABLED(Z_SAFE_HOMING)
  3478. home_z_safely();
  3479. #else
  3480. HOMEAXIS(Z);
  3481. #endif
  3482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3483. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3484. #endif
  3485. } // home_all || homeZ
  3486. #endif // Z_HOME_DIR < 0
  3487. SYNC_PLAN_POSITION_KINEMATIC();
  3488. #endif // !DELTA (gcode_G28)
  3489. endstops.not_homing();
  3490. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3491. // move to a height where we can use the full xy-area
  3492. do_blocking_move_to_z(delta_clip_start_height);
  3493. #endif
  3494. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3495. set_bed_leveling_enabled(ubl_state_at_entry);
  3496. #endif
  3497. clean_up_after_endstop_or_probe_move();
  3498. // Restore the active tool after homing
  3499. #if HOTENDS > 1
  3500. tool_change(old_tool_index, 0,
  3501. #if ENABLED(PARKING_EXTRUDER)
  3502. false // fetch the previous toolhead
  3503. #else
  3504. true
  3505. #endif
  3506. );
  3507. #endif
  3508. lcd_refresh();
  3509. report_current_position();
  3510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3512. #endif
  3513. } // G28
  3514. void home_all_axes() { gcode_G28(true); }
  3515. #if HAS_PROBING_PROCEDURE
  3516. void out_of_range_error(const char* p_edge) {
  3517. SERIAL_PROTOCOLPGM("?Probe ");
  3518. serialprintPGM(p_edge);
  3519. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3520. }
  3521. #endif
  3522. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3523. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3524. extern bool lcd_wait_for_move;
  3525. #endif
  3526. inline void _manual_goto_xy(const float &x, const float &y) {
  3527. const float old_feedrate_mm_s = feedrate_mm_s;
  3528. #if MANUAL_PROBE_HEIGHT > 0
  3529. const float prev_z = current_position[Z_AXIS];
  3530. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3531. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3532. line_to_current_position();
  3533. #endif
  3534. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3535. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3536. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3537. line_to_current_position();
  3538. #if MANUAL_PROBE_HEIGHT > 0
  3539. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3540. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3541. line_to_current_position();
  3542. #endif
  3543. feedrate_mm_s = old_feedrate_mm_s;
  3544. stepper.synchronize();
  3545. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3546. lcd_wait_for_move = false;
  3547. #endif
  3548. }
  3549. #endif
  3550. #if ENABLED(MESH_BED_LEVELING)
  3551. // Save 130 bytes with non-duplication of PSTR
  3552. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3553. void mbl_mesh_report() {
  3554. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3555. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3556. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3557. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3558. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3559. );
  3560. }
  3561. void mesh_probing_done() {
  3562. mbl.has_mesh = true;
  3563. home_all_axes();
  3564. set_bed_leveling_enabled(true);
  3565. #if ENABLED(MESH_G28_REST_ORIGIN)
  3566. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3567. set_destination_to_current();
  3568. line_to_destination(homing_feedrate(Z_AXIS));
  3569. stepper.synchronize();
  3570. #endif
  3571. }
  3572. /**
  3573. * G29: Mesh-based Z probe, probes a grid and produces a
  3574. * mesh to compensate for variable bed height
  3575. *
  3576. * Parameters With MESH_BED_LEVELING:
  3577. *
  3578. * S0 Produce a mesh report
  3579. * S1 Start probing mesh points
  3580. * S2 Probe the next mesh point
  3581. * S3 Xn Yn Zn.nn Manually modify a single point
  3582. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3583. * S5 Reset and disable mesh
  3584. *
  3585. * The S0 report the points as below
  3586. *
  3587. * +----> X-axis 1-n
  3588. * |
  3589. * |
  3590. * v Y-axis 1-n
  3591. *
  3592. */
  3593. inline void gcode_G29() {
  3594. static int mbl_probe_index = -1;
  3595. #if HAS_SOFTWARE_ENDSTOPS
  3596. static bool enable_soft_endstops;
  3597. #endif
  3598. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3599. if (!WITHIN(state, 0, 5)) {
  3600. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3601. return;
  3602. }
  3603. int8_t px, py;
  3604. switch (state) {
  3605. case MeshReport:
  3606. if (leveling_is_valid()) {
  3607. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3608. mbl_mesh_report();
  3609. }
  3610. else
  3611. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3612. break;
  3613. case MeshStart:
  3614. mbl.reset();
  3615. mbl_probe_index = 0;
  3616. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3617. break;
  3618. case MeshNext:
  3619. if (mbl_probe_index < 0) {
  3620. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3621. return;
  3622. }
  3623. // For each G29 S2...
  3624. if (mbl_probe_index == 0) {
  3625. #if HAS_SOFTWARE_ENDSTOPS
  3626. // For the initial G29 S2 save software endstop state
  3627. enable_soft_endstops = soft_endstops_enabled;
  3628. #endif
  3629. }
  3630. else {
  3631. // For G29 S2 after adjusting Z.
  3632. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3633. #if HAS_SOFTWARE_ENDSTOPS
  3634. soft_endstops_enabled = enable_soft_endstops;
  3635. #endif
  3636. }
  3637. // If there's another point to sample, move there with optional lift.
  3638. if (mbl_probe_index < GRID_MAX_POINTS) {
  3639. mbl.zigzag(mbl_probe_index, px, py);
  3640. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3641. #if HAS_SOFTWARE_ENDSTOPS
  3642. // Disable software endstops to allow manual adjustment
  3643. // If G29 is not completed, they will not be re-enabled
  3644. soft_endstops_enabled = false;
  3645. #endif
  3646. mbl_probe_index++;
  3647. }
  3648. else {
  3649. // One last "return to the bed" (as originally coded) at completion
  3650. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3651. line_to_current_position();
  3652. stepper.synchronize();
  3653. // After recording the last point, activate home and activate
  3654. mbl_probe_index = -1;
  3655. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3656. BUZZ(100, 659);
  3657. BUZZ(100, 698);
  3658. mesh_probing_done();
  3659. }
  3660. break;
  3661. case MeshSet:
  3662. if (parser.seenval('X')) {
  3663. px = parser.value_int() - 1;
  3664. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3665. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3666. return;
  3667. }
  3668. }
  3669. else {
  3670. SERIAL_CHAR('X'); echo_not_entered();
  3671. return;
  3672. }
  3673. if (parser.seenval('Y')) {
  3674. py = parser.value_int() - 1;
  3675. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3676. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3677. return;
  3678. }
  3679. }
  3680. else {
  3681. SERIAL_CHAR('Y'); echo_not_entered();
  3682. return;
  3683. }
  3684. if (parser.seenval('Z')) {
  3685. mbl.z_values[px][py] = parser.value_linear_units();
  3686. }
  3687. else {
  3688. SERIAL_CHAR('Z'); echo_not_entered();
  3689. return;
  3690. }
  3691. break;
  3692. case MeshSetZOffset:
  3693. if (parser.seenval('Z')) {
  3694. mbl.z_offset = parser.value_linear_units();
  3695. }
  3696. else {
  3697. SERIAL_CHAR('Z'); echo_not_entered();
  3698. return;
  3699. }
  3700. break;
  3701. case MeshReset:
  3702. reset_bed_level();
  3703. break;
  3704. } // switch(state)
  3705. report_current_position();
  3706. }
  3707. #elif OLDSCHOOL_ABL
  3708. #if ABL_GRID
  3709. #if ENABLED(PROBE_Y_FIRST)
  3710. #define PR_OUTER_VAR xCount
  3711. #define PR_OUTER_END abl_grid_points_x
  3712. #define PR_INNER_VAR yCount
  3713. #define PR_INNER_END abl_grid_points_y
  3714. #else
  3715. #define PR_OUTER_VAR yCount
  3716. #define PR_OUTER_END abl_grid_points_y
  3717. #define PR_INNER_VAR xCount
  3718. #define PR_INNER_END abl_grid_points_x
  3719. #endif
  3720. #endif
  3721. /**
  3722. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3723. * Will fail if the printer has not been homed with G28.
  3724. *
  3725. * Enhanced G29 Auto Bed Leveling Probe Routine
  3726. *
  3727. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3728. * or alter the bed level data. Useful to check the topology
  3729. * after a first run of G29.
  3730. *
  3731. * J Jettison current bed leveling data
  3732. *
  3733. * V Set the verbose level (0-4). Example: "G29 V3"
  3734. *
  3735. * Parameters With LINEAR leveling only:
  3736. *
  3737. * P Set the size of the grid that will be probed (P x P points).
  3738. * Example: "G29 P4"
  3739. *
  3740. * X Set the X size of the grid that will be probed (X x Y points).
  3741. * Example: "G29 X7 Y5"
  3742. *
  3743. * Y Set the Y size of the grid that will be probed (X x Y points).
  3744. *
  3745. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3746. * This is useful for manual bed leveling and finding flaws in the bed (to
  3747. * assist with part placement).
  3748. * Not supported by non-linear delta printer bed leveling.
  3749. *
  3750. * Parameters With LINEAR and BILINEAR leveling only:
  3751. *
  3752. * S Set the XY travel speed between probe points (in units/min)
  3753. *
  3754. * F Set the Front limit of the probing grid
  3755. * B Set the Back limit of the probing grid
  3756. * L Set the Left limit of the probing grid
  3757. * R Set the Right limit of the probing grid
  3758. *
  3759. * Parameters with DEBUG_LEVELING_FEATURE only:
  3760. *
  3761. * C Make a totally fake grid with no actual probing.
  3762. * For use in testing when no probing is possible.
  3763. *
  3764. * Parameters with BILINEAR leveling only:
  3765. *
  3766. * Z Supply an additional Z probe offset
  3767. *
  3768. * Extra parameters with PROBE_MANUALLY:
  3769. *
  3770. * To do manual probing simply repeat G29 until the procedure is complete.
  3771. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3772. *
  3773. * Q Query leveling and G29 state
  3774. *
  3775. * A Abort current leveling procedure
  3776. *
  3777. * Extra parameters with BILINEAR only:
  3778. *
  3779. * W Write a mesh point. (If G29 is idle.)
  3780. * I X index for mesh point
  3781. * J Y index for mesh point
  3782. * X X for mesh point, overrides I
  3783. * Y Y for mesh point, overrides J
  3784. * Z Z for mesh point. Otherwise, raw current Z.
  3785. *
  3786. * Without PROBE_MANUALLY:
  3787. *
  3788. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3789. * Include "E" to engage/disengage the Z probe for each sample.
  3790. * There's no extra effect if you have a fixed Z probe.
  3791. *
  3792. */
  3793. inline void gcode_G29() {
  3794. // G29 Q is also available if debugging
  3795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3796. const bool query = parser.seen('Q');
  3797. const uint8_t old_debug_flags = marlin_debug_flags;
  3798. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3799. if (DEBUGGING(LEVELING)) {
  3800. DEBUG_POS(">>> gcode_G29", current_position);
  3801. log_machine_info();
  3802. }
  3803. marlin_debug_flags = old_debug_flags;
  3804. #if DISABLED(PROBE_MANUALLY)
  3805. if (query) return;
  3806. #endif
  3807. #endif
  3808. #if ENABLED(PROBE_MANUALLY)
  3809. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3810. #endif
  3811. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3812. const bool faux = parser.boolval('C');
  3813. #elif ENABLED(PROBE_MANUALLY)
  3814. const bool faux = no_action;
  3815. #else
  3816. bool constexpr faux = false;
  3817. #endif
  3818. // Don't allow auto-leveling without homing first
  3819. if (axis_unhomed_error()) return;
  3820. // Define local vars 'static' for manual probing, 'auto' otherwise
  3821. #if ENABLED(PROBE_MANUALLY)
  3822. #define ABL_VAR static
  3823. #else
  3824. #define ABL_VAR
  3825. #endif
  3826. ABL_VAR int verbose_level;
  3827. ABL_VAR float xProbe, yProbe, measured_z;
  3828. ABL_VAR bool dryrun, abl_should_enable;
  3829. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3830. ABL_VAR int abl_probe_index;
  3831. #endif
  3832. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3833. ABL_VAR bool enable_soft_endstops = true;
  3834. #endif
  3835. #if ABL_GRID
  3836. #if ENABLED(PROBE_MANUALLY)
  3837. ABL_VAR uint8_t PR_OUTER_VAR;
  3838. ABL_VAR int8_t PR_INNER_VAR;
  3839. #endif
  3840. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3841. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3842. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3843. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3844. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3845. ABL_VAR bool do_topography_map;
  3846. #else // Bilinear
  3847. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3848. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3849. #endif
  3850. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3851. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3852. ABL_VAR int abl2;
  3853. #else // Bilinear
  3854. int constexpr abl2 = GRID_MAX_POINTS;
  3855. #endif
  3856. #endif
  3857. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3858. ABL_VAR float zoffset;
  3859. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3860. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3861. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3862. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3863. mean;
  3864. #endif
  3865. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3866. int constexpr abl2 = 3;
  3867. // Probe at 3 arbitrary points
  3868. ABL_VAR vector_3 points[3] = {
  3869. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3870. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3871. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3872. };
  3873. #endif // AUTO_BED_LEVELING_3POINT
  3874. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3875. struct linear_fit_data lsf_results;
  3876. incremental_LSF_reset(&lsf_results);
  3877. #endif
  3878. /**
  3879. * On the initial G29 fetch command parameters.
  3880. */
  3881. if (!g29_in_progress) {
  3882. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3883. abl_probe_index = -1;
  3884. #endif
  3885. abl_should_enable = planner.leveling_active;
  3886. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3887. if (parser.seen('W')) {
  3888. if (!leveling_is_valid()) {
  3889. SERIAL_ERROR_START();
  3890. SERIAL_ERRORLNPGM("No bilinear grid");
  3891. return;
  3892. }
  3893. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3894. if (!WITHIN(z, -10, 10)) {
  3895. SERIAL_ERROR_START();
  3896. SERIAL_ERRORLNPGM("Bad Z value");
  3897. return;
  3898. }
  3899. const float x = parser.floatval('X', NAN),
  3900. y = parser.floatval('Y', NAN);
  3901. int8_t i = parser.byteval('I', -1),
  3902. j = parser.byteval('J', -1);
  3903. if (!isnan(x) && !isnan(y)) {
  3904. // Get nearest i / j from x / y
  3905. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3906. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3907. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3908. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3909. }
  3910. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3911. set_bed_leveling_enabled(false);
  3912. z_values[i][j] = z;
  3913. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3914. bed_level_virt_interpolate();
  3915. #endif
  3916. set_bed_leveling_enabled(abl_should_enable);
  3917. }
  3918. return;
  3919. } // parser.seen('W')
  3920. #endif
  3921. #if HAS_LEVELING
  3922. // Jettison bed leveling data
  3923. if (parser.seen('J')) {
  3924. reset_bed_level();
  3925. return;
  3926. }
  3927. #endif
  3928. verbose_level = parser.intval('V');
  3929. if (!WITHIN(verbose_level, 0, 4)) {
  3930. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3931. return;
  3932. }
  3933. dryrun = parser.boolval('D')
  3934. #if ENABLED(PROBE_MANUALLY)
  3935. || no_action
  3936. #endif
  3937. ;
  3938. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3939. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3940. // X and Y specify points in each direction, overriding the default
  3941. // These values may be saved with the completed mesh
  3942. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3943. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3944. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3945. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3946. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3947. return;
  3948. }
  3949. abl2 = abl_grid_points_x * abl_grid_points_y;
  3950. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3951. zoffset = parser.linearval('Z');
  3952. #endif
  3953. #if ABL_GRID
  3954. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3955. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3956. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3957. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3958. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3959. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3960. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3961. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3962. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3963. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3964. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3965. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3966. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3967. if (left_out || right_out || front_out || back_out) {
  3968. if (left_out) {
  3969. out_of_range_error(PSTR("(L)eft"));
  3970. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3971. }
  3972. if (right_out) {
  3973. out_of_range_error(PSTR("(R)ight"));
  3974. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3975. }
  3976. if (front_out) {
  3977. out_of_range_error(PSTR("(F)ront"));
  3978. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3979. }
  3980. if (back_out) {
  3981. out_of_range_error(PSTR("(B)ack"));
  3982. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3983. }
  3984. return;
  3985. }
  3986. // probe at the points of a lattice grid
  3987. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3988. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3989. #endif // ABL_GRID
  3990. if (verbose_level > 0) {
  3991. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3992. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3993. }
  3994. stepper.synchronize();
  3995. // Disable auto bed leveling during G29
  3996. planner.leveling_active = false;
  3997. if (!dryrun) {
  3998. // Re-orient the current position without leveling
  3999. // based on where the steppers are positioned.
  4000. set_current_from_steppers_for_axis(ALL_AXES);
  4001. // Sync the planner to where the steppers stopped
  4002. SYNC_PLAN_POSITION_KINEMATIC();
  4003. }
  4004. #if HAS_BED_PROBE
  4005. // Deploy the probe. Probe will raise if needed.
  4006. if (DEPLOY_PROBE()) {
  4007. planner.leveling_active = abl_should_enable;
  4008. return;
  4009. }
  4010. #endif
  4011. if (!faux) setup_for_endstop_or_probe_move();
  4012. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4013. #if ENABLED(PROBE_MANUALLY)
  4014. if (!no_action)
  4015. #endif
  4016. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4017. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4018. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  4019. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  4020. ) {
  4021. if (dryrun) {
  4022. // Before reset bed level, re-enable to correct the position
  4023. planner.leveling_active = abl_should_enable;
  4024. }
  4025. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4026. reset_bed_level();
  4027. // Initialize a grid with the given dimensions
  4028. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4029. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4030. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  4031. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  4032. // Can't re-enable (on error) until the new grid is written
  4033. abl_should_enable = false;
  4034. }
  4035. #endif // AUTO_BED_LEVELING_BILINEAR
  4036. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4038. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4039. #endif
  4040. // Probe at 3 arbitrary points
  4041. points[0].z = points[1].z = points[2].z = 0;
  4042. #endif // AUTO_BED_LEVELING_3POINT
  4043. } // !g29_in_progress
  4044. #if ENABLED(PROBE_MANUALLY)
  4045. // For manual probing, get the next index to probe now.
  4046. // On the first probe this will be incremented to 0.
  4047. if (!no_action) {
  4048. ++abl_probe_index;
  4049. g29_in_progress = true;
  4050. }
  4051. // Abort current G29 procedure, go back to idle state
  4052. if (seenA && g29_in_progress) {
  4053. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4054. #if HAS_SOFTWARE_ENDSTOPS
  4055. soft_endstops_enabled = enable_soft_endstops;
  4056. #endif
  4057. planner.leveling_active = abl_should_enable;
  4058. g29_in_progress = false;
  4059. #if ENABLED(LCD_BED_LEVELING)
  4060. lcd_wait_for_move = false;
  4061. #endif
  4062. }
  4063. // Query G29 status
  4064. if (verbose_level || seenQ) {
  4065. SERIAL_PROTOCOLPGM("Manual G29 ");
  4066. if (g29_in_progress) {
  4067. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4068. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4069. }
  4070. else
  4071. SERIAL_PROTOCOLLNPGM("idle");
  4072. }
  4073. if (no_action) return;
  4074. if (abl_probe_index == 0) {
  4075. // For the initial G29 save software endstop state
  4076. #if HAS_SOFTWARE_ENDSTOPS
  4077. enable_soft_endstops = soft_endstops_enabled;
  4078. #endif
  4079. }
  4080. else {
  4081. // For G29 after adjusting Z.
  4082. // Save the previous Z before going to the next point
  4083. measured_z = current_position[Z_AXIS];
  4084. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4085. mean += measured_z;
  4086. eqnBVector[abl_probe_index] = measured_z;
  4087. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4088. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4089. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4090. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4091. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4092. z_values[xCount][yCount] = measured_z + zoffset;
  4093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4094. if (DEBUGGING(LEVELING)) {
  4095. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4096. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4097. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4098. }
  4099. #endif
  4100. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4101. points[abl_probe_index].z = measured_z;
  4102. #endif
  4103. }
  4104. //
  4105. // If there's another point to sample, move there with optional lift.
  4106. //
  4107. #if ABL_GRID
  4108. // Skip any unreachable points
  4109. while (abl_probe_index < abl2) {
  4110. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4111. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4112. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4113. // Probe in reverse order for every other row/column
  4114. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4115. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4116. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4117. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4118. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4119. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4120. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4121. indexIntoAB[xCount][yCount] = abl_probe_index;
  4122. #endif
  4123. // Keep looping till a reachable point is found
  4124. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4125. ++abl_probe_index;
  4126. }
  4127. // Is there a next point to move to?
  4128. if (abl_probe_index < abl2) {
  4129. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4130. #if HAS_SOFTWARE_ENDSTOPS
  4131. // Disable software endstops to allow manual adjustment
  4132. // If G29 is not completed, they will not be re-enabled
  4133. soft_endstops_enabled = false;
  4134. #endif
  4135. return;
  4136. }
  4137. else {
  4138. // Leveling done! Fall through to G29 finishing code below
  4139. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4140. // Re-enable software endstops, if needed
  4141. #if HAS_SOFTWARE_ENDSTOPS
  4142. soft_endstops_enabled = enable_soft_endstops;
  4143. #endif
  4144. }
  4145. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4146. // Probe at 3 arbitrary points
  4147. if (abl_probe_index < 3) {
  4148. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4149. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4150. #if HAS_SOFTWARE_ENDSTOPS
  4151. // Disable software endstops to allow manual adjustment
  4152. // If G29 is not completed, they will not be re-enabled
  4153. soft_endstops_enabled = false;
  4154. #endif
  4155. return;
  4156. }
  4157. else {
  4158. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4159. // Re-enable software endstops, if needed
  4160. #if HAS_SOFTWARE_ENDSTOPS
  4161. soft_endstops_enabled = enable_soft_endstops;
  4162. #endif
  4163. if (!dryrun) {
  4164. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4165. if (planeNormal.z < 0) {
  4166. planeNormal.x *= -1;
  4167. planeNormal.y *= -1;
  4168. planeNormal.z *= -1;
  4169. }
  4170. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4171. // Can't re-enable (on error) until the new grid is written
  4172. abl_should_enable = false;
  4173. }
  4174. }
  4175. #endif // AUTO_BED_LEVELING_3POINT
  4176. #else // !PROBE_MANUALLY
  4177. {
  4178. const bool stow_probe_after_each = parser.boolval('E');
  4179. #if ABL_GRID
  4180. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4181. // Outer loop is Y with PROBE_Y_FIRST disabled
  4182. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4183. int8_t inStart, inStop, inInc;
  4184. if (zig) { // away from origin
  4185. inStart = 0;
  4186. inStop = PR_INNER_END;
  4187. inInc = 1;
  4188. }
  4189. else { // towards origin
  4190. inStart = PR_INNER_END - 1;
  4191. inStop = -1;
  4192. inInc = -1;
  4193. }
  4194. zig ^= true; // zag
  4195. // Inner loop is Y with PROBE_Y_FIRST enabled
  4196. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4197. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4198. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4199. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4200. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4201. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4202. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4203. #endif
  4204. #if IS_KINEMATIC
  4205. // Avoid probing outside the round or hexagonal area
  4206. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4207. #endif
  4208. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4209. if (isnan(measured_z)) {
  4210. planner.leveling_active = abl_should_enable;
  4211. break;
  4212. }
  4213. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4214. mean += measured_z;
  4215. eqnBVector[abl_probe_index] = measured_z;
  4216. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4217. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4218. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4219. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4220. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4221. z_values[xCount][yCount] = measured_z + zoffset;
  4222. #endif
  4223. abl_should_enable = false;
  4224. idle();
  4225. } // inner
  4226. } // outer
  4227. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4228. // Probe at 3 arbitrary points
  4229. for (uint8_t i = 0; i < 3; ++i) {
  4230. // Retain the last probe position
  4231. xProbe = LOGICAL_X_POSITION(points[i].x);
  4232. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4233. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4234. if (isnan(measured_z)) {
  4235. planner.leveling_active = abl_should_enable;
  4236. break;
  4237. }
  4238. points[i].z = measured_z;
  4239. }
  4240. if (!dryrun && !isnan(measured_z)) {
  4241. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4242. if (planeNormal.z < 0) {
  4243. planeNormal.x *= -1;
  4244. planeNormal.y *= -1;
  4245. planeNormal.z *= -1;
  4246. }
  4247. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4248. // Can't re-enable (on error) until the new grid is written
  4249. abl_should_enable = false;
  4250. }
  4251. #endif // AUTO_BED_LEVELING_3POINT
  4252. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4253. if (STOW_PROBE()) {
  4254. planner.leveling_active = abl_should_enable;
  4255. measured_z = NAN;
  4256. }
  4257. }
  4258. #endif // !PROBE_MANUALLY
  4259. //
  4260. // G29 Finishing Code
  4261. //
  4262. // Unless this is a dry run, auto bed leveling will
  4263. // definitely be enabled after this point.
  4264. //
  4265. // If code above wants to continue leveling, it should
  4266. // return or loop before this point.
  4267. //
  4268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4269. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4270. #endif
  4271. #if ENABLED(PROBE_MANUALLY)
  4272. g29_in_progress = false;
  4273. #if ENABLED(LCD_BED_LEVELING)
  4274. lcd_wait_for_move = false;
  4275. #endif
  4276. #endif
  4277. // Calculate leveling, print reports, correct the position
  4278. if (!isnan(measured_z)) {
  4279. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4280. if (!dryrun) extrapolate_unprobed_bed_level();
  4281. print_bilinear_leveling_grid();
  4282. refresh_bed_level();
  4283. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4284. print_bilinear_leveling_grid_virt();
  4285. #endif
  4286. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4287. // For LINEAR leveling calculate matrix, print reports, correct the position
  4288. /**
  4289. * solve the plane equation ax + by + d = z
  4290. * A is the matrix with rows [x y 1] for all the probed points
  4291. * B is the vector of the Z positions
  4292. * the normal vector to the plane is formed by the coefficients of the
  4293. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4294. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4295. */
  4296. float plane_equation_coefficients[3];
  4297. finish_incremental_LSF(&lsf_results);
  4298. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4299. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4300. plane_equation_coefficients[2] = -lsf_results.D;
  4301. mean /= abl2;
  4302. if (verbose_level) {
  4303. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4304. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4305. SERIAL_PROTOCOLPGM(" b: ");
  4306. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4307. SERIAL_PROTOCOLPGM(" d: ");
  4308. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4309. SERIAL_EOL();
  4310. if (verbose_level > 2) {
  4311. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4312. SERIAL_PROTOCOL_F(mean, 8);
  4313. SERIAL_EOL();
  4314. }
  4315. }
  4316. // Create the matrix but don't correct the position yet
  4317. if (!dryrun)
  4318. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4319. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4320. );
  4321. // Show the Topography map if enabled
  4322. if (do_topography_map) {
  4323. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4324. " +--- BACK --+\n"
  4325. " | |\n"
  4326. " L | (+) | R\n"
  4327. " E | | I\n"
  4328. " F | (-) N (+) | G\n"
  4329. " T | | H\n"
  4330. " | (-) | T\n"
  4331. " | |\n"
  4332. " O-- FRONT --+\n"
  4333. " (0,0)");
  4334. float min_diff = 999;
  4335. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4336. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4337. int ind = indexIntoAB[xx][yy];
  4338. float diff = eqnBVector[ind] - mean,
  4339. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4340. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4341. z_tmp = 0;
  4342. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4343. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4344. if (diff >= 0.0)
  4345. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4346. else
  4347. SERIAL_PROTOCOLCHAR(' ');
  4348. SERIAL_PROTOCOL_F(diff, 5);
  4349. } // xx
  4350. SERIAL_EOL();
  4351. } // yy
  4352. SERIAL_EOL();
  4353. if (verbose_level > 3) {
  4354. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4355. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4356. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4357. int ind = indexIntoAB[xx][yy];
  4358. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4359. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4360. z_tmp = 0;
  4361. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4362. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4363. if (diff >= 0.0)
  4364. SERIAL_PROTOCOLPGM(" +");
  4365. // Include + for column alignment
  4366. else
  4367. SERIAL_PROTOCOLCHAR(' ');
  4368. SERIAL_PROTOCOL_F(diff, 5);
  4369. } // xx
  4370. SERIAL_EOL();
  4371. } // yy
  4372. SERIAL_EOL();
  4373. }
  4374. } //do_topography_map
  4375. #endif // AUTO_BED_LEVELING_LINEAR
  4376. #if ABL_PLANAR
  4377. // For LINEAR and 3POINT leveling correct the current position
  4378. if (verbose_level > 0)
  4379. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4380. if (!dryrun) {
  4381. //
  4382. // Correct the current XYZ position based on the tilted plane.
  4383. //
  4384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4385. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4386. #endif
  4387. float converted[XYZ];
  4388. COPY(converted, current_position);
  4389. planner.leveling_active = true;
  4390. planner.unapply_leveling(converted); // use conversion machinery
  4391. planner.leveling_active = false;
  4392. // Use the last measured distance to the bed, if possible
  4393. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4394. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4395. ) {
  4396. const float simple_z = current_position[Z_AXIS] - measured_z;
  4397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4398. if (DEBUGGING(LEVELING)) {
  4399. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4400. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4401. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4402. }
  4403. #endif
  4404. converted[Z_AXIS] = simple_z;
  4405. }
  4406. // The rotated XY and corrected Z are now current_position
  4407. COPY(current_position, converted);
  4408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4409. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4410. #endif
  4411. }
  4412. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4413. if (!dryrun) {
  4414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4415. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4416. #endif
  4417. // Unapply the offset because it is going to be immediately applied
  4418. // and cause compensation movement in Z
  4419. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4421. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4422. #endif
  4423. }
  4424. #endif // ABL_PLANAR
  4425. #ifdef Z_PROBE_END_SCRIPT
  4426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4427. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4428. #endif
  4429. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4430. stepper.synchronize();
  4431. #endif
  4432. // Auto Bed Leveling is complete! Enable if possible.
  4433. planner.leveling_active = dryrun ? abl_should_enable : true;
  4434. } // !isnan(measured_z)
  4435. // Restore state after probing
  4436. if (!faux) clean_up_after_endstop_or_probe_move();
  4437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4438. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4439. #endif
  4440. report_current_position();
  4441. KEEPALIVE_STATE(IN_HANDLER);
  4442. if (planner.leveling_active)
  4443. SYNC_PLAN_POSITION_KINEMATIC();
  4444. }
  4445. #endif // OLDSCHOOL_ABL
  4446. #if HAS_BED_PROBE
  4447. /**
  4448. * G30: Do a single Z probe at the current XY
  4449. *
  4450. * Parameters:
  4451. *
  4452. * X Probe X position (default current X)
  4453. * Y Probe Y position (default current Y)
  4454. * S0 Leave the probe deployed
  4455. */
  4456. inline void gcode_G30() {
  4457. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4458. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4459. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4460. // Disable leveling so the planner won't mess with us
  4461. #if HAS_LEVELING
  4462. set_bed_leveling_enabled(false);
  4463. #endif
  4464. setup_for_endstop_or_probe_move();
  4465. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4466. if (!isnan(measured_z)) {
  4467. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4468. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4469. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4470. }
  4471. clean_up_after_endstop_or_probe_move();
  4472. report_current_position();
  4473. }
  4474. #if ENABLED(Z_PROBE_SLED)
  4475. /**
  4476. * G31: Deploy the Z probe
  4477. */
  4478. inline void gcode_G31() { DEPLOY_PROBE(); }
  4479. /**
  4480. * G32: Stow the Z probe
  4481. */
  4482. inline void gcode_G32() { STOW_PROBE(); }
  4483. #endif // Z_PROBE_SLED
  4484. #endif // HAS_BED_PROBE
  4485. #if PROBE_SELECTED
  4486. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4487. /**
  4488. * G33 - Delta '1-4-7-point' Auto-Calibration
  4489. * Calibrate height, endstops, delta radius, and tower angles.
  4490. *
  4491. * Parameters:
  4492. *
  4493. * Pn Number of probe points:
  4494. *
  4495. * P0 No probe. Normalize only.
  4496. * P1 Probe center and set height only.
  4497. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4498. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4499. * P4-P7 Probe all positions at different locations and average them.
  4500. *
  4501. * T0 Don't calibrate tower angle corrections
  4502. *
  4503. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4504. *
  4505. * Fn Force to run at least n iterations and takes the best result
  4506. *
  4507. * Vn Verbose level:
  4508. *
  4509. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4510. * V1 Report settings
  4511. * V2 Report settings and probe results
  4512. *
  4513. * E Engage the probe for each point
  4514. */
  4515. void print_signed_float(const char * const prefix, const float &f) {
  4516. SERIAL_PROTOCOLPGM(" ");
  4517. serialprintPGM(prefix);
  4518. SERIAL_PROTOCOLCHAR(':');
  4519. if (f >= 0) SERIAL_CHAR('+');
  4520. SERIAL_PROTOCOL_F(f, 2);
  4521. }
  4522. void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4523. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4524. if (end_stops) {
  4525. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4526. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4527. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4528. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4529. }
  4530. SERIAL_EOL();
  4531. if (tower_angles) {
  4532. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4533. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4534. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4535. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4536. SERIAL_EOL();
  4537. }
  4538. }
  4539. void G33_cleanup(
  4540. #if HOTENDS > 1
  4541. const uint8_t old_tool_index
  4542. #endif
  4543. ) {
  4544. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4545. do_blocking_move_to_z(delta_clip_start_height);
  4546. #endif
  4547. STOW_PROBE();
  4548. clean_up_after_endstop_or_probe_move();
  4549. #if HOTENDS > 1
  4550. tool_change(old_tool_index, 0, true);
  4551. #endif
  4552. }
  4553. inline void gcode_G33() {
  4554. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4555. if (!WITHIN(probe_points, 0, 7)) {
  4556. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
  4557. return;
  4558. }
  4559. const int8_t verbose_level = parser.byteval('V', 1);
  4560. if (!WITHIN(verbose_level, 0, 2)) {
  4561. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4562. return;
  4563. }
  4564. const float calibration_precision = parser.floatval('C');
  4565. if (calibration_precision < 0) {
  4566. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4567. return;
  4568. }
  4569. const int8_t force_iterations = parser.intval('F', 0);
  4570. if (!WITHIN(force_iterations, 0, 30)) {
  4571. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4572. return;
  4573. }
  4574. const bool towers_set = parser.boolval('T', true),
  4575. stow_after_each = parser.boolval('E'),
  4576. _0p_calibration = probe_points == 0,
  4577. _1p_calibration = probe_points == 1,
  4578. _4p_calibration = probe_points == 2,
  4579. _4p_towers_points = _4p_calibration && towers_set,
  4580. _4p_opposite_points = _4p_calibration && !towers_set,
  4581. _7p_calibration = probe_points >= 3 || _0p_calibration,
  4582. _7p_half_circle = probe_points == 3,
  4583. _7p_double_circle = probe_points == 5,
  4584. _7p_triple_circle = probe_points == 6,
  4585. _7p_quadruple_circle = probe_points == 7,
  4586. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4587. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4588. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4589. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4590. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4591. int8_t iterations = 0;
  4592. float test_precision,
  4593. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4594. zero_std_dev_old = zero_std_dev,
  4595. zero_std_dev_min = zero_std_dev,
  4596. e_old[ABC] = {
  4597. endstop_adj[A_AXIS],
  4598. endstop_adj[B_AXIS],
  4599. endstop_adj[C_AXIS]
  4600. },
  4601. dr_old = delta_radius,
  4602. zh_old = home_offset[Z_AXIS],
  4603. ta_old[ABC] = {
  4604. delta_tower_angle_trim[A_AXIS],
  4605. delta_tower_angle_trim[B_AXIS],
  4606. delta_tower_angle_trim[C_AXIS]
  4607. };
  4608. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4609. const float circles = (_7p_quadruple_circle ? 1.5 :
  4610. _7p_triple_circle ? 1.0 :
  4611. _7p_double_circle ? 0.5 : 0),
  4612. r = (1 + circles * 0.1) * delta_calibration_radius;
  4613. for (uint8_t axis = 1; axis < 13; ++axis) {
  4614. const float a = RADIANS(180 + 30 * axis);
  4615. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4616. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4617. return;
  4618. }
  4619. }
  4620. }
  4621. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4622. stepper.synchronize();
  4623. #if HAS_LEVELING
  4624. reset_bed_level(); // After calibration bed-level data is no longer valid
  4625. #endif
  4626. #if HOTENDS > 1
  4627. const uint8_t old_tool_index = active_extruder;
  4628. tool_change(0, 0, true);
  4629. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4630. #else
  4631. #define G33_CLEANUP() G33_cleanup()
  4632. #endif
  4633. setup_for_endstop_or_probe_move();
  4634. endstops.enable(true);
  4635. if (!_0p_calibration) {
  4636. if (!home_delta())
  4637. return;
  4638. endstops.not_homing();
  4639. }
  4640. // print settings
  4641. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4642. serialprintPGM(checkingac);
  4643. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4644. SERIAL_EOL();
  4645. lcd_setstatusPGM(checkingac);
  4646. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4647. do {
  4648. float z_at_pt[13] = { 0.0 };
  4649. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4650. iterations++;
  4651. // Probe the points
  4652. if (!_0p_calibration){
  4653. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4654. #if ENABLED(PROBE_MANUALLY)
  4655. z_at_pt[0] += lcd_probe_pt(0, 0);
  4656. #else
  4657. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4658. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4659. #endif
  4660. }
  4661. if (_7p_calibration) { // probe extra center points
  4662. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4663. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4664. #if ENABLED(PROBE_MANUALLY)
  4665. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4666. #else
  4667. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4668. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4669. #endif
  4670. }
  4671. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4672. }
  4673. if (!_1p_calibration) { // probe the radius
  4674. bool zig_zag = true;
  4675. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4676. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4677. for (uint8_t axis = start; axis < 13; axis += step) {
  4678. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4679. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4680. _7p_triple_circle ? zigadd + 0.5 :
  4681. _7p_double_circle ? zigadd : 0;
  4682. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4683. const float a = RADIANS(180 + 30 * axis),
  4684. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4685. #if ENABLED(PROBE_MANUALLY)
  4686. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4687. #else
  4688. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4689. if (isnan(z_at_pt[axis])) return G33_CLEANUP();
  4690. #endif
  4691. }
  4692. zig_zag = !zig_zag;
  4693. z_at_pt[axis] /= (2 * offset_circles + 1);
  4694. }
  4695. }
  4696. if (_7p_intermed_points) // average intermediates to tower and opposites
  4697. for (uint8_t axis = 1; axis < 13; axis += 2)
  4698. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4699. }
  4700. float S1 = z_at_pt[0],
  4701. S2 = sq(z_at_pt[0]);
  4702. int16_t N = 1;
  4703. if (!_1p_calibration) // std dev from zero plane
  4704. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4705. S1 += z_at_pt[axis];
  4706. S2 += sq(z_at_pt[axis]);
  4707. N++;
  4708. }
  4709. zero_std_dev_old = zero_std_dev;
  4710. zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4711. // Solve matrices
  4712. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4713. if (zero_std_dev < zero_std_dev_min) {
  4714. COPY(e_old, endstop_adj);
  4715. dr_old = delta_radius;
  4716. zh_old = home_offset[Z_AXIS];
  4717. COPY(ta_old, delta_tower_angle_trim);
  4718. }
  4719. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4720. const float r_diff = delta_radius - delta_calibration_radius,
  4721. h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
  4722. r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
  4723. a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration)
  4724. #define ZP(N,I) ((N) * z_at_pt[I])
  4725. #define Z6(I) ZP(6, I)
  4726. #define Z4(I) ZP(4, I)
  4727. #define Z2(I) ZP(2, I)
  4728. #define Z1(I) ZP(1, I)
  4729. #if ENABLED(PROBE_MANUALLY)
  4730. test_precision = 0.00; // forced end
  4731. #endif
  4732. switch (probe_points) {
  4733. case 0:
  4734. #if DISABLED(PROBE_MANUALLY)
  4735. test_precision = 0.00; // forced end
  4736. #endif
  4737. break;
  4738. case 1:
  4739. #if DISABLED(PROBE_MANUALLY)
  4740. test_precision = 0.00; // forced end
  4741. #endif
  4742. LOOP_XYZ(axis) e_delta[axis] = Z1(0);
  4743. break;
  4744. case 2:
  4745. if (towers_set) {
  4746. e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
  4747. e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
  4748. e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
  4749. r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
  4750. }
  4751. else {
  4752. e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
  4753. e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
  4754. e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
  4755. r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
  4756. }
  4757. break;
  4758. default:
  4759. e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
  4760. e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
  4761. e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
  4762. r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
  4763. if (towers_set) {
  4764. t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
  4765. t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
  4766. t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
  4767. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  4768. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  4769. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  4770. }
  4771. break;
  4772. }
  4773. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4774. delta_radius += r_delta;
  4775. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  4776. }
  4777. else if (zero_std_dev >= test_precision) { // step one back
  4778. COPY(endstop_adj, e_old);
  4779. delta_radius = dr_old;
  4780. home_offset[Z_AXIS] = zh_old;
  4781. COPY(delta_tower_angle_trim, ta_old);
  4782. }
  4783. if (verbose_level != 0) { // !dry run
  4784. // normalise angles to least squares
  4785. float a_sum = 0.0;
  4786. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  4787. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  4788. // adjust delta_height and endstops by the max amount
  4789. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4790. home_offset[Z_AXIS] -= z_temp;
  4791. LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
  4792. }
  4793. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4794. NOMORE(zero_std_dev_min, zero_std_dev);
  4795. // print report
  4796. if (verbose_level != 1) {
  4797. SERIAL_PROTOCOLPGM(". ");
  4798. print_signed_float(PSTR("c"), z_at_pt[0]);
  4799. if (_4p_towers_points || _7p_calibration) {
  4800. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4801. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4802. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4803. }
  4804. if (!_4p_opposite_points) SERIAL_EOL();
  4805. if ((_4p_opposite_points) || _7p_calibration) {
  4806. if (_7p_calibration) {
  4807. SERIAL_CHAR('.');
  4808. SERIAL_PROTOCOL_SP(13);
  4809. }
  4810. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4811. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4812. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4813. SERIAL_EOL();
  4814. }
  4815. }
  4816. if (verbose_level != 0) { // !dry run
  4817. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  4818. SERIAL_PROTOCOLPGM("Calibration OK");
  4819. SERIAL_PROTOCOL_SP(36);
  4820. #if DISABLED(PROBE_MANUALLY)
  4821. if (zero_std_dev >= test_precision && !_1p_calibration)
  4822. SERIAL_PROTOCOLPGM("rolling back.");
  4823. else
  4824. #endif
  4825. {
  4826. SERIAL_PROTOCOLPGM("std dev:");
  4827. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4828. }
  4829. SERIAL_EOL();
  4830. char mess[21];
  4831. sprintf_P(mess, PSTR("Calibration sd:"));
  4832. if (zero_std_dev_min < 1)
  4833. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4834. else
  4835. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4836. lcd_setstatus(mess);
  4837. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4838. serialprintPGM(save_message);
  4839. SERIAL_EOL();
  4840. }
  4841. else { // !end iterations
  4842. char mess[15];
  4843. if (iterations < 31)
  4844. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4845. else
  4846. sprintf_P(mess, PSTR("No convergence"));
  4847. SERIAL_PROTOCOL(mess);
  4848. SERIAL_PROTOCOL_SP(36);
  4849. SERIAL_PROTOCOLPGM("std dev:");
  4850. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4851. SERIAL_EOL();
  4852. lcd_setstatus(mess);
  4853. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4854. }
  4855. }
  4856. else { // dry run
  4857. const char *enddryrun = PSTR("End DRY-RUN");
  4858. serialprintPGM(enddryrun);
  4859. SERIAL_PROTOCOL_SP(39);
  4860. SERIAL_PROTOCOLPGM("std dev:");
  4861. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4862. SERIAL_EOL();
  4863. char mess[21];
  4864. sprintf_P(mess, enddryrun);
  4865. sprintf_P(&mess[11], PSTR(" sd:"));
  4866. if (zero_std_dev < 1)
  4867. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4868. else
  4869. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4870. lcd_setstatus(mess);
  4871. }
  4872. endstops.enable(true);
  4873. home_delta();
  4874. endstops.not_homing();
  4875. }
  4876. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  4877. G33_CLEANUP();
  4878. }
  4879. #endif // DELTA_AUTO_CALIBRATION
  4880. #endif // PROBE_SELECTED
  4881. #if ENABLED(G38_PROBE_TARGET)
  4882. static bool G38_run_probe() {
  4883. bool G38_pass_fail = false;
  4884. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4885. // Get direction of move and retract
  4886. float retract_mm[XYZ];
  4887. LOOP_XYZ(i) {
  4888. float dist = destination[i] - current_position[i];
  4889. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4890. }
  4891. #endif
  4892. stepper.synchronize(); // wait until the machine is idle
  4893. // Move until destination reached or target hit
  4894. endstops.enable(true);
  4895. G38_move = true;
  4896. G38_endstop_hit = false;
  4897. prepare_move_to_destination();
  4898. stepper.synchronize();
  4899. G38_move = false;
  4900. endstops.hit_on_purpose();
  4901. set_current_from_steppers_for_axis(ALL_AXES);
  4902. SYNC_PLAN_POSITION_KINEMATIC();
  4903. if (G38_endstop_hit) {
  4904. G38_pass_fail = true;
  4905. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4906. // Move away by the retract distance
  4907. set_destination_to_current();
  4908. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4909. endstops.enable(false);
  4910. prepare_move_to_destination();
  4911. stepper.synchronize();
  4912. feedrate_mm_s /= 4;
  4913. // Bump the target more slowly
  4914. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4915. endstops.enable(true);
  4916. G38_move = true;
  4917. prepare_move_to_destination();
  4918. stepper.synchronize();
  4919. G38_move = false;
  4920. set_current_from_steppers_for_axis(ALL_AXES);
  4921. SYNC_PLAN_POSITION_KINEMATIC();
  4922. #endif
  4923. }
  4924. endstops.hit_on_purpose();
  4925. endstops.not_homing();
  4926. return G38_pass_fail;
  4927. }
  4928. /**
  4929. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4930. * G38.3 - probe toward workpiece, stop on contact
  4931. *
  4932. * Like G28 except uses Z min probe for all axes
  4933. */
  4934. inline void gcode_G38(bool is_38_2) {
  4935. // Get X Y Z E F
  4936. gcode_get_destination();
  4937. setup_for_endstop_or_probe_move();
  4938. // If any axis has enough movement, do the move
  4939. LOOP_XYZ(i)
  4940. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4941. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4942. // If G38.2 fails throw an error
  4943. if (!G38_run_probe() && is_38_2) {
  4944. SERIAL_ERROR_START();
  4945. SERIAL_ERRORLNPGM("Failed to reach target");
  4946. }
  4947. break;
  4948. }
  4949. clean_up_after_endstop_or_probe_move();
  4950. }
  4951. #endif // G38_PROBE_TARGET
  4952. #if HAS_MESH
  4953. /**
  4954. * G42: Move X & Y axes to mesh coordinates (I & J)
  4955. */
  4956. inline void gcode_G42() {
  4957. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  4958. if (axis_unhomed_error()) return;
  4959. #endif
  4960. if (IsRunning()) {
  4961. const bool hasI = parser.seenval('I');
  4962. const int8_t ix = hasI ? parser.value_int() : 0;
  4963. const bool hasJ = parser.seenval('J');
  4964. const int8_t iy = hasJ ? parser.value_int() : 0;
  4965. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4966. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4967. return;
  4968. }
  4969. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4970. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4971. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4972. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4973. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4974. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4975. #elif ENABLED(MESH_BED_LEVELING)
  4976. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4977. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4978. #endif
  4979. set_destination_to_current();
  4980. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4981. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4982. if (parser.boolval('P')) {
  4983. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4984. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4985. }
  4986. const float fval = parser.linearval('F');
  4987. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4988. // SCARA kinematic has "safe" XY raw moves
  4989. #if IS_SCARA
  4990. prepare_uninterpolated_move_to_destination();
  4991. #else
  4992. prepare_move_to_destination();
  4993. #endif
  4994. }
  4995. }
  4996. #endif // HAS_MESH
  4997. /**
  4998. * G92: Set current position to given X Y Z E
  4999. */
  5000. inline void gcode_G92() {
  5001. bool didXYZ = false,
  5002. didE = parser.seenval('E');
  5003. if (!didE) stepper.synchronize();
  5004. LOOP_XYZE(i) {
  5005. if (parser.seenval(axis_codes[i])) {
  5006. #if IS_SCARA
  5007. current_position[i] = parser.value_axis_units((AxisEnum)i);
  5008. if (i != E_AXIS) didXYZ = true;
  5009. #else
  5010. #if HAS_POSITION_SHIFT
  5011. const float p = current_position[i];
  5012. #endif
  5013. const float v = parser.value_axis_units((AxisEnum)i);
  5014. current_position[i] = v;
  5015. if (i != E_AXIS) {
  5016. didXYZ = true;
  5017. #if HAS_POSITION_SHIFT
  5018. position_shift[i] += v - p; // Offset the coordinate space
  5019. update_software_endstops((AxisEnum)i);
  5020. #if ENABLED(I2C_POSITION_ENCODERS)
  5021. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  5022. #endif
  5023. #endif
  5024. }
  5025. #endif
  5026. }
  5027. }
  5028. if (didXYZ)
  5029. SYNC_PLAN_POSITION_KINEMATIC();
  5030. else if (didE)
  5031. sync_plan_position_e();
  5032. report_current_position();
  5033. }
  5034. #if HAS_RESUME_CONTINUE
  5035. /**
  5036. * M0: Unconditional stop - Wait for user button press on LCD
  5037. * M1: Conditional stop - Wait for user button press on LCD
  5038. */
  5039. inline void gcode_M0_M1() {
  5040. const char * const args = parser.string_arg;
  5041. millis_t ms = 0;
  5042. bool hasP = false, hasS = false;
  5043. if (parser.seenval('P')) {
  5044. ms = parser.value_millis(); // milliseconds to wait
  5045. hasP = ms > 0;
  5046. }
  5047. if (parser.seenval('S')) {
  5048. ms = parser.value_millis_from_seconds(); // seconds to wait
  5049. hasS = ms > 0;
  5050. }
  5051. #if ENABLED(ULTIPANEL)
  5052. if (!hasP && !hasS && args && *args)
  5053. lcd_setstatus(args, true);
  5054. else {
  5055. LCD_MESSAGEPGM(MSG_USERWAIT);
  5056. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5057. dontExpireStatus();
  5058. #endif
  5059. }
  5060. #else
  5061. if (!hasP && !hasS && args && *args) {
  5062. SERIAL_ECHO_START();
  5063. SERIAL_ECHOLN(args);
  5064. }
  5065. #endif
  5066. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5067. wait_for_user = true;
  5068. stepper.synchronize();
  5069. refresh_cmd_timeout();
  5070. if (ms > 0) {
  5071. ms += previous_cmd_ms; // wait until this time for a click
  5072. while (PENDING(millis(), ms) && wait_for_user) idle();
  5073. }
  5074. else {
  5075. #if ENABLED(ULTIPANEL)
  5076. if (lcd_detected()) {
  5077. while (wait_for_user) idle();
  5078. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5079. }
  5080. #else
  5081. while (wait_for_user) idle();
  5082. #endif
  5083. }
  5084. wait_for_user = false;
  5085. KEEPALIVE_STATE(IN_HANDLER);
  5086. }
  5087. #endif // HAS_RESUME_CONTINUE
  5088. #if ENABLED(SPINDLE_LASER_ENABLE)
  5089. /**
  5090. * M3: Spindle Clockwise
  5091. * M4: Spindle Counter-clockwise
  5092. *
  5093. * S0 turns off spindle.
  5094. *
  5095. * If no speed PWM output is defined then M3/M4 just turns it on.
  5096. *
  5097. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5098. * Hardware PWM is required. ISRs are too slow.
  5099. *
  5100. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5101. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5102. *
  5103. * The system automatically sets WGM to Mode 1, so no special
  5104. * initialization is needed.
  5105. *
  5106. * WGM bits for timer 2 are automatically set by the system to
  5107. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5108. * No special initialization is needed.
  5109. *
  5110. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5111. * factors for timers 2, 3, 4, and 5 are acceptable.
  5112. *
  5113. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5114. * the spindle/laser during power-up or when connecting to the host
  5115. * (usually goes through a reset which sets all I/O pins to tri-state)
  5116. *
  5117. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5118. */
  5119. // Wait for spindle to come up to speed
  5120. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5121. // Wait for spindle to stop turning
  5122. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5123. /**
  5124. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5125. *
  5126. * it accepts inputs of 0-255
  5127. */
  5128. inline void ocr_val_mode() {
  5129. uint8_t spindle_laser_power = parser.value_byte();
  5130. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5131. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5132. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5133. }
  5134. inline void gcode_M3_M4(bool is_M3) {
  5135. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5136. #if SPINDLE_DIR_CHANGE
  5137. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5138. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5139. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5140. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5141. ) {
  5142. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5143. delay_for_power_down();
  5144. }
  5145. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5146. #endif
  5147. /**
  5148. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5149. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5150. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5151. */
  5152. #if ENABLED(SPINDLE_LASER_PWM)
  5153. if (parser.seen('O')) ocr_val_mode();
  5154. else {
  5155. const float spindle_laser_power = parser.floatval('S');
  5156. if (spindle_laser_power == 0) {
  5157. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5158. delay_for_power_down();
  5159. }
  5160. else {
  5161. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5162. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5163. if (spindle_laser_power <= SPEED_POWER_MIN)
  5164. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5165. if (spindle_laser_power >= SPEED_POWER_MAX)
  5166. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5167. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5168. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5169. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5170. delay_for_power_up();
  5171. }
  5172. }
  5173. #else
  5174. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5175. delay_for_power_up();
  5176. #endif
  5177. }
  5178. /**
  5179. * M5 turn off spindle
  5180. */
  5181. inline void gcode_M5() {
  5182. stepper.synchronize();
  5183. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5184. delay_for_power_down();
  5185. }
  5186. #endif // SPINDLE_LASER_ENABLE
  5187. /**
  5188. * M17: Enable power on all stepper motors
  5189. */
  5190. inline void gcode_M17() {
  5191. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5192. enable_all_steppers();
  5193. }
  5194. #if IS_KINEMATIC
  5195. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5196. #else
  5197. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5198. #endif
  5199. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5200. static float resume_position[XYZE];
  5201. static bool move_away_flag = false;
  5202. #if ENABLED(SDSUPPORT)
  5203. static bool sd_print_paused = false;
  5204. #endif
  5205. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5206. static millis_t next_buzz = 0;
  5207. static int8_t runout_beep = 0;
  5208. if (init) next_buzz = runout_beep = 0;
  5209. const millis_t ms = millis();
  5210. if (ELAPSED(ms, next_buzz)) {
  5211. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5212. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5213. BUZZ(300, 2000);
  5214. runout_beep++;
  5215. }
  5216. }
  5217. }
  5218. static void ensure_safe_temperature() {
  5219. bool heaters_heating = true;
  5220. wait_for_heatup = true; // M108 will clear this
  5221. while (wait_for_heatup && heaters_heating) {
  5222. idle();
  5223. heaters_heating = false;
  5224. HOTEND_LOOP() {
  5225. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5226. heaters_heating = true;
  5227. #if ENABLED(ULTIPANEL)
  5228. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5229. #endif
  5230. break;
  5231. }
  5232. }
  5233. }
  5234. }
  5235. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5236. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5237. ) {
  5238. if (move_away_flag) return false; // already paused
  5239. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5240. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5241. if (!thermalManager.allow_cold_extrude &&
  5242. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5243. SERIAL_ERROR_START();
  5244. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5245. return false;
  5246. }
  5247. #endif
  5248. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5249. }
  5250. // Indicate that the printer is paused
  5251. move_away_flag = true;
  5252. // Pause the print job and timer
  5253. #if ENABLED(SDSUPPORT)
  5254. if (card.sdprinting) {
  5255. card.pauseSDPrint();
  5256. sd_print_paused = true;
  5257. }
  5258. #endif
  5259. print_job_timer.pause();
  5260. // Show initial message and wait for synchronize steppers
  5261. if (show_lcd) {
  5262. #if ENABLED(ULTIPANEL)
  5263. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5264. #endif
  5265. }
  5266. // Save current position
  5267. stepper.synchronize();
  5268. COPY(resume_position, current_position);
  5269. if (retract) {
  5270. // Initial retract before move to filament change position
  5271. set_destination_to_current();
  5272. destination[E_AXIS] += retract;
  5273. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5274. stepper.synchronize();
  5275. }
  5276. // Lift Z axis
  5277. if (z_lift > 0)
  5278. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5279. // Move XY axes to filament exchange position
  5280. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5281. if (unload_length != 0) {
  5282. if (show_lcd) {
  5283. #if ENABLED(ULTIPANEL)
  5284. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5285. idle();
  5286. #endif
  5287. }
  5288. // Unload filament
  5289. set_destination_to_current();
  5290. destination[E_AXIS] += unload_length;
  5291. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5292. stepper.synchronize();
  5293. }
  5294. if (show_lcd) {
  5295. #if ENABLED(ULTIPANEL)
  5296. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5297. #endif
  5298. }
  5299. #if HAS_BUZZER
  5300. filament_change_beep(max_beep_count, true);
  5301. #endif
  5302. idle();
  5303. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5304. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5305. disable_e_steppers();
  5306. safe_delay(100);
  5307. #endif
  5308. // Start the heater idle timers
  5309. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5310. HOTEND_LOOP()
  5311. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5312. return true;
  5313. }
  5314. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5315. bool nozzle_timed_out = false;
  5316. // Wait for filament insert by user and press button
  5317. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5318. wait_for_user = true; // LCD click or M108 will clear this
  5319. while (wait_for_user) {
  5320. #if HAS_BUZZER
  5321. filament_change_beep(max_beep_count);
  5322. #endif
  5323. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5324. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5325. if (!nozzle_timed_out)
  5326. HOTEND_LOOP()
  5327. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5328. if (nozzle_timed_out) {
  5329. #if ENABLED(ULTIPANEL)
  5330. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5331. #endif
  5332. // Wait for LCD click or M108
  5333. while (wait_for_user) idle(true);
  5334. // Re-enable the heaters if they timed out
  5335. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5336. // Wait for the heaters to reach the target temperatures
  5337. ensure_safe_temperature();
  5338. #if ENABLED(ULTIPANEL)
  5339. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5340. #endif
  5341. // Start the heater idle timers
  5342. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5343. HOTEND_LOOP()
  5344. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5345. wait_for_user = true; /* Wait for user to load filament */
  5346. nozzle_timed_out = false;
  5347. #if HAS_BUZZER
  5348. filament_change_beep(max_beep_count, true);
  5349. #endif
  5350. }
  5351. idle(true);
  5352. }
  5353. KEEPALIVE_STATE(IN_HANDLER);
  5354. }
  5355. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5356. bool nozzle_timed_out = false;
  5357. if (!move_away_flag) return;
  5358. // Re-enable the heaters if they timed out
  5359. HOTEND_LOOP() {
  5360. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5361. thermalManager.reset_heater_idle_timer(e);
  5362. }
  5363. if (nozzle_timed_out) ensure_safe_temperature();
  5364. #if HAS_BUZZER
  5365. filament_change_beep(max_beep_count, true);
  5366. #endif
  5367. set_destination_to_current();
  5368. if (load_length != 0) {
  5369. #if ENABLED(ULTIPANEL)
  5370. // Show "insert filament"
  5371. if (nozzle_timed_out)
  5372. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5373. #endif
  5374. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5375. wait_for_user = true; // LCD click or M108 will clear this
  5376. while (wait_for_user && nozzle_timed_out) {
  5377. #if HAS_BUZZER
  5378. filament_change_beep(max_beep_count);
  5379. #endif
  5380. idle(true);
  5381. }
  5382. KEEPALIVE_STATE(IN_HANDLER);
  5383. #if ENABLED(ULTIPANEL)
  5384. // Show "load" message
  5385. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5386. #endif
  5387. // Load filament
  5388. destination[E_AXIS] += load_length;
  5389. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5390. stepper.synchronize();
  5391. }
  5392. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5393. float extrude_length = initial_extrude_length;
  5394. do {
  5395. if (extrude_length > 0) {
  5396. // "Wait for filament extrude"
  5397. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5398. // Extrude filament to get into hotend
  5399. destination[E_AXIS] += extrude_length;
  5400. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5401. stepper.synchronize();
  5402. }
  5403. // Show "Extrude More" / "Resume" menu and wait for reply
  5404. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5405. wait_for_user = false;
  5406. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5407. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5408. KEEPALIVE_STATE(IN_HANDLER);
  5409. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5410. // Keep looping if "Extrude More" was selected
  5411. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5412. #endif
  5413. #if ENABLED(ULTIPANEL)
  5414. // "Wait for print to resume"
  5415. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5416. #endif
  5417. // Set extruder to saved position
  5418. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5419. planner.set_e_position_mm(current_position[E_AXIS]);
  5420. // Move XY to starting position, then Z
  5421. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5422. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5423. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5424. filament_ran_out = false;
  5425. #endif
  5426. #if ENABLED(ULTIPANEL)
  5427. // Show status screen
  5428. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5429. #endif
  5430. #if ENABLED(SDSUPPORT)
  5431. if (sd_print_paused) {
  5432. card.startFileprint();
  5433. sd_print_paused = false;
  5434. }
  5435. #endif
  5436. move_away_flag = false;
  5437. }
  5438. #endif // ADVANCED_PAUSE_FEATURE
  5439. #if ENABLED(SDSUPPORT)
  5440. /**
  5441. * M20: List SD card to serial output
  5442. */
  5443. inline void gcode_M20() {
  5444. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5445. card.ls();
  5446. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5447. }
  5448. /**
  5449. * M21: Init SD Card
  5450. */
  5451. inline void gcode_M21() { card.initsd(); }
  5452. /**
  5453. * M22: Release SD Card
  5454. */
  5455. inline void gcode_M22() { card.release(); }
  5456. /**
  5457. * M23: Open a file
  5458. */
  5459. inline void gcode_M23() {
  5460. // Simplify3D includes the size, so zero out all spaces (#7227)
  5461. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5462. card.openFile(parser.string_arg, true);
  5463. }
  5464. /**
  5465. * M24: Start or Resume SD Print
  5466. */
  5467. inline void gcode_M24() {
  5468. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5469. resume_print();
  5470. #endif
  5471. card.startFileprint();
  5472. print_job_timer.start();
  5473. }
  5474. /**
  5475. * M25: Pause SD Print
  5476. */
  5477. inline void gcode_M25() {
  5478. card.pauseSDPrint();
  5479. print_job_timer.pause();
  5480. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5481. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5482. #endif
  5483. }
  5484. /**
  5485. * M26: Set SD Card file index
  5486. */
  5487. inline void gcode_M26() {
  5488. if (card.cardOK && parser.seenval('S'))
  5489. card.setIndex(parser.value_long());
  5490. }
  5491. /**
  5492. * M27: Get SD Card status
  5493. */
  5494. inline void gcode_M27() { card.getStatus(); }
  5495. /**
  5496. * M28: Start SD Write
  5497. */
  5498. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5499. /**
  5500. * M29: Stop SD Write
  5501. * Processed in write to file routine above
  5502. */
  5503. inline void gcode_M29() {
  5504. // card.saving = false;
  5505. }
  5506. /**
  5507. * M30 <filename>: Delete SD Card file
  5508. */
  5509. inline void gcode_M30() {
  5510. if (card.cardOK) {
  5511. card.closefile();
  5512. card.removeFile(parser.string_arg);
  5513. }
  5514. }
  5515. #endif // SDSUPPORT
  5516. /**
  5517. * M31: Get the time since the start of SD Print (or last M109)
  5518. */
  5519. inline void gcode_M31() {
  5520. char buffer[21];
  5521. duration_t elapsed = print_job_timer.duration();
  5522. elapsed.toString(buffer);
  5523. lcd_setstatus(buffer);
  5524. SERIAL_ECHO_START();
  5525. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5526. }
  5527. #if ENABLED(SDSUPPORT)
  5528. /**
  5529. * M32: Select file and start SD Print
  5530. */
  5531. inline void gcode_M32() {
  5532. if (card.sdprinting)
  5533. stepper.synchronize();
  5534. char* namestartpos = parser.string_arg;
  5535. const bool call_procedure = parser.boolval('P');
  5536. if (card.cardOK) {
  5537. card.openFile(namestartpos, true, call_procedure);
  5538. if (parser.seenval('S'))
  5539. card.setIndex(parser.value_long());
  5540. card.startFileprint();
  5541. // Procedure calls count as normal print time.
  5542. if (!call_procedure) print_job_timer.start();
  5543. }
  5544. }
  5545. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5546. /**
  5547. * M33: Get the long full path of a file or folder
  5548. *
  5549. * Parameters:
  5550. * <dospath> Case-insensitive DOS-style path to a file or folder
  5551. *
  5552. * Example:
  5553. * M33 miscel~1/armchair/armcha~1.gco
  5554. *
  5555. * Output:
  5556. * /Miscellaneous/Armchair/Armchair.gcode
  5557. */
  5558. inline void gcode_M33() {
  5559. card.printLongPath(parser.string_arg);
  5560. }
  5561. #endif
  5562. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5563. /**
  5564. * M34: Set SD Card Sorting Options
  5565. */
  5566. inline void gcode_M34() {
  5567. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5568. if (parser.seenval('F')) {
  5569. const int v = parser.value_long();
  5570. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5571. }
  5572. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5573. }
  5574. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5575. /**
  5576. * M928: Start SD Write
  5577. */
  5578. inline void gcode_M928() {
  5579. card.openLogFile(parser.string_arg);
  5580. }
  5581. #endif // SDSUPPORT
  5582. /**
  5583. * Sensitive pin test for M42, M226
  5584. */
  5585. static bool pin_is_protected(const int8_t pin) {
  5586. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5587. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5588. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5589. return false;
  5590. }
  5591. /**
  5592. * M42: Change pin status via GCode
  5593. *
  5594. * P<pin> Pin number (LED if omitted)
  5595. * S<byte> Pin status from 0 - 255
  5596. */
  5597. inline void gcode_M42() {
  5598. if (!parser.seenval('S')) return;
  5599. const byte pin_status = parser.value_byte();
  5600. const int pin_number = parser.intval('P', LED_PIN);
  5601. if (pin_number < 0) return;
  5602. if (pin_is_protected(pin_number)) {
  5603. SERIAL_ERROR_START();
  5604. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5605. return;
  5606. }
  5607. pinMode(pin_number, OUTPUT);
  5608. digitalWrite(pin_number, pin_status);
  5609. analogWrite(pin_number, pin_status);
  5610. #if FAN_COUNT > 0
  5611. switch (pin_number) {
  5612. #if HAS_FAN0
  5613. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5614. #endif
  5615. #if HAS_FAN1
  5616. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5617. #endif
  5618. #if HAS_FAN2
  5619. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5620. #endif
  5621. }
  5622. #endif
  5623. }
  5624. #if ENABLED(PINS_DEBUGGING)
  5625. #include "pinsDebug.h"
  5626. inline void toggle_pins() {
  5627. const bool I_flag = parser.boolval('I');
  5628. const int repeat = parser.intval('R', 1),
  5629. start = parser.intval('S'),
  5630. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5631. wait = parser.intval('W', 500);
  5632. for (uint8_t pin = start; pin <= end; pin++) {
  5633. //report_pin_state_extended(pin, I_flag, false);
  5634. if (!I_flag && pin_is_protected(pin)) {
  5635. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5636. SERIAL_EOL();
  5637. }
  5638. else {
  5639. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5640. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5641. if (pin == TEENSY_E2) {
  5642. SET_OUTPUT(TEENSY_E2);
  5643. for (int16_t j = 0; j < repeat; j++) {
  5644. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5645. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5646. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5647. }
  5648. }
  5649. else if (pin == TEENSY_E3) {
  5650. SET_OUTPUT(TEENSY_E3);
  5651. for (int16_t j = 0; j < repeat; j++) {
  5652. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5653. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5654. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5655. }
  5656. }
  5657. else
  5658. #endif
  5659. {
  5660. pinMode(pin, OUTPUT);
  5661. for (int16_t j = 0; j < repeat; j++) {
  5662. digitalWrite(pin, 0); safe_delay(wait);
  5663. digitalWrite(pin, 1); safe_delay(wait);
  5664. digitalWrite(pin, 0); safe_delay(wait);
  5665. }
  5666. }
  5667. }
  5668. SERIAL_EOL();
  5669. }
  5670. SERIAL_ECHOLNPGM("Done.");
  5671. } // toggle_pins
  5672. inline void servo_probe_test() {
  5673. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5674. SERIAL_ERROR_START();
  5675. SERIAL_ERRORLNPGM("SERVO not setup");
  5676. #elif !HAS_Z_SERVO_ENDSTOP
  5677. SERIAL_ERROR_START();
  5678. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5679. #else // HAS_Z_SERVO_ENDSTOP
  5680. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5681. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5682. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5683. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5684. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5685. bool probe_inverting;
  5686. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5687. #define PROBE_TEST_PIN Z_MIN_PIN
  5688. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5689. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5690. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5691. #if Z_MIN_ENDSTOP_INVERTING
  5692. SERIAL_PROTOCOLLNPGM("true");
  5693. #else
  5694. SERIAL_PROTOCOLLNPGM("false");
  5695. #endif
  5696. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5697. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5698. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5699. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5700. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5701. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5702. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5703. SERIAL_PROTOCOLLNPGM("true");
  5704. #else
  5705. SERIAL_PROTOCOLLNPGM("false");
  5706. #endif
  5707. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5708. #endif
  5709. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5710. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5711. bool deploy_state, stow_state;
  5712. for (uint8_t i = 0; i < 4; i++) {
  5713. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5714. safe_delay(500);
  5715. deploy_state = READ(PROBE_TEST_PIN);
  5716. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5717. safe_delay(500);
  5718. stow_state = READ(PROBE_TEST_PIN);
  5719. }
  5720. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5721. refresh_cmd_timeout();
  5722. if (deploy_state != stow_state) {
  5723. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5724. if (deploy_state) {
  5725. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5726. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5727. }
  5728. else {
  5729. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5730. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5731. }
  5732. #if ENABLED(BLTOUCH)
  5733. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5734. #endif
  5735. }
  5736. else { // measure active signal length
  5737. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5738. safe_delay(500);
  5739. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5740. uint16_t probe_counter = 0;
  5741. // Allow 30 seconds max for operator to trigger probe
  5742. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5743. safe_delay(2);
  5744. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5745. refresh_cmd_timeout();
  5746. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5747. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5748. safe_delay(2);
  5749. if (probe_counter == 50)
  5750. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5751. else if (probe_counter >= 2)
  5752. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5753. else
  5754. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5755. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5756. } // pulse detected
  5757. } // for loop waiting for trigger
  5758. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5759. } // measure active signal length
  5760. #endif
  5761. } // servo_probe_test
  5762. /**
  5763. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5764. *
  5765. * M43 - report name and state of pin(s)
  5766. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5767. * I Flag to ignore Marlin's pin protection.
  5768. *
  5769. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5770. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5771. * I Flag to ignore Marlin's pin protection.
  5772. *
  5773. * M43 E<bool> - Enable / disable background endstop monitoring
  5774. * - Machine continues to operate
  5775. * - Reports changes to endstops
  5776. * - Toggles LED_PIN when an endstop changes
  5777. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5778. *
  5779. * M43 T - Toggle pin(s) and report which pin is being toggled
  5780. * S<pin> - Start Pin number. If not given, will default to 0
  5781. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5782. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5783. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5784. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5785. *
  5786. * M43 S - Servo probe test
  5787. * P<index> - Probe index (optional - defaults to 0
  5788. */
  5789. inline void gcode_M43() {
  5790. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5791. toggle_pins();
  5792. return;
  5793. }
  5794. // Enable or disable endstop monitoring
  5795. if (parser.seen('E')) {
  5796. endstop_monitor_flag = parser.value_bool();
  5797. SERIAL_PROTOCOLPGM("endstop monitor ");
  5798. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5799. SERIAL_PROTOCOLLNPGM("abled");
  5800. return;
  5801. }
  5802. if (parser.seen('S')) {
  5803. servo_probe_test();
  5804. return;
  5805. }
  5806. // Get the range of pins to test or watch
  5807. const uint8_t first_pin = parser.byteval('P'),
  5808. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5809. if (first_pin > last_pin) return;
  5810. const bool ignore_protection = parser.boolval('I');
  5811. // Watch until click, M108, or reset
  5812. if (parser.boolval('W')) {
  5813. SERIAL_PROTOCOLLNPGM("Watching pins");
  5814. byte pin_state[last_pin - first_pin + 1];
  5815. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5816. if (pin_is_protected(pin) && !ignore_protection) continue;
  5817. pinMode(pin, INPUT_PULLUP);
  5818. delay(1);
  5819. /*
  5820. if (IS_ANALOG(pin))
  5821. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5822. else
  5823. //*/
  5824. pin_state[pin - first_pin] = digitalRead(pin);
  5825. }
  5826. #if HAS_RESUME_CONTINUE
  5827. wait_for_user = true;
  5828. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5829. #endif
  5830. for (;;) {
  5831. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5832. if (pin_is_protected(pin) && !ignore_protection) continue;
  5833. const byte val =
  5834. /*
  5835. IS_ANALOG(pin)
  5836. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5837. :
  5838. //*/
  5839. digitalRead(pin);
  5840. if (val != pin_state[pin - first_pin]) {
  5841. report_pin_state_extended(pin, ignore_protection, false);
  5842. pin_state[pin - first_pin] = val;
  5843. }
  5844. }
  5845. #if HAS_RESUME_CONTINUE
  5846. if (!wait_for_user) {
  5847. KEEPALIVE_STATE(IN_HANDLER);
  5848. break;
  5849. }
  5850. #endif
  5851. safe_delay(200);
  5852. }
  5853. return;
  5854. }
  5855. // Report current state of selected pin(s)
  5856. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5857. report_pin_state_extended(pin, ignore_protection, true);
  5858. }
  5859. #endif // PINS_DEBUGGING
  5860. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5861. /**
  5862. * M48: Z probe repeatability measurement function.
  5863. *
  5864. * Usage:
  5865. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5866. * P = Number of sampled points (4-50, default 10)
  5867. * X = Sample X position
  5868. * Y = Sample Y position
  5869. * V = Verbose level (0-4, default=1)
  5870. * E = Engage Z probe for each reading
  5871. * L = Number of legs of movement before probe
  5872. * S = Schizoid (Or Star if you prefer)
  5873. *
  5874. * This function assumes the bed has been homed. Specifically, that a G28 command
  5875. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5876. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5877. * regenerated.
  5878. */
  5879. inline void gcode_M48() {
  5880. if (axis_unhomed_error()) return;
  5881. const int8_t verbose_level = parser.byteval('V', 1);
  5882. if (!WITHIN(verbose_level, 0, 4)) {
  5883. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5884. return;
  5885. }
  5886. if (verbose_level > 0)
  5887. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5888. const int8_t n_samples = parser.byteval('P', 10);
  5889. if (!WITHIN(n_samples, 4, 50)) {
  5890. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5891. return;
  5892. }
  5893. const bool stow_probe_after_each = parser.boolval('E');
  5894. float X_current = current_position[X_AXIS],
  5895. Y_current = current_position[Y_AXIS];
  5896. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5897. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5898. #if DISABLED(DELTA)
  5899. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5900. out_of_range_error(PSTR("X"));
  5901. return;
  5902. }
  5903. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5904. out_of_range_error(PSTR("Y"));
  5905. return;
  5906. }
  5907. #else
  5908. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5909. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5910. return;
  5911. }
  5912. #endif
  5913. bool seen_L = parser.seen('L');
  5914. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5915. if (n_legs > 15) {
  5916. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5917. return;
  5918. }
  5919. if (n_legs == 1) n_legs = 2;
  5920. const bool schizoid_flag = parser.boolval('S');
  5921. if (schizoid_flag && !seen_L) n_legs = 7;
  5922. /**
  5923. * Now get everything to the specified probe point So we can safely do a
  5924. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5925. * we don't want to use that as a starting point for each probe.
  5926. */
  5927. if (verbose_level > 2)
  5928. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5929. // Disable bed level correction in M48 because we want the raw data when we probe
  5930. #if HAS_LEVELING
  5931. const bool was_enabled = planner.leveling_active;
  5932. set_bed_leveling_enabled(false);
  5933. #endif
  5934. setup_for_endstop_or_probe_move();
  5935. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5936. // Move to the first point, deploy, and probe
  5937. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5938. bool probing_good = !isnan(t);
  5939. if (probing_good) {
  5940. randomSeed(millis());
  5941. for (uint8_t n = 0; n < n_samples; n++) {
  5942. if (n_legs) {
  5943. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5944. float angle = random(0.0, 360.0);
  5945. const float radius = random(
  5946. #if ENABLED(DELTA)
  5947. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5948. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5949. #else
  5950. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5951. #endif
  5952. );
  5953. if (verbose_level > 3) {
  5954. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5955. SERIAL_ECHOPAIR(" angle: ", angle);
  5956. SERIAL_ECHOPGM(" Direction: ");
  5957. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5958. SERIAL_ECHOLNPGM("Clockwise");
  5959. }
  5960. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5961. double delta_angle;
  5962. if (schizoid_flag)
  5963. // The points of a 5 point star are 72 degrees apart. We need to
  5964. // skip a point and go to the next one on the star.
  5965. delta_angle = dir * 2.0 * 72.0;
  5966. else
  5967. // If we do this line, we are just trying to move further
  5968. // around the circle.
  5969. delta_angle = dir * (float) random(25, 45);
  5970. angle += delta_angle;
  5971. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5972. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5973. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5974. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5975. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5976. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5977. #if DISABLED(DELTA)
  5978. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5979. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5980. #else
  5981. // If we have gone out too far, we can do a simple fix and scale the numbers
  5982. // back in closer to the origin.
  5983. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5984. X_current *= 0.8;
  5985. Y_current *= 0.8;
  5986. if (verbose_level > 3) {
  5987. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5988. SERIAL_ECHOLNPAIR(", ", Y_current);
  5989. }
  5990. }
  5991. #endif
  5992. if (verbose_level > 3) {
  5993. SERIAL_PROTOCOLPGM("Going to:");
  5994. SERIAL_ECHOPAIR(" X", X_current);
  5995. SERIAL_ECHOPAIR(" Y", Y_current);
  5996. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5997. }
  5998. do_blocking_move_to_xy(X_current, Y_current);
  5999. } // n_legs loop
  6000. } // n_legs
  6001. // Probe a single point
  6002. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6003. // Break the loop if the probe fails
  6004. probing_good = !isnan(sample_set[n]);
  6005. if (!probing_good) break;
  6006. /**
  6007. * Get the current mean for the data points we have so far
  6008. */
  6009. double sum = 0.0;
  6010. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6011. mean = sum / (n + 1);
  6012. NOMORE(min, sample_set[n]);
  6013. NOLESS(max, sample_set[n]);
  6014. /**
  6015. * Now, use that mean to calculate the standard deviation for the
  6016. * data points we have so far
  6017. */
  6018. sum = 0.0;
  6019. for (uint8_t j = 0; j <= n; j++)
  6020. sum += sq(sample_set[j] - mean);
  6021. sigma = SQRT(sum / (n + 1));
  6022. if (verbose_level > 0) {
  6023. if (verbose_level > 1) {
  6024. SERIAL_PROTOCOL(n + 1);
  6025. SERIAL_PROTOCOLPGM(" of ");
  6026. SERIAL_PROTOCOL((int)n_samples);
  6027. SERIAL_PROTOCOLPGM(": z: ");
  6028. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6029. if (verbose_level > 2) {
  6030. SERIAL_PROTOCOLPGM(" mean: ");
  6031. SERIAL_PROTOCOL_F(mean, 4);
  6032. SERIAL_PROTOCOLPGM(" sigma: ");
  6033. SERIAL_PROTOCOL_F(sigma, 6);
  6034. SERIAL_PROTOCOLPGM(" min: ");
  6035. SERIAL_PROTOCOL_F(min, 3);
  6036. SERIAL_PROTOCOLPGM(" max: ");
  6037. SERIAL_PROTOCOL_F(max, 3);
  6038. SERIAL_PROTOCOLPGM(" range: ");
  6039. SERIAL_PROTOCOL_F(max-min, 3);
  6040. }
  6041. SERIAL_EOL();
  6042. }
  6043. }
  6044. } // n_samples loop
  6045. }
  6046. STOW_PROBE();
  6047. if (probing_good) {
  6048. SERIAL_PROTOCOLLNPGM("Finished!");
  6049. if (verbose_level > 0) {
  6050. SERIAL_PROTOCOLPGM("Mean: ");
  6051. SERIAL_PROTOCOL_F(mean, 6);
  6052. SERIAL_PROTOCOLPGM(" Min: ");
  6053. SERIAL_PROTOCOL_F(min, 3);
  6054. SERIAL_PROTOCOLPGM(" Max: ");
  6055. SERIAL_PROTOCOL_F(max, 3);
  6056. SERIAL_PROTOCOLPGM(" Range: ");
  6057. SERIAL_PROTOCOL_F(max-min, 3);
  6058. SERIAL_EOL();
  6059. }
  6060. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6061. SERIAL_PROTOCOL_F(sigma, 6);
  6062. SERIAL_EOL();
  6063. SERIAL_EOL();
  6064. }
  6065. clean_up_after_endstop_or_probe_move();
  6066. // Re-enable bed level correction if it had been on
  6067. #if HAS_LEVELING
  6068. set_bed_leveling_enabled(was_enabled);
  6069. #endif
  6070. report_current_position();
  6071. }
  6072. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6073. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6074. inline void gcode_M49() {
  6075. ubl.g26_debug_flag ^= true;
  6076. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6077. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6078. }
  6079. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6080. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6081. /**
  6082. * M73: Set percentage complete (for display on LCD)
  6083. *
  6084. * Example:
  6085. * M73 P25 ; Set progress to 25%
  6086. *
  6087. * Notes:
  6088. * This has no effect during an SD print job
  6089. */
  6090. inline void gcode_M73() {
  6091. if (!IS_SD_PRINTING && parser.seen('P')) {
  6092. progress_bar_percent = parser.value_byte();
  6093. NOMORE(progress_bar_percent, 100);
  6094. }
  6095. }
  6096. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6097. /**
  6098. * M75: Start print timer
  6099. */
  6100. inline void gcode_M75() { print_job_timer.start(); }
  6101. /**
  6102. * M76: Pause print timer
  6103. */
  6104. inline void gcode_M76() { print_job_timer.pause(); }
  6105. /**
  6106. * M77: Stop print timer
  6107. */
  6108. inline void gcode_M77() { print_job_timer.stop(); }
  6109. #if ENABLED(PRINTCOUNTER)
  6110. /**
  6111. * M78: Show print statistics
  6112. */
  6113. inline void gcode_M78() {
  6114. // "M78 S78" will reset the statistics
  6115. if (parser.intval('S') == 78)
  6116. print_job_timer.initStats();
  6117. else
  6118. print_job_timer.showStats();
  6119. }
  6120. #endif
  6121. /**
  6122. * M104: Set hot end temperature
  6123. */
  6124. inline void gcode_M104() {
  6125. if (get_target_extruder_from_command(104)) return;
  6126. if (DEBUGGING(DRYRUN)) return;
  6127. #if ENABLED(SINGLENOZZLE)
  6128. if (target_extruder != active_extruder) return;
  6129. #endif
  6130. if (parser.seenval('S')) {
  6131. const int16_t temp = parser.value_celsius();
  6132. thermalManager.setTargetHotend(temp, target_extruder);
  6133. #if ENABLED(DUAL_X_CARRIAGE)
  6134. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6135. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6136. #endif
  6137. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6138. /**
  6139. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6140. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6141. * standby mode, for instance in a dual extruder setup, without affecting
  6142. * the running print timer.
  6143. */
  6144. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6145. print_job_timer.stop();
  6146. LCD_MESSAGEPGM(WELCOME_MSG);
  6147. }
  6148. #endif
  6149. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6150. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6151. }
  6152. #if ENABLED(AUTOTEMP)
  6153. planner.autotemp_M104_M109();
  6154. #endif
  6155. }
  6156. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6157. void print_heater_state(const float &c, const float &t,
  6158. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6159. const float r,
  6160. #endif
  6161. const int8_t e=-2
  6162. ) {
  6163. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6164. UNUSED(e);
  6165. #endif
  6166. SERIAL_PROTOCOLCHAR(' ');
  6167. SERIAL_PROTOCOLCHAR(
  6168. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6169. e == -1 ? 'B' : 'T'
  6170. #elif HAS_TEMP_HOTEND
  6171. 'T'
  6172. #else
  6173. 'B'
  6174. #endif
  6175. );
  6176. #if HOTENDS > 1
  6177. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6178. #endif
  6179. SERIAL_PROTOCOLCHAR(':');
  6180. SERIAL_PROTOCOL(c);
  6181. SERIAL_PROTOCOLPAIR(" /" , t);
  6182. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6183. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6184. SERIAL_PROTOCOLCHAR(')');
  6185. #endif
  6186. }
  6187. void print_heaterstates() {
  6188. #if HAS_TEMP_HOTEND
  6189. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6190. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6191. , thermalManager.rawHotendTemp(target_extruder)
  6192. #endif
  6193. );
  6194. #endif
  6195. #if HAS_TEMP_BED
  6196. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6197. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6198. thermalManager.rawBedTemp(),
  6199. #endif
  6200. -1 // BED
  6201. );
  6202. #endif
  6203. #if HOTENDS > 1
  6204. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6205. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6206. thermalManager.rawHotendTemp(e),
  6207. #endif
  6208. e
  6209. );
  6210. #endif
  6211. SERIAL_PROTOCOLPGM(" @:");
  6212. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6213. #if HAS_TEMP_BED
  6214. SERIAL_PROTOCOLPGM(" B@:");
  6215. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6216. #endif
  6217. #if HOTENDS > 1
  6218. HOTEND_LOOP() {
  6219. SERIAL_PROTOCOLPAIR(" @", e);
  6220. SERIAL_PROTOCOLCHAR(':');
  6221. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6222. }
  6223. #endif
  6224. }
  6225. #endif
  6226. /**
  6227. * M105: Read hot end and bed temperature
  6228. */
  6229. inline void gcode_M105() {
  6230. if (get_target_extruder_from_command(105)) return;
  6231. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6232. SERIAL_PROTOCOLPGM(MSG_OK);
  6233. print_heaterstates();
  6234. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6235. SERIAL_ERROR_START();
  6236. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6237. #endif
  6238. SERIAL_EOL();
  6239. }
  6240. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6241. static uint8_t auto_report_temp_interval;
  6242. static millis_t next_temp_report_ms;
  6243. /**
  6244. * M155: Set temperature auto-report interval. M155 S<seconds>
  6245. */
  6246. inline void gcode_M155() {
  6247. if (parser.seenval('S')) {
  6248. auto_report_temp_interval = parser.value_byte();
  6249. NOMORE(auto_report_temp_interval, 60);
  6250. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6251. }
  6252. }
  6253. inline void auto_report_temperatures() {
  6254. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6255. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6256. print_heaterstates();
  6257. SERIAL_EOL();
  6258. }
  6259. }
  6260. #endif // AUTO_REPORT_TEMPERATURES
  6261. #if FAN_COUNT > 0
  6262. /**
  6263. * M106: Set Fan Speed
  6264. *
  6265. * S<int> Speed between 0-255
  6266. * P<index> Fan index, if more than one fan
  6267. *
  6268. * With EXTRA_FAN_SPEED enabled:
  6269. *
  6270. * T<int> Restore/Use/Set Temporary Speed:
  6271. * 1 = Restore previous speed after T2
  6272. * 2 = Use temporary speed set with T3-255
  6273. * 3-255 = Set the speed for use with T2
  6274. */
  6275. inline void gcode_M106() {
  6276. const uint8_t p = parser.byteval('P');
  6277. if (p < FAN_COUNT) {
  6278. #if ENABLED(EXTRA_FAN_SPEED)
  6279. const int16_t t = parser.intval('T');
  6280. NOMORE(t, 255);
  6281. if (t > 0) {
  6282. switch (t) {
  6283. case 1:
  6284. fanSpeeds[p] = old_fanSpeeds[p];
  6285. break;
  6286. case 2:
  6287. old_fanSpeeds[p] = fanSpeeds[p];
  6288. fanSpeeds[p] = new_fanSpeeds[p];
  6289. break;
  6290. default:
  6291. new_fanSpeeds[p] = t;
  6292. break;
  6293. }
  6294. return;
  6295. }
  6296. #endif // EXTRA_FAN_SPEED
  6297. const uint16_t s = parser.ushortval('S', 255);
  6298. fanSpeeds[p] = min(s, 255);
  6299. }
  6300. }
  6301. /**
  6302. * M107: Fan Off
  6303. */
  6304. inline void gcode_M107() {
  6305. const uint16_t p = parser.ushortval('P');
  6306. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6307. }
  6308. #endif // FAN_COUNT > 0
  6309. #if DISABLED(EMERGENCY_PARSER)
  6310. /**
  6311. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6312. */
  6313. inline void gcode_M108() { wait_for_heatup = false; }
  6314. /**
  6315. * M112: Emergency Stop
  6316. */
  6317. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6318. /**
  6319. * M410: Quickstop - Abort all planned moves
  6320. *
  6321. * This will stop the carriages mid-move, so most likely they
  6322. * will be out of sync with the stepper position after this.
  6323. */
  6324. inline void gcode_M410() { quickstop_stepper(); }
  6325. #endif
  6326. /**
  6327. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6328. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6329. */
  6330. #ifndef MIN_COOLING_SLOPE_DEG
  6331. #define MIN_COOLING_SLOPE_DEG 1.50
  6332. #endif
  6333. #ifndef MIN_COOLING_SLOPE_TIME
  6334. #define MIN_COOLING_SLOPE_TIME 60
  6335. #endif
  6336. inline void gcode_M109() {
  6337. if (get_target_extruder_from_command(109)) return;
  6338. if (DEBUGGING(DRYRUN)) return;
  6339. #if ENABLED(SINGLENOZZLE)
  6340. if (target_extruder != active_extruder) return;
  6341. #endif
  6342. const bool no_wait_for_cooling = parser.seenval('S');
  6343. if (no_wait_for_cooling || parser.seenval('R')) {
  6344. const int16_t temp = parser.value_celsius();
  6345. thermalManager.setTargetHotend(temp, target_extruder);
  6346. #if ENABLED(DUAL_X_CARRIAGE)
  6347. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6348. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6349. #endif
  6350. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6351. /**
  6352. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6353. * standby mode, (e.g., in a dual extruder setup) without affecting
  6354. * the running print timer.
  6355. */
  6356. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6357. print_job_timer.stop();
  6358. LCD_MESSAGEPGM(WELCOME_MSG);
  6359. }
  6360. else
  6361. print_job_timer.start();
  6362. #endif
  6363. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6364. }
  6365. else return;
  6366. #if ENABLED(AUTOTEMP)
  6367. planner.autotemp_M104_M109();
  6368. #endif
  6369. #if TEMP_RESIDENCY_TIME > 0
  6370. millis_t residency_start_ms = 0;
  6371. // Loop until the temperature has stabilized
  6372. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6373. #else
  6374. // Loop until the temperature is very close target
  6375. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6376. #endif
  6377. float target_temp = -1.0, old_temp = 9999.0;
  6378. bool wants_to_cool = false;
  6379. wait_for_heatup = true;
  6380. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6381. #if DISABLED(BUSY_WHILE_HEATING)
  6382. KEEPALIVE_STATE(NOT_BUSY);
  6383. #endif
  6384. #if ENABLED(PRINTER_EVENT_LEDS)
  6385. const float start_temp = thermalManager.degHotend(target_extruder);
  6386. uint8_t old_blue = 0;
  6387. #endif
  6388. do {
  6389. // Target temperature might be changed during the loop
  6390. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6391. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6392. target_temp = thermalManager.degTargetHotend(target_extruder);
  6393. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6394. if (no_wait_for_cooling && wants_to_cool) break;
  6395. }
  6396. now = millis();
  6397. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6398. next_temp_ms = now + 1000UL;
  6399. print_heaterstates();
  6400. #if TEMP_RESIDENCY_TIME > 0
  6401. SERIAL_PROTOCOLPGM(" W:");
  6402. if (residency_start_ms)
  6403. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6404. else
  6405. SERIAL_PROTOCOLCHAR('?');
  6406. #endif
  6407. SERIAL_EOL();
  6408. }
  6409. idle();
  6410. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6411. const float temp = thermalManager.degHotend(target_extruder);
  6412. #if ENABLED(PRINTER_EVENT_LEDS)
  6413. // Gradually change LED strip from violet to red as nozzle heats up
  6414. if (!wants_to_cool) {
  6415. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6416. if (blue != old_blue) {
  6417. old_blue = blue;
  6418. set_led_color(255, 0, blue
  6419. #if ENABLED(NEOPIXEL_LED)
  6420. , 0
  6421. , pixels.getBrightness()
  6422. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6423. , true
  6424. #endif
  6425. #endif
  6426. );
  6427. }
  6428. }
  6429. #endif
  6430. #if TEMP_RESIDENCY_TIME > 0
  6431. const float temp_diff = FABS(target_temp - temp);
  6432. if (!residency_start_ms) {
  6433. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6434. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6435. }
  6436. else if (temp_diff > TEMP_HYSTERESIS) {
  6437. // Restart the timer whenever the temperature falls outside the hysteresis.
  6438. residency_start_ms = now;
  6439. }
  6440. #endif
  6441. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6442. if (wants_to_cool) {
  6443. // break after MIN_COOLING_SLOPE_TIME seconds
  6444. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6445. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6446. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6447. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6448. old_temp = temp;
  6449. }
  6450. }
  6451. } while (wait_for_heatup && TEMP_CONDITIONS);
  6452. if (wait_for_heatup) {
  6453. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6454. #if ENABLED(PRINTER_EVENT_LEDS)
  6455. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6456. set_led_color(LED_WHITE);
  6457. #endif
  6458. #if ENABLED(NEOPIXEL_LED)
  6459. set_neopixel_color(pixels.Color(NEO_WHITE));
  6460. #endif
  6461. #endif
  6462. }
  6463. #if DISABLED(BUSY_WHILE_HEATING)
  6464. KEEPALIVE_STATE(IN_HANDLER);
  6465. #endif
  6466. }
  6467. #if HAS_TEMP_BED
  6468. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6469. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6470. #endif
  6471. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6472. #define MIN_COOLING_SLOPE_TIME_BED 60
  6473. #endif
  6474. /**
  6475. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6476. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6477. */
  6478. inline void gcode_M190() {
  6479. if (DEBUGGING(DRYRUN)) return;
  6480. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6481. const bool no_wait_for_cooling = parser.seenval('S');
  6482. if (no_wait_for_cooling || parser.seenval('R')) {
  6483. thermalManager.setTargetBed(parser.value_celsius());
  6484. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6485. if (parser.value_celsius() > BED_MINTEMP)
  6486. print_job_timer.start();
  6487. #endif
  6488. }
  6489. else return;
  6490. #if TEMP_BED_RESIDENCY_TIME > 0
  6491. millis_t residency_start_ms = 0;
  6492. // Loop until the temperature has stabilized
  6493. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6494. #else
  6495. // Loop until the temperature is very close target
  6496. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6497. #endif
  6498. float target_temp = -1.0, old_temp = 9999.0;
  6499. bool wants_to_cool = false;
  6500. wait_for_heatup = true;
  6501. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6502. #if DISABLED(BUSY_WHILE_HEATING)
  6503. KEEPALIVE_STATE(NOT_BUSY);
  6504. #endif
  6505. target_extruder = active_extruder; // for print_heaterstates
  6506. #if ENABLED(PRINTER_EVENT_LEDS)
  6507. const float start_temp = thermalManager.degBed();
  6508. uint8_t old_red = 255;
  6509. #endif
  6510. do {
  6511. // Target temperature might be changed during the loop
  6512. if (target_temp != thermalManager.degTargetBed()) {
  6513. wants_to_cool = thermalManager.isCoolingBed();
  6514. target_temp = thermalManager.degTargetBed();
  6515. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6516. if (no_wait_for_cooling && wants_to_cool) break;
  6517. }
  6518. now = millis();
  6519. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6520. next_temp_ms = now + 1000UL;
  6521. print_heaterstates();
  6522. #if TEMP_BED_RESIDENCY_TIME > 0
  6523. SERIAL_PROTOCOLPGM(" W:");
  6524. if (residency_start_ms)
  6525. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6526. else
  6527. SERIAL_PROTOCOLCHAR('?');
  6528. #endif
  6529. SERIAL_EOL();
  6530. }
  6531. idle();
  6532. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6533. const float temp = thermalManager.degBed();
  6534. #if ENABLED(PRINTER_EVENT_LEDS)
  6535. // Gradually change LED strip from blue to violet as bed heats up
  6536. if (!wants_to_cool) {
  6537. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6538. if (red != old_red) {
  6539. old_red = red;
  6540. set_led_color(red, 0, 255
  6541. #if ENABLED(NEOPIXEL_LED)
  6542. , 0, pixels.getBrightness()
  6543. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6544. , true
  6545. #endif
  6546. #endif
  6547. );
  6548. }
  6549. }
  6550. #endif
  6551. #if TEMP_BED_RESIDENCY_TIME > 0
  6552. const float temp_diff = FABS(target_temp - temp);
  6553. if (!residency_start_ms) {
  6554. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6555. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6556. }
  6557. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6558. // Restart the timer whenever the temperature falls outside the hysteresis.
  6559. residency_start_ms = now;
  6560. }
  6561. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6562. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6563. if (wants_to_cool) {
  6564. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6565. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6566. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6567. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6568. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6569. old_temp = temp;
  6570. }
  6571. }
  6572. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6573. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6574. #if DISABLED(BUSY_WHILE_HEATING)
  6575. KEEPALIVE_STATE(IN_HANDLER);
  6576. #endif
  6577. }
  6578. #endif // HAS_TEMP_BED
  6579. /**
  6580. * M110: Set Current Line Number
  6581. */
  6582. inline void gcode_M110() {
  6583. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6584. }
  6585. /**
  6586. * M111: Set the debug level
  6587. */
  6588. inline void gcode_M111() {
  6589. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6590. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6591. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6592. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6593. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6594. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6596. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6597. #endif
  6598. ;
  6599. const static char* const debug_strings[] PROGMEM = {
  6600. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6602. , str_debug_32
  6603. #endif
  6604. };
  6605. SERIAL_ECHO_START();
  6606. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6607. if (marlin_debug_flags) {
  6608. uint8_t comma = 0;
  6609. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6610. if (TEST(marlin_debug_flags, i)) {
  6611. if (comma++) SERIAL_CHAR(',');
  6612. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6613. }
  6614. }
  6615. }
  6616. else {
  6617. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6618. }
  6619. SERIAL_EOL();
  6620. }
  6621. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6622. /**
  6623. * M113: Get or set Host Keepalive interval (0 to disable)
  6624. *
  6625. * S<seconds> Optional. Set the keepalive interval.
  6626. */
  6627. inline void gcode_M113() {
  6628. if (parser.seenval('S')) {
  6629. host_keepalive_interval = parser.value_byte();
  6630. NOMORE(host_keepalive_interval, 60);
  6631. }
  6632. else {
  6633. SERIAL_ECHO_START();
  6634. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6635. }
  6636. }
  6637. #endif
  6638. #if ENABLED(BARICUDA)
  6639. #if HAS_HEATER_1
  6640. /**
  6641. * M126: Heater 1 valve open
  6642. */
  6643. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6644. /**
  6645. * M127: Heater 1 valve close
  6646. */
  6647. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6648. #endif
  6649. #if HAS_HEATER_2
  6650. /**
  6651. * M128: Heater 2 valve open
  6652. */
  6653. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6654. /**
  6655. * M129: Heater 2 valve close
  6656. */
  6657. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6658. #endif
  6659. #endif // BARICUDA
  6660. /**
  6661. * M140: Set bed temperature
  6662. */
  6663. inline void gcode_M140() {
  6664. if (DEBUGGING(DRYRUN)) return;
  6665. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6666. }
  6667. #if ENABLED(ULTIPANEL)
  6668. /**
  6669. * M145: Set the heatup state for a material in the LCD menu
  6670. *
  6671. * S<material> (0=PLA, 1=ABS)
  6672. * H<hotend temp>
  6673. * B<bed temp>
  6674. * F<fan speed>
  6675. */
  6676. inline void gcode_M145() {
  6677. const uint8_t material = (uint8_t)parser.intval('S');
  6678. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6679. SERIAL_ERROR_START();
  6680. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6681. }
  6682. else {
  6683. int v;
  6684. if (parser.seenval('H')) {
  6685. v = parser.value_int();
  6686. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6687. }
  6688. if (parser.seenval('F')) {
  6689. v = parser.value_int();
  6690. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6691. }
  6692. #if TEMP_SENSOR_BED != 0
  6693. if (parser.seenval('B')) {
  6694. v = parser.value_int();
  6695. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6696. }
  6697. #endif
  6698. }
  6699. }
  6700. #endif // ULTIPANEL
  6701. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6702. /**
  6703. * M149: Set temperature units
  6704. */
  6705. inline void gcode_M149() {
  6706. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6707. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6708. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6709. }
  6710. #endif
  6711. #if HAS_POWER_SWITCH
  6712. /**
  6713. * M80 : Turn on the Power Supply
  6714. * M80 S : Report the current state and exit
  6715. */
  6716. inline void gcode_M80() {
  6717. // S: Report the current power supply state and exit
  6718. if (parser.seen('S')) {
  6719. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6720. return;
  6721. }
  6722. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6723. /**
  6724. * If you have a switch on suicide pin, this is useful
  6725. * if you want to start another print with suicide feature after
  6726. * a print without suicide...
  6727. */
  6728. #if HAS_SUICIDE
  6729. OUT_WRITE(SUICIDE_PIN, HIGH);
  6730. #endif
  6731. #if ENABLED(HAVE_TMC2130)
  6732. delay(100);
  6733. tmc2130_init(); // Settings only stick when the driver has power
  6734. #endif
  6735. powersupply_on = true;
  6736. #if ENABLED(ULTIPANEL)
  6737. LCD_MESSAGEPGM(WELCOME_MSG);
  6738. #endif
  6739. }
  6740. #endif // HAS_POWER_SWITCH
  6741. /**
  6742. * M81: Turn off Power, including Power Supply, if there is one.
  6743. *
  6744. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6745. */
  6746. inline void gcode_M81() {
  6747. thermalManager.disable_all_heaters();
  6748. stepper.finish_and_disable();
  6749. #if FAN_COUNT > 0
  6750. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6751. #if ENABLED(PROBING_FANS_OFF)
  6752. fans_paused = false;
  6753. ZERO(paused_fanSpeeds);
  6754. #endif
  6755. #endif
  6756. safe_delay(1000); // Wait 1 second before switching off
  6757. #if HAS_SUICIDE
  6758. stepper.synchronize();
  6759. suicide();
  6760. #elif HAS_POWER_SWITCH
  6761. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6762. powersupply_on = false;
  6763. #endif
  6764. #if ENABLED(ULTIPANEL)
  6765. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6766. #endif
  6767. }
  6768. /**
  6769. * M82: Set E codes absolute (default)
  6770. */
  6771. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6772. /**
  6773. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6774. */
  6775. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6776. /**
  6777. * M18, M84: Disable stepper motors
  6778. */
  6779. inline void gcode_M18_M84() {
  6780. if (parser.seenval('S')) {
  6781. stepper_inactive_time = parser.value_millis_from_seconds();
  6782. }
  6783. else {
  6784. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6785. if (all_axis) {
  6786. stepper.finish_and_disable();
  6787. }
  6788. else {
  6789. stepper.synchronize();
  6790. if (parser.seen('X')) disable_X();
  6791. if (parser.seen('Y')) disable_Y();
  6792. if (parser.seen('Z')) disable_Z();
  6793. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6794. if (parser.seen('E')) disable_e_steppers();
  6795. #endif
  6796. }
  6797. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6798. ubl_lcd_map_control = defer_return_to_status = false;
  6799. #endif
  6800. }
  6801. }
  6802. /**
  6803. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6804. */
  6805. inline void gcode_M85() {
  6806. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6807. }
  6808. /**
  6809. * Multi-stepper support for M92, M201, M203
  6810. */
  6811. #if ENABLED(DISTINCT_E_FACTORS)
  6812. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6813. #define TARGET_EXTRUDER target_extruder
  6814. #else
  6815. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6816. #define TARGET_EXTRUDER 0
  6817. #endif
  6818. /**
  6819. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6820. * (Follows the same syntax as G92)
  6821. *
  6822. * With multiple extruders use T to specify which one.
  6823. */
  6824. inline void gcode_M92() {
  6825. GET_TARGET_EXTRUDER(92);
  6826. LOOP_XYZE(i) {
  6827. if (parser.seen(axis_codes[i])) {
  6828. if (i == E_AXIS) {
  6829. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6830. if (value < 20.0) {
  6831. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6832. planner.max_jerk[E_AXIS] *= factor;
  6833. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6834. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6835. }
  6836. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6837. }
  6838. else {
  6839. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6840. }
  6841. }
  6842. }
  6843. planner.refresh_positioning();
  6844. }
  6845. /**
  6846. * Output the current position to serial
  6847. */
  6848. void report_current_position() {
  6849. SERIAL_PROTOCOLPGM("X:");
  6850. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6851. SERIAL_PROTOCOLPGM(" Y:");
  6852. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6853. SERIAL_PROTOCOLPGM(" Z:");
  6854. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6855. SERIAL_PROTOCOLPGM(" E:");
  6856. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6857. stepper.report_positions();
  6858. #if IS_SCARA
  6859. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6860. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6861. SERIAL_EOL();
  6862. #endif
  6863. }
  6864. #ifdef M114_DETAIL
  6865. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6866. char str[12];
  6867. for (uint8_t i = 0; i < n; i++) {
  6868. SERIAL_CHAR(' ');
  6869. SERIAL_CHAR(axis_codes[i]);
  6870. SERIAL_CHAR(':');
  6871. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6872. }
  6873. SERIAL_EOL();
  6874. }
  6875. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6876. void report_current_position_detail() {
  6877. stepper.synchronize();
  6878. SERIAL_PROTOCOLPGM("\nLogical:");
  6879. report_xyze(current_position);
  6880. SERIAL_PROTOCOLPGM("Raw: ");
  6881. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6882. report_xyz(raw);
  6883. SERIAL_PROTOCOLPGM("Leveled:");
  6884. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6885. planner.apply_leveling(leveled);
  6886. report_xyz(leveled);
  6887. SERIAL_PROTOCOLPGM("UnLevel:");
  6888. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6889. planner.unapply_leveling(unleveled);
  6890. report_xyz(unleveled);
  6891. #if IS_KINEMATIC
  6892. #if IS_SCARA
  6893. SERIAL_PROTOCOLPGM("ScaraK: ");
  6894. #else
  6895. SERIAL_PROTOCOLPGM("DeltaK: ");
  6896. #endif
  6897. inverse_kinematics(leveled); // writes delta[]
  6898. report_xyz(delta);
  6899. #endif
  6900. SERIAL_PROTOCOLPGM("Stepper:");
  6901. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6902. report_xyze(step_count, 4, 0);
  6903. #if IS_SCARA
  6904. const float deg[XYZ] = {
  6905. stepper.get_axis_position_degrees(A_AXIS),
  6906. stepper.get_axis_position_degrees(B_AXIS)
  6907. };
  6908. SERIAL_PROTOCOLPGM("Degrees:");
  6909. report_xyze(deg, 2);
  6910. #endif
  6911. SERIAL_PROTOCOLPGM("FromStp:");
  6912. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6913. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6914. report_xyze(from_steppers);
  6915. const float diff[XYZE] = {
  6916. from_steppers[X_AXIS] - leveled[X_AXIS],
  6917. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6918. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6919. from_steppers[E_AXIS] - current_position[E_AXIS]
  6920. };
  6921. SERIAL_PROTOCOLPGM("Differ: ");
  6922. report_xyze(diff);
  6923. }
  6924. #endif // M114_DETAIL
  6925. /**
  6926. * M114: Report current position to host
  6927. */
  6928. inline void gcode_M114() {
  6929. #ifdef M114_DETAIL
  6930. if (parser.seen('D')) {
  6931. report_current_position_detail();
  6932. return;
  6933. }
  6934. #endif
  6935. stepper.synchronize();
  6936. report_current_position();
  6937. }
  6938. /**
  6939. * M115: Capabilities string
  6940. */
  6941. inline void gcode_M115() {
  6942. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6943. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6944. // EEPROM (M500, M501)
  6945. #if ENABLED(EEPROM_SETTINGS)
  6946. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6947. #else
  6948. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6949. #endif
  6950. // AUTOREPORT_TEMP (M155)
  6951. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6952. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6953. #else
  6954. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6955. #endif
  6956. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6957. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6958. // Print Job timer M75, M76, M77
  6959. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6960. // AUTOLEVEL (G29)
  6961. #if HAS_ABL
  6962. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6963. #else
  6964. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6965. #endif
  6966. // Z_PROBE (G30)
  6967. #if HAS_BED_PROBE
  6968. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6969. #else
  6970. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6971. #endif
  6972. // MESH_REPORT (M420 V)
  6973. #if HAS_LEVELING
  6974. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6975. #else
  6976. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6977. #endif
  6978. // BUILD_PERCENT (M73)
  6979. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6980. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  6981. #else
  6982. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  6983. #endif
  6984. // SOFTWARE_POWER (M80, M81)
  6985. #if HAS_POWER_SWITCH
  6986. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6987. #else
  6988. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6989. #endif
  6990. // CASE LIGHTS (M355)
  6991. #if HAS_CASE_LIGHT
  6992. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6993. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6994. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6995. }
  6996. else
  6997. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6998. #else
  6999. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7000. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7001. #endif
  7002. // EMERGENCY_PARSER (M108, M112, M410)
  7003. #if ENABLED(EMERGENCY_PARSER)
  7004. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7005. #else
  7006. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7007. #endif
  7008. #endif // EXTENDED_CAPABILITIES_REPORT
  7009. }
  7010. /**
  7011. * M117: Set LCD Status Message
  7012. */
  7013. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7014. /**
  7015. * M118: Display a message in the host console.
  7016. *
  7017. * A Append '// ' for an action command, as in OctoPrint
  7018. * E Have the host 'echo:' the text
  7019. */
  7020. inline void gcode_M118() {
  7021. if (parser.boolval('E')) SERIAL_ECHO_START();
  7022. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7023. SERIAL_ECHOLN(parser.string_arg);
  7024. }
  7025. /**
  7026. * M119: Output endstop states to serial output
  7027. */
  7028. inline void gcode_M119() { endstops.M119(); }
  7029. /**
  7030. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7031. */
  7032. inline void gcode_M120() { endstops.enable_globally(true); }
  7033. /**
  7034. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7035. */
  7036. inline void gcode_M121() { endstops.enable_globally(false); }
  7037. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7038. /**
  7039. * M125: Store current position and move to filament change position.
  7040. * Called on pause (by M25) to prevent material leaking onto the
  7041. * object. On resume (M24) the head will be moved back and the
  7042. * print will resume.
  7043. *
  7044. * If Marlin is compiled without SD Card support, M125 can be
  7045. * used directly to pause the print and move to park position,
  7046. * resuming with a button click or M108.
  7047. *
  7048. * L = override retract length
  7049. * X = override X
  7050. * Y = override Y
  7051. * Z = override Z raise
  7052. */
  7053. inline void gcode_M125() {
  7054. // Initial retract before move to filament change position
  7055. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7056. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7057. - (PAUSE_PARK_RETRACT_LENGTH)
  7058. #endif
  7059. ;
  7060. // Lift Z axis
  7061. const float z_lift = parser.linearval('Z')
  7062. #ifdef PAUSE_PARK_Z_ADD
  7063. + PAUSE_PARK_Z_ADD
  7064. #endif
  7065. ;
  7066. // Move XY axes to filament change position or given position
  7067. const float x_pos = parser.linearval('X')
  7068. #ifdef PAUSE_PARK_X_POS
  7069. + PAUSE_PARK_X_POS
  7070. #endif
  7071. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7072. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7073. #endif
  7074. ;
  7075. const float y_pos = parser.linearval('Y')
  7076. #ifdef PAUSE_PARK_Y_POS
  7077. + PAUSE_PARK_Y_POS
  7078. #endif
  7079. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7080. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7081. #endif
  7082. ;
  7083. #if DISABLED(SDSUPPORT)
  7084. const bool job_running = print_job_timer.isRunning();
  7085. #endif
  7086. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7087. #if DISABLED(SDSUPPORT)
  7088. // Wait for lcd click or M108
  7089. wait_for_filament_reload();
  7090. // Return to print position and continue
  7091. resume_print();
  7092. if (job_running) print_job_timer.start();
  7093. #endif
  7094. }
  7095. }
  7096. #endif // PARK_HEAD_ON_PAUSE
  7097. #if HAS_COLOR_LEDS
  7098. /**
  7099. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7100. * and Brightness - Use P (for NEOPIXEL only)
  7101. *
  7102. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7103. * If brightness is left out, no value changed
  7104. *
  7105. * Examples:
  7106. *
  7107. * M150 R255 ; Turn LED red
  7108. * M150 R255 U127 ; Turn LED orange (PWM only)
  7109. * M150 ; Turn LED off
  7110. * M150 R U B ; Turn LED white
  7111. * M150 W ; Turn LED white using a white LED
  7112. * M150 P127 ; Set LED 50% brightness
  7113. * M150 P ; Set LED full brightness
  7114. */
  7115. inline void gcode_M150() {
  7116. set_led_color(
  7117. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7118. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7119. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7120. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7121. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7122. #if ENABLED(NEOPIXEL_LED)
  7123. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7124. #endif
  7125. #endif
  7126. );
  7127. }
  7128. #endif // HAS_COLOR_LEDS
  7129. /**
  7130. * M200: Set filament diameter and set E axis units to cubic units
  7131. *
  7132. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7133. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7134. */
  7135. inline void gcode_M200() {
  7136. if (get_target_extruder_from_command(200)) return;
  7137. if (parser.seen('D')) {
  7138. // setting any extruder filament size disables volumetric on the assumption that
  7139. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7140. // for all extruders
  7141. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7142. if (volumetric_enabled) {
  7143. filament_size[target_extruder] = parser.value_linear_units();
  7144. // make sure all extruders have some sane value for the filament size
  7145. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7146. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7147. }
  7148. }
  7149. calculate_volumetric_multipliers();
  7150. }
  7151. /**
  7152. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7153. *
  7154. * With multiple extruders use T to specify which one.
  7155. */
  7156. inline void gcode_M201() {
  7157. GET_TARGET_EXTRUDER(201);
  7158. LOOP_XYZE(i) {
  7159. if (parser.seen(axis_codes[i])) {
  7160. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7161. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7162. }
  7163. }
  7164. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7165. planner.reset_acceleration_rates();
  7166. }
  7167. #if 0 // Not used for Sprinter/grbl gen6
  7168. inline void gcode_M202() {
  7169. LOOP_XYZE(i) {
  7170. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7171. }
  7172. }
  7173. #endif
  7174. /**
  7175. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7176. *
  7177. * With multiple extruders use T to specify which one.
  7178. */
  7179. inline void gcode_M203() {
  7180. GET_TARGET_EXTRUDER(203);
  7181. LOOP_XYZE(i)
  7182. if (parser.seen(axis_codes[i])) {
  7183. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7184. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7185. }
  7186. }
  7187. /**
  7188. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7189. *
  7190. * P = Printing moves
  7191. * R = Retract only (no X, Y, Z) moves
  7192. * T = Travel (non printing) moves
  7193. *
  7194. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7195. */
  7196. inline void gcode_M204() {
  7197. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7198. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7199. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7200. }
  7201. if (parser.seen('P')) {
  7202. planner.acceleration = parser.value_linear_units();
  7203. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7204. }
  7205. if (parser.seen('R')) {
  7206. planner.retract_acceleration = parser.value_linear_units();
  7207. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7208. }
  7209. if (parser.seen('T')) {
  7210. planner.travel_acceleration = parser.value_linear_units();
  7211. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7212. }
  7213. }
  7214. /**
  7215. * M205: Set Advanced Settings
  7216. *
  7217. * S = Min Feed Rate (units/s)
  7218. * T = Min Travel Feed Rate (units/s)
  7219. * B = Min Segment Time (µs)
  7220. * X = Max X Jerk (units/sec^2)
  7221. * Y = Max Y Jerk (units/sec^2)
  7222. * Z = Max Z Jerk (units/sec^2)
  7223. * E = Max E Jerk (units/sec^2)
  7224. */
  7225. inline void gcode_M205() {
  7226. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7227. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7228. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7229. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7230. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7231. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7232. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7233. }
  7234. #if HAS_M206_COMMAND
  7235. /**
  7236. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7237. *
  7238. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7239. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7240. * *** In the next 1.2 release, it will simply be disabled by default.
  7241. */
  7242. inline void gcode_M206() {
  7243. LOOP_XYZ(i)
  7244. if (parser.seen(axis_codes[i]))
  7245. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7246. #if ENABLED(MORGAN_SCARA)
  7247. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7248. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7249. #endif
  7250. SYNC_PLAN_POSITION_KINEMATIC();
  7251. report_current_position();
  7252. }
  7253. #endif // HAS_M206_COMMAND
  7254. #if ENABLED(DELTA)
  7255. /**
  7256. * M665: Set delta configurations
  7257. *
  7258. * H = delta height
  7259. * L = diagonal rod
  7260. * R = delta radius
  7261. * S = segments per second
  7262. * B = delta calibration radius
  7263. * X = Alpha (Tower 1) angle trim
  7264. * Y = Beta (Tower 2) angle trim
  7265. * Z = Rotate A and B by this angle
  7266. */
  7267. inline void gcode_M665() {
  7268. if (parser.seen('H')) {
  7269. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7270. update_software_endstops(Z_AXIS);
  7271. }
  7272. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7273. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7274. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7275. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7276. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7277. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7278. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7279. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  7280. }
  7281. /**
  7282. * M666: Set delta endstop adjustment
  7283. */
  7284. inline void gcode_M666() {
  7285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7286. if (DEBUGGING(LEVELING)) {
  7287. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7288. }
  7289. #endif
  7290. LOOP_XYZ(i) {
  7291. if (parser.seen(axis_codes[i])) {
  7292. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7293. endstop_adj[i] = parser.value_linear_units();
  7294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7295. if (DEBUGGING(LEVELING)) {
  7296. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7297. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7298. }
  7299. #endif
  7300. }
  7301. }
  7302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7303. if (DEBUGGING(LEVELING)) {
  7304. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7305. }
  7306. #endif
  7307. }
  7308. #elif IS_SCARA
  7309. /**
  7310. * M665: Set SCARA settings
  7311. *
  7312. * Parameters:
  7313. *
  7314. * S[segments-per-second] - Segments-per-second
  7315. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7316. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7317. *
  7318. * A, P, and X are all aliases for the shoulder angle
  7319. * B, T, and Y are all aliases for the elbow angle
  7320. */
  7321. inline void gcode_M665() {
  7322. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7323. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7324. const uint8_t sumAPX = hasA + hasP + hasX;
  7325. if (sumAPX == 1)
  7326. home_offset[A_AXIS] = parser.value_float();
  7327. else if (sumAPX > 1) {
  7328. SERIAL_ERROR_START();
  7329. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7330. return;
  7331. }
  7332. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7333. const uint8_t sumBTY = hasB + hasT + hasY;
  7334. if (sumBTY == 1)
  7335. home_offset[B_AXIS] = parser.value_float();
  7336. else if (sumBTY > 1) {
  7337. SERIAL_ERROR_START();
  7338. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7339. return;
  7340. }
  7341. }
  7342. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7343. /**
  7344. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7345. */
  7346. inline void gcode_M666() {
  7347. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7348. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7349. }
  7350. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7351. #if ENABLED(FWRETRACT)
  7352. /**
  7353. * M207: Set firmware retraction values
  7354. *
  7355. * S[+units] retract_length
  7356. * W[+units] swap_retract_length (multi-extruder)
  7357. * F[units/min] retract_feedrate_mm_s
  7358. * Z[units] retract_zlift
  7359. */
  7360. inline void gcode_M207() {
  7361. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7362. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7363. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7364. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7365. }
  7366. /**
  7367. * M208: Set firmware un-retraction values
  7368. *
  7369. * S[+units] retract_recover_length (in addition to M207 S*)
  7370. * W[+units] swap_retract_recover_length (multi-extruder)
  7371. * F[units/min] retract_recover_feedrate_mm_s
  7372. * R[units/min] swap_retract_recover_feedrate_mm_s
  7373. */
  7374. inline void gcode_M208() {
  7375. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7376. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7377. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7378. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7379. }
  7380. /**
  7381. * M209: Enable automatic retract (M209 S1)
  7382. * For slicers that don't support G10/11, reversed extrude-only
  7383. * moves will be classified as retraction.
  7384. */
  7385. inline void gcode_M209() {
  7386. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7387. if (parser.seen('S')) {
  7388. autoretract_enabled = parser.value_bool();
  7389. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7390. }
  7391. }
  7392. }
  7393. #endif // FWRETRACT
  7394. /**
  7395. * M211: Enable, Disable, and/or Report software endstops
  7396. *
  7397. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7398. */
  7399. inline void gcode_M211() {
  7400. SERIAL_ECHO_START();
  7401. #if HAS_SOFTWARE_ENDSTOPS
  7402. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7403. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7404. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7405. #else
  7406. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7407. SERIAL_ECHOPGM(MSG_OFF);
  7408. #endif
  7409. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7410. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7411. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7412. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7413. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7414. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7415. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7416. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7417. }
  7418. #if HOTENDS > 1
  7419. /**
  7420. * M218 - set hotend offset (in linear units)
  7421. *
  7422. * T<tool>
  7423. * X<xoffset>
  7424. * Y<yoffset>
  7425. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7426. */
  7427. inline void gcode_M218() {
  7428. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7429. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7430. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7431. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7432. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7433. #endif
  7434. SERIAL_ECHO_START();
  7435. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7436. HOTEND_LOOP() {
  7437. SERIAL_CHAR(' ');
  7438. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7439. SERIAL_CHAR(',');
  7440. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7441. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7442. SERIAL_CHAR(',');
  7443. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7444. #endif
  7445. }
  7446. SERIAL_EOL();
  7447. }
  7448. #endif // HOTENDS > 1
  7449. /**
  7450. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7451. */
  7452. inline void gcode_M220() {
  7453. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7454. }
  7455. /**
  7456. * M221: Set extrusion percentage (M221 T0 S95)
  7457. */
  7458. inline void gcode_M221() {
  7459. if (get_target_extruder_from_command(221)) return;
  7460. if (parser.seenval('S'))
  7461. flow_percentage[target_extruder] = parser.value_int();
  7462. }
  7463. /**
  7464. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7465. */
  7466. inline void gcode_M226() {
  7467. if (parser.seen('P')) {
  7468. const int pin_number = parser.value_int(),
  7469. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7470. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7471. int target = LOW;
  7472. stepper.synchronize();
  7473. pinMode(pin_number, INPUT);
  7474. switch (pin_state) {
  7475. case 1:
  7476. target = HIGH;
  7477. break;
  7478. case 0:
  7479. target = LOW;
  7480. break;
  7481. case -1:
  7482. target = !digitalRead(pin_number);
  7483. break;
  7484. }
  7485. while (digitalRead(pin_number) != target) idle();
  7486. } // pin_state -1 0 1 && pin_number > -1
  7487. } // parser.seen('P')
  7488. }
  7489. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7490. /**
  7491. * M260: Send data to a I2C slave device
  7492. *
  7493. * This is a PoC, the formating and arguments for the GCODE will
  7494. * change to be more compatible, the current proposal is:
  7495. *
  7496. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7497. *
  7498. * M260 B<byte-1 value in base 10>
  7499. * M260 B<byte-2 value in base 10>
  7500. * M260 B<byte-3 value in base 10>
  7501. *
  7502. * M260 S1 ; Send the buffered data and reset the buffer
  7503. * M260 R1 ; Reset the buffer without sending data
  7504. *
  7505. */
  7506. inline void gcode_M260() {
  7507. // Set the target address
  7508. if (parser.seen('A')) i2c.address(parser.value_byte());
  7509. // Add a new byte to the buffer
  7510. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7511. // Flush the buffer to the bus
  7512. if (parser.seen('S')) i2c.send();
  7513. // Reset and rewind the buffer
  7514. else if (parser.seen('R')) i2c.reset();
  7515. }
  7516. /**
  7517. * M261: Request X bytes from I2C slave device
  7518. *
  7519. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7520. */
  7521. inline void gcode_M261() {
  7522. if (parser.seen('A')) i2c.address(parser.value_byte());
  7523. uint8_t bytes = parser.byteval('B', 1);
  7524. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7525. i2c.relay(bytes);
  7526. }
  7527. else {
  7528. SERIAL_ERROR_START();
  7529. SERIAL_ERRORLN("Bad i2c request");
  7530. }
  7531. }
  7532. #endif // EXPERIMENTAL_I2CBUS
  7533. #if HAS_SERVOS
  7534. /**
  7535. * M280: Get or set servo position. P<index> [S<angle>]
  7536. */
  7537. inline void gcode_M280() {
  7538. if (!parser.seen('P')) return;
  7539. const int servo_index = parser.value_int();
  7540. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7541. if (parser.seen('S'))
  7542. MOVE_SERVO(servo_index, parser.value_int());
  7543. else {
  7544. SERIAL_ECHO_START();
  7545. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7546. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7547. }
  7548. }
  7549. else {
  7550. SERIAL_ERROR_START();
  7551. SERIAL_ECHOPAIR("Servo ", servo_index);
  7552. SERIAL_ECHOLNPGM(" out of range");
  7553. }
  7554. }
  7555. #endif // HAS_SERVOS
  7556. #if HAS_BUZZER
  7557. /**
  7558. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7559. */
  7560. inline void gcode_M300() {
  7561. uint16_t const frequency = parser.ushortval('S', 260);
  7562. uint16_t duration = parser.ushortval('P', 1000);
  7563. // Limits the tone duration to 0-5 seconds.
  7564. NOMORE(duration, 5000);
  7565. BUZZ(duration, frequency);
  7566. }
  7567. #endif // HAS_BUZZER
  7568. #if ENABLED(PIDTEMP)
  7569. /**
  7570. * M301: Set PID parameters P I D (and optionally C, L)
  7571. *
  7572. * P[float] Kp term
  7573. * I[float] Ki term (unscaled)
  7574. * D[float] Kd term (unscaled)
  7575. *
  7576. * With PID_EXTRUSION_SCALING:
  7577. *
  7578. * C[float] Kc term
  7579. * L[float] LPQ length
  7580. */
  7581. inline void gcode_M301() {
  7582. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7583. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7584. const uint8_t e = parser.byteval('E'); // extruder being updated
  7585. if (e < HOTENDS) { // catch bad input value
  7586. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7587. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7588. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7589. #if ENABLED(PID_EXTRUSION_SCALING)
  7590. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7591. if (parser.seen('L')) lpq_len = parser.value_float();
  7592. NOMORE(lpq_len, LPQ_MAX_LEN);
  7593. #endif
  7594. thermalManager.updatePID();
  7595. SERIAL_ECHO_START();
  7596. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7597. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7598. #endif // PID_PARAMS_PER_HOTEND
  7599. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7600. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7601. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7602. #if ENABLED(PID_EXTRUSION_SCALING)
  7603. //Kc does not have scaling applied above, or in resetting defaults
  7604. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7605. #endif
  7606. SERIAL_EOL();
  7607. }
  7608. else {
  7609. SERIAL_ERROR_START();
  7610. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7611. }
  7612. }
  7613. #endif // PIDTEMP
  7614. #if ENABLED(PIDTEMPBED)
  7615. inline void gcode_M304() {
  7616. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7617. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7618. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7619. thermalManager.updatePID();
  7620. SERIAL_ECHO_START();
  7621. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7622. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7623. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7624. }
  7625. #endif // PIDTEMPBED
  7626. #if defined(CHDK) || HAS_PHOTOGRAPH
  7627. /**
  7628. * M240: Trigger a camera by emulating a Canon RC-1
  7629. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7630. */
  7631. inline void gcode_M240() {
  7632. #ifdef CHDK
  7633. OUT_WRITE(CHDK, HIGH);
  7634. chdkHigh = millis();
  7635. chdkActive = true;
  7636. #elif HAS_PHOTOGRAPH
  7637. const uint8_t NUM_PULSES = 16;
  7638. const float PULSE_LENGTH = 0.01524;
  7639. for (int i = 0; i < NUM_PULSES; i++) {
  7640. WRITE(PHOTOGRAPH_PIN, HIGH);
  7641. _delay_ms(PULSE_LENGTH);
  7642. WRITE(PHOTOGRAPH_PIN, LOW);
  7643. _delay_ms(PULSE_LENGTH);
  7644. }
  7645. delay(7.33);
  7646. for (int i = 0; i < NUM_PULSES; i++) {
  7647. WRITE(PHOTOGRAPH_PIN, HIGH);
  7648. _delay_ms(PULSE_LENGTH);
  7649. WRITE(PHOTOGRAPH_PIN, LOW);
  7650. _delay_ms(PULSE_LENGTH);
  7651. }
  7652. #endif // !CHDK && HAS_PHOTOGRAPH
  7653. }
  7654. #endif // CHDK || PHOTOGRAPH_PIN
  7655. #if HAS_LCD_CONTRAST
  7656. /**
  7657. * M250: Read and optionally set the LCD contrast
  7658. */
  7659. inline void gcode_M250() {
  7660. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7661. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7662. SERIAL_PROTOCOL(lcd_contrast);
  7663. SERIAL_EOL();
  7664. }
  7665. #endif // HAS_LCD_CONTRAST
  7666. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7667. /**
  7668. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7669. *
  7670. * S<temperature> sets the minimum extrude temperature
  7671. * P<bool> enables (1) or disables (0) cold extrusion
  7672. *
  7673. * Examples:
  7674. *
  7675. * M302 ; report current cold extrusion state
  7676. * M302 P0 ; enable cold extrusion checking
  7677. * M302 P1 ; disables cold extrusion checking
  7678. * M302 S0 ; always allow extrusion (disables checking)
  7679. * M302 S170 ; only allow extrusion above 170
  7680. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7681. */
  7682. inline void gcode_M302() {
  7683. const bool seen_S = parser.seen('S');
  7684. if (seen_S) {
  7685. thermalManager.extrude_min_temp = parser.value_celsius();
  7686. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7687. }
  7688. if (parser.seen('P'))
  7689. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7690. else if (!seen_S) {
  7691. // Report current state
  7692. SERIAL_ECHO_START();
  7693. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7694. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7695. SERIAL_ECHOLNPGM("C)");
  7696. }
  7697. }
  7698. #endif // PREVENT_COLD_EXTRUSION
  7699. /**
  7700. * M303: PID relay autotune
  7701. *
  7702. * S<temperature> sets the target temperature. (default 150C)
  7703. * E<extruder> (-1 for the bed) (default 0)
  7704. * C<cycles>
  7705. * U<bool> with a non-zero value will apply the result to current settings
  7706. */
  7707. inline void gcode_M303() {
  7708. #if HAS_PID_HEATING
  7709. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7710. const bool u = parser.boolval('U');
  7711. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7712. if (WITHIN(e, 0, HOTENDS - 1))
  7713. target_extruder = e;
  7714. #if DISABLED(BUSY_WHILE_HEATING)
  7715. KEEPALIVE_STATE(NOT_BUSY);
  7716. #endif
  7717. thermalManager.PID_autotune(temp, e, c, u);
  7718. #if DISABLED(BUSY_WHILE_HEATING)
  7719. KEEPALIVE_STATE(IN_HANDLER);
  7720. #endif
  7721. #else
  7722. SERIAL_ERROR_START();
  7723. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7724. #endif
  7725. }
  7726. #if ENABLED(MORGAN_SCARA)
  7727. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7728. if (IsRunning()) {
  7729. forward_kinematics_SCARA(delta_a, delta_b);
  7730. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7731. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7732. destination[Z_AXIS] = current_position[Z_AXIS];
  7733. prepare_move_to_destination();
  7734. return true;
  7735. }
  7736. return false;
  7737. }
  7738. /**
  7739. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7740. */
  7741. inline bool gcode_M360() {
  7742. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7743. return SCARA_move_to_cal(0, 120);
  7744. }
  7745. /**
  7746. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7747. */
  7748. inline bool gcode_M361() {
  7749. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7750. return SCARA_move_to_cal(90, 130);
  7751. }
  7752. /**
  7753. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7754. */
  7755. inline bool gcode_M362() {
  7756. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7757. return SCARA_move_to_cal(60, 180);
  7758. }
  7759. /**
  7760. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7761. */
  7762. inline bool gcode_M363() {
  7763. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7764. return SCARA_move_to_cal(50, 90);
  7765. }
  7766. /**
  7767. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7768. */
  7769. inline bool gcode_M364() {
  7770. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7771. return SCARA_move_to_cal(45, 135);
  7772. }
  7773. #endif // SCARA
  7774. #if ENABLED(EXT_SOLENOID)
  7775. void enable_solenoid(const uint8_t num) {
  7776. switch (num) {
  7777. case 0:
  7778. OUT_WRITE(SOL0_PIN, HIGH);
  7779. break;
  7780. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7781. case 1:
  7782. OUT_WRITE(SOL1_PIN, HIGH);
  7783. break;
  7784. #endif
  7785. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7786. case 2:
  7787. OUT_WRITE(SOL2_PIN, HIGH);
  7788. break;
  7789. #endif
  7790. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7791. case 3:
  7792. OUT_WRITE(SOL3_PIN, HIGH);
  7793. break;
  7794. #endif
  7795. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7796. case 4:
  7797. OUT_WRITE(SOL4_PIN, HIGH);
  7798. break;
  7799. #endif
  7800. default:
  7801. SERIAL_ECHO_START();
  7802. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7803. break;
  7804. }
  7805. }
  7806. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7807. void disable_all_solenoids() {
  7808. OUT_WRITE(SOL0_PIN, LOW);
  7809. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7810. OUT_WRITE(SOL1_PIN, LOW);
  7811. #endif
  7812. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7813. OUT_WRITE(SOL2_PIN, LOW);
  7814. #endif
  7815. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7816. OUT_WRITE(SOL3_PIN, LOW);
  7817. #endif
  7818. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7819. OUT_WRITE(SOL4_PIN, LOW);
  7820. #endif
  7821. }
  7822. /**
  7823. * M380: Enable solenoid on the active extruder
  7824. */
  7825. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7826. /**
  7827. * M381: Disable all solenoids
  7828. */
  7829. inline void gcode_M381() { disable_all_solenoids(); }
  7830. #endif // EXT_SOLENOID
  7831. /**
  7832. * M400: Finish all moves
  7833. */
  7834. inline void gcode_M400() { stepper.synchronize(); }
  7835. #if HAS_BED_PROBE
  7836. /**
  7837. * M401: Engage Z Servo endstop if available
  7838. */
  7839. inline void gcode_M401() { DEPLOY_PROBE(); }
  7840. /**
  7841. * M402: Retract Z Servo endstop if enabled
  7842. */
  7843. inline void gcode_M402() { STOW_PROBE(); }
  7844. #endif // HAS_BED_PROBE
  7845. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7846. /**
  7847. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7848. */
  7849. inline void gcode_M404() {
  7850. if (parser.seen('W')) {
  7851. filament_width_nominal = parser.value_linear_units();
  7852. }
  7853. else {
  7854. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7855. SERIAL_PROTOCOLLN(filament_width_nominal);
  7856. }
  7857. }
  7858. /**
  7859. * M405: Turn on filament sensor for control
  7860. */
  7861. inline void gcode_M405() {
  7862. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7863. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7864. if (parser.seen('D')) {
  7865. meas_delay_cm = parser.value_byte();
  7866. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7867. }
  7868. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7869. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7870. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7871. measurement_delay[i] = temp_ratio;
  7872. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7873. }
  7874. filament_sensor = true;
  7875. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7876. //SERIAL_PROTOCOL(filament_width_meas);
  7877. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7878. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7879. }
  7880. /**
  7881. * M406: Turn off filament sensor for control
  7882. */
  7883. inline void gcode_M406() {
  7884. filament_sensor = false;
  7885. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  7886. }
  7887. /**
  7888. * M407: Get measured filament diameter on serial output
  7889. */
  7890. inline void gcode_M407() {
  7891. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7892. SERIAL_PROTOCOLLN(filament_width_meas);
  7893. }
  7894. #endif // FILAMENT_WIDTH_SENSOR
  7895. void quickstop_stepper() {
  7896. stepper.quick_stop();
  7897. stepper.synchronize();
  7898. set_current_from_steppers_for_axis(ALL_AXES);
  7899. SYNC_PLAN_POSITION_KINEMATIC();
  7900. }
  7901. #if HAS_LEVELING
  7902. /**
  7903. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7904. *
  7905. * S[bool] Turns leveling on or off
  7906. * Z[height] Sets the Z fade height (0 or none to disable)
  7907. * V[bool] Verbose - Print the leveling grid
  7908. *
  7909. * With AUTO_BED_LEVELING_UBL only:
  7910. *
  7911. * L[index] Load UBL mesh from index (0 is default)
  7912. */
  7913. inline void gcode_M420() {
  7914. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7915. // L to load a mesh from the EEPROM
  7916. if (parser.seen('L')) {
  7917. #if ENABLED(EEPROM_SETTINGS)
  7918. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  7919. const int16_t a = settings.calc_num_meshes();
  7920. if (!a) {
  7921. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7922. return;
  7923. }
  7924. if (!WITHIN(storage_slot, 0, a - 1)) {
  7925. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7926. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7927. return;
  7928. }
  7929. settings.load_mesh(storage_slot);
  7930. ubl.storage_slot = storage_slot;
  7931. #else
  7932. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7933. return;
  7934. #endif
  7935. }
  7936. // L to load a mesh from the EEPROM
  7937. if (parser.seen('L') || parser.seen('V')) {
  7938. ubl.display_map(0); // Currently only supports one map type
  7939. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7940. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  7941. }
  7942. #endif // AUTO_BED_LEVELING_UBL
  7943. // V to print the matrix or mesh
  7944. if (parser.seen('V')) {
  7945. #if ABL_PLANAR
  7946. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7947. #else
  7948. if (leveling_is_valid()) {
  7949. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7950. print_bilinear_leveling_grid();
  7951. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7952. print_bilinear_leveling_grid_virt();
  7953. #endif
  7954. #elif ENABLED(MESH_BED_LEVELING)
  7955. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7956. mbl_mesh_report();
  7957. #endif
  7958. }
  7959. #endif
  7960. }
  7961. const bool to_enable = parser.boolval('S');
  7962. if (parser.seen('S'))
  7963. set_bed_leveling_enabled(to_enable);
  7964. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7965. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7966. #endif
  7967. const bool new_status = planner.leveling_active;
  7968. if (to_enable && !new_status) {
  7969. SERIAL_ERROR_START();
  7970. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7971. }
  7972. SERIAL_ECHO_START();
  7973. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7974. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7975. SERIAL_ECHO_START();
  7976. SERIAL_ECHOPGM("Fade Height ");
  7977. if (planner.z_fade_height > 0.0)
  7978. SERIAL_ECHOLN(planner.z_fade_height);
  7979. else
  7980. SERIAL_ECHOLNPGM(MSG_OFF);
  7981. #endif
  7982. }
  7983. #endif
  7984. #if ENABLED(MESH_BED_LEVELING)
  7985. /**
  7986. * M421: Set a single Mesh Bed Leveling Z coordinate
  7987. *
  7988. * Usage:
  7989. * M421 X<linear> Y<linear> Z<linear>
  7990. * M421 X<linear> Y<linear> Q<offset>
  7991. * M421 I<xindex> J<yindex> Z<linear>
  7992. * M421 I<xindex> J<yindex> Q<offset>
  7993. */
  7994. inline void gcode_M421() {
  7995. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7996. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7997. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7998. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7999. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8000. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8001. SERIAL_ERROR_START();
  8002. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8003. }
  8004. else if (ix < 0 || iy < 0) {
  8005. SERIAL_ERROR_START();
  8006. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8007. }
  8008. else
  8009. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8010. }
  8011. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8012. /**
  8013. * M421: Set a single Mesh Bed Leveling Z coordinate
  8014. *
  8015. * Usage:
  8016. * M421 I<xindex> J<yindex> Z<linear>
  8017. * M421 I<xindex> J<yindex> Q<offset>
  8018. */
  8019. inline void gcode_M421() {
  8020. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8021. const bool hasI = ix >= 0,
  8022. hasJ = iy >= 0,
  8023. hasZ = parser.seen('Z'),
  8024. hasQ = !hasZ && parser.seen('Q');
  8025. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8026. SERIAL_ERROR_START();
  8027. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8028. }
  8029. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8030. SERIAL_ERROR_START();
  8031. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8032. }
  8033. else {
  8034. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8035. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8036. bed_level_virt_interpolate();
  8037. #endif
  8038. }
  8039. }
  8040. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8041. /**
  8042. * M421: Set a single Mesh Bed Leveling Z coordinate
  8043. *
  8044. * Usage:
  8045. * M421 I<xindex> J<yindex> Z<linear>
  8046. * M421 I<xindex> J<yindex> Q<offset>
  8047. * M421 C Z<linear>
  8048. * M421 C Q<offset>
  8049. */
  8050. inline void gcode_M421() {
  8051. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8052. const bool hasI = ix >= 0,
  8053. hasJ = iy >= 0,
  8054. hasC = parser.seen('C'),
  8055. hasZ = parser.seen('Z'),
  8056. hasQ = !hasZ && parser.seen('Q');
  8057. if (hasC) {
  8058. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  8059. ix = location.x_index;
  8060. iy = location.y_index;
  8061. }
  8062. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8063. SERIAL_ERROR_START();
  8064. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8065. }
  8066. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8067. SERIAL_ERROR_START();
  8068. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8069. }
  8070. else
  8071. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8072. }
  8073. #endif // AUTO_BED_LEVELING_UBL
  8074. #if HAS_M206_COMMAND
  8075. /**
  8076. * M428: Set home_offset based on the distance between the
  8077. * current_position and the nearest "reference point."
  8078. * If an axis is past center its endstop position
  8079. * is the reference-point. Otherwise it uses 0. This allows
  8080. * the Z offset to be set near the bed when using a max endstop.
  8081. *
  8082. * M428 can't be used more than 2cm away from 0 or an endstop.
  8083. *
  8084. * Use M206 to set these values directly.
  8085. */
  8086. inline void gcode_M428() {
  8087. bool err = false;
  8088. LOOP_XYZ(i) {
  8089. if (axis_homed[i]) {
  8090. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  8091. diff = base - RAW_POSITION(current_position[i], i);
  8092. if (WITHIN(diff, -20, 20)) {
  8093. set_home_offset((AxisEnum)i, diff);
  8094. }
  8095. else {
  8096. SERIAL_ERROR_START();
  8097. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8098. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8099. BUZZ(200, 40);
  8100. err = true;
  8101. break;
  8102. }
  8103. }
  8104. }
  8105. if (!err) {
  8106. SYNC_PLAN_POSITION_KINEMATIC();
  8107. report_current_position();
  8108. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8109. BUZZ(100, 659);
  8110. BUZZ(100, 698);
  8111. }
  8112. }
  8113. #endif // HAS_M206_COMMAND
  8114. /**
  8115. * M500: Store settings in EEPROM
  8116. */
  8117. inline void gcode_M500() {
  8118. (void)settings.save();
  8119. }
  8120. /**
  8121. * M501: Read settings from EEPROM
  8122. */
  8123. inline void gcode_M501() {
  8124. (void)settings.load();
  8125. }
  8126. /**
  8127. * M502: Revert to default settings
  8128. */
  8129. inline void gcode_M502() {
  8130. (void)settings.reset();
  8131. }
  8132. #if DISABLED(DISABLE_M503)
  8133. /**
  8134. * M503: print settings currently in memory
  8135. */
  8136. inline void gcode_M503() {
  8137. (void)settings.report(!parser.boolval('S', true));
  8138. }
  8139. #endif
  8140. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8141. /**
  8142. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8143. */
  8144. inline void gcode_M540() {
  8145. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8146. }
  8147. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8148. #if HAS_BED_PROBE
  8149. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8150. static float last_zoffset = NAN;
  8151. if (!isnan(last_zoffset)) {
  8152. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8153. const float diff = zprobe_zoffset - last_zoffset;
  8154. #endif
  8155. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8156. // Correct bilinear grid for new probe offset
  8157. if (diff) {
  8158. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8159. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8160. z_values[x][y] -= diff;
  8161. }
  8162. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8163. bed_level_virt_interpolate();
  8164. #endif
  8165. #endif
  8166. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8167. if (!no_babystep && planner.leveling_active)
  8168. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8169. #else
  8170. UNUSED(no_babystep);
  8171. #endif
  8172. #if ENABLED(DELTA) // correct the delta_height
  8173. home_offset[Z_AXIS] -= diff;
  8174. #endif
  8175. }
  8176. last_zoffset = zprobe_zoffset;
  8177. }
  8178. inline void gcode_M851() {
  8179. SERIAL_ECHO_START();
  8180. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8181. if (parser.seen('Z')) {
  8182. const float value = parser.value_linear_units();
  8183. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8184. zprobe_zoffset = value;
  8185. refresh_zprobe_zoffset();
  8186. SERIAL_ECHO(zprobe_zoffset);
  8187. }
  8188. else
  8189. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8190. }
  8191. else
  8192. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8193. SERIAL_EOL();
  8194. }
  8195. #endif // HAS_BED_PROBE
  8196. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8197. /**
  8198. * M600: Pause for filament change
  8199. *
  8200. * E[distance] - Retract the filament this far (negative value)
  8201. * Z[distance] - Move the Z axis by this distance
  8202. * X[position] - Move to this X position, with Y
  8203. * Y[position] - Move to this Y position, with X
  8204. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8205. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8206. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8207. *
  8208. * Default values are used for omitted arguments.
  8209. *
  8210. */
  8211. inline void gcode_M600() {
  8212. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8213. // Don't allow filament change without homing first
  8214. if (axis_unhomed_error()) home_all_axes();
  8215. #endif
  8216. // Initial retract before move to filament change position
  8217. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8218. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8219. - (PAUSE_PARK_RETRACT_LENGTH)
  8220. #endif
  8221. ;
  8222. // Lift Z axis
  8223. const float z_lift = parser.linearval('Z', 0
  8224. #ifdef PAUSE_PARK_Z_ADD
  8225. + PAUSE_PARK_Z_ADD
  8226. #endif
  8227. );
  8228. // Move XY axes to filament exchange position
  8229. const float x_pos = parser.linearval('X', 0
  8230. #ifdef PAUSE_PARK_X_POS
  8231. + PAUSE_PARK_X_POS
  8232. #endif
  8233. );
  8234. const float y_pos = parser.linearval('Y', 0
  8235. #ifdef PAUSE_PARK_Y_POS
  8236. + PAUSE_PARK_Y_POS
  8237. #endif
  8238. );
  8239. // Unload filament
  8240. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8241. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8242. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8243. #endif
  8244. ;
  8245. // Load filament
  8246. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8247. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8248. + FILAMENT_CHANGE_LOAD_LENGTH
  8249. #endif
  8250. ;
  8251. const int beep_count = parser.intval('B',
  8252. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8253. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8254. #else
  8255. -1
  8256. #endif
  8257. );
  8258. const bool job_running = print_job_timer.isRunning();
  8259. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8260. wait_for_filament_reload(beep_count);
  8261. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8262. }
  8263. // Resume the print job timer if it was running
  8264. if (job_running) print_job_timer.start();
  8265. }
  8266. #endif // ADVANCED_PAUSE_FEATURE
  8267. #if ENABLED(MK2_MULTIPLEXER)
  8268. inline void select_multiplexed_stepper(const uint8_t e) {
  8269. stepper.synchronize();
  8270. disable_e_steppers();
  8271. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8272. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8273. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8274. safe_delay(100);
  8275. }
  8276. /**
  8277. * M702: Unload all extruders
  8278. */
  8279. inline void gcode_M702() {
  8280. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8281. select_multiplexed_stepper(e);
  8282. // TODO: standard unload filament function
  8283. // MK2 firmware behavior:
  8284. // - Make sure temperature is high enough
  8285. // - Raise Z to at least 15 to make room
  8286. // - Extrude 1cm of filament in 1 second
  8287. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8288. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8289. // - Restore E max feedrate to 50
  8290. }
  8291. // Go back to the last active extruder
  8292. select_multiplexed_stepper(active_extruder);
  8293. disable_e_steppers();
  8294. }
  8295. #endif // MK2_MULTIPLEXER
  8296. #if ENABLED(DUAL_X_CARRIAGE)
  8297. /**
  8298. * M605: Set dual x-carriage movement mode
  8299. *
  8300. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8301. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8302. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8303. * units x-offset and an optional differential hotend temperature of
  8304. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8305. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8306. *
  8307. * Note: the X axis should be homed after changing dual x-carriage mode.
  8308. */
  8309. inline void gcode_M605() {
  8310. stepper.synchronize();
  8311. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8312. switch (dual_x_carriage_mode) {
  8313. case DXC_FULL_CONTROL_MODE:
  8314. case DXC_AUTO_PARK_MODE:
  8315. break;
  8316. case DXC_DUPLICATION_MODE:
  8317. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8318. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8319. SERIAL_ECHO_START();
  8320. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8321. SERIAL_CHAR(' ');
  8322. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8323. SERIAL_CHAR(',');
  8324. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8325. SERIAL_CHAR(' ');
  8326. SERIAL_ECHO(duplicate_extruder_x_offset);
  8327. SERIAL_CHAR(',');
  8328. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8329. break;
  8330. default:
  8331. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8332. break;
  8333. }
  8334. active_extruder_parked = false;
  8335. extruder_duplication_enabled = false;
  8336. delayed_move_time = 0;
  8337. }
  8338. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8339. inline void gcode_M605() {
  8340. stepper.synchronize();
  8341. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8342. SERIAL_ECHO_START();
  8343. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8344. }
  8345. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8346. #if ENABLED(LIN_ADVANCE)
  8347. /**
  8348. * M900: Set and/or Get advance K factor and WH/D ratio
  8349. *
  8350. * K<factor> Set advance K factor
  8351. * R<ratio> Set ratio directly (overrides WH/D)
  8352. * W<width> H<height> D<diam> Set ratio from WH/D
  8353. */
  8354. inline void gcode_M900() {
  8355. stepper.synchronize();
  8356. const float newK = parser.floatval('K', -1);
  8357. if (newK >= 0) planner.extruder_advance_k = newK;
  8358. float newR = parser.floatval('R', -1);
  8359. if (newR < 0) {
  8360. const float newD = parser.floatval('D', -1),
  8361. newW = parser.floatval('W', -1),
  8362. newH = parser.floatval('H', -1);
  8363. if (newD >= 0 && newW >= 0 && newH >= 0)
  8364. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8365. }
  8366. if (newR >= 0) planner.advance_ed_ratio = newR;
  8367. SERIAL_ECHO_START();
  8368. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8369. SERIAL_ECHOPGM(" E/D=");
  8370. const float ratio = planner.advance_ed_ratio;
  8371. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8372. SERIAL_EOL();
  8373. }
  8374. #endif // LIN_ADVANCE
  8375. #if ENABLED(HAVE_TMC2130)
  8376. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8377. SERIAL_CHAR(name);
  8378. SERIAL_ECHOPGM(" axis driver current: ");
  8379. SERIAL_ECHOLN(st.getCurrent());
  8380. }
  8381. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8382. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8383. tmc2130_get_current(st, name);
  8384. }
  8385. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8386. SERIAL_CHAR(name);
  8387. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8388. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8389. SERIAL_EOL();
  8390. }
  8391. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8392. st.clear_otpw();
  8393. SERIAL_CHAR(name);
  8394. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8395. }
  8396. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8397. SERIAL_CHAR(name);
  8398. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8399. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8400. }
  8401. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8402. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8403. tmc2130_get_pwmthrs(st, name, spmm);
  8404. }
  8405. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8406. SERIAL_CHAR(name);
  8407. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8408. SERIAL_ECHOLN(st.sgt());
  8409. }
  8410. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8411. st.sgt(sgt_val);
  8412. tmc2130_get_sgt(st, name);
  8413. }
  8414. /**
  8415. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8416. * Report driver currents when no axis specified
  8417. *
  8418. * S1: Enable automatic current control
  8419. * S0: Disable
  8420. */
  8421. inline void gcode_M906() {
  8422. uint16_t values[XYZE];
  8423. LOOP_XYZE(i)
  8424. values[i] = parser.intval(axis_codes[i]);
  8425. #if ENABLED(X_IS_TMC2130)
  8426. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8427. else tmc2130_get_current(stepperX, 'X');
  8428. #endif
  8429. #if ENABLED(Y_IS_TMC2130)
  8430. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8431. else tmc2130_get_current(stepperY, 'Y');
  8432. #endif
  8433. #if ENABLED(Z_IS_TMC2130)
  8434. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8435. else tmc2130_get_current(stepperZ, 'Z');
  8436. #endif
  8437. #if ENABLED(E0_IS_TMC2130)
  8438. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8439. else tmc2130_get_current(stepperE0, 'E');
  8440. #endif
  8441. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8442. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8443. #endif
  8444. }
  8445. /**
  8446. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8447. * The flag is held by the library and persist until manually cleared by M912
  8448. */
  8449. inline void gcode_M911() {
  8450. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8451. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8452. #if ENABLED(X_IS_TMC2130)
  8453. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8454. #endif
  8455. #if ENABLED(Y_IS_TMC2130)
  8456. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8457. #endif
  8458. #if ENABLED(Z_IS_TMC2130)
  8459. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8460. #endif
  8461. #if ENABLED(E0_IS_TMC2130)
  8462. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8463. #endif
  8464. }
  8465. /**
  8466. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8467. */
  8468. inline void gcode_M912() {
  8469. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8470. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8471. #if ENABLED(X_IS_TMC2130)
  8472. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8473. #endif
  8474. #if ENABLED(Y_IS_TMC2130)
  8475. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8476. #endif
  8477. #if ENABLED(Z_IS_TMC2130)
  8478. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8479. #endif
  8480. #if ENABLED(E0_IS_TMC2130)
  8481. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8482. #endif
  8483. }
  8484. /**
  8485. * M913: Set HYBRID_THRESHOLD speed.
  8486. */
  8487. #if ENABLED(HYBRID_THRESHOLD)
  8488. inline void gcode_M913() {
  8489. uint16_t values[XYZE];
  8490. LOOP_XYZE(i)
  8491. values[i] = parser.intval(axis_codes[i]);
  8492. #if ENABLED(X_IS_TMC2130)
  8493. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8494. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8495. #endif
  8496. #if ENABLED(Y_IS_TMC2130)
  8497. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8498. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8499. #endif
  8500. #if ENABLED(Z_IS_TMC2130)
  8501. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8502. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8503. #endif
  8504. #if ENABLED(E0_IS_TMC2130)
  8505. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8506. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8507. #endif
  8508. }
  8509. #endif // HYBRID_THRESHOLD
  8510. /**
  8511. * M914: Set SENSORLESS_HOMING sensitivity.
  8512. */
  8513. #if ENABLED(SENSORLESS_HOMING)
  8514. inline void gcode_M914() {
  8515. #if ENABLED(X_IS_TMC2130)
  8516. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8517. else tmc2130_get_sgt(stepperX, 'X');
  8518. #endif
  8519. #if ENABLED(Y_IS_TMC2130)
  8520. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8521. else tmc2130_get_sgt(stepperY, 'Y');
  8522. #endif
  8523. }
  8524. #endif // SENSORLESS_HOMING
  8525. #endif // HAVE_TMC2130
  8526. /**
  8527. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8528. */
  8529. inline void gcode_M907() {
  8530. #if HAS_DIGIPOTSS
  8531. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8532. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8533. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8534. #elif HAS_MOTOR_CURRENT_PWM
  8535. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8536. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8537. #endif
  8538. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8539. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8540. #endif
  8541. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8542. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8543. #endif
  8544. #endif
  8545. #if ENABLED(DIGIPOT_I2C)
  8546. // this one uses actual amps in floating point
  8547. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8548. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8549. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8550. #endif
  8551. #if ENABLED(DAC_STEPPER_CURRENT)
  8552. if (parser.seen('S')) {
  8553. const float dac_percent = parser.value_float();
  8554. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8555. }
  8556. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8557. #endif
  8558. }
  8559. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8560. /**
  8561. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8562. */
  8563. inline void gcode_M908() {
  8564. #if HAS_DIGIPOTSS
  8565. stepper.digitalPotWrite(
  8566. parser.intval('P'),
  8567. parser.intval('S')
  8568. );
  8569. #endif
  8570. #ifdef DAC_STEPPER_CURRENT
  8571. dac_current_raw(
  8572. parser.byteval('P', -1),
  8573. parser.ushortval('S', 0)
  8574. );
  8575. #endif
  8576. }
  8577. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8578. inline void gcode_M909() { dac_print_values(); }
  8579. inline void gcode_M910() { dac_commit_eeprom(); }
  8580. #endif
  8581. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8582. #if HAS_MICROSTEPS
  8583. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8584. inline void gcode_M350() {
  8585. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8586. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8587. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8588. stepper.microstep_readings();
  8589. }
  8590. /**
  8591. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8592. * S# determines MS1 or MS2, X# sets the pin high/low.
  8593. */
  8594. inline void gcode_M351() {
  8595. if (parser.seenval('S')) switch (parser.value_byte()) {
  8596. case 1:
  8597. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8598. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8599. break;
  8600. case 2:
  8601. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8602. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8603. break;
  8604. }
  8605. stepper.microstep_readings();
  8606. }
  8607. #endif // HAS_MICROSTEPS
  8608. #if HAS_CASE_LIGHT
  8609. #ifndef INVERT_CASE_LIGHT
  8610. #define INVERT_CASE_LIGHT false
  8611. #endif
  8612. uint8_t case_light_brightness; // LCD routine wants INT
  8613. bool case_light_on;
  8614. void update_case_light() {
  8615. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8616. if (case_light_on) {
  8617. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8618. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8619. }
  8620. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8621. }
  8622. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8623. }
  8624. #endif // HAS_CASE_LIGHT
  8625. /**
  8626. * M355: Turn case light on/off and set brightness
  8627. *
  8628. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8629. *
  8630. * S<bool> Set case light on/off
  8631. *
  8632. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8633. *
  8634. * M355 P200 S0 turns off the light & sets the brightness level
  8635. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8636. */
  8637. inline void gcode_M355() {
  8638. #if HAS_CASE_LIGHT
  8639. uint8_t args = 0;
  8640. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8641. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8642. if (args) update_case_light();
  8643. // always report case light status
  8644. SERIAL_ECHO_START();
  8645. if (!case_light_on) {
  8646. SERIAL_ECHOLN("Case light: off");
  8647. }
  8648. else {
  8649. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8650. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8651. }
  8652. #else
  8653. SERIAL_ERROR_START();
  8654. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8655. #endif // HAS_CASE_LIGHT
  8656. }
  8657. #if ENABLED(MIXING_EXTRUDER)
  8658. /**
  8659. * M163: Set a single mix factor for a mixing extruder
  8660. * This is called "weight" by some systems.
  8661. *
  8662. * S[index] The channel index to set
  8663. * P[float] The mix value
  8664. *
  8665. */
  8666. inline void gcode_M163() {
  8667. const int mix_index = parser.intval('S');
  8668. if (mix_index < MIXING_STEPPERS) {
  8669. float mix_value = parser.floatval('P');
  8670. NOLESS(mix_value, 0.0);
  8671. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8672. }
  8673. }
  8674. #if MIXING_VIRTUAL_TOOLS > 1
  8675. /**
  8676. * M164: Store the current mix factors as a virtual tool.
  8677. *
  8678. * S[index] The virtual tool to store
  8679. *
  8680. */
  8681. inline void gcode_M164() {
  8682. const int tool_index = parser.intval('S');
  8683. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8684. normalize_mix();
  8685. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8686. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8687. }
  8688. }
  8689. #endif
  8690. #if ENABLED(DIRECT_MIXING_IN_G1)
  8691. /**
  8692. * M165: Set multiple mix factors for a mixing extruder.
  8693. * Factors that are left out will be set to 0.
  8694. * All factors together must add up to 1.0.
  8695. *
  8696. * A[factor] Mix factor for extruder stepper 1
  8697. * B[factor] Mix factor for extruder stepper 2
  8698. * C[factor] Mix factor for extruder stepper 3
  8699. * D[factor] Mix factor for extruder stepper 4
  8700. * H[factor] Mix factor for extruder stepper 5
  8701. * I[factor] Mix factor for extruder stepper 6
  8702. *
  8703. */
  8704. inline void gcode_M165() { gcode_get_mix(); }
  8705. #endif
  8706. #endif // MIXING_EXTRUDER
  8707. /**
  8708. * M999: Restart after being stopped
  8709. *
  8710. * Default behaviour is to flush the serial buffer and request
  8711. * a resend to the host starting on the last N line received.
  8712. *
  8713. * Sending "M999 S1" will resume printing without flushing the
  8714. * existing command buffer.
  8715. *
  8716. */
  8717. inline void gcode_M999() {
  8718. Running = true;
  8719. lcd_reset_alert_level();
  8720. if (parser.boolval('S')) return;
  8721. // gcode_LastN = Stopped_gcode_LastN;
  8722. FlushSerialRequestResend();
  8723. }
  8724. #if ENABLED(SWITCHING_EXTRUDER)
  8725. #if EXTRUDERS > 3
  8726. #define REQ_ANGLES 4
  8727. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8728. #else
  8729. #define REQ_ANGLES 2
  8730. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8731. #endif
  8732. inline void move_extruder_servo(const uint8_t e) {
  8733. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8734. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8735. stepper.synchronize();
  8736. #if EXTRUDERS & 1
  8737. if (e < EXTRUDERS - 1)
  8738. #endif
  8739. {
  8740. MOVE_SERVO(_SERVO_NR, angles[e]);
  8741. safe_delay(500);
  8742. }
  8743. }
  8744. #endif // SWITCHING_EXTRUDER
  8745. #if ENABLED(SWITCHING_NOZZLE)
  8746. inline void move_nozzle_servo(const uint8_t e) {
  8747. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8748. stepper.synchronize();
  8749. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8750. safe_delay(500);
  8751. }
  8752. #endif
  8753. inline void invalid_extruder_error(const uint8_t e) {
  8754. SERIAL_ECHO_START();
  8755. SERIAL_CHAR('T');
  8756. SERIAL_ECHO_F(e, DEC);
  8757. SERIAL_CHAR(' ');
  8758. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8759. }
  8760. #if ENABLED(PARKING_EXTRUDER)
  8761. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8762. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8763. #else
  8764. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8765. #endif
  8766. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  8767. switch (extruder_num) {
  8768. case 1: OUT_WRITE(SOL1_PIN, state); break;
  8769. default: OUT_WRITE(SOL0_PIN, state); break;
  8770. }
  8771. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  8772. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  8773. #endif
  8774. }
  8775. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  8776. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  8777. #endif // PARKING_EXTRUDER
  8778. #if HAS_FANMUX
  8779. void fanmux_switch(const uint8_t e) {
  8780. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8781. #if PIN_EXISTS(FANMUX1)
  8782. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8783. #if PIN_EXISTS(FANMUX2)
  8784. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  8785. #endif
  8786. #endif
  8787. }
  8788. FORCE_INLINE void fanmux_init(void){
  8789. SET_OUTPUT(FANMUX0_PIN);
  8790. #if PIN_EXISTS(FANMUX1)
  8791. SET_OUTPUT(FANMUX1_PIN);
  8792. #if PIN_EXISTS(FANMUX2)
  8793. SET_OUTPUT(FANMUX2_PIN);
  8794. #endif
  8795. #endif
  8796. fanmux_switch(0);
  8797. }
  8798. #endif // HAS_FANMUX
  8799. /**
  8800. * Perform a tool-change, which may result in moving the
  8801. * previous tool out of the way and the new tool into place.
  8802. */
  8803. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8804. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8805. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8806. return invalid_extruder_error(tmp_extruder);
  8807. // T0-Tnnn: Switch virtual tool by changing the mix
  8808. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8809. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8810. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8811. if (tmp_extruder >= EXTRUDERS)
  8812. return invalid_extruder_error(tmp_extruder);
  8813. #if HOTENDS > 1
  8814. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8815. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8816. if (tmp_extruder != active_extruder) {
  8817. if (!no_move && axis_unhomed_error()) {
  8818. no_move = true;
  8819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8820. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  8821. #endif
  8822. }
  8823. // Save current position to destination, for use later
  8824. set_destination_to_current();
  8825. #if ENABLED(DUAL_X_CARRIAGE)
  8826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8827. if (DEBUGGING(LEVELING)) {
  8828. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8829. switch (dual_x_carriage_mode) {
  8830. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8831. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8832. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8833. }
  8834. }
  8835. #endif
  8836. const float xhome = x_home_pos(active_extruder);
  8837. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8838. && IsRunning()
  8839. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8840. ) {
  8841. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8842. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8843. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8844. #endif
  8845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8846. if (DEBUGGING(LEVELING)) {
  8847. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8848. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8849. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8850. }
  8851. #endif
  8852. // Park old head: 1) raise 2) move to park position 3) lower
  8853. for (uint8_t i = 0; i < 3; i++)
  8854. planner.buffer_line(
  8855. i == 0 ? current_position[X_AXIS] : xhome,
  8856. current_position[Y_AXIS],
  8857. i == 2 ? current_position[Z_AXIS] : raised_z,
  8858. current_position[E_AXIS],
  8859. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8860. active_extruder
  8861. );
  8862. stepper.synchronize();
  8863. }
  8864. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8865. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8866. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8867. // Activate the new extruder ahead of calling set_axis_is_at_home!
  8868. active_extruder = tmp_extruder;
  8869. // This function resets the max/min values - the current position may be overwritten below.
  8870. set_axis_is_at_home(X_AXIS);
  8871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8872. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8873. #endif
  8874. // Only when auto-parking are carriages safe to move
  8875. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8876. switch (dual_x_carriage_mode) {
  8877. case DXC_FULL_CONTROL_MODE:
  8878. // New current position is the position of the activated extruder
  8879. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8880. // Save the inactive extruder's position (from the old current_position)
  8881. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8882. break;
  8883. case DXC_AUTO_PARK_MODE:
  8884. // record raised toolhead position for use by unpark
  8885. COPY(raised_parked_position, current_position);
  8886. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8887. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8888. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8889. #endif
  8890. active_extruder_parked = true;
  8891. delayed_move_time = 0;
  8892. break;
  8893. case DXC_DUPLICATION_MODE:
  8894. // If the new extruder is the left one, set it "parked"
  8895. // This triggers the second extruder to move into the duplication position
  8896. active_extruder_parked = (active_extruder == 0);
  8897. if (active_extruder_parked)
  8898. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8899. else
  8900. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8901. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8902. extruder_duplication_enabled = false;
  8903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8904. if (DEBUGGING(LEVELING)) {
  8905. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8906. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8907. }
  8908. #endif
  8909. break;
  8910. }
  8911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8912. if (DEBUGGING(LEVELING)) {
  8913. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8914. DEBUG_POS("New extruder (parked)", current_position);
  8915. }
  8916. #endif
  8917. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8918. #else // !DUAL_X_CARRIAGE
  8919. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  8920. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8921. float z_raise = 0;
  8922. if (!no_move) {
  8923. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  8924. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  8925. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  8926. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  8927. /**
  8928. * Steps:
  8929. * 1. Raise Z-Axis to give enough clearance
  8930. * 2. Move to park position of old extruder
  8931. * 3. Disengage magnetic field, wait for delay
  8932. * 4. Move near new extruder
  8933. * 5. Engage magnetic field for new extruder
  8934. * 6. Move to parking incl. offset of new extruder
  8935. * 7. Lower Z-Axis
  8936. */
  8937. // STEP 1
  8938. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8939. SERIAL_ECHOLNPGM("Starting Autopark");
  8940. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  8941. #endif
  8942. z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  8943. current_position[Z_AXIS] += z_raise;
  8944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8945. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  8946. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  8947. #endif
  8948. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8949. stepper.synchronize();
  8950. // STEP 2
  8951. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  8952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8953. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  8954. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  8955. #endif
  8956. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8957. stepper.synchronize();
  8958. // STEP 3
  8959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8960. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  8961. #endif
  8962. pe_deactivate_magnet(active_extruder);
  8963. // STEP 4
  8964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8965. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  8966. #endif
  8967. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  8968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8969. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  8970. #endif
  8971. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8972. stepper.synchronize();
  8973. // STEP 5
  8974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8975. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  8976. #endif
  8977. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8978. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  8979. #endif
  8980. pe_activate_magnet(tmp_extruder);
  8981. // STEP 6
  8982. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  8983. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8984. current_position[X_AXIS] = grabpos;
  8985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8986. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  8987. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  8988. #endif
  8989. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  8990. stepper.synchronize();
  8991. // Step 7
  8992. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  8993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8994. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  8995. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  8996. #endif
  8997. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8998. stepper.synchronize();
  8999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9000. SERIAL_ECHOLNPGM("Autopark done.");
  9001. #endif
  9002. }
  9003. else { // nomove == true
  9004. // Only engage magnetic field for new extruder
  9005. pe_activate_magnet(tmp_extruder);
  9006. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9007. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9008. #endif
  9009. }
  9010. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9012. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9013. #endif
  9014. #endif // dualParking extruder
  9015. #if ENABLED(SWITCHING_NOZZLE)
  9016. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9017. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9018. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9019. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9020. // Always raise by some amount (destination copied from current_position earlier)
  9021. current_position[Z_AXIS] += z_raise;
  9022. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9023. move_nozzle_servo(tmp_extruder);
  9024. #endif
  9025. /**
  9026. * Set current_position to the position of the new nozzle.
  9027. * Offsets are based on linear distance, so we need to get
  9028. * the resulting position in coordinate space.
  9029. *
  9030. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9031. * - With mesh leveling, update Z for the new position
  9032. * - Otherwise, just use the raw linear distance
  9033. *
  9034. * Software endstops are altered here too. Consider a case where:
  9035. * E0 at X=0 ... E1 at X=10
  9036. * When we switch to E1 now X=10, but E1 can't move left.
  9037. * To express this we apply the change in XY to the software endstops.
  9038. * E1 can move farther right than E0, so the right limit is extended.
  9039. *
  9040. * Note that we don't adjust the Z software endstops. Why not?
  9041. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9042. * because the bed is 1mm lower at the new position. As long as
  9043. * the first nozzle is out of the way, the carriage should be
  9044. * allowed to move 1mm lower. This technically "breaks" the
  9045. * Z software endstop. But this is technically correct (and
  9046. * there is no viable alternative).
  9047. */
  9048. #if ABL_PLANAR
  9049. // Offset extruder, make sure to apply the bed level rotation matrix
  9050. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9051. hotend_offset[Y_AXIS][tmp_extruder],
  9052. 0),
  9053. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9054. hotend_offset[Y_AXIS][active_extruder],
  9055. 0),
  9056. offset_vec = tmp_offset_vec - act_offset_vec;
  9057. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9058. if (DEBUGGING(LEVELING)) {
  9059. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9060. act_offset_vec.debug(PSTR("act_offset_vec"));
  9061. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9062. }
  9063. #endif
  9064. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9066. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9067. #endif
  9068. // Adjustments to the current position
  9069. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9070. current_position[Z_AXIS] += offset_vec.z;
  9071. #else // !ABL_PLANAR
  9072. const float xydiff[2] = {
  9073. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9074. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9075. };
  9076. #if ENABLED(MESH_BED_LEVELING)
  9077. if (planner.leveling_active) {
  9078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9079. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9080. #endif
  9081. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9082. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9083. z1 = current_position[Z_AXIS], z2 = z1;
  9084. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9085. planner.apply_leveling(x2, y2, z2);
  9086. current_position[Z_AXIS] += z2 - z1;
  9087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9088. if (DEBUGGING(LEVELING))
  9089. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9090. #endif
  9091. }
  9092. #endif // MESH_BED_LEVELING
  9093. #endif // !HAS_ABL
  9094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9095. if (DEBUGGING(LEVELING)) {
  9096. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9097. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9098. SERIAL_ECHOLNPGM(" }");
  9099. }
  9100. #endif
  9101. // The newly-selected extruder XY is actually at...
  9102. current_position[X_AXIS] += xydiff[X_AXIS];
  9103. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9104. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  9105. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  9106. #if HAS_POSITION_SHIFT
  9107. position_shift[i] += xydiff[i];
  9108. #endif
  9109. update_software_endstops((AxisEnum)i);
  9110. }
  9111. #endif
  9112. // Set the new active extruder
  9113. active_extruder = tmp_extruder;
  9114. #endif // !DUAL_X_CARRIAGE
  9115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9116. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9117. #endif
  9118. // Tell the planner the new "current position"
  9119. SYNC_PLAN_POSITION_KINEMATIC();
  9120. // Move to the "old position" (move the extruder into place)
  9121. if (!no_move && IsRunning()) {
  9122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9123. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9124. #endif
  9125. prepare_move_to_destination();
  9126. }
  9127. #if ENABLED(SWITCHING_NOZZLE)
  9128. // Move back down, if needed. (Including when the new tool is higher.)
  9129. if (z_raise != z_diff) {
  9130. destination[Z_AXIS] += z_diff;
  9131. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9132. prepare_move_to_destination();
  9133. }
  9134. #endif
  9135. } // (tmp_extruder != active_extruder)
  9136. stepper.synchronize();
  9137. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9138. disable_all_solenoids();
  9139. enable_solenoid_on_active_extruder();
  9140. #endif // EXT_SOLENOID
  9141. feedrate_mm_s = old_feedrate_mm_s;
  9142. #else // HOTENDS <= 1
  9143. UNUSED(fr_mm_s);
  9144. UNUSED(no_move);
  9145. #if ENABLED(MK2_MULTIPLEXER)
  9146. if (tmp_extruder >= E_STEPPERS)
  9147. return invalid_extruder_error(tmp_extruder);
  9148. select_multiplexed_stepper(tmp_extruder);
  9149. #endif
  9150. // Set the new active extruder
  9151. active_extruder = tmp_extruder;
  9152. #endif // HOTENDS <= 1
  9153. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9154. stepper.synchronize();
  9155. move_extruder_servo(active_extruder);
  9156. #endif
  9157. #if HAS_FANMUX
  9158. fanmux_switch(active_extruder);
  9159. #endif
  9160. SERIAL_ECHO_START();
  9161. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9162. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9163. }
  9164. /**
  9165. * T0-T3: Switch tool, usually switching extruders
  9166. *
  9167. * F[units/min] Set the movement feedrate
  9168. * S1 Don't move the tool in XY after change
  9169. */
  9170. inline void gcode_T(const uint8_t tmp_extruder) {
  9171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9172. if (DEBUGGING(LEVELING)) {
  9173. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9174. SERIAL_CHAR(')');
  9175. SERIAL_EOL();
  9176. DEBUG_POS("BEFORE", current_position);
  9177. }
  9178. #endif
  9179. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9180. tool_change(tmp_extruder);
  9181. #elif HOTENDS > 1
  9182. tool_change(
  9183. tmp_extruder,
  9184. MMM_TO_MMS(parser.linearval('F')),
  9185. (tmp_extruder == active_extruder) || parser.boolval('S')
  9186. );
  9187. #endif
  9188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9189. if (DEBUGGING(LEVELING)) {
  9190. DEBUG_POS("AFTER", current_position);
  9191. SERIAL_ECHOLNPGM("<<< gcode_T");
  9192. }
  9193. #endif
  9194. }
  9195. /**
  9196. * Process a single command and dispatch it to its handler
  9197. * This is called from the main loop()
  9198. */
  9199. void process_next_command() {
  9200. char * const current_command = command_queue[cmd_queue_index_r];
  9201. if (DEBUGGING(ECHO)) {
  9202. SERIAL_ECHO_START();
  9203. SERIAL_ECHOLN(current_command);
  9204. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9205. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  9206. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  9207. #endif
  9208. }
  9209. KEEPALIVE_STATE(IN_HANDLER);
  9210. // Parse the next command in the queue
  9211. parser.parse(current_command);
  9212. // Handle a known G, M, or T
  9213. switch (parser.command_letter) {
  9214. case 'G': switch (parser.codenum) {
  9215. // G0, G1
  9216. case 0:
  9217. case 1:
  9218. #if IS_SCARA
  9219. gcode_G0_G1(parser.codenum == 0);
  9220. #else
  9221. gcode_G0_G1();
  9222. #endif
  9223. break;
  9224. // G2, G3
  9225. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9226. case 2: // G2: CW ARC
  9227. case 3: // G3: CCW ARC
  9228. gcode_G2_G3(parser.codenum == 2);
  9229. break;
  9230. #endif
  9231. // G4 Dwell
  9232. case 4:
  9233. gcode_G4();
  9234. break;
  9235. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9236. case 5: // G5: Cubic B_spline
  9237. gcode_G5();
  9238. break;
  9239. #endif // BEZIER_CURVE_SUPPORT
  9240. #if ENABLED(FWRETRACT)
  9241. case 10: // G10: retract
  9242. gcode_G10();
  9243. break;
  9244. case 11: // G11: retract_recover
  9245. gcode_G11();
  9246. break;
  9247. #endif // FWRETRACT
  9248. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9249. case 12:
  9250. gcode_G12(); // G12: Nozzle Clean
  9251. break;
  9252. #endif // NOZZLE_CLEAN_FEATURE
  9253. #if ENABLED(CNC_WORKSPACE_PLANES)
  9254. case 17: // G17: Select Plane XY
  9255. gcode_G17();
  9256. break;
  9257. case 18: // G18: Select Plane ZX
  9258. gcode_G18();
  9259. break;
  9260. case 19: // G19: Select Plane YZ
  9261. gcode_G19();
  9262. break;
  9263. #endif // CNC_WORKSPACE_PLANES
  9264. #if ENABLED(INCH_MODE_SUPPORT)
  9265. case 20: // G20: Inch Mode
  9266. gcode_G20();
  9267. break;
  9268. case 21: // G21: MM Mode
  9269. gcode_G21();
  9270. break;
  9271. #endif // INCH_MODE_SUPPORT
  9272. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9273. case 26: // G26: Mesh Validation Pattern generation
  9274. gcode_G26();
  9275. break;
  9276. #endif // AUTO_BED_LEVELING_UBL
  9277. #if ENABLED(NOZZLE_PARK_FEATURE)
  9278. case 27: // G27: Nozzle Park
  9279. gcode_G27();
  9280. break;
  9281. #endif // NOZZLE_PARK_FEATURE
  9282. case 28: // G28: Home all axes, one at a time
  9283. gcode_G28(false);
  9284. break;
  9285. #if HAS_LEVELING
  9286. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9287. // or provides access to the UBL System if enabled.
  9288. gcode_G29();
  9289. break;
  9290. #endif // HAS_LEVELING
  9291. #if HAS_BED_PROBE
  9292. case 30: // G30 Single Z probe
  9293. gcode_G30();
  9294. break;
  9295. #if ENABLED(Z_PROBE_SLED)
  9296. case 31: // G31: dock the sled
  9297. gcode_G31();
  9298. break;
  9299. case 32: // G32: undock the sled
  9300. gcode_G32();
  9301. break;
  9302. #endif // Z_PROBE_SLED
  9303. #endif // HAS_BED_PROBE
  9304. #if PROBE_SELECTED
  9305. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9306. case 33: // G33: Delta Auto-Calibration
  9307. gcode_G33();
  9308. break;
  9309. #endif // DELTA_AUTO_CALIBRATION
  9310. #endif // PROBE_SELECTED
  9311. #if ENABLED(G38_PROBE_TARGET)
  9312. case 38: // G38.2 & G38.3
  9313. if (parser.subcode == 2 || parser.subcode == 3)
  9314. gcode_G38(parser.subcode == 2);
  9315. break;
  9316. #endif
  9317. case 90: // G90
  9318. relative_mode = false;
  9319. break;
  9320. case 91: // G91
  9321. relative_mode = true;
  9322. break;
  9323. case 92: // G92
  9324. gcode_G92();
  9325. break;
  9326. #if HAS_MESH
  9327. case 42:
  9328. gcode_G42();
  9329. break;
  9330. #endif
  9331. #if ENABLED(DEBUG_GCODE_PARSER)
  9332. case 800:
  9333. parser.debug(); // GCode Parser Test for G
  9334. break;
  9335. #endif
  9336. }
  9337. break;
  9338. case 'M': switch (parser.codenum) {
  9339. #if HAS_RESUME_CONTINUE
  9340. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9341. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9342. gcode_M0_M1();
  9343. break;
  9344. #endif // ULTIPANEL
  9345. #if ENABLED(SPINDLE_LASER_ENABLE)
  9346. case 3:
  9347. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9348. break; // synchronizes with movement commands
  9349. case 4:
  9350. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9351. break; // synchronizes with movement commands
  9352. case 5:
  9353. gcode_M5(); // M5 - turn spindle/laser off
  9354. break; // synchronizes with movement commands
  9355. #endif
  9356. case 17: // M17: Enable all stepper motors
  9357. gcode_M17();
  9358. break;
  9359. #if ENABLED(SDSUPPORT)
  9360. case 20: // M20: list SD card
  9361. gcode_M20(); break;
  9362. case 21: // M21: init SD card
  9363. gcode_M21(); break;
  9364. case 22: // M22: release SD card
  9365. gcode_M22(); break;
  9366. case 23: // M23: Select file
  9367. gcode_M23(); break;
  9368. case 24: // M24: Start SD print
  9369. gcode_M24(); break;
  9370. case 25: // M25: Pause SD print
  9371. gcode_M25(); break;
  9372. case 26: // M26: Set SD index
  9373. gcode_M26(); break;
  9374. case 27: // M27: Get SD status
  9375. gcode_M27(); break;
  9376. case 28: // M28: Start SD write
  9377. gcode_M28(); break;
  9378. case 29: // M29: Stop SD write
  9379. gcode_M29(); break;
  9380. case 30: // M30 <filename> Delete File
  9381. gcode_M30(); break;
  9382. case 32: // M32: Select file and start SD print
  9383. gcode_M32(); break;
  9384. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9385. case 33: // M33: Get the long full path to a file or folder
  9386. gcode_M33(); break;
  9387. #endif
  9388. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9389. case 34: // M34: Set SD card sorting options
  9390. gcode_M34(); break;
  9391. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9392. case 928: // M928: Start SD write
  9393. gcode_M928(); break;
  9394. #endif // SDSUPPORT
  9395. case 31: // M31: Report time since the start of SD print or last M109
  9396. gcode_M31(); break;
  9397. case 42: // M42: Change pin state
  9398. gcode_M42(); break;
  9399. #if ENABLED(PINS_DEBUGGING)
  9400. case 43: // M43: Read pin state
  9401. gcode_M43(); break;
  9402. #endif
  9403. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9404. case 48: // M48: Z probe repeatability test
  9405. gcode_M48();
  9406. break;
  9407. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9408. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9409. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9410. gcode_M49();
  9411. break;
  9412. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9413. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9414. case 73: // M73: Set print progress percentage
  9415. gcode_M73(); break;
  9416. #endif
  9417. case 75: // M75: Start print timer
  9418. gcode_M75(); break;
  9419. case 76: // M76: Pause print timer
  9420. gcode_M76(); break;
  9421. case 77: // M77: Stop print timer
  9422. gcode_M77(); break;
  9423. #if ENABLED(PRINTCOUNTER)
  9424. case 78: // M78: Show print statistics
  9425. gcode_M78(); break;
  9426. #endif
  9427. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9428. case 100: // M100: Free Memory Report
  9429. gcode_M100();
  9430. break;
  9431. #endif
  9432. case 104: // M104: Set hot end temperature
  9433. gcode_M104();
  9434. break;
  9435. case 110: // M110: Set Current Line Number
  9436. gcode_M110();
  9437. break;
  9438. case 111: // M111: Set debug level
  9439. gcode_M111();
  9440. break;
  9441. #if DISABLED(EMERGENCY_PARSER)
  9442. case 108: // M108: Cancel Waiting
  9443. gcode_M108();
  9444. break;
  9445. case 112: // M112: Emergency Stop
  9446. gcode_M112();
  9447. break;
  9448. case 410: // M410 quickstop - Abort all the planned moves.
  9449. gcode_M410();
  9450. break;
  9451. #endif
  9452. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9453. case 113: // M113: Set Host Keepalive interval
  9454. gcode_M113();
  9455. break;
  9456. #endif
  9457. case 140: // M140: Set bed temperature
  9458. gcode_M140();
  9459. break;
  9460. case 105: // M105: Report current temperature
  9461. gcode_M105();
  9462. KEEPALIVE_STATE(NOT_BUSY);
  9463. return; // "ok" already printed
  9464. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9465. case 155: // M155: Set temperature auto-report interval
  9466. gcode_M155();
  9467. break;
  9468. #endif
  9469. case 109: // M109: Wait for hotend temperature to reach target
  9470. gcode_M109();
  9471. break;
  9472. #if HAS_TEMP_BED
  9473. case 190: // M190: Wait for bed temperature to reach target
  9474. gcode_M190();
  9475. break;
  9476. #endif // HAS_TEMP_BED
  9477. #if FAN_COUNT > 0
  9478. case 106: // M106: Fan On
  9479. gcode_M106();
  9480. break;
  9481. case 107: // M107: Fan Off
  9482. gcode_M107();
  9483. break;
  9484. #endif // FAN_COUNT > 0
  9485. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9486. case 125: // M125: Store current position and move to filament change position
  9487. gcode_M125(); break;
  9488. #endif
  9489. #if ENABLED(BARICUDA)
  9490. // PWM for HEATER_1_PIN
  9491. #if HAS_HEATER_1
  9492. case 126: // M126: valve open
  9493. gcode_M126();
  9494. break;
  9495. case 127: // M127: valve closed
  9496. gcode_M127();
  9497. break;
  9498. #endif // HAS_HEATER_1
  9499. // PWM for HEATER_2_PIN
  9500. #if HAS_HEATER_2
  9501. case 128: // M128: valve open
  9502. gcode_M128();
  9503. break;
  9504. case 129: // M129: valve closed
  9505. gcode_M129();
  9506. break;
  9507. #endif // HAS_HEATER_2
  9508. #endif // BARICUDA
  9509. #if HAS_POWER_SWITCH
  9510. case 80: // M80: Turn on Power Supply
  9511. gcode_M80();
  9512. break;
  9513. #endif // HAS_POWER_SWITCH
  9514. case 81: // M81: Turn off Power, including Power Supply, if possible
  9515. gcode_M81();
  9516. break;
  9517. case 82: // M82: Set E axis normal mode (same as other axes)
  9518. gcode_M82();
  9519. break;
  9520. case 83: // M83: Set E axis relative mode
  9521. gcode_M83();
  9522. break;
  9523. case 18: // M18 => M84
  9524. case 84: // M84: Disable all steppers or set timeout
  9525. gcode_M18_M84();
  9526. break;
  9527. case 85: // M85: Set inactivity stepper shutdown timeout
  9528. gcode_M85();
  9529. break;
  9530. case 92: // M92: Set the steps-per-unit for one or more axes
  9531. gcode_M92();
  9532. break;
  9533. case 114: // M114: Report current position
  9534. gcode_M114();
  9535. break;
  9536. case 115: // M115: Report capabilities
  9537. gcode_M115();
  9538. break;
  9539. case 117: // M117: Set LCD message text, if possible
  9540. gcode_M117();
  9541. break;
  9542. case 118: // M118: Display a message in the host console
  9543. gcode_M118();
  9544. break;
  9545. case 119: // M119: Report endstop states
  9546. gcode_M119();
  9547. break;
  9548. case 120: // M120: Enable endstops
  9549. gcode_M120();
  9550. break;
  9551. case 121: // M121: Disable endstops
  9552. gcode_M121();
  9553. break;
  9554. #if ENABLED(ULTIPANEL)
  9555. case 145: // M145: Set material heatup parameters
  9556. gcode_M145();
  9557. break;
  9558. #endif
  9559. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9560. case 149: // M149: Set temperature units
  9561. gcode_M149();
  9562. break;
  9563. #endif
  9564. #if HAS_COLOR_LEDS
  9565. case 150: // M150: Set Status LED Color
  9566. gcode_M150();
  9567. break;
  9568. #endif // HAS_COLOR_LEDS
  9569. #if ENABLED(MIXING_EXTRUDER)
  9570. case 163: // M163: Set a component weight for mixing extruder
  9571. gcode_M163();
  9572. break;
  9573. #if MIXING_VIRTUAL_TOOLS > 1
  9574. case 164: // M164: Save current mix as a virtual extruder
  9575. gcode_M164();
  9576. break;
  9577. #endif
  9578. #if ENABLED(DIRECT_MIXING_IN_G1)
  9579. case 165: // M165: Set multiple mix weights
  9580. gcode_M165();
  9581. break;
  9582. #endif
  9583. #endif
  9584. case 200: // M200: Set filament diameter, E to cubic units
  9585. gcode_M200();
  9586. break;
  9587. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9588. gcode_M201();
  9589. break;
  9590. #if 0 // Not used for Sprinter/grbl gen6
  9591. case 202: // M202
  9592. gcode_M202();
  9593. break;
  9594. #endif
  9595. case 203: // M203: Set max feedrate (units/sec)
  9596. gcode_M203();
  9597. break;
  9598. case 204: // M204: Set acceleration
  9599. gcode_M204();
  9600. break;
  9601. case 205: // M205: Set advanced settings
  9602. gcode_M205();
  9603. break;
  9604. #if HAS_M206_COMMAND
  9605. case 206: // M206: Set home offsets
  9606. gcode_M206();
  9607. break;
  9608. #endif
  9609. #if ENABLED(DELTA)
  9610. case 665: // M665: Set delta configurations
  9611. gcode_M665();
  9612. break;
  9613. #endif
  9614. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9615. case 666: // M666: Set delta or dual endstop adjustment
  9616. gcode_M666();
  9617. break;
  9618. #endif
  9619. #if ENABLED(FWRETRACT)
  9620. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9621. gcode_M207();
  9622. break;
  9623. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9624. gcode_M208();
  9625. break;
  9626. case 209: // M209: Turn Automatic Retract Detection on/off
  9627. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9628. break;
  9629. #endif // FWRETRACT
  9630. case 211: // M211: Enable, Disable, and/or Report software endstops
  9631. gcode_M211();
  9632. break;
  9633. #if HOTENDS > 1
  9634. case 218: // M218: Set a tool offset
  9635. gcode_M218();
  9636. break;
  9637. #endif
  9638. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9639. gcode_M220();
  9640. break;
  9641. case 221: // M221: Set Flow Percentage
  9642. gcode_M221();
  9643. break;
  9644. case 226: // M226: Wait until a pin reaches a state
  9645. gcode_M226();
  9646. break;
  9647. #if HAS_SERVOS
  9648. case 280: // M280: Set servo position absolute
  9649. gcode_M280();
  9650. break;
  9651. #endif // HAS_SERVOS
  9652. #if HAS_BUZZER
  9653. case 300: // M300: Play beep tone
  9654. gcode_M300();
  9655. break;
  9656. #endif // HAS_BUZZER
  9657. #if ENABLED(PIDTEMP)
  9658. case 301: // M301: Set hotend PID parameters
  9659. gcode_M301();
  9660. break;
  9661. #endif // PIDTEMP
  9662. #if ENABLED(PIDTEMPBED)
  9663. case 304: // M304: Set bed PID parameters
  9664. gcode_M304();
  9665. break;
  9666. #endif // PIDTEMPBED
  9667. #if defined(CHDK) || HAS_PHOTOGRAPH
  9668. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9669. gcode_M240();
  9670. break;
  9671. #endif // CHDK || PHOTOGRAPH_PIN
  9672. #if HAS_LCD_CONTRAST
  9673. case 250: // M250: Set LCD contrast
  9674. gcode_M250();
  9675. break;
  9676. #endif // HAS_LCD_CONTRAST
  9677. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9678. case 260: // M260: Send data to an i2c slave
  9679. gcode_M260();
  9680. break;
  9681. case 261: // M261: Request data from an i2c slave
  9682. gcode_M261();
  9683. break;
  9684. #endif // EXPERIMENTAL_I2CBUS
  9685. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9686. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9687. gcode_M302();
  9688. break;
  9689. #endif // PREVENT_COLD_EXTRUSION
  9690. case 303: // M303: PID autotune
  9691. gcode_M303();
  9692. break;
  9693. #if ENABLED(MORGAN_SCARA)
  9694. case 360: // M360: SCARA Theta pos1
  9695. if (gcode_M360()) return;
  9696. break;
  9697. case 361: // M361: SCARA Theta pos2
  9698. if (gcode_M361()) return;
  9699. break;
  9700. case 362: // M362: SCARA Psi pos1
  9701. if (gcode_M362()) return;
  9702. break;
  9703. case 363: // M363: SCARA Psi pos2
  9704. if (gcode_M363()) return;
  9705. break;
  9706. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9707. if (gcode_M364()) return;
  9708. break;
  9709. #endif // SCARA
  9710. case 400: // M400: Finish all moves
  9711. gcode_M400();
  9712. break;
  9713. #if HAS_BED_PROBE
  9714. case 401: // M401: Deploy probe
  9715. gcode_M401();
  9716. break;
  9717. case 402: // M402: Stow probe
  9718. gcode_M402();
  9719. break;
  9720. #endif // HAS_BED_PROBE
  9721. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9722. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9723. gcode_M404();
  9724. break;
  9725. case 405: // M405: Turn on filament sensor for control
  9726. gcode_M405();
  9727. break;
  9728. case 406: // M406: Turn off filament sensor for control
  9729. gcode_M406();
  9730. break;
  9731. case 407: // M407: Display measured filament diameter
  9732. gcode_M407();
  9733. break;
  9734. #endif // FILAMENT_WIDTH_SENSOR
  9735. #if HAS_LEVELING
  9736. case 420: // M420: Enable/Disable Bed Leveling
  9737. gcode_M420();
  9738. break;
  9739. #endif
  9740. #if HAS_MESH
  9741. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9742. gcode_M421();
  9743. break;
  9744. #endif
  9745. #if HAS_M206_COMMAND
  9746. case 428: // M428: Apply current_position to home_offset
  9747. gcode_M428();
  9748. break;
  9749. #endif
  9750. case 500: // M500: Store settings in EEPROM
  9751. gcode_M500();
  9752. break;
  9753. case 501: // M501: Read settings from EEPROM
  9754. gcode_M501();
  9755. break;
  9756. case 502: // M502: Revert to default settings
  9757. gcode_M502();
  9758. break;
  9759. #if DISABLED(DISABLE_M503)
  9760. case 503: // M503: print settings currently in memory
  9761. gcode_M503();
  9762. break;
  9763. #endif
  9764. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9765. case 540: // M540: Set abort on endstop hit for SD printing
  9766. gcode_M540();
  9767. break;
  9768. #endif
  9769. #if HAS_BED_PROBE
  9770. case 851: // M851: Set Z Probe Z Offset
  9771. gcode_M851();
  9772. break;
  9773. #endif // HAS_BED_PROBE
  9774. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9775. case 600: // M600: Pause for filament change
  9776. gcode_M600();
  9777. break;
  9778. #endif // ADVANCED_PAUSE_FEATURE
  9779. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9780. case 605: // M605: Set Dual X Carriage movement mode
  9781. gcode_M605();
  9782. break;
  9783. #endif // DUAL_X_CARRIAGE
  9784. #if ENABLED(MK2_MULTIPLEXER)
  9785. case 702: // M702: Unload all extruders
  9786. gcode_M702();
  9787. break;
  9788. #endif
  9789. #if ENABLED(LIN_ADVANCE)
  9790. case 900: // M900: Set advance K factor.
  9791. gcode_M900();
  9792. break;
  9793. #endif
  9794. #if ENABLED(HAVE_TMC2130)
  9795. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9796. gcode_M906();
  9797. break;
  9798. #endif
  9799. case 907: // M907: Set digital trimpot motor current using axis codes.
  9800. gcode_M907();
  9801. break;
  9802. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9803. case 908: // M908: Control digital trimpot directly.
  9804. gcode_M908();
  9805. break;
  9806. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9807. case 909: // M909: Print digipot/DAC current value
  9808. gcode_M909();
  9809. break;
  9810. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9811. gcode_M910();
  9812. break;
  9813. #endif
  9814. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9815. #if ENABLED(HAVE_TMC2130)
  9816. case 911: // M911: Report TMC2130 prewarn triggered flags
  9817. gcode_M911();
  9818. break;
  9819. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9820. gcode_M912();
  9821. break;
  9822. #if ENABLED(HYBRID_THRESHOLD)
  9823. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9824. gcode_M913();
  9825. break;
  9826. #endif
  9827. #if ENABLED(SENSORLESS_HOMING)
  9828. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9829. gcode_M914();
  9830. break;
  9831. #endif
  9832. #endif
  9833. #if HAS_MICROSTEPS
  9834. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9835. gcode_M350();
  9836. break;
  9837. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9838. gcode_M351();
  9839. break;
  9840. #endif // HAS_MICROSTEPS
  9841. case 355: // M355 set case light brightness
  9842. gcode_M355();
  9843. break;
  9844. #if ENABLED(DEBUG_GCODE_PARSER)
  9845. case 800:
  9846. parser.debug(); // GCode Parser Test for M
  9847. break;
  9848. #endif
  9849. #if ENABLED(I2C_POSITION_ENCODERS)
  9850. case 860: // M860 Report encoder module position
  9851. gcode_M860();
  9852. break;
  9853. case 861: // M861 Report encoder module status
  9854. gcode_M861();
  9855. break;
  9856. case 862: // M862 Perform axis test
  9857. gcode_M862();
  9858. break;
  9859. case 863: // M863 Calibrate steps/mm
  9860. gcode_M863();
  9861. break;
  9862. case 864: // M864 Change module address
  9863. gcode_M864();
  9864. break;
  9865. case 865: // M865 Check module firmware version
  9866. gcode_M865();
  9867. break;
  9868. case 866: // M866 Report axis error count
  9869. gcode_M866();
  9870. break;
  9871. case 867: // M867 Toggle error correction
  9872. gcode_M867();
  9873. break;
  9874. case 868: // M868 Set error correction threshold
  9875. gcode_M868();
  9876. break;
  9877. case 869: // M869 Report axis error
  9878. gcode_M869();
  9879. break;
  9880. #endif // I2C_POSITION_ENCODERS
  9881. case 999: // M999: Restart after being Stopped
  9882. gcode_M999();
  9883. break;
  9884. }
  9885. break;
  9886. case 'T':
  9887. gcode_T(parser.codenum);
  9888. break;
  9889. default: parser.unknown_command_error();
  9890. }
  9891. KEEPALIVE_STATE(NOT_BUSY);
  9892. ok_to_send();
  9893. }
  9894. /**
  9895. * Send a "Resend: nnn" message to the host to
  9896. * indicate that a command needs to be re-sent.
  9897. */
  9898. void FlushSerialRequestResend() {
  9899. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9900. MYSERIAL.flush();
  9901. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9902. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9903. ok_to_send();
  9904. }
  9905. /**
  9906. * Send an "ok" message to the host, indicating
  9907. * that a command was successfully processed.
  9908. *
  9909. * If ADVANCED_OK is enabled also include:
  9910. * N<int> Line number of the command, if any
  9911. * P<int> Planner space remaining
  9912. * B<int> Block queue space remaining
  9913. */
  9914. void ok_to_send() {
  9915. refresh_cmd_timeout();
  9916. if (!send_ok[cmd_queue_index_r]) return;
  9917. SERIAL_PROTOCOLPGM(MSG_OK);
  9918. #if ENABLED(ADVANCED_OK)
  9919. char* p = command_queue[cmd_queue_index_r];
  9920. if (*p == 'N') {
  9921. SERIAL_PROTOCOL(' ');
  9922. SERIAL_ECHO(*p++);
  9923. while (NUMERIC_SIGNED(*p))
  9924. SERIAL_ECHO(*p++);
  9925. }
  9926. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9927. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9928. #endif
  9929. SERIAL_EOL();
  9930. }
  9931. #if HAS_SOFTWARE_ENDSTOPS
  9932. /**
  9933. * Constrain the given coordinates to the software endstops.
  9934. */
  9935. /**
  9936. * Constrain the given coordinates to the software endstops.
  9937. *
  9938. * NOTE: This will only apply to Z on DELTA and SCARA. XY is
  9939. * constrained to a circle on these kinematic systems.
  9940. */
  9941. void clamp_to_software_endstops(float target[XYZ]) {
  9942. if (!soft_endstops_enabled) return;
  9943. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  9944. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9945. #endif
  9946. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  9947. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9948. #endif
  9949. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  9950. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9951. #endif
  9952. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  9953. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9954. #endif
  9955. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  9956. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9957. #endif
  9958. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  9959. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9960. #endif
  9961. }
  9962. #endif
  9963. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9964. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9965. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9966. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9967. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9968. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9969. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9970. #else
  9971. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9972. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9973. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9974. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9975. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9976. #endif
  9977. // Get the Z adjustment for non-linear bed leveling
  9978. float bilinear_z_offset(const float logical[XYZ]) {
  9979. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9980. last_x = -999.999, last_y = -999.999;
  9981. // Whole units for the grid line indices. Constrained within bounds.
  9982. static int8_t gridx, gridy, nextx, nexty,
  9983. last_gridx = -99, last_gridy = -99;
  9984. // XY relative to the probed area
  9985. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9986. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9987. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9988. // Keep using the last grid box
  9989. #define FAR_EDGE_OR_BOX 2
  9990. #else
  9991. // Just use the grid far edge
  9992. #define FAR_EDGE_OR_BOX 1
  9993. #endif
  9994. if (last_x != x) {
  9995. last_x = x;
  9996. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9997. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9998. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9999. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10000. // Beyond the grid maintain height at grid edges
  10001. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10002. #endif
  10003. gridx = gx;
  10004. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10005. }
  10006. if (last_y != y || last_gridx != gridx) {
  10007. if (last_y != y) {
  10008. last_y = y;
  10009. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  10010. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10011. ratio_y -= gy;
  10012. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10013. // Beyond the grid maintain height at grid edges
  10014. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10015. #endif
  10016. gridy = gy;
  10017. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10018. }
  10019. if (last_gridx != gridx || last_gridy != gridy) {
  10020. last_gridx = gridx;
  10021. last_gridy = gridy;
  10022. // Z at the box corners
  10023. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10024. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10025. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10026. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10027. }
  10028. // Bilinear interpolate. Needed since y or gridx has changed.
  10029. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10030. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10031. D = R - L;
  10032. }
  10033. const float offset = L + ratio_x * D; // the offset almost always changes
  10034. /*
  10035. static float last_offset = 0;
  10036. if (FABS(last_offset - offset) > 0.2) {
  10037. SERIAL_ECHOPGM("Sudden Shift at ");
  10038. SERIAL_ECHOPAIR("x=", x);
  10039. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10040. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10041. SERIAL_ECHOPAIR(" y=", y);
  10042. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10043. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10044. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10045. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10046. SERIAL_ECHOPAIR(" z1=", z1);
  10047. SERIAL_ECHOPAIR(" z2=", z2);
  10048. SERIAL_ECHOPAIR(" z3=", z3);
  10049. SERIAL_ECHOLNPAIR(" z4=", z4);
  10050. SERIAL_ECHOPAIR(" L=", L);
  10051. SERIAL_ECHOPAIR(" R=", R);
  10052. SERIAL_ECHOLNPAIR(" offset=", offset);
  10053. }
  10054. last_offset = offset;
  10055. //*/
  10056. return offset;
  10057. }
  10058. #endif // AUTO_BED_LEVELING_BILINEAR
  10059. #if ENABLED(DELTA)
  10060. /**
  10061. * Recalculate factors used for delta kinematics whenever
  10062. * settings have been changed (e.g., by M665).
  10063. */
  10064. void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
  10065. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10066. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10067. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  10068. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  10069. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  10070. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  10071. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
  10072. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
  10073. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  10074. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  10075. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  10076. }
  10077. #if ENABLED(DELTA_FAST_SQRT)
  10078. /**
  10079. * Fast inverse sqrt from Quake III Arena
  10080. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10081. */
  10082. float Q_rsqrt(float number) {
  10083. long i;
  10084. float x2, y;
  10085. const float threehalfs = 1.5f;
  10086. x2 = number * 0.5f;
  10087. y = number;
  10088. i = * ( long * ) &y; // evil floating point bit level hacking
  10089. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10090. y = * ( float * ) &i;
  10091. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10092. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10093. return y;
  10094. }
  10095. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10096. #else
  10097. #define _SQRT(n) SQRT(n)
  10098. #endif
  10099. /**
  10100. * Delta Inverse Kinematics
  10101. *
  10102. * Calculate the tower positions for a given logical
  10103. * position, storing the result in the delta[] array.
  10104. *
  10105. * This is an expensive calculation, requiring 3 square
  10106. * roots per segmented linear move, and strains the limits
  10107. * of a Mega2560 with a Graphical Display.
  10108. *
  10109. * Suggested optimizations include:
  10110. *
  10111. * - Disable the home_offset (M206) and/or position_shift (G92)
  10112. * features to remove up to 12 float additions.
  10113. *
  10114. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10115. * (see above)
  10116. */
  10117. // Macro to obtain the Z position of an individual tower
  10118. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10119. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10120. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10121. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10122. ) \
  10123. )
  10124. #define DELTA_RAW_IK() do { \
  10125. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10126. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10127. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10128. }while(0)
  10129. #define DELTA_LOGICAL_IK() do { \
  10130. const float raw[XYZ] = { \
  10131. RAW_X_POSITION(logical[X_AXIS]), \
  10132. RAW_Y_POSITION(logical[Y_AXIS]), \
  10133. RAW_Z_POSITION(logical[Z_AXIS]) \
  10134. }; \
  10135. DELTA_RAW_IK(); \
  10136. }while(0)
  10137. #define DELTA_DEBUG() do { \
  10138. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10139. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10140. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10141. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10142. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10143. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10144. }while(0)
  10145. void inverse_kinematics(const float logical[XYZ]) {
  10146. DELTA_LOGICAL_IK();
  10147. // DELTA_DEBUG();
  10148. }
  10149. /**
  10150. * Calculate the highest Z position where the
  10151. * effector has the full range of XY motion.
  10152. */
  10153. float delta_safe_distance_from_top() {
  10154. float cartesian[XYZ] = {
  10155. LOGICAL_X_POSITION(0),
  10156. LOGICAL_Y_POSITION(0),
  10157. LOGICAL_Z_POSITION(0)
  10158. };
  10159. inverse_kinematics(cartesian);
  10160. float distance = delta[A_AXIS];
  10161. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10162. inverse_kinematics(cartesian);
  10163. return FABS(distance - delta[A_AXIS]);
  10164. }
  10165. /**
  10166. * Delta Forward Kinematics
  10167. *
  10168. * See the Wikipedia article "Trilateration"
  10169. * https://en.wikipedia.org/wiki/Trilateration
  10170. *
  10171. * Establish a new coordinate system in the plane of the
  10172. * three carriage points. This system has its origin at
  10173. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10174. * plane with a Z component of zero.
  10175. * We will define unit vectors in this coordinate system
  10176. * in our original coordinate system. Then when we calculate
  10177. * the Xnew, Ynew and Znew values, we can translate back into
  10178. * the original system by moving along those unit vectors
  10179. * by the corresponding values.
  10180. *
  10181. * Variable names matched to Marlin, c-version, and avoid the
  10182. * use of any vector library.
  10183. *
  10184. * by Andreas Hardtung 2016-06-07
  10185. * based on a Java function from "Delta Robot Kinematics V3"
  10186. * by Steve Graves
  10187. *
  10188. * The result is stored in the cartes[] array.
  10189. */
  10190. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10191. // Create a vector in old coordinates along x axis of new coordinate
  10192. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10193. // Get the Magnitude of vector.
  10194. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10195. // Create unit vector by dividing by magnitude.
  10196. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10197. // Get the vector from the origin of the new system to the third point.
  10198. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10199. // Use the dot product to find the component of this vector on the X axis.
  10200. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10201. // Create a vector along the x axis that represents the x component of p13.
  10202. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10203. // Subtract the X component from the original vector leaving only Y. We use the
  10204. // variable that will be the unit vector after we scale it.
  10205. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10206. // The magnitude of Y component
  10207. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10208. // Convert to a unit vector
  10209. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10210. // The cross product of the unit x and y is the unit z
  10211. // float[] ez = vectorCrossProd(ex, ey);
  10212. float ez[3] = {
  10213. ex[1] * ey[2] - ex[2] * ey[1],
  10214. ex[2] * ey[0] - ex[0] * ey[2],
  10215. ex[0] * ey[1] - ex[1] * ey[0]
  10216. };
  10217. // We now have the d, i and j values defined in Wikipedia.
  10218. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10219. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10220. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10221. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10222. // Start from the origin of the old coordinates and add vectors in the
  10223. // old coords that represent the Xnew, Ynew and Znew to find the point
  10224. // in the old system.
  10225. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10226. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10227. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10228. }
  10229. void forward_kinematics_DELTA(float point[ABC]) {
  10230. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10231. }
  10232. #endif // DELTA
  10233. /**
  10234. * Get the stepper positions in the cartes[] array.
  10235. * Forward kinematics are applied for DELTA and SCARA.
  10236. *
  10237. * The result is in the current coordinate space with
  10238. * leveling applied. The coordinates need to be run through
  10239. * unapply_leveling to obtain the "ideal" coordinates
  10240. * suitable for current_position, etc.
  10241. */
  10242. void get_cartesian_from_steppers() {
  10243. #if ENABLED(DELTA)
  10244. forward_kinematics_DELTA(
  10245. stepper.get_axis_position_mm(A_AXIS),
  10246. stepper.get_axis_position_mm(B_AXIS),
  10247. stepper.get_axis_position_mm(C_AXIS)
  10248. );
  10249. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10250. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10251. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  10252. #elif IS_SCARA
  10253. forward_kinematics_SCARA(
  10254. stepper.get_axis_position_degrees(A_AXIS),
  10255. stepper.get_axis_position_degrees(B_AXIS)
  10256. );
  10257. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10258. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10259. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10260. #else
  10261. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10262. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10263. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10264. #endif
  10265. }
  10266. /**
  10267. * Set the current_position for an axis based on
  10268. * the stepper positions, removing any leveling that
  10269. * may have been applied.
  10270. */
  10271. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10272. get_cartesian_from_steppers();
  10273. #if PLANNER_LEVELING
  10274. planner.unapply_leveling(cartes);
  10275. #endif
  10276. if (axis == ALL_AXES)
  10277. COPY(current_position, cartes);
  10278. else
  10279. current_position[axis] = cartes[axis];
  10280. }
  10281. #if ENABLED(MESH_BED_LEVELING)
  10282. /**
  10283. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10284. * splitting the move where it crosses mesh borders.
  10285. */
  10286. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10287. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  10288. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  10289. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  10290. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  10291. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10292. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10293. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10294. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10295. if (cx1 == cx2 && cy1 == cy2) {
  10296. // Start and end on same mesh square
  10297. line_to_destination(fr_mm_s);
  10298. set_current_to_destination();
  10299. return;
  10300. }
  10301. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10302. float normalized_dist, end[XYZE];
  10303. // Split at the left/front border of the right/top square
  10304. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10305. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10306. COPY(end, destination);
  10307. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10308. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10309. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10310. CBI(x_splits, gcx);
  10311. }
  10312. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10313. COPY(end, destination);
  10314. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10315. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10316. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10317. CBI(y_splits, gcy);
  10318. }
  10319. else {
  10320. // Already split on a border
  10321. line_to_destination(fr_mm_s);
  10322. set_current_to_destination();
  10323. return;
  10324. }
  10325. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10326. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10327. // Do the split and look for more borders
  10328. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10329. // Restore destination from stack
  10330. COPY(destination, end);
  10331. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10332. }
  10333. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10334. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10335. /**
  10336. * Prepare a bilinear-leveled linear move on Cartesian,
  10337. * splitting the move where it crosses grid borders.
  10338. */
  10339. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10340. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10341. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10342. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10343. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10344. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10345. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10346. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10347. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10348. if (cx1 == cx2 && cy1 == cy2) {
  10349. // Start and end on same mesh square
  10350. line_to_destination(fr_mm_s);
  10351. set_current_to_destination();
  10352. return;
  10353. }
  10354. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10355. float normalized_dist, end[XYZE];
  10356. // Split at the left/front border of the right/top square
  10357. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10358. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10359. COPY(end, destination);
  10360. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10361. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10362. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10363. CBI(x_splits, gcx);
  10364. }
  10365. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10366. COPY(end, destination);
  10367. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10368. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10369. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10370. CBI(y_splits, gcy);
  10371. }
  10372. else {
  10373. // Already split on a border
  10374. line_to_destination(fr_mm_s);
  10375. set_current_to_destination();
  10376. return;
  10377. }
  10378. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10379. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10380. // Do the split and look for more borders
  10381. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10382. // Restore destination from stack
  10383. COPY(destination, end);
  10384. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10385. }
  10386. #endif // AUTO_BED_LEVELING_BILINEAR
  10387. #if IS_KINEMATIC && !UBL_DELTA
  10388. /**
  10389. * Prepare a linear move in a DELTA or SCARA setup.
  10390. *
  10391. * This calls planner.buffer_line several times, adding
  10392. * small incremental moves for DELTA or SCARA.
  10393. */
  10394. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10395. // Get the top feedrate of the move in the XY plane
  10396. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10397. // If the move is only in Z/E don't split up the move
  10398. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10399. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10400. return false;
  10401. }
  10402. // Fail if attempting move outside printable radius
  10403. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10404. // Get the cartesian distances moved in XYZE
  10405. const float difference[XYZE] = {
  10406. ltarget[X_AXIS] - current_position[X_AXIS],
  10407. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10408. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10409. ltarget[E_AXIS] - current_position[E_AXIS]
  10410. };
  10411. // Get the linear distance in XYZ
  10412. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10413. // If the move is very short, check the E move distance
  10414. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10415. // No E move either? Game over.
  10416. if (UNEAR_ZERO(cartesian_mm)) return true;
  10417. // Minimum number of seconds to move the given distance
  10418. const float seconds = cartesian_mm / _feedrate_mm_s;
  10419. // The number of segments-per-second times the duration
  10420. // gives the number of segments
  10421. uint16_t segments = delta_segments_per_second * seconds;
  10422. // For SCARA minimum segment size is 0.25mm
  10423. #if IS_SCARA
  10424. NOMORE(segments, cartesian_mm * 4);
  10425. #endif
  10426. // At least one segment is required
  10427. NOLESS(segments, 1);
  10428. // The approximate length of each segment
  10429. const float inv_segments = 1.0 / float(segments),
  10430. segment_distance[XYZE] = {
  10431. difference[X_AXIS] * inv_segments,
  10432. difference[Y_AXIS] * inv_segments,
  10433. difference[Z_AXIS] * inv_segments,
  10434. difference[E_AXIS] * inv_segments
  10435. };
  10436. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10437. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10438. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10439. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10440. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10441. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10442. feed_factor = inv_segment_length * _feedrate_mm_s;
  10443. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10444. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10445. #endif
  10446. // Get the logical current position as starting point
  10447. float logical[XYZE];
  10448. COPY(logical, current_position);
  10449. // Drop one segment so the last move is to the exact target.
  10450. // If there's only 1 segment, loops will be skipped entirely.
  10451. --segments;
  10452. // Calculate and execute the segments
  10453. for (uint16_t s = segments + 1; --s;) {
  10454. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10455. #if ENABLED(DELTA)
  10456. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10457. #else
  10458. inverse_kinematics(logical);
  10459. #endif
  10460. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10461. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10462. // For SCARA scale the feed rate from mm/s to degrees/s
  10463. // Use ratio between the length of the move and the larger angle change
  10464. const float adiff = abs(delta[A_AXIS] - oldA),
  10465. bdiff = abs(delta[B_AXIS] - oldB);
  10466. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10467. oldA = delta[A_AXIS];
  10468. oldB = delta[B_AXIS];
  10469. #else
  10470. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10471. #endif
  10472. }
  10473. // Since segment_distance is only approximate,
  10474. // the final move must be to the exact destination.
  10475. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10476. // For SCARA scale the feed rate from mm/s to degrees/s
  10477. // With segments > 1 length is 1 segment, otherwise total length
  10478. inverse_kinematics(ltarget);
  10479. ADJUST_DELTA(ltarget);
  10480. const float adiff = abs(delta[A_AXIS] - oldA),
  10481. bdiff = abs(delta[B_AXIS] - oldB);
  10482. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10483. #else
  10484. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10485. #endif
  10486. return false;
  10487. }
  10488. #else // !IS_KINEMATIC || UBL_DELTA
  10489. /**
  10490. * Prepare a linear move in a Cartesian setup.
  10491. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10492. *
  10493. * Returns true if current_position[] was set to destination[]
  10494. */
  10495. inline bool prepare_move_to_destination_cartesian() {
  10496. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10497. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10498. #if HAS_MESH
  10499. if (planner.leveling_active) {
  10500. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10501. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10502. #elif ENABLED(MESH_BED_LEVELING)
  10503. mesh_line_to_destination(fr_scaled);
  10504. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10505. bilinear_line_to_destination(fr_scaled);
  10506. #endif
  10507. return true;
  10508. }
  10509. #endif // HAS_MESH
  10510. line_to_destination(fr_scaled);
  10511. }
  10512. else
  10513. line_to_destination();
  10514. return false;
  10515. }
  10516. #endif // !IS_KINEMATIC || UBL_DELTA
  10517. #if ENABLED(DUAL_X_CARRIAGE)
  10518. /**
  10519. * Prepare a linear move in a dual X axis setup
  10520. */
  10521. inline bool prepare_move_to_destination_dualx() {
  10522. if (active_extruder_parked) {
  10523. switch (dual_x_carriage_mode) {
  10524. case DXC_FULL_CONTROL_MODE:
  10525. break;
  10526. case DXC_AUTO_PARK_MODE:
  10527. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10528. // This is a travel move (with no extrusion)
  10529. // Skip it, but keep track of the current position
  10530. // (so it can be used as the start of the next non-travel move)
  10531. if (delayed_move_time != 0xFFFFFFFFUL) {
  10532. set_current_to_destination();
  10533. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10534. delayed_move_time = millis();
  10535. return true;
  10536. }
  10537. }
  10538. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10539. for (uint8_t i = 0; i < 3; i++)
  10540. planner.buffer_line(
  10541. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10542. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10543. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10544. current_position[E_AXIS],
  10545. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10546. active_extruder
  10547. );
  10548. delayed_move_time = 0;
  10549. active_extruder_parked = false;
  10550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10551. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10552. #endif
  10553. break;
  10554. case DXC_DUPLICATION_MODE:
  10555. if (active_extruder == 0) {
  10556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10557. if (DEBUGGING(LEVELING)) {
  10558. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10559. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10560. }
  10561. #endif
  10562. // move duplicate extruder into correct duplication position.
  10563. planner.set_position_mm(
  10564. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10565. current_position[Y_AXIS],
  10566. current_position[Z_AXIS],
  10567. current_position[E_AXIS]
  10568. );
  10569. planner.buffer_line(
  10570. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10571. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10572. planner.max_feedrate_mm_s[X_AXIS], 1
  10573. );
  10574. SYNC_PLAN_POSITION_KINEMATIC();
  10575. stepper.synchronize();
  10576. extruder_duplication_enabled = true;
  10577. active_extruder_parked = false;
  10578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10579. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10580. #endif
  10581. }
  10582. else {
  10583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10584. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10585. #endif
  10586. }
  10587. break;
  10588. }
  10589. }
  10590. return prepare_move_to_destination_cartesian();
  10591. }
  10592. #endif // DUAL_X_CARRIAGE
  10593. /**
  10594. * Prepare a single move and get ready for the next one
  10595. *
  10596. * This may result in several calls to planner.buffer_line to
  10597. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10598. */
  10599. void prepare_move_to_destination() {
  10600. clamp_to_software_endstops(destination);
  10601. refresh_cmd_timeout();
  10602. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10603. if (!DEBUGGING(DRYRUN)) {
  10604. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10605. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10606. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10607. SERIAL_ECHO_START();
  10608. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10609. }
  10610. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10611. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10612. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10613. SERIAL_ECHO_START();
  10614. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10615. }
  10616. #endif
  10617. }
  10618. }
  10619. #endif
  10620. if (
  10621. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10622. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10623. #elif IS_KINEMATIC
  10624. prepare_kinematic_move_to(destination)
  10625. #elif ENABLED(DUAL_X_CARRIAGE)
  10626. prepare_move_to_destination_dualx()
  10627. #else
  10628. prepare_move_to_destination_cartesian()
  10629. #endif
  10630. ) return;
  10631. set_current_to_destination();
  10632. }
  10633. #if ENABLED(ARC_SUPPORT)
  10634. #if N_ARC_CORRECTION < 1
  10635. #undef N_ARC_CORRECTION
  10636. #define N_ARC_CORRECTION 1
  10637. #endif
  10638. /**
  10639. * Plan an arc in 2 dimensions
  10640. *
  10641. * The arc is approximated by generating many small linear segments.
  10642. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10643. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10644. * larger segments will tend to be more efficient. Your slicer should have
  10645. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10646. */
  10647. void plan_arc(
  10648. float logical[XYZE], // Destination position
  10649. float *offset, // Center of rotation relative to current_position
  10650. uint8_t clockwise // Clockwise?
  10651. ) {
  10652. #if ENABLED(CNC_WORKSPACE_PLANES)
  10653. AxisEnum p_axis, q_axis, l_axis;
  10654. switch (workspace_plane) {
  10655. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10656. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10657. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10658. }
  10659. #else
  10660. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10661. #endif
  10662. // Radius vector from center to current location
  10663. float r_P = -offset[0], r_Q = -offset[1];
  10664. const float radius = HYPOT(r_P, r_Q),
  10665. center_P = current_position[p_axis] - r_P,
  10666. center_Q = current_position[q_axis] - r_Q,
  10667. rt_X = logical[p_axis] - center_P,
  10668. rt_Y = logical[q_axis] - center_Q,
  10669. linear_travel = logical[l_axis] - current_position[l_axis],
  10670. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10671. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10672. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10673. if (angular_travel < 0) angular_travel += RADIANS(360);
  10674. if (clockwise) angular_travel -= RADIANS(360);
  10675. // Make a circle if the angular rotation is 0 and the target is current position
  10676. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10677. angular_travel = RADIANS(360);
  10678. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10679. if (mm_of_travel < 0.001) return;
  10680. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10681. if (segments == 0) segments = 1;
  10682. /**
  10683. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10684. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10685. * r_T = [cos(phi) -sin(phi);
  10686. * sin(phi) cos(phi)] * r ;
  10687. *
  10688. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10689. * defined from the circle center to the initial position. Each line segment is formed by successive
  10690. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10691. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10692. * all double numbers are single precision on the Arduino. (True double precision will not have
  10693. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10694. * tool precision in some cases. Therefore, arc path correction is implemented.
  10695. *
  10696. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10697. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10698. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10699. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10700. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10701. * issue for CNC machines with the single precision Arduino calculations.
  10702. *
  10703. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10704. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10705. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10706. * This is important when there are successive arc motions.
  10707. */
  10708. // Vector rotation matrix values
  10709. float arc_target[XYZE];
  10710. const float theta_per_segment = angular_travel / segments,
  10711. linear_per_segment = linear_travel / segments,
  10712. extruder_per_segment = extruder_travel / segments,
  10713. sin_T = theta_per_segment,
  10714. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10715. // Initialize the linear axis
  10716. arc_target[l_axis] = current_position[l_axis];
  10717. // Initialize the extruder axis
  10718. arc_target[E_AXIS] = current_position[E_AXIS];
  10719. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10720. millis_t next_idle_ms = millis() + 200UL;
  10721. #if N_ARC_CORRECTION > 1
  10722. int8_t arc_recalc_count = N_ARC_CORRECTION;
  10723. #endif
  10724. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10725. thermalManager.manage_heater();
  10726. if (ELAPSED(millis(), next_idle_ms)) {
  10727. next_idle_ms = millis() + 200UL;
  10728. idle();
  10729. }
  10730. #if N_ARC_CORRECTION > 1
  10731. if (--arc_recalc_count) {
  10732. // Apply vector rotation matrix to previous r_P / 1
  10733. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10734. r_P = r_P * cos_T - r_Q * sin_T;
  10735. r_Q = r_new_Y;
  10736. }
  10737. else
  10738. #endif
  10739. {
  10740. #if N_ARC_CORRECTION > 1
  10741. arc_recalc_count = N_ARC_CORRECTION;
  10742. #endif
  10743. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10744. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10745. // To reduce stuttering, the sin and cos could be computed at different times.
  10746. // For now, compute both at the same time.
  10747. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10748. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10749. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10750. }
  10751. // Update arc_target location
  10752. arc_target[p_axis] = center_P + r_P;
  10753. arc_target[q_axis] = center_Q + r_Q;
  10754. arc_target[l_axis] += linear_per_segment;
  10755. arc_target[E_AXIS] += extruder_per_segment;
  10756. clamp_to_software_endstops(arc_target);
  10757. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10758. }
  10759. // Ensure last segment arrives at target location.
  10760. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10761. // As far as the parser is concerned, the position is now == target. In reality the
  10762. // motion control system might still be processing the action and the real tool position
  10763. // in any intermediate location.
  10764. set_current_to_destination();
  10765. } // plan_arc
  10766. #endif // ARC_SUPPORT
  10767. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10768. void plan_cubic_move(const float offset[4]) {
  10769. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10770. // As far as the parser is concerned, the position is now == destination. In reality the
  10771. // motion control system might still be processing the action and the real tool position
  10772. // in any intermediate location.
  10773. set_current_to_destination();
  10774. }
  10775. #endif // BEZIER_CURVE_SUPPORT
  10776. #if ENABLED(USE_CONTROLLER_FAN)
  10777. void controllerFan() {
  10778. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10779. nextMotorCheck = 0; // Last time the state was checked
  10780. const millis_t ms = millis();
  10781. if (ELAPSED(ms, nextMotorCheck)) {
  10782. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10783. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10784. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10785. #if E_STEPPERS > 1
  10786. || E1_ENABLE_READ == E_ENABLE_ON
  10787. #if HAS_X2_ENABLE
  10788. || X2_ENABLE_READ == X_ENABLE_ON
  10789. #endif
  10790. #if E_STEPPERS > 2
  10791. || E2_ENABLE_READ == E_ENABLE_ON
  10792. #if E_STEPPERS > 3
  10793. || E3_ENABLE_READ == E_ENABLE_ON
  10794. #if E_STEPPERS > 4
  10795. || E4_ENABLE_READ == E_ENABLE_ON
  10796. #endif // E_STEPPERS > 4
  10797. #endif // E_STEPPERS > 3
  10798. #endif // E_STEPPERS > 2
  10799. #endif // E_STEPPERS > 1
  10800. ) {
  10801. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10802. }
  10803. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10804. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10805. // allows digital or PWM fan output to be used (see M42 handling)
  10806. WRITE(CONTROLLER_FAN_PIN, speed);
  10807. analogWrite(CONTROLLER_FAN_PIN, speed);
  10808. }
  10809. }
  10810. #endif // USE_CONTROLLER_FAN
  10811. #if ENABLED(MORGAN_SCARA)
  10812. /**
  10813. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10814. * Maths and first version by QHARLEY.
  10815. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10816. */
  10817. void forward_kinematics_SCARA(const float &a, const float &b) {
  10818. float a_sin = sin(RADIANS(a)) * L1,
  10819. a_cos = cos(RADIANS(a)) * L1,
  10820. b_sin = sin(RADIANS(b)) * L2,
  10821. b_cos = cos(RADIANS(b)) * L2;
  10822. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10823. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10824. /*
  10825. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10826. SERIAL_ECHOPAIR(" b=", b);
  10827. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10828. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10829. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10830. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10831. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10832. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10833. //*/
  10834. }
  10835. /**
  10836. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10837. *
  10838. * See http://forums.reprap.org/read.php?185,283327
  10839. *
  10840. * Maths and first version by QHARLEY.
  10841. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10842. */
  10843. void inverse_kinematics(const float logical[XYZ]) {
  10844. static float C2, S2, SK1, SK2, THETA, PSI;
  10845. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10846. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10847. if (L1 == L2)
  10848. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10849. else
  10850. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10851. S2 = SQRT(1 - sq(C2));
  10852. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10853. SK1 = L1 + L2 * C2;
  10854. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10855. SK2 = L2 * S2;
  10856. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10857. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10858. // Angle of Arm2
  10859. PSI = ATAN2(S2, C2);
  10860. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10861. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10862. delta[C_AXIS] = logical[Z_AXIS];
  10863. /*
  10864. DEBUG_POS("SCARA IK", logical);
  10865. DEBUG_POS("SCARA IK", delta);
  10866. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10867. SERIAL_ECHOPAIR(",", sy);
  10868. SERIAL_ECHOPAIR(" C2=", C2);
  10869. SERIAL_ECHOPAIR(" S2=", S2);
  10870. SERIAL_ECHOPAIR(" Theta=", THETA);
  10871. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10872. //*/
  10873. }
  10874. #endif // MORGAN_SCARA
  10875. #if ENABLED(TEMP_STAT_LEDS)
  10876. static bool red_led = false;
  10877. static millis_t next_status_led_update_ms = 0;
  10878. void handle_status_leds(void) {
  10879. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10880. next_status_led_update_ms += 500; // Update every 0.5s
  10881. float max_temp = 0.0;
  10882. #if HAS_TEMP_BED
  10883. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10884. #endif
  10885. HOTEND_LOOP()
  10886. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10887. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10888. if (new_led != red_led) {
  10889. red_led = new_led;
  10890. #if PIN_EXISTS(STAT_LED_RED)
  10891. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10892. #if PIN_EXISTS(STAT_LED_BLUE)
  10893. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10894. #endif
  10895. #else
  10896. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10897. #endif
  10898. }
  10899. }
  10900. }
  10901. #endif
  10902. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10903. void handle_filament_runout() {
  10904. if (!filament_ran_out) {
  10905. filament_ran_out = true;
  10906. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10907. stepper.synchronize();
  10908. }
  10909. }
  10910. #endif // FILAMENT_RUNOUT_SENSOR
  10911. #if ENABLED(FAST_PWM_FAN)
  10912. void setPwmFrequency(uint8_t pin, int val) {
  10913. val &= 0x07;
  10914. switch (digitalPinToTimer(pin)) {
  10915. #ifdef TCCR0A
  10916. #if !AVR_AT90USB1286_FAMILY
  10917. case TIMER0A:
  10918. #endif
  10919. case TIMER0B:
  10920. //_SET_CS(0, val);
  10921. break;
  10922. #endif
  10923. #ifdef TCCR1A
  10924. case TIMER1A:
  10925. case TIMER1B:
  10926. //_SET_CS(1, val);
  10927. break;
  10928. #endif
  10929. #ifdef TCCR2
  10930. case TIMER2:
  10931. case TIMER2:
  10932. _SET_CS(2, val);
  10933. break;
  10934. #endif
  10935. #ifdef TCCR2A
  10936. case TIMER2A:
  10937. case TIMER2B:
  10938. _SET_CS(2, val);
  10939. break;
  10940. #endif
  10941. #ifdef TCCR3A
  10942. case TIMER3A:
  10943. case TIMER3B:
  10944. case TIMER3C:
  10945. _SET_CS(3, val);
  10946. break;
  10947. #endif
  10948. #ifdef TCCR4A
  10949. case TIMER4A:
  10950. case TIMER4B:
  10951. case TIMER4C:
  10952. _SET_CS(4, val);
  10953. break;
  10954. #endif
  10955. #ifdef TCCR5A
  10956. case TIMER5A:
  10957. case TIMER5B:
  10958. case TIMER5C:
  10959. _SET_CS(5, val);
  10960. break;
  10961. #endif
  10962. }
  10963. }
  10964. #endif // FAST_PWM_FAN
  10965. float calculate_volumetric_multiplier(const float diameter) {
  10966. if (!volumetric_enabled || diameter == 0) return 1.0;
  10967. return 1.0 / (M_PI * sq(diameter * 0.5));
  10968. }
  10969. void calculate_volumetric_multipliers() {
  10970. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10971. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10972. }
  10973. void enable_all_steppers() {
  10974. enable_X();
  10975. enable_Y();
  10976. enable_Z();
  10977. enable_E0();
  10978. enable_E1();
  10979. enable_E2();
  10980. enable_E3();
  10981. enable_E4();
  10982. }
  10983. void disable_e_steppers() {
  10984. disable_E0();
  10985. disable_E1();
  10986. disable_E2();
  10987. disable_E3();
  10988. disable_E4();
  10989. }
  10990. void disable_all_steppers() {
  10991. disable_X();
  10992. disable_Y();
  10993. disable_Z();
  10994. disable_e_steppers();
  10995. }
  10996. #if ENABLED(HAVE_TMC2130)
  10997. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10998. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10999. const bool is_otpw = st.checkOT();
  11000. // Report if a warning was triggered
  11001. static bool previous_otpw = false;
  11002. if (is_otpw && !previous_otpw) {
  11003. char timestamp[10];
  11004. duration_t elapsed = print_job_timer.duration();
  11005. const bool has_days = (elapsed.value > 60*60*24L);
  11006. (void)elapsed.toDigital(timestamp, has_days);
  11007. SERIAL_ECHO(timestamp);
  11008. SERIAL_ECHOPGM(": ");
  11009. SERIAL_ECHO(axisID);
  11010. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11011. }
  11012. previous_otpw = is_otpw;
  11013. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11014. // Return if user has not enabled current control start with M906 S1.
  11015. if (!auto_current_control) return;
  11016. /**
  11017. * Decrease current if is_otpw is true.
  11018. * Bail out if driver is disabled.
  11019. * Increase current if OTPW has not been triggered yet.
  11020. */
  11021. uint16_t current = st.getCurrent();
  11022. if (is_otpw) {
  11023. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11024. #if ENABLED(REPORT_CURRENT_CHANGE)
  11025. SERIAL_ECHO(axisID);
  11026. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11027. #endif
  11028. }
  11029. else if (!st.isEnabled())
  11030. return;
  11031. else if (!is_otpw && !st.getOTPW()) {
  11032. current += CURRENT_STEP;
  11033. if (current <= AUTO_ADJUST_MAX) {
  11034. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11035. #if ENABLED(REPORT_CURRENT_CHANGE)
  11036. SERIAL_ECHO(axisID);
  11037. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11038. #endif
  11039. }
  11040. }
  11041. SERIAL_EOL();
  11042. #endif
  11043. }
  11044. void checkOverTemp() {
  11045. static millis_t next_cOT = 0;
  11046. if (ELAPSED(millis(), next_cOT)) {
  11047. next_cOT = millis() + 5000;
  11048. #if ENABLED(X_IS_TMC2130)
  11049. automatic_current_control(stepperX, "X");
  11050. #endif
  11051. #if ENABLED(Y_IS_TMC2130)
  11052. automatic_current_control(stepperY, "Y");
  11053. #endif
  11054. #if ENABLED(Z_IS_TMC2130)
  11055. automatic_current_control(stepperZ, "Z");
  11056. #endif
  11057. #if ENABLED(X2_IS_TMC2130)
  11058. automatic_current_control(stepperX2, "X2");
  11059. #endif
  11060. #if ENABLED(Y2_IS_TMC2130)
  11061. automatic_current_control(stepperY2, "Y2");
  11062. #endif
  11063. #if ENABLED(Z2_IS_TMC2130)
  11064. automatic_current_control(stepperZ2, "Z2");
  11065. #endif
  11066. #if ENABLED(E0_IS_TMC2130)
  11067. automatic_current_control(stepperE0, "E0");
  11068. #endif
  11069. #if ENABLED(E1_IS_TMC2130)
  11070. automatic_current_control(stepperE1, "E1");
  11071. #endif
  11072. #if ENABLED(E2_IS_TMC2130)
  11073. automatic_current_control(stepperE2, "E2");
  11074. #endif
  11075. #if ENABLED(E3_IS_TMC2130)
  11076. automatic_current_control(stepperE3, "E3");
  11077. #endif
  11078. #if ENABLED(E4_IS_TMC2130)
  11079. automatic_current_control(stepperE4, "E4");
  11080. #endif
  11081. }
  11082. }
  11083. #endif // HAVE_TMC2130
  11084. /**
  11085. * Manage several activities:
  11086. * - Check for Filament Runout
  11087. * - Keep the command buffer full
  11088. * - Check for maximum inactive time between commands
  11089. * - Check for maximum inactive time between stepper commands
  11090. * - Check if pin CHDK needs to go LOW
  11091. * - Check for KILL button held down
  11092. * - Check for HOME button held down
  11093. * - Check if cooling fan needs to be switched on
  11094. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11095. */
  11096. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11097. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11098. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11099. handle_filament_runout();
  11100. #endif
  11101. if (commands_in_queue < BUFSIZE) get_available_commands();
  11102. const millis_t ms = millis();
  11103. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11104. SERIAL_ERROR_START();
  11105. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11106. kill(PSTR(MSG_KILLED));
  11107. }
  11108. // Prevent steppers timing-out in the middle of M600
  11109. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11110. #define MOVE_AWAY_TEST !move_away_flag
  11111. #else
  11112. #define MOVE_AWAY_TEST true
  11113. #endif
  11114. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11115. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11116. #if ENABLED(DISABLE_INACTIVE_X)
  11117. disable_X();
  11118. #endif
  11119. #if ENABLED(DISABLE_INACTIVE_Y)
  11120. disable_Y();
  11121. #endif
  11122. #if ENABLED(DISABLE_INACTIVE_Z)
  11123. disable_Z();
  11124. #endif
  11125. #if ENABLED(DISABLE_INACTIVE_E)
  11126. disable_e_steppers();
  11127. #endif
  11128. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11129. ubl_lcd_map_control = defer_return_to_status = false;
  11130. #endif
  11131. }
  11132. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11133. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11134. chdkActive = false;
  11135. WRITE(CHDK, LOW);
  11136. }
  11137. #endif
  11138. #if HAS_KILL
  11139. // Check if the kill button was pressed and wait just in case it was an accidental
  11140. // key kill key press
  11141. // -------------------------------------------------------------------------------
  11142. static int killCount = 0; // make the inactivity button a bit less responsive
  11143. const int KILL_DELAY = 750;
  11144. if (!READ(KILL_PIN))
  11145. killCount++;
  11146. else if (killCount > 0)
  11147. killCount--;
  11148. // Exceeded threshold and we can confirm that it was not accidental
  11149. // KILL the machine
  11150. // ----------------------------------------------------------------
  11151. if (killCount >= KILL_DELAY) {
  11152. SERIAL_ERROR_START();
  11153. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11154. kill(PSTR(MSG_KILLED));
  11155. }
  11156. #endif
  11157. #if HAS_HOME
  11158. // Check to see if we have to home, use poor man's debouncer
  11159. // ---------------------------------------------------------
  11160. static int homeDebounceCount = 0; // poor man's debouncing count
  11161. const int HOME_DEBOUNCE_DELAY = 2500;
  11162. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11163. if (!homeDebounceCount) {
  11164. enqueue_and_echo_commands_P(PSTR("G28"));
  11165. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11166. }
  11167. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11168. homeDebounceCount++;
  11169. else
  11170. homeDebounceCount = 0;
  11171. }
  11172. #endif
  11173. #if ENABLED(USE_CONTROLLER_FAN)
  11174. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11175. #endif
  11176. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11177. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11178. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11179. #if ENABLED(SWITCHING_EXTRUDER)
  11180. const bool oldstatus = E0_ENABLE_READ;
  11181. enable_E0();
  11182. #else // !SWITCHING_EXTRUDER
  11183. bool oldstatus;
  11184. switch (active_extruder) {
  11185. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11186. #if E_STEPPERS > 1
  11187. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11188. #if E_STEPPERS > 2
  11189. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11190. #if E_STEPPERS > 3
  11191. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11192. #if E_STEPPERS > 4
  11193. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11194. #endif // E_STEPPERS > 4
  11195. #endif // E_STEPPERS > 3
  11196. #endif // E_STEPPERS > 2
  11197. #endif // E_STEPPERS > 1
  11198. }
  11199. #endif // !SWITCHING_EXTRUDER
  11200. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11201. const float olde = current_position[E_AXIS];
  11202. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11203. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11204. current_position[E_AXIS] = olde;
  11205. planner.set_e_position_mm(olde);
  11206. stepper.synchronize();
  11207. #if ENABLED(SWITCHING_EXTRUDER)
  11208. E0_ENABLE_WRITE(oldstatus);
  11209. #else
  11210. switch (active_extruder) {
  11211. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11212. #if E_STEPPERS > 1
  11213. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11214. #if E_STEPPERS > 2
  11215. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11216. #if E_STEPPERS > 3
  11217. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11218. #if E_STEPPERS > 4
  11219. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11220. #endif // E_STEPPERS > 4
  11221. #endif // E_STEPPERS > 3
  11222. #endif // E_STEPPERS > 2
  11223. #endif // E_STEPPERS > 1
  11224. }
  11225. #endif // !SWITCHING_EXTRUDER
  11226. }
  11227. #endif // EXTRUDER_RUNOUT_PREVENT
  11228. #if ENABLED(DUAL_X_CARRIAGE)
  11229. // handle delayed move timeout
  11230. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11231. // travel moves have been received so enact them
  11232. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11233. set_destination_to_current();
  11234. prepare_move_to_destination();
  11235. }
  11236. #endif
  11237. #if ENABLED(TEMP_STAT_LEDS)
  11238. handle_status_leds();
  11239. #endif
  11240. #if ENABLED(HAVE_TMC2130)
  11241. checkOverTemp();
  11242. #endif
  11243. planner.check_axes_activity();
  11244. }
  11245. /**
  11246. * Standard idle routine keeps the machine alive
  11247. */
  11248. void idle(
  11249. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11250. bool no_stepper_sleep/*=false*/
  11251. #endif
  11252. ) {
  11253. #if ENABLED(MAX7219_DEBUG)
  11254. Max7219_idle_tasks();
  11255. #endif // MAX7219_DEBUG
  11256. lcd_update();
  11257. host_keepalive();
  11258. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11259. auto_report_temperatures();
  11260. #endif
  11261. manage_inactivity(
  11262. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11263. no_stepper_sleep
  11264. #endif
  11265. );
  11266. thermalManager.manage_heater();
  11267. #if ENABLED(PRINTCOUNTER)
  11268. print_job_timer.tick();
  11269. #endif
  11270. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11271. buzzer.tick();
  11272. #endif
  11273. #if ENABLED(I2C_POSITION_ENCODERS)
  11274. if (planner.blocks_queued() &&
  11275. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11276. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11277. blockBufferIndexRef = planner.block_buffer_head;
  11278. I2CPEM.update();
  11279. lastUpdateMillis = millis();
  11280. }
  11281. #endif
  11282. }
  11283. /**
  11284. * Kill all activity and lock the machine.
  11285. * After this the machine will need to be reset.
  11286. */
  11287. void kill(const char* lcd_msg) {
  11288. SERIAL_ERROR_START();
  11289. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11290. thermalManager.disable_all_heaters();
  11291. disable_all_steppers();
  11292. #if ENABLED(ULTRA_LCD)
  11293. kill_screen(lcd_msg);
  11294. #else
  11295. UNUSED(lcd_msg);
  11296. #endif
  11297. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11298. cli(); // Stop interrupts
  11299. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11300. thermalManager.disable_all_heaters(); //turn off heaters again
  11301. #ifdef ACTION_ON_KILL
  11302. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11303. #endif
  11304. #if HAS_POWER_SWITCH
  11305. SET_INPUT(PS_ON_PIN);
  11306. #endif
  11307. suicide();
  11308. while (1) {
  11309. #if ENABLED(USE_WATCHDOG)
  11310. watchdog_reset();
  11311. #endif
  11312. } // Wait for reset
  11313. }
  11314. /**
  11315. * Turn off heaters and stop the print in progress
  11316. * After a stop the machine may be resumed with M999
  11317. */
  11318. void stop() {
  11319. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11320. #if ENABLED(PROBING_FANS_OFF)
  11321. if (fans_paused) fans_pause(false); // put things back the way they were
  11322. #endif
  11323. if (IsRunning()) {
  11324. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11325. SERIAL_ERROR_START();
  11326. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11327. LCD_MESSAGEPGM(MSG_STOPPED);
  11328. safe_delay(350); // allow enough time for messages to get out before stopping
  11329. Running = false;
  11330. }
  11331. }
  11332. /**
  11333. * Marlin entry-point: Set up before the program loop
  11334. * - Set up the kill pin, filament runout, power hold
  11335. * - Start the serial port
  11336. * - Print startup messages and diagnostics
  11337. * - Get EEPROM or default settings
  11338. * - Initialize managers for:
  11339. * • temperature
  11340. * • planner
  11341. * • watchdog
  11342. * • stepper
  11343. * • photo pin
  11344. * • servos
  11345. * • LCD controller
  11346. * • Digipot I2C
  11347. * • Z probe sled
  11348. * • status LEDs
  11349. */
  11350. void setup() {
  11351. #if ENABLED(MAX7219_DEBUG)
  11352. Max7219_init();
  11353. #endif
  11354. #ifdef DISABLE_JTAG
  11355. // Disable JTAG on AT90USB chips to free up pins for IO
  11356. MCUCR = 0x80;
  11357. MCUCR = 0x80;
  11358. #endif
  11359. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11360. setup_filrunoutpin();
  11361. #endif
  11362. setup_killpin();
  11363. setup_powerhold();
  11364. #if HAS_STEPPER_RESET
  11365. disableStepperDrivers();
  11366. #endif
  11367. MYSERIAL.begin(BAUDRATE);
  11368. SERIAL_PROTOCOLLNPGM("start");
  11369. SERIAL_ECHO_START();
  11370. // Check startup - does nothing if bootloader sets MCUSR to 0
  11371. byte mcu = MCUSR;
  11372. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11373. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11374. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11375. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11376. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11377. MCUSR = 0;
  11378. SERIAL_ECHOPGM(MSG_MARLIN);
  11379. SERIAL_CHAR(' ');
  11380. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11381. SERIAL_EOL();
  11382. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11383. SERIAL_ECHO_START();
  11384. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11385. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11386. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11387. SERIAL_ECHO_START();
  11388. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11389. #endif
  11390. SERIAL_ECHO_START();
  11391. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11392. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11393. // Send "ok" after commands by default
  11394. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11395. // Load data from EEPROM if available (or use defaults)
  11396. // This also updates variables in the planner, elsewhere
  11397. (void)settings.load();
  11398. #if HAS_M206_COMMAND
  11399. // Initialize current position based on home_offset
  11400. COPY(current_position, home_offset);
  11401. #else
  11402. ZERO(current_position);
  11403. #endif
  11404. // Vital to init stepper/planner equivalent for current_position
  11405. SYNC_PLAN_POSITION_KINEMATIC();
  11406. thermalManager.init(); // Initialize temperature loop
  11407. #if ENABLED(USE_WATCHDOG)
  11408. watchdog_init();
  11409. #endif
  11410. stepper.init(); // Initialize stepper, this enables interrupts!
  11411. servo_init();
  11412. #if HAS_PHOTOGRAPH
  11413. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11414. #endif
  11415. #if HAS_CASE_LIGHT
  11416. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11417. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11418. update_case_light();
  11419. #endif
  11420. #if ENABLED(SPINDLE_LASER_ENABLE)
  11421. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11422. #if SPINDLE_DIR_CHANGE
  11423. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11424. #endif
  11425. #if ENABLED(SPINDLE_LASER_PWM)
  11426. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11427. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11428. #endif
  11429. #endif
  11430. #if HAS_BED_PROBE
  11431. endstops.enable_z_probe(false);
  11432. #endif
  11433. #if ENABLED(USE_CONTROLLER_FAN)
  11434. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11435. #endif
  11436. #if HAS_STEPPER_RESET
  11437. enableStepperDrivers();
  11438. #endif
  11439. #if ENABLED(DIGIPOT_I2C)
  11440. digipot_i2c_init();
  11441. #endif
  11442. #if ENABLED(DAC_STEPPER_CURRENT)
  11443. dac_init();
  11444. #endif
  11445. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11446. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11447. #endif
  11448. #if HAS_HOME
  11449. SET_INPUT_PULLUP(HOME_PIN);
  11450. #endif
  11451. #if PIN_EXISTS(STAT_LED_RED)
  11452. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11453. #endif
  11454. #if PIN_EXISTS(STAT_LED_BLUE)
  11455. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11456. #endif
  11457. #if ENABLED(NEOPIXEL_LED)
  11458. SET_OUTPUT(NEOPIXEL_PIN);
  11459. setup_neopixel();
  11460. #endif
  11461. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11462. SET_OUTPUT(RGB_LED_R_PIN);
  11463. SET_OUTPUT(RGB_LED_G_PIN);
  11464. SET_OUTPUT(RGB_LED_B_PIN);
  11465. #if ENABLED(RGBW_LED)
  11466. SET_OUTPUT(RGB_LED_W_PIN);
  11467. #endif
  11468. #endif
  11469. #if ENABLED(MK2_MULTIPLEXER)
  11470. SET_OUTPUT(E_MUX0_PIN);
  11471. SET_OUTPUT(E_MUX1_PIN);
  11472. SET_OUTPUT(E_MUX2_PIN);
  11473. #endif
  11474. #if HAS_FANMUX
  11475. fanmux_init();
  11476. #endif
  11477. lcd_init();
  11478. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11479. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11480. #endif
  11481. #if ENABLED(SHOW_BOOTSCREEN)
  11482. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11483. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11484. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11485. lcd_bootscreen(); // Show Marlin boot screen
  11486. #endif
  11487. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11488. #elif ENABLED(ULTRA_LCD)
  11489. lcd_bootscreen();
  11490. #if DISABLED(SDSUPPORT)
  11491. lcd_init();
  11492. #endif
  11493. #endif
  11494. #endif
  11495. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11496. // Initialize mixing to 100% color 1
  11497. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11498. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11499. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11500. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11501. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11502. #endif
  11503. #if ENABLED(BLTOUCH)
  11504. // Make sure any BLTouch error condition is cleared
  11505. bltouch_command(BLTOUCH_RESET);
  11506. set_bltouch_deployed(true);
  11507. set_bltouch_deployed(false);
  11508. #endif
  11509. #if ENABLED(I2C_POSITION_ENCODERS)
  11510. I2CPEM.init();
  11511. #endif
  11512. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11513. i2c.onReceive(i2c_on_receive);
  11514. i2c.onRequest(i2c_on_request);
  11515. #endif
  11516. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11517. setup_endstop_interrupts();
  11518. #endif
  11519. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11520. move_extruder_servo(0); // Initialize extruder servo
  11521. #endif
  11522. #if ENABLED(SWITCHING_NOZZLE)
  11523. move_nozzle_servo(0); // Initialize nozzle servo
  11524. #endif
  11525. #if ENABLED(PARKING_EXTRUDER)
  11526. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11527. pe_activate_magnet(0);
  11528. pe_activate_magnet(1);
  11529. #else
  11530. pe_deactivate_magnet(0);
  11531. pe_deactivate_magnet(1);
  11532. #endif
  11533. #endif
  11534. #if ENABLED(MKS_12864OLED)
  11535. SET_OUTPUT(LCD_PINS_DC);
  11536. OUT_WRITE(LCD_PINS_RS, LOW);
  11537. delay(1000);
  11538. WRITE(LCD_PINS_RS, HIGH);
  11539. #endif
  11540. }
  11541. /**
  11542. * The main Marlin program loop
  11543. *
  11544. * - Save or log commands to SD
  11545. * - Process available commands (if not saving)
  11546. * - Call heater manager
  11547. * - Call inactivity manager
  11548. * - Call endstop manager
  11549. * - Call LCD update
  11550. */
  11551. void loop() {
  11552. if (commands_in_queue < BUFSIZE) get_available_commands();
  11553. #if ENABLED(SDSUPPORT)
  11554. card.checkautostart(false);
  11555. #endif
  11556. if (commands_in_queue) {
  11557. #if ENABLED(SDSUPPORT)
  11558. if (card.saving) {
  11559. char* command = command_queue[cmd_queue_index_r];
  11560. if (strstr_P(command, PSTR("M29"))) {
  11561. // M29 closes the file
  11562. card.closefile();
  11563. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11564. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11565. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11566. #endif
  11567. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11568. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11569. #endif
  11570. ok_to_send();
  11571. }
  11572. else {
  11573. // Write the string from the read buffer to SD
  11574. card.write_command(command);
  11575. if (card.logging)
  11576. process_next_command(); // The card is saving because it's logging
  11577. else
  11578. ok_to_send();
  11579. }
  11580. }
  11581. else
  11582. process_next_command();
  11583. #else
  11584. process_next_command();
  11585. #endif // SDSUPPORT
  11586. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11587. if (commands_in_queue) {
  11588. --commands_in_queue;
  11589. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11590. }
  11591. }
  11592. endstops.report_state();
  11593. idle();
  11594. }