My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_G29.cpp 73KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "ubl.h"
  25. #include "Marlin.h"
  26. #include "hex_print_routines.h"
  27. #include "configuration_store.h"
  28. #include "ultralcd.h"
  29. #include "stepper.h"
  30. #include "planner.h"
  31. #include "gcode.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. #define UBL_G29_P31
  35. extern float destination[XYZE], current_position[XYZE];
  36. #if ENABLED(NEWPANEL)
  37. void lcd_return_to_status();
  38. void lcd_mesh_edit_setup(float initial);
  39. float lcd_mesh_edit();
  40. void lcd_z_offset_edit_setup(float);
  41. extern void _lcd_ubl_output_map_lcd();
  42. float lcd_z_offset_edit();
  43. #endif
  44. extern float meshedit_done;
  45. extern long babysteps_done;
  46. extern float probe_pt(const float &rx, const float &ry, const bool, const uint8_t, const bool=true);
  47. extern bool set_probe_deployed(bool);
  48. extern void set_bed_leveling_enabled(bool);
  49. typedef void (*screenFunc_t)();
  50. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  51. #define SIZE_OF_LITTLE_RAISE 1
  52. #define BIG_RAISE_NOT_NEEDED 0
  53. int unified_bed_leveling::g29_verbose_level,
  54. unified_bed_leveling::g29_phase_value,
  55. unified_bed_leveling::g29_repetition_cnt,
  56. unified_bed_leveling::g29_storage_slot = 0,
  57. unified_bed_leveling::g29_map_type;
  58. bool unified_bed_leveling::g29_c_flag,
  59. unified_bed_leveling::g29_x_flag,
  60. unified_bed_leveling::g29_y_flag;
  61. float unified_bed_leveling::g29_x_pos,
  62. unified_bed_leveling::g29_y_pos,
  63. unified_bed_leveling::g29_card_thickness = 0.0,
  64. unified_bed_leveling::g29_constant = 0.0;
  65. #if HAS_BED_PROBE
  66. int unified_bed_leveling::g29_grid_size;
  67. #endif
  68. /**
  69. * G29: Unified Bed Leveling by Roxy
  70. *
  71. * Parameters understood by this leveling system:
  72. *
  73. * A Activate Activate the Unified Bed Leveling system.
  74. *
  75. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
  76. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
  77. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
  78. * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
  79. * same resistance is felt in the shim. You can omit the numerical value on first invocation
  80. * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
  81. * measured thickness by default.
  82. *
  83. * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
  84. * previous measurements.
  85. *
  86. * C Constant G29 P2 C specifies a Constant and tells the Manual Probe subsystem to use the current
  87. * location in its search for the closest unmeasured Mesh Point.
  88. *
  89. * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
  90. *
  91. * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
  92. *
  93. * D Disable Disable the Unified Bed Leveling system.
  94. *
  95. * E Stow_probe Stow the probe after each sampled point.
  96. *
  97. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  98. * specified height, no correction is applied and natural printer kenimatics take over. If no
  99. * number is specified for the command, 10mm is assumed to be reasonable.
  100. *
  101. * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
  102. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
  103. *
  104. * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
  105. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
  106. *
  107. * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
  108. * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
  109. * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
  110. * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
  111. * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
  112. * can move the nozzle around and use this feature to select the center of the area (or cell) to
  113. * invalidate.
  114. *
  115. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  116. * Not specifying a grid size will invoke the 3-Point leveling function.
  117. *
  118. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  119. * command literally performs a diff between two Meshes.
  120. *
  121. * L Load Load Mesh from the previously activated location in the EEPROM.
  122. *
  123. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  124. * for subsequent Load and Store operations.
  125. *
  126. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  127. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  128. * each additional Phase that processes it.
  129. *
  130. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  131. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  132. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  133. * a subsequent G or T leveling operation for backward compatibility.
  134. *
  135. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  136. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
  137. * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
  138. * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  139. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  140. *
  141. * Unreachable points will be handled in Phase 2 and Phase 3.
  142. *
  143. * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
  144. * to invalidate parts of the Mesh but still use Automatic Probing.
  145. *
  146. * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
  147. * probe position is used.
  148. *
  149. * Use 'T' (Topology) to generate a report of mesh generation.
  150. *
  151. * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
  152. * to press and hold the switch for several seconds if moves are underway.
  153. *
  154. * P2 Phase 2 Probe unreachable points.
  155. *
  156. * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
  157. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
  158. * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
  159. * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
  160. *
  161. * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
  162. * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
  163. * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
  164. * tries to start in a corner of the bed where movement will be predictable. Override the distance
  165. * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
  166. * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
  167. * indicate that the search should be based on the current position.
  168. *
  169. * The 'B' parameter for this command is described above. It places the manual probe subsystem into
  170. * Business Card mode where the thickness of a business card is measured and then used to accurately
  171. * set the nozzle height in all manual probing for the duration of the command. A Business card can
  172. * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
  173. * easier to produce similar amounts of force and get more accurate measurements. Google if you're
  174. * not sure how to use a shim.
  175. *
  176. * The 'T' (Map) parameter helps track Mesh building progress.
  177. *
  178. * NOTE: P2 requires an LCD controller!
  179. *
  180. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
  181. * go down:
  182. *
  183. * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
  184. * and a repeat count can then also be specified with 'R'.
  185. *
  186. * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
  187. * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
  188. * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
  189. * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
  190. * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
  191. * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
  192. *
  193. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
  194. * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
  195. * G42 and M421. See the UBL documentation for further details.
  196. *
  197. * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
  198. * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
  199. * adhesion.
  200. *
  201. * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
  202. * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is
  203. * used to adjust the nozzle height. On click the displayed height is saved in the mesh.
  204. *
  205. * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
  206. * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
  207. * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
  208. *
  209. * The general form is G29 P4 [R points] [X position] [Y position]
  210. *
  211. * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
  212. * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
  213. * and on click the height minus the shim thickness will be saved in the mesh.
  214. *
  215. * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
  216. *
  217. * NOTE: P4 is not available unless you have LCD support enabled!
  218. *
  219. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  220. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  221. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  222. * execute a G29 P6 C <mean height>.
  223. *
  224. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  225. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  226. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  227. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  228. * 0.000 at the Z Home location.
  229. *
  230. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  231. * command is not anticipated to be of much value to the typical user. It is intended
  232. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  233. *
  234. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  235. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  236. *
  237. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  238. * current state of the Unified Bed Leveling system in the EEPROM.
  239. *
  240. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  241. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  242. * extend to a limit related to the available EEPROM storage.
  243. *
  244. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  245. * at a later date. The GCode output can be saved and later replayed by the host software
  246. * to reconstruct the current mesh on another machine.
  247. *
  248. * T Topology Display the Mesh Map Topology.
  249. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  250. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  251. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  252. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  253. *
  254. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  255. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  256. * when the entire bed doesn't need to be probed because it will be adjusted.
  257. *
  258. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  259. *
  260. * W What? Display valuable Unified Bed Leveling System data.
  261. *
  262. * X # X Location for this command
  263. *
  264. * Y # Y Location for this command
  265. *
  266. *
  267. * Release Notes:
  268. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  269. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  270. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  271. * respectively.)
  272. *
  273. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  274. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  275. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  276. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  277. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  278. * perform a small print and check out your settings quicker. You do not need to populate the
  279. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  280. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  281. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  282. *
  283. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  284. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  285. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  286. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  287. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  288. * this is going to be helpful to the users!)
  289. *
  290. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  291. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  292. * we now have the functionality and features of all three systems combined.
  293. */
  294. void unified_bed_leveling::G29() {
  295. if (!settings.calc_num_meshes()) {
  296. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  297. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  298. return;
  299. }
  300. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  301. // Check for commands that require the printer to be homed
  302. if (axis_unhomed_error()) {
  303. const int8_t p_val = parser.intval('P', -1);
  304. if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
  305. home_all_axes();
  306. }
  307. // Invalidate Mesh Points. This command is a little bit asymmetrical because
  308. // it directly specifies the repetition count and does not use the 'R' parameter.
  309. if (parser.seen('I')) {
  310. uint8_t cnt = 0;
  311. g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
  312. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  313. set_all_mesh_points_to_value(NAN);
  314. }
  315. else {
  316. while (g29_repetition_cnt--) {
  317. if (cnt > 20) { cnt = 0; idle(); }
  318. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  319. if (location.x_index < 0) {
  320. // No more REACHABLE mesh points to invalidate, so we ASSUME the user
  321. // meant to invalidate the ENTIRE mesh, which cannot be done with
  322. // find_closest_mesh_point loop which only returns REACHABLE points.
  323. set_all_mesh_points_to_value(NAN);
  324. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  325. break; // No more invalid Mesh Points to populate
  326. }
  327. z_values[location.x_index][location.y_index] = NAN;
  328. cnt++;
  329. }
  330. }
  331. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  332. }
  333. if (parser.seen('Q')) {
  334. const int test_pattern = parser.has_value() ? parser.value_int() : -99;
  335. if (!WITHIN(test_pattern, -1, 2)) {
  336. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
  337. return;
  338. }
  339. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  340. switch (test_pattern) {
  341. case -1:
  342. g29_eeprom_dump();
  343. break;
  344. case 0:
  345. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  346. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  347. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  348. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  349. z_values[x][y] += 2.0 * HYPOT(p1, p2);
  350. }
  351. }
  352. break;
  353. case 1:
  354. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  355. z_values[x][x] += 9.999;
  356. z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  357. }
  358. break;
  359. case 2:
  360. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  361. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  362. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  363. z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
  364. break;
  365. }
  366. }
  367. #if HAS_BED_PROBE
  368. if (parser.seen('J')) {
  369. if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
  370. save_ubl_active_state_and_disable();
  371. tilt_mesh_based_on_probed_grid(parser.seen('T'));
  372. restore_ubl_active_state_and_leave();
  373. }
  374. else { // grid_size == 0 : A 3-Point leveling has been requested
  375. float z3, z2, z1 = probe_pt(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y, false, g29_verbose_level);
  376. if (!isnan(z1)) {
  377. z2 = probe_pt(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y, false, g29_verbose_level);
  378. if (!isnan(z2))
  379. z3 = probe_pt(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y, true, g29_verbose_level);
  380. }
  381. if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  382. SERIAL_ERROR_START();
  383. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  384. goto LEAVE;
  385. }
  386. // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
  387. // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
  388. // its height is.)
  389. save_ubl_active_state_and_disable();
  390. z1 -= get_z_correction(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y) /* + zprobe_zoffset */ ;
  391. z2 -= get_z_correction(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y) /* + zprobe_zoffset */ ;
  392. z3 -= get_z_correction(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y) /* + zprobe_zoffset */ ;
  393. do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)));
  394. tilt_mesh_based_on_3pts(z1, z2, z3);
  395. restore_ubl_active_state_and_leave();
  396. }
  397. }
  398. #endif // HAS_BED_PROBE
  399. if (parser.seen('P')) {
  400. if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
  401. storage_slot = 0;
  402. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  403. }
  404. switch (g29_phase_value) {
  405. case 0:
  406. //
  407. // Zero Mesh Data
  408. //
  409. reset();
  410. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  411. break;
  412. #if HAS_BED_PROBE
  413. case 1:
  414. //
  415. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  416. //
  417. if (!parser.seen('C')) {
  418. invalidate();
  419. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  420. }
  421. if (g29_verbose_level > 1) {
  422. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
  423. SERIAL_PROTOCOLCHAR(',');
  424. SERIAL_PROTOCOL(g29_y_pos);
  425. SERIAL_PROTOCOLLNPGM(").\n");
  426. }
  427. probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  428. parser.seen('T'), parser.seen('E'), parser.seen('U'));
  429. break;
  430. #endif // HAS_BED_PROBE
  431. case 2: {
  432. #if ENABLED(NEWPANEL)
  433. //
  434. // Manually Probe Mesh in areas that can't be reached by the probe
  435. //
  436. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  437. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  438. if (!g29_x_flag && !g29_y_flag) {
  439. /**
  440. * Use a good default location for the path.
  441. * The flipped > and < operators in these comparisons is intentional.
  442. * It should cause the probed points to follow a nice path on Cartesian printers.
  443. * It may make sense to have Delta printers default to the center of the bed.
  444. * Until that is decided, this can be forced with the X and Y parameters.
  445. */
  446. #if IS_KINEMATIC
  447. g29_x_pos = X_HOME_POS;
  448. g29_y_pos = Y_HOME_POS;
  449. #else // cartesian
  450. g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
  451. g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
  452. #endif
  453. }
  454. if (parser.seen('C')) {
  455. g29_x_pos = current_position[X_AXIS];
  456. g29_y_pos = current_position[Y_AXIS];
  457. }
  458. if (parser.seen('B')) {
  459. g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(Z_CLEARANCE_BETWEEN_PROBES);
  460. if (FABS(g29_card_thickness) > 1.5) {
  461. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  462. return;
  463. }
  464. }
  465. if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
  466. SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
  467. return;
  468. }
  469. const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
  470. manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
  471. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  472. #else
  473. SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
  474. return;
  475. #endif
  476. } break;
  477. case 3: {
  478. /**
  479. * Populate invalid mesh areas. Proceed with caution.
  480. * Two choices are available:
  481. * - Specify a constant with the 'C' parameter.
  482. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  483. */
  484. if (g29_c_flag) {
  485. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  486. set_all_mesh_points_to_value(g29_constant);
  487. }
  488. else {
  489. while (g29_repetition_cnt--) { // this only populates reachable mesh points near
  490. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  491. if (location.x_index < 0) {
  492. // No more REACHABLE INVALID mesh points to populate, so we ASSUME
  493. // user meant to populate ALL INVALID mesh points to value
  494. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  495. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  496. if (isnan(z_values[x][y]))
  497. z_values[x][y] = g29_constant;
  498. break; // No more invalid Mesh Points to populate
  499. }
  500. z_values[location.x_index][location.y_index] = g29_constant;
  501. }
  502. }
  503. }
  504. else {
  505. const float cvf = parser.value_float();
  506. switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
  507. #if ENABLED(UBL_G29_P31)
  508. case 1: {
  509. // P3.1 use least squares fit to fill missing mesh values
  510. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  511. // P3.11 10X weighting for nearest grid points versus farthest grid points
  512. // P3.12 100X distance weighting
  513. // P3.13 1000X distance weighting, approaches simple average of nearest points
  514. const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
  515. weight_factor = weight_power ? POW(10.0, weight_power) : 0;
  516. smart_fill_wlsf(weight_factor);
  517. }
  518. break;
  519. #endif
  520. case 0: // P3 or P3.0
  521. default: // and anything P3.x that's not P3.1
  522. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  523. break;
  524. }
  525. }
  526. break;
  527. }
  528. case 4: // Fine Tune (i.e., Edit) the Mesh
  529. #if ENABLED(NEWPANEL)
  530. fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
  531. #else
  532. SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
  533. return;
  534. #endif
  535. break;
  536. case 5: find_mean_mesh_height(); break;
  537. case 6: shift_mesh_height(); break;
  538. }
  539. }
  540. //
  541. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  542. // good to have the extra information. Soon... we prune this to just a few items
  543. //
  544. if (parser.seen('W')) g29_what_command();
  545. //
  546. // When we are fully debugged, this may go away. But there are some valid
  547. // use cases for the users. So we can wait and see what to do with it.
  548. //
  549. if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  550. g29_compare_current_mesh_to_stored_mesh();
  551. //
  552. // Load a Mesh from the EEPROM
  553. //
  554. if (parser.seen('L')) { // Load Current Mesh Data
  555. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  556. int16_t a = settings.calc_num_meshes();
  557. if (!a) {
  558. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  559. return;
  560. }
  561. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  562. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  563. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  564. return;
  565. }
  566. settings.load_mesh(g29_storage_slot);
  567. storage_slot = g29_storage_slot;
  568. SERIAL_PROTOCOLLNPGM("Done.");
  569. }
  570. //
  571. // Store a Mesh in the EEPROM
  572. //
  573. if (parser.seen('S')) { // Store (or Save) Current Mesh Data
  574. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  575. if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  576. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  577. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  578. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  579. if (!isnan(z_values[x][y])) {
  580. SERIAL_ECHOPAIR("M421 I ", x);
  581. SERIAL_ECHOPAIR(" J ", y);
  582. SERIAL_ECHOPGM(" Z ");
  583. SERIAL_ECHO_F(z_values[x][y], 6);
  584. SERIAL_ECHOPAIR(" ; X ", mesh_index_to_xpos(x));
  585. SERIAL_ECHOPAIR(", Y ", mesh_index_to_ypos(y));
  586. SERIAL_EOL();
  587. }
  588. return;
  589. }
  590. int16_t a = settings.calc_num_meshes();
  591. if (!a) {
  592. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  593. goto LEAVE;
  594. }
  595. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  596. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  597. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  598. goto LEAVE;
  599. }
  600. settings.store_mesh(g29_storage_slot);
  601. storage_slot = g29_storage_slot;
  602. SERIAL_PROTOCOLLNPGM("Done.");
  603. }
  604. if (parser.seen('T'))
  605. display_map(g29_map_type);
  606. LEAVE:
  607. #if ENABLED(NEWPANEL)
  608. lcd_reset_alert_level();
  609. LCD_MESSAGEPGM("");
  610. lcd_quick_feedback();
  611. has_control_of_lcd_panel = false;
  612. #endif
  613. return;
  614. }
  615. void unified_bed_leveling::find_mean_mesh_height() {
  616. float sum = 0.0;
  617. int n = 0;
  618. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  619. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  620. if (!isnan(z_values[x][y])) {
  621. sum += z_values[x][y];
  622. n++;
  623. }
  624. const float mean = sum / n;
  625. //
  626. // Sum the squares of difference from mean
  627. //
  628. float sum_of_diff_squared = 0.0;
  629. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  630. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  631. if (!isnan(z_values[x][y]))
  632. sum_of_diff_squared += sq(z_values[x][y] - mean);
  633. SERIAL_ECHOLNPAIR("# of samples: ", n);
  634. SERIAL_ECHOPGM("Mean Mesh Height: ");
  635. SERIAL_ECHO_F(mean, 6);
  636. SERIAL_EOL();
  637. const float sigma = SQRT(sum_of_diff_squared / (n + 1));
  638. SERIAL_ECHOPGM("Standard Deviation: ");
  639. SERIAL_ECHO_F(sigma, 6);
  640. SERIAL_EOL();
  641. if (g29_c_flag)
  642. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  643. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  644. if (!isnan(z_values[x][y]))
  645. z_values[x][y] -= mean + g29_constant;
  646. }
  647. void unified_bed_leveling::shift_mesh_height() {
  648. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  649. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  650. if (!isnan(z_values[x][y]))
  651. z_values[x][y] += g29_constant;
  652. }
  653. #if HAS_BED_PROBE
  654. /**
  655. * Probe all invalidated locations of the mesh that can be reached by the probe.
  656. * This attempts to fill in locations closest to the nozzle's start location first.
  657. */
  658. void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  659. mesh_index_pair location;
  660. has_control_of_lcd_panel = true;
  661. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  662. DEPLOY_PROBE();
  663. uint16_t max_iterations = GRID_MAX_POINTS;
  664. do {
  665. if (do_ubl_mesh_map) display_map(g29_map_type);
  666. #if ENABLED(NEWPANEL)
  667. if (ubl_lcd_clicked()) {
  668. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  669. lcd_quick_feedback();
  670. STOW_PROBE();
  671. while (ubl_lcd_clicked()) idle();
  672. has_control_of_lcd_panel = false;
  673. restore_ubl_active_state_and_leave();
  674. safe_delay(50); // Debounce the Encoder wheel
  675. return;
  676. }
  677. #endif
  678. if (close_or_far)
  679. location = find_furthest_invalid_mesh_point();
  680. else
  681. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
  682. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  683. const float rawx = mesh_index_to_xpos(location.x_index),
  684. rawy = mesh_index_to_ypos(location.y_index);
  685. const float measured_z = probe_pt(rawx, rawy, stow_probe, g29_verbose_level); // TODO: Needs error handling
  686. z_values[location.x_index][location.y_index] = measured_z;
  687. }
  688. } while (location.x_index >= 0 && --max_iterations);
  689. STOW_PROBE();
  690. restore_ubl_active_state_and_leave();
  691. do_blocking_move_to_xy(
  692. constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
  693. constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
  694. );
  695. }
  696. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  697. matrix_3x3 rotation;
  698. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  699. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  700. (z1 - z2) ),
  701. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  702. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  703. (z3 - z2) ),
  704. normal = vector_3::cross(v1, v2);
  705. normal = normal.get_normal();
  706. /**
  707. * This vector is normal to the tilted plane.
  708. * However, we don't know its direction. We need it to point up. So if
  709. * Z is negative, we need to invert the sign of all components of the vector
  710. */
  711. if (normal.z < 0.0) {
  712. normal.x = -normal.x;
  713. normal.y = -normal.y;
  714. normal.z = -normal.z;
  715. }
  716. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  717. if (g29_verbose_level > 2) {
  718. SERIAL_ECHOPGM("bed plane normal = [");
  719. SERIAL_PROTOCOL_F(normal.x, 7);
  720. SERIAL_PROTOCOLCHAR(',');
  721. SERIAL_PROTOCOL_F(normal.y, 7);
  722. SERIAL_PROTOCOLCHAR(',');
  723. SERIAL_PROTOCOL_F(normal.z, 7);
  724. SERIAL_ECHOLNPGM("]");
  725. rotation.debug(PSTR("rotation matrix:"));
  726. }
  727. //
  728. // All of 3 of these points should give us the same d constant
  729. //
  730. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  731. d = t + normal.z * z1;
  732. if (g29_verbose_level>2) {
  733. SERIAL_ECHOPGM("D constant: ");
  734. SERIAL_PROTOCOL_F(d, 7);
  735. SERIAL_ECHOLNPGM(" ");
  736. }
  737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  738. if (DEBUGGING(LEVELING)) {
  739. SERIAL_ECHOPGM("d from 1st point: ");
  740. SERIAL_ECHO_F(d, 6);
  741. SERIAL_EOL();
  742. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  743. d = t + normal.z * z2;
  744. SERIAL_ECHOPGM("d from 2nd point: ");
  745. SERIAL_ECHO_F(d, 6);
  746. SERIAL_EOL();
  747. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  748. d = t + normal.z * z3;
  749. SERIAL_ECHOPGM("d from 3rd point: ");
  750. SERIAL_ECHO_F(d, 6);
  751. SERIAL_EOL();
  752. }
  753. #endif
  754. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  755. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  756. float x_tmp = mesh_index_to_xpos(i),
  757. y_tmp = mesh_index_to_ypos(j),
  758. z_tmp = z_values[i][j];
  759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  760. if (DEBUGGING(LEVELING)) {
  761. SERIAL_ECHOPGM("before rotation = [");
  762. SERIAL_PROTOCOL_F(x_tmp, 7);
  763. SERIAL_PROTOCOLCHAR(',');
  764. SERIAL_PROTOCOL_F(y_tmp, 7);
  765. SERIAL_PROTOCOLCHAR(',');
  766. SERIAL_PROTOCOL_F(z_tmp, 7);
  767. SERIAL_ECHOPGM("] ---> ");
  768. safe_delay(20);
  769. }
  770. #endif
  771. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  773. if (DEBUGGING(LEVELING)) {
  774. SERIAL_ECHOPGM("after rotation = [");
  775. SERIAL_PROTOCOL_F(x_tmp, 7);
  776. SERIAL_PROTOCOLCHAR(',');
  777. SERIAL_PROTOCOL_F(y_tmp, 7);
  778. SERIAL_PROTOCOLCHAR(',');
  779. SERIAL_PROTOCOL_F(z_tmp, 7);
  780. SERIAL_ECHOLNPGM("]");
  781. safe_delay(55);
  782. }
  783. #endif
  784. z_values[i][j] += z_tmp - d;
  785. }
  786. }
  787. }
  788. #endif // HAS_BED_PROBE
  789. #if ENABLED(NEWPANEL)
  790. float unified_bed_leveling::measure_point_with_encoder() {
  791. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  792. delay(50); // debounce
  793. KEEPALIVE_STATE(PAUSED_FOR_USER);
  794. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  795. idle();
  796. if (encoder_diff) {
  797. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
  798. encoder_diff = 0;
  799. }
  800. }
  801. KEEPALIVE_STATE(IN_HANDLER);
  802. return current_position[Z_AXIS];
  803. }
  804. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  805. float unified_bed_leveling::measure_business_card_thickness(float in_height) {
  806. has_control_of_lcd_panel = true;
  807. save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  808. do_blocking_move_to_z(in_height);
  809. do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)));
  810. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  811. stepper.synchronize();
  812. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  813. LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
  814. lcd_return_to_status();
  815. echo_and_take_a_measurement();
  816. const float z1 = measure_point_with_encoder();
  817. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  818. stepper.synchronize();
  819. SERIAL_PROTOCOLPGM("Remove shim");
  820. LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
  821. echo_and_take_a_measurement();
  822. const float z2 = measure_point_with_encoder();
  823. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  824. const float thickness = abs(z1 - z2);
  825. if (g29_verbose_level > 1) {
  826. SERIAL_PROTOCOLPGM("Business Card is ");
  827. SERIAL_PROTOCOL_F(thickness, 4);
  828. SERIAL_PROTOCOLLNPGM("mm thick.");
  829. }
  830. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  831. has_control_of_lcd_panel = false;
  832. restore_ubl_active_state_and_leave();
  833. return thickness;
  834. }
  835. void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
  836. has_control_of_lcd_panel = true;
  837. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  838. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  839. do_blocking_move_to_xy(rx, ry);
  840. lcd_return_to_status();
  841. mesh_index_pair location;
  842. do {
  843. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
  844. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  845. if (location.x_index < 0 && location.y_index < 0) continue;
  846. const float xProbe = mesh_index_to_xpos(location.x_index),
  847. yProbe = mesh_index_to_ypos(location.y_index);
  848. if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  849. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  850. LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
  851. do_blocking_move_to_xy(xProbe, yProbe);
  852. do_blocking_move_to_z(z_clearance);
  853. KEEPALIVE_STATE(PAUSED_FOR_USER);
  854. has_control_of_lcd_panel = true;
  855. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  856. serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
  857. const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
  858. //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
  859. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  860. delay(50); // debounce
  861. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  862. idle();
  863. if (encoder_diff) {
  864. do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
  865. encoder_diff = 0;
  866. }
  867. }
  868. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  869. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  870. // should be redone and compressed.
  871. const millis_t nxt = millis() + 1500L;
  872. while (ubl_lcd_clicked()) { // debounce and watch for abort
  873. idle();
  874. if (ELAPSED(millis(), nxt)) {
  875. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  876. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  877. #if ENABLED(NEWPANEL)
  878. lcd_quick_feedback();
  879. while (ubl_lcd_clicked()) idle();
  880. has_control_of_lcd_panel = false;
  881. #endif
  882. KEEPALIVE_STATE(IN_HANDLER);
  883. restore_ubl_active_state_and_leave();
  884. return;
  885. }
  886. }
  887. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
  888. if (g29_verbose_level > 2) {
  889. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  890. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  891. SERIAL_EOL();
  892. }
  893. } while (location.x_index >= 0 && location.y_index >= 0);
  894. if (do_ubl_mesh_map) display_map(g29_map_type);
  895. restore_ubl_active_state_and_leave();
  896. KEEPALIVE_STATE(IN_HANDLER);
  897. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  898. do_blocking_move_to_xy(rx, ry);
  899. }
  900. #endif // NEWPANEL
  901. bool unified_bed_leveling::g29_parameter_parsing() {
  902. bool err_flag = false;
  903. #if ENABLED(NEWPANEL)
  904. LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
  905. lcd_quick_feedback();
  906. #endif
  907. g29_constant = 0.0;
  908. g29_repetition_cnt = 0;
  909. g29_x_flag = parser.seenval('X');
  910. g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
  911. g29_y_flag = parser.seenval('Y');
  912. g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
  913. if (parser.seen('R')) {
  914. g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
  915. NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
  916. if (g29_repetition_cnt < 1) {
  917. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  918. return UBL_ERR;
  919. }
  920. }
  921. g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
  922. if (!WITHIN(g29_verbose_level, 0, 4)) {
  923. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  924. err_flag = true;
  925. }
  926. if (parser.seen('P')) {
  927. const int pv = parser.value_int();
  928. #if !HAS_BED_PROBE
  929. if (pv == 1) {
  930. SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
  931. err_flag = true;
  932. }
  933. else
  934. #endif
  935. {
  936. g29_phase_value = pv;
  937. if (!WITHIN(g29_phase_value, 0, 6)) {
  938. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  939. err_flag = true;
  940. }
  941. }
  942. }
  943. if (parser.seen('J')) {
  944. #if HAS_BED_PROBE
  945. g29_grid_size = parser.has_value() ? parser.value_int() : 0;
  946. if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
  947. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  948. err_flag = true;
  949. }
  950. #else
  951. SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
  952. err_flag = true;
  953. #endif
  954. }
  955. if (g29_x_flag != g29_y_flag) {
  956. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  957. err_flag = true;
  958. }
  959. // If X or Y are not valid, use center of the bed values
  960. if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
  961. if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
  962. if (err_flag) return UBL_ERR;
  963. /**
  964. * Activate or deactivate UBL
  965. * Note: UBL's G29 restores the state set here when done.
  966. * Leveling is being enabled here with old data, possibly
  967. * none. Error handling should disable for safety...
  968. */
  969. if (parser.seen('A')) {
  970. if (parser.seen('D')) {
  971. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  972. return UBL_ERR;
  973. }
  974. set_bed_leveling_enabled(true);
  975. report_state();
  976. }
  977. else if (parser.seen('D')) {
  978. set_bed_leveling_enabled(false);
  979. report_state();
  980. }
  981. // Set global 'C' flag and its value
  982. if ((g29_c_flag = parser.seen('C')))
  983. g29_constant = parser.value_float();
  984. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  985. if (parser.seenval('F')) {
  986. const float fh = parser.value_float();
  987. if (!WITHIN(fh, 0.0, 100.0)) {
  988. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  989. return UBL_ERR;
  990. }
  991. set_z_fade_height(fh);
  992. }
  993. #endif
  994. g29_map_type = parser.intval('T');
  995. if (!WITHIN(g29_map_type, 0, 2)) {
  996. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  997. return UBL_ERR;
  998. }
  999. return UBL_OK;
  1000. }
  1001. static int ubl_state_at_invocation = 0,
  1002. ubl_state_recursion_chk = 0;
  1003. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1004. ubl_state_recursion_chk++;
  1005. if (ubl_state_recursion_chk != 1) {
  1006. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1007. #if ENABLED(NEWPANEL)
  1008. LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
  1009. lcd_quick_feedback();
  1010. #endif
  1011. return;
  1012. }
  1013. ubl_state_at_invocation = planner.leveling_active;
  1014. set_bed_leveling_enabled(false);
  1015. }
  1016. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1017. if (--ubl_state_recursion_chk) {
  1018. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1019. #if ENABLED(NEWPANEL)
  1020. LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
  1021. lcd_quick_feedback();
  1022. #endif
  1023. return;
  1024. }
  1025. set_bed_leveling_enabled(ubl_state_at_invocation);
  1026. }
  1027. /**
  1028. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1029. * good to have the extra information. Soon... we prune this to just a few items
  1030. */
  1031. void unified_bed_leveling::g29_what_command() {
  1032. report_state();
  1033. if (storage_slot == -1)
  1034. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1035. else {
  1036. SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
  1037. SERIAL_PROTOCOLPGM(" Loaded.");
  1038. }
  1039. SERIAL_EOL();
  1040. safe_delay(50);
  1041. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1042. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1043. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1044. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1045. SERIAL_EOL();
  1046. #endif
  1047. find_mean_mesh_height();
  1048. #if HAS_BED_PROBE
  1049. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1050. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1051. SERIAL_EOL();
  1052. #endif
  1053. SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
  1054. SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
  1055. safe_delay(25);
  1056. SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
  1057. SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
  1058. safe_delay(25);
  1059. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1060. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1061. safe_delay(25);
  1062. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1063. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1064. safe_delay(25);
  1065. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1066. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1067. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
  1068. SERIAL_PROTOCOLPGM(" ");
  1069. safe_delay(25);
  1070. }
  1071. SERIAL_EOL();
  1072. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1073. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1074. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
  1075. SERIAL_PROTOCOLPGM(" ");
  1076. safe_delay(25);
  1077. }
  1078. SERIAL_EOL();
  1079. #if HAS_KILL
  1080. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1081. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1082. #endif
  1083. SERIAL_EOL();
  1084. safe_delay(50);
  1085. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1086. SERIAL_EOL();
  1087. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1088. SERIAL_EOL();
  1089. safe_delay(50);
  1090. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1091. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1092. safe_delay(50);
  1093. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1094. SERIAL_EOL();
  1095. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1096. SERIAL_EOL();
  1097. safe_delay(25);
  1098. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1099. safe_delay(50);
  1100. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1101. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1102. safe_delay(25);
  1103. if (!sanity_check()) {
  1104. echo_name();
  1105. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1106. }
  1107. }
  1108. /**
  1109. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1110. * right now, it is good to have the extra information. Soon... we prune this.
  1111. */
  1112. void unified_bed_leveling::g29_eeprom_dump() {
  1113. unsigned char cccc;
  1114. unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
  1115. SERIAL_ECHO_START();
  1116. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1117. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1118. if (!(i & 0x3)) idle();
  1119. print_hex_word(i);
  1120. SERIAL_ECHOPGM(": ");
  1121. for (uint16_t j = 0; j < 16; j++) {
  1122. kkkk = i + j;
  1123. eeprom_read_block(&cccc, (const void *) kkkk, sizeof(unsigned char));
  1124. print_hex_byte(cccc);
  1125. SERIAL_ECHO(' ');
  1126. }
  1127. SERIAL_EOL();
  1128. }
  1129. SERIAL_EOL();
  1130. }
  1131. /**
  1132. * When we are fully debugged, this may go away. But there are some valid
  1133. * use cases for the users. So we can wait and see what to do with it.
  1134. */
  1135. void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
  1136. int16_t a = settings.calc_num_meshes();
  1137. if (!a) {
  1138. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1139. return;
  1140. }
  1141. if (!parser.has_value()) {
  1142. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1143. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1144. return;
  1145. }
  1146. g29_storage_slot = parser.value_int();
  1147. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  1148. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1149. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1150. return;
  1151. }
  1152. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1153. settings.load_mesh(g29_storage_slot, &tmp_z_values);
  1154. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
  1155. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1156. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1157. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1158. z_values[x][y] -= tmp_z_values[x][y];
  1159. }
  1160. mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
  1161. bool found_a_NAN = false;
  1162. bool found_a_real = false;
  1163. mesh_index_pair out_mesh;
  1164. out_mesh.x_index = out_mesh.y_index = -1;
  1165. out_mesh.distance = -99999.99;
  1166. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1167. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1168. if ( isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
  1169. const float mx = mesh_index_to_xpos(i),
  1170. my = mesh_index_to_ypos(j);
  1171. if ( !position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
  1172. continue;
  1173. found_a_NAN = true;
  1174. int8_t closest_x=-1, closest_y=-1;
  1175. float d1, d2 = 99999.9;
  1176. for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1177. for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1178. if (!isnan(z_values[k][l])) {
  1179. found_a_real = true;
  1180. // Add in a random weighting factor that scrambles the probing of the
  1181. // last half of the mesh (when every unprobed mesh point is one index
  1182. // from a probed location).
  1183. d1 = HYPOT(i - k, j - l) + (1.0 / ((millis() % 47) + 13));
  1184. if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
  1185. d2 = d1; // found a closer location with
  1186. closest_x = i; // an assigned mesh point value
  1187. closest_y = j;
  1188. }
  1189. }
  1190. }
  1191. }
  1192. //
  1193. // at this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
  1194. //
  1195. if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
  1196. out_mesh.distance = d2; // found an invalid location with a greater distance
  1197. out_mesh.x_index = closest_x; // to a defined mesh point
  1198. out_mesh.y_index = closest_y;
  1199. }
  1200. }
  1201. } // for j
  1202. } // for i
  1203. if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
  1204. out_mesh.x_index = GRID_MAX_POINTS_X / 2;
  1205. out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
  1206. out_mesh.distance = 1.0;
  1207. }
  1208. return out_mesh;
  1209. }
  1210. mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
  1211. mesh_index_pair out_mesh;
  1212. out_mesh.x_index = out_mesh.y_index = -1;
  1213. out_mesh.distance = -99999.9;
  1214. // Get our reference position. Either the nozzle or probe location.
  1215. const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1216. py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1217. float best_so_far = 99999.99;
  1218. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1219. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1220. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1221. || (type == REAL && !isnan(z_values[i][j]))
  1222. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1223. ) {
  1224. // We only get here if we found a Mesh Point of the specified type
  1225. const float mx = mesh_index_to_xpos(i),
  1226. my = mesh_index_to_ypos(j);
  1227. // If using the probe as the reference there are some unreachable locations.
  1228. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1229. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1230. if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
  1231. continue;
  1232. // Reachable. Check if it's the best_so_far location to the nozzle.
  1233. float distance = HYPOT(px - mx, py - my);
  1234. // factor in the distance from the current location for the normal case
  1235. // so the nozzle isn't running all over the bed.
  1236. distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1;
  1237. if (distance < best_so_far) {
  1238. best_so_far = distance; // We found a closer location with
  1239. out_mesh.x_index = i; // the specified type of mesh value.
  1240. out_mesh.y_index = j;
  1241. out_mesh.distance = best_so_far;
  1242. }
  1243. }
  1244. } // for j
  1245. } // for i
  1246. return out_mesh;
  1247. }
  1248. #if ENABLED(NEWPANEL)
  1249. void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
  1250. if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1251. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1252. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1253. const bool is_offset = parser.seen('H');
  1254. const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
  1255. if (is_offset && !WITHIN(h_offset, 0, 10)) {
  1256. SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
  1257. return;
  1258. }
  1259. #endif
  1260. mesh_index_pair location;
  1261. if (!position_is_reachable(rx, ry)) {
  1262. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1263. return;
  1264. }
  1265. save_ubl_active_state_and_disable();
  1266. LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
  1267. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1268. do_blocking_move_to_xy(rx, ry);
  1269. uint16_t not_done[16];
  1270. memset(not_done, 0xFF, sizeof(not_done));
  1271. do {
  1272. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
  1273. if (location.x_index < 0) break; // stop when we can't find any more reachable points.
  1274. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1275. // different location the next time through the loop
  1276. const float rawx = mesh_index_to_xpos(location.x_index),
  1277. rawy = mesh_index_to_ypos(location.y_index);
  1278. if (!position_is_reachable(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1279. break;
  1280. float new_z = z_values[location.x_index][location.y_index];
  1281. if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
  1282. new_z = 0.0;
  1283. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
  1284. do_blocking_move_to_xy(rawx, rawy);
  1285. new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
  1286. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1287. has_control_of_lcd_panel = true;
  1288. if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
  1289. lcd_refresh();
  1290. lcd_mesh_edit_setup(new_z);
  1291. do {
  1292. new_z = lcd_mesh_edit();
  1293. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1294. do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
  1295. #endif
  1296. idle();
  1297. } while (!ubl_lcd_clicked());
  1298. if (!ubl_lcd_map_control) lcd_return_to_status();
  1299. // The technique used here generates a race condition for the encoder click.
  1300. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
  1301. // Let's work on specifying a proper API for the LCD ASAP, OK?
  1302. has_control_of_lcd_panel = true;
  1303. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  1304. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  1305. // should be redone and compressed.
  1306. const millis_t nxt = millis() + 1500UL;
  1307. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1308. idle();
  1309. if (ELAPSED(millis(), nxt)) {
  1310. lcd_return_to_status();
  1311. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1312. LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
  1313. while (ubl_lcd_clicked()) idle();
  1314. goto FINE_TUNE_EXIT;
  1315. }
  1316. }
  1317. safe_delay(20); // We don't want any switch noise.
  1318. z_values[location.x_index][location.y_index] = new_z;
  1319. lcd_refresh();
  1320. } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
  1321. FINE_TUNE_EXIT:
  1322. has_control_of_lcd_panel = false;
  1323. KEEPALIVE_STATE(IN_HANDLER);
  1324. if (do_ubl_mesh_map) display_map(g29_map_type);
  1325. restore_ubl_active_state_and_leave();
  1326. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1327. do_blocking_move_to_xy(rx, ry);
  1328. LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
  1329. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1330. if (ubl_lcd_map_control)
  1331. lcd_goto_screen(_lcd_ubl_output_map_lcd);
  1332. else
  1333. lcd_return_to_status();
  1334. }
  1335. #endif // NEWPANEL
  1336. /**
  1337. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1338. * If an invalid location is found, use the next two points (if valid) to
  1339. * calculate a 'reasonable' value for the unprobed mesh point.
  1340. */
  1341. bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1342. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1343. y1 = y + ydir, y2 = y1 + ydir;
  1344. // A NAN next to a pair of real values?
  1345. if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
  1346. if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
  1347. z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1348. else
  1349. z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
  1350. return true;
  1351. }
  1352. return false;
  1353. }
  1354. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1355. void unified_bed_leveling::smart_fill_mesh() {
  1356. static const smart_fill_info
  1357. info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1358. info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1359. info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1360. info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
  1361. static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
  1362. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1363. const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
  1364. const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
  1365. ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
  1366. if (pgm_read_byte(&f->yfirst)) {
  1367. const int8_t dir = ex > sx ? 1 : -1;
  1368. for (uint8_t y = sy; y != ey; ++y)
  1369. for (uint8_t x = sx; x != ex; x += dir)
  1370. if (smart_fill_one(x, y, dir, 0)) break;
  1371. }
  1372. else {
  1373. const int8_t dir = ey > sy ? 1 : -1;
  1374. for (uint8_t x = sx; x != ex; ++x)
  1375. for (uint8_t y = sy; y != ey; y += dir)
  1376. if (smart_fill_one(x, y, 0, dir)) break;
  1377. }
  1378. }
  1379. }
  1380. #if HAS_BED_PROBE
  1381. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1382. constexpr int16_t x_min = max(MIN_PROBE_X, MESH_MIN_X),
  1383. x_max = min(MAX_PROBE_X, MESH_MAX_X),
  1384. y_min = max(MIN_PROBE_Y, MESH_MIN_Y),
  1385. y_max = min(MAX_PROBE_Y, MESH_MAX_Y);
  1386. const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
  1387. dy = float(y_max - y_min) / (g29_grid_size - 1.0);
  1388. struct linear_fit_data lsf_results;
  1389. incremental_LSF_reset(&lsf_results);
  1390. bool zig_zag = false;
  1391. for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
  1392. const float rx = float(x_min) + ix * dx;
  1393. for (int8_t iy = 0; iy < g29_grid_size; iy++) {
  1394. const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
  1395. float measured_z = probe_pt(rx, ry, parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
  1396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1397. if (DEBUGGING(LEVELING)) {
  1398. SERIAL_CHAR('(');
  1399. SERIAL_PROTOCOL_F(rx, 7);
  1400. SERIAL_CHAR(',');
  1401. SERIAL_PROTOCOL_F(ry, 7);
  1402. SERIAL_ECHOPGM(") logical: ");
  1403. SERIAL_CHAR('(');
  1404. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
  1405. SERIAL_CHAR(',');
  1406. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ry), 7);
  1407. SERIAL_ECHOPGM(") measured: ");
  1408. SERIAL_PROTOCOL_F(measured_z, 7);
  1409. SERIAL_ECHOPGM(" correction: ");
  1410. SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
  1411. }
  1412. #endif
  1413. measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) {
  1416. SERIAL_ECHOPGM(" final >>>---> ");
  1417. SERIAL_PROTOCOL_F(measured_z, 7);
  1418. SERIAL_EOL();
  1419. }
  1420. #endif
  1421. incremental_LSF(&lsf_results, rx, ry, measured_z);
  1422. }
  1423. zig_zag ^= true;
  1424. }
  1425. if (finish_incremental_LSF(&lsf_results)) {
  1426. SERIAL_ECHOPGM("Could not complete LSF!");
  1427. return;
  1428. }
  1429. if (g29_verbose_level > 3) {
  1430. SERIAL_ECHOPGM("LSF Results A=");
  1431. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1432. SERIAL_ECHOPGM(" B=");
  1433. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1434. SERIAL_ECHOPGM(" D=");
  1435. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1436. SERIAL_EOL();
  1437. }
  1438. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1439. if (g29_verbose_level > 2) {
  1440. SERIAL_ECHOPGM("bed plane normal = [");
  1441. SERIAL_PROTOCOL_F(normal.x, 7);
  1442. SERIAL_PROTOCOLCHAR(',');
  1443. SERIAL_PROTOCOL_F(normal.y, 7);
  1444. SERIAL_PROTOCOLCHAR(',');
  1445. SERIAL_PROTOCOL_F(normal.z, 7);
  1446. SERIAL_ECHOLNPGM("]");
  1447. }
  1448. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1449. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1450. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1451. float x_tmp = mesh_index_to_xpos(i),
  1452. y_tmp = mesh_index_to_ypos(j),
  1453. z_tmp = z_values[i][j];
  1454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1455. if (DEBUGGING(LEVELING)) {
  1456. SERIAL_ECHOPGM("before rotation = [");
  1457. SERIAL_PROTOCOL_F(x_tmp, 7);
  1458. SERIAL_PROTOCOLCHAR(',');
  1459. SERIAL_PROTOCOL_F(y_tmp, 7);
  1460. SERIAL_PROTOCOLCHAR(',');
  1461. SERIAL_PROTOCOL_F(z_tmp, 7);
  1462. SERIAL_ECHOPGM("] ---> ");
  1463. safe_delay(20);
  1464. }
  1465. #endif
  1466. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) {
  1469. SERIAL_ECHOPGM("after rotation = [");
  1470. SERIAL_PROTOCOL_F(x_tmp, 7);
  1471. SERIAL_PROTOCOLCHAR(',');
  1472. SERIAL_PROTOCOL_F(y_tmp, 7);
  1473. SERIAL_PROTOCOLCHAR(',');
  1474. SERIAL_PROTOCOL_F(z_tmp, 7);
  1475. SERIAL_ECHOLNPGM("]");
  1476. safe_delay(55);
  1477. }
  1478. #endif
  1479. z_values[i][j] += z_tmp - lsf_results.D;
  1480. }
  1481. }
  1482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1483. if (DEBUGGING(LEVELING)) {
  1484. rotation.debug(PSTR("rotation matrix:"));
  1485. SERIAL_ECHOPGM("LSF Results A=");
  1486. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1487. SERIAL_ECHOPGM(" B=");
  1488. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1489. SERIAL_ECHOPGM(" D=");
  1490. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1491. SERIAL_EOL();
  1492. safe_delay(55);
  1493. SERIAL_ECHOPGM("bed plane normal = [");
  1494. SERIAL_PROTOCOL_F(normal.x, 7);
  1495. SERIAL_PROTOCOLCHAR(',');
  1496. SERIAL_PROTOCOL_F(normal.y, 7);
  1497. SERIAL_PROTOCOLCHAR(',');
  1498. SERIAL_PROTOCOL_F(normal.z, 7);
  1499. SERIAL_ECHOPGM("]\n");
  1500. SERIAL_EOL();
  1501. }
  1502. #endif
  1503. if (do_ubl_mesh_map) display_map(g29_map_type);
  1504. }
  1505. #endif // HAS_BED_PROBE
  1506. #if ENABLED(UBL_G29_P31)
  1507. void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
  1508. // For each undefined mesh point, compute a distance-weighted least squares fit
  1509. // from all the originally populated mesh points, weighted toward the point
  1510. // being extrapolated so that nearby points will have greater influence on
  1511. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1512. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
  1513. uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
  1514. struct linear_fit_data lsf_results;
  1515. SERIAL_ECHOPGM("Extrapolating mesh...");
  1516. const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
  1517. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
  1518. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
  1519. if (!isnan(z_values[jx][jy]))
  1520. SBI(bitmap[jx], jy);
  1521. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1522. const float px = mesh_index_to_xpos(ix);
  1523. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1524. const float py = mesh_index_to_ypos(iy);
  1525. if (isnan(z_values[ix][iy])) {
  1526. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1527. incremental_LSF_reset(&lsf_results);
  1528. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1529. const float rx = mesh_index_to_xpos(jx);
  1530. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1531. if (TEST(bitmap[jx], jy)) {
  1532. const float ry = mesh_index_to_ypos(jy),
  1533. rz = z_values[jx][jy],
  1534. w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
  1535. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1536. }
  1537. }
  1538. }
  1539. if (finish_incremental_LSF(&lsf_results)) {
  1540. SERIAL_ECHOLNPGM("Insufficient data");
  1541. return;
  1542. }
  1543. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1544. z_values[ix][iy] = ez;
  1545. idle(); // housekeeping
  1546. }
  1547. }
  1548. }
  1549. SERIAL_ECHOLNPGM("done");
  1550. }
  1551. #endif // UBL_G29_P31
  1552. #endif // AUTO_BED_LEVELING_UBL