My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

ui_api.cpp 40KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**************
  23. * ui_api.cpp *
  24. **************/
  25. /****************************************************************************
  26. * Written By Marcio Teixeira 2018 - Aleph Objects, Inc. *
  27. * *
  28. * This program is free software: you can redistribute it and/or modify *
  29. * it under the terms of the GNU General Public License as published by *
  30. * the Free Software Foundation, either version 3 of the License, or *
  31. * (at your option) any later version. *
  32. * *
  33. * This program is distributed in the hope that it will be useful, *
  34. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  35. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  36. * GNU General Public License for more details. *
  37. * *
  38. * To view a copy of the GNU General Public License, go to the following *
  39. * location: <https://www.gnu.org/licenses/>. *
  40. ****************************************************************************/
  41. #include "../../inc/MarlinConfigPre.h"
  42. #if ENABLED(EXTENSIBLE_UI)
  43. #include "../marlinui.h"
  44. #include "../../gcode/queue.h"
  45. #include "../../gcode/gcode.h"
  46. #include "../../module/motion.h"
  47. #include "../../module/planner.h"
  48. #include "../../module/probe.h"
  49. #include "../../module/temperature.h"
  50. #include "../../module/printcounter.h"
  51. #include "../../libs/duration_t.h"
  52. #include "../../HAL/shared/Delay.h"
  53. #include "../../MarlinCore.h"
  54. #include "../../sd/cardreader.h"
  55. #if ENABLED(PRINTCOUNTER)
  56. #include "../../core/utility.h"
  57. #include "../../libs/numtostr.h"
  58. #endif
  59. #if HAS_MULTI_EXTRUDER
  60. #include "../../module/tool_change.h"
  61. #endif
  62. #if ENABLED(EMERGENCY_PARSER)
  63. #include "../../feature/e_parser.h"
  64. #endif
  65. #if HAS_TRINAMIC_CONFIG
  66. #include "../../feature/tmc_util.h"
  67. #include "../../module/stepper/indirection.h"
  68. #endif
  69. #include "ui_api.h"
  70. #if ENABLED(BACKLASH_GCODE)
  71. #include "../../feature/backlash.h"
  72. #endif
  73. #if HAS_LEVELING
  74. #include "../../feature/bedlevel/bedlevel.h"
  75. #endif
  76. #if HAS_FILAMENT_SENSOR
  77. #include "../../feature/runout.h"
  78. #endif
  79. #if ENABLED(CASE_LIGHT_ENABLE)
  80. #include "../../feature/caselight.h"
  81. #endif
  82. #if ENABLED(BABYSTEPPING)
  83. #include "../../feature/babystep.h"
  84. #endif
  85. #if ENABLED(HOST_PROMPT_SUPPORT)
  86. #include "../../feature/host_actions.h"
  87. #endif
  88. #if M600_PURGE_MORE_RESUMABLE
  89. #include "../../feature/pause.h"
  90. #endif
  91. namespace ExtUI {
  92. static struct {
  93. uint8_t printer_killed : 1;
  94. #if ENABLED(JOYSTICK)
  95. uint8_t jogging : 1;
  96. #endif
  97. } flags;
  98. #ifdef __SAM3X8E__
  99. /**
  100. * Implement a special millis() to allow time measurement
  101. * within an ISR (such as when the printer is killed).
  102. *
  103. * To keep proper time, must be called at least every 1s.
  104. */
  105. uint32_t safe_millis() {
  106. // Not killed? Just call millis()
  107. if (!flags.printer_killed) return millis();
  108. static uint32_t currTimeHI = 0; /* Current time */
  109. // Machine was killed, reinit SysTick so we are able to compute time without ISRs
  110. if (currTimeHI == 0) {
  111. // Get the last time the Arduino time computed (from CMSIS) and convert it to SysTick
  112. currTimeHI = uint32_t((GetTickCount() * uint64_t(F_CPU / 8000)) >> 24);
  113. // Reinit the SysTick timer to maximize its period
  114. SysTick->LOAD = SysTick_LOAD_RELOAD_Msk; // get the full range for the systick timer
  115. SysTick->VAL = 0; // Load the SysTick Counter Value
  116. SysTick->CTRL = // MCLK/8 as source
  117. // No interrupts
  118. SysTick_CTRL_ENABLE_Msk; // Enable SysTick Timer
  119. }
  120. // Check if there was a timer overflow from the last read
  121. if (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) {
  122. // There was. This means (SysTick_LOAD_RELOAD_Msk * 1000 * 8)/F_CPU ms has elapsed
  123. currTimeHI++;
  124. }
  125. // Calculate current time in milliseconds
  126. uint32_t currTimeLO = SysTick_LOAD_RELOAD_Msk - SysTick->VAL; // (in MCLK/8)
  127. uint64_t currTime = ((uint64_t)currTimeLO) | (((uint64_t)currTimeHI) << 24);
  128. // The ms count is
  129. return (uint32_t)(currTime / (F_CPU / 8000));
  130. }
  131. #endif // __SAM3X8E__
  132. void delay_us(uint32_t us) { DELAY_US(us); }
  133. void delay_ms(uint32_t ms) {
  134. if (flags.printer_killed)
  135. DELAY_US(ms * 1000);
  136. else
  137. safe_delay(ms);
  138. }
  139. void yield() {
  140. if (!flags.printer_killed) thermalManager.manage_heater();
  141. }
  142. void enableHeater(const extruder_t extruder) {
  143. #if HAS_HOTEND && HEATER_IDLE_HANDLER
  144. thermalManager.reset_hotend_idle_timer(extruder - E0);
  145. #else
  146. UNUSED(extruder);
  147. #endif
  148. }
  149. void enableHeater(const heater_t heater) {
  150. #if HEATER_IDLE_HANDLER
  151. switch (heater) {
  152. #if HAS_HEATED_BED
  153. case BED: thermalManager.reset_bed_idle_timer(); return;
  154. #endif
  155. #if HAS_HEATED_CHAMBER
  156. case CHAMBER: return; // Chamber has no idle timer
  157. #endif
  158. #if HAS_COOLER
  159. case COOLER: return; // Cooler has no idle timer
  160. #endif
  161. default:
  162. TERN_(HAS_HOTEND, thermalManager.reset_hotend_idle_timer(heater - H0));
  163. break;
  164. }
  165. #else
  166. UNUSED(heater);
  167. #endif
  168. }
  169. #if ENABLED(JOYSTICK)
  170. /**
  171. * Jogs in the direction given by the vector (dx, dy, dz).
  172. * The values range from -1 to 1 mapping to the maximum
  173. * feedrate for an axis.
  174. *
  175. * The axis will continue to jog until this function is
  176. * called with all zeros.
  177. */
  178. void jog(const xyz_float_t &dir) {
  179. // The "destination" variable is used as a scratchpad in
  180. // Marlin by GCODE routines, but should remain untouched
  181. // during manual jogging, allowing us to reuse the space
  182. // for our direction vector.
  183. destination = dir;
  184. flags.jogging = !NEAR_ZERO(dir.x) || !NEAR_ZERO(dir.y) || !NEAR_ZERO(dir.z);
  185. }
  186. // Called by the polling routine in "joystick.cpp"
  187. void _joystick_update(xyz_float_t &norm_jog) {
  188. if (flags.jogging) {
  189. #define OUT_OF_RANGE(VALUE) (VALUE < -1.0f || VALUE > 1.0f)
  190. if (OUT_OF_RANGE(destination.x) || OUT_OF_RANGE(destination.y) || OUT_OF_RANGE(destination.z)) {
  191. // If destination on any axis is out of range, it
  192. // probably means the UI forgot to stop jogging and
  193. // ran GCODE that wrote a position to destination.
  194. // To prevent a disaster, stop jogging.
  195. flags.jogging = false;
  196. return;
  197. }
  198. norm_jog = destination;
  199. }
  200. }
  201. #endif
  202. bool isHeaterIdle(const extruder_t extruder) {
  203. #if HAS_HOTEND && HEATER_IDLE_HANDLER
  204. return thermalManager.heater_idle[extruder - E0].timed_out;
  205. #else
  206. UNUSED(extruder);
  207. return false;
  208. #endif
  209. }
  210. bool isHeaterIdle(const heater_t heater) {
  211. #if HEATER_IDLE_HANDLER
  212. switch (heater) {
  213. #if HAS_HEATED_BED
  214. case BED: return thermalManager.heater_idle[thermalManager.IDLE_INDEX_BED].timed_out;
  215. #endif
  216. #if HAS_HEATED_CHAMBER
  217. case CHAMBER: return false; // Chamber has no idle timer
  218. #endif
  219. default:
  220. return TERN0(HAS_HOTEND, thermalManager.heater_idle[heater - H0].timed_out);
  221. }
  222. #else
  223. UNUSED(heater);
  224. return false;
  225. #endif
  226. }
  227. #ifdef TOUCH_UI_LCD_TEMP_SCALING
  228. #define GET_TEMP_ADJUSTMENT(A) (float(A) / (TOUCH_UI_LCD_TEMP_SCALING))
  229. #else
  230. #define GET_TEMP_ADJUSTMENT(A) A
  231. #endif
  232. celsius_float_t getActualTemp_celsius(const heater_t heater) {
  233. switch (heater) {
  234. #if HAS_HEATED_BED
  235. case BED: return GET_TEMP_ADJUSTMENT(thermalManager.degBed());
  236. #endif
  237. #if HAS_HEATED_CHAMBER
  238. case CHAMBER: return GET_TEMP_ADJUSTMENT(thermalManager.degChamber());
  239. #endif
  240. default: return GET_TEMP_ADJUSTMENT(thermalManager.degHotend(heater - H0));
  241. }
  242. }
  243. celsius_float_t getActualTemp_celsius(const extruder_t extruder) {
  244. return GET_TEMP_ADJUSTMENT(thermalManager.degHotend(extruder - E0));
  245. }
  246. celsius_float_t getTargetTemp_celsius(const heater_t heater) {
  247. switch (heater) {
  248. #if HAS_HEATED_BED
  249. case BED: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetBed());
  250. #endif
  251. #if HAS_HEATED_CHAMBER
  252. case CHAMBER: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetChamber());
  253. #endif
  254. default: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetHotend(heater - H0));
  255. }
  256. }
  257. celsius_float_t getTargetTemp_celsius(const extruder_t extruder) {
  258. return GET_TEMP_ADJUSTMENT(thermalManager.degTargetHotend(extruder - E0));
  259. }
  260. float getTargetFan_percent(const fan_t fan) {
  261. UNUSED(fan);
  262. return TERN0(HAS_FAN, thermalManager.fanSpeedPercent(fan - FAN0));
  263. }
  264. float getActualFan_percent(const fan_t fan) {
  265. UNUSED(fan);
  266. return TERN0(HAS_FAN, thermalManager.scaledFanSpeedPercent(fan - FAN0));
  267. }
  268. float getAxisPosition_mm(const axis_t axis) {
  269. return current_position[axis];
  270. }
  271. float getAxisPosition_mm(const extruder_t extruder) {
  272. const extruder_t old_tool = getActiveTool();
  273. setActiveTool(extruder, true);
  274. const float epos = TERN0(JOYSTICK, flags.jogging) ? destination.e : current_position.e;
  275. setActiveTool(old_tool, true);
  276. return epos;
  277. }
  278. void setAxisPosition_mm(const_float_t position, const axis_t axis, const feedRate_t feedrate/*=0*/) {
  279. // Get motion limit from software endstops, if any
  280. float min, max;
  281. soft_endstop.get_manual_axis_limits((AxisEnum)axis, min, max);
  282. // Delta limits XY based on the current offset from center
  283. // This assumes the center is 0,0
  284. #if ENABLED(DELTA)
  285. if (axis != Z) {
  286. max = SQRT(sq(float(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y - axis])); // (Y - axis) == the other axis
  287. min = -max;
  288. }
  289. #endif
  290. current_position[axis] = constrain(position, min, max);
  291. line_to_current_position(feedrate ?: manual_feedrate_mm_s[axis]);
  292. }
  293. void setAxisPosition_mm(const_float_t position, const extruder_t extruder, const feedRate_t feedrate/*=0*/) {
  294. setActiveTool(extruder, true);
  295. current_position.e = position;
  296. line_to_current_position(feedrate ?: manual_feedrate_mm_s.e);
  297. }
  298. void setActiveTool(const extruder_t extruder, bool no_move) {
  299. #if HAS_MULTI_EXTRUDER
  300. const uint8_t e = extruder - E0;
  301. if (e != active_extruder) tool_change(e, no_move);
  302. active_extruder = e;
  303. #else
  304. UNUSED(extruder);
  305. UNUSED(no_move);
  306. #endif
  307. }
  308. extruder_t getTool(const uint8_t extruder) {
  309. switch (extruder) {
  310. default:
  311. case 0: return E0; case 1: return E1; case 2: return E2; case 3: return E3;
  312. case 4: return E4; case 5: return E5; case 6: return E6; case 7: return E7;
  313. }
  314. }
  315. extruder_t getActiveTool() { return getTool(active_extruder); }
  316. bool isMoving() { return planner.has_blocks_queued(); }
  317. bool canMove(const axis_t axis) {
  318. switch (axis) {
  319. #if IS_KINEMATIC || ENABLED(NO_MOTION_BEFORE_HOMING)
  320. case X: return axis_should_home(X_AXIS);
  321. OPTCODE(HAS_Y_AXIS, case Y: return axis_should_home(Y_AXIS))
  322. OPTCODE(HAS_Z_AXIS, case Z: return axis_should_home(Z_AXIS))
  323. #else
  324. case X: case Y: case Z: return true;
  325. #endif
  326. default: return false;
  327. }
  328. }
  329. bool canMove(const extruder_t extruder) {
  330. return !thermalManager.tooColdToExtrude(extruder - E0);
  331. }
  332. GcodeSuite::MarlinBusyState getHostKeepaliveState() { return TERN0(HOST_KEEPALIVE_FEATURE, gcode.busy_state); }
  333. bool getHostKeepaliveIsPaused() { return TERN0(HOST_KEEPALIVE_FEATURE, gcode.host_keepalive_is_paused()); }
  334. #if HAS_SOFTWARE_ENDSTOPS
  335. bool getSoftEndstopState() { return soft_endstop._enabled; }
  336. void setSoftEndstopState(const bool value) { soft_endstop._enabled = value; }
  337. #endif
  338. #if HAS_TRINAMIC_CONFIG
  339. float getAxisCurrent_mA(const axis_t axis) {
  340. switch (axis) {
  341. #if AXIS_IS_TMC(X)
  342. case X: return stepperX.getMilliamps();
  343. #endif
  344. #if AXIS_IS_TMC(Y)
  345. case Y: return stepperY.getMilliamps();
  346. #endif
  347. #if AXIS_IS_TMC(Z)
  348. case Z: return stepperZ.getMilliamps();
  349. #endif
  350. #if AXIS_IS_TMC(I)
  351. case I: return stepperI.getMilliamps();
  352. #endif
  353. #if AXIS_IS_TMC(J)
  354. case J: return stepperJ.getMilliamps();
  355. #endif
  356. #if AXIS_IS_TMC(K)
  357. case K: return stepperK.getMilliamps();
  358. #endif
  359. #if AXIS_IS_TMC(X2)
  360. case X2: return stepperX2.getMilliamps();
  361. #endif
  362. #if AXIS_IS_TMC(Y2)
  363. case Y2: return stepperY2.getMilliamps();
  364. #endif
  365. #if AXIS_IS_TMC(Z2)
  366. case Z2: return stepperZ2.getMilliamps();
  367. #endif
  368. #if AXIS_IS_TMC(Z3)
  369. case Z3: return stepperZ3.getMilliamps();
  370. #endif
  371. #if AXIS_IS_TMC(Z4)
  372. case Z4: return stepperZ4.getMilliamps();
  373. #endif
  374. default: return NAN;
  375. };
  376. }
  377. float getAxisCurrent_mA(const extruder_t extruder) {
  378. switch (extruder) {
  379. #if AXIS_IS_TMC(E0)
  380. case E0: return stepperE0.getMilliamps();
  381. #endif
  382. #if AXIS_IS_TMC(E1)
  383. case E1: return stepperE1.getMilliamps();
  384. #endif
  385. #if AXIS_IS_TMC(E2)
  386. case E2: return stepperE2.getMilliamps();
  387. #endif
  388. #if AXIS_IS_TMC(E3)
  389. case E3: return stepperE3.getMilliamps();
  390. #endif
  391. #if AXIS_IS_TMC(E4)
  392. case E4: return stepperE4.getMilliamps();
  393. #endif
  394. #if AXIS_IS_TMC(E5)
  395. case E5: return stepperE5.getMilliamps();
  396. #endif
  397. #if AXIS_IS_TMC(E6)
  398. case E6: return stepperE6.getMilliamps();
  399. #endif
  400. #if AXIS_IS_TMC(E7)
  401. case E7: return stepperE7.getMilliamps();
  402. #endif
  403. default: return NAN;
  404. };
  405. }
  406. void setAxisCurrent_mA(const_float_t mA, const axis_t axis) {
  407. switch (axis) {
  408. #if AXIS_IS_TMC(X)
  409. case X: stepperX.rms_current(constrain(mA, 400, 1500)); break;
  410. #endif
  411. #if AXIS_IS_TMC(Y)
  412. case Y: stepperY.rms_current(constrain(mA, 400, 1500)); break;
  413. #endif
  414. #if AXIS_IS_TMC(Z)
  415. case Z: stepperZ.rms_current(constrain(mA, 400, 1500)); break;
  416. #endif
  417. #if AXIS_IS_TMC(I)
  418. case I: stepperI.rms_current(constrain(mA, 400, 1500)); break;
  419. #endif
  420. #if AXIS_IS_TMC(J)
  421. case J: stepperJ.rms_current(constrain(mA, 400, 1500)); break;
  422. #endif
  423. #if AXIS_IS_TMC(K)
  424. case K: stepperK.rms_current(constrain(mA, 400, 1500)); break;
  425. #endif
  426. #if AXIS_IS_TMC(X2)
  427. case X2: stepperX2.rms_current(constrain(mA, 400, 1500)); break;
  428. #endif
  429. #if AXIS_IS_TMC(Y2)
  430. case Y2: stepperY2.rms_current(constrain(mA, 400, 1500)); break;
  431. #endif
  432. #if AXIS_IS_TMC(Z2)
  433. case Z2: stepperZ2.rms_current(constrain(mA, 400, 1500)); break;
  434. #endif
  435. #if AXIS_IS_TMC(Z3)
  436. case Z3: stepperZ3.rms_current(constrain(mA, 400, 1500)); break;
  437. #endif
  438. #if AXIS_IS_TMC(Z4)
  439. case Z4: stepperZ4.rms_current(constrain(mA, 400, 1500)); break;
  440. #endif
  441. default: break;
  442. };
  443. }
  444. void setAxisCurrent_mA(const_float_t mA, const extruder_t extruder) {
  445. switch (extruder) {
  446. #if AXIS_IS_TMC(E0)
  447. case E0: stepperE0.rms_current(constrain(mA, 400, 1500)); break;
  448. #endif
  449. #if AXIS_IS_TMC(E1)
  450. case E1: stepperE1.rms_current(constrain(mA, 400, 1500)); break;
  451. #endif
  452. #if AXIS_IS_TMC(E2)
  453. case E2: stepperE2.rms_current(constrain(mA, 400, 1500)); break;
  454. #endif
  455. #if AXIS_IS_TMC(E3)
  456. case E3: stepperE3.rms_current(constrain(mA, 400, 1500)); break;
  457. #endif
  458. #if AXIS_IS_TMC(E4)
  459. case E4: stepperE4.rms_current(constrain(mA, 400, 1500)); break;
  460. #endif
  461. #if AXIS_IS_TMC(E5)
  462. case E5: stepperE5.rms_current(constrain(mA, 400, 1500)); break;
  463. #endif
  464. #if AXIS_IS_TMC(E6)
  465. case E6: stepperE6.rms_current(constrain(mA, 400, 1500)); break;
  466. #endif
  467. #if AXIS_IS_TMC(E7)
  468. case E7: stepperE7.rms_current(constrain(mA, 400, 1500)); break;
  469. #endif
  470. default: break;
  471. };
  472. }
  473. int getTMCBumpSensitivity(const axis_t axis) {
  474. switch (axis) {
  475. OPTCODE(X_SENSORLESS, case X: return stepperX.homing_threshold())
  476. OPTCODE(Y_SENSORLESS, case Y: return stepperY.homing_threshold())
  477. OPTCODE(Z_SENSORLESS, case Z: return stepperZ.homing_threshold())
  478. OPTCODE(I_SENSORLESS, case I: return stepperI.homing_threshold())
  479. OPTCODE(J_SENSORLESS, case J: return stepperJ.homing_threshold())
  480. OPTCODE(K_SENSORLESS, case K: return stepperK.homing_threshold())
  481. OPTCODE(X2_SENSORLESS, case X2: return stepperX2.homing_threshold())
  482. OPTCODE(Y2_SENSORLESS, case Y2: return stepperY2.homing_threshold())
  483. OPTCODE(Z2_SENSORLESS, case Z2: return stepperZ2.homing_threshold())
  484. OPTCODE(Z3_SENSORLESS, case Z3: return stepperZ3.homing_threshold())
  485. OPTCODE(Z4_SENSORLESS, case Z4: return stepperZ4.homing_threshold())
  486. default: return 0;
  487. }
  488. }
  489. void setTMCBumpSensitivity(const_float_t value, const axis_t axis) {
  490. switch (axis) {
  491. #if X_SENSORLESS
  492. case X: stepperX.homing_threshold(value); break;
  493. #endif
  494. #if Y_SENSORLESS
  495. case Y: stepperY.homing_threshold(value); break;
  496. #endif
  497. #if Z_SENSORLESS
  498. case Z: stepperZ.homing_threshold(value); break;
  499. #endif
  500. #if I_SENSORLESS
  501. case I: stepperI.homing_threshold(value); break;
  502. #endif
  503. #if J_SENSORLESS
  504. case J: stepperJ.homing_threshold(value); break;
  505. #endif
  506. #if K_SENSORLESS
  507. case K: stepperK.homing_threshold(value); break;
  508. #endif
  509. #if X2_SENSORLESS
  510. case X2: stepperX2.homing_threshold(value); break;
  511. #endif
  512. #if Y2_SENSORLESS
  513. case Y2: stepperY2.homing_threshold(value); break;
  514. #endif
  515. #if Z2_SENSORLESS
  516. case Z2: stepperZ2.homing_threshold(value); break;
  517. #endif
  518. #if Z3_SENSORLESS
  519. case Z3: stepperZ3.homing_threshold(value); break;
  520. #endif
  521. #if Z4_SENSORLESS
  522. case Z4: stepperZ4.homing_threshold(value); break;
  523. #endif
  524. default: break;
  525. }
  526. UNUSED(value);
  527. }
  528. #endif
  529. float getAxisSteps_per_mm(const axis_t axis) {
  530. return planner.settings.axis_steps_per_mm[axis];
  531. }
  532. float getAxisSteps_per_mm(const extruder_t extruder) {
  533. UNUSED(extruder);
  534. return planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)];
  535. }
  536. void setAxisSteps_per_mm(const_float_t value, const axis_t axis) {
  537. planner.settings.axis_steps_per_mm[axis] = value;
  538. planner.refresh_positioning();
  539. }
  540. void setAxisSteps_per_mm(const_float_t value, const extruder_t extruder) {
  541. UNUSED(extruder);
  542. planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)] = value;
  543. planner.refresh_positioning();
  544. }
  545. feedRate_t getAxisMaxFeedrate_mm_s(const axis_t axis) {
  546. return planner.settings.max_feedrate_mm_s[axis];
  547. }
  548. feedRate_t getAxisMaxFeedrate_mm_s(const extruder_t extruder) {
  549. UNUSED(extruder);
  550. return planner.settings.max_feedrate_mm_s[E_AXIS_N(extruder - E0)];
  551. }
  552. void setAxisMaxFeedrate_mm_s(const feedRate_t value, const axis_t axis) {
  553. planner.set_max_feedrate(axis, value);
  554. }
  555. void setAxisMaxFeedrate_mm_s(const feedRate_t value, const extruder_t extruder) {
  556. UNUSED(extruder);
  557. planner.set_max_feedrate(E_AXIS_N(extruder - E0), value);
  558. }
  559. float getAxisMaxAcceleration_mm_s2(const axis_t axis) {
  560. return planner.settings.max_acceleration_mm_per_s2[axis];
  561. }
  562. float getAxisMaxAcceleration_mm_s2(const extruder_t extruder) {
  563. UNUSED(extruder);
  564. return planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)];
  565. }
  566. void setAxisMaxAcceleration_mm_s2(const_float_t value, const axis_t axis) {
  567. planner.set_max_acceleration(axis, value);
  568. }
  569. void setAxisMaxAcceleration_mm_s2(const_float_t value, const extruder_t extruder) {
  570. UNUSED(extruder);
  571. planner.set_max_acceleration(E_AXIS_N(extruder - E0), value);
  572. }
  573. #if HAS_FILAMENT_SENSOR
  574. bool getFilamentRunoutEnabled() { return runout.enabled; }
  575. void setFilamentRunoutEnabled(const bool value) { runout.enabled = value; }
  576. bool getFilamentRunoutState() { return runout.filament_ran_out; }
  577. void setFilamentRunoutState(const bool value) { runout.filament_ran_out = value; }
  578. #if HAS_FILAMENT_RUNOUT_DISTANCE
  579. float getFilamentRunoutDistance_mm() { return runout.runout_distance(); }
  580. void setFilamentRunoutDistance_mm(const_float_t value) { runout.set_runout_distance(constrain(value, 0, 999)); }
  581. #endif
  582. #endif
  583. #if ENABLED(CASE_LIGHT_ENABLE)
  584. bool getCaseLightState() { return caselight.on; }
  585. void setCaseLightState(const bool value) {
  586. caselight.on = value;
  587. caselight.update_enabled();
  588. }
  589. #if CASELIGHT_USES_BRIGHTNESS
  590. float getCaseLightBrightness_percent() { return ui8_to_percent(caselight.brightness); }
  591. void setCaseLightBrightness_percent(const_float_t value) {
  592. caselight.brightness = map(constrain(value, 0, 100), 0, 100, 0, 255);
  593. caselight.update_brightness();
  594. }
  595. #endif
  596. #endif
  597. #if ENABLED(LIN_ADVANCE)
  598. float getLinearAdvance_mm_mm_s(const extruder_t extruder) {
  599. return (extruder < EXTRUDERS) ? planner.extruder_advance_K[extruder - E0] : 0;
  600. }
  601. void setLinearAdvance_mm_mm_s(const_float_t value, const extruder_t extruder) {
  602. if (extruder < EXTRUDERS)
  603. planner.extruder_advance_K[extruder - E0] = constrain(value, 0, 10);
  604. }
  605. #endif
  606. #if HAS_JUNCTION_DEVIATION
  607. float getJunctionDeviation_mm() { return planner.junction_deviation_mm; }
  608. void setJunctionDeviation_mm(const_float_t value) {
  609. planner.junction_deviation_mm = constrain(value, 0.001, 0.3);
  610. TERN_(LIN_ADVANCE, planner.recalculate_max_e_jerk());
  611. }
  612. #else
  613. float getAxisMaxJerk_mm_s(const axis_t axis) { return planner.max_jerk[axis]; }
  614. float getAxisMaxJerk_mm_s(const extruder_t) { return planner.max_jerk.e; }
  615. void setAxisMaxJerk_mm_s(const_float_t value, const axis_t axis) { planner.set_max_jerk((AxisEnum)axis, value); }
  616. void setAxisMaxJerk_mm_s(const_float_t value, const extruder_t) { planner.set_max_jerk(E_AXIS, value); }
  617. #endif
  618. #if ENABLED(DUAL_X_CARRIAGE)
  619. uint8_t getIDEX_Mode() { return dual_x_carriage_mode; }
  620. #endif
  621. #if PREHEAT_COUNT
  622. uint16_t getMaterial_preset_E(const uint16_t index) { return ui.material_preset[index].hotend_temp; }
  623. #if HAS_HEATED_BED
  624. uint16_t getMaterial_preset_B(const uint16_t index) { return ui.material_preset[index].bed_temp; }
  625. #endif
  626. #endif
  627. feedRate_t getFeedrate_mm_s() { return feedrate_mm_s; }
  628. int16_t getFlow_percent(const extruder_t extr) { return planner.flow_percentage[extr]; }
  629. feedRate_t getMinFeedrate_mm_s() { return planner.settings.min_feedrate_mm_s; }
  630. feedRate_t getMinTravelFeedrate_mm_s() { return planner.settings.min_travel_feedrate_mm_s; }
  631. float getPrintingAcceleration_mm_s2() { return planner.settings.acceleration; }
  632. float getRetractAcceleration_mm_s2() { return planner.settings.retract_acceleration; }
  633. float getTravelAcceleration_mm_s2() { return planner.settings.travel_acceleration; }
  634. void setFeedrate_mm_s(const feedRate_t fr) { feedrate_mm_s = fr; }
  635. void setFlow_percent(const int16_t flow, const extruder_t extr) { planner.set_flow(extr, flow); }
  636. void setMinFeedrate_mm_s(const feedRate_t fr) { planner.settings.min_feedrate_mm_s = fr; }
  637. void setMinTravelFeedrate_mm_s(const feedRate_t fr) { planner.settings.min_travel_feedrate_mm_s = fr; }
  638. void setPrintingAcceleration_mm_s2(const_float_t acc) { planner.settings.acceleration = acc; }
  639. void setRetractAcceleration_mm_s2(const_float_t acc) { planner.settings.retract_acceleration = acc; }
  640. void setTravelAcceleration_mm_s2(const_float_t acc) { planner.settings.travel_acceleration = acc; }
  641. #if ENABLED(BABYSTEPPING)
  642. bool babystepAxis_steps(const int16_t steps, const axis_t axis) {
  643. switch (axis) {
  644. #if ENABLED(BABYSTEP_XY)
  645. case X: babystep.add_steps(X_AXIS, steps); break;
  646. #if HAS_Y_AXIS
  647. case Y: babystep.add_steps(Y_AXIS, steps); break;
  648. #endif
  649. #endif
  650. #if HAS_Z_AXIS
  651. case Z: babystep.add_steps(Z_AXIS, steps); break;
  652. #endif
  653. default: return false;
  654. };
  655. return true;
  656. }
  657. /**
  658. * This function adjusts an axis during a print.
  659. *
  660. * When linked_nozzles is false, each nozzle in a multi-nozzle
  661. * printer can be babystepped independently of the others. This
  662. * lets the user to fine tune the Z-offset and Nozzle Offsets
  663. * while observing the first layer of a print, regardless of
  664. * what nozzle is printing.
  665. */
  666. void smartAdjustAxis_steps(const int16_t steps, const axis_t axis, bool linked_nozzles) {
  667. const float mm = steps * planner.mm_per_step[axis];
  668. UNUSED(mm);
  669. if (!babystepAxis_steps(steps, axis)) return;
  670. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  671. // Make it so babystepping in Z adjusts the Z probe offset.
  672. if (axis == Z && TERN1(HAS_MULTI_EXTRUDER, (linked_nozzles || active_extruder == 0)))
  673. probe.offset.z += mm;
  674. #endif
  675. #if HAS_MULTI_EXTRUDER && HAS_HOTEND_OFFSET
  676. /**
  677. * When linked_nozzles is false, as an axis is babystepped
  678. * adjust the hotend offsets so that the other nozzles are
  679. * unaffected by the babystepping of the active nozzle.
  680. */
  681. if (!linked_nozzles) {
  682. HOTEND_LOOP()
  683. if (e != active_extruder)
  684. hotend_offset[e][axis] += mm;
  685. normalizeNozzleOffset(X);
  686. TERN_(HAS_Y_AXIS, normalizeNozzleOffset(Y));
  687. TERN_(HAS_Z_AXIS, normalizeNozzleOffset(Z));
  688. }
  689. #else
  690. UNUSED(linked_nozzles);
  691. #endif
  692. }
  693. /**
  694. * Converts a mm displacement to a number of whole number of
  695. * steps that is at least mm long.
  696. */
  697. int16_t mmToWholeSteps(const_float_t mm, const axis_t axis) {
  698. const float steps = mm / planner.mm_per_step[axis];
  699. return steps > 0 ? CEIL(steps) : FLOOR(steps);
  700. }
  701. float mmFromWholeSteps(int16_t steps, const axis_t axis) {
  702. return steps * planner.mm_per_step[axis];
  703. }
  704. #endif // BABYSTEPPING
  705. float getZOffset_mm() {
  706. return (0.0f
  707. #if HAS_BED_PROBE
  708. + probe.offset.z
  709. #elif ENABLED(BABYSTEP_DISPLAY_TOTAL)
  710. + planner.mm_per_step[Z_AXIS] * babystep.axis_total[BS_AXIS_IND(Z_AXIS)]
  711. #endif
  712. );
  713. }
  714. void setZOffset_mm(const_float_t value) {
  715. #if HAS_BED_PROBE
  716. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX))
  717. probe.offset.z = value;
  718. #elif ENABLED(BABYSTEP_DISPLAY_TOTAL)
  719. babystep.add_mm(Z_AXIS, value - getZOffset_mm());
  720. #else
  721. UNUSED(value);
  722. #endif
  723. }
  724. #if HAS_HOTEND_OFFSET
  725. float getNozzleOffset_mm(const axis_t axis, const extruder_t extruder) {
  726. if (extruder - E0 >= HOTENDS) return 0;
  727. return hotend_offset[extruder - E0][axis];
  728. }
  729. void setNozzleOffset_mm(const_float_t value, const axis_t axis, const extruder_t extruder) {
  730. if (extruder - E0 >= HOTENDS) return;
  731. hotend_offset[extruder - E0][axis] = value;
  732. }
  733. /**
  734. * The UI should call this if needs to guarantee the first
  735. * nozzle offset is zero (such as when it doesn't allow the
  736. * user to edit the offset the first nozzle).
  737. */
  738. void normalizeNozzleOffset(const axis_t axis) {
  739. const float offs = hotend_offset[0][axis];
  740. HOTEND_LOOP() hotend_offset[e][axis] -= offs;
  741. }
  742. #endif // HAS_HOTEND_OFFSET
  743. #if HAS_BED_PROBE
  744. float getProbeOffset_mm(const axis_t axis) { return probe.offset.pos[axis]; }
  745. void setProbeOffset_mm(const_float_t val, const axis_t axis) { probe.offset.pos[axis] = val; }
  746. #endif
  747. #if ENABLED(BACKLASH_GCODE)
  748. float getAxisBacklash_mm(const axis_t axis) { return backlash.distance_mm[axis]; }
  749. void setAxisBacklash_mm(const_float_t value, const axis_t axis)
  750. { backlash.distance_mm[axis] = constrain(value,0,5); }
  751. float getBacklashCorrection_percent() { return ui8_to_percent(backlash.correction); }
  752. void setBacklashCorrection_percent(const_float_t value) { backlash.correction = map(constrain(value, 0, 100), 0, 100, 0, 255); }
  753. #ifdef BACKLASH_SMOOTHING_MM
  754. float getBacklashSmoothing_mm() { return backlash.smoothing_mm; }
  755. void setBacklashSmoothing_mm(const_float_t value) { backlash.smoothing_mm = constrain(value, 0, 999); }
  756. #endif
  757. #endif
  758. uint32_t getProgress_seconds_elapsed() {
  759. const duration_t elapsed = print_job_timer.duration();
  760. return elapsed.value;
  761. }
  762. #if HAS_LEVELING
  763. bool getLevelingActive() { return planner.leveling_active; }
  764. void setLevelingActive(const bool state) { set_bed_leveling_enabled(state); }
  765. bool getMeshValid() { return leveling_is_valid(); }
  766. #if HAS_MESH
  767. bed_mesh_t& getMeshArray() { return Z_VALUES_ARR; }
  768. float getMeshPoint(const xy_uint8_t &pos) { return Z_VALUES(pos.x, pos.y); }
  769. void setMeshPoint(const xy_uint8_t &pos, const_float_t zoff) {
  770. if (WITHIN(pos.x, 0, (GRID_MAX_POINTS_X) - 1) && WITHIN(pos.y, 0, (GRID_MAX_POINTS_Y) - 1)) {
  771. Z_VALUES(pos.x, pos.y) = zoff;
  772. TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
  773. }
  774. }
  775. void moveToMeshPoint(const xy_uint8_t &pos, const_float_t z) {
  776. #if EITHER(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL)
  777. const feedRate_t old_feedrate = feedrate_mm_s;
  778. const float x_target = MESH_MIN_X + pos.x * (MESH_X_DIST),
  779. y_target = MESH_MIN_Y + pos.y * (MESH_Y_DIST);
  780. if (x_target != current_position.x || y_target != current_position.y) {
  781. // If moving across bed, raise nozzle to safe height over bed
  782. feedrate_mm_s = Z_PROBE_FEEDRATE_FAST;
  783. destination = current_position;
  784. destination.z = Z_CLEARANCE_BETWEEN_PROBES;
  785. prepare_line_to_destination();
  786. feedrate_mm_s = XY_PROBE_FEEDRATE;
  787. destination.x = x_target;
  788. destination.y = y_target;
  789. prepare_line_to_destination();
  790. }
  791. feedrate_mm_s = Z_PROBE_FEEDRATE_FAST;
  792. destination.z = z;
  793. prepare_line_to_destination();
  794. feedrate_mm_s = old_feedrate;
  795. #else
  796. UNUSED(pos);
  797. UNUSED(z);
  798. #endif
  799. }
  800. #endif // HAS_MESH
  801. #endif // HAS_LEVELING
  802. #if ENABLED(HOST_PROMPT_SUPPORT)
  803. void setHostResponse(const uint8_t response) { host_response_handler(response); }
  804. #endif
  805. #if ENABLED(PRINTCOUNTER)
  806. char* getFailedPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().totalPrints - print_job_timer.getStats().finishedPrints)); return buffer; }
  807. char* getTotalPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().totalPrints)); return buffer; }
  808. char* getFinishedPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().finishedPrints)); return buffer; }
  809. char* getTotalPrintTime_str(char buffer[21]) { return duration_t(print_job_timer.getStats().printTime).toString(buffer); }
  810. char* getLongestPrint_str(char buffer[21]) { return duration_t(print_job_timer.getStats().longestPrint).toString(buffer); }
  811. char* getFilamentUsed_str(char buffer[21]) {
  812. printStatistics stats = print_job_timer.getStats();
  813. sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
  814. return buffer;
  815. }
  816. #endif
  817. float getFeedrate_percent() { return feedrate_percentage; }
  818. #if ENABLED(PIDTEMP)
  819. float getPIDValues_Kp(const extruder_t tool) { return PID_PARAM(Kp, tool); }
  820. float getPIDValues_Ki(const extruder_t tool) { return unscalePID_i(PID_PARAM(Ki, tool)); }
  821. float getPIDValues_Kd(const extruder_t tool) { return unscalePID_d(PID_PARAM(Kd, tool)); }
  822. void setPIDValues(const_float_t p, const_float_t i, const_float_t d, extruder_t tool) {
  823. thermalManager.temp_hotend[tool].pid.Kp = p;
  824. thermalManager.temp_hotend[tool].pid.Ki = scalePID_i(i);
  825. thermalManager.temp_hotend[tool].pid.Kd = scalePID_d(d);
  826. thermalManager.updatePID();
  827. }
  828. void startPIDTune(const celsius_t temp, extruder_t tool) {
  829. thermalManager.PID_autotune(temp, (heater_id_t)tool, 8, true);
  830. }
  831. #endif
  832. #if ENABLED(PIDTEMPBED)
  833. float getBedPIDValues_Kp() { return thermalManager.temp_bed.pid.Kp; }
  834. float getBedPIDValues_Ki() { return unscalePID_i(thermalManager.temp_bed.pid.Ki); }
  835. float getBedPIDValues_Kd() { return unscalePID_d(thermalManager.temp_bed.pid.Kd); }
  836. void setBedPIDValues(const_float_t p, const_float_t i, const_float_t d) {
  837. thermalManager.temp_bed.pid.Kp = p;
  838. thermalManager.temp_bed.pid.Ki = scalePID_i(i);
  839. thermalManager.temp_bed.pid.Kd = scalePID_d(d);
  840. thermalManager.updatePID();
  841. }
  842. void startBedPIDTune(const celsius_t temp) {
  843. thermalManager.PID_autotune(temp, H_BED, 4, true);
  844. }
  845. #endif
  846. void injectCommands_P(PGM_P const gcode) { queue.inject_P(gcode); }
  847. void injectCommands(char * const gcode) { queue.inject(gcode); }
  848. bool commandsInQueue() { return (planner.movesplanned() || queue.has_commands_queued()); }
  849. bool isAxisPositionKnown(const axis_t axis) { return axis_is_trusted((AxisEnum)axis); }
  850. bool isAxisPositionKnown(const extruder_t) { return axis_is_trusted(E_AXIS); }
  851. bool isPositionKnown() { return all_axes_trusted(); }
  852. bool isMachineHomed() { return all_axes_homed(); }
  853. PGM_P getFirmwareName_str() {
  854. static PGMSTR(firmware_name, "Marlin " SHORT_BUILD_VERSION);
  855. return firmware_name;
  856. }
  857. void setTargetTemp_celsius(const_float_t inval, const heater_t heater) {
  858. float value = inval;
  859. #ifdef TOUCH_UI_LCD_TEMP_SCALING
  860. value *= TOUCH_UI_LCD_TEMP_SCALING;
  861. #endif
  862. enableHeater(heater);
  863. switch (heater) {
  864. #if HAS_HEATED_CHAMBER
  865. case CHAMBER: thermalManager.setTargetChamber(LROUND(constrain(value, 0, CHAMBER_MAX_TARGET))); break;
  866. #endif
  867. #if HAS_COOLER
  868. case COOLER: thermalManager.setTargetCooler(LROUND(constrain(value, 0, COOLER_MAXTEMP))); break;
  869. #endif
  870. #if HAS_HEATED_BED
  871. case BED: thermalManager.setTargetBed(LROUND(constrain(value, 0, BED_MAX_TARGET))); break;
  872. #endif
  873. default: {
  874. #if HAS_HOTEND
  875. const int16_t e = heater - H0;
  876. thermalManager.setTargetHotend(LROUND(constrain(value, 0, thermalManager.hotend_max_target(e))), e);
  877. #endif
  878. } break;
  879. }
  880. }
  881. void setTargetTemp_celsius(const_float_t inval, const extruder_t extruder) {
  882. float value = inval;
  883. #ifdef TOUCH_UI_LCD_TEMP_SCALING
  884. value *= TOUCH_UI_LCD_TEMP_SCALING;
  885. #endif
  886. #if HAS_HOTEND
  887. const int16_t e = extruder - E0;
  888. enableHeater(extruder);
  889. thermalManager.setTargetHotend(LROUND(constrain(value, 0, thermalManager.hotend_max_target(e))), e);
  890. #endif
  891. }
  892. void setTargetFan_percent(const_float_t value, const fan_t fan) {
  893. #if HAS_FAN
  894. if (fan < FAN_COUNT)
  895. thermalManager.set_fan_speed(fan - FAN0, map(constrain(value, 0, 100), 0, 100, 0, 255));
  896. #else
  897. UNUSED(value);
  898. UNUSED(fan);
  899. #endif
  900. }
  901. void setFeedrate_percent(const_float_t value) { feedrate_percentage = constrain(value, 10, 500); }
  902. void coolDown() {
  903. #if HAS_HOTEND
  904. HOTEND_LOOP() thermalManager.setTargetHotend(0, e);
  905. #endif
  906. TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
  907. TERN_(HAS_FAN, thermalManager.zero_fan_speeds());
  908. }
  909. bool awaitingUserConfirm() {
  910. return TERN0(HAS_RESUME_CONTINUE, wait_for_user) || getHostKeepaliveIsPaused();
  911. }
  912. void setUserConfirmed() { TERN_(HAS_RESUME_CONTINUE, wait_for_user = false); }
  913. #if M600_PURGE_MORE_RESUMABLE
  914. void setPauseMenuResponse(PauseMenuResponse response) { pause_menu_response = response; }
  915. PauseMessage pauseModeStatus = PAUSE_MESSAGE_STATUS;
  916. PauseMode getPauseMode() { return pause_mode;}
  917. #endif
  918. void printFile(const char *filename) {
  919. TERN(SDSUPPORT, card.openAndPrintFile(filename), UNUSED(filename));
  920. }
  921. bool isPrintingFromMediaPaused() {
  922. return TERN0(SDSUPPORT, IS_SD_PAUSED());
  923. }
  924. bool isPrintingFromMedia() { return TERN0(SDSUPPORT, IS_SD_PRINTING() || IS_SD_PAUSED()); }
  925. bool isPrinting() {
  926. return commandsInQueue() || isPrintingFromMedia() || printJobOngoing() || printingIsPaused();
  927. }
  928. bool isPrintingPaused() {
  929. return isPrinting() && (isPrintingFromMediaPaused() || print_job_timer.isPaused());
  930. }
  931. bool isMediaInserted() { return TERN0(SDSUPPORT, IS_SD_INSERTED()); }
  932. void pausePrint() { ui.pause_print(); }
  933. void resumePrint() { ui.resume_print(); }
  934. void stopPrint() { ui.abort_print(); }
  935. void onUserConfirmRequired(FSTR_P const fstr) {
  936. char msg[strlen_P(FTOP(fstr)) + 1];
  937. strcpy_P(msg, FTOP(fstr));
  938. onUserConfirmRequired(msg);
  939. }
  940. void onStatusChanged(FSTR_P const fstr) {
  941. char msg[strlen_P(FTOP(fstr)) + 1];
  942. strcpy_P(msg, FTOP(fstr));
  943. onStatusChanged(msg);
  944. }
  945. FileList::FileList() { refresh(); }
  946. void FileList::refresh() { num_files = 0xFFFF; }
  947. bool FileList::seek(const uint16_t pos, const bool skip_range_check) {
  948. #if ENABLED(SDSUPPORT)
  949. if (!skip_range_check && (pos + 1) > count()) return false;
  950. card.getfilename_sorted(SD_ORDER(pos, count()));
  951. return card.filename[0] != '\0';
  952. #else
  953. UNUSED(pos);
  954. UNUSED(skip_range_check);
  955. return false;
  956. #endif
  957. }
  958. const char* FileList::filename() {
  959. return TERN(SDSUPPORT, card.longest_filename(), "");
  960. }
  961. const char* FileList::shortFilename() {
  962. return TERN(SDSUPPORT, card.filename, "");
  963. }
  964. const char* FileList::longFilename() {
  965. return TERN(SDSUPPORT, card.longFilename, "");
  966. }
  967. bool FileList::isDir() {
  968. return TERN0(SDSUPPORT, card.flag.filenameIsDir);
  969. }
  970. uint16_t FileList::count() {
  971. return TERN0(SDSUPPORT, (num_files = (num_files == 0xFFFF ? card.get_num_Files() : num_files)));
  972. }
  973. bool FileList::isAtRootDir() {
  974. return TERN1(SDSUPPORT, card.flag.workDirIsRoot);
  975. }
  976. void FileList::upDir() {
  977. #if ENABLED(SDSUPPORT)
  978. card.cdup();
  979. num_files = 0xFFFF;
  980. #endif
  981. }
  982. void FileList::changeDir(const char * const dirname) {
  983. #if ENABLED(SDSUPPORT)
  984. card.cd(dirname);
  985. num_files = 0xFFFF;
  986. #else
  987. UNUSED(dirname);
  988. #endif
  989. }
  990. } // namespace ExtUI
  991. // At the moment we hook into MarlinUI methods, but this could be cleaned up in the future
  992. void MarlinUI::init() { ExtUI::onStartup(); }
  993. void MarlinUI::update() { ExtUI::onIdle(); }
  994. void MarlinUI::kill_screen(PGM_P const error, PGM_P const component) {
  995. using namespace ExtUI;
  996. if (!flags.printer_killed) {
  997. flags.printer_killed = true;
  998. onPrinterKilled(error, component);
  999. }
  1000. }
  1001. #endif // EXTENSIBLE_UI