My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.cpp 24KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "speed_lookuptable.h"
  25. //===========================================================================
  26. //=============================public variables ============================
  27. //===========================================================================
  28. block_t *current_block; // A pointer to the block currently being traced
  29. //===========================================================================
  30. //=============================private variables ============================
  31. //===========================================================================
  32. //static makes it inpossible to be called from outside of this file by extern.!
  33. // Variables used by The Stepper Driver Interrupt
  34. static unsigned char out_bits; // The next stepping-bits to be output
  35. static long counter_x, // Counter variables for the bresenham line tracer
  36. counter_y,
  37. counter_z,
  38. counter_e;
  39. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  40. #ifdef ADVANCE
  41. static long advance_rate, advance, final_advance = 0;
  42. static long old_advance = 0;
  43. #endif
  44. static long e_steps[3];
  45. static long acceleration_time, deceleration_time;
  46. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  47. static unsigned short acc_step_rate; // needed for deccelaration start point
  48. static char step_loops;
  49. static unsigned short OCR1A_nominal;
  50. volatile long endstops_trigsteps[3]={0,0,0};
  51. volatile long endstops_stepsTotal,endstops_stepsDone;
  52. static volatile bool endstop_x_hit=false;
  53. static volatile bool endstop_y_hit=false;
  54. static volatile bool endstop_z_hit=false;
  55. static bool old_x_min_endstop=false;
  56. static bool old_x_max_endstop=false;
  57. static bool old_y_min_endstop=false;
  58. static bool old_y_max_endstop=false;
  59. static bool old_z_min_endstop=false;
  60. static bool old_z_max_endstop=false;
  61. static bool check_endstops = true;
  62. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  63. volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  64. //===========================================================================
  65. //=============================functions ============================
  66. //===========================================================================
  67. #define CHECK_ENDSTOPS if(check_endstops)
  68. // intRes = intIn1 * intIn2 >> 16
  69. // uses:
  70. // r26 to store 0
  71. // r27 to store the byte 1 of the 24 bit result
  72. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  73. asm volatile ( \
  74. "clr r26 \n\t" \
  75. "mul %A1, %B2 \n\t" \
  76. "movw %A0, r0 \n\t" \
  77. "mul %A1, %A2 \n\t" \
  78. "add %A0, r1 \n\t" \
  79. "adc %B0, r26 \n\t" \
  80. "lsr r0 \n\t" \
  81. "adc %A0, r26 \n\t" \
  82. "adc %B0, r26 \n\t" \
  83. "clr r1 \n\t" \
  84. : \
  85. "=&r" (intRes) \
  86. : \
  87. "d" (charIn1), \
  88. "d" (intIn2) \
  89. : \
  90. "r26" \
  91. )
  92. // intRes = longIn1 * longIn2 >> 24
  93. // uses:
  94. // r26 to store 0
  95. // r27 to store the byte 1 of the 48bit result
  96. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  97. asm volatile ( \
  98. "clr r26 \n\t" \
  99. "mul %A1, %B2 \n\t" \
  100. "mov r27, r1 \n\t" \
  101. "mul %B1, %C2 \n\t" \
  102. "movw %A0, r0 \n\t" \
  103. "mul %C1, %C2 \n\t" \
  104. "add %B0, r0 \n\t" \
  105. "mul %C1, %B2 \n\t" \
  106. "add %A0, r0 \n\t" \
  107. "adc %B0, r1 \n\t" \
  108. "mul %A1, %C2 \n\t" \
  109. "add r27, r0 \n\t" \
  110. "adc %A0, r1 \n\t" \
  111. "adc %B0, r26 \n\t" \
  112. "mul %B1, %B2 \n\t" \
  113. "add r27, r0 \n\t" \
  114. "adc %A0, r1 \n\t" \
  115. "adc %B0, r26 \n\t" \
  116. "mul %C1, %A2 \n\t" \
  117. "add r27, r0 \n\t" \
  118. "adc %A0, r1 \n\t" \
  119. "adc %B0, r26 \n\t" \
  120. "mul %B1, %A2 \n\t" \
  121. "add r27, r1 \n\t" \
  122. "adc %A0, r26 \n\t" \
  123. "adc %B0, r26 \n\t" \
  124. "lsr r27 \n\t" \
  125. "adc %A0, r26 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "clr r1 \n\t" \
  128. : \
  129. "=&r" (intRes) \
  130. : \
  131. "d" (longIn1), \
  132. "d" (longIn2) \
  133. : \
  134. "r26" , "r27" \
  135. )
  136. // Some useful constants
  137. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  138. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  139. void checkHitEndstops()
  140. {
  141. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  142. SERIAL_ECHO_START;
  143. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  144. if(endstop_x_hit) {
  145. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  146. }
  147. if(endstop_y_hit) {
  148. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  149. }
  150. if(endstop_z_hit) {
  151. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  152. }
  153. SERIAL_ECHOLN("");
  154. endstop_x_hit=false;
  155. endstop_y_hit=false;
  156. endstop_z_hit=false;
  157. }
  158. }
  159. void endstops_hit_on_purpose()
  160. {
  161. endstop_x_hit=false;
  162. endstop_y_hit=false;
  163. endstop_z_hit=false;
  164. }
  165. void enable_endstops(bool check)
  166. {
  167. check_endstops = check;
  168. }
  169. // __________________________
  170. // /| |\ _________________ ^
  171. // / | | \ /| |\ |
  172. // / | | \ / | | \ s
  173. // / | | | | | \ p
  174. // / | | | | | \ e
  175. // +-----+------------------------+---+--+---------------+----+ e
  176. // | BLOCK 1 | BLOCK 2 | d
  177. //
  178. // time ----->
  179. //
  180. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  181. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  182. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  183. // The slope of acceleration is calculated with the leib ramp alghorithm.
  184. void st_wake_up() {
  185. // TCNT1 = 0;
  186. ENABLE_STEPPER_DRIVER_INTERRUPT();
  187. }
  188. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  189. unsigned short timer;
  190. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  191. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  192. step_rate = (step_rate >> 2)&0x3fff;
  193. step_loops = 4;
  194. }
  195. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  196. step_rate = (step_rate >> 1)&0x7fff;
  197. step_loops = 2;
  198. }
  199. else {
  200. step_loops = 1;
  201. }
  202. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  203. step_rate -= (F_CPU/500000); // Correct for minimal speed
  204. if(step_rate >= (8*256)){ // higher step rate
  205. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  206. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  207. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  208. MultiU16X8toH16(timer, tmp_step_rate, gain);
  209. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  210. }
  211. else { // lower step rates
  212. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  213. table_address += ((step_rate)>>1) & 0xfffc;
  214. timer = (unsigned short)pgm_read_word_near(table_address);
  215. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  216. }
  217. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  218. return timer;
  219. }
  220. // Initializes the trapezoid generator from the current block. Called whenever a new
  221. // block begins.
  222. FORCE_INLINE void trapezoid_generator_reset() {
  223. #ifdef ADVANCE
  224. advance = current_block->initial_advance;
  225. final_advance = current_block->final_advance;
  226. // Do E steps + advance steps
  227. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  228. old_advance = advance >>8;
  229. #endif
  230. deceleration_time = 0;
  231. // step_rate to timer interval
  232. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  233. acc_step_rate = current_block->initial_rate;
  234. acceleration_time = calc_timer(acc_step_rate);
  235. OCR1A = acceleration_time;
  236. // SERIAL_ECHO_START;
  237. // SERIAL_ECHOPGM("advance :");
  238. // SERIAL_ECHO(current_block->advance/256.0);
  239. // SERIAL_ECHOPGM("advance rate :");
  240. // SERIAL_ECHO(current_block->advance_rate/256.0);
  241. // SERIAL_ECHOPGM("initial advance :");
  242. // SERIAL_ECHO(current_block->initial_advance/256.0);
  243. // SERIAL_ECHOPGM("final advance :");
  244. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  245. }
  246. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  247. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  248. ISR(TIMER1_COMPA_vect)
  249. {
  250. // If there is no current block, attempt to pop one from the buffer
  251. if (current_block == NULL) {
  252. // Anything in the buffer?
  253. current_block = plan_get_current_block();
  254. if (current_block != NULL) {
  255. current_block->busy = true;
  256. trapezoid_generator_reset();
  257. counter_x = -(current_block->step_event_count >> 1);
  258. counter_y = counter_x;
  259. counter_z = counter_x;
  260. counter_e = counter_x;
  261. step_events_completed = 0;
  262. #ifdef Z_LATE_ENABLE
  263. if(current_block->steps_z > 0) {
  264. enable_z();
  265. OCR1A = 2000; //1ms wait
  266. return;
  267. }
  268. #endif
  269. // #ifdef ADVANCE
  270. // e_steps[current_block->active_extruder] = 0;
  271. // #endif
  272. }
  273. else {
  274. OCR1A=2000; // 1kHz.
  275. }
  276. }
  277. if (current_block != NULL) {
  278. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  279. out_bits = current_block->direction_bits;
  280. // Set direction en check limit switches
  281. if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
  282. WRITE(X_DIR_PIN, INVERT_X_DIR);
  283. count_direction[X_AXIS]=-1;
  284. CHECK_ENDSTOPS
  285. {
  286. #if X_MIN_PIN > -1
  287. bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
  288. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  289. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  290. endstop_x_hit=true;
  291. step_events_completed = current_block->step_event_count;
  292. }
  293. old_x_min_endstop = x_min_endstop;
  294. #endif
  295. }
  296. }
  297. else { // +direction
  298. WRITE(X_DIR_PIN,!INVERT_X_DIR);
  299. count_direction[X_AXIS]=1;
  300. CHECK_ENDSTOPS
  301. {
  302. #if X_MAX_PIN > -1
  303. bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
  304. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  305. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  306. endstop_x_hit=true;
  307. step_events_completed = current_block->step_event_count;
  308. }
  309. old_x_max_endstop = x_max_endstop;
  310. #endif
  311. }
  312. }
  313. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  314. WRITE(Y_DIR_PIN,INVERT_Y_DIR);
  315. count_direction[Y_AXIS]=-1;
  316. CHECK_ENDSTOPS
  317. {
  318. #if Y_MIN_PIN > -1
  319. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
  320. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  321. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  322. endstop_y_hit=true;
  323. step_events_completed = current_block->step_event_count;
  324. }
  325. old_y_min_endstop = y_min_endstop;
  326. #endif
  327. }
  328. }
  329. else { // +direction
  330. WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
  331. count_direction[Y_AXIS]=1;
  332. CHECK_ENDSTOPS
  333. {
  334. #if Y_MAX_PIN > -1
  335. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
  336. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  337. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  338. endstop_y_hit=true;
  339. step_events_completed = current_block->step_event_count;
  340. }
  341. old_y_max_endstop = y_max_endstop;
  342. #endif
  343. }
  344. }
  345. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  346. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  347. count_direction[Z_AXIS]=-1;
  348. CHECK_ENDSTOPS
  349. {
  350. #if Z_MIN_PIN > -1
  351. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
  352. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  353. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  354. endstop_z_hit=true;
  355. step_events_completed = current_block->step_event_count;
  356. }
  357. old_z_min_endstop = z_min_endstop;
  358. #endif
  359. }
  360. }
  361. else { // +direction
  362. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  363. count_direction[Z_AXIS]=1;
  364. CHECK_ENDSTOPS
  365. {
  366. #if Z_MAX_PIN > -1
  367. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
  368. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  369. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  370. endstop_z_hit=true;
  371. step_events_completed = current_block->step_event_count;
  372. }
  373. old_z_max_endstop = z_max_endstop;
  374. #endif
  375. }
  376. }
  377. #ifndef ADVANCE
  378. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  379. REV_E_DIR();
  380. count_direction[E_AXIS]=-1;
  381. }
  382. else { // +direction
  383. NORM_E_DIR();
  384. count_direction[E_AXIS]=1;
  385. }
  386. #endif //!ADVANCE
  387. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  388. #if MOTHERBOARD != 8 // !teensylu
  389. MSerial.checkRx(); // Check for serial chars.
  390. #endif
  391. #ifdef ADVANCE
  392. counter_e += current_block->steps_e;
  393. if (counter_e > 0) {
  394. counter_e -= current_block->step_event_count;
  395. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  396. e_steps[current_block->active_extruder]--;
  397. }
  398. else {
  399. e_steps[current_block->active_extruder]++;
  400. }
  401. }
  402. #endif //ADVANCE
  403. counter_x += current_block->steps_x;
  404. if (counter_x > 0) {
  405. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  406. counter_x -= current_block->step_event_count;
  407. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  408. count_position[X_AXIS]+=count_direction[X_AXIS];
  409. }
  410. counter_y += current_block->steps_y;
  411. if (counter_y > 0) {
  412. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  413. counter_y -= current_block->step_event_count;
  414. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  415. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  416. }
  417. counter_z += current_block->steps_z;
  418. if (counter_z > 0) {
  419. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  420. counter_z -= current_block->step_event_count;
  421. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  422. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  423. }
  424. #ifndef ADVANCE
  425. counter_e += current_block->steps_e;
  426. if (counter_e > 0) {
  427. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  428. counter_e -= current_block->step_event_count;
  429. WRITE_E_STEP(INVERT_E_STEP_PIN);
  430. count_position[E_AXIS]+=count_direction[E_AXIS];
  431. }
  432. #endif //!ADVANCE
  433. step_events_completed += 1;
  434. if(step_events_completed >= current_block->step_event_count) break;
  435. }
  436. // Calculare new timer value
  437. unsigned short timer;
  438. unsigned short step_rate;
  439. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  440. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  441. acc_step_rate += current_block->initial_rate;
  442. // upper limit
  443. if(acc_step_rate > current_block->nominal_rate)
  444. acc_step_rate = current_block->nominal_rate;
  445. // step_rate to timer interval
  446. timer = calc_timer(acc_step_rate);
  447. OCR1A = timer;
  448. acceleration_time += timer;
  449. #ifdef ADVANCE
  450. for(int8_t i=0; i < step_loops; i++) {
  451. advance += advance_rate;
  452. }
  453. //if(advance > current_block->advance) advance = current_block->advance;
  454. // Do E steps + advance steps
  455. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  456. old_advance = advance >>8;
  457. #endif
  458. }
  459. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  460. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  461. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  462. step_rate = current_block->final_rate;
  463. }
  464. else {
  465. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  466. }
  467. // lower limit
  468. if(step_rate < current_block->final_rate)
  469. step_rate = current_block->final_rate;
  470. // step_rate to timer interval
  471. timer = calc_timer(step_rate);
  472. OCR1A = timer;
  473. deceleration_time += timer;
  474. #ifdef ADVANCE
  475. for(int8_t i=0; i < step_loops; i++) {
  476. advance -= advance_rate;
  477. }
  478. if(advance < final_advance) advance = final_advance;
  479. // Do E steps + advance steps
  480. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  481. old_advance = advance >>8;
  482. #endif //ADVANCE
  483. }
  484. else {
  485. OCR1A = OCR1A_nominal;
  486. }
  487. // If current block is finished, reset pointer
  488. if (step_events_completed >= current_block->step_event_count) {
  489. current_block = NULL;
  490. plan_discard_current_block();
  491. }
  492. }
  493. }
  494. #ifdef ADVANCE
  495. unsigned char old_OCR0A;
  496. // Timer interrupt for E. e_steps is set in the main routine;
  497. // Timer 0 is shared with millies
  498. ISR(TIMER0_COMPA_vect)
  499. {
  500. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  501. OCR0A = old_OCR0A;
  502. // Set E direction (Depends on E direction + advance)
  503. for(unsigned char i=0; i<4;i++) {
  504. if (e_steps[0] != 0) {
  505. WRITE(E0_STEP_PIN, LOW);
  506. if (e_steps[0] < 0) {
  507. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  508. e_steps[0]++;
  509. WRITE(E0_STEP_PIN, HIGH);
  510. }
  511. else if (e_steps[0] > 0) {
  512. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  513. e_steps[0]--;
  514. WRITE(E0_STEP_PIN, HIGH);
  515. }
  516. }
  517. #if EXTRUDERS > 1
  518. if (e_steps[1] != 0) {
  519. WRITE(E1_STEP_PIN, LOW);
  520. if (e_steps[1] < 0) {
  521. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  522. e_steps[1]++;
  523. WRITE(E1_STEP_PIN, HIGH);
  524. }
  525. else if (e_steps[1] > 0) {
  526. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  527. e_steps[1]--;
  528. WRITE(E1_STEP_PIN, HIGH);
  529. }
  530. }
  531. #endif
  532. #if EXTRUDERS > 2
  533. if (e_steps[2] != 0) {
  534. WRITE(E2_STEP_PIN, LOW);
  535. if (e_steps[2] < 0) {
  536. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  537. e_steps[2]++;
  538. WRITE(E2_STEP_PIN, HIGH);
  539. }
  540. else if (e_steps[2] > 0) {
  541. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  542. e_steps[2]--;
  543. WRITE(E2_STEP_PIN, HIGH);
  544. }
  545. }
  546. #endif
  547. }
  548. }
  549. #endif // ADVANCE
  550. void st_init()
  551. {
  552. //Initialize Dir Pins
  553. #if X_DIR_PIN > -1
  554. SET_OUTPUT(X_DIR_PIN);
  555. #endif
  556. #if Y_DIR_PIN > -1
  557. SET_OUTPUT(Y_DIR_PIN);
  558. #endif
  559. #if Z_DIR_PIN > -1
  560. SET_OUTPUT(Z_DIR_PIN);
  561. #endif
  562. #if E0_DIR_PIN > -1
  563. SET_OUTPUT(E0_DIR_PIN);
  564. #endif
  565. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  566. SET_OUTPUT(E1_DIR_PIN);
  567. #endif
  568. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  569. SET_OUTPUT(E2_DIR_PIN);
  570. #endif
  571. //Initialize Enable Pins - steppers default to disabled.
  572. #if (X_ENABLE_PIN > -1)
  573. SET_OUTPUT(X_ENABLE_PIN);
  574. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  575. #endif
  576. #if (Y_ENABLE_PIN > -1)
  577. SET_OUTPUT(Y_ENABLE_PIN);
  578. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  579. #endif
  580. #if (Z_ENABLE_PIN > -1)
  581. SET_OUTPUT(Z_ENABLE_PIN);
  582. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  583. #endif
  584. #if (E0_ENABLE_PIN > -1)
  585. SET_OUTPUT(E0_ENABLE_PIN);
  586. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  587. #endif
  588. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  589. SET_OUTPUT(E1_ENABLE_PIN);
  590. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  591. #endif
  592. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  593. SET_OUTPUT(E2_ENABLE_PIN);
  594. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  595. #endif
  596. //endstops and pullups
  597. #if X_MIN_PIN > -1
  598. SET_INPUT(X_MIN_PIN);
  599. #ifdef ENDSTOPPULLUP_XMIN
  600. WRITE(X_MIN_PIN,HIGH);
  601. #endif
  602. #endif
  603. #if Y_MIN_PIN > -1
  604. SET_INPUT(Y_MIN_PIN);
  605. #ifdef ENDSTOPPULLUP_YMIN
  606. WRITE(Y_MIN_PIN,HIGH);
  607. #endif
  608. #endif
  609. #if Z_MIN_PIN > -1
  610. SET_INPUT(Z_MIN_PIN);
  611. #ifdef ENDSTOPPULLUP_ZMIN
  612. WRITE(Z_MIN_PIN,HIGH);
  613. #endif
  614. #endif
  615. #if X_MAX_PIN > -1
  616. SET_INPUT(X_MAX_PIN);
  617. #ifdef ENDSTOPPULLUP_XMAX
  618. WRITE(X_MAX_PIN,HIGH);
  619. #endif
  620. #endif
  621. #if Y_MAX_PIN > -1
  622. SET_INPUT(Y_MAX_PIN);
  623. #ifdef ENDSTOPPULLUP_YMAX
  624. WRITE(Y_MAX_PIN,HIGH);
  625. #endif
  626. #endif
  627. #if Z_MAX_PIN > -1
  628. SET_INPUT(Z_MAX_PIN);
  629. #ifdef ENDSTOPPULLUP_ZMAX
  630. WRITE(Z_MAX_PIN,HIGH);
  631. #endif
  632. #endif
  633. //Initialize Step Pins
  634. #if (X_STEP_PIN > -1)
  635. SET_OUTPUT(X_STEP_PIN);
  636. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  637. #endif
  638. #if (Y_STEP_PIN > -1)
  639. SET_OUTPUT(Y_STEP_PIN);
  640. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  641. #endif
  642. #if (Z_STEP_PIN > -1)
  643. SET_OUTPUT(Z_STEP_PIN);
  644. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  645. #endif
  646. #if (E0_STEP_PIN > -1)
  647. SET_OUTPUT(E0_STEP_PIN);
  648. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  649. #endif
  650. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  651. SET_OUTPUT(E1_STEP_PIN);
  652. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  653. #endif
  654. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  655. SET_OUTPUT(E2_STEP_PIN);
  656. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  657. #endif
  658. #ifdef CONTROLLERFAN_PIN
  659. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  660. #endif
  661. // waveform generation = 0100 = CTC
  662. TCCR1B &= ~(1<<WGM13);
  663. TCCR1B |= (1<<WGM12);
  664. TCCR1A &= ~(1<<WGM11);
  665. TCCR1A &= ~(1<<WGM10);
  666. // output mode = 00 (disconnected)
  667. TCCR1A &= ~(3<<COM1A0);
  668. TCCR1A &= ~(3<<COM1B0);
  669. // Set the timer pre-scaler
  670. // Generally we use a divider of 8, resulting in a 2MHz timer
  671. // frequency on a 16MHz MCU. If you are going to change this, be
  672. // sure to regenerate speed_lookuptable.h with
  673. // create_speed_lookuptable.py
  674. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  675. OCR1A = 0x4000;
  676. TCNT1 = 0;
  677. ENABLE_STEPPER_DRIVER_INTERRUPT();
  678. #ifdef ADVANCE
  679. #if defined(TCCR0A) && defined(WGM01)
  680. TCCR0A &= ~(1<<WGM01);
  681. TCCR0A &= ~(1<<WGM00);
  682. #endif
  683. e_steps[0] = 0;
  684. e_steps[1] = 0;
  685. e_steps[2] = 0;
  686. TIMSK0 |= (1<<OCIE0A);
  687. #endif //ADVANCE
  688. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  689. sei();
  690. }
  691. // Block until all buffered steps are executed
  692. void st_synchronize()
  693. {
  694. while( blocks_queued()) {
  695. manage_heater();
  696. manage_inactivity(1);
  697. LCD_STATUS;
  698. }
  699. }
  700. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  701. {
  702. CRITICAL_SECTION_START;
  703. count_position[X_AXIS] = x;
  704. count_position[Y_AXIS] = y;
  705. count_position[Z_AXIS] = z;
  706. count_position[E_AXIS] = e;
  707. CRITICAL_SECTION_END;
  708. }
  709. void st_set_e_position(const long &e)
  710. {
  711. CRITICAL_SECTION_START;
  712. count_position[E_AXIS] = e;
  713. CRITICAL_SECTION_END;
  714. }
  715. long st_get_position(uint8_t axis)
  716. {
  717. long count_pos;
  718. CRITICAL_SECTION_START;
  719. count_pos = count_position[axis];
  720. CRITICAL_SECTION_END;
  721. return count_pos;
  722. }
  723. void finishAndDisableSteppers()
  724. {
  725. st_synchronize();
  726. LCD_MESSAGEPGM(MSG_STEPPER_RELEASED);
  727. disable_x();
  728. disable_y();
  729. disable_z();
  730. disable_e0();
  731. disable_e1();
  732. disable_e2();
  733. }
  734. void quickStop()
  735. {
  736. DISABLE_STEPPER_DRIVER_INTERRUPT();
  737. while(blocks_queued())
  738. plan_discard_current_block();
  739. current_block = NULL;
  740. ENABLE_STEPPER_DRIVER_INTERRUPT();
  741. }